
OneAccess

Development Guide

Issue 01

Date 2024-12-26

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 Synchronizing Data to Applications Through Event Callback...................................... 1
1.1 Preparations.. 1
1.2 Calling Methods.. 10
1.2.1 API Calling..10
1.2.2 Signature Verification...12
1.2.3 Verifying Callback URL.. 19
1.3 API.. 21
1.3.1 Overview...21
1.3.2 Adding an Organization Event..21
1.3.3 Modifying an Organization Event..22
1.3.4 Deleting an Organization Event... 24
1.3.5 Adding a User Event... 26
1.3.6 Modifying a User Event... 28
1.3.7 Deleting a User Event.. 30
1.4 Common Return Codes... 31

2 Developing Mapping Scripts...32

OneAccess
Development Guide Contents

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

1 Synchronizing Data to Applications
Through Event Callback

1.1 Preparations
OneAccess synchronizes identity data using the "Upstream – Midstream –
Downstream" model. Upstream refers to various core identity sources, such as
DingTalk, WeCom, HR, and OneAccess, midstream is OneAccess, and downstream
indicates an application system that synchronizes identity data with the upstream.
In this model, OneAccess transfers real-time identity data from upstream to
downstream, maintaining consistency and security of identity data throughout the
user lifecycle, covering onboarding, job transfer, and resignation.

To synchronize OneAccess data to enterprise applications, you need to develop an
event synchronization API based on the data format in advance. For details, see
Calling Methods and API.

The following describes how to synchronize OneAccess data to an application
through event callback:

1. Event Callback Configuration
2. Adding, Modifying, and Deleting Users
3. Adding, Modifying, and Deleting Organizations
4. Event Synchronization
5. Full Synchronization
6. Synchronization Statuses

Event Callback Configuration
As an administrator, you can configure event callback on the administrator portal.

Step 1 Log in to the administrator portal.

Step 2 On the top navigation bar, choose Resources > Applications.

Step 3 Click Add Custom Application in the Custom Applications section, set the logo
and application name, and click Save.

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

Step 4 Click the application created in Step 3. In the General Information area, click

 next to Synchronization and select Event callback. Click Save.

Figure 1-1 Enabling event callback

Step 5 In the General Information area, click Configure next to Synchronization. On
the Parameters tab, set parameters according to Table 1-1 and click Save.

Table 1-1 Parameters

Paramet
er

Description

Callback
URL

URL used by enterprise applications to receive events pushed by
OneAccess.

Security
Token

The request header of each event callback API carries a bear token.
The callback service of the enterprise application needs to be
authenticated.

Encryptio
n/
Decrypti
on
Algorith
m

AES/GCM/NOPadding (default) algorithms are recommended.
NULL indicates that data is not encrypted, which has security risks.
Exercise caution when using this method.

Encryptio
n Key

Keys used to encrypt a message. The value is left blank by default.
Otherwise, the value must contain 16 digits.

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

Paramet
er

Description

Signatur
e Key

Signature key used to generate a data signature based on the
message content. The value is left blank by default. Otherwise, the
value must contain 16 digits.

Step 6 (Optional) Click the application icon. In the navigation pane, choose
Synchronization Integration and select the General tab to modify the mapping
during synchronization, including deleting and deactivating accounts and
organizations.

Step 7 (Optional) Click the application icon. In the navigation pane, choose Object

Models > Application Organization and click to enable the application
organization.

NO TE

Skip this step if you will not synchronize organization data to the application.

Step 8 (Optional) Configure organization attributes and mappings. Skip this step if you
only need to synchronize the built-in attributes of the organization.

1. In the navigation pane, choose Object Models > Application Organization.
On the Attributes tab, click Add to configure the organization attributes
synchronized to enterprise applications.

NO TE

– When synchronizing built-in attributes to enterprise applications, ensure that the
added attribute names are the same as those in application organizations.

– When synchronizing non-built-in attributes to enterprise applications, ensure that
the attribute names are the same as those set by administrators.

Table 1-2 Attribute parameters

Parame
ter

Description

Attribut
e
(Mandat
ory)

Custom field ID synchronized to enterprise applications, which
cannot be changed after being set.

Label
(Mandat
ory)

Attribute name of an organization. It is recommended that the
value be the same as that of Attribute.

Descripti
on

Description of the Attribute.

Attribut
e Type
(mandat
ory)

Type of the Attribute. You can select a value from the drop-
down list. The value cannot be changed after being set.

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

Parame
ter

Description

Format When Attribute Type is set to Text, you can select a value from
the drop-down list.

Require
d

This option is not selected by default.

Unique When Attribute Type is set to Text, you can select Unique. If
this option is selected, the attribute value must be unique when
organization data is synchronized to the application. If the
attribute value is duplicate, a message is displayed, indicating
that the label already exists.

Sensitive It is required only when Attribute Type is set to Text. If this
option is selected, the application data is hidden when it is
synchronized to an application. You can click to view the
content.

2. On the Mappings tab, click Modify and set the mappings of the organization

attribute.

NO TE

– When Conversion Mode is set to Script-based, compile the script by referring to
Developing Mapping Scripts.

– To prevent synchronization exceptions, you are advised to add organization
attributes of the same type as the application organization attributes to be
mapped.

Table 1-3 Mapping parameters

Parame
ter

Description

Organiz
ation

Organization attribute mapped to the Application
Organization. You can select a value from the drop-down list.

Conversi
on
Mode

Mode of attribute mapping between Organization and
Application Organization.

Script
Expressi
on

When Conversion Mode is set to Script-based, enter the
specific mapping script.

Executio
n Mode

Mode of attribute mapping between Organization and
Application Organization.

Applicati
on
Organiz
ation

Organization attributes defined in 1.

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

3. On the Configure tab, Delete System Org is set to Delete application
organization and Disable System Org is set to Disable application
organization by default. You can click Modify to modify the configuration.
You can set Delete System Org to Disable application organization or Do
not affect, and set Disable System Org to Do not affect. Click Save for the
modification to take effect.

Step 9 (Optional) Configure account attributes and mappings. Skip this step if you only
need to synchronize the built-in attributes of the account.

1. In the navigation pane, choose Object Models > Application Accounts. On
the Attributes tab, click Add to configure account attributes synchronized to
enterprise applications.

NO TE

– When synchronizing built-in attributes to enterprise applications, ensure that the
added attribute names are the same as those in application accounts.

– When synchronizing non-built-in attributes to enterprise applications, ensure that
the attribute names are the same as those set by administrators.

Table 1-4 Attribute parameters

Parame
ter

Description

Attribut
e
(Mandat
ory)

Custom field ID synchronized to enterprise applications, which
cannot be changed after being set.

Label
(mandat
ory)

Attribute name of an account. It is recommended that the value
be the same as that of Attribute.

Descripti
on

Description of the Attribute.

Attribut
e Type
(mandat
ory)

Type of the Attribute. You can select a value from the drop-
down list. The value cannot be changed after being set.

Format When Attribute Type is set to Text, you can select a value from
the drop-down list.

Require
d

This option is not selected by default.

Unique When Attribute Type is set to Text, you can select Unique. If
this option is selected, the attribute value must be unique when
user data is synchronized to the application. If the attribute
value is duplicate, a message is displayed, indicating that the
label already exists.

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

Parame
ter

Description

Sensitive It is required only when Attribute Type is set to Text. If this
option is selected, the user data is hidden when it is
synchronized to an application. You can click to view the
content.

2. On the Mappings tab, click Modify and set the mappings of the organization

attribute.

NO TE

– When Conversion Mode is set to Script-based, compile the script by referring to
Developing Mapping Scripts.

– To prevent synchronization exceptions, you are advised to add account attributes of
the same type as the user attributes to be mapped.

Table 1-5 Mapping parameters

Parame
ter

Description

User User attribute mapped to the Application Accounts. You can
select a value from the drop-down list.

Conversi
on
Mode

Mode of attribute mapping between User and Application
Accounts.

Script
Expressi
on

When Conversion Mode is set to Script-based, enter the
specific mapping script.

Executio
n Mode

Mode of attribute mapping between User and Application
Accounts.

Applicati
on
Account
s

Account attributes defined in 1.

3. On the Configure tab, Delete System User is set to Delete application

account and Disable System User is set to Disable application account by
default. Click Modify to modify the configuration. If you select to disable or
retain the application account for Delete System User, the account
automatically changes to an orphan account because the user has been
deleted. You can select to retain an application account for Disable System
User. Click Save for the modification to take effect.

----End

Adding, Modifying, and Deleting Users
As an administrator, you can synchronize users on the administrator portal.

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

● Adding users
In the navigation pane, choose Authorization > Application Accounts. Then
click Add Accounts to authorize specific accounts to access the application. To
synchronize accounts based on the authorization policy, see Configuring
Authorization Policy for Application Accounts.

● Modifying users
Choose Users > Organizations and Users from the top navigation bar. In the
user list, move the cursor to the right of the target username and click . In
the Modify User dialog box, update the user information.

Figure 1-2 Modifying user information

● Deleting users
Choose Users > Organizations and Users from the top navigation bar. In the

user list, click next to the target username, select Delete, and click OK.

Figure 1-3 Deleting users

Adding, Modifying, and Deleting Organizations
As an administrator, you can synchronize organizations on the administrator
portal.

NO TE

Enable the application synchronization before synchronizing organizations. For details, see
Step 7.

● Adding organizations
In the navigation pane, choose Authorization > Application Organizations,

click Authorization Policy, and click to enable Automatic
Organization Authorization. Select the organizations to be synchronized as
prompted and click Save.

● Modifying organizations
Choose Users > Organizations and Users from the top navigation bar. On
the Organizations page, click Modify in the Operation column of the target
organization to update the organization information.

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

https://support.huaweicloud.com/intl/en-us/usermanual-oneaccess/oneaccess_03_0117.html#section3
https://support.huaweicloud.com/intl/en-us/usermanual-oneaccess/oneaccess_03_0117.html#section3

Figure 1-4 Modifying an organization

● Deleting an organization
Choose Users > Organizations and Users from the top navigation bar. On
the Organizations page, click Delete in the Operation column of the target
organization to delete it.

Figure 1-5 Deleting an organization

Event Synchronization

When OneAccess synchronizes data to downstream applications, all
synchronization operations are recorded.

1. Log in to the administrator portal.
2. On the top navigation bar, choose Resources > Applications.
3. On the displayed page, click an application name to access the application

details page.
4. Click the application icon to access the general information page.
5. In the navigation pane, choose Authorization > Synchronization Events to

access the page. You can filter synchronization records by time, operation
type, object type, and synchronization status.

NO TE

If synchronization failed:

● Check the response and rectify the fault, and click Retry in the Operation column.

● Click Retry to quickly perform synchronization. After you successfully retry the
synchronization event of the parent organization, the synchronization events of the
sub-organizations and accounts under the parent organization will be triggered.

Full Synchronization

Full synchronization can be used to ensure full data consistency between
downstream application systems and OneAccess. Full synchronization complies
with the following rules:

● During full synchronization, all previous synchronization events are ignored,
and new events are generated. If the application system does not return an

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

ID, a new event is generated. However, if the application system returns an ID,
an update event is generated. For details, see Table 1-12.

NO TE

An update event triggered by full synchronization synchronizes all attributes
configured in mappings. A common update event synchronizes only changed
attributes.

● If the dependent organization fails to be synchronized, all synchronization
events of its sub-organizations and accounts are suspended. In this case, click
Synchronize next to Application Organizations to trigger a full
synchronization of application accounts. This will also activate Synchronize
next to Application Accounts.

As an administrator, you can synchronize all data to application systems on the
administrator portal.

In the navigation pane, choose Synchronization Integration, select Full
Synchronization tab, and click Synchronize either next to Application Accounts
or Application Organizations.

Synchronization Statuses
This section describes the different statuses after the synchronization is complete.
This helps you locate faults.

The following is an example, in which App_acc01 is the application account,
App_org01 application organization, E0 original synchronization event, and E1
new synchronization event.

● Pending
When the application account App_acc01 generates a new synchronization
event E1, if the execution of a previous synchronization event E0 for the same
account is not yet completed, the status of the new event E1 is PENDING.

● Queuing
When the synchronization event E1 for the application account App_acc01 is
ready to be executed, the event is sent to the Kafka execution message queue.
Once the event is successfully sent, the status of synchronization event E1 in
ES is updated to QUEUING, indicating that the event has been successfully
added to the execution queue.

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

● Running
When the synchronization event E1 is ready to execute, its status in ES is
updated to RUNNING before the execution starts. Once the status is
successfully updated, the downstream application system API is triggered to
start synchronization, indicating that the event is now in the running status.

● Success
After a synchronization event is successfully executed, its status is updated to
SUCCESS in ES, indicating that the event has been successfully executed.

● Failure
After a synchronization event fails to execute, its status is updated to FAILURE
in ES, indicating that the event failed to be executed.

● Ignored
This status involves the following two scenarios:
– When the application account App_acc01 executes an update

synchronization event, if a new update event is found subsequently, this
event is directly ignored, and the new update event will be executed
instead.

– During full synchronization, all previous synchronization events are
ignored.

● Skipped
This status is not used currently.

● Waiting
When the application account App_acc01 has a dependency on the
application organization App_org01, if the synchronization of App_org01
fails, all synchronization events of App_acc01 in the organization are
suspended.

1.2 Calling Methods

1.2.1 API Calling

Format

The request method of the OneAccess synchronous event callback API is POST,
with data encoded in UTF-8 and formatted as JSON. If the URL for the application
system to receive event callbacks is https://{app_domain}/callback, OneAccess
will push the updated service data to this callback address whenever there are
changes in the organizations or users.

● URL
POST https://{app_domain}/callback

● Request header
Authorization: Bearer {access_token}. For details, see security tokens in Table
1-1.

● Request parameters

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

Table 1-6 Request parameters

Parame
ter

Type Description

nonce String Random number, which is used together with
timestamp to prevent replay attacks on requests.

timesta
mp

Integer Timestamp, which is used together with nonce to
prevent replay attacks on requests.

eventTy
pe

String Event type. For details, see the event type list.

data String Message body. If encryption is disabled, the message
body is sent in plaintext. If encryption is enabled, the
message body must be decrypted to reveal the
content. After decryption, the random and msg fields
will be displayed. The msg field contains the plaintext
message content.

signatur
e

String Message signature. If the signature function is
disabled, the signature will be an empty string. If the
signature function is enabled, the signature is
generated based on the signature key
(signatureSaltValue) provided by the enterprise
application, along with the timestamp, nonce from
the request, and the encrypted message body.

● Response parameters

Table 1-7 Response parameters

Parame
ter

Type Description

code String Return code. The value 200 indicates success. For
details about error codes, see Common Return
Codes.

message String Description of the error cause.

data String Returned message body. The returned content varies
depending on the service callback. For example, it
may return an empty string or the required service
data.
● If encryption is disabled, the message body is

returned in plaintext.
● If encryption is enabled, the encrypted message

body is returned. The content must be decrypted,
after which the random and msg fields are
generated. The msg field contains the plaintext
message content.

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

● Example request
– Example request with message signature and encryption disabled:

{
 "nonce": "123456",
 "timestamp": 1783610513,
 "eventType": "eventType",
 "data": "plaintext message",
 "signature": ""
}

– Example request with message signature and encryption enabled:
{
 "nonce": "123456",
 "timestamp": 1783610513,
 "eventType": "eventType",
 "data": "1ojvw2WPvW7LijxS8UvISr8pdDP+rXpPbcLGOmIBNbWetRg7IP0vdhkl",
 "signature": "111108bb8e6dbce3c9671d6fdb69d15066227608"
}

● Example response
Status code: 200
Request successful.
– Response example with message signature and encryption disabled:

{
 "code": "200",
 "message": "success",
 "data": "plaintext message"
}

– Response example with message signature and encryption enabled:
{
 "code": "200",
 "message": "success",
 "data": "P+rXpWetRg7IP0vdhVgkVwSoZBJeQwY2zhROsJq/HJ+q6tp1qhl9L1+c"
}

1.2.2 Signature Verification
When OneAccess synchronizes data to an enterprise application, the application
must identify and confirm the synchronization event to check the security and
reliability of the event source and to safeguard that data is exchanged in a secure
environment.

Signature Verification/Encryption and Decryption Terms

Table 1-8 Terms

Term Description

signature Message signature, which is used to verify whether a request is from
OneAccess to prevent attackers from forging the request. The
signature algorithm is HMAC-SHA256 + Base64.

AESKey Key of the AES algorithm. The encryption algorithm is AES/GCM/
NoPadding + Base64.

msg Plaintext message body in JSON format.

encrypt
_msg

Encrypted and Base64-encoded ciphertext of the plaintext message
'msg'.

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

Signature Verification
To ensure that the event is pushed by OneAccess, the request body includes a
request signature, identified by the signature parameter, when OneAccess pushes
the event to the enterprise application callback service. The enterprise application
must verify this parameter before decryption. The verification procedure is as
follows:

1. Calculating signatures
The signature consists of the signature key, nonce, timestamp, eventType, and
data, all concatenated using ampersands (&). The HMAC-SHA256 + Base64
algorithms are used for encryption. The following is an example of the Java
signature:
String message = nonce + "&" + timestamp + "&" + eventType + "&" + data;
Mac mac = Mac.getInstance("HmacSHA256");
SecretKeySpec secretKey = new SecretKeySpec(Signature key.getBytes(StandardCharsets.UTF_8),
"HmacSHA256");
mac.init(secretKey);
String newSignature =
Base64.getEncoder().encodeToString(mac.doFinal(message.getBytes(StandardCharsets.UTF_8)));

2. Check whether the calculated signature cal_signature is the same as
signature in the request parameter. If they are the same, the verification is
successful.

3. The response message returned by the enterprise application needs to use the
required format.

Encrypting a Plaintext
1. Concatenate plaintext strings, which consist of a 16-byte random characters

and a plaintext msg, and are separated by ampersands (&). The following is
an example written in Java:
String dataStr = RandomStringUtils.random(16, true, false) + "&" + data;

2. Use the AESkey to encrypt the concatenated plaintext string and encode it
using Base64 to obtain the ciphertext encrypt_msg. The following is an
example written in Java:
Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding");
SecretKeySpec secretKey = new SecretKeySpec(Encryption key.getBytes(StandardCharsets.UTF_8),
"AES");
cipher.init(1, secretKey);
byte[] bytes = dataStr.getBytes(StandardCharsets.UTF_8);
String ecnryptStr = Base64.getEncoder().encodeToString(cipher.doFinal(bytes));

Decrypting Ciphertext
1. Decode the ciphertext using Base64.

byte[] encryptStr = Base64.getDecoder().decode(data);

2. Use the AESKey for decryption.
Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding");
SecretKeySpec secretKey = new SecretKeySpec(Encryption key.getBytes(StandardCharsets.UTF_8),
"AES");
cipher.init(2, secretKey);
byte[] bytes = cipher.doFinal(encryptStr);

3. Remove the 16 random bytes from the rand_msg header. The remaining part
is the plaintext msg.
String dataStr = StringUtils.split(new String(bytes, StandardCharsets.UTF_8), "&")[1];

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

Examples of Data Signature & Encryption/Decryption
● The following is an example of data signature and AES/GCM/NOPadding

encryption and decryption written in Java:
package com.example.demo.controller;
import com.alibaba.fastjson.JSONObject;
import java.nio.charset.Charset;
import java.nio.charset.StandardCharsets;
import java.util.Base64;
import javax.crypto.Cipher;
import javax.crypto.Mac;
import javax.crypto.spec.GCMParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import javax.servlet.http.HttpServletRequest;
import org.apache.commons.lang3.RandomStringUtils;
import org.apache.commons.lang3.StringUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Controller;
import org.springframework.util.Assert;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.ResponseBody;

@RequestMapping
@Controller
public class GcmController {
 private static final Logger log =
LoggerFactory.getLogger(com.example.demo.controller.GcmController.class);
 private static final String SEPARATOR = "&";

 //region. The following three parameters are 32-bit strings randomly generated by a third party
(case-sensitive letters and digits). Do not use the example in the formal environment.
 /**
 * Security token
 */
 private static final String TOKEN = "4JV**********NCE";

 /**
 * Signature key
 */
 private static final String SIGN_KEY = "wGt**********Rrs";

 /**
 * Encryption key
 */
 private static final String ENCRYPTION_KEY = "ZJI**********FQo";
 //endregion

 /**
 * Encryption algorithm
 */
 private static final String HMAC_SHA256 = "HmacSHA256";
 private static final String ENCRYPT_ALGORITHM = "AES/GCM/NoPadding";
 private static final String ENCRYPT_KEY_ALGORITHM = "AES";
 private static final int AES_KEY_SIZE = 128;
 private static final Charset CHARSET = StandardCharsets.UTF_8;

 @ResponseBody
 @RequestMapping({"/gcm/callback"})
 public JSONObject demo(HttpServletRequest httpRequest, @RequestBody String body) {
 log.info("Receive event callback information data. Original packet:" + body);
 JSONObject result = new JSONObject();
 result.put("code", "200");
 result.put("message", "success");
 String authorization = httpRequest.getHeader("Authorization");
 if (!StringUtils.join((Object[]) new String[]{"Bearer ", TOKEN}).equals(authorization)) {
 result.put("code", "401");
 result.put("message", "Invalid request!");

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

 printResult(result);
 return result;
 }
 JSONObject request = JSONObject.parseObject(body);
 String signature = request.getString("signature");
 String eventType = request.getString("eventType");
 log.info("Event type" + eventType);
 String data = request.getString("data");
 if (StringUtils.isNotEmpty(SIGN_KEY))
 try {
 log.info("Start to verify signature");
 String message = request.getString("nonce") + "&" + request.getLong("timestamp") + "&"
+ eventType + "&" + data;
 Mac mac = Mac.getInstance(HMAC_SHA256);
 SecretKeySpec secretKey = new SecretKeySpec(SIGN_KEY.getBytes(CHARSET),
HMAC_SHA256);
 mac.init(secretKey);
 String newSignature =
Base64.getEncoder().encodeToString(mac.doFinal(message.getBytes(CHARSET)));
 Assert.isTrue(newSignature.equals(signature), "Signature inconsistency");
 log.info("Signature verified");
 } catch (Exception e) {
 log.error("Verify signature failed", e);
 result.put("code", "401");
 result.put("message", "Verify signature failed");
 printResult(result);
 return result;
 }
 if (StringUtils.isNotEmpty(ENCRYPTION_KEY)) {
 log.info("Start to decrypt data" + data);
 try {
 Cipher cipher = Cipher.getInstance(ENCRYPT_ALGORITHM);
 SecretKeySpec secretKey = new SecretKeySpec(ENCRYPTION_KEY.getBytes(CHARSET),
ENCRYPT_KEY_ALGORITHM);
 byte[] iv = decodeFromBase64(data.substring(0, 24));
 data = data.substring(24);
 cipher.init(2, secretKey, new GCMParameterSpec(AES_KEY_SIZE, iv));
 byte[] bytes = cipher.doFinal(Base64.getDecoder().decode(data));
 data = new String(bytes, CHARSET);
 log.info("Data decrypted. Decrypted data:" + data);
 } catch (Exception e) {
 log.error("Decrypt data failed", e);
 result.put("code", "401");
 result.put("message", "Decrypt data failed");
 printResult(result);
 return result;
 }
 }
 JSONObject eventData = JSONObject.parseObject(data);
 JSONObject returnData = new JSONObject(1);
 String dataStr = null;
 switch (eventType) {
 case "CREATE_USER":
 // Create downstream data based on the unique username. If the downstream data
already exists, update it and return the downstream ID.
 returnData.put("id", eventData.getString("username"));
 break;
 case "CREATE_ORGANIZATION":
 // Create downstream data based on the unique code. If the downstream data already
exists, update it and return the downstream ID.
 returnData.put("id", eventData.getString("code"));
 break;
 case "UPDATE_USER":
 case "UPDATE_ORGANIZATION":
 // When data is updated, the fields that are not modified are empty.
 returnData.put("id", eventData.getString("id"));
 break;
 case "DELETE_ORGANIZATION":
 case "DELETE_USER":

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

 // Perform the deletion operation based on the downstream service logic. No fields need to
be returned.
 break;
 default:
 result.put("code", "400");
 result.put("message", "Unsupported event type");
 printResult(result);
 return result;
 }
 if (dataStr == null && returnData.size() > 0)
 dataStr = returnData.toJSONString();
 if (StringUtils.isNotEmpty(ENCRYPTION_KEY) && dataStr != null) {
 String random = RandomStringUtils.random(24, true, true);
 log.info("Start to encrypt data" + dataStr);
 try {
 Cipher cipher = Cipher.getInstance(ENCRYPT_ALGORITHM);
 SecretKeySpec secretKey = new SecretKeySpec(ENCRYPTION_KEY.getBytes(CHARSET),
ENCRYPT_KEY_ALGORITHM);
 byte[] iv = decodeFromBase64(random);
 cipher.init(1, secretKey, new GCMParameterSpec(AES_KEY_SIZE, iv));
 byte[] bytes = dataStr.getBytes(CHARSET);
 dataStr = Base64.getEncoder().encodeToString(cipher.doFinal(bytes));
 dataStr = random + dataStr;
 log.info("Data encrypted. Encrypted data:" + dataStr);
 } catch (Exception e) {
 log.error("Encrypt data failed", e);
 result.put("code", "500");
 result.put("message", "Encrypt data failed");
 printResult(result);
 return result;
 }
 }
 result.put("data", dataStr);
 printResult(result);
 return result;
 }

 private static byte[] decodeFromBase64(String data) {
 return Base64.getDecoder().decode(data);
 }

 private void printResult(JSONObject result) {
 log.info("" + result.toJSONString());
 }
}

● The following is an example of data signature and AES/ECB/PKCS5Padding
encryption and decryption written in Java:
package com.example.demo.controller;
import com.alibaba.fastjson.JSONObject;
import java.nio.charset.Charset;
import java.nio.charset.StandardCharsets;
import java.util.Base64;
import java.util.UUID;
import javax.crypto.Cipher;
import javax.crypto.Mac;
import javax.crypto.spec.SecretKeySpec;
import javax.servlet.http.HttpServletRequest;
import org.apache.commons.lang3.RandomStringUtils;
import org.apache.commons.lang3.StringUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Controller;
import org.springframework.util.Assert;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.ResponseBody;

@RequestMapping
@Controller

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

public class DemoController {
 private static final Logger log =
LoggerFactory.getLogger(com.example.demo.controller.DemoController.class);

 /** Signature concatenation operator **/
 private static final String SEPARATOR = "&";

 /** Signature key **/
 private static final String SIGN_KEY = "wGt**********Rrs";

 /** Encryption key **/
 private static final String ENCRYPTION_KEY = "ZJI**********FQo";

 /** Security token **/
 private static final String TOKEN = "4JV**********NCE";

 /** Signature algorithm **/
 private static final String HMAC_SHA256 = "HmacSHA256";

 /** Encryption algorithm **/
 private static final String ENCRYPT_ALGORITHM = "AES/ECB/PKCS5Padding";

 /** **/
 private static final String ENCRYPT_KEY_ALGORITHM = "AES";

 /** Character encoding **/
 private static final Charset CHARSET = StandardCharsets.UTF_8;

 @ResponseBody
 @RequestMapping({"/callback"})
 public JSONObject demo(HttpServletRequest httpRequest, @RequestBody String body) {
 JSONObject result = new JSONObject();
 result.put("code", "200");
 result.put("message", "success");
 log.info ("Receive event callback message data. Original packet:" + body);
 String authorization = httpRequest.getHeader("Authorization");
 if (!StringUtils.join("Bearer ", TOKEN).equals(authorization)) {
 result.put("code", "401");
 result.put ("message", "Invalid request!");
 printResult(result);
 return result;
 }
 JSONObject request = JSONObject.parseObject(body);
 String signature = request.getString("signature");
 String eventType = request.getString("eventType");
 log.info("Event type:" + eventType);
 String data = request.getString("data");
 if (StringUtils.isNotEmpty(SIGN_KEY)) {
 try {
 log.info ("Start to verify signature");
 String message = request.getString("nonce") + SEPARATOR + request.getLong("timestamp") +
SEPARATOR + eventType + SEPARATOR + data;
 Mac mac = Mac.getInstance(HMAC_SHA256);
 SecretKeySpec secretKey = new SecretKeySpec(SIGN_KEY.getBytes(CHARSET), HMAC_SHA256);
 mac.init(secretKey);
 String newSignature =
Base64.getEncoder().encodeToString(mac.doFinal(message.getBytes(CHARSET)));
 Assert.isTrue (newSignature.equals (signature), "Signature inconsistency");
 log.info ("Signature verified");
 } catch (Exception e) {
 log.info ("Verify signature failed");
 log.error ("Verify signature failed", e);
 result.put("code", "401");
 result.put ("message", "Verify signature failed");
 printResult(result);
 return result;
 }
 }
 if (StringUtils.isNotEmpty(ENCRYPTION_KEY)) {

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

 log.info ("Start to decrypt data:" + data);
 try {
 Cipher cipher = Cipher.getInstance(ENCRYPT_ALGORITHM);
 SecretKeySpec secretKey = new SecretKeySpec(ENCRYPTION_KEY.getBytes(CHARSET),
ENCRYPT_KEY_ALGORITHM);
 cipher.init(2, secretKey);
 byte[] bytes = cipher.doFinal(Base64.getDecoder().decode(data));
 data = StringUtils.split(new String(bytes, CHARSET), SEPARATOR)[1];
 log.info ("Data decrypted. Decrypted data:" + data);
 } catch (Exception e) {
 log.info ("Decrypt data failed");
 log.error ("Data decryption error", e);
 result.put("code", "401");
 result.put ("message", "Decrypt data failed");
 printResult(result);
 return result;
 }
 }
 JSONObject eventData = JSONObject.parseObject(data);
 JSONObject returnData = new JSONObject(1);
 String dataStr = null;
 switch (eventType) {
 case "CREATE_USER":
 returnData.put("id", eventData.getString("username"));
 break;
 case "CREATE_ORGANIZATION":
 returnData.put("id", eventData.getString("code"));
 break;
 case "UPDATE_USER":
 case "UPDATE_ORGANIZATION":
 returnData.put("id", eventData.getString("id"));
 break;
 case "DELETE_ORGANIZATION":
 case "DELETE_USER":
 break;
 case "CHECK_URL":
 dataStr = UUID.randomUUID().toString().replaceAll("-", "");
 break;
 default:
 result.put("code", "400");
 result.put ("message", "Unsupported event type");
 printResult(result);
 return result;
 }
 if (dataStr == null && returnData.size() > 0) {
 dataStr = returnData.toJSONString();
 }
 if (StringUtils.isNotEmpty(ENCRYPTION_KEY) && dataStr != null) {
 dataStr = RandomStringUtils.random(16, true, false) + SEPARATOR + dataStr;
 log.info ("Start to encrypt data:" + dataStr);
 try {
 Cipher cipher = Cipher.getInstance(ENCRYPT_ALGORITHM);
 SecretKeySpec secretKey = new SecretKeySpec(ENCRYPTION_KEY.getBytes(CHARSET),
ENCRYPT_KEY_ALGORITHM);
 cipher.init(1, secretKey);
 byte[] bytes = dataStr.getBytes(CHARSET);
 dataStr = Base64.getEncoder().encodeToString(cipher.doFinal(bytes));
 log.info ("Data encrypted. Encrypted data:" + dataStr);
 } catch (Exception e) {
 log.info ("Encrypt data failed");
 log.error ("Data encryption error:", e);
 result.put("code", "500");
 result.put ("message", "Encrypt data failed");
 printResult(result);
 return result;
 }
 }
 result.put("data", dataStr);
 printResult(result);

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

 return result;
 }

 private void printResult(JSONObject result) {
 log.info ("Returned data:" + result.toJSONString ());
 }
}

1.2.3 Verifying Callback URL
If the URL for the enterprise application to receive event push is https://
{app_domain}/callback, OneAccess will send a verification event to this URL when
the administrator saves the callback configuration.

URL
POST https://{app_domain}/callback

Request Header
Authorization: Bearer {access_token}

Request Parameters

Table 1-9 Request parameters

Paramet
er

Type Description

nonce String Random number, which is used together with timestamp
to prevent replay attacks on requests.

timesta
mp

Integer Timestamp, which is used together with nonce to
prevent replay attacks on requests.

eventTyp
e

String Event type. The value is CHECK_URL here.

data String Message body. If encryption is disabled, the random
string is sent in plaintext. If encryption is enabled, the
random string must be decrypted to reveal the content.
After decryption, the random and msg fields will be
displayed. The msg field contains the plaintext message
content.

signature String Message signature. The signature is calculated based on
the signature key (signatureSaltValue) provided by the
enterprise application, along with the timestamp, nonce
from the request, and the encrypted message body.

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

Response Parameters

Table 1-10 Response parameters

Paramet
er

Type Description

code String Return code. The value 200 indicates success. For details
about error codes, see Common Return Codes.

message String Response description.

data String ● If encryption is disabled, the plaintext random string
in the request body is returned.

● If encryption is enabled, the encrypted random string
in the request body is decrypted and the value of the
re-encrypted random string is returned. The content
must be decrypted, after which the random and msg
fields are generated. The msg field contains the
plaintext message content.

Example Request
● Example request with message signature and encryption disabled:

{
 "nonce": "bqVHvThFGooCRjSf",
 "timestamp": 1573784783795,
 "eventType": "CHECK_URL",
 "data": "random string",
 "signature": ""
}

● Example request with message signature and encryption enabled:
{
 "nonce": "jmgjjEAJbrMzWmUw",
 "timestamp": 15093849585,
 "eventType": "CHECK_URL",
 "data": "jRqGWO08Tyuxq+ChqGFk7SiPCt6MgcUDvzP5CBYnD30=",
 "signature": "K08yDiTEc094KoccOY+VYLQFxxQ="
}

Example Response
Status code: 200

Request successful.

● Response example with message signature and encryption disabled:
{
 "code": "200",
 "data": " 2852325935078140700",
 "message": "success"
}

● Response example with message signature and encryption enabled:
{
 "code": "200",
 "message": "success",
 "data": "u5GkfEdZC0EDvDldLWBK/w=="
}

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

1.3 API

1.3.1 Overview
● Enable the application synchronization before synchronizing organizations. For

details, see Step 7.
● The prerequisite for the example messages of service events in this section is

that the signature and data encryption functions are enabled for the
enterprise application.

1.3.2 Adding an Organization Event
This API is used to synchronize new organizations to the application system.

URL
POST https://{app_domain}/callback

Request Header
Authorization: Bearer {access_token}

Request Parameters
The following request parameters are subject to the organization attributes
configured by enterprises. The administrator can set which attributes to
synchronize with the target application by referring to Step 8.

Table 1-11 Request parameters

Paramet
er

Fixed Type Description

code Yes String(10
0)

Organization ID, which is globally unique.

name Yes String(40
)

Organization name, which must be unique at
the current level.

parentId No String(50
)

Parent organization ID.

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

Response Parameters

Table 1-12 Response parameter

Paramet
er

Type Description

id String(50
)

● Organization ID generated after an organization is
created for a downstream enterprise application. The
ID is sent back to OneAccess as the unique identifier
of the organization.

● When an organization is modified or deleted, the ID is
passed to the downstream application. The ID must
match the one in the downstream application. If they
differ, the ID returned by the API will overwrite the
previous ID.

Example Request
● Example request with message signature and encryption enabled:

{
 "nonce": "AmgjjEAJbrMzWmUw",
 "timestamp": 15093849585,
 "eventType": "CREATE_ORGANIZATION",
 "data": "6lu6gxrHydJIXEWxQhUa3UqsWsDZ5LTAo/xU3zhjq9H3syCuFYDYKg==",
 "signature": "K08yDiTEc094KoccOY+VYLQFxxQ="
}

● The decrypted JSON string in the request body follows this format:
{
 "code": "1000003",
 "name": "Wuhan branch",
 "parentId": "5b183439-36a8-4d08-94ba-61b3c8d40b66"
}

Example Response

Status code: 200

Request successful.

● Response example with message signature and encryption enabled:
{
 "code": "200",
 "message": "success",
 "data": "j3rRBbc1Q1z1lZM0DDcUGFyaazO3NgnMbgK6UeWT35Druf5zyXg="
}

● The decrypted JSON string in the response body follows this format:
{
 "id": "6c5bb468-14b2-4183-baf2-06d523e03bd3"
}

1.3.3 Modifying an Organization Event
This API is used to synchronize updated organizations to the application system.

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

URL
POST https://{app_domain}/callback

Request Header
Authorization: Bearer {access_token}

Request Parameters

Table 1-13 Request parameters

Paramet
er

Fixed Type Description

id Yes String(50
)

● Organization ID of a downstream
enterprise application.

● After an organization is successfully
synchronized by referring to Adding an
Organization Event, an organization is
created for a downstream enterprise
application. At the same time, an
organization ID is generated and sent
back to OneAccess as the unique identifier
of the organization.

code Yes String(10
0)

Organization ID, which is globally unique.

name Yes String(40
)

Organization name, which must be unique at
the current level.

parentId No String(50
)

Parent organization ID.

Response Parameters

Table 1-14 Response parameter

Paramet
er

Type Description

id String(50
)

● The value is the same as the value of ID in Table
1-13.

● Organization ID sent back to OneAccess after the
downstream enterprise application updates the
organization.

● The ID must match the one in the downstream
application. If they differ, the ID returned by the API
will overwrite the previous ID.

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

Example Request
● Example request with message signature and encryption enabled:

{
 "nonce": "AmgjjEAJbrMzWmUw",
 "timestamp": 15093849585,
 "eventType": "UPDATE_ORGANIZATION ",
 "data": "6xrHydJIXEWxQhUa3UqsXHWsDZ5LTAo/xU3zhjq9H3syCuFYDYKg==",
 "signature": "K08yDiTEc094KoccOY+VYLQFxxQ="
}

● The decrypted JSON string in the request body follows this format:
Update the organization information based on the organization ID in the
request and send the updated attributes to the enterprise application.
{
 "id": "6c5bb468-14b2-4183-baf2-06d523e03bd3",
 "code": "1000003",
 "name": "Wuhan branch",
 "parentId": "5b183439-36a8-4d08-94ba-61b3c8d40b66"
}

Example Response
Status code: 200

Request successful.

● Response example with message signature and encryption enabled:
{
 "code": "200",
 "message": "success",
 "data": "T41FtX1Q1z1lZM0DDcUGFyaazO3NgnMbgK6UeWT35Druf5zyXg="
}

● The decrypted JSON string in the response body follows this format:
{
 "id": "6c5bb468-14b2-4183-baf2-06d523e03bd3"
}

1.3.4 Deleting an Organization Event
This API is used to synchronize deleted organizations to the application system.

URL
POST https://{app_domain}/callback

Request Header
Authorization: Bearer {access_token}

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

Request Parameters

Table 1-15 Request parameter

Paramet
er

Type Description

id String ● Organization ID of a downstream enterprise
application.

● After an organization is successfully synchronized by
referring to Adding an Organization Event, an
organization is created for a downstream enterprise
application. At the same time, an organization ID is
generated and sent back to OneAccess as the unique
identifier of the organization.

Response Parameters

Table 1-16 Response parameters

Paramet
er

Type Description

code String Return code. 200 indicates success.

message Integer Description of the error cause.

Example Request
● Example request with message signature and encryption enabled:

{
 "nonce": "AmgjjEAJbrMzWmUw",
 "timestamp": 15093849585,
 "eventType": "DELETE_ORGANIZATION ",
 "data": "6lrHydJIXEWxQhUa3UqsXHWsDZ5LTAo/xU3zhjq9H3syCuFYDYKg==",
 "signature": "K08yDiTEc094KoccOY+VYLQFxxQ="
}

● The decrypted JSON string in the request body follows this format:
{
 "id": "6c5bb468-14b2-4183-baf2-06d523e03bd3"
}

Example Response

Status code: 200

Request successful.
{
 "code": "200",
 "message": "success"
}

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

1.3.5 Adding a User Event
This API is used to synchronize new users to the application system.

URL

POST https://{app_domain}/callback

Request Header

Authorization: Bearer {access_token}

Request Parameters

The following request parameters are subject to the identity synchronization
parameters configured by enterprises. The administrator can set which attributes
to synchronize with the target application by referring to Step 9.

Table 1-17 Request parameters

Paramet
er

Fixed Type Description

usernam
e

Yes String(10
0)

Username.

name Yes String(40
)

Real name of the user.

organiza
tionId

Yes String Organization ID.

password Yes String Password.

disabled Yes Boolean Whether to disable the function. true:
disabled; false: enabled.

firstNam
e

No String(20
)

Name.

middleN
ame

No String(20
)

Middle name.

lastNam
e

No String(20
)

Last name.

mobile No String Mobile phone number.

email No String Email address.

extAttr1 No -- Extended attribute 1, which is an extended
user attribute of an enterprise. Set this
attribute based on the site requirements.

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

Paramet
er

Fixed Type Description

extAttr2 No -- Extended attribute 2, which is an extended
user attribute of an enterprise. Set this
attribute based on the site requirements.

Response Parameters

Table 1-18 Response parameter

Paramet
er

Type Description

id String(50
)

● User ID generated after a user is created for a
downstream enterprise application. The ID is sent
back to OneAccess as the unique identifier of the user.

● When a user is modified or deleted, the ID is passed
to the downstream application. The ID must match
the one in the downstream application. If they differ,
the ID returned by the API will overwrite the previous
ID.

Example Request
● Example request with message signature and encryption enabled:

{
 "nonce": "AmgjjEAJbrMzWmUw",
 "timestamp": 1509384....,
 "eventType": "CREATE_USER",
 "data": "6lu6gxrdJIXEWxQhUa3UqsXHWsDZ5LTAo/xU3zhjq9H3syCuFYDYKg==",
 "signature": "K08yDiTEc094KoccOY+VYLQFxxQ="
}

● The decrypted JSON string in the request body follows this format:
{
 "username": "zhangsan",
 "name": "Tom",
 "mobile": "1899876....",
 "email": "zhangsan@test.com",
 "organizationId": "391551e8-160f-4993-8177-e7b9c5f6....",
 "extAttr1": "value",
 "extAttr2": "value"
}

Example Response
Status code: 200

Request successful.

● Response example with message signature and encryption enabled:
{
 "code": "200",
 "message": "success",

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

 "data": "P+rXpWetRg7IP0vdhVgkVwSoZBJeQwY2zhROsJq/HJ+q6tp1qhl9L1+c"
}

● The decrypted JSON string in the response body follows this format:
{
 "id": "c3a26dd3-27a0-4dec-a2ac-ce211e10...."
}

1.3.6 Modifying a User Event
This API is used to synchronize updated users to the application system.

URL

POST https://{app_domain}/callback

Request Header

Authorization: Bearer {access_token}

Request Parameters

Table 1-19 Request parameters

Paramet
er

Fixed Type Description

id Yes String(50
)

User ID of an enterprise application.

usernam
e

Yes String(10
0)

Username.

name No String(40
)

Real name of the user.

firstNam
e

No String(20
)

Name.

middleN
ame

No String(20
)

Middle name.

lastNam
e

No String(20
)

Last name.

organiza
tionId

No String Organization ID.

mobile No String Mobile phone number.

email No String Email address.

disabled Yes Boolean Whether to disable the function. true:
disabled; false: enabled.

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

Paramet
er

Fixed Type Description

extAttr1 No -- Extended attribute 1, which is an extended
user attribute of an enterprise. Set this
attribute based on the site requirements.

extAttr2 No -- Extended attribute 2, which is an extended
user attribute of an enterprise. Set this
attribute based on the site requirements.

Response Parameters

Table 1-20 Response parameter

Paramet
er

Type Description

id String(50
)

● The value is the same as the value of ID in Table
1-19.

● User ID sent back to OneAccess after the downstream
enterprise application updates the user.

● The ID must match the one in the downstream
application. If they differ, the ID returned by the API
will overwrite the previous ID.

Example Request
● Example request with message signature and encryption enabled:

{
 "nonce": "AmgjjEAJbrMzWmUw",
 "timestamp": 15093849585,
 "eventType": "UPDATE_USER",
 "data": "6lu6gxrHydJIXEQhUa3UqsXHWsDZ5LTAo/xU3zhjq9H3syCuFYDYKg==",
 "signature": "K08yDiTEc094KoccOY+VYLQFxxQ="
}

● The decrypted JSON string in the request body follows this format:
Update the user information based on the user ID in the request and send the
updated attributes to the enterprise application.
{
 "id": "c3a26dd3-27a0-4dec-a2ac-ce211e10....",
 "username": "zhangs",
 "name": "Tom 2",
 "mobile": "1867237....",
 "email": "454205....@qq.com",
 "extAttr1": "value",
 "extAttr2": "value"
}

Example Response
Status code: 200

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

Request successful.

● Response example with message signature and encryption enabled:
{
 "code": "200",
 "message": "success",
 "data": "P+rXpWetRg7IP0vdhVgkVwSoZBJeQwY2zhROsJq/HJ+q6tp1qhl9L1+c"
}

● The decrypted JSON string in the response body follows this format:
{
 "id": "c3a26dd3-27a0-4dec-a2ac-ce211e105f97"
}

1.3.7 Deleting a User Event
This API is used to synchronize deleted users to the application system.

URL

POST https://{app_domain}/callback

Request Header

Authorization: Bearer {access_token}

Request Parameters

Table 1-21 Request parameter

Paramet
er

Type Description

id String ● User ID of a downstream enterprise application.
● After a user is successfully synchronized by referring

to Adding a User Event, a user is created for a
downstream enterprise application. At the same time,
a user ID is generated and sent back to OneAccess as
the unique identifier of the user.

Response Parameters

Table 1-22 Request parameters

Paramet
er

Type Description

code String Return code. 200 indicates success.

message Integer Description of the error cause.

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

Example Request
● Example request with message signature and encryption enabled:

{
 "nonce": "AmgjjEAJbrMzWmUw",
 "timestamp": "15093849585",
 "eventType": "DELETE_USER",
 "data": "6IXEWxQhUa3UqsXHWsDZ5LTAo/xU3zhjq9H3syCuFYDYKg==",
 "signature": "K08yDiTEc094KoccOY+VYLQFxxQ="
}

● The decrypted JSON string in the request body follows this format:
{
 "id": "c3a26dd3-27a0-4dec-a2ac-ce211e10...."
}

Example Response
Status code: 200

Request successful.
{
 "code": "200",
 "message": "success"
}

1.4 Common Return Codes
The event callback API uses HTTP status codes to indicate whether the operation
is successful or failed. The callback service of the enterprise application returns the
following error codes and messages. OneAccess saves these error codes and
messages in the application synchronization record.

Table 1-23 Common return codes

Return
Code

Description

200 Success.

400 ● The XX parameter already exists. For example, the userName
parameter already exists.

● The XX parameter cannot be empty. For example, the id
parameter cannot be empty.

● The length of the XX parameter. For example, the name
parameter exceeds the specified length.

● The format of the XX parameter is incorrect. For example, the
format of the email parameter is incorrect.

401 API authentication failed.

404 The XX record does not exist. For example, user not found.

500 System busy. Try again later.

OneAccess
Development Guide

1 Synchronizing Data to Applications Through Event
Callback

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

2 Developing Mapping Scripts

OneAccess can map the organization and user attributes of an enterprise to
application systems. Application attribute values can be automatically generated
using the mapping script. Additionally, the mapped attribute values can be
restricted.

The following describes how to develop a mapping definition script.

Code Rule

OneAccess imposes several restrictions on mapping scripts, including disabling
Java class, limiting CPU usage time, and restricting memory usage, the script
format, and the use of certain functions.

● Do not use Java class.
If the following code is used:
var File = Java.type('java.io.File'); File;

The following exception will be thrown:
java.lang.ClassNotFoundException: java.io.File

● Limit the CPU usage time.
By default, the execution time is limited to 1 second. If the execution time
exceeds this limit, an exception will be thrown.
If the following code is used:
do{}while(true);

The following exception will be thrown:
ScriptCPUAbuseException

● Limit the memory usage.
The default size is 10 MB. If the size exceeds this limit, an exception will be
thrown.
If the following code is used:
var o={},i=0; while (true) {o[i++] = 'abc'}

The following exception will be thrown:
ScriptMemoryAbuseException

● Restrict the script format.

OneAccess
Development Guide 2 Developing Mapping Scripts

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

To ensure proper script formatting, the if, while, and for statements must be
enclosed in braces. Failure to do so may result in format errors.
If the following code is used:
var o={},i=0; while (true) o[i++] = 'abc';

The following exception will be thrown:
BracesException

● Restrict the use of certain functions.
The following functions cannot be used in the code. If they are included, they
will have no effect.
print
echo
quit
exit
readFully
readLine
load
loadWithNewGlobal

Example Scripts
● User attributes

The user object can be used in the script and contains all user attributes. The
specific attributes are subject to the attribute code in the attribute definition.
For details about managing user attributes, see Managing User Attributes.
For details about managing account attributes, see Step 9.

OneAccess
Development Guide 2 Developing Mapping Scripts

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

https://support.huaweicloud.com/intl/en-us/usermanual-oneaccess/oneaccess_03_0026.html

OneAccess
Development Guide 2 Developing Mapping Scripts

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

– Example 1: Map the user registration time:
var createdAt = user.createdAt;
var date =new Date(createdAt);
date.toISOString();

– Example 2: Map the mobile phone number of a user and hide the four
digits in the middle:
var mobile = user.mobile;
var result = "";
if(mobile.length == 15) {
 result = mobile.slice(0,7) + "****" + mobile.slice(-4);
}
result;

– Example 3: Generate a user email address based on the username:
var username = user.userName;
username.toLowerCase()+"@huaweicloud.com";

● Organization attributes
The organization object can be used in the script and contains all the
attributes of the organization.
– Example 1: Map an organization name.

var orgName = organization.name;
orgName.toString();

– Example 2: Map organization code.
var orgCode = organization.code;
orgCode.toString();

– Example 3: Map an organization ID.
var id= organization.id;
id.toString();

● System attributes
Obtain system attributes, such as date.
Example: Map the time for tomorrow:
var date =new Date();
date.setDate(date.getDate()+1);
date.toISOString();

OneAccess
Development Guide 2 Developing Mapping Scripts

Issue 01 (2024-12-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

	Contents
	1 Synchronizing Data to Applications Through Event Callback
	1.1 Preparations
	1.2 Calling Methods
	1.2.1 API Calling
	1.2.2 Signature Verification
	1.2.3 Verifying Callback URL

	1.3 API
	1.3.1 Overview
	1.3.2 Adding an Organization Event
	1.3.3 Modifying an Organization Event
	1.3.4 Deleting an Organization Event
	1.3.5 Adding a User Event
	1.3.6 Modifying a User Event
	1.3.7 Deleting a User Event

	1.4 Common Return Codes

	2 Developing Mapping Scripts

