
IoT Device Access

Developer Guide

Issue 1.0

Date 2024-10-12

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Contents

1 Before You Start... 1

2 Obtaining Resources... 4

3 Product Development...10
3.1 Product Development Guide... 10
3.2 Creating a Product.. 12
3.3 Developing a Product Model.. 14
3.3.1 Product Model Definition... 14
3.3.2 Developing a Product Model Online.. 15
3.3.3 Developing a Product Model Offline.. 20
3.3.4 Exporting and Importing a Product Model...33
3.4 Developing a Codec... 34
3.4.1 Codec Definition.. 34
3.4.2 Online Development.. 36
3.4.3 JavaScript Script-based Development.. 80
3.5 Online Debugging...96

4 Development on the Device Side.. 100
4.1 Device Access Guide.. 100
4.2 Using IoT Device SDKs for Access... 104
4.2.1 Introduction to IoT Device SDKs.. 104
4.2.2 IoT Device SDK (Java)... 109
4.2.3 IoT Device SDK (C)... 129
4.2.4 IoT Device SDK (C#).. 130
4.2.5 IoT Device SDK (Android).. 131
4.2.6 IoT Device SDK (Go).. 132
4.2.7 IoT Device SDK Tiny (C)... 132
4.2.8 IoT Device SDK (Python).. 133
4.3 Using MQTT Demos for Access... 134
4.3.1 MQTT Usage Guide.. 134
4.3.2 Java Demo Usage Guide...141
4.3.3 Python Demo Usage Guide... 146
4.3.4 Android Demo Usage Guide..154
4.3.5 C Demo Usage Guide.. 162

IoT Device Access
Developer Guide Contents

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

4.3.6 C# Demo Usage Guide..168
4.3.7 Node.js Demo Usage Guide...177
4.4 OTA Upgrade Adaptation on the Device Side.. 183
4.4.1 Adaptation Development on the Device Side... 183
4.4.2 PCP Introduction..204

5 Development on the Application Side... 212
5.1 API Usage Guide... 212
5.2 Debugging Using Postman... 217

IoT Device Access
Developer Guide Contents

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

1 Before You Start

Overview

To create an IoT solution based on Huawei Cloud IoTDA, perform the operations
described in the table below.

Operation Description

Product
Development

Manage products, develop product models and codecs, and
perform online debugging on the IoT Device Access (IoTDA)
console.

Development
on the
Application
Side

Carry out development for connection between applications
and the platform, including calling APIs, obtaining service
data, and managing HTTPS certificates.

Development
on the Device
Side

Carry out development for connection between devices and
the platform, including connecting devices to the platform,
reporting service data to the platform, and processing
commands delivered by the platform.

Service Process

The following describes the complete process of using IoTDA, including product
development, device-side development, application-side development, and routine
management.
● Product development: You can perform development operations on the IoTDA

console. For example, you can create a product or device, develop a product
model or codec, and perform online debugging.

● Application-side development: The platform provides robust device
management capabilities through APIs. You can develop applications based
on the APIs to meet requirements in different industries such as smart city,
smart campus, smart industry, and IoV.

● Device-side development: You can connect devices to the platform by
integrating SDKs or modules, or using native protocols.

IoT Device Access
Developer Guide 1 Before You Start

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

● Routine management: After a physical device is connected, you can perform
routine device management on the IoTDA console or by calling APIs.

IoT Device Access
Developer Guide 1 Before You Start

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

Figure 1-1 Flowchart

IoT Device Access
Developer Guide 1 Before You Start

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

2 Obtaining Resources

Platform Connection Information
1. Log in to the IoTDA console. In the navigation pane, choose IoTDA

Instances, and select an edition as required.

Figure 2-1 Changing instance

2. In the navigation pane, choose Overview. In the Instance Information area,
click Access Details.

Figure 2-2 Obtaining access information

IoT Device Access
Developer Guide 2 Obtaining Resources

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

Device Development Resources
You can connect devices to IoTDA using MQTT, LwM2M/CoAP, and HTTPS, as well
as connect devices that use Modbus, OPC UA, and OPC DA through IoT Edge. You
can also connect devices to IoTDA by calling APIs or integrating SDKs.

Resource Package Description Download Link

IoT Device SDK (Java) Devices can connect to
the platform by
integrating the IoT
Device SDK (Java). The
demo provides the
sample code for calling
SDK APIs. For details, see
IoT Device SDK (Java).

IoT Device SDK (Java)

IoT Device SDK (C) Devices can connect to
the platform by
integrating the IoT
Device SDK (C). The
demo provides the
sample code for calling
SDK APIs. For details, see
IoT Device SDK (C).

IoT Device SDK (C)

IoT Device SDK (C#) Devices can connect to
the platform by
integrating the IoT
Device SDK (C#). The
demo provides the
sample code for calling
SDK APIs. For details, see
IoT Device SDK (C#).

IoT Device SDK (C#)

IoT Device SDK
(Android)

Devices can connect to
the platform by
integrating the IoT
Device SDK (Android).
The demo provides the
sample code for calling
SDK APIs. For details, see
IoT Device SDK
(Android).

IoT Device SDK
(Android)

IoT Device SDK (Go) Devices can connect to
the platform by
integrating the IoT
Device SDK (Go). The
demo provides the code
sample for calling the
SDK APIs. For details, see
IoT Device SDK (Go)
User Guide.

IoT Device SDK (Go)

IoT Device Access
Developer Guide 2 Obtaining Resources

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java/blob/master/README_EN.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-cSharp
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-cSharp
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/ctlove0523/huaweicloud-iot-device-sdk-go
https://github.com/ctlove0523/huaweicloud-iot-device-sdk-go
https://github.com/ctlove0523/huaweicloud-iot-device-sdk-go

Resource Package Description Download Link

IoT Device SDK(Python) Devices can connect to
the platform by
integrating the IoT
Device SDK (Python).
The demo provides the
code sample for calling
the SDK APIs. For details,
see
IoT Device SDK
(Python) Usage Guide.

IoT Device SDK(Python)

IoT Device SDK Tiny (C) Devices can connect to
the platform by
integrating the IoT
Device SDK Tiny (C). The
demo provides the
sample code for calling
SDK APIs. For details, see
IoT Device Tiny SDK
(C).

IoT Device SDK Tiny (C)

Native MQTT or MQTTS
access example

Devices can be
connected to the
platform using the native
MQTT or MQTTS
protocol. The demo
provides the sample code
for SSL-encrypted link
setup, TCP link setup,
data reporting, and topic
subscription.
Examples: Java, Python,
Android, C, C#, and
Node.js

quickStart(Java)
quickStart(Android)
quickStart(Python)
quickStart(C)
quickStart(C#)
quickStart(Node.js)

Product model template Product model templates
of typical scenarios are
provided. You can
customize product
models based on the
templates.
For details, see
Developing a Product
Model Offline.

Product Model Example

Codec example Demo codec projects are
provided for you to
perform secondary
development.

Codec Example

IoT Device Access
Developer Guide 2 Obtaining Resources

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-python
https://github.com/LiteOS/LiteOS_Lab
https://github.com/LiteOS/LiteOS_Lab
https://github.com/LiteOS/LiteOS_Lab
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(java).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/mqttdemo(android).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(python).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(c).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(cSharp).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(nodejs).zip
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/ProfileDemo/ProfileSample.zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/tool/CodecDemo/CodecDemoV2.zip

Resource Package Description Download Link

Codec test tool The tool is used to check
whether the codec
developed offline is
normal.

Codec Test Tool

NB-IoT device simulator The tool is used to
simulate the access of
NB-IoT devices to the
platform using LwM2M
over CoAP for data
reporting and command
delivery.
For details, see
Connecting and
Debugging an NB-IoT
Device Simulator.

NB-IoT Device
Simulator

Application Development Resources
The platform provides a wealth of application-side APIs to ease application
development. Applications can call these APIs to implement services such as
secure access, device management, data collection, and command delivery.

Resource Package Description Download Link

Application API Java
Demo

You can call application-
side APIs to experience
service functions and
service processes.

API Java Demo

Application Java SDK You can use Java
methods to call
application-side APIs to
communicate with the
platform. For details, see
Java SDK.

Java SDK

Application C# SDK You can use C# methods
to call application-side
APIs to communicate
with the platform. For
details, see C# SDK.

C# SDK

Application Python SDK You can use Python
methods to call
application-side APIs to
communicate with the
platform. For details, see
Python SDK.

Python SDK

IoT Device Access
Developer Guide 2 Obtaining Resources

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/pluginDetector/IoT_Codec_Test_Tool.zip
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0014.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0014.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0014.html
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/NBSimulate/NB-IoTDeviceSimulatorEn.zip
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/NBSimulate/NB-IoTDeviceSimulatorEn.zip
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/north/Java/ApiDemo/javaApiDemo2.zip
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-python-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-python-v3/releases

Resource Package Description Download Link

Application Go SDK You can use Go methods
to call application-side
APIs to communicate
with the platform. For
details, see Go SDK.

Go SDK

Application Node.js SDK You can use Node.js
methods to call
application-side APIs to
communicate with the
platform. For details, see
Node.js SDK.

Node.js SDK

Application PHP SDK You can use PHP
methods to call
application-side APIs to
communicate with the
platform. For details, see
PHP SDK.

PHP SDK

Certificates
The following certificates are used when devices and applications need to verify
IoTDA.

NO TE

● The certificates apply only to Huawei Cloud IoTDA and must be used together with the
corresponding domain name.

● CA certificates cannot be used to verify server certificates after their expiration dates.
Replace these certificates before expiration dates to ensure that devices can connect to
the IoT platform properly.

IoT Device Access
Developer Guide 2 Obtaining Resources

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-go-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-go-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-nodejs-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-nodejs-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-php-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-php-v3/releases

Table 2-1 Certificates

Certificate
Package
Name

Region
and
Edition

Cer
tifi
cat
e
Typ
e

Certific
ate
Format

Description Downloa
d Link

certificate CN-
Hong
Kong,
AP-
Singapo
re, AP-
Bangko
k, and
AF-
Johanne
sburg

Dev
ice
cert
ifica
te

pem,
jks, and
bks

Used by a device to
verify the platform
identity. The certificate
must be used together
with the device access
domain name.

Certifica
te file

IoT Device Access
Developer Guide 2 Obtaining Resources

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

https://iot-developer.obs.cn-north-4.myhuaweicloud.com/cert/v2/ap-southeast-1-deviceCert-standard-instance.zip
https://iot-developer.obs.cn-north-4.myhuaweicloud.com/cert/v2/ap-southeast-1-deviceCert-standard-instance.zip

3 Product Development

3.1 Product Development Guide
In the IoT platform integration solution, the IoT platform provides open APIs for
applications to connect devices that use various protocols. To better manage
devices, the IoT platform needs to understand the device capabilities and the
formats of data reported by devices. Therefore, you need to develop product
models and codecs on the IoT platform.

● A product model is a JSON file that describes device capabilities. It defines
basic device properties and message formats for data reporting and command
delivery. To define a product model is to construct an abstract model of a
device in the platform to enable the platform to understand the device
properties.

● A codec is developed based on the format of data reported by devices. IoTDA
uses codecs to convert data between binary and JSON formats as well as
between different JSON formats. The binary data reported by a device is
decoded into the JSON format for the application to read, and the commands
delivered by the application are encoded into the binary or JSON format for
the device to understand and execute. The following figure shows the process.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

Figure 3-1 Codec usage process

Product Development Process
The IoTDA console provides a graphical user interface (GUI) to help you quickly
develop products (product models and codecs) and perform self-service tests.

Figure 3-2 Product development process

● Product creation: A product is a collection of devices with the same
capabilities or features. In addition to physical devices, a product includes
product information, product models (profiles), and codecs generated during
IoT capability building.

● Model definition: Product model development is the most important part of
product development. A product model is used to describe the capabilities

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

and features of a device. You can build an abstract model of a device by
defining a product model on the platform so that the platform can know
what services, properties, and commands are supported by the device.

● Codec development: If the data reported by the device is in binary or JSON
format, a codec must be developed to convert data between binary and JSON
formats or between different JSON formats.

● Online commissioning: The IoTDA console provides application and device
simulators for you to commission data reporting and command delivery
before developing real applications and physical devices. You can also use the
application simulator to verify the service flow after the physical device is
developed.

NO TE

Currently, only the standard edition supports online debugging of MQTT devices.

3.2 Creating a Product
On the IoT platform, a product is a collection of devices with the same capabilities
or features.

Procedure

Step 1 Access the IoTDA service page and click Access Console.

Step 2 Choose Products in the navigation pane and click Create Product on the left. Set
the parameters as prompted and click OK.

Set Basic Info

Resource
Space

Select a resource space from the drop-down list box. If a
resource space does not exist, create it first.

Product
Name

Define a product name. The product name must be unique in the
same resource space. The value can contain up to 64 characters.
Only letters, digits, and special characters (_?'#().,&%@!-) are
allowed.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0006.html

Protocol ● MQTT: MQTT is used by devices to access the platform. The
data format can be binary or JSON. If the binary format is
used, the codec must be deployed.

● LwM2M over CoAP: LwM2M/CoAP is used only by NB-IoT
devices with limited resources (including storage and power
consumption). The data format is binary. The codec must be
deployed to interact with the platform.

● HTTPS is a secure communication protocol based on HTTP
and encrypted using SSL. IoTDA supports communication
through HTTPS.

● Modbus: Modbus is used by devices to access the platform.
Devices that use the Modbus protocol to connect to IoT edge
nodes are called indirectly connected devices. For details
about the differences between directly connected devices and
indirectly connected devices, see Gateways and Child
Devices.

● HTTP (TLS encryption), ONVIF, OPC UA, OPC DA, and other:
IoT Edge is used for connection.

Data Type ● JSON: JSON is used for the communication protocol between
the platform and devices.

● Binary: You need to develop a codec on the IoTDA console to
convert binary code data reported by devices into JSON data.
The devices can communicate with the platform only after the
JSON data delivered by the platform is parsed into binary
code.

Industry Set this parameter based on service requirements.

Device Type Set this parameter based on service requirements.

Advanced Settings

Product ID Set a unique identifier for the product. If this parameter is
specified, the platform uses the specified product ID. If this
parameter is not specified, the platform allocates a product ID.

Description Provide a description for the product. Set this parameter based
on service requirements.

You can click Delete to delete a product that is no longer used. After the product
is deleted, its resources such as the product models and codecs will be cleared.
Exercise caution when deleting a product.

----End

Follow-Up Procedure
1. In the product list, click the name of a product to access its details. On the

product details page displayed, you can view basic product information, such
as the product ID, product name, device type, data format, resource space,
and protocol type.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0052.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0052.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_9990.html

Figure 3-3 Product details

2. On the product details page, you can develop a product model, develop a
codec, perform online debugging, and customize topics.

3.3 Developing a Product Model

3.3.1 Product Model Definition
A product model describes the capabilities and features of a device. You can build
an abstract model of a device by defining a product model on the IoT platform so
that the platform can know what services, properties, and commands are
supported by the device, such as its color or any on/off switches. After defining a
product model, you can use it during device registration.

A product model defines service capabilities.

● Service capabilities

The service capabilities of a device are divided into several services. Properties,
commands, and command parameters are defined for each service.

For example, a water meter has multiple capabilities. It reports the water
flow, alarms, battery life, and connection data, and it receives commands too.
When describing the capabilities of a water meter, the product model includes
five services, each of which has its own properties or commands.

Service Name Description

WaterMeterBasic Defines parameters reported by the water meter, such
as the water flow, temperature, and pressure. If these
parameters need to be controlled or modified using
commands, these parameters must be defined in the
commands.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_01_0017.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_9990.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_9990.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_9988.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_02_9992.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html

Service Name Description

WaterMeterAlarm Defines various scenarios where the water meter will
report an alarm. Commands need to be defined if
necessary.

Battery Defines the voltage and current intensity of the water
meter.

DeliverySchedule Defines transmission rules for the water meter.
Commands need to be defined if necessary.

Connectivity Defines connectivity parameters of the water meter.

Note: You can define the number of services as required. For example, the
WaterMeterAlarm service can be further divided into WaterPressureAlarm
and WaterFlowAlarm services or be integrated into the WaterMeterBasic
service.

The platform provides multiple methods for developing product models. You can
select a method as required.
● Customize Model (online development): Build a product model from

scratch. For details, see Developing a Product Model Online.
● Import from Local (offline development): Upload a local product model to

the platform. For details, see Developing a Product Model Offline.
● Import from Excel: Define product functions by importing an Excel file. This

method can lower the product model development threshold for developers
because they only need to fill in parameters based on the Excel file. It also
helps high-level developers and integrators improve the development
efficiency of complex models in the industry. For example, the auto-control air
conditioner model contains more than 100 service items. Developing the
product model by editing the excel file greatly improves the efficiency. You
can edit and adjust parameters at any time. For details, see Import from
Excel.

● Import from Library: You can use a preset product model to quickly develop
a product. The platform provides standard and manufacturer-specific product
models. Standard product models comply with industry standards and are
suitable for devices of most manufacturers in the industry. Manufacturer-
specific product models are suitable for devices provided by a small number
of manufacturers. You can select a product model as required.

3.3.2 Developing a Product Model Online

Overview
Before developing a product model online, you must create a product. When
creating a product, enter information such as the product name, protocol type,
data format, industry, and device type. The information will be used to fill in the
device capability fields in the product model. The IoT platform provides standard
models and vendor models. These models involve multiple domains and provide
edited product model files. You can modify, add, or delete fields in the product

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

model as required. If you want to customize a product model, you need to define
a complete product model.

This topic uses a product model that contains a service as an example. The
product model contains functions and fields in scenarios such as data reporting,
command delivery, and command response delivery.

Procedure

Step 1 Access the IoTDA service page and click Access Console.

Step 2 In the navigation pane, choose Products. In the product list, click the name of a
product to access its details.

Step 3 On the Model Definition tab page, click Customize Model to add a service.

Step 4 Specify Service ID, Service Type, and Description, and click OK.
● Service ID: The first letter of the value must be capitalized, for example,

WaterMeter and StreetLight.
● Service Type: You are advised to set this parameter to the same value as

Service ID.
● Description: You can, for example, define the properties of light intensity

(Light_Intensity) and status (Light_Status).

After the service is added, define the properties and commands in the Add Service
area. A service can contain properties and/or commands. Configure the properties
and commands based on your requirements.

Step 5 Click the new service ID added in 4. On the page displayed, click Add Property. In
the dialog box displayed, set the parameters and click OK.

Parameter Description

Property
Name

Use camel case, for example, batteryLevel and
internalTemperature.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Parameter Description

Data Type ● Integer: Select this value if the reported data is an integer
value.

● long: Select this value if the reported data is a long integer.
● Decimal: Select this value if the reported data is a decimal.

You are advised to set this parameter to Decimal when
configuring the longitude and latitude properties.

● String: Select this value if the reported data is a string or an
enumerated value. Use commas (,) to separate values.

● DateTime: Select this value if the reported data is a date or
time.
Property format examples: 2020-09-01T18:50:20Z and
2020-09-01T18:50:20.200Z

● JsonObject: Select this value if the reported data is in JSON
structure.

● enum: Select this value if the reported data is enumerated
values.
If enumerated values are OPEN,CLOSE, property format
examples include OPEN and CLOSE.

● boolean: Select this value if the reported data is a Boolean
value.
Property format examples: true/false and 0/1

● StringList: Select this value if the reported data is a string
list.

Property format examples: ["str1","str2","str3"]

Access
Permissions

● Read: You can query the property through APIs.
● Write: You can modify the property value through APIs.

Value Range Set these parameters based on the actual situation of the
device.

Step

Unit

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

Figure 3-4 Adding a property

Step 6 Click Add Command. In the dialog box displayed, set command parameters.
● Command Name: You are advised to capitalize the full command name and

use underscores (_) to separate words, for example, DISCOVERY and
CHANGE_STATUS.

● Command Parameters: Click Add Command Parameter. In the dialog box
displayed, set the parameters of the command to be delivered and click OK.

Parameter Description

Parameter
Name

You are advised to start the name with a lowercase letter
and capitalize the other words, example, valueChange.

Data Type Set these parameters based on the actual situation of the
device.

Value Range

Step

Unit

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

Figure 3-5 Adding a command

● Click Add Response Parameter to add parameters of a command response
when necessary. In the dialog box displayed, set the parameters and click OK.

Parameter Description

Parameter
Name

You are advised to start the name with a lowercase letter
and capitalize the other words, example, valueResult.

Data Type Set these parameters based on the actual situation of the
device.

Value Range

Step

Unit

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

Figure 3-6 Adding a response parameter

----End

3.3.3 Developing a Product Model Offline

Overview
A product model is essentially a ZIP package that combines one devicetype-
capability.json file and several serviceType-capability.json files in the following
hierarchy, in which WaterMeter indicates the device type, TestUtf8Manuld
identifies the manufacturer ID, and WaterMeterBasic, WaterMeterAlarm, and
Battery indicates the service types.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

In this regard, defining an offline product model is to define device capabilities in
the devicetype-capability.json file and service capabilities in the servicetype-
capability.json files in JSON format based on the product model definition rules,
which is time-consuming and requires familiarity with the JSON format.

Developing a Product Model Online is recommended.

Naming Rules

The product model must comply with the following naming rules:

● Use upper camel case for device types, service types, and service IDs, for
example, WaterMeter and Battery.

● Use lower camel case for property names, for example, batteryLevel and
internalTemperature.

● For commands, capitalize all characters, with words separated by underscores,
for example, DISCOVERY and CHANGE_COLOR.

● Name a device capability profile (.json file) in the format of devicetype-
capability.json.

● Name a service capability profile (.json file) in the format of servicetype-
capability.json.

● The manufacturer ID must be unique in different product models and can
only be in English.

● Names are universal and concise and service capability descriptions clearly
indicate corresponding functions. For example, you can name a multi-sensor
device MultiSensor and name a service that displays the battery level
Battery.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

Product Model Templates
To connect a new device to the IoT platform, you must first define a product
model for the device. The IoT platform provides some product model templates. If
the types and functions of devices newly connected to the IoT platform are
included in these templates, directly use the templates. If the types and functions
are not included in the product model templates, define your product model.

For example, if a water meter is connected to the IoT platform, you can directly
select the corresponding product model on the IoT platform and modify the device
service list.

NO TE

The product model templates provided by the IoT platform are updated continuously. The
following uses a water meter as an example to describe how to define a product model.

Device identification properties

Property Key in the Product
Model

Value

Device Type deviceType WaterMeter

Manufacturer ID manufacturerId TestUtf8ManuId

Manufacturer Name manufacturerName HZYB

Protocol Type protocolType CoAP

Service list

Service Service ID Service Type Value

Basic water meter
function

WaterMeterBasic Water Mandatory

Alarm service WaterMeterAlarm Battery Mandatory

Battery service Battery Battery Optional

Data reporting
rule

DeliverySchedule DeliverySchedule Mandatory

Connectivity Connectivity Connectivity Mandatory

Device Capability Definition Example
The devicetype-capability.json file records basic information about a device.

{
 "devices": [
 {
 "manufacturerId": "TestUtf8ManuId",
 "manufacturerName": "HZYB",

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

 "protocolType": "CoAP",
 "deviceType": "WaterMeter",
 "omCapability":{
 "upgradeCapability" : {
 "supportUpgrade":true,
 "upgradeProtocolType":"PCP"
 },
 "fwUpgradeCapability" : {
 "supportUpgrade":true,
 "upgradeProtocolType":"LWM2M"
 },
 "configCapability" : {
 "supportConfig":true,
 "configMethod":"file",
 "defaultConfigFile": {
 "waterMeterInfo" : {
 "waterMeterPirTime" : "300"
 }
 }
 }
 },
 "serviceTypeCapabilities": [
 {
 "serviceId": "WaterMeterBasic",
 "serviceType": "WaterMeterBasic",
 "option": "Mandatory"
 },
 {
 "serviceId": "WaterMeterAlarm",
 "serviceType": "WaterMeterAlarm",
 "option": "Mandatory"
 },
 {
 "serviceId": "Battery",
 "serviceType": "Battery",
 "option": "Optional"
 },
 {
 "serviceId": "DeliverySchedule",
 "serviceType": "DeliverySchedule",
 "option": "Mandatory"
 },
 {
 "serviceId": "Connectivity",
 "serviceType": "Connectivity",
 "option": "Mandatory"
 }
]
 }
]
}

The fields are described as follows:

Fiel
d

Sub-field Mandatory Description

devi
ces

- - Yes Complete capability information
about a device. The root node cannot
be modified.

- manufactur
erId

- No Manufacturer ID of the device.

- manufactur
erName

- Yes Manufacturer name of the device.
The name must be in English.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

Fiel
d

Sub-field Mandatory Description

- protocolTyp
e

- Yes Protocol used by the device to
connect to the IoT platform. For
example, the value is CoAP for NB-
IoT devices.

- deviceType - Yes Type of the device.

- omCapabili
ty

- No Software upgrade, firmware upgrade,
and configuration update capabilities
of the device. For details, see the
description of the omCapability
structure below.
If software or firmware upgrade is
not involved, this field can be
deleted.

- serviceType
Capabilities

- Yes Service capabilities of the device.

- - servic
eId

Yes Service ID. If a service type includes
only one service, the value of
serviceId is the same as that of
serviceType. If the service type
includes multiple services, the
services are numbered
correspondingly, such as Switch01,
Switch02, and Switch03.

- - servic
eType

Yes Type of the service. The value of this
field must be the same as that of
serviceType in the servicetype-
capability.json file.

- - optio
n

Yes Type of the service field. The value
can be Master, Mandatory, or
Optional.
This field is not a functional field but
a descriptive one.

Description of the omCapability structure

Field Sub-field Man
dator
y

Description

upgradeCa
pability

- No Software upgrade capabilities of the device.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

Field Sub-field Man
dator
y

Description

- supportUpg
rade

No true: The device supports software upgrades.
false: The device does not support software
upgrades.

- upgradePro
tocolType

No Protocol type used by the device for
software upgrades. It is different from
protocolType of the device. For example,
the software upgrade protocol of CoAP
devices is PCP.

fwUpgrad
eCapabilit
y

- No Firmware upgrade capabilities of the device.

- supportUpg
rade

No true: The device supports firmware
upgrades.
false: The device does not support firmware
upgrades.

- upgradePro
tocolType

No Protocol type used by the device for
firmware upgrades. It is different from
protocolType of the device. Currently, the
IoT platform supports only firmware
upgrades of LWM2M devices.

configCap
ability

- No Configuration update capabilities of the
device.

- supportConf
ig

No true: The device supports configuration
updates.
false: The device does not support
configuration updates.

- configMeth
od

No file: Configuration updates are delivered in
the form of files.

- defaultConf
igFile

No Default device configuration information (in
JSON format). The specific configuration
information is defined by the manufacturer.
The IoT platform stores the information for
delivery but does not parse the
configuration fields.

Service Capability Definition Example
The servicetype-capability.json file records service information about a device.

{
 "services": [
 {

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

 "serviceType": "WaterMeterBasic",
 "description": "WaterMeterBasic",
 "commands": [
 {
 "commandName": "SET_PRESSURE_READ_PERIOD",
 "paras": [
 {
 "paraName": "value",
 "dataType": "int",
 "required": true,
 "min": 1,
 "max": 24,
 "step": 1,
 "maxLength": 10,
 "unit": "hour",
 "enumList": null
 }
],
 "responses": [
 {
 "responseName": "SET_PRESSURE_READ_PERIOD_RSP",
 "paras": [
 {
 "paraName": "result",
 "dataType": "int",
 "required": true,
 "min": -1000000,
 "max": 1000000,
 "step": 1,
 "maxLength": 10,
 "unit": null,
 "enumList": null
 }
]
 }
]
 }
],
 "properties": [
 {
 "propertyName": "registerFlow",
 "dataType": "int",
 "required": true,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "R",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "currentReading",
 "dataType": "string",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": "L",
 "enumList": null
 },
 {
 "propertyName": "timeOfReading",
 "dataType": "string",
 "required": false,
 "min": 0,
 "max": 0,

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": null,
 "enumList": null
 },

]
 }
]
}

The fields are described as follows:

Fiel
d

Sub-field Man
dat
ory

Description

serv
ices

- - - - Yes Complete information about a service.
The root node cannot be modified.

- ser
vic
eTy
pe

- - - Yes Type of the service. The value of this
field must be the same as that of
serviceType in the devicetype-
capability.json file.

- des
cri
pti
on

- - - Yes Description of the service.
This field is not a functional field but a
descriptive one. It can be set to null.

- co
m
ma
nds

- - - Yes Command supported by the device. If
the service has no commands, set the
value to null.

- - com
man
dNa
me

- - Yes Name of the command. The command
name and parameters together form a
complete command.

- - para
s

- - Yes Parameters contained in the command.

- - - para
Nam
e

- Yes Name of a parameter in the command.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

Fiel
d

Sub-field Man
dat
ory

Description

- - - dataT
ype

- Yes Data type of the parameter in the
command.
Value: string, int, string list, decimal,
DateTime, jsonObject, enum, or
boolean
Complex types of reported data are as
follows:
● string list:["str1","str2","str3"]
● DateTime: The value is in the format

of yyyyMMdd'T'HHmmss'Z', for
example, 20151212T121212Z.

● jsonObject: The value is in the
customized JSON format, which is
not parsed by the IoT platform and is
transparently transmitted only.

- - - requir
ed

- Yes Whether the command is mandatory.
The value can be true or false. The
default value is false, indicating that
the command is optional.
This field is not a functional field but a
descriptive one.

- - - min - Yes Minimum value.
This field is valid only when dataType is
set to int or decimal.

- - - max - Yes Maximum value.
This field is valid only when dataType is
set to int or decimal.

- - - step - Yes Step.
This field is not used. Set it to 0.

- - - maxL
ength

- Yes Character string length.
This field is valid only when dataType is
set to string, string list, or DateTime.

- - - unit - Yes Unit.
The value is determined by the
parameter, for example:
Temperature unit: C or K
Percentage unit: %
Pressure unit: Pa or kPa

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

Fiel
d

Sub-field Man
dat
ory

Description

- - - enum
List

- Yes List of enumerated values.
For example, the status of a switch can
be set as follows:
"enumList" : ["OPEN","CLOSE"]
This field is not a functional field but a
descriptive one. It is recommended that
this field be defined accurately.

- - resp
onse
s

- - Yes Responses to command execution.

- - - respo
nseN
ame

- Yes You can add _RSP to the end of
commandName.

- - - paras - Yes Parameters contained in a response.

- - - - pa
ra
Na
m
e

Yes Name of a parameter in the command.

- - - - da
ta
Ty
pe

Yes Data type.
Value: string, string list, decimal,
DateTime, jsonObject, or int
Complex types of reported data are as
follows:
● string list:["str1","str2","str3"]
● DateTime: The value is in the format

of yyyyMMdd'T'HHmmss'Z', for
example, 20151212T121212Z.

● jsonObject: The value is in the
customized JSON format, which is
not parsed by the IoT platform and is
transparently transmitted only.

- - - - re
qu
ire
d

Yes Whether the command response is
mandatory. The value can be true or
false. The default value is false,
indicating that the command response
is optional.
This field is not a functional field but a
descriptive one.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

Fiel
d

Sub-field Man
dat
ory

Description

- - - - mi
n

Yes Minimum value.
This field is valid only when dataType is
set to int or decimal.

- - - - m
ax

Yes Maximum value.
This field is valid only when dataType is
set to int or decimal.

- - - - ste
p

Yes Step.
This field is not used. Set it to 0.

- - - - m
ax
Le
ng
th

Yes Character string length.
This field is valid only when dataType is
set to string, string list, or DateTime.

- - - - un
it

Yes Unit.
The value is determined by the
parameter, for example:
Temperature unit: C or K
Percentage unit: %
Pressure unit: Pa or kPa

- - - - en
u
m
Lis
t

Yes List of enumerated values.
For example, the status of a switch can
be set as follows:
"enumList" : ["OPEN","CLOSE"]
This field is not a functional field but a
descriptive one. It is recommended that
this field be defined accurately.

- pro
per
ties

- - - Yes Reported data. Each sub-node indicates
a property.

- - prop
erty
Nam
e

- - Yes Name of a property.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

Fiel
d

Sub-field Man
dat
ory

Description

- - data
Type

- - Yes Data type.
Value: string, string list, decimal,
DateTime, jsonObject, or int
Complex types of reported data are as
follows:
● string list:["str1","str2","str3"]
● DateTime: The value is in the format

of yyyyMMdd'T'HHmmss'Z', for
example, 20151212T121212Z.

● jsonObject: The value is in the
customized JSON format, which is
not parsed by the IoT platform and is
transparently transmitted only.

- - requi
red

- - Yes Whether the property is mandatory. The
value can be true or false. The default
value is false, indicating that the
property is optional.
This field is not a functional field but a
descriptive one.

- - min - - Yes Minimum value.
This field is valid only when dataType is
set to int or decimal.

- - max - - Yes Maximum value.
This field is valid only when dataType is
set to int or decimal.

- - step - - Yes Step.
This field is not used. Set it to 0.

- - met
hod

- - Yes Access mode.
R indicates reading, W indicates writing,
and E indicates subscription.
Value: R, RW, RE, RWE, or null

- - unit - - Yes Unit.
The value is determined by the
parameter, for example:
Temperature unit: C or K
Percentage unit: %
Pressure unit: Pa or kPa

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

Fiel
d

Sub-field Man
dat
ory

Description

- - max
Leng
th

- - Yes Character string length.
This field is valid only when dataType is
set to string, string list, or DateTime.

- - enu
mLis
t

- - Yes List of enumerated values.
For example, batteryStatus can be set
as follows:
"enumList" : [0, 1, 2, 3, 4, 5, 6]
This field is not a functional field but a
descriptive one. It is recommended that
this field be defined accurately.

Product Model Packaging
After the product model is completed, package it in the format shown below.

The following requirements must be met for product model packaging:

● The product model hierarchy must be the same as that shown above and
cannot be added or deleted. For example, the second level can contain only
the profile and service folders, and each service must contain the profile
folder.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

● The product model is compressed in .zip format.
● The product model must be named in the format of

deviceType_manufacturerId. The values of deviceType and manufacturerId
must be the same as those in the devicetype-capability.json file. For
example, the following provides the main fields of the devicetype-
capability.json file.
{
 "devices": [
 {
 "manufacturerId": "TestUtf8ManuId",
 "manufacturerName": "HZYB",

 "protocolType": "CoAP",
 "deviceType": "WaterMeter",
 "serviceTypeCapabilities": ****
 }
]
}

● WaterMeterBasic, WaterMeterAlarm, and Battery in the figure are services
defined in the devicetype-capability.json file.

The product model is in the JSON format. After the product model is edited, you
can use format verification websites on the Internet to check the validity of the
JSON file.

3.3.4 Exporting and Importing a Product Model
A product model can be exported from or imported to the IoT platform.

● After a product is developed, tested, and verified, you can export the online
defined product model to the local host.

● If you have a complete product model (developed offline or exported from
other projects or platforms) or use an Excel file to develop a product model,
you can import the product model to the platform.

Exporting a Product Model
After a product is developed, tested, and verified, you can export the online
defined product model to the local host.

Step 1 Access the IoTDA service page and click Access Console.

Step 2 In the navigation pane, choose Products. In the product list, click the name of a
product to access its details.

Step 3 On the page displayed, click Export to export the product model to the local host.

----End

Importing a Product Model
If you have a complete product model (developed offline or exported from other
projects or platforms) or use an Excel file to develop a product model, you can
import the product model to the platform.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

https://www.huaweicloud.com/intl/en-us/product/iotda.html

NO TE

The product model imported from the local host does not contain a codec. If the device
reports binary code, go to the IoTDA console to develop or import a codec.

● Import from Local

a. Access the IoTDA service page and click Access Console.
b. In the navigation pane, choose Products. In the product list, click the

name of a product to access its details.
c. On the Model Definition tab page, click Import from Local. In the

dialog box displayed, load the local product model and click OK.

Figure 3-7 Uploading a model file

● Import from Excel

a. Access the IoTDA service page and click Access Console.
b. In the navigation pane, choose Products. In the product list, click the

name of a product to access its details.
c. On the Model Definition tab page, click Import from Excel. In the

product template downloaded, enter the service ID in the Device sheet
and set parameters such as properties, commands, and events in the
Parameter sheet. Import the Excel file and click OK.

3.4 Developing a Codec

3.4.1 Codec Definition
IoTDA uses codecs to convert data between the binary and JSON formats as well
as between JSON formats.

In the NB-IoT scenario, a codec can decode binary data reported by a device into
the JSON format for the application to read, and encode the commands delivered

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

by the application into the binary format for the device to understand and
execute. CoAP is used for communications between NB-IoT devices and the IoT
platform. The payload of CoAP messages carries data at the application layer, at
which the data type is defined by the devices. As NB-IoT devices require low
power consumption, data at the application layer is generally in binary format
instead of JSON. However, the platform sends data in JSON format to applications.
Therefore, codec development is required for the platform to convert data
between binary and JSON formats.

Data Reporting

Figure 3-8 Codecs for data reporting

In the data reporting process, the codec is used in the following scenarios:

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

● Decoding binary data reported by a device into JSON data and sending the
decoded data to an application

● Encoding JSON data returned by an application into binary data that can be
identified by the device and sending the encoded data to a device

Command Delivery

Figure 3-9 Codec usage in command delivery

In the command delivery process, the codec is used in the following scenarios:

● Encoding JSON data delivered by an application into binary data and sending
the encoded data to a device

● Decoding binary data returned by a device into JSON data and reporting the
decoded data to an application

Graphical Development and Script-based Development

The platform provides three methods for developing codecs.

● Online development: The codec of a product can be quickly developed in a
visualized manner on the IoTDA console.

● Script-based development: JavaScript scripts are used to implement
encoding and decoding.

3.4.2 Online Development
Codecs developed online on IoTDA apply only to devices that report binary data.

On the IoTDA console, you can quickly develop codecs in a visualized manner.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

This section uses an NB-IoT smoke detector as an example to describe how to
develop a codec that supports data reporting and command delivery as well as
command execution result reporting. The other two scenarios are used as
examples to describe how to develop and commission complex codecs.

● Codec for Data Reporting and Command Delivery
● Codec for Strings and Variable-Length Strings
● Codec for Arrays and Variable-Length Arrays

Codec for Data Reporting and Command Delivery

Scenario

A smoke detector provides the following functions:

● Reporting smoke alarms (fire severity) and temperature
● Receiving and running remote control commands, which can be used to

enable the alarm function remotely. For example, the smoke detector can
report the temperature on the fire scene and remotely trigger a smoke alarm
for evacuation.

● Reporting command execution results

Defining a Product Model

Define the product model on the product details page of the smoke detector.
● level: indicates the fire severity.
● temperature: indicates the temperature at the fire scene.
● SET_ALARM: indicates whether to enable or disable the alarm function. The

value 0 indicates that the alarm function is disabled, and the value 1 indicates
that the alarm function is enabled.

Figure 3-10 Model definition - Smokerdetector

Developing a Codec

Step 1 On the smoke detector details page, click the Codec Development tab and click
Develop Codec.

Step 2 Click Add Message to add a smokerinfo message. This step is performed to
decode the binary code stream message uploaded by the device to the JSON
format so that the platform can understand the message. The following is a
configuration example:

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

● Message Name: smokerinfo
● Message Type: Data reporting
● Add Response Field: selected. After response fields are added, the platform

delivers the response data set by the application to the device after receiving
the data reported by the device.

● Response: AAAA0000 (default)

Figure 3-11 Adding a message - smokerinfo

1. Click Add Field, select Tagged as address field, and add the messageId field,
which indicates the message type. In this scenario, the message type for
reporting the fire severity and temperature is 0x0. When a device reports a
message, the first field of each message is messageId. For example, if the
message reported by a device is 0001013A, the first field 00 indicates that the
message is used to report the fire severity and temperature. The subsequent
fields 01 and 013A indicate the fire severity and temperature, respectively. If
there is only one data reporting message and one command delivery
message, the messageId field does not need to be added.
– Data Type is configured based on the number of data reporting message

types. The default data type of the messageId field is int8u.
– The value of Offset is automatically filled based on the field location and

the number of bytes of the field. messageId is the first field of the
message. The start position is 0, the byte length is 1, and the end position
is 1. Therefore, the value of Offset is 0-1.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

– The value of Length is automatically filled based on the value of Data
Type.

– Default Value can be changed but must be in hexadecimal format. In
addition, the corresponding field in data reporting messages must be the
same as the default value.

Figure 3-12 Adding a field - messageId

2. Add a level field to indicate the fire severity.

– Field Name can contain only letters, digits, underscores (_), and dollar
signs ($) and cannot start with a digit.

– Data Type is configured based on the data reported by the device and
must match the type defined in the product model. The level property
defined in the product model is int, and the maximum value is 9.
Therefore, the value of Data Type is int8u.

– The value of Offset is automatically filled based on the field location and
the number of bytes of the field. The start position of the level field is
the end position of the previous field. The end position of the previous
field messageId is 1. Therefore, the start position of the level field is 1.
The length of the level field is 1 byte, and the end position is 2.
Therefore, the value of Offset is 1-2.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

– The value of Length is automatically filled based on Data Type.
– Default Value can be left blank. If you do not set Default Value, the fire

level is not fixed and has no default value.

Figure 3-13 Adding a field - level

3. Add the temperature field to indicate the temperature at the fire scene.
– Data Type: In the product model, the data type of the temperature

property is int and the maximum value is 1000. Therefore, the value of
Data Type is int16u in the codec to meet the value range of the
temperature property.

– Offset is automatically configured based on the number of characters
between the first field and the end field. The start position of the
temperature field is the end position of the previous field. The end
position of the previous field level is 2. Therefore, the start position of
the temperature field is 2. The length of the temperature field is 2
bytes, and the end position is 4. Therefore, the value of Offset is 2-4.

– The value of Length is automatically filled based on Data Type.
– If you do not set Default Value, the value of the temperature is not fixed

and has no default value.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

Figure 3-14 Adding a field - temperature

Step 3 Click Add Message to add a SET_ALARM message and set the temperature
threshold for fire alarms. For example, if the temperature exceeds 60°C, the device
reports an alarm. This step is performed to encode the command message in
JSON format delivered by the IoT platform into binary data so that the smoke
detector can understand the message. The following is a configuration example:
● Message Name: SET_ALARM
● Message Type: Command delivery
● Add Response Field: selected. After a response field is added, the device

reports the command execution result after receiving the command. You can
determine whether to add response fields as required.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

Figure 3-15 Adding a message - SET_ALARM

a. Click Add Field to add the messageId field, which indicates the message
type. For example, set the message type of the fire alarm threshold to
0x3. For details about the message ID, data type, length, default value,
and offset, see 1.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

Figure 3-16 Adding a command field - messageId (0x3)

b. Add the mid field. This field is generated and delivered by the platform
and is used to associate the delivered command with the command
delivery response. The data type of the mid field is int16u by default. For
details about the length, default value, and offset, see 2.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

Figure 3-17 Adding a command field - mid

c. Add the value field to indicate the parameter value of the delivered
command. For example, deliver the temperature threshold for a fire
alarm. For details about the data type, length, default value, and offset,
see 2.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

Figure 3-18 Adding a command field - value

d. Click Add Response Field to add the messageId field, which indicates
the message type. The command delivery response is an upstream
message, which is differentiated from the data reporting message by the
messageId field. The message type for reporting the temperature
threshold of the fire alarm is 0x4. For details about the message ID, data
type, length, default value, and offset, see 1.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

Figure 3-19 Adding a response field - messageId (0x4)

e. Add the mid field. This field must be the same as that in the command
delivered by the IoT platform. It is used to associate the delivered
command with the command execution result. The data type of the mid
field is int16u by default. For details about the length, default value, and
offset, see 2.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

Figure 3-20 Adding a response field - mid

f. Add the errcode field to indicate the command execution status. 00
indicates success and 01 indicates failure. If this field is not carried in the
response, the command is executed successfully by default. The data type
of the errcode field is int8u by default. For details about the length,
default value, and offset, see 2.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

Figure 3-21 Adding a response field - errcode

g. Add the result field to indicate the command execution result. For
example, the device returns the current alarm threshold to the platform.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

Figure 3-22 Adding a response field - result

Step 4 Drag the property fields and command fields in Device Model on the right to set
up a mapping between the fields in the data reporting message and those in the
command delivery message.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

Figure 3-23 Developing the smokerdetector codec online

Step 5 Click Save and then Deploy to deploy the codec on the platform.

Figure 3-24 Deploying a codec

----End

Testing the Codec

Step 1 On the product details page of the smoke detector, click the Online Debugging
tab and click Add Test Device.

Step 2 You can use a real device or virtual device for debugging based on your service
scenario. For details, see Online Debugging. The following uses a simulated
device as an example to describe how to debug a codec.

In the Add Test Device dialog box, select Virtual device for Device Type and click
OK. The virtual device name contains Simulator. Only one virtual device can be
created for each product.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

Figure 3-25 Creating a virtual device

Step 3 Click Debug to access the debugging page.

Figure 3-26 Entering debugging

Step 4 Use the device simulator to report data. For example, a hexadecimal code stream
(0008016B) is reported. 00 indicates the messageId field. 08 indicates the fire
severity, and its length is one byte. 016B indicates the temperature, and its length
is two bytes.

View the data reporting result ({level=8, temperature=363}) in Application
Simulator. 8 is the decimal number converted from the hexadecimal number 08
and 363 from the hexadecimal number 016B.

In the Device Simulator area, the response data AAAA0000 delivered by the IoT
platform is displayed.

Figure 3-27 Simulating data reporting to smokerdetector

Step 5 Use the application simulator to deliver a command and set value to 1. The
command {"serviceId": "Smokeinfo", "method": "SET_ALARM", "paras": "{\"value
\":1}"} is delivered.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

View the command receiving result in Device Simulator, which is 03000101. 03
indicate the messageId field, 0001 indicates the mid field, and 01 is the
hexadecimal value converted from the decimal value 1.

Figure 3-28 Simulating command delivery to smokerdetector

NO TE

During online debugging of a CoAP virtual device, if the device simulator does not receive
the delivered command, use the device simulator to report the property, and deliver the
command again.

----End

Summary

● If the codec needs to parse the command execution result, the mid field must
be defined in the command and the command response.

● The length of the mid field in a command is two bytes. For each device, mid
increases from 1 to 65535, and the corresponding code stream ranges from
0001 to FFFF.

● After a command is executed, the mid field in the reported command
execution result must be the same as that in the delivered command. In this
way, the IoT platform can update the command status.

Codec for Strings and Variable-Length Strings
If the smoke detector needs to report the description information in strings or
variable-length strings, perform the following steps to create messages:

Defining a Product Model

Create a smoke sensor product and define the product model on the product
details page.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

Figure 3-29 Model definition - Smokerdetector carrying other_info

Developing a Codec

Step 1 On the smoke detector details page, click the Codec Development tab and click
Develop Codec.

Step 2 Click Add Message to add the other_info message and report the description of
the string type. This step is performed to decode the binary code stream message
of the string uploaded by the device to the JSON format so that the platform can
understand the message. The following is a configuration example:
● Message Name: other_info
● Message Type: Data reporting
● Add Response Field: selected After response fields are added, the platform

delivers the response data set by the application to the device after receiving
the data reported by the device.

● Response: AAAA0000 (default)

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

Figure 3-30 Adding a message - other_info

1. Click Add Field to add the messageId field, which indicates the message
type. In this scenario, the value 0x0 is used to identify the message that
reports the fire severity and temperature, 0x1 is used to identify the message
that reports only the temperature, and 0x2 is used to identify the message
that reports the description (of the string type). For details about the message
ID, data type, length, default value, and offset, see 1.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

Figure 3-31 Adding a field - messageId (0x2)

2. Add the other_info field to indicate the description of the string type. In this
scenario, set Data Type to string and Length to 6. For details about the field
name, default value, and offset, see 2.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

Figure 3-32 Adding a field - other_info

Step 3 Click Add Message, add the other_info2 message name, and configure the data
reporting message to report the description of the variable-length string type. This
step is performed to decode the binary code stream message of variable-length
strings uploaded by the device to the JSON format so that the platform can
understand the message. The following is a configuration example:
● Message Name: other_info2
● Message Type: Data reporting
● Add Response Field: selected. After response fields are added, the platform

delivers the response data set by the application to the device after receiving
the data reported by the device.

● Response: AAAA0000 (default)

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

Figure 3-33 Adding a message - other_info2

1. Add the messageId field to indicate the message type. In this scenario, the
value 0x0 is used to identify the message that reports the fire severity and
temperature, 0x1 is used to identify the message that reports only the
temperature, and 0x3 is used to identify the message that reports the
description (of the variable-length string type). For details about the message
ID, data type, length, default value, and offset, see 1.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

Figure 3-34 Adding a field - messageId (0x3)

2. Add the length field to indicate the length of a variable-length string. Data
Type is configured based on the length of the variable-length string. If the
string contains 255 or fewer characters in this scenario, set this parameter to
int8u. For details about the length, default value, and offset, see 2.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

Figure 3-35 Adding a field - length

3. Add the other_info field and set Data Type to varstring, which indicates the
description of the variable-length string type. Set Length Correlation Field to
length, indicating that the length of the current variable-length string is
determined by the reported value of length. The default mask is 0xff, which is
used to calculate the actual length of the field. For example, if the value of
Length Correlation Field is 5, the binary value is 00000101. If the mask is
0xff, the binary value is 11111111. The result of the AND operation on these
two values is 00000101, that is, 5 in decimal format. Therefore, the length of
this field that takes effect is 5 bytes. For example, if the reported data is
03051234567890, its message ID is 03, its length is 5 bytes, and the code
stream corresponding to other_info is 1234567890.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

Figure 3-36 Adding a field - other_info as varstring

Step 4 Drag the property fields in Device Model on the right to set up a mapping
between the corresponding fields in the data reporting messages.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

Step 5 Click Save and then Deploy to deploy the codec on the platform.

Figure 3-37 Deploying a codec

----End

Testing the Codec

Step 1 On the product details page of the smoke detector, click the Online Debugging
tab and click Add Test Device.

Step 2 You can use a real device or virtual device for debugging based on your service
scenario. For details, see Online Debugging. The following uses a simulated
device as an example to describe how to debug a codec.

In the Add Test Device dialog box, select Virtual device for Device Type and click
OK. The virtual device name contains Simulator. Only one virtual device can be
created for each product.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

Figure 3-38 Creating a virtual device

Step 3 Click Debug to access the debugging page.

Figure 3-39 Entering debugging

Step 4 Use the device simulator to report the description of the string type.

In the hexadecimal code stream example (0231), 02 indicates the messageId field
and specifies that this message reports the description of the string type. 31
indicates the description and its length is one byte.

View the data reporting result ({other_info=null}) in Application Simulator. The
length of the description is less than six bytes. Therefore, the codec cannot parse
the description.

Figure 3-40 Simulating data reporting - other_info too short

In the hexadecimal code stream example (02313233343536), 02 indicates the
messageId field and specifies that this message reports the description of the
string type. 313233343536 indicates the description and its length is six bytes.

View the data reporting result ({other_info=123456}) in Application Simulator.
The length of the description is six bytes. The description is parsed successfully by
the codec.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

Figure 3-41 Simulating data reporting - other_info length proper

In the hexadecimal code stream example (023132333435363738), 02 indicates the
messageId field and specifies that this message reports the description of the
string type. 3132333435363738 indicates the description and its length is eight
bytes.

View the data reporting result ({other_info=123456}) in Application Simulator.
The length of the description exceeds six bytes. Therefore, the first six bytes are
intercepted and parsed by the codec.

Figure 3-42 Simulating data reporting - other_info too long

In the hexadecimal code stream example (02013132333435), 02 indicates the
messageId field and specifies that this message reports the description of the
string type. 013132333435 indicates the description and its length is six bytes.

View the data reporting result ({other_info=\u000112345}) in Application
Simulator. In the ASCII code table, 01 indicates start of headline which cannot
be represented by specific characters. Therefore, 01 is parsed to \u0001.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

Figure 3-43 Simulating data reporting - other_info as ASCII code

Step 5 Use the device simulator to report the description of the variable-length string
type.

In the hexadecimal code stream example (030141), 03 indicates the messageId
field and specifies that this message reports the description of the variable-length
string type. 01 indicates the length of the description. 41 indicates the description
content and its length is one byte.

View the data reporting result ({other_info=A}) in Application Simulator. A
corresponds to 41 in the ASCII code table.

Figure 3-44 Simulating data reporting - other_info as variable-length character
string 1

In the hexadecimal code stream example (03024142), 03 indicates the messageId
field and specifies that this message reports the description of the variable-length
string type. 02 indicates the length of the description. 4142 indicates the
description content and its length is two bytes.

View the data reporting result ({other_info=AB}) in Application Simulator. A
corresponds to 41 and B corresponds to 42 in the ASCII code table.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

Figure 3-45 Simulating data reporting - other_info as variable-length character
string 2

In the hexadecimal code stream example (030341424344), 03 indicates the
messageId field and specifies that this message reports the description of the
variable-length string type. The second 03 indicates the length of the description.
41424344 indicates the description content and its length is four bytes.

View the data reporting result ({other_info=ABC}) in Application Simulator. The
length of the description exceeds three bytes. Therefore, the first three bytes are
intercepted and parsed. In the ASCII code table, A corresponds to 41, B to 42, and
C to 43.

Figure 3-46 Simulating data reporting - other_info as variable-length character
string 3

In the hexadecimal code stream example (0304414243), 03 indicates the
messageId field and specifies that this message reports the description of the
variable-length string type. 04 indicates the string length (four bytes) and its
length is one byte. 414243 indicates the description and its length is four bytes.

View the data reporting result ({other_info=null}) in Application Simulator. The
length of the description is less than four bytes. The codec fails to parse the
description.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

Figure 3-47 Simulating data reporting - other_info as variable-length character
string 4

----End

Summary

● When data is a string or a variable-length string, the codec processes the data
based on the ASCII code. When data is reported, the hexadecimal code stream
is decoded to a string. For example, 21 is parsed to an exclamation mark (!),
31 to 1, and 41 to A. When a command is delivered, the string is encoded into
a hexadecimal code stream. For example, an exclamation mark (!) is encoded
into 21, 1 into 31, and A into 41.

● When the data type of a field is varstring (variable-length string type), the
field must be associated with the length field. The data type of the length
field must be int.

● For variable-length strings, the codecs for command delivery and data
reporting are developed in the same way.

● Codecs developed online encode and decode strings and variable-length
strings using the ASCII hexadecimal standard table. During decoding (data
reporting), if the parsing results cannot be represented by specific characters
such as start of headline, start of text, and end of text, the \u+2 byte code
stream values are used to indicate the results. For example, 01 is parsed to
\u0001 and 02 to \u0002. If the parsing results can be represented by specific
characters, specific characters are used.

Codec for Arrays and Variable-Length Arrays
If the smoke detector needs to report the description information in arrays or
variable-length arrays, perform the following steps to create messages:

Defining a Product Model

Define the product model on the product details page of the smoke detector.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

Figure 3-48 Model definition - Smokerdetector carrying other_info

Developing a Codec

Step 1 On the smoke detector details page, click the Codec Development tab and click
Develop Codec.

Step 2 Click Add Message to add the other_info message and report the description of
the array type. This step is performed to decode the array binary code stream
message uploaded by the device to the JSON format so that the platform can
understand the message. The following is a configuration example:
● Message Name: other_info
● Message Type: Data reporting
● Add Response Field: selected After response fields are added, the platform

delivers the response data set by the application to the device after receiving
the data reported by the device.

● Response: AAAA0000 (default)

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

Figure 3-49 Adding a message - other_info

1. Click Add Field to add the messageId field, which indicates the message
type. In this scenario, the value 0x0 is used to identify the message that
reports the fire severity and temperature, 0x1 is used to identify the message
that reports only the temperature, and 0x2 is used to identify the message
that reports the description (of the array type). For details about the message
ID, data type, length, default value, and offset, see 1.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

Figure 3-50 Adding a field - messageId (0x2)

2. Add the other_info field and set Data Type to array, which indicates the
description of the array type. In this scenario, set Length to 5. For details
about the field name, default value, and offset, see 2.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

Figure 3-51 Adding a field - other_info as array

Step 3 Click Add Message to add the other_info2 message and report the description of
the variable-length array type. This step is performed to decode the binary code
stream message of variable-length arrays uploaded by the device to the JSON
format so that the platform can understand the message. The following is a
configuration example:
● Message Name: other_info2
● Message Type: Data reporting
● Add Response Field: selected. After response fields are added, the platform

delivers the response data set by the application to the device after receiving
the data reported by the device.

● Response: AAAA0000 (default)

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

Figure 3-52 Adding a message - other_info2

1. Click Add Field to add the messageId field, which indicates the message
type. In this scenario, the value 0x0 is used to identify the message that
reports the fire severity and temperature, 0x1 is used to identify the message
that reports only the temperature, and 0x3 is used to identify the message
that reports the description (of the variable-length array type). For details
about the message ID, data type, length, default value, and offset, see 1.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

Figure 3-53 Adding a field - messageId (0x3)

2. Add the length field to indicate the length of an array. Data Type is
configured based on the length of the variable-length array. If the array
contains 255 or fewer characters, set this parameter to int8u. For details
about the length, default value, and offset, see 2.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

Figure 3-54 Adding a field - length

3. Add the other_info field and set Data Type to variant, which indicates the
description of the variable-length array type. Set Length Correlation Field to
length, indicating that the length of the current variable-length array is
determined by the reported value of length. The default mask is 0xff, which is
used to calculate the actual length of the array. For example, if the value of
Length Correlation Field is 5, the binary value is 00000101. If the mask is
0xff, the binary value is 11111111. The result of the AND operation on these
two values is 00000101, that is, 5 in decimal format. Therefore, the length of
this array that takes effect is 5 bytes. For example, if the reported data is
03051234567890, its message ID is 03, its length is 5 bytes, and the code
stream corresponding to other_info is 1234567890.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

Figure 3-55 Adding a field - other_info as variant

Step 4 Drag the property fields in Device Model on the right to set up a mapping
between the corresponding fields in the data reporting messages.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

Step 5 Click Save and then Deploy to deploy the codec on the platform.

Figure 3-56 Deploying a codec

----End

Testing the Codec

Step 1 On the product details page of the smoke detector, click the Online Debugging
tab and click Add Test Device.

Step 2 You can use a real device or virtual device for debugging based on your service
scenario. For details, see Online Debugging. The following uses a simulated
device as an example to describe how to debug a codec.

In the Add Test Device dialog box, select Virtual device for Device Type and click
OK. The virtual device name contains Simulator. Only one virtual device can be
created for each product.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

Figure 3-57 Creating a virtual device

Step 3 Click Debug to access the debugging page.

Figure 3-58 Entering debugging

Step 4 Use the device simulator to report the description of the array type.

For example, a hexadecimal code stream (0211223344) is reported. In this code
stream, 02 indicates the messageId field and specifies that this message reports
the description of the array type. 11223344 indicates the description and its
length is four bytes.

View the data reporting result ({other_info=null}) in Application Simulator. The
length of the description is less than five bytes. Therefore, the codec cannot parse
the description.

Figure 3-59 Simulating data reporting - other_info as array 1

In the hexadecimal code stream example (021122334455), 02 indicates the
messageId field and specifies that this message reports the description of the
array type. 1122334455 indicates the description and its length is five bytes.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

View the data reporting result ({serviceId: smokedetector, data:
{"other_info":"ESIzRFU="}}) in Application Simulator. The length of the
description is five bytes. The description is parsed successfully by the codec.

Figure 3-60 Simulating data reporting - other_info as array 2

In the hexadecimal code stream example (02112233445566), 02 indicates the
messageId field and specifies that this message reports the description of the
array type. 112233445566 indicates the description and its length is six bytes.

View the data reporting result ({serviceId: smokedetector, data:
{"other_info":"ESIzRFU="}}) in Application Simulator. The length of the
description exceeds six bytes. Therefore, the first five bytes are intercepted and
parsed by the codec.

Figure 3-61 Simulating data reporting - other_info as array 3

Step 5 Use the device simulator to report the description of the variable-length array
type.

In the hexadecimal code stream example (030101), 03 indicates the messageId
field and specifies that this message reports the description of the variable-length
array type. The first 01 indicates the length of the description (one byte) and its
length is one byte. The second 01 indicates the description and its length is one
byte.

View the data reporting result ({serviceId: smokedetector, data:
{"other_info":"AQ=="}}) in Application Simulator. AQ== is the encoded value of
01 using the Base64 encoding mode.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

Figure 3-62 Simulating data reporting - other_info as variable-length array 1

In the hexadecimal code stream example (03020102), 03 indicates the messageId
field and specifies that this message reports the description of the variable-length
array type. 02 indicates the length of the description (two bytes) and its length is
one byte. 0102 indicates the description and its length is two bytes.

View the data reporting result ({serviceId: smokedetector, data:
{"other_info":"AQI="}}) in Application Simulator. AQI= is the encoded value of
01 using the Base64 encoding mode.

Figure 3-63 Simulating data reporting - other_info as variable-length array 2

In the hexadecimal code stream example (03030102), 03 indicates the messageId
field and specifies that this message reports the description of the variable-length
array type. The second 03 indicates the length of the description (three bytes) and
its length is one byte. 0102 indicates the description and its length is two bytes.

View the data reporting result ({other_info=null}) in Application Simulator. The
length of the description is less than three bytes. The codec fails to parse the
description.

Figure 3-64 Simulating data reporting - other_info as variable-length array 3

In the hexadecimal code stream example (0303010203), 03 indicates the
messageId field and specifies that this message reports the description of the

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

variable-length array type. The second 03 indicates the length of the description
(three bytes) and its length is one byte. 010203 indicates the description and its
length is three bytes.

View the data reporting result ({serviceId: smokedetector, data:
{"other_info":"AQID"}}) in Application Simulator. AQID is the encoded value of
010203 using the Base64 encoding mode.

Figure 3-65 Simulating data reporting - other_info as variable-length array 4

In the hexadecimal code stream example (030301020304), 03 indicates the
messageId field and specifies that this message reports the description of the
variable-length array type. The second 03 indicates the length of the description
(three bytes) and its length is one byte. 01020304 indicates the description and its
length is four bytes.

View the data reporting result ({other_info=AQID}) in Application Simulator. The
length of the description exceeds three bytes. Therefore, the first three bytes are
intercepted and parsed. AQID is the encoded value of 010203 using the Base64
encoding mode.

Figure 3-66 Simulating data reporting - other_info as variable-length array 5

----End

Description of Base64 Encoding Modes

In Base64 encoding mode, three 8-bit bytes (3 x 8 = 24) are converted into four 6-
bit bytes (4 x 6 = 24), and 00 are added before each 6-bit byte to form four 8-bit
bytes. If the code stream to be encoded contains less than three bytes, fill the
code stream with 0 at the end. The byte that is filled with 0 is displayed as an
equal sign (=) after it is encoded.

Developers can encode hexadecimal code streams as characters or values using
the Base64 encoding modes. The encoding results obtained in the two modes are
different. The following uses the hexadecimal code stream 01 as an example:

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

● Use 01 as the characters. 01 contains fewer than three characters. Therefore,
add one 0 to obtain 010. Query the ASCII code table to convert the characters
into an 8-bit binary number, that is, 0 is converted into 00110000 and 1 into
00110001. Therefore, 010 can be converted into 001100000011000100110000
(3 x 8 = 24). The binary number can be split into four 6-bit numbers: 001100,
000011, 000100, and 110000. Then, pad each 6-bit number with 00 to obtain
the following numbers: 00001100, 00000011, 00000100, and 00110000. The
decimal numbers corresponding to the four 8-bit numbers are 12, 3, 4, and
48, respectively. You can obtain M (12), D (3), and E (4) by querying the
Base64 coding table. As the last character of 010 is obtained by adding 0, the
fourth 8-bit number is represented by an equal sign (=). Finally, MDE= is
obtained by using 01 as characters.

● Use 01 as a value (that is, 1). It contains fewer than three characters.
Therefore, add 00 to obtain 100. Convert 100 into an 8-bit binary number,
that is, 0 is converted into 00000000 and 1 is converted into 00000001.
Therefore, 100 can be converted into 000000010000000000000000 (3 x 8 =
24). The binary number can be split into four 6-bit numbers: 000000, 010000,
000000, and 000000. Then, pad each 6-bit number with 00 to obtain
00000000, 00010000, 00000000, and 00000000. The decimal numbers
corresponding to the four 8-bit numbers are 0, 16, 0, and 0, respectively. You
can obtain A (0) and Q (16) by querying the Base64 coding table. As the last
two characters of 100 are obtained by adding 0, the third and fourth 8-bit
numbers are represented by two equal signs (==). Finally, AQ== is obtained
by using 01 as a value.

Summary

● When the data is an array or a variable-length array, the codec encodes and
decodes the data using Base64. For data reporting messages, the hexadecimal
code streams are encoded using Base64. For example, 01 is encoded into
AQ==. For command delivery messages, characters are decoded using Base64.
For example, AQ== is decoded to 01.

● When the data type of a field is variant (variable-length array type), the field
must be associated with the length field. The data type of the length field
must be int.

● For variable-length arrays, the codecs for command delivery and data
reporting are developed in the same way.

● When the codecs that are developed online encode data using Base64,
hexadecimal code streams are encoded as values.

3.4.3 JavaScript Script-based Development
The IoT platform can encode and decode JavaScript scripts. Based on the script
files you submit, the IoT platform can convert between binary and JSON formats
as well as between different JSON formats. This topic uses a smoke detector as an
example to describe how to develop a JavaScript codec that supports device
property reporting and command delivery, and describes the format conversion
requirements and debugging method of the codec.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

NO TE

● JavaScript syntax rules must comply with ECMAScript 5.1 specifications.

● The codec script supports only let and const of ECMAScript 6. Other expressions, such
as the arrow function, are not supported.

● The size of a JavaScript script cannot exceed 1 MB.

● After the JavaScript script is deployed on a product, the JavaScript script parses
upstream and downstream data of all devices under the product. When you develop a
JavaScript codec, take all upstream and downstream scenarios into consideration.

● The JSON upstream data obtained after being decoded by the JavaScript codec must
meet the format requirements of the platform. For details about the format
requirements, see Data Decoding Format Definition.

● For the JSON format definition of downstream commands, see Data Encoding Format
Definition. If the JavaScript codec is used for encoding, the JSON format of the platform
must be converted into the corresponding binary code stream or another JSON format.

Example for a Smoke Detector

Scenario

A smoke detector provides the following functions:

● Reporting smoke alarms (fire severity) and temperature
● Receiving and running remote control commands, which can be used to

enable the alarm function remotely. For example, the smoke detector can
report the temperature on the fire scene and remotely trigger a smoke alarm
for evacuation.

● The smoke detector has weak capabilities and cannot report data in JSON
format defined by the device interface, but reporting simple binary data.

Product Model Definition

Define the product model on the product details page of the smoke detector.
● level: indicates the fire severity.
● temperature: indicates the temperature at the fire scene.
● SET_ALARM: indicates whether to enable or disable the alarm function. The

value 0 indicates that the alarm function is disabled, and the value 1 indicates
that the alarm function is enabled.

Developing a Codec

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

https://www.ecma-international.org/ecma-262/5.1/

Step 1 On the smoke detector details page, click the Codec Development tab and click
Edit Script.

Step 2 Compile a script to convert binary data into JSON data. The script must implement
the following methods:
● Decode: Converts the binary data reported by a device into the JSON format

defined in the product model. For details about the JSON format
requirements, see Data Decoding Format Definition.

● Encode: Converts JSON data into binary data supported by a device when the
platform sends downstream data to the device. For details about the JSON
format requirements, see Data Encoding Format Definition.

The following is an example of JavaScript implemented for the current smoke
detector:
// Upstream message types
var MSG_TYPE_PROPERTIES_REPORT = 'properties_report'; // Device property reporting
var MSG_TYPE_COMMAND_RSP = 'command_response'; // Command response
var MSG_TYPE_PROPERTIES_SET_RSP = 'properties_set_response'; // Property setting response
var MSG_TYPE_PROPERTIES_GET_RSP = 'properties_get_response'; // Property query response
var MSG_TYPE_MESSAGE_UP = 'message_up'; // Device message reporting
// Downstream message types
var MSG_TYPE_COMMANDS = 'commands'; // Command delivery
var MSG_TYPE_PROPERTIES_SET = 'properties_set'; // Property setting request
var MSG_TYPE_PROPERTIES_GET = 'properties_get'; // Property query request
var MSG_TYPE_MESSAGE_DOWN = 'messages'; // Platform message delivery
// Mapping between topics and upstream message types
var TOPIC_REG_EXP = {
 'properties_report': new RegExp('\\$oc/devices/(\\S+)/sys/properties/report'),
 'properties_set_response': new RegExp('\\$oc/devices/(\\S+)/sys/properties/set/response/request_id=(\\S
+)'),
 'properties_get_response': new RegExp('\\$oc/devices/(\\S+)/sys/properties/get/response/request_id=(\\S
+)'),
 'command_response': new RegExp('\\$oc/devices/(\\S+)/sys/commands/response/request_id=(\\S+)'),
 'message_up': new RegExp('\\$oc/devices/(\\S+)/sys/messages/up')
};
/*
Example: When a smoke detector reports properties and returns a command response, it uses binary code
streams. The JavaScript script will decode the binary code streams into JSON data that complies with the
product model definition.
Input parameters:
 payload:[0x00, 0x50, 0x00, 0x5a]
 topic:$oc/devices/cf40f3c4-7152-41c6-a201-a2333122054a/sys/properties/report
Output:
 {"msg_type":"properties_report","services":[{"service_id":"smokerdector","properties":
{"level":80,"temperature":90}}]}
Input parameters:
 payload: [0x02, 0x00, 0x00, 0x01]
 topic: $oc/devices/cf40f3c4-7152-41c6-a201-a2333122054a/sys/commands/response/
request_id=bf40f0c4-4022-41c6-a201-c5133122054a
Output:

{"msg_type":"command_response","result_code":0,"command_name":"SET_ALARM","service_id":"smokerdect

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

or","paras":{"value":"1"}}
*/
function decode(payload, topic) {
 var jsonObj = {};
 var msgType = '';
 // Parse the message type based on the topic parameter, if available.
 if (null != topic) {
 msgType = topicParse(topic);
 }
 // Perform the AND operation on the payload by using 0xFF to obtain the corresponding complementary
code.
 var uint8Array = new Uint8Array(payload.length);
 for (var i = 0; i < payload.length; i++) {
 uint8Array[i] = payload[i] & 0xff;
 }
 var dataView = new DataView(uint8Array.buffer, 0);
 // Convert binary data into the format used for property reporting.
 if (msgType == MSG_TYPE_PROPERTIES_REPORT) {
 // Set the value of serviceId, which corresponds to smokerdector in the product model.
 var serviceId = 'smokerdector';
 // Obtain the level value from the code stream.
 var level = dataView.getInt16(0);
 // Obtain the temperature value from the code stream.
 var temperature = dataView.getInt16(2);
 // Convert the code stream into the JSON format used for property reporting.
 jsonObj = {"msg_type":"properties_report","services":[{"service_id":serviceId,"properties":
{"level":level,"temperature":temperature}}]};
 }else if (msgType == MSG_TYPE_COMMAND_RSP) { // Convert binary data into the format used by a
command response.
 // Set the value of serviceId, which corresponds to smokerdector in the product model.
 var serviceId = 'smokerdector';
 var command = dataView.getInt8(0); // Obtain the command name ID from the binary code stream.
 var command_name = '';
 if (2 == command) {
 command_name = 'SET_ALARM';
 }
 var result_code = dataView.getInt16(1); // Obtain the command execution result from the binary code
stream.
 var value = dataView.getInt8(3); // Obtain the returned value of the command execution result from
the binary code stream.
 // Convert data into the JSON format used by the command response.
 jsonObj =
{"msg_type":"command_response","result_code":result_code,"command_name":command_name,"service_id":
serviceId,"paras":{"value":value}};
 }
 // Convert data into a string in JSON format.
 return JSON.stringify(jsonObj);
}
/*
Sample data: When a command is delivered, data in JSON format on IoTDA is encoded into a binary code
stream using the encode method of JavaScript.
Input parameters ->
 {"msg_type":"commands","command_name":"SET_ALARM","service_id":"smokerdector","paras":
{"value":1}}
Output ->
 [0x01,0x00, 0x00, 0x01]
*/
function encode(json) {
 // Convert data to a JSON object.
 var jsonObj = JSON.parse(json);
 // Obtain the message type.
 var msgType = jsonObj.msg_type;
 var payload = [];
 // Convert data in JSON format to binary data.
 if (msgType == MSG_TYPE_COMMANDS) //Command delivery
 {
 payload = payload.concat(buffer_uint8(1)); // Identify command delivery.
 if (jsonObj.command_name == 'SET_ALARM') {
 payload = payload.concat(buffer_uint8(0)); // Command name

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

 }
 var paras_value = jsonObj.paras.value;
 payload = payload.concat(buffer_int16(paras_value)); // Set the command property value.
 }
 // Return the encoded binary data.
 return payload;
}
// Parse the message type based on the topic name.
function topicParse(topic) {
 for(var type in TOPIC_REG_EXP){
 var pattern = TOPIC_REG_EXP[type];
 if (pattern.test(topic)) {
 return type;
 }
 }
 return '';
}
// Convert an 8-bit unsigned integer into a byte array.
function buffer_uint8(value) {
 var uint8Array = new Uint8Array(1);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setUint8(0, value);
 return [].slice.call(uint8Array);
}
// Convert a 16-bit unsigned integer into a byte array.
function buffer_int16(value) {
 var uint8Array = new Uint8Array(2);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setInt16(0, value);
 return [].slice.call(uint8Array);
}
// Convert a 32-bit unsigned integer into a byte array.
function buffer_int32(value) {
 var uint8Array = new Uint8Array(4);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setInt32(0, value);
 return [].slice.call(uint8Array);
}

Step 3 Debug the script online. After the script is edited, select the simulation type and
enter the simulation data to debug the script online.

1. Use the simulation device to convert binary code streams into JSON data
when reporting property data.
– Select the topic used by device property reporting: $oc/devices/

{device_id}/sys/properties/report.
– Select Decode for Simulation Type, enter the following simulated device

data, and click Debug.
0050005a

– The script codec engine converts binary code streams into the JSON
format based on input parameters and the decode method in the
submitted JavaScript script, and displays the debugging result in the text
box.

– Check whether the debugging result meets the expectation. If the
debugging result does not meet the expectation, modify the code and
perform debugging again.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

2. Convert a command delivered by an application into binary code streams that
can be identified by the device.
– Select Encode for Simulation Type, enter the command delivery format

to be simulated, and click Debug.
{
 "msg_type": "commands",
 "request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "command_name": "SET_ALARM",
 "service_id": "smokerdector",
 "paras": {
 "value": "1"
 }
}

– The script codec engine converts JSON data into the binary code streams
based on input parameters and the encode method in the submitted
JavaScript script, and displays the debugging result in the text box.

– Check whether the debugging result meets the expectation. If the
debugging result does not meet the expectation, modify the code and
perform debugging again.

Step 4 Deploy the script. After confirming that the script can be correctly encoded and
decoded, click Deploy to submit the script to the IoT platform so that the IoT
platform can invoke the script when data is sent and received.

Step 5 Use a physical device for online debugging. Before using the script, use a real
device to communicate with the IoT platform to verify that the IoT platform can
invoke the script and parse upstream and downstream data.

----End

JavaScript Codec Template
The following is an example of the JavaScript codec template. Developers need to
implement the corresponding API based on the template provided by the platform.

/**
* When a device reports data to the IoT platform, the IoT platform calls this API to decode the raw data of
the device into JSON data that complies with the product model definition.
* The API name and input parameters have been defined. You only need to implement the API.
* @param byte[] payload Original code stream reported by the device
* @param string topic Topic to which an MQTT device reports data. This parameter is not carried when a
non-MQTT device reports data.
* @return string json JSON character string that complies with the product model definition
 */
function decode(payload, topic) {

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

 var jsonObj = {};
 return JSON.stringify(jsonObj);
}

/**
* When the IoT platform delivers a command, it calls this API to encode the JSON data defined in the
product model into the original code stream of the device.
* The API name and input parameter format have been defined. You only need to implement the API.
* @param string json JSON character string that complies with the product model definition
* @return byte[] payload Original code stream after being encoded
 */
function encode(json) {
 var payload = [];
 return payload;
}

JavaScript Codec Example for MQTT Device Access

The following is an example of JavaScript codec of MQTT devices. You can convert
the binary format to the JSON format in the corresponding scenario based on the
example.

// Upstream message types
var MSG_TYPE_PROPERTIES_REPORT = 'properties_report'; // Device property reporting
var MSG_TYPE_COMMAND_RSP = 'command_response'; // Command response
The var MSG_TYPE_PROPERTIES_SET_RSP = 'properties_set_response'; // Property setting response
var MSG_TYPE_PROPERTIES_GET_RSP = 'properties_get_response'; // Property query response
var MSG_TYPE_MESSAGE_UP = 'message_up'; // Device message reporting
// Downstream message types
var MSG_TYPE_COMMANDS = 'commands'; // Command delivery
var MSG_TYPE_PROPERTIES_SET = 'properties_set'; // Property setting request
var MSG_TYPE_PROPERTIES_GET = 'properties_get'; // Property query request
var MSG_TYPE_MESSAGE_DOWN = 'messages'; // Platform message delivery
// Mapping between topics and upstream message types
var TOPIC_REG_EXP = {
 'properties_report': new RegExp('\\$oc/devices/(\\S+)/sys/properties/report'),
 'properties_set_response': new RegExp('\\$oc/devices/(\\S+)/sys/properties/set/response/request_id=(\\S
+)'),
 'properties_get_response': new RegExp('\\$oc/devices/(\\S+)/sys/properties/get/response/request_id=(\\S
+)'),
 'command_response': new RegExp('\\$oc/devices/(\\S+)/sys/commands/response/request_id=(\\S+)'),
 'message_up': new RegExp('\\$oc/devices/(\\S+)/sys/messages/up')
};
/*
Example: When a smoke detector reports properties and returns a command response, it uses binary code
streams. The JavaScript script will decode the binary code streams into JSON data that complies with the
product model definition.
Input parameters:
 payload:[0x00, 0x50, 0x00, 0x5a]
 topic:$oc/devices/cf40f3c4-7152-41c6-a201-a2333122054a/sys/properties/report
Output:
 {"msg_type":"properties_report","services":[{"service_id":"smokerdector","properties":
{"level":80,"temperature":90}}]}
Input parameters:
 payload: [0x02, 0x00, 0x00, 0x01]
 topic: $oc/devices/cf40f3c4-7152-41c6-a201-a2333122054a/sys/commands/response/
request_id=bf40f0c4-4022-41c6-a201-c5133122054a
Output:

{"msg_type":"command_response","result_code":0,"command_name":"SET_ALARM","service_id":"smokerdect
or","paras":{"value":"1"}}
*/
function decode(payload, topic) {
 var jsonObj = {};
 var msgType = '';
 // Parse the message type based on the topic parameter, if available.
 if (null != topic) {
 msgType = topicParse(topic);

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

 }
 // Perform the AND operation on the payload by using 0xFF to obtain the corresponding complementary
code.
 var uint8Array = new Uint8Array(payload.length);
 for (var i = 0; i < payload.length; i++) {
 uint8Array[i] = payload[i] & 0xff;
 }
 var dataView = new DataView(uint8Array.buffer, 0);
 // Convert binary data into the format used for property reporting.
 if (msgType == MSG_TYPE_PROPERTIES_REPORT) {
 // Set the value of serviceId, which corresponds to smokerdector in the product model.
 var serviceId = 'smokerdector';
 // Obtain the level value from the code stream.
 var level = dataView.getInt16(0);
 // Obtain the temperature value from the code stream.
 var temperature = dataView.getInt16(2);
 // Convert the code stream into the JSON format used for property reporting.
 jsonObj = {
 "msg_type": "properties_report",
 "services": [{"service_id": serviceId, "properties": {"level": level, "temperature": temperature}}]
 };
 } else if (msgType == MSG_TYPE_COMMAND_RSP) { // Convert binary data into the format used by a
command response.
 // Set the value of serviceId, which corresponds to smokerdector in the product model.
 var serviceId = 'smokerdector';
 var command = dataView.getInt8(0); // Obtain the command name ID from the binary code stream.
 var command_name = '';
 if (2 == command) {
 command_name = 'SET_ALARM';
 }
 var result_code = dataView.getInt16(1); // Obtain the command execution result from the binary code
stream.
 var value = dataView.getInt8(3); // Obtain the returned value of the command execution result from
the binary code stream.
 // Convert data to the JSON format used by the command response.
 jsonObj = {
 "msg_type": "command_response",
 "result_code": result_code,
 "command_name": command_name,
 "service_id": serviceId,
 "paras": {"value": value}
 };
 } else if (msgType == MSG_TYPE_PROPERTIES_SET_RSP) {
 // Convert data to the JSON format used by the property setting response.
 //jsonObj = {"msg_type":"properties_set_response","result_code":0,"result_desc":"success"};
 } else if (msgType == MSG_TYPE_PROPERTIES_GET_RSP) {
 // Convert data to the JSON format used by the property query response.
 //jsonObj = {"msg_type":"properties_get_response","services":[{"service_id":"analog","properties":
{"PhV_phsA":"1","PhV_phsB":"2"}}]};
 } else if (msgType == MSG_TYPE_MESSAGE_UP) {
 // Convert the code stream to the JSON format used by message reporting.
 //jsonObj = {"msg_type":"message_up","content":"hello"};
 }
 // Convert data to a character string in JSON format.
 return JSON.stringify(jsonObj);
}
/*
Sample data: When a command is delivered, JSON data on the IoT platform is encoded into binary code
streams using the encode method of JavaScript.
Input parameters ->
 {"msg_type":"commands","command_name":"SET_ALARM","service_id":"smokerdector","paras":
{"value":1}}
Output ->
 [0x01,0x00, 0x00, 0x01]
*/
function encode(json) {
 // Convert data to a JSON object.
 var jsonObj = JSON.parse(json);
 // Obtain the message type.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

 var msgType = jsonObj.msg_type;
 var payload = [];
 // Convert data in JSON format to binary data.
 if (msgType == MSG_TYPE_COMMANDS) { // Command delivery
 // Command delivery format example:
{"msg_type":"commands","command_name":"SET_ALARM","service_id":"smokerdector","paras":{"value":1}}
 // Convert the format used by command delivery to a binary code stream.
 payload = payload.concat(buffer_uint8(1)); // Identify command delivery.
 if (jsonObj.command_name == 'SET_ALARM') {
 payload = payload.concat(buffer_uint8(0)); // Command name.
 }
 var paras_value = jsonObj.paras.value;
 payload = payload.concat(buffer_int16(paras_value)); // Set the command property value.
 } else if (msgType == MSG_TYPE_PROPERTIES_SET) {
 // Property setting format example: {"msg_type":"properties_set","services":
[{"service_id":"Temperature","properties":{"value":57}}]}
 // Convert the JSON format to the corresponding binary code streams if the property setting scenario is
involved.
 } else if (msgType == MSG_TYPE_PROPERTIES_GET) {
 // Property query format example: {"msg_type":"properties_get","service_id":"Temperature"}
 // Convert the JSON format to the corresponding binary code streams if the property query scenario is
involved.
 } else if (msgType == MSG_TYPE_MESSAGE_DOWN) {
 // Message delivery format example: {"msg_type":"messages","content":"hello"}
 // Convert the JSON format to the corresponding binary code streams if the message delivery scenario
is involved.
 }
 // Return the encoded binary data.
 return payload;
}
// Parse the message type based on the topic name.
function topicParse(topic) {
 for (var type in TOPIC_REG_EXP) {
 var pattern = TOPIC_REG_EXP[type];
 if (pattern.test(topic)) {
 return type;
 }
 }
 return '';
}
// Convert an 8-bit unsigned integer into a byte array.
function buffer_uint8(value) {
 var uint8Array = new Uint8Array(1);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setUint8(0, value);
 return [].slice.call(uint8Array);
}

// Convert a 16-bit unsigned integer into a byte array.
function buffer_int16(value) {
 var uint8Array = new Uint8Array(2);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setInt16(0, value);
 return [].slice.call(uint8Array);
}
// Convert a 32-bit unsigned integer into a byte array.
function buffer_int32(value) {
 var uint8Array = new Uint8Array(4);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setInt32(0, value);
 return [].slice.call(uint8Array);
}

JavaScript Codec Example for NB-IoT Device Access
The following is an example of the JavaScript codec for NB-IoT devices. Developers
can develop codecs for data reporting and command delivery of NB-IoT devices
based on the example.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

// Upstream message types
var MSG_TYPE_PROPERTIES_REPORT = 'properties_report'; // Device property reporting
var MSG_TYPE_COMMAND_RSP = 'command_response'; // Command response
//Downstream message type
var MSG_TYPE_COMMANDS = 'commands'; // Command delivery
var MSG_TYPE_PROPERTIES_REPORT_REPLY = 'properties_report_reply'; // Property reporting response
// Message types
var MSG_TYPE_LIST = {
 0: MSG_TYPE_PROPERTIES_REPORT, // In the code stream, 0 indicates device property reporting.
 1: MSG_TYPE_PROPERTIES_REPORT_REPLY, // In the code stream, 1 indicates a property reporting
response.
 2: MSG_TYPE_COMMANDS, // In the code stream, 2 indicates platform command delivery.
 3: MSG_TYPE_COMMAND_RSP // In the code stream, 3 indicates a command response from
the device.
};
/*
Example: When a smoke detector reports properties and returns a command response, it uses binary code
streams. The JavaScript script will decode the binary code streams into JSON data that complies with the
product model definition.
Input parameters:
 payload:[0x00, 0x00, 0x50, 0x00, 0x5a]
Output:
 {"msg_type":"properties_report","services":[{"service_id":"smokerdector","properties":
{"level":80,"temperature":90}}]}
Input parameters:
 payload: [0x03, 0x01, 0x00, 0x00, 0x01]
Output:
 {"msg_type":"command_response","request_id":1,"result_code":0,"paras":{"value":"1"}}
*/
function decode(payload, topic) {
 var jsonObj = {};
 // Perform the AND operation on the payload by using 0xFF to obtain the corresponding complementary
code.
 var uint8Array = new Uint8Array(payload.length);
 for (var i = 0; i < payload.length; i++) {
 uint8Array[i] = payload[i] & 0xff;
 }
 var dataView = new DataView(uint8Array.buffer, 0);
 // Obtain the message type from the first byte of the message code stream.
 var messageId = dataView.getInt8(0);
 // Convert binary data into the format used for property reporting.
 if (MSG_TYPE_LIST[messageId] == MSG_TYPE_PROPERTIES_REPORT) {
 // Set the value of serviceId, which corresponds to smokerdector in the product model.
 var serviceId = 'smokerdector';
 // Obtain the level value from the code stream.
 var level = dataView.getInt16(1);
 // Obtain the temperature value from the code stream.
 var temperature = dataView.getInt16(3);
 // Convert data to the JSON format used by property reporting.
 jsonObj = {"msg_type":"properties_report","services":[{"service_id":serviceId,"properties":
{"level":level,"temperature":temperature}}]};
 }else if (MSG_TYPE_LIST[messageId] == MSG_TYPE_COMMAND_RSP) { // Convert binary data to the
format used by a command response.
 var requestId = dataView.getInt8(1);
 var result_code = dataView.getInt16(2); // Obtain the command execution result from the binary code
stream.
 var value = dataView.getInt8(4); // Obtain the returned value of the command execution result from
the binary code stream.
 // Convert data to the JSON format used by the command response.
 jsonObj = {"msg_type":"command_response","request_id":requestId,"result_code":result_code,"paras":
{"value":value}};
 }
 // Convert data to a character string in JSON format.
 return JSON.stringify(jsonObj);
}
/*
Sample data: When a command is delivered, data in JSON format on IoTDA is encoded into a binary code
stream using the encode method of JavaScript.
Input parameters ->

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

{"msg_type":"commands","request_id":1,"command_name":"SET_ALARM","service_id":"smokerdector","paras
":{"value":1}}
Output ->
 [0x02, 0x00, 0x00, 0x00, 0x01]
Sample data: When a response is returned for property reporting, data in JSON format on the platform is
encoded into a binary code stream using the encode method of JavaScript.
Input parameters ->
 {"msg_type":"properties_report_reply","request":"000050005a","result_code":0}
Output ->
 [0x01, 0x00]
*/
function encode(json) {
 // Convert data to a JSON object.
 var jsonObj = JSON.parse(json);
 // Obtain the message type.
 var msgType = jsonObj.msg_type;
 var payload = [];
 //Convert data in JSON format to binary data.
 if (msgType == MSG_TYPE_COMMANDS) { // Command delivery
 payload = payload.concat(buffer_uint8(2)); // Command delivery
 payload = payload.concat(buffer_uint8(jsonObj.request_id)); // Command ID
 if (jsonObj.command_name == 'SET_ALARM') {
 payload = payload.concat(buffer_uint8(0)); // Command name
 }
 var paras_value = jsonObj.paras.value;
 payload = payload.concat(buffer_int16(paras_value)); // Set the command property value.
 } else if (msgType == MSG_TYPE_PROPERTIES_REPORT_REPLY) { // Response for device property reporting
 payload = payload.concat(buffer_uint8(1)); // Response to property reporting
 if (0 == jsonObj.result_code) {
 payload = payload.concat(buffer_uint8(0)); // The property reporting message is successfully
processed.
 }
 }
 // Return the encoded binary data.
 return payload;
}
// Convert an 8-bit unsigned integer into a byte array.
function buffer_uint8(value) {
 var uint8Array = new Uint8Array(1);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setUint8(0, value);
 return [].slice.call(uint8Array);
}
// Convert a 16-bit unsigned integer into a byte array.
function buffer_int16(value) {
 var uint8Array = new Uint8Array(2);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setInt16(0, value);
 return [].slice.call(uint8Array);
}
// Convert a 32-bit unsigned integer into a byte array.
function buffer_int32(value) {
 var uint8Array = new Uint8Array(4);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setInt32(0, value);
 return [].slice.call(uint8Array);
}

Requirements on the JavaScript Codec Format
Data Decoding Format Definition

In the data parsing scenario, when the platform receives data from a device, it
sends the binary code stream in the payload to the JavaScript script by using the
decode method. The script calls the decode method to decode the data to the

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

JSON format defined in the product model. The platform has the following
requirements on the parsed JSON data:

● Device Reporting Properties
{
 "msg_type": "properties_report",
 "services": [{
 "service_id": "Battery",
 "properties": {
 "batteryLevel": 57
 },
 "event_time": "20151212T121212Z"
 }]
}

Field Manda
tory

Type Description

msg_typ
e

Yes String Indicates the message type. The value is
fixed at properties_report.

services Yes List<Service
Property>

List of device services. For details, see
the ServiceProperty structure table.

ServiceProperty structure

Field Mand
atory

Type Description

service_i
d

Yes String Identifies a service of the device.

properti
es

Yes Object Indicates service properties, which are
defined in the product model associated
with the device.

event_ti
me

No String Indicates the UTC time when the device
reports data. The format is
yyyyMMddTHHmmssZ, for example,
20161219T114920Z.
If this parameter is not carried in the
reported data or is in incorrect format,
the time when the platform receives the
data is used.

● Response for device property setting
{
 "msg_type": "properties_set_response",
 "request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "result_code": 0,
 "result_desc": "success"
}

Field Mand
atory

Type Description

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

msg_type Yes String Indicates the message type. The value is
fixed at properties_set_response.

request_id No String Uniquely identifies a request. If this
parameter is carried in a message
received by a device, the parameter
value must be carried in the response
sent to the platform. If the decoded
message does not contain this field, the
value of request_id in the topic is used.

result_cod
e

No Integer Indicates the command execution result.
0 indicates a successful execution,
whereas other values indicate an
execution failure. If this parameter is
not carried, the execution is considered
successful.

result_des
c

No String Indicates the description of the response
to the request for setting properties.

● Response for device property query

{
"msg_type": "properties_get_response",
"request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "services": [
 {
 "service_id": "analog",
 "properties": {
 "PhV_phsA": "1",
 "PhV_phsB": "2"
 },
 "event_time": "20190606T121212Z"
 }
]
}

Field Manda
tory

Type Description

msg_typ
e

Yes String The value is fixed at
properties_get_response.

request_i
d

No String Uniquely identifies a request. If this
parameter is carried in a message
received by a device, the parameter
value must be carried in the response
sent to the platform. If the decoded
message does not contain this field, the
value of request_id in the topic is used.

services Yes List<Service
Property>

List of device services. For details, see
the ServiceProperty structure table.

ServiceProperty structure

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

Field Mand
atory

Type Description

service_i
d

Yes String Identifies a service of the device.

properti
es

Yes Object Indicates service properties, which are
defined in the product model associated
with the device.

event_ti
me

No String Indicates the UTC time when the device
reports data. The format is
yyyyMMddTHHmmssZ, for example,
20161219T114920Z.
If this parameter is not carried in the
reported data or is in incorrect format,
the time when the platform receives the
data is used.

● Response for the platform to deliver a command

{
 "msg_type": "command_response",
 "request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "result_code": 0,
 "command_name": "ON_OFF",
 "service_id": "WaterMeter",
 "paras": {
 "value": "1"
 }
}

Field Mand
atory

Type Description

msg_type Yes String The value is fixed at
command_response.

request_id No String Uniquely identifies a request. If this
parameter is carried in a message
received by a device, the parameter
value must be carried in the response
sent to the platform. If the decoded
message does not contain this field, the
value of request_id in the topic is used.

result_cod
e

No Integer Indicates the command execution result.
0 indicates a successful execution,
whereas other values indicate an
execution failure. If this parameter is
not carried, the execution is considered
successful.

response_
name

No String Indicates the response name, which is
defined in the product model associated
with the device.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

paras No Object Indicates the response parameters,
which are defined in the product model
associated with the device.

● Device message reporting

{
 "msg_type": "message_up",
 "content": "hello"
}

Field Mand
atory

Type Description

msg_type Yes String The value is fixed at message_up.

content No String Message content.

Data Encoding Format Definition

In the data parsing scenario, when the IoT platform delivers a command, it sends
the data in JSON format defined by the product model to the JavaScript script
using the encode method. The script calls the encode method to encode the data
in JSON format into binary code streams that can be identified by the device.
During encoding, the JSON format transferred from the platform to the script is as
follows:

● Command delivery
{
 "msg_type": "commands",
 "request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "command_name": "ON_OFF",
 "service_id": "WaterMeter",
 "paras": {
 "value": 1
 }
}

Field Mand
atory

Type Description

msg_type Yes String The value is fixed at commands.

request_id Yes String Uniquely identifies a request. The ID is
delivered to the device through a
topic.

service_id No String Identifies a service of the device.

command
_name

No String Indicates the device command name,
which is defined in the product model
associated with the device.

paras No Object Indicates the command execution
parameters, which are defined in the
product model associated with the
device.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

● Setting Device Properties
{
"msg_type": "properties_set",
"request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "services": [{
 "service_id": "Temperature",
 "properties": {
 "value": 57
 }
 },
 {
 "service_id": "Battery",
 "properties": {
 "level": 80
 }
 }
]
}

Field Man
dator
y

Type Description

msg_type Yes String The value is fixed at properties_set.

request_i
d

Yes String Uniquely identifies a request. If this
parameter is carried in a message
received by a device, the parameter
value must be carried in the response
sent to the platform.

services Yes List<Service
Property>

Indicates a list of device service data.

ServiceProperty structure

Field Mand
atory

Type Description

service_i
d

Yes String Identifies a service of the device.

properti
es

Yes Object Indicates service properties, which are
defined in the product model associated
with the device.

● Querying device properties

{
 "msg_type": "properties_get",
 "request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "service_id": "Temperature"
}

Field Manda
tory

Type Description

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

msg_typ
e

Yes String The value is fixed at properties_get.

request_i
d

Yes String Uniquely identifies a request. The ID is
delivered to the device through a topic.

service_i
d

No String Identifies a service of the device.

● Response for property reporting (response to property reporting during NB-

IoT device access)
{
 "msg_type": "properties_report_reply",
 "request": "213355656",
 "result_code": 0
}

Field Mand
atory

Type Description

msg_type Yes String The value is fixed at
properties_report_reply.

request No String Base64-encoded string of property
reporting.

result_cod
e

No Integer Execution result of property reporting.

has_more No Boolean Whether a cache command exists.

● Message delivery

{
 "msg_type": "messages",
 "content": "hello"
}

Field Mand
atory

Type Description

msg_type Yes String The value is fixed at messages.

content No String Content of command delivery.

3.5 Online Debugging

Overview
After the product model and codec are developed, the application can receive data
reported by the device and deliver commands to the device through the IoT
platform.

The IoTDA provides application and device simulators for you to commission data
reporting and command delivery before developing real applications and physical

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

devices. You can also use the application simulator to verify the service flow after
the physical device is developed.

Debugging a Product by Using a Virtual Device
When both device development and application development are not completed,
you can create virtual devices and use the application simulator and device
simulator to test product models and codecs. The structure of the virtual device
testing interface is as follows:

Step 1 On the product details page, click the Online Debugging tab and click Add Test
Device.

Step 2 In the Add Test Device dialog box, select Virtual device for Device Type and click
OK. The virtual device name contains DeviceSimulator. Only one virtual device
can be created for each product.

Step 3 In the device list, select the new virtual device and click Debug to enter the
Online Debugging page.

Step 4 In Device Simulator, enter a hexadecimal code stream or JSON data (for
example, enter a hexadecimal code stream) and click Send. View the data
reporting result in Application Simulator and the processing logs of the IoT
platform in Message Tracing.

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

Step 5 Deliver a command in Application Simulator. View the received command (for
example, a hexadecimal code stream) in Device Simulator and the processing
logs of the IoT platform in Message Tracing.

----End

Debugging a Product by Using a Physical Device

When the device development is complete but the application development is not,
you can add physical devices and use the application simulator to test devices,
product models, and codecs. The structure of the physical device testing interface
is as follows:

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

Step 1 On the product details page of the smoke detector, click the Online Debugging
tab and click Add Test Device.

Step 2 In the Add Test Device dialog box, select Physical device for Device Type, set the
parameters of the device, and click OK.

Note: If DTLS is used for device access, set Registration Mode to Encrypted and
keep the secret properly.

NO TE

The newly added device is in the inactive state. In this case, online debugging cannot be
performed. For details, see Device Connection Authentication. After the device is
connected to the platform, perform the debugging.

Step 3 Click Debug to access the debugging page.

Step 4 Simulate a scenario where a control command is remotely delivered. In
Application Simulator, Set Service to StreetLight, Command to SWITCH_LIGHT,
and Command Value to ON, and click Send. The street lamp is turned on.

----End

IoT Device Access
Developer Guide 3 Product Development

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3009.html

4 Development on the Device Side

4.1 Device Access Guide

Device Access Mode

The Huawei Cloud IoTDA provides multiple access modes to meet the
requirements of device fleets in different access scenarios. You can select a proper
development mode based on the device type.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

Development
Mode

Feature Scenario Difficult
y Level

Certificated
MCU
development

The IoT Device SDK Tiny
has been pre-integrated
into the main control unit
(MCU) and can call
methods to connect to the
platform.

Devices need to be
quickly put into
commercial use, with
low R&D costs.
Devices are connected
to the platform
directly, without using
gateways.

Certificated
module
development

The IoT Device SDK Tiny
has been pre-integrated
into the module and can
invoke AT commands to
connect to the platform.

There are few MCU
resources. Devices are
connected to the
platform directly,
without using
gateways.

LiteOS
development

Devices run LiteOS that
manages MCU resources. In
addition, LiteOS has a built-
in IoT Device SDK Tiny that
can call functions to
connect to the platform.
This development mode
shortens the device
development duration and
reduces the development
difficulty.

No operating system
is required. Devices
are connected to the
platform directly,
without using
gateways.

Common
development

The IoT Device SDK Tiny is
integrated into the MCU
and calls the SDK functions
to connect to the platform.
This type of call is more
convenient than API access.

There is sufficient
time for devices to put
into commercial use,
and the flash and
RAM resources of the
MCU meet the
conditions for
integrating the IoT
Device SDK Tiny.

OpenCPU
development

Use the MCU capability in
the common module, and
compile and run device
applications on the
OpenCPU.

Devices with a small
size have high security
requirements and
need to be quickly put
into commercial use.

Gateway
development

The IoT Device SDK is pre-
integrated into the CPU or
MPU and can call functions
to connect to the platform.

Child devices
connected to the
platform using
gateways.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

Device Development Resources
You can connect devices to IoTDA using MQTT, LwM2M/CoAP, and HTTPS, as well
as connect devices that use Modbus, OPC UA, and OPC DA through IoT Edge. You
can also connect devices to IoTDA by calling APIs or integrating SDKs.

Resource Package Description Download Link

IoT Device SDK (Java) Devices can connect to
the platform by
integrating the IoT
Device SDK (Java). The
demo provides the
sample code for calling
SDK APIs. For details, see
IoT Device SDK (Java).

IoT Device SDK (Java)

IoT Device SDK (C) Devices can connect to
the platform by
integrating the IoT
Device SDK (C). The
demo provides the
sample code for calling
SDK APIs. For details, see
IoT Device SDK (C).

IoT Device SDK (C)

IoT Device SDK (C#) Devices can connect to
the platform by
integrating the IoT
Device SDK (C#). The
demo provides the
sample code for calling
SDK APIs. For details, see
IoT Device SDK (C#).

IoT Device SDK (C#)

IoT Device SDK
(Android)

Devices can connect to
the platform by
integrating the IoT
Device SDK (Android).
The demo provides the
sample code for calling
SDK APIs. For details, see
IoT Device SDK
(Android).

IoT Device SDK
(Android)

IoT Device SDK (Go) Devices can connect to
the platform by
integrating the IoT
Device SDK (Go). The
demo provides the code
sample for calling the
SDK APIs. For details, see
IoT Device SDK (Go)
User Guide.

IoT Device SDK (Go)

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java/blob/master/README_EN.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-cSharp
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-cSharp
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/ctlove0523/huaweicloud-iot-device-sdk-go
https://github.com/ctlove0523/huaweicloud-iot-device-sdk-go
https://github.com/ctlove0523/huaweicloud-iot-device-sdk-go

Resource Package Description Download Link

IoT Device SDK(Python) Devices can connect to
the platform by
integrating the IoT
Device SDK (Python).
The demo provides the
code sample for calling
the SDK APIs. For details,
see
IoT Device SDK
(Python) Usage Guide.

IoT Device SDK(Python)

IoT Device SDK Tiny (C) Devices can connect to
the platform by
integrating the IoT
Device SDK Tiny (C). The
demo provides the
sample code for calling
SDK APIs. For details, see
IoT Device Tiny SDK
(C).

IoT Device SDK Tiny (C)

Native MQTT or MQTTS
access example

Devices can be
connected to the
platform using the native
MQTT or MQTTS
protocol. The demo
provides the sample code
for SSL-encrypted link
setup, TCP link setup,
data reporting, and topic
subscription.
Examples: Java, Python,
Android, C, C#, and
Node.js

quickStart(Java)
quickStart(Android)
quickStart(Python)
quickStart(C)
quickStart(C#)
quickStart(Node.js)

Product model template Product model templates
of typical scenarios are
provided. You can
customize product
models based on the
templates.
For details, see
Developing a Product
Model Offline.

Product Model Example

Codec example Demo codec projects are
provided for you to
perform secondary
development.

Codec Example

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-python
https://github.com/LiteOS/LiteOS_Lab
https://github.com/LiteOS/LiteOS_Lab
https://github.com/LiteOS/LiteOS_Lab
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(java).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/mqttdemo(android).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(python).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(c).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(cSharp).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(nodejs).zip
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/ProfileDemo/ProfileSample.zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/tool/CodecDemo/CodecDemoV2.zip

Resource Package Description Download Link

Codec test tool The tool is used to check
whether the codec
developed offline is
normal.

Codec Test Tool

NB-IoT device simulator The tool is used to
simulate the access of
NB-IoT devices to the
platform using LwM2M
over CoAP for data
reporting and command
delivery.
For details, see
Connecting and
Debugging an NB-IoT
Device Simulator.

NB-IoT Device
Simulator

4.2 Using IoT Device SDKs for Access

4.2.1 Introduction to IoT Device SDKs
You can use Huawei IoT Device SDKs to quickly connect devices to the IoT
platform. After being integrated with an IoT Device SDK, devices that support the
TCP/IP protocol stack can directly communicate with the platform. Devices that do
not support the TCP/IP protocol stack, such as Bluetooth and ZigBee devices, need
to use a gateway integrated with the IoT Device SDK to communicate with the
platform.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/pluginDetector/IoT_Codec_Test_Tool.zip
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0014.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0014.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0014.html
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/NBSimulate/NB-IoTDeviceSimulatorEn.zip
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/NBSimulate/NB-IoTDeviceSimulatorEn.zip

1. Create a product on the IoTDA console or by calling the API Creating a
Product.

2. Register a device on the IoTDA console or by calling the API Creating a
Device.

3. Implement the functions demonstrated in the preceding figure, including
reporting messages/properties, receiving commands/properties/messages,
OTA upgrades, topic customization, and generic-protocol access (see
Developing a Protocol Conversion Gateway for Access of Generic-Protocol
Devices).

The platform provides two types of SDKs. The table below describes their
differences.

SDK Type Pre-integration Solution IoT Protocols
Supported

IoT Device
SDK

Embedded devices with strong computing
and storage capabilities, such as gateways
and collectors

MQTT

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0009.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0009.html

SDK Type Pre-integration Solution IoT Protocols
Supported

IoT Device
SDK Tiny

Devices that have strict restrictions on
power consumption, storage, and
computing resources, such as single-chip
microcomputer and modules

LwM2M over
CoAP and MQTT

The table below describes hardware requirements for devices.

SDK RAM
Capaci
ty

Flash
Memory

CPU
Frequenc
y

OS Type Programmi
ng
Language

IoT Device
SDK

> 4 MB > 2 MB > 200
MHz

C (Linux), Java
(Linux/
Windows), C#
(Windows),
Android
(Android), Go
Community
Edition (Linux/
Windows/Unix-
like OS), and
OpenHarmony

C, Java, C#,
Android,
and Go

IoT Device
SDK Tiny

> 32
KB

> 128 KB > 100
MHz

It adapts to
LiteOS, Linux,
macOS, and
FreeRTOS. You
can modify the
SDK to adapt to
other
environments.

C

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

https://github.com/LiteOS/LiteOS_Lab/blob/iot-device-sdk-tiny/os/Readme.md
https://github.com/LiteOS/LiteOS_Lab/blob/iot-device-sdk-tiny/os/Readme.md
https://github.com/LiteOS/LiteOS_Lab/blob/iot-device-sdk-tiny/os/Readme.md

For details on the SDK usage, visit the following links:

● IoT Device SDK (C)
● IoT Device SDK (Java)
● IoT Device SDK (C#)
● IoT Device SDK (Android)
● IoT Device SDK (Go Community Edition)
● IoT Device SDK Tiny (C)
● IoT Device SDK (Python)

The following table shows the main function matrix of the SDK.

Table 4-1 SDK function matrix

Functio
n

C Java C# Androi
d

Go Python C Tiny

Propert
y
reportin
g

√ √ √ √ √ √ √

Messag
e
reportin
g and
delivery

√ √ √ √ √ √ √

Event
reportin
g and
delivery

√ √ √ √ √ √ √

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

Functio
n

C Java C# Androi
d

Go Python C Tiny

Comma
nd
delivery
and
respons
e

√ √ √ √ √ √ √

Device
shadow

√ √ √ √ √ √ √

OTA
upgrad
e

√ √ √ √ √ √ √

bootstr
ap

√ √ √ √ √ √ √

Time
synchro
nization

√ √ √ √ √ √ √

Gatewa
y and
child
device
manage
ment

√ √ √ √ √ √ √

Device-
side
Rules

√ × √ × × × √

Remote
SSH

√ × √ × × × ×

Anomal
y
detectio
n

√ × √ × × × ×

Device-
cloud
secure
commu
nication
(soft
bus)

√ × √ × × × ×

M2M
functio
n

√ × √ × × × ×

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

Functio
n

C Java C# Androi
d

Go Python C Tiny

Generic
-
protoco
l access

√ √ √ √ × √ ×

4.2.2 IoT Device SDK (Java)

Maven Reference
<dependencies>
 <dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>iot-device-sdk-java</artifactId>
 <version>1.2.0</version>
 </dependency>
</dependencies>

Preparations
● Ensure that the JDK (version 1.8 or later) and Maven have been installed.
● Download the SDK. The project contains the following subprojects:

iot-device-sdk-java: SDK code
iot-device-demo: demo code for common directly connected devices
iot-gateway-demo: demo code for gateways
iot-bridge-sdk: SDK code for the bridge
iot-bridge-demo: demo code for the bridge, which is used to bridge a TCP
device to the platform
iot-bridge-sample-tcp-protocol: sample code of a child device using TCP to
connect to a bridge
iot-device-code-generator: device code generator, which can automatically
generate device code for different product models

● Go to the SDK root directory and run the mvn install command to build and
install the SDK.

Creating a Product
A smokeDetector product model is provided to help you understand the product
model. This smoke detector can report the smoke density, temperature, humidity,

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java

and smoke alarms, and execute the ring alarm command. The following uses the
smoke detector as an example to introduce the procedures of message reporting
and property reporting.

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card. Check and save the MQTTS device access domain name.

Step 2 Choose Products in the navigation pane and click Create Product.

Step 3 Set the parameters as prompted and click OK.

Set Basic Info

Resource
Space

The platform automatically allocates the created product to the
default resource space. If you want to allocate the product to
another resource space, select the resource space from the
drop-down list box. If a resource space does not exist, create it
first.

Product
Name

Customize the product name. The name can contain letters,
numbers, underscores (_), and hyphens (-).

Protocol Select MQTT.

Data Type Select JSON.

Device Type
Selection

Select Custom.

Device Type Select smokeDetector.

Advanced Settings

Product ID Leave this parameter blank.

Description Set this parameter based on service requirements.

----End

Uploading a Product Model

Step 1 Download the smokeDetector product model file.

Step 2 Click the name of the product created in 3 to access its details.

Step 3 On the Basic Information tab page, click Import from Local to upload the
product model file obtained in 1.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0006.html
https://iot-developer.obs.cn-north-4.myhuaweicloud.com:443/smokeDetector.zip

Figure 4-1 Product - Uploading a product model

----End

Registering a Device

Step 1 In the navigation pane, choose Devices > All Devices, and click Register Device.

Step 2 Set the parameters as prompted and click OK.

Parameter Description

Resource
Space

Ensure that the device and the product created in 3 belong to
the same resource space.

Product Select the product created in 3.

Node ID This parameter specifies the unique physical identifier of the
device. The value can be customized and consists of letters and
numbers.

Device Name Customize the device name.

Authenticatio
n Type

Select Secret.

Secret Customize the device secret. If this parameter is not set, the
platform automatically generates a secret.

After the device is registered, save the node ID, device ID, and secret.

----End

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

Initializing a Device
1. Enter the device ID and secret obtained in Registering a Device and the

device connection information obtained in 1. The format is ssl://Domain
name:Port or ssl://IP address:Port.
// Obtaining the certificate path: Load the CA certificate of the IoT platform and use the default ca.jks
of the SDK for server verification.
 URL resource = MessageSample.class.getClassLoader().getResource("ca.jks");
 File file = new File(resource.getPath());
 //For example, modify the following parameters in MessageSample.java in the iot-device-demo
file:
 IoTDevice device = new IoTDevice("ssl://Domain name:8883",
 "5e06bfee334dd4f33759f5b3_demo", "mysecret", file);

CA UTION

All files that involve device IDs and passwords must be modified accordingly.

2. Establish a connection. Call init of the IoT Device SDK. The thread is blocked
until a result is returned. If the connection is established, 0 is returned.
 if (device.init() != 0) {
 return;
 }

If the connection is successful, information similar to the following is
displayed:
2023-07-17 17:22:59 INFO MqttConnection:105 - Mqtt client connected. address :ssl://Domain name:
8883

3. After the device is created and connected, it can be used for communication.
You can call getClient of the IoT Device SDK to obtain the device client. The
client provides communication APIs for processing messages, properties, and
commands.

Reporting a Message
Message reporting is the process in which a device reports messages to the
platform.

1. Call getClient of the IoT Device SDK to obtain the client from the device.
2. Call reportDeviceMessage to enable the client to report a device message. In

the sample below, messages are reported periodically.
 while (true) {
 device.getClient().reportDeviceMessage(new DeviceMessage("hello"), new ActionListener() {
 @Override
 public void onSuccess(Object context) {
 log.info("reportDeviceMessage ok");
 }

 @Override
 public void onFailure(Object context, Throwable var2) {
 log.error("reportDeviceMessage fail: " + var2);
 }
 });

 // Report a message using a custom topic, which must be configured on the platform first.
 String topic = "$oc/devices/" + device.getDeviceId() + "/user/wpy";
 device.getClient().publishRawMessage(new RawMessage(topic, "hello raw message "),
 new ActionListener() {
 @Override
 public void onSuccess(Object context) {
 log.info("publishRawMessage ok: ");

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

 }

 @Override
 public void onFailure(Object context, Throwable var2) {
 log.error("publishRawMessage fail: " + var2);
 }
 });

 Thread.sleep(5000);
 }

3. Replace the device parameters with the actual values in the main function of
the MessageSample class, and run this class. Then view the logs about
successful connection and message reporting.
2024-04-16 16:43:09 INFO AbstractService:103 - create device, the deviceId is
5e06bfee334dd4f33759f5b3_demo
2024-04-16 16:43:09 INFO MqttConnection:233 - try to connect to ssl://Domain name: 8883
2024-04-16 16:43:10 INFO MqttConnection:257 - connect success, the uri is ssl://Domain name: 8883
2024-04-16 16:43:11 INFO MqttConnection:299 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo/sys/events/up, msg =
{"object_device_id":"5e06bfee334dd4f33759f5b3_demo","services":[{"paras":
{"type":"DEVICE_STATUS","content":"connect
success","timestamp":"1713256990817"},"service_id":"$log","event_type":"log_report","event_time":"20
240416T084310Z","event_id":null}]}
2024-04-16 16:43:11 INFO MqttConnection:140 - Mqtt client connected. address is ssl://Domain
name: 8883
2024-04-16 16:43:11 INFO MqttConnection:299 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo/sys/events/up, msg =
{"object_device_id":"5e06bfee334dd4f33759f5b3_demo","services":[{"paras":
{"device_sdk_version":"JAVA_v1.2.0","fw_version":null,"sw_version":null},"service_id":"$sdk_info","event
_type":"sdk_info_report","event_time":"20240416T084311Z","event_id":null}]}
2024-04-16 16:43:11 INFO MqttConnection:299 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo /sys/events/up, msg = {"object_device_id":
"5e06bfee334dd4f33759f5b3_demo ","services": [{"paras":
{"type":"DEVICE_STATUS","content":"connect complete, the url is ssl://Domain name:
8883","timestamp":"1713256991263"},"service_id":"$log","event_type":"log_report","event_time":"2024
0416T084311Z","event_id":null}]}
2024-04-16 16:43:11 INFO MqttConnection:299 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo/sys/messages/up, msg =
{"name":null,"id":null,"content":"hello","object_device_id":null}
2024-04-16 16:43:11 INFO MqttConnection:299 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo/user/wpy, msg = hello raw message
2024-04-16 16:43:11 INFO MessageSample:98 - reportDeviceMessage ok
2024-04-16 16:43:11 INFO MessageSample:113 - publishRawMessage ok:

4. On the IoTDA console, choose Devices > All Devices and check whether the
device is online.

Figure 4-2 Device list - Device online status

5. Select the device, click View, and enable message trace on the device details
page.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 113

Figure 4-3 Message tracing - Starting message tracing

6. View the messages received by the platform.

Figure 4-4 Message tracing - Viewing device_sdk_java tracing result

Note: Message trace may be delayed. If no data is displayed, wait for a while and
refresh the page.

Reporting Properties
Open the PropertySample class. In this example, the alarm, temperature,
humidity, and smokeConcentration properties are periodically reported to the
platform.

 // Report properties periodically.
 while (true) {

 Map<String ,Object> json = new HashMap<>();
 Random rand = new Random();

 // Set properties based on the product model.
 json.put("alarm", 1);
 json.put("temperature", rand.nextFloat()*100.0f);
 json.put("humidity", rand.nextFloat()*100.0f);
 json.put("smokeConcentration", rand.nextFloat() * 100.0f);

 ServiceProperty serviceProperty = new ServiceProperty();
 serviceProperty.setProperties(json);
 serviceProperty.setServiceId("smokeDetector");// The serviceId must the consistent with that
defined in the product model.

 device.getClient().reportProperties(Arrays.asList(serviceProperty), new ActionListener() {
 @Override
 public void onSuccess(Object context) {
 log.info("pubMessage success");
 }

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 114

 @Override
 public void onFailure(Object context, Throwable var2) {
 log.error("reportProperties failed" + var2.toString());
 }
 });

 Thread.sleep(10000);
 }
 }

Modify the main function of the PropertySample class and run this class. Then
view the logs about successful property reporting.
2024-04-17 15:38:37 INFO AbstractService:103 - create device, the deviceId is
5e06bfee334dd4f33759f5b3_demo
2024-04-17 15:38:37 INFO MqttConnection:233 - try to connect to ssl://Domain name: 8883
2024-04-17 15:38:38 INFO MqttConnection:257 - connect success, the uri is ssl://Domain name: 8883
2024-04-17 15:38:38 INFO MqttConnection:299 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo/sys/events/up, msg =
{"object_device_id":"661e35467bdccc0126d1a595_feng-sdk-test3","services":[{"paras":
{"type":"DEVICE_STATUS","content":"connect
success","timestamp":"1713339518043"},"service_id":"$log","event_type":"log_report","event_time":"2024041
7T073838Z","event_id":null}]}
2024-04-17 15:38:38 INFO MqttConnection:140 - Mqtt client connected. address is ssl://Domain name: 8883
2024-04-17 15:38:38 INFO MqttConnection:299 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo/sys/events/up, msg =
{"object_device_id":"661e35467bdccc0126d1a595_feng-sdk-test3","services":[{"paras":
{"device_sdk_version":"JAVA_v1.2.0","fw_version":null,"sw_version":null},"service_id":"$sdk_info","event_type"
:"sdk_info_report","event_time":"20240417T073838Z","event_id":null}]}
2024-04-17 15:38:38 INFO MqttConnection:299 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo /sys/events/up, msg = {"object_device_id":
"5e06bfee334dd4f33759f5b3_demo ","services": [{"paras":{"type":"DEVICE_STATUS","content":"connect
complete, the url is ssl://Domain
name :8883","timestamp":"1713339518464"},"service_id":"$log","event_type":"log_report","event_time":"202
40417T073838Z","event_id":null}]}
2024-04-17 15:38:38 INFO MqttConnection:299 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo/sys/properties/report, msg = {"services":[{"properties":
{"alarm":1,"temperature":55.435158,"humidity":51.950867,"smokeConcentration":43.89913},"service_id":"sm
okeDetector","event_time":null}]}
2024-04-17 15:38:38 INFO PropertySample:144 - pubMessage success

The latest property values are displayed on the device details page of the
platform.

Figure 4-5 Product model - Property reporting

Reading and Writing Properties
Call the setPropertyListener method of the client to set the property callback. In
PropertySample, the property reading/writing API is implemented.

Property reading: Only the alarm property can be written.

Property reading: Assemble the local property value based on the API format.
 device.getClient().setPropertyListener(new PropertyListener() {

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 115

 // Process property writing.
 @Override
 public void onPropertiesSet(String requestId, List<ServiceProperty> services) {
 // Traverse services.
 for (ServiceProperty serviceProperty : services) {

 log.info("OnPropertiesSet, serviceId is {}", serviceProperty.getServiceId());

 // Traverse properties.
 for (String name : serviceProperty.getProperties().keySet()) {
 log.info("property name is {}", name);
 log.info("set property value is {}", serviceProperty.getProperties().get(name));
 }

 }
 // Change the local property value.
 device.getClient().respondPropsSet(requestId, IotResult.SUCCESS);
 }

 /**
 * Process property reading. In most scenarios, you can directly read the device shadow on the
platform, so this interface does not need to be implemented.
 * To read device properties in real time, implement this method.
 */
 @Override
 public void onPropertiesGet(String requestId, String serviceId) {
 log.info("OnPropertiesGet, the serviceId is {}", serviceId);
 Map<String, Object> json = new HashMap<>();
 Random rand = new SecureRandom();
 json.put("alarm", 1);
 json.put("temperature", rand.nextFloat() * 100.0f);
 json.put("humidity", rand.nextFloat() * 100.0f);
 json.put("smokeConcentration", rand.nextFloat() * 100.0f);

 ServiceProperty serviceProperty = new ServiceProperty();
 serviceProperty.setProperties(json);
 serviceProperty.setServiceId("smokeDetector");

 device.getClient().respondPropsGet(requestId, Arrays.asList(serviceProperty));
 }
 });

Note:

1. The property reading/writing API must call respondPropsGet and
respondPropsSet to report the operation result.

2. If the device does not allow the platform to proactively read data from the
device, onPropertiesGet can be left not implemented.

Run the PropertySample class and check whether the value of the alarm
property is 1 on the Device Shadow tab page.

Figure 4-6 Device shadow - Viewing property (Alarm)

Change the value of the alarm property to 0.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 116

Figure 4-7 Device shadow - Configuring property (alarm)

In the device logs, the value of alarm is 0.

Delivering a Command

You can set a command listener to receive commands delivered by the platform.
The callback needs to process the commands and report responses.

The CommandSample class prints commands after receiving them and calls
respondCommand to report the responses.

 device.getClient().setCommandListener(new CommandListener() {
 @Override
 public void onCommand(String requestId, String serviceId, String commandName, Map<String,
Object> paras) {
 log.info("onCommand, serviceId = {}", serviceId);
 log.info("onCommand , name = {}", commandName);
 log.info("onCommand, paras = {}", paras.toString());

 // Process the command.

 // Send a command response.
 device.getClient().respondCommand(requestId, new CommandRsp(0));
 }

 });

Run the CommandSample class and deliver a command on the platform. In the
command, set serviceId to smokeDetector, name to ringAlarm, and paras to
duration=20.

The log shows that the device receives the command and reports a response.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 117

Object-oriented Programming

Calling device client APIs to communicate with the platform is flexible but requires
you to properly configure each API.

The SDK provides a simpler method, object-oriented programming. You can use
the product model capabilities provided by the SDK to define device services and
call the property reading/writing API to access the device services. In this way, the
SDK can automatically communicate with the platform to synchronize properties
and call commands.

Object-oriented programming simplifies the complexity of device code and
enables you to focus only on services rather than the communications with the
platform. This method is much easier than calling client APIs and suitable for most
scenarios.

The following uses smokeDetector to demonstrate the process of object-oriented
programming.

1. Define the service class and properties based on the product model. (If there
are multiple services, define multiple service classes.)
public static class SmokeDetectorService extends AbstractService {

 // Define properties based on the product model. Ensure that the device name and type are the
same as those in the product model. writeable indicates whether the property can be written, and
name indicates the property name.
 @Property(name = "alarm", writeable = true)
 int smokeAlarm = 1;

 @Property(name = "smokeConcentration", writeable = false)
 float concentration = 0.0f;

 @Property(writeable = false)
 int humidity;

 @Property(writeable = false)
 float temperature;

@Property indicates a property. You can use name to specify a property
name. If no property name is specified, the field name is used.
You can add writeable to a property to control permissions on it. If the
property is read-only, add writeable = false. If writeable is not added, the
property can be read and written.

2. Define service commands. The SDK automatically calls the service commands
when the device receives commands from the platform.
The type of input parameters and return values for APIs cannot be changed.
Otherwise, a runtime error occurs.
The following code defines a ring alarm command named ringAlarm. The
delivered parameter is duration, which indicates the duration of the ringing
alarm.
// Define the command. The type of input parameters and return values for APIs cannot be changed.
Otherwise, a runtime error occurs.
 @DeviceCommand(name = "ringAlarm")
 public CommandRsp alarm(Map<String, Object> paras) {
 int duration = (int) paras.get("duration");
 log.info("ringAlarm duration = " + duration);
 return new CommandRsp(0);
 }

3. Define the getter and setter methods.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 118

– The device automatically calls the getter method after receiving the
commands for querying and reporting properties from the platform. The
getter method reads device properties from the sensor in real time or
from the local cache.

– The device automatically calls the setter method after receiving the
commands for setting properties from the platform. The setter method
updates the local values of the device. If a property is not writable, leave
the setter method not implemented.

// Ensure that the names of the setter and getter methods comply with the JavaBean specifications so
that the APIs can be automatically called by the SDK.
 public int getHumidity() {

 // Simulate the action of reading data from the sensor.
 humidity = new Random().nextInt(100);
 return humidity;
 }

 public void setHumidity(int humidity) {
 // You do not need to implement this method for read-only fields.
 }

 public float getTemperature() {

 // Simulate the action of reading data from the sensor.
 temperature = new Random().nextInt(100);
 return temperature;
 }

 public void setTemperature(float temperature) {
 // You do not need to implement this method for read-only fields.
 }

 public float getConcentration() {

 // Simulate the action of reading data from the sensor.
 concentration = new Random().nextFloat()*100.0f;
 return concentration;
 }

 public void setConcentration(float concentration) {
 // You do not need to implement this method for read-only fields.
 }

 public int getSmokeAlarm() {
 return smokeAlarm;
 }

 public void setSmokeAlarm(int smokeAlarm) {

 this.smokeAlarm = smokeAlarm;
 if (smokeAlarm == 0){
 log.info("alarm is cleared by app");
 }
 }

4. Create a service instance in the main function and add the service instance to
the device.
 // Create a device.
 IoTDevice device = new IoTDevice(serverUri, deviceId, secret);

 // Create a device service.
 SmokeDetectorService smokeDetectorService = new SmokeDetectorService();
 device.addService("smokeDetector", smokeDetectorService);

 if (device.init() != 0) {

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 119

 return;
 }

5. Enable periodic property reporting.
// Enable periodic property reporting.
smokeDetectorService.enableAutoReport(10000);

If you do not want to report properties periodically, you can call
firePropertiesChanged to manually report them.

Run the SmokeDetector class to view the logs about property reporting.

View the device shadow on the platform.

Figure 4-8 Device shadow - Viewing property (Alarm)

Modify the alarm property on the platform and view the device logs about
property modification.

Deliver the ringAlarm command on the platform.
View the logs about calling the ringAlarm command and reporting a
response.

Using the Code Generator
The SDK provides a code generator, which allows you to automatically generate a
device code framework only using a product model. The code generator parses the
product model, generates a service class for each service defined in the model, and
generates a device main class based on the service classes. In addition, the code
generator creates a device and registers a service instance in the main function.

To use the code generator to generate device code, proceed as follows:

1. Download the huaweicloud-iot-device-sdk-java project, decompress it, go to
the huaweicloud-iot-device-sdk-java directory, and run the mvn install
command.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 120

2. Check whether an executable JAR package is generated in the target folder of
iot-device-code-generator.

3. Save the product model to a local directory. For example, save the
smokeDetector.zip file to disk D.

4. Access the SDK root directory and run the java -jar .\iot-device-code-
generator\target\iot-device-code-generator-1.2.0-with-deps.jar
D:\smokeDetector.zip command.

5. Check whether the generated-demo package is generated in the
huaweicloud-iot-device-sdk-java directory.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 121

The device code is generated.

To compile the generated code, proceed as follows:

1. Go to the huaweicloud-iot-device-sdk-java\generated-demo directory, and
run the mvn install command to generate a JAR package in the target folder.

2. Run the java -jar .\target\iot-device-demo-ganerated-1.2.0-with-deps.jar
ssl://Domain name:8883 device_id secret command. The three parameters
are the device access address, device ID, and password, respectively. Run the
generated demo.
D:\git\huaweicloud-iot-device-sdk-java\generated-demo> java -jar .\target\iot-device-demo-
ganerated-1.2.0-with-deps.jar ssl://Domain name:8883 5e06bfee334dd4f33759f5b3_demo secret
2024-04-17 15:50:53 INFO AbstractService:73 - create device, the deviceId is
5e06bfee334dd4f33759f5b3_demo
2024-04-17 15:50:54 INFO MqttConnection:204 - try to connect to ssl://Domain name: 8883
2024-04-17 15:50:55 INFO MqttConnection:228 - connect success, the uri is ssl://Domain name: 8883
2024-04-17 15:50:55 INFO MqttConnection:268 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo/sys/events/up, msg =
{"object_device_id":"5e06bfee334dd4f33759f5b3_demo","services":[{"paras":

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 122

{"type":"DEVICE_STATUS","content":"connect
success","timestamp":"1713340255148"},"service_id":"$log","event_type":"log_report","event_time":"20
240417T075055Z","event_id":null}]}
2024-04-17 15:50:55 INFO MqttConnection:111 - Mqtt client connected. address is ssl://Domain
name: 8883
2024-04-17 15:50:55 INFO MqttConnection:268 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo/sys/events/up, msg =
{"object_device_id":"5e06bfee334dd4f33759f5b3_demo","services":[{"paras":
{"device_sdk_version":"JAVA_v1.2.0","fw_version":null,"sw_version":null},"service_id":"$sdk_info","event
_type":"sdk_info_report","event_time":"20240417T075055Z","event_id":null}]}
2024-04-17 15:50:55 INFO MqttConnection:268 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo /sys/events/up, msg = {"object_device_id":
"5e06bfee334dd4f33759f5b3_demo ","services": [{"paras":
{"type":"DEVICE_STATUS","content":"connect complete, the url is ssl://Domain
name :8883","timestamp":"1713340255496"},"service_id":"$log","event_type":"log_report","event_time
":"20240417T075055Z","event_id":null}]}
2024-04-17 15:51:03 INFO smokeDetectorService:78 - report property alarm value = 50
2024-04-17 15:51:03 INFO smokeDetectorService:104 - report property temperature value =
0.3648571367849047
2024-04-17 15:51:03 INFO smokeDetectorService:91 - report property smokeConcentration value =
0.679772877336927
2024-04-17 15:51:03 INFO smokeDetectorService:117 - report property humidity value = 15
2024-04-17 15:51:03 INFO MqttConnection:268 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo/sys/properties/report, msg = {"services":[{"properties":
{"alarm":50,"temperature":0.3648571367849047,"smokeConcentration":0.679772877336927,"humidity
":15},"service_id":"smokeDetector","event_time":"20240417T075103Z"}]}

To modify the extended code, proceed as follows:

Service definition and registration have already been completed through the
generated code. You only need to make small changes to the code.

1. Command API: Add specific implementation logic.

2. getter method: Change the value return mode of the generated code from
returning a random value to reading from the sensor.

3. setter method: Add specific processing logic, such as delivering instructions to
the sensor, because the generated code only modifies and saves the
properties.

Developing a Gateway

Gateways are special devices that provide child device management and message
forwarding in addition to the functions of common devices. The SDK provides the
AbstractGateway class to simplify gateway implementation. This class can collect
and save child device information (with a data persistence API), forward message
responses (with a message forwarding API), and report child device list, properties,
statuses, and messages.

● AbstractGateway Class
Inherit this class to provide APIs for persistently storing device information
and forwarding messages to child devices in the constructor.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 123

 public abstract void onSubdevCommand(String requestId, Command command);

 public abstract void onSubdevPropertiesSet(String requestId, PropsSet propsSet);

 public abstract void onSubdevPropertiesGet(String requestId, PropsGet propsGet);

 public abstract void onSubdevMessage(DeviceMessage message);

● iot-gateway-demo Code
The iot-gateway-demo project implements a simple gateway with
AbstractGateway to connect TCP devices. The key classes include:
SimpleGateway: inherited from AbstractGateway to manage child devices
and forward messages to child devices.
StringTcpServer: implements a TCP server based on Netty. In this example,
child devices support the TCP protocol, and the first message is used for
authentication.
SubDevicesFilePersistence: persistently stores child device information in a
JSON file and caches the file in the memory.
Session: stores the mapping between device IDs and TCP channels.

● SimpleGateway Class
Adding or Deleting a Child Device
Adding a child device: onAddSubDevices of AbstractGateway can store child
device information. Additional processing is not required, and
onAddSubDevices does not need to be overridden for SimpleGateway.
Deleting a child device: You need to modify persistently stored information of
the child device and disconnect the device from the platform. Therefore,
onDeleteSubDevices is overridden to add the link release logic, and
onDeleteSubDevices in the parent class is called.

 @Override
 public int onDeleteSubDevices(SubDevicesInfo subDevicesInfo) {

 for (DeviceInfo subdevice : subDevicesInfo.getDevices()) {
 Session session = nodeIdToSesseionMap.get(subdevice.getNodeId());
 if (session != null) {
 if (session.getChannel() != null) {
 session.getChannel().close();
 channelIdToSessionMap.remove(session.getChannel().id().asLongText());
 nodeIdToSesseionMap.remove(session.getNodeId());
 }
 }
 }
 return super.onDeleteSubDevices(subDevicesInfo);

 }

● Processing Messages to Child Devices
The gateway needs to forward messages received from the platform to child
devices. The messages from the platform include device messages, property
reading/writing, and commands.
– Device messages: Obtain the nodeId based on the deviceId, and then

obtain the session of the device to get a channel for sending messages.
You can choose whether to convert messages during forwarding.
 @Override
 public void onSubdevMessage(DeviceMessage message) {

 // Each platform API carries a deviceId, which consists of a nodeId and productId.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 124

 //deviceId = productId_nodeId
 String nodeId = IotUtil.getNodeIdFromDeviceId(message.getDeviceId());
 if (nodeId == null) {
 return;
 }

 // Obtain the session based on the nodeId for a channel.
 Session session = nodeIdToSesseionMap.get(nodeId);
 if (session == null) {
 log.error("subdev is not connected " + nodeId);
 return;
 }
 if (session.getChannel() == null){
 log.error("channel is null " + nodeId);
 return;
 }

 // Directly forward messages to the child device.
 session.getChannel().writeAndFlush(message.getContent());
 log.info("writeAndFlush " + message);
 }

– Property Reading and Writing

Property reading and writing include property setting and query.

Property setting:
 @Override
 public void onSubdevPropertiesSet(String requestId, PropsSet propsSet) {

 if (propsSet.getDeviceId() == null) {
 return;
 }

 String nodeId = IotUtil.getNodeIdFromDeviceId(propsSet.getDeviceId());
 if (nodeId == null) {
 return;
 }

 Session session = nodeIdToSesseionMap.get(nodeId);
 if (session == null) {
 return;
 }

 // Convert the object into a string and send the string to the child device. Encoding/
Decoding may be required in actual situations.
 session.getChannel().writeAndFlush(JsonUtil.convertObject2String(propsSet));

 // Directly send a response. A more reasonable method is to send a response after the
child device processes the request.
 getClient().respondPropsSet(requestId, IotResult.SUCCESS);

 log.info("writeAndFlush " + propsSet);

 }

Property query:
 @Override
 public void onSubdevPropertiesGet(String requestId, PropsGet propsGet) {

 // Send a failure response. It is not recommended that the platform directly reads the
properties of the child device.
 log.error("not supporte onSubdevPropertiesGet");
 deviceClient.respondPropsSet(requestId, IotResult.FAIL);
 }

– Commands: The procedure is similar to that of message processing.
Different types of encoding/decoding may be required in actual
situations.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 125

@Override
 public void onSubdevCommand(String requestId, Command command) {

 if (command.getDeviceId() == null) {
 return;
 }

 String nodeId = IotUtil.getNodeIdFromDeviceId(command.getDeviceId());
 if (nodeId == null) {
 return;
 }

 Session session = nodeIdToSesseionMap.get(nodeId);
 if (session == null) {
 return;
 }

 // Convert the command object into a string and send the string to the child device.
Encoding/Decoding may be required in actual situations.
 session.getChannel().writeAndFlush(JsonUtil.convertObject2String(command));

 // Directly send a response. A more reasonable method is to send a response after the
child device processes the request.
 getClient().respondCommand(requestId, new CommandRsp(0));
 log.info("writeAndFlush " + command);
 }

● Upstream Message Processing

Upstream message processing is implemented by channelRead0 of
StringTcpServer. If no session exists, create a session.

If the child device information does not exist, the session cannot be created
and the connection is rejected.
 @Override
 protected void channelRead0(ChannelHandlerContext ctx, String s) throws Exception {
 Channel incoming = ctx.channel();
 log.info("channelRead0" + incoming.remoteAddress() + " msg :" + s);

 // Create a session for the first message.
// Create a session for the first message.
 Session session = simpleGateway.getSessionByChannel(incoming.id().asLongText());
 if (session == null) {
 String nodeId = s;
 session = simpleGateway.createSession(nodeId, incoming);

 // The session fails to create and the connection is rejected.
 if (session == null) {
 log.info("close channel");
 ctx.close();
 }
 }

If the session exists, the message is forwarded.
else {
 // Call reportSubDeviceProperties to report properties of the child device.
 DeviceMessage deviceMessage = new DeviceMessage(s);
 deviceMessage.setDeviceId(session.getDeviceId());
 simpleGateway.reportSubDeviceMessage(deviceMessage, null);

 }

For details about the gateway, view the source code. The demo is open-source
and can be extended as required. For example, you can modify the persistence
mode, add message format conversion during forwarding, and support other
device access protocols.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 126

● Using iot-gateway-demo

a. Create a product for the child device. For details, see Creating a Product.
b. Define a model in the created product and add a service whose ID is

parameter. Add alarm and temperature properties, as shown in the
following figure.

Figure 4-9 Model definition - Child device product

c. Modify the main function of StringTcpServer by replacing the
constructor parameters, and run this class.
 simpleGateway = new SimpleGateway(new SubDevicesFilePersistence(),
 "ssl://iot-acc.cn-north-4.myhuaweicloud.com:8883",
 "5e06bfee334dd4f33759f5b3_demo", "mysecret");

d. After the gateway is displayed as Online on the platform, add a child
device.

Figure 4-10 Device - Adding a child device

Table 4-2 Child device parameters

Parameter Description

Product Product to which the child device belongs. Select the
product created in 1.

Device Name Customize a device name, for example,
subdev_name.

Node ID Enter subdev.

Device ID This parameter is optional and is automatically
generated.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 127

A log similar to the following is displayed on the gateway:
2024-04-16 21:00:01 INFO SubDevicesFilePersistence:112 - add subdev,
the nodeId is subdev

e. Run the TcpDevice class. After the connection is set up, enter the node ID
of the child device registered in step 3, for example, subdev.

Figure 4-11 Child device connection

A log similar to the following is displayed on the gateway:
2024-04-16 21:00:54 INFO StringTcpServer:196 - initChannel: /127.0.0.1:21889
2024-04-16 21:01:00 INFO StringTcpServer:137 - channelRead0 is /127.0.0.1:21889, the msg is
subdev
2024-04-16 21:01:00 INFO SimpleGateway:100 - create new session ok, the session is
Session{nodeId='subdev', channel=[id: 0xf9b89f78, L:/127.0.0.1:8080 - R:/127.0.0.1:21889],
deviceId='subdev_deviceId'}

f. Check whether the child device is online on the platform.

Figure 4-12 Device list - Device online status

g. Enable the child device to report messages.

Figure 4-13 Enable the child device to report messages.

Logs similar to the following show that the message is reported.
2024-04-16 21:02:36 INFO StringTcpServer:137 - channelRead0 is /127.0.0.1:21889, the msg is
hello
2024-04-16 21:02:36 INFO MqttConnection:299 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo/sys/messages/up, msg =
{"name":null,"id":null,"content":"hello","object_device_id":"subdev_deviceId"]

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 128

2024-04-16 21:02:36 INFO MqttConnection:299 - publish message topic is $oc/devices/
5e06bfee334dd4f33759f5b3_demo/sys/gateway/sub_devices/properties/report, msg =
{"devices":[{"services":[{"properties":
{"temprature":2,"alarm":1},"service_id":"parameter","event_time":null}],"device_id":"subdev_devi
ceId"}]]

h. View the messages traced.
Click Message Trace on the gateway details page. Send data from the
child device to the platform, and view the messages after a while.

Figure 4-14 Message tracing - Directly connected device

4.2.3 IoT Device SDK (C)
The IoT Device SDK (C) provides abundant demo code for devices to communicate
with the platform and implement device, gateway, and Over-The-Air (OTA)
services. For details on the integration guide, see IoT Device SDK (C)
Development Guide.

Requirements
● The SDK runs on Linux.
● The SDK depends on the OpenSSL and Paho libraries. If you have your own

compilation chain, compile library files such as OpenSSL, Paho, zlib, and
Huawei secure function library.

● For some devices that are connected in MCU+module mode, use the C Tiny
SDK for development.

NO TE

For details, see README.

Change History

Table 4-3 Change history

Versio
n

Change Description

1.2.0 Function
enhancement

Added the SDK test code and demo, and optimized the
code usage.

1.1.5 Function
enhancement

Updated the OTA upgrade transmission format.

1.1.4 Function
enhancement

Fixed the issue of remote login packet reporting
timeout.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 129

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-csharp/blob/master/README.md

Versio
n

Change Description

1.1.3 Function
enhancement

Updated the conf\rootcert.pem certificates.

1.1.2 New function Added device rules, M2M, GN compilation file,
anomaly detection, timestamp printed in logs,
MQTT_DEBUG, Chinese cryptographic algorithm,
remote configuration, and device-cloud secure
communication (soft bus).

1.1.1 New function Added SSH remote O&M.

1.1.0 New function Supported MQTT 5.0. Optimized the cod to resolve the
memory overflow issue.

1.0.1 Function
enhancement

Added application scenarios, where MQTTS does not
verify the platform public key, using TLS version is
V1.2, and adding message storage examples.

0.9.0 New function Added the API for the gateway to update the child
device status.

0.8.0 Function
enhancement

Added the access domain name (iot-mqtts.cn-
north-4.myhuaweicloud.com) and root certificates.
If the device uses the old domain name (iot-acc.cn-
north-4.myhuaweicloud.com) for access, use the v0.5.0
SDK.

0.5.0 Function
enhancement

Preset the device access address and the matching CA
certificate in the SDK to support interconnection with
the Huawei Cloud IoT platform.

4.2.4 IoT Device SDK (C#)
The IoT Device SDK (C#) provides abundant demo code for devices to
communicate with the platform and implement advanced services such as device,
gateway, and Over-The-Air (OTA) services. For details about the integration guide,
see IoT Device SDK (C#) Development Guide.

Requirements
● DotNet SDK 8.0 has been installed.

– .NET installation guide
– .NET 8.0.

● The corresponding IDE (Visual Studio Code 2017+, Rider 17.0.6+) has been
installed. This SDK does not depend on the IDE. You can select the IDE or
directly use the CLI as required.

NO TE

For details, see README.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 130

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-csharp
https://learn.microsoft.com/en-us/dotnet/core/install/
https://dotnet.microsoft.com/en-us/download/dotnet/8.0
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-csharp/blob/master/README.md

Change History

Table 4-4 Change history

Version Change Description

1.3.4 Functio
n
enhance
ment

1. Optimized the log printing function.
2. Modified the topic returned by SubscribeTopic starting

with oc.
3. Optimized demos.
4. Fixed the bug of the gateway interface.
5. Upgraded the target framework.
6. Optimized other features.

1.3.3 New
function

Supported gateway mode for OTA upgrade.

1.3.2 Functio
n
enhance
ment

Updated the CA certificate for the server.

1.3.1 Fixing Resolved issues such as null pointer exceptions and MQTT
object release failures.

1.3.0 New
function

Supported OBS-based upgrade of software and firmware
packages.

1.2.0 New
function

Added the generic-protocol function.

1.1.1 Functio
n
enhance
ment

Added the function of deleting child devices from a
gateway and optimized the description.

1.1.0 New
function

Added the gateway and product model functions.

1.0.0 First
release

Provided basic device access capabilities. Preset the device
access address and the CA certificate matching Huawei
IoTDA in the SDK.

4.2.5 IoT Device SDK (Android)
The IoT Device SDK (Android) provides abundant demo code for devices to
communicate with the platform and implement advanced services such as device,
gateway, and Over-The-Air (OTA) services. For details on the integration guide, see
IoT Device SDK (Android) Development Guide.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 131

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android

Requirements
● Android Studio has been installed.

NO TE

For details, see README.

Change History

Table 4-5 Change history

Version Change Description

1.0.0 First release Provided basic device access capabilities.

4.2.6 IoT Device SDK (Go)
The IoT Device SDK (Go) provides abundant demo code for devices to
communicate with the platform and implement advanced services such as device
and Over-The-Air (OTA) services. For details on the integration guide, see IoT
Device SDK (Go) Development Guide.

Requirements
● Go 3.18 has been installed.
● The dependencies have been installed based on go.mod.

NO TE

For details, see README.

Change History

Table 4-6 Change history

Version Change Description

v1.0.0 New
function

Provided capabilities for connections to the Huawei
Cloud IoT platform to facilitate service scenarios such
as secure access, device management, data collection,
command delivery, device provisioning, and device
rules.

4.2.7 IoT Device SDK Tiny (C)
The IoT Device SDK Tiny is lightweight interconnection middleware deployed on
devices that have WAN capabilities and limited power consumption, storage, and
computing resources. After the IoT Device SDK Tiny is deployed on such devices,
you only need to call APIs to enable the devices to connect to the IoT platform,

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 132

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-android/blob/main/README.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-go
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-go
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-go/blob/main/README.md

report data, and receive commands. For details about the integration, see
development guide on device-cloud communication components.

NO TE

The IoT Device SDK Tiny can run on devices that do not run Linux OS, and can also be
integrated into modules. However, it does not provide gateway services.

Requirements
● It adapts to LiteOS, Linux, macOS, and FreeRTOS. You can modify the SDK to

adapt to other environments.

● For details about different modules, see the SDK development board porting
list.

4.2.8 IoT Device SDK (Python)
The IoT Device SDK (Python) provides abundant demo code for devices to
communicate with the platform and implement device, gateway, and Over-The-Air
(OTA) services. For details, see IoT Device SDK (Python) Development Guide.

Requirements
● Python 3.11.4 has been installed.

● The third-party class library paho-mqtt 2.0.0 has been installed (mandatory).

● The third-party class library schedule 1.2.2 has been installed (mandatory).

● The third-party class library apscheduler 3.10.4 has been installed
(mandatory).

● The third-party class library requests 2.32.2 has been installed (optional, used
in the demo of gateway and child device management).

● The third-party class library tornado 6.3.3 has been installed (optional, used in
the demo of gateway and child device management).

NO TE

For details about how to install the components, see IoT Device SDK (Python) Usage
Guide.

Change History

Table 4-7 Change history

Version Change Description

1.2.0 New
function

Added the functions of rule engine, device provisioning,
customized reconnection upon disconnection, and
component version upgrade.

1.1.4 New
function

Supported gateway mode for OTA upgrade.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 133

https://github.com/LiteOS/LiteOS_Lab/blob/iot-device-sdk-tiny/README.md
https://github.com/LiteOS/LiteOS_Lab/blob/iot-device-sdk-tiny/os/Readme.md
https://github.com/LiteOS/LiteOS_Lab/blob/iot-device-sdk-tiny/docs/SDK_Demos_List.md
https://github.com/LiteOS/LiteOS_Lab/blob/iot-device-sdk-tiny/docs/SDK_Demos_List.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-python
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-python
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-python

Version Change Description

1.1.3 Function
enhancem
ent

Updated the CA certificate for the server.

1.1.2 New
function

Supported micropython and the corresponding demo,
OTA downloading from OBS, and description
documents.

1.1.1 New
function

Provided capabilities for connections to the Huawei
Cloud IoT platform to facilitate service scenarios such as
secure access, device management, data collection, and
command delivery.

4.3 Using MQTT Demos for Access

4.3.1 MQTT Usage Guide

Overview
Message Queuing Telemetry Transport (MQTT) is a publish/subscribe messaging
protocol that transports messages between clients and a server. It is suitable for
remote sensors and control devices (such as smart street lamps) that have limited
computing capabilities and work in low-bandwidth, unreliable networks through
persistent connections. To learn more about the MQTT syntax and interfaces, click
here.

MQTTS is a variant of MQTT that uses TLS encryption. MQTTS devices
communicate with the platform using encrypted data transmission.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 134

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/

Service Flow
MQTT devices communicate with the platform without data encryption. For
security purposes, MQTTS access is recommended.

You are advised to use the IoT Device SDK to connect devices to the platform
over MQTTS.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 135

1. Create a product on the IoTDA console or by calling the API Creating a
Product.

2. Register a device on the IoTDA console or calling the API Creating a Device.
3. The registered device can report messages and properties, receive commands,

properties, and messages, perform OTA upgrades, and report data using
custom topics. For details about preset topics of the platform, see Topic
Definition.

NO TE

You can use MQTT.fx to debug access using the native MQTT protocol. For details, see
Developing an MQTT-based Smart Street Light Online.

Constraints
Item Constraint

Supported MQTT version MQTT v3.1, v3.1.1, and v5.0 are
supported. QoS 2, and will and retained
messages are not supported.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 136

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_00016.html

Item Constraint

Differences from the standard
MQTT protocol

● QoS 0 and QoS 1 are supported.
● Custom topics are supported.
● QoS 2 is not supported.
● will and retain msg are not

supported.

Security level supported by MQTTS TCP channel + TLS (TLS 1.3 or earlier)

Maximum number of MQTT
connection requests allowed for an
account per second

No limit

Maximum number of MQTT
connections allowed for a device
per minute

1

Maximum throughput of an MQTT
connection per second, including
directly connected devices and
gateways

3 KB/s

Maximum length of a message
reported by an MQTT device (A
message with the length greater
than this value is rejected.)

1 MB

Recommended heartbeat interval
for MQTT connections

Range: 30s to 1200s; recommended: 120s

Custom topic Supported

Publish/Subscribe A device can only publish and subscribe
to messages of its own topics.

Maximum number of subscriptions
per subscription request

No limit

NO TE

You are advised to use encrypted channels (port 8883) for secure communications between
devices and the platform.

Communication Between MQTT Devices and the Platform
The platform communicates with MQTT devices through topics, and they
exchange messages, properties, and commands using preset topics. You can also
create custom topics for connected devices to meet specific requirements.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 137

Data
Type

Message
Type

Description

Upstr
eam
data

Reporting
device
properties

Devices report property data in the format defined in the
product model.

Reporting
device
messages

If a device cannot report data in the format defined in
the product model, the device can report data to the
platform using the device message reporting API. The
platform forwards the messages reported by devices to
an application or other Huawei Cloud services for
storage and processing.

Batch
reporting
device
properties

A gateway reports property data of multiple devices to
the platform.

Reporting
device
events

Devices report event data in the format defined in the
product model.

Down
strea
m
data

Delivering
platform
messages

The platform delivers data in a custom format to devices.

Setting
device
properties

A product model defines the properties that the platform
can configure for devices. The platform or application
can modify the properties of a specific device.

Querying
device
properties

The platform or application can query real-time property
data of a specific device.

Delivering
platform
commands

The platform or application delivers commands in the
format defined in the product model to devices.

Delivering
platform
events

The platform or application delivers events in the format
defined in the product model to devices.

Preset Topics

The following table lists the preset topics of the platform.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 138

Category Function Topic Publ
isher

Subsc
riber

Device
message
related
topics

Device
Reporting
a Message

$oc/devices/{device_id}/sys/
messages/up

Devi
ce

Platfo
rm

Platform
Delivering
a Message

$oc/devices/{device_id}/sys/
messages/down

Platf
orm

Devic
e

Device
command
related
topics

Platform
Delivering
a
Command

$oc/devices/{device_id}/sys/
commands/request_id={request_id}

Platf
orm

Devic
e

Device
Returning
a
Command
Response

$oc/devices/{device_id}/sys/
commands/response/
request_id={request_id}

Devi
ce

Platfo
rm

Device
property
related
topics

Device
Reporting
Properties

$oc/devices/{device_id}/sys/
properties/report

Devi
ce

Platfo
rm

Reporting
Property
Data by a
Gateway

$oc/devices/{device_id}/sys/
gateway/sub_devices/properties/
report

Devi
ce

Platfo
rm

Setting
Device
Properties

$oc/devices/{device_id}/sys/
properties/set/
request_id={request_id}

Platf
orm

Devic
e

Returning
a Response
to Property
Settings

$oc/devices/{device_id}/sys/
properties/set/response/
request_id={request_id}

Devi
ce

Platfo
rm

Querying
Device
Properties

$oc/devices/{device_id}/sys/
properties/get/
request_id={request_id}

Platf
orm

Devic
e

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 139

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3017.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3017.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3017.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html

Category Function Topic Publ
isher

Subsc
riber

Device
Returning
a Response
for a
Property
Query The
response
does not
affect
device
properties
and
shadows.

$oc/devices/{device_id}/sys/
properties/get/response/
request_id={request_id}

Devi
ce

Platfo
rm

Obtaining
Device
Shadow
Data from
the
Platform

$oc/devices/{device_id}/sys/
shadow/get/request_id={request_id}

Devi
ce

Platfo
rm

Returning
a Response
to a
Request for
Obtaining
Device
Shadow
Data

$oc/devices/{device_id}/sys/
shadow/get/response/
request_id={request_id}

Platf
orm

Devic
e

Device
event
related
topics

Reporting
a Device
Event

$oc/devices/{device_id}/sys/
events/up

Devi
ce

Platfo
rm

Delivering
an Event

$oc/devices/{device_id}/sys/events/
down

Platf
orm

Devic
e

You can create custom topics on the console to report personalized data. For
details, see Custom Topic Communications.

TLS Support for MQTT

TLS is recommended for secure transmission between devices and the platform.
Currently, TLS 1.0, TLS 1.1, TLS 1.2, and TLS 1.3 are supported. TLS 1.0 and TLS 1.1
will soon be deprecated. Therefore, TLS 1.2 and TLS 1.3 are recommended. The
platform only supports the following cipher suites for TLS connections:

● TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
● TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 140

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3029.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3029.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3029.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3028.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3028.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_02_9992.html

● TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
● TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
● TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
● TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
● TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
● TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

4.3.2 Java Demo Usage Guide

Overview

This topic uses Java as an example to describe how to connect a device to the
platform over MQTTS or MQTT and how to use platform APIs to report properties
and subscribe to a topic for receiving commands.

NO TE

The code snippets in this document are only examples and are for trial use only. To put
them into commercial use, obtain the IoT Device SDKs of the corresponding language for
integration by referring to Obtaining Resources.

Prerequisites
● You have obtained the device access address from the IoTDA console. For

details about how to obtain the address, see Platform Connection
Information.

● You have created a product and a device on the IoTDA console. For details,
see Creating a Product, Registering an Individual Device, and Registering
a Batch of Devices.

Preparations

Installing IntelliJ IDEA

1. Go to the IntelliJ IDEA website to download and install a desired version.
The following uses 64-bit IntelliJ IDEA 2019.2.3 Ultimate as an example.

2. After the download is complete, run the installation file and install IntelliJ
IDEA as prompted.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 141

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3002.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://www.jetbrains.com/idea/

Importing Sample Code

Step 1 Download the Java demo.

Step 2 Open the IDEA developer tool and click Import Project.

Step 3 Select the downloaded Java demo and click Next.

Step 4 Import the sample code.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 142

https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(java).zip

----End

Establishing a Connection
To connect a device or gateway to the platform, upload the device information to
bind the device or gateway to the platform.

1. Before establishing a connection, modify the following parameters:
// MQTT connection address of the platform. Replace it with the domain name of the IoT platform
that the device is connected to.
static String serverIp = "xxx.myhuaweicloud.com";
// Device ID and secret obtained during device registration (Replace them with the actual values.)
static String deviceId = "722cb****************";
static String secret = "******";

– serverIp indicates the device connection address of the platform. To
obtain this address, see Platform Connection Information. (After
obtaining the domain name, run the ping Domain name command in the
CLI to obtain the corresponding IP address.)

– deviceId and secret indicate the device ID and secret, which can be
obtained after the device is registered.

2. Use MqttClient to set up a connection. The recommended heartbeat interval
for MQTT connections is 120 seconds. For details, see Constraints.
MqttConnectOptions options = new MqttConnectOptions();
options.setCleanSession(false);
options.setKeepAliveInterval(120); // Set the heartbeat interval from 30 to 1200 seconds.
options.setConnectionTimeout(5000);
options.setAutomaticReconnect(true);
options.setUserName(deviceId);
options.setPassword(getPassword().toCharArray());
client = new MqttAsyncClient(url, getClientId(), new MemoryPersistence());
client.setCallback(callback);

Port 1883 is a non-encrypted MQTT access port, and port 8883 is an
encrypted MQTTS access port (that uses SSL to load a certificate).
if (isSSL) {
 url = "ssl://" + serverIp + ":" + 8883; // MQTTS connection
} else {
 url = "tcp://" + serverIp + ":" + 1883; // MQTT connection
}

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 143

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html

To establish an MQTTS connection, load the SSL certificate of the server and
add the SocketFactory parameter. The DigiCertGlobalRootCA.jks file is
stored in the resources directory of the demo. It is used by the device to verify
the platform identity when the device connects to the platform. You can
download the certificate file using the link provided in Certificates.
options.setSocketFactory(getOptionSocketFactory(MqttDemo.class.getClassLoader().getResource("Digi
CertGlobalRootCA.jks").getPath()));

3. Call client.connect(options, null, new IMqttActionListener()) to initiate a
connection. The MqttConnectOptions parameter is passed.
client.connect(options, null, new IMqttActionListener()

4. The password passed by calling options.setPassword() is encrypted during
creation of MqttConnectOptions. getPassword() is used to obtain the
encrypted password.
public static String getPassword() {
 return sha256_mac(secret, getTimeStamp());
}
/* Call the SHA-256 algorithm for hash calculation. */
public static String sha256_mac(String message, String tStamp) {
 String passWord = null;
 try {
 Mac sha256_HMAC = Mac.getInstance("HmacSHA256");
 SecretKeySpec secret_key = new SecretKeySpec(tStamp.getBytes(), "HmacSHA256");
 sha256_HMAC.init(secret_key);byte[] bytes = sha256_HMAC.doFinal(message.getBytes());
 passWord = byteArrayToHexString(bytes);
 } catch (Exception e) {
 e.printStackTrace();
 }
 return passWord;

5. After the connection is established, the device becomes online.

Figure 4-15 Device online status

If the connection fails, the onFailure function executes backoff
reconnection. The example code is as follows:
@Override
public void onFailure(IMqttToken iMqttToken, Throwable throwable) {
 System.out.println("Mqtt connect fail.");

 // Backoff reconnection
 int lowBound = (int) (defaultBackoff * 0.8);
 int highBound = (int) (defaultBackoff * 1.2);
 long randomBackOff = random.nextInt(highBound - lowBound);
 long backOffWithJitter = (int) (Math.pow(2.0, (double) retryTimes)) * (randomBackOff +
lowBound);
 long waitTImeUntilNextRetry = (int) (minBackoff + backOffWithJitter) > maxBackoff ?
maxBackoff : (minBackoff + backOffWithJitter);
 System.out.println("---- " + waitTImeUntilNextRetry);
 try {
 Thread.sleep(waitTImeUntilNextRetry);
 } catch (InterruptedException e) {
 System.out.println("sleep failed, the reason is" + e.getMessage().toString());
 }
 retryTimes++;
 MqttDemo.this.connect(true);
}

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 144

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section3

Subscribing to a Topic for Receiving Commands
Only devices that subscribe to a specific topic can receive messages about the
topic published by the broker. For details on the preset topics, see Topics. For
details about the API, see Platform Delivering a Command.

// Subscribe to a topic for receiving commands.
client.subscribe(getCmdRequestTopic(), qosLevel, null, new IMqttActionListener();

getCmdRequestTopic() is used to obtain the topic for receiving commands from
the platform and subscribe to the topic.
public static String getCmdRequestTopic() {
 return "$oc/devices/" + deviceId + "/sys/commands/#";
}

Reporting Properties
Devices can report their properties to the platform. For details, see Reporting
Device Properties.

// Report JSON data. service_id must be the same as that defined in the product model.
String jsonMsg = "{\"services\": [{\"service_id\": \"Temperature\",\"properties\": {\"value\": 57}},{\"service_id
\": \"Battery\",\"properties\": {\"level\": 80}}]}";
MqttMessage message = new MqttMessage(jsonMsg.getBytes());
client.publish(getRreportTopic(), message, qosLevel, new IMqttActionListener();

The message body jsonMsg is assembled in JSON format, and service_id must be
the same as that defined in the product model. properties indicates a device
property, and 57 indicates the property value. event_time indicates the UTC time
when the device reports data. If this parameter is not specified, the system time is
used by default.

After a device or gateway is connected to the platform, you can call
MqttClient.publish(String topic,MqttMessage message) to report device
properties to the platform.

getRreportTopic() is used to obtain the topic for reporting data.
public static String getRreportTopic() {
 return "$oc/devices/" + deviceId + "/sys/properties/report";
}

Viewing Reported Data
After the main method is called, you can view the reported device property data
on the device details page. For details about the API, see Device Reporting
Properties.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 145

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html

NO TE

If no latest data is displayed on the device details page, modify the services and properties
in the product model to ensure that the reported services and properties are the same as
those defined in the product model. Alternatively, go to the Products > Model Definition
page and delete all services.

Related Resources
You can refer to the MQTT or MQTTS API Reference on the Device Side to
connect MQTT devices to the platform. You can also develop an MQTT-based
smart street light online to quickly verify whether they can interact with the IoT
platform to publish or subscribe to messages.

NO TE

Synchronous commands require device responses. For details, see Upstream Response
Parameters.

4.3.3 Python Demo Usage Guide

Overview
This topic uses Python as an example to describe how to connect a device to the
platform over MQTTS or MQTT and how to use platform APIs to report properties
and subscribe to a topic for receiving commands.

NO TE

The code snippets in this document are only examples and are for trial use only. To put
them into commercial use, obtain the IoT Device SDKs of the corresponding language for
integration by referring to Obtaining Resources.

Prerequisites
● You have installed Python by following the instructions provided in Installing

Python.
● You have installed a development tool (for example, PyCharm) by following

the instructions provided in Installing PyCharm.
● You have obtained the device access address from the IoTDA console. For

details about how to obtain the address, see Platform Connection
Information.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 146

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3002.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_00016.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_00016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3002.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0

● You have created a product and a device on the IoTDA console. For details,
see Creating a Product, Registering an Individual Device, and Registering
a Batch of Devices.

Preparations
● Installing Python

a. Go to the Python website to download and install a desired version.
(The following uses Windows OS as an example to describe how to install
Python 3.8.2.)

b. After the download is complete, run the .exe file to install Python.
c. Select Add python 3.8 to PATH (if it is not selected, you need to

manually configure environment variables), click Customize installation,
and install Python as prompted.

d. Check whether Python is installed.
Press Win+R, enter cmd, and press Enter to open the CLI. In the CLI,
enter python –V and press Enter. If the Python version is displayed, the
installation is successful.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 147

https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://www.python.org/downloads/windows/

● Installing PyCharm (If you have already installed PyCharm, skip this step.)

a. Visit the PyCharm website, select a version, and click Download.

The professional edition is recommended.
b. Run the .exe file and install PyCharm as prompted.

Importing Sample Code

Step 1 Download the QuickStart (Python).

Step 2 Run PyCharm, click Open, and select the sample code downloaded.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 148

https://www.jetbrains.com/pycharm/download/#section=windows
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(python).zip

Step 3 Import the sample code.

Description of the directories:

● IoT_device_demo: MQTT demo files
message_sample.py: Demo for devices to send and receive messages

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 149

command_sample.py: Demo for devices to respond to commands delivered
by the platform
properties_sample.py: Demo for devices to report properties

● IoT_device/client: Used for paho-mqtt encapsulation.
IoT_client_config.py: client configurations, such as the device ID and secret
IoT_client.py: MQTT-related function configurations, such as connection,
subscription, publish, and response

● IoT_device/Utils: utility methods, such as those for obtaining the timestamp
and encrypting a secret

● IoT_device/resources: Stores certificates.
DigiCertGlobalRootCA.crt.pem is used by the device to verify the platform
identity when the device connects to the platform. You can download the
certificate file using the link provided in Certificates.

● IoT_device/request: Encapsulates device properties, such as commands,
messages, and properties.

Step 4 (Optional) Install the paho-mqtt library, which is a third-party library that uses the
MQTT protocol in Python. If the paho-mqtt library has already been installed, skip
this step. You can install paho-mqtt using either of the following methods:
● Method 1: Use the pip tool to install paho-mqtt in the CLI. (The tool is already

provided when installing Python.)
In the CLI, enter pip install paho-mqtt and press Enter. If the message
Successfully installed paho-mqtt is displayed, the installation is successful. If
a message is displayed indicating that the pip command is not an internal or
external command, check the Python environment variables. See the figure
below.

● Method 2: Install paho-mqtt using PyCharm.

a. Open PyCharm, choose File > Settings > Project Interpreter, and click
the plus icon (+) on the right side to search for paho-mqtt.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 150

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section3

b. Click Install Package in the lower left corner.

----End

Establishing a Connection

To connect a device or gateway to the platform, upload the device information to
bind the device or gateway to the platform.

1. Before establishing a connection, modify the following parameters. The
IoTClientConfig class is used to configure client information.
Client configurations
client_cfg = IoTClientConfig(server_ip='iot-mqtts.cn-north-4.myhuaweicloud.com',
device_id='5e85a55f60b7b804c51ce15c_py123', secret='******', is_ssl=True)

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 151

Create a device.
iot_client = IotClient(client_cfg)

– server_ip indicates the device connection address of the platform. To
obtain this address, see Platform Connection Information. (After
obtaining the domain name, run the ping Domain name command in the
CLI to obtain the corresponding IP address.)

– device_id and secret are returned after the device is registered.
– is_ssl: True means to establish an MQTTS connection and False means to

establish an MQTT connection.
2. Call the connect method to initiate a connection.

iot_client.connect()

If the connection is successful, the following information is displayed:
 -----------------Connection successful !!!

If the connection fails, the retreat_reconnection function executes backoff
reconnection. The example code is as follows:
Backoff reconnection
def retreat_reconnection(self):
 print("---- Backoff reconnection")
 global retryTimes
 minBackoff = 1
 maxBackoff = 30
 defaultBackoff = 1
 low_bound = (int)(defaultBackoff * 0.8)
 high_bound = (int)(defaultBackoff * 1.2)
 random_backoff = random.randint(0, high_bound - low_bound)
 backoff_with_jitter = math.pow(2.0, retryTimes) * (random_backoff + low_bound)
 wait_time_until_next_retry = min(minBackoff + backoff_with_jitter, maxBackoff)
 print("the next retry time is ", wait_time_until_next_retry, " seconds")
 retryTimes += 1
 time.sleep(wait_time_until_next_retry)
 self.connect()

Subscribing to a Topic
Only devices that subscribe to a specific topic can receive messages about the
topic published by the broker. For details on the preset topics, see Topics.

The message_sample.py file provides functions such as subscribing to topics,
unsubscribing from topics, and reporting device messages.

To subscribe to a topic for receiving commands, do as follows:

 iot_client.subscribe(r'$oc/devices/' + str(self.__device_id) + r'/sys/commands/#')

If the subscription is successful, information similar to the following is displayed.
(topic indicates a custom topic, for example, Topic_1.)

 ------You have subscribed: topic

Responding to a Command
The command_sample.py file provides the function of responding to commands
delivered by the platform. For details about the API, see Platform Delivering a
Command.

Responding to commands delivered by the platform
def command_callback(request_id, command):
 # If the value of result_code is 0, the command is delivered . If the value is 1, the command fails to be
delivered.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 152

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html

 iot_client.respond_command(request_id, result_code=0)
iot_client.set_command_callback(command_callback)

Reporting Properties

Devices can report their properties to the platform. For details about the API, see
Device Reporting Properties.

The properties_sample.py file provides the functions of reporting device
properties, responding to platform settings, and querying device properties.

In the following code, the device reports properties to the platform every 10
seconds. service_property indicates a device property object. For details, see the
services_properties.py file.

Reporting properties periodically
while True:
 # Set properties based on the product model.
 service_property = ServicesProperties()
 service_property.add_service_property(service_id="Battery", property='batteryLevel', value=1)
 iot_client.report_properties(service_properties=service_property.service_property, qos=1)
 time.sleep(10)

If the reporting is successful, the reported device properties are displayed on the
device details page.

NO TE

If no latest data is displayed on the device details page, modify the services and properties
in the product model to ensure that the reported services and properties are the same as
those defined in the product model. Alternatively, go to the Products > Model Definition
page and delete all services.

Reporting a Message

Message reporting is the process in which a device reports messages to the
platform. The message_sample.py file provides the message reporting function.

Sending a message to the platform using the default topic
iot_client.publish_message('raw message: Hello Huawei cloud IoT')

If the message is reported, the following information is displayed:

 Publish success---mid = 1

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 153

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html

NO TE

Synchronous commands require device responses. For details, see Upstream Response
Parameters.

4.3.4 Android Demo Usage Guide

Overview
This topic usesAndroid as an example to describe how to connect a device to the
platform over MQTTS or MQTT and how to use platform APIs to report properties
and subscribe to a topic for receiving commands.

NO TE

The code snippets in this document are only examples and are for trial use only. To put
them into commercial use, obtain the IoT Device SDKs of the corresponding language for
integration by referring to Obtaining Resources.

Prerequisites
● You have installed Android Studio. If not, install Android Studio by following

the instructions provided on the Android Studio website and then install the
JDK.

● You have obtained the device access address from the IoTDA console. For
details about how to obtain the address, see Platform Connection
Information.

● You have created a product and a device on the IoTDA console. For details,
see Creating a Product, Registering an Individual Device, and Registering
a Batch of Devices.

Preparations
● Install Android Studio.

Go to the Android Studio website to download and install a desired version.
The following uses Android Studio 3.5 running on 64-bit Windows as an
example.

● Install the JDK. You can also use the built-in JDK of the IDE.

a. Go to the Oracle website to download a desired version. The following
uses JDK 8 for Windows x64 as an example.

b. After the download is complete, run the installation file and install the
JDK as prompted.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 154

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3002.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://developer.android.google.cn/studio/#downloads
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://developer.android.google.cn/studio/#downloads
https://www.oracle.com/java/technologies/javase-downloads.html

Importing Sample Code

Step 1 Download the sample code quickStart(Android).

Step 2 Run Android Studio, click Open, and select the sample code downloaded.

Step 3 Import the sample code.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 155

https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/mqttdemo(android).zip

Description of the directories:

● manifests: configuration file of the Android project
● java: Java code of the project

MainActivity: demo UI class
ConnectUtils: MQTT connection auxiliary class

● asset: native file of the project
DigiCertGlobalRootCA.bks: certificate used by the device to verify the
platform identity. It is used for login authentication when the device connects
to the platform.

● res: project resource file (image, layout, and character string)
● gradle: global Gradle build script of the project
● libs: third-party JAR packages used in the project

org.eclipse.paho.android.service-1.1.0.jar: component for Android to start
the background service component to publish and subscribe to messages
org.eclipse.paho.client.mqttv3-1.2.0.jar: MQTT java client component

Step 4 (Optional) Understand the key project configurations in the demo. (By default,
you do not need to modify the configurations.)
● AndroidManifest.xml: Add the following information to support the MQTT

service.
<service android:name="org.eclipse.paho.android.service.MqttService" />

● build.gradle: Add dependencies and import the JAR packages required for the
two MQTT connections in the libs directory. (You can also add the JAR
package to the website for reference.)
implementation files('libs/org.eclipse.paho.android.service-1.1.0.jar')
implementation files('libs/org.eclipse.paho.client.mqttv3-1.2.0.jar')

----End

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 156

UI Display

1. The MainActivity class provides UI display. Enter the device ID and secret,
which are obtained after the device is registered on the IoTDA console or by
calling the API Creating a Device.

2. In the example, the domain name accessed by the device is used by default.
(The domain name must match and be used together with the corresponding
certificate file during SSL-encrypted access.)
private final static String IOT_PLATFORM_URL = "iot-mqtts.cn-north-4.myhuaweicloud.com";

3. Select SSL encryption or no encryption when establishing a connection on the
device side and set the QoS mode to 0 or 1. Currently, QoS2 is not supported.
For details, see Constraints.
checkbox_mqtt_connet_ssl.setOnCheckedChangeListener(new
CompoundButton.OnCheckedChangeListener() {
 @Override
 public void onCheckedChanged(CompoundButton buttonView, boolean isChecked) {
 if (isChecked) {
 isSSL = true;
 checkbox_mqtt_connect_ssl.setText ("SSL encryption");
 } else {
 isSSL = false;
 checkbox_mqtt_connect_ssl.setText ("no SSL encryption");
 }
 }
})

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 157

Establishing a Connection
To connect a device or gateway to the platform, upload the device information to
bind the device or gateway to the platform.

1. Call the MainActivity class to establish an MQTT or MQTTS connection. By
default, MQTT uses port 1883, and MQTTS uses port 8883 (a certificate must
be loaded).
if (isSSL) {
 editText_mqtt_log.append("Starting to establish an MQTTS connection" + "\n");
 serverUrl = "ssl://" + IOT_PLATFORM_URL + ":8883";
} else {
 editText_mqtt_log.append("Starting to establish an MQTT connection" + "\n");
 serverUrl = "tcp://" + IOT_PLATFORM_URL + ":1883";
}

2. Call the getMqttsCertificate method in the ConnectUtils class to load an
SSL certificate. This step is required only if an MQTTS connection is
established.
DigiCertGlobalRootCA.bks: certificate used by the device to verify the
platform identity for login authentication when the device connects to the
platform. You can download the certificate file using the link provided in
Certificates.
SSLContext sslContext = SSLContext.getInstance("SSL");
KeyStore keyStore = KeyStore.getInstance("bks");
The keyStore.load(context.getAssets().open("DigiCertGlobalRootCA.bks"), null);// Load the certificate
in the libs directory.
TrustManagerFactory trustManagerFactory = TrustManagerFactory.getInstance("X509");
trustManagerFactory.init(keyStore);
TrustManager[] trustManagers = trustManagerFactory.getTrustManagers();
sslContext.init(null, trustManagers, new SecureRandom());
sslSocketFactory = sslContext.getSocketFactory();

3. Call the intitMqttConnectOptions method in the MainActivity class to
initialize MqttConnectOptions. The recommended heartbeat interval for
MQTT connections is 120 seconds. For details, see Constraints.
mqttAndroidClient = new MqttAndroidClient(mContext, serverUrl, clientId);
private MqttConnectOptions intitMqttConnectOptions(String currentDate) {
 String password =
ConnectUtils.sha256_HMAC(editText_mqtt_device_connect_password.getText().toString(),
currentDate);
 MqttConnectOptions mqttConnectOptions = new MqttConnectOptions();
 mqttConnectOptions.setAutomaticReconnect(true);
 mqttConnectOptions.setCleanSession(true);
 mqttConnectOptions.setKeepAliveInterval(120);
 mqttConnectOptions.setConnectionTimeout(30);
 mqttConnectOptions.setUserName(editText_mqtt_device_connect_deviceId.getText().toString());
 mqttConnectOptions.setPassword(password.toCharArray());
 return mqttConnectOptions;
}

4. Call the connect method in the MainActivity class to set up a connection and
the setCallback method to process the message returned after the
connection is set up.
mqttAndroidClient.connect(mqttConnectOptions, null, new IMqttActionListener()
mqttAndroidClient.setCallback(new MqttCallBack4IoTHub());

If the connection fails, the onFailure function in initMqttConnects executes
backoff reconnection. Sample code:

@Override
public void onFailure(IMqttToken asyncActionToken, Throwable exception) {
 exception.printStackTrace();
 Log.e(TAG, "Fail to connect to: " + exception.getMessage());
 editText_mqtt_log.append("Failed to set up the connection: "+ exception.getMessage() + "\n");

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 158

 // Backoff reconnection
 int lowBound = (int) (defaultBackoff * 0.8);
 int highBound = (int) (defaultBackoff * 1.2);
 long randomBackOff = random.nextInt(highBound - lowBound);
 long backOffWithJitter = (int) (Math.pow(2.0, (double) retryTimes)) * (randomBackOff + lowBound);
 long waitTImeUntilNextRetry = (int) (minBackoff + backOffWithJitter) > maxBackoff ? maxBackoff :
(minBackoff + backOffWithJitter);
 try {
 Thread.sleep(waitTImeUntilNextRetry);
 } catch (InterruptedException e) {
 System.out.println("sleep failed, the reason is" + e.getMessage().toString());
 }
 retryTimes++;
 MainActivity.this.initMqttConnects();
}

Subscribing to a Topic
Only devices that subscribe to a specific topic can receive messages about the
topic published by the broker. For details on the preset topics, see Topics.

The MainActivity class provides the methods for delivering subscription
commands to topics, subscribing to topics, and unsubscribing from topics.

String mqtt_sub_topic_command_json = String.format("$oc/devices/%s/sys/commands/#",
editText_mqtt_device_connect_deviceId.getText().toString());
mqttAndroidClient.subscribe(getSubscriptionTopic(), qos, null, new IMqttActionListener()
mqttAndroidClient.unsubscribe(getSubscriptionTopic(), null, new IMqttActionListener()

If the connection is established, you can subscribe to the topic using a callback
function.

mqttAndroidClient.connect(mqttConnectOptions, null, new IMqttActionListener() {
 @Overridepublic void onSuccess(IMqttToken asyncActionToken) {

 subscribeToTopic();
}

After the connection is established, the following information is displayed in the
log area of the application page:

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 159

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html

Reporting Properties
Devices can report their properties to the platform. For details about the API, see
Device Reporting Properties.

The MainActivity class implements the property reporting topic and property
reporting.

String mqtt_report_topic_json = String.format("$oc/devices/%s/sys/properties/report",
editText_mqtt_device_connect_deviceId.getText().toString());
MqttMessage mqttMessage = new MqttMessage();
mqttMessage.setPayload(publishMessage.getBytes());
mqttAndroidClient.publish(publishTopic, mqttMessage);

If the reporting is successful, the reported device properties are displayed on the
device details page.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 160

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html

NO TE

If no latest data is displayed on the device details page, modify the services and properties
in the product model to ensure that the reported services and properties are the same as
those defined in the product model. Alternatively, go to the Products > Model Definition
page and delete all services.

Receiving a Command
The MainActivity class provides the methods for receiving commands delivered by
the platform. After an MQTT connection is established, you can deliver commands
on the device details page of the IoTDA console or by using the demo on the
application side. For example, deliver a command carrying the parameter name
command and parameter value 5. After the command is delivered, a result is
received using the MQTT callback.

private final class MqttCallBack4IoTHub implements MqttCallbackExtended {

 @Overridepublic void messageArrived(String topic, MqttMessage message) throws Exception {
 Log.i(TAG, "Incoming message: " + new String(message.getPayload(), StandardCharsets.UTF_8));
 editText_mqtt_log.append("MQTT receives the delivered command: " + message + "\n")
 }

On the device details page, you can view the command delivery status. In this
example, timeout is displayed because this demo does not return a response to
the platform.

If the property reporting and command receiving are successful, the following
information is displayed in the log area of the application:

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 161

https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

4.3.5 C Demo Usage Guide

Overview
This topic uses C as an example to describe how to connect a device to the
platform over MQTTS or MQTT and how to use platform APIs to report properties
and subscribe to a topic for receiving commands.

NO TE

The code snippets in this document are only examples and are for trial use only. To put
them into commercial use, obtain the IoT Device SDKs of the corresponding language for
integration by referring to Obtaining Resources.

Prerequisites
● You have installed the Linux operating system (OS) and GCC (4.8 or later).
● You have obtained OpenSSL (required in MQTTS scenarios) and Paho library

dependencies.
● You have obtained the device access address from the IoTDA console. For

details, see Platform Connection Information.
● You have created a product and a device on the IoTDA console. For details,

see Creating a Product, Registering an Individual Device, and Registering
a Batch of Devices.

Preparations
● Compiling the OpenSSL library

a. Visit the OpenSSL website (https://www.openssl.org/source/), download
the latest OpenSSL version (for example, openssl-1.1.1d.tar.gz), upload it

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 162

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3002.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://www.openssl.org/source/

to the Linux compiler (for example, to the /home/test directory), and run
the following command to decompress the package:
tar -zxvf openssl-1.1.1d.tar.gz

b. Generate a makefile.
Run the following command to access the OpenSSL source code
directory:
cd openssl-1.1.1d

Run the following configuration command:
./config shared --prefix=/home/test/openssl --openssldir=/home/test/openssl/ssl

In this command, prefix is the installation directory, openssldir is the
configuration file directory, and shared is used to generate a dynamic-
link library (.so library).
If an exception occurs during the compilation, add no-asm to the
configuration command (indicating that the assembly code is not used).
./config no-asm shared --prefix=/home/test/openssl --openssldir=/home/
test/openssl/ssl

c. Generate library files.
Run the following command in the OpenSSL source code directory:
make depend

Run the following command for compilation:
make

Install OpenSSL.
make install

Find the lib directory in home/test/openssl under the OpenSSL
installation directory.
The library files libcrypto.so.1.1, libssl.so.1.1, libcrypto.so and libssl.so
are generated. Copy these files to the lib folder of the demo and copy the
content in /home/test/openssl/include/openssl to include/openssl of
the demo.

Note: Some compilation tools are 32-bit. If these tools are used on a 64-
bit Linux computer, delete -m64 from the makefile before the
compilation.

● Compiling the Eclipse Paho library file

a. Visit https://github.com/eclipse/paho.mqtt.c to download the source
code paho.mqtt.c.

b. Decompress the package and upload it to the Linux compiler.
c. Modify the makefile.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 163

https://github.com/eclipse/paho.mqtt.c

i. Run the following command to edit the makefile:
vim Makefile

ii. Search for the string.
/DOXYGEN_COMMAND =

iii. Add the following two lines (customized OpenSSL header files and
library files) under /DOXYGEN_COMMAND =doxygen:
CFLAGS += -I/home/test/openssl/include
LDFLAGS += -L/home/test/openssl/lib -lrt

iv. Replace the OpenSSL addresses of CCDLAGS_SO, LDFLAGS_CS,
LDFLAGS_AS and FLAGS_EXES to the actual ones.

d. Start the compilation.

i. Run the following command:
make clean

ii. Run the following command:
make

e. After the compilation is complete, you can view the libraries that are
compiled in the build/output directory.

f. Copy the Paho library file.

Currently, only libpaho-mqtt3as is used in the SDK. Copy the libpaho-
mqtt3as.so and libpaho-mqtt3as.so.1 files to the lib folder of the demo.
Go back to the Paho source code directory, and copy MQTTAsync.h,
MQTTClient.h, MQTTClientPersistence.h, MQTTProperties.h,
MQTTReasonCodes.h, and MQTTSubscribeOpts.h in the src directory to
the include/base directory of the demo.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 164

CA UTION

Some Paho versions have the MQTTExportDeclarations.h header file.
You are advised to add all MQTT-related header files to the folder.

Importing Sample Code
Step 1 Download the sample code quickStart(C).

Step 2 Copy the code to the Linux running environment. The following figure shows the
code file hierarchy.

Description of the directories:

● src: source code directory
mqtt_c_demo: core source code of the demo
util/string_util.c: utility resource file

● conf: certificate directory
rootcert.pem is used by the device to verify the platform identity when the
device connects to the platform. For not basic edition instance, copy the
content of the c/ap-southeast-1-device-client-rootcert.pem file in the
certificate file to the conf/rootcert.pem file.

● include: header files
base: dependent Paho header files
openssl: dependent OpenSSL header files
util: header files of the dependent tool resources

● lib: dependent library file
libcrypto.so*/libssl.so*: OpenSSL library file
libpaho-mqtt3as.so*: Paho library file

● Makefile: Makefile

----End

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 165

https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(c).zip
https://iot-developer.obs.cn-north-4.myhuaweicloud.com/cert/v2/ap-southeast-1-deviceCert-standard-instance.zip

Establishing a Connection

To connect a device or gateway to the platform, upload the device information to
bind the device or gateway to the platform.

1. Set parameters.
char *uri = "ssl://iot-mqtts.cn-north-4.myhuaweicloud.com:8883";
int port = 8883;
char *username = "5ebac693352cfb02c567ec88_test2345"; //deviceId
char *password = "602d6cc77d87271be8f462f52d27d818";

Note: MQTTS uses port 8883 for access. If MQTT is used for access, the URL is
tcp://Domain name space:1883 and the port is 1883. For details about how
to obtain the domain name space, see Platform Connection Information.
The default heartbeat interval is 120 seconds. To change it, modify the
keepAliveInterval parameter. For details about the heartbeat interval range,
see Constraints.

2. Start the connection.
– Add -lm to the end of the 15th line in Makefile and run the make

command for compilation. Delete -m64 from the makefile in a 32-bit
OS.

– Run export LD_LIBRARY_PATH=./lib/ to load the library file.
– Run ./MQTT_Demo.o.

//connect
int ret = mqtt_connect();
if (ret != 0) {
 printf("connect failed, result %d\n", ret);
}

3. If the connection is successful, the message "connect success" is displayed.
The device is also displayed as Online on the console.

If the connection fails, the mqtt_connect_failure function executes
backoff reconnection. The example code is as follows:
void mqtt_connect_failure(void *context, MQTTAsync_failureData *response) {
 retryTimes++;
 printf("connect failed: messageId %d, code %d, message %s\n", response->token, response->code,
response->message);
 // Backoff reconnection
 int lowBound = defaultBackoff * 0.8;
 int highBound = defaultBackoff * 1.2;
 int randomBackOff = rand() % (highBound - lowBound + 1);
 long backOffWithJitter = (int)(pow(2.0, (double)retryTimes) - 1) * (randomBackOff + lowBound);
 long waitTImeUntilNextRetry = (int)(minBackoff + backOffWithJitter) > maxBackoff ? (minBackoff
+ backOffWithJitter) : maxBackoff;

 TimeSleep(waitTImeUntilNextRetry);

 //connect
 int ret = mqtt_connect();
 if (ret != 0) {
 printf("connect failed, result %d\n", ret);
 }
}

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 166

Subscribing to a Topic
Only devices that subscribe to a specific topic can receive messages about the
topic published by the broker. For details on the preset topics, see Topics.

Subscribe to a topic.

//subcribe
char *cmd_topic = combine_strings(3, "$oc/devices/", username, "/sys/commands/#");
ret = mqtt_subscribe(cmd_topic);
free(cmd_topic);
cmd_topic = NULL;
if (ret < 0) {
 printf("subscribe topic error, result %d\n", ret);
}

If the subscription is successful, the message "subscribe success" is displayed in the
demo.

Reporting Properties
Devices can report their properties to the platform. For details, see Reporting
Device Properties.

//publish data
char *payload = "{\"services\":[{\"service_id\":\"parameter\",\"properties\":{\"Load\":\"123\",\"ImbA_strVal
\":\"456\"}}]}";
char *report_topic = combine_strings(3, "$oc/devices/", username, "/sys/properties/report");
ret = mqtt_publish(report_topic, payload);
free(report_topic);
report_topic = NULL;
if (ret < 0) {
 printf("publish data error, result %d\n", ret);
}

If the property reporting is successful, the message "publish success" is displayed
in the demo.

The reported properties are displayed on the device details page.

Figure 4-16 Device details page

NO TE

If no latest data is displayed on the device details page, modify the services and properties
in the product model to ensure that the reported services and properties are the same as
those defined in the product model. Alternatively, go to the Products > Model Definition
page and delete all services.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 167

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html

Receiving a Command

After subscribing to a command topic, you can deliver a synchronous command on
the console. For details, see Command Delivery to an Individual MQTT Device.

If the command delivery is successful, the command received is displayed in the
demo:

The code for receiving commands in the demo is as follows:

//receive message from the server
int mqtt_message_arrive(void *context, char *topicName, int topicLen, MQTTAsync_message *message) {
 printf("mqtt_message_arrive() success, the topic is %s, the payload is %s \n", topicName, message-
>payload);
 return 1; //can not return 0 here, otherwise the message won't update or something wrong would
happen
}

NO TE

Synchronous commands require device responses. For details, see Upstream Response
Parameters.

4.3.6 C# Demo Usage Guide

Overview

This topic uses C# as an example to describe how to connect a device to the
platform over MQTTS or MQTT and how to use platform APIs to report properties
and subscribe to a topic for receiving commands.

NO TE

The code snippets in this document are only examples and are for trial use only. To put
them into commercial use, obtain the IoT Device SDKs of the corresponding language for
integration by referring to Obtaining Resources.

Prerequisites
● You have installed Microsoft Visual Studio. If not, follow the instructions

provided in Install Microsoft Visual Studio.
● You have obtained the device access address from the IoTDA console. For

details, see Platform Connection Information.
● You have created a product and a device on the IoTDA console. For details,

see Create a Product, Registering an Individual Device, and Registering a
Batch of Devices.

Preparations
● Go to the Microsoft website to download and install Microsoft Visual Studio

of a desired version. (The following uses Windows 64-bit, Microsoft Visual
Studio 2017, and .NET Framework 4.5.1 as examples.)

● After the download is complete, run the installation file and install Microsoft
Visual Studio as prompted.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 168

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0339.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3002.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://visualstudio.microsoft.com/

Importing Sample Code

Step 1 Download the sample code quickStart(C#).

Step 2 Run Microsoft Visual Studio 2017, click Open Project/Solution, and select the
sample code downloaded.

Step 3 Import the sample code.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 169

https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(cSharp).zip

Description of the directories:

● App.config: configuration file containing the server address and device
information

● C#: C# code of the project

EncryptUtil.cs: auxiliary class for device key encryption

FrmMqttDemo.cs: window UI

Program.cs: entry for starting the demo

● dll: third-party libraries used in the project

MQTTnet v3.0.11 is a high-performance, open-source .NET library based on
MQTT. It supports both MQTT servers and clients. The reference library files
include MQTTnet.dll.

MQTTnet.Extensions.ManagedClient v3.0.11 is an extension library that uses
MQTTnet to provide additional functions for the managed MQTT client.

Step 4 Set the project parameters in the demo.

● App.config: Set the server address, device ID, and device secret. When the
demo is started, the information is automatically written to the demo main
page.

<add key="serverUri" value="serveruri"/>

<add key="deviceId" value="deviceid"/>

<add key="deviceSecret" value="secret"/>

<add key="PortIsSsl" value="8883"/>

<add key="PortNotSsl" value="1883"/>

----End

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 170

UI Display

1. The FrmMqttDemo class provides a UI. By default, the FrmMqttDemo class
automatically obtains the server address, device ID, and device secret from the
App.config file after startup. Set the parameters based on the actual device
information.
– Server address: domain name. For details on how to obtain the domain

name, see Platform Connection Information.
– Device ID and secret: obtained after the device is registered on the

IoTDA console or the API Creating a Device is called.
2. In the example, enter the server address. (The server address must match and

be used together with the corresponding certificate file during SSL-encrypted
access.)
<add key="serverUri" value="iot-mqtts.cn-north-4.myhuaweicloud.com"/>;

3. Select SSL encryption or no encryption when establishing a connection on the
device side and set the QoS mode to 0 or 1. Currently, QoS 2 is not supported.
For details, see Constraints.

Establishing a Connection
To connect a device or gateway to the platform, upload the device information to
bind the device or gateway to the platform.

1. The FrmMqttDemo class provides methods for establishing MQTT or MQTTS
connections. By default, MQTT uses port 1883, and MQTTS uses port 8883. (In
the case of MQTTS connections, you must load the
DigiCertGlobalRootCA.crt.pem certificate for verifying the platform identity.
This certificate is used for login authentication when the device connects to
the platform. You can download the certificate file from Obtaining
Resources.) Call the ManagedMqttClientOptionsBuilder class to set the
initial KeepAlivePeriod. The recommended heartbeat interval for MQTT
connections is 120 seconds. For details, see Constraints.
int portIsSsl = int.Parse(ConfigurationManager.AppSettings["PortIsSsl"]);
int portNotSsl = int.Parse(ConfigurationManager.AppSettings["PortNotSsl"]);

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 171

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html

if (client == null)
{
 client = new MqttFactory().CreateManagedMqttClient();
}

string timestamp = DateTime.Now.ToString("yyyyMMddHH");
string clientID = txtDeviceId.Text + "_0_0_" + timestamp;

// Encrypt passwords using HMAC SHA256.
string secret = string.Empty;
if (!string.IsNullOrEmpty(txtDeviceSecret.Text))
{
 secret = EncryptUtil.HmacSHA256(txtDeviceSecret.Text, timestamp);
}

// Check whether the connection is secure.
if (!cbSSLConnect.Checked)
{
 options = new ManagedMqttClientOptionsBuilder()
 .WithAutoReconnectDelay(TimeSpan.FromSeconds(RECONNECT_TIME))
 .WithClientOptions(new MqttClientOptionsBuilder()
 .WithTcpServer(txtServerUri.Text, portNotSsl)
 .WithCommunicationTimeout(TimeSpan.FromSeconds(DEFAULT_CONNECT_TIMEOUT))
 .WithCredentials(txtDeviceId.Text, secret)
 .WithClientId(clientID)
 .WithKeepAlivePeriod(TimeSpan.FromSeconds(DEFAULT_KEEPLIVE))
 .WithCleanSession(false)
 .WithProtocolVersion(MqttProtocolVersion.V311)
 .Build())
 .Build();
}
else
{
 string caCertPath = Environment.CurrentDirectory + @"\certificate\rootcert.pem";
 X509Certificate2 crt = new X509Certificate2(caCertPath);

 options = new ManagedMqttClientOptionsBuilder()
 .WithAutoReconnectDelay(TimeSpan.FromSeconds(RECONNECT_TIME))
 .WithClientOptions(new MqttClientOptionsBuilder()
 .WithTcpServer(txtServerUri.Text, portIsSsl)
 .WithCommunicationTimeout(TimeSpan.FromSeconds(DEFAULT_CONNECT_TIMEOUT))
 .WithCredentials(txtDeviceId.Text, secret)
 .WithClientId(clientID)
 .WithKeepAlivePeriod(TimeSpan.FromSeconds(DEFAULT_KEEPLIVE))
 .WithCleanSession(false)
 .WithTls(new MqttClientOptionsBuilderTlsParameters()
 {
 AllowUntrustedCertificates = true,
 UseTls = true,
 Certificates = new List<X509Certificate> { crt },
 CertificateValidationHandler = delegate { return true; },
 IgnoreCertificateChainErrors = false,
 IgnoreCertificateRevocationErrors = false
 })
 .WithProtocolVersion(MqttProtocolVersion.V311)
 .Build())
 .Build();
}

2. Call the StartAsync method in the FrmMqttDemo class to set up a
connection. After the connection is set up, the OnMqttClientConnected is
called to print connection success logs.
Invoke((new Action(() =>
{
 ShowLogs($"{"try to connect to server " + txtServerUri.Text}{Environment.NewLine}");
})));

if (client.IsStarted)
{

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 172

 await client.StopAsync();
}

// Register an event.
client.ApplicationMessageProcessedHandler = new
ApplicationMessageProcessedHandlerDelegate(new
Action<ApplicationMessageProcessedEventArgs>(ApplicationMessageProcessedHandlerMethod)); //
Called when a message is published.

client.ApplicationMessageReceivedHandler = new
MqttApplicationMessageReceivedHandlerDelegate(new
Action<MqttApplicationMessageReceivedEventArgs>(MqttApplicationMessageReceived)); // Called
when a command is delivered.

client.ConnectedHandler = new MqttClientConnectedHandlerDelegate(new
Action<MqttClientConnectedEventArgs>(OnMqttClientConnected)); // Called when a connection is set
up.

Callback function when the client.DisconnectedHandler = new
MqttClientDisconnectedHandlerDelegate(new
Action<MqttClientDisconnectedEventArgs>(OnMqttClientDisconnected)); // Called when a connection
is released.

// Connect to the platform.
await client.StartAsync(options);

If the connection fails, the OnMqttClientDisconnected function executes
backoff reconnection. Sample code:
private void OnMqttClientDisconnected(MqttClientDisconnectedEventArgs e)
{
 try {
 Invoke((new Action(() =>
 {
 ShowLogs("mqtt server is disconnected" + Environment.NewLine);

 txtSubTopic.Enabled = true;
 btnConnect.Enabled = true;
 btnDisconnect.Enabled = false;
 btnPublish.Enabled = false;
 btnSubscribe.Enabled = false;
 })));

 if (cbReconnect.Checked)
 {
 Invoke((new Action(() =>
 {
 ShowLogs("reconnect is starting" + Environment.NewLine);
 })));

 // Backoff reconnection
 int lowBound = (int)(defaultBackoff * 0.8);
 int highBound = (int)(defaultBackoff * 1.2);
 long randomBackOff = random.Next(highBound - lowBound);
 long backOffWithJitter = (int)(Math.Pow(2.0, retryTimes)) * (randomBackOff + lowBound);
 long waitTImeUtilNextRetry = (int)(minBackoff + backOffWithJitter) > maxBackoff ?
maxBackoff : (minBackoff + backOffWithJitter);

 Invoke((new Action(() =>
 {
 ShowLogs("next retry time: " + waitTImeUtilNextRetry + Environment.NewLine);
 })));

 Thread.Sleep((int)waitTImeUtilNextRetry);

 retryTimes++;

 Task.Run(async () => { await ConnectMqttServerAsync(); });
 }
 }

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 173

 catch (Exception ex)
 {
 Invoke((new Action(() =>
 {
 ShowLogs("mqtt demo error: " + ex.Message + Environment.NewLine);
 })));
 }
}

Subscribing to a Topic
Only devices that subscribe to a specific topic can receive messages about the
topic published by the broker. For details on the preset topics, see Topics.

The FrmMqttDemo class provides the method for delivering subscription
commands to topics.

List<MqttTopicFilter> listTopic = new List<MqttTopicFilter>();

var topicFilterBulderPreTopic = new MqttTopicFilterBuilder().WithTopic(topic).Build();
listTopic.Add(topicFilterBulderPreTopic);

// Subscribe to a topic.
client.SubscribeAsync(listTopic.ToArray()).Wait();

After the connection is established and a topic is subscribed, the following
information is displayed in the log area on the home page of the demo:

Receiving a Command
The FrmMqttDemo class provides the method for receiving commands delivered
by the platform. After an MQTT connection is established and a topic is
subscribed, you can deliver a command on the device details page of the IoTDA
console or by using the demo on the application side. After the command is
delivered, the MQTT callback receives the command delivered by the platform.

private void MqttApplicationMessageReceived(MqttApplicationMessageReceivedEventArgs e)
{
 Invoke((new Action(() =>
 {

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 174

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

 ShowLogs($"received message is {Encoding.UTF8.GetString(e.ApplicationMessage.Payload)}
{Environment.NewLine}");

 string msg = "{\"result_code\": 0,\"response_name\": \"COMMAND_RESPONSE\",\"paras\": {\"result\":
\"success\"}}";

 string topic = "$oc/devices/" + txtDeviceId.Text + "/sys/commands/response/request_id=" +
e.ApplicationMessage.Topic.Split('=')[1];

 ShowLogs($"{"response message msg = " + msg}{Environment.NewLine}");

 var appMsg = new MqttApplicationMessage();
 appMsg.Payload = Encoding.UTF8.GetBytes(msg);
 appMsg.Topic = topic;
 appMsg.QualityOfServiceLevel = int.Parse(cbOosSelect.SelectedValue.ToString()) == 0 ?
MqttQualityOfServiceLevel.AtMostOnce : MqttQualityOfServiceLevel.AtLeastOnce;
 appMsg.Retain = false;

 // Return the upstream response.
 client.PublishAsync(appMsg).Wait();
 })));
}

For example, deliver a command carrying the parameter name
SmokeDetectorControl: SILENCE and parameter value 50.

Figure 4-17 Synchronous command delivery

After the command is delivered, the following information is displayed on the
demo page:

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 175

Publishing a Topic
Publishing a topic means that a device proactively reports its properties or
messages to the platform. For details, see the API Device Reporting Properties.

The FrmMqttDemo class implements the property reporting topic and property
reporting.

var appMsg = new MqttApplicationMessage();
appMsg.Payload = Encoding.UTF8.GetBytes(inputString);
appMsg.Topic = topic;
appMsg.QualityOfServiceLevel = int.Parse(cbOosSelect.SelectedValue.ToString()) == 0 ?
MqttQualityOfServiceLevel.AtMostOnce : MqttQualityOfServiceLevel.AtLeastOnce;
appMsg.Retain = false;

// Return the upstream response.
client.PublishAsync(appMsg).Wait();

After a topic is published, the following information is displayed on the demo
page:

If the reporting is successful, the reported device properties are displayed on the
device details page.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 176

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html

NO TE

If no latest data is displayed on the device details page, modify the services and properties
in the product model to ensure that the reported services and properties are the same as
those defined in the product model. Alternatively, go to the Products > Model Definition
page and delete all services.

NO TE

Synchronous commands require device responses. For details, see Upstream Response
Parameters.

4.3.7 Node.js Demo Usage Guide

Overview
This topic uses Node.js as an example to describe how to connect a device to the
platform over MQTTS or MQTT and how to use platform APIs to report properties
and subscribe to a topic for receiving commands.

NO TE

The code snippets in this document are only examples and are for trial use only. To put
them into commercial use, obtain the IoT Device SDKs of the corresponding language for
integration by referring to Obtaining Resources.

Prerequisites
● You have installed Node.js by following the instructions provided in Install

Node.js.
● You have obtained the device access address from the IoTDA console. For

details, see Platform Connection Information.
● You have created a product and a device on the IoTDA console. For details,

see Creating a Product, Registering an Individual Device, and Registering
a Batch of Devices.

Preparations
1. Go to the Node.js website to download and install a desired version. The

following uses Windows 64-bit and Node.js v12.18.0 (npm 6.14.4) as an
example.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 177

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3002.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0032.html
https://nodejs.org/en/download/

2. After the download is complete, run the installation file and install Node.js as
prompted.

3. Verify that the installation is successful.
Press Win+R, enter cmd, and press Enter. The command-line interface (CLI) is
displayed.
Enter node -v and press Enter. The Node.js version is displayed. Enter npm -v.
If any version information is displayed, the installation is successful.

Importing Sample Code

Step 1 Download the sample code quickStart(Node.js) and decompress the package.

Step 2 Press Win+R, enter cmd, and press Enter to open the CLI. Run the following
commands to install the global module:

npm install mqtt -g: This command is used to install the MQTT protocol module.

npm install crypto-js -g: This command is used to install the device secret
cryptographic algorithm module.

npm install fs -g: This command is used to load the platform certificate.

Step 3 Find the directory where the package is decompressed.

Code directory:

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 178

https://obs-pipeline.obs.cn-north-4.myhuaweicloud.com/sdkDeploy/quickStart/quickStart%28nodejs%29.zip

● DigiCertGlobalRootCA.crt.pem: platform certificate file

● MqttDemo.js: Node.js source code for MQTT or MQTTS connection to the
platform, property reporting, and command delivery.

Step 4 Set the project parameters in the demo. In MqttDemo.js, set the server address,
device ID, and device secret for connecting to the device registered on the console
when the demo is started.

● Server address: domain name. For details on how to obtain the server address,
see Platform Connection Information. The server address must match and
be used together with the corresponding certificate file during SSL-encrypted
access.

● Device ID and secret: obtained after the device is registered on the IoTDA
console or the API Creating a Device is called.

var TRUSTED_CA = fs.readFileSync("DigiCertGlobalRootCA.crt.pem");// Obtain a certificate.

// MQTT connection address of the platform
var serverUrl = "****"; // Enter the access address of the platform that the device is connected to.
var deviceId = "****";// Enter the ID of the device registered with the platform.
var secret = "****";// Enter the secret of the device registered with the platform.
var timestamp = dateFormat("YYYYmmddHH", new Date());

var propertiesReportJson = {'services':[{'properties':
{'alarm':1,'temperature':12.670784,'humidity':18.37673,'smokeConcentration':19.97906},'service_id':'smokeDet
ector','event_time':null}]};
var responseReqJson = {'result_code': 0,'response_name': 'COMMAND_RESPONSE','paras': {'result': 'success'}};

Step 5 Select different options from mqtt.connect(options) to determine whether to
perform SSL encryption during connection establishment on the device. You are
advised to use the default MQTTS connection.
// MQTTS connection
var options = {
 host: serverUrl,
 port: 8883,
 clientId: getClientId(deviceId),
 username: deviceId,
 password:HmacSHA256(secret, timestamp).toString(),
 ca: TRUSTED_CA,
 protocol: 'mqtts',
 rejectUnauthorized: false,
 keepalive: 120,
 reconnectPeriod: 10000,
 connectTimeout: 30000
}

// MQTT connection is insecure and is not recommended.
var option = {
 host: serverUrl,
 port: 1883,
 clientId: getClientId(deviceId),
 username: deviceId,
 password: HmacSHA256(secret, timestamp).toString(),
 keepalive: 120,
 reconnectPeriod: 10000,
 connectTimeout: 30000
 //protocol: 'mqtts'
 //rejectUnauthorized: false
}

// By default, options is used for secure connection.
var client = mqtt.connect(options);

----End

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 179

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html

Starting the Demo

To connect a device or gateway to the platform, upload the device information to
bind the device or gateway to the platform.

1. This demo provides methods such as establishing an MQTT or MQTTS
connection. By default, MQTT uses port 1883, and MQTTS uses port 8883. (In
the case of MQTTS connections, you must load the certificate for verifying the
platform identity. The certificate is used for login authentication when the
device connects to the platform.) Call the mqtt.connect(options) method to
establish an MQTT connection.
var client = mqtt.connect(options);

client.on('connect', function () {
 log("connect to mqtt server success, deviceId is " + deviceId);
 // Subscribe to a topic.
 subScribeTopic();
 // Publish a message.
 publishMessage();
})

// Respond to the command.
client.on('message', function (topic, message) {
 log('received message is ' + message.toString());

 var jsonMsg = responseReq;
 client.publish(getResponseTopic(topic.toString().split("=")[1]), jsonMsg);
 log('responsed message is ' + jsonMsg);
})

Find the Node.js demo source code directory, modify key project parameters,
and start the demo.

Before the demo is started, the device is in the offline state.

After the demo is started, the device status changes to online.

If the connection fails, the reconnect function executes backoff
reconnection. The example code is as follows:

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 180

client.on('reconnect', () => {

 log("reconnect is starting");

 // Backoff reconnection
 var lowBound = Number(defaultBackoff)*Number(0.8);
 var highBound = Number(defaultBackoff)*Number(1.2);

 var randomBackOff = parseInt(Math.random()*(highBound-lowBound+1),10);

 var backOffWithJitter = (Math.pow(2.0, retryTimes)) * (randomBackOff + lowBound);

 var waitTImeUtilNextRetry = (minBackoff + backOffWithJitter) > maxBackoff ? maxBackoff :
(minBackoff + backOffWithJitter);

 client.options.reconnectPeriod = waitTImeUtilNextRetry;

 log("next retry time: " + waitTImeUtilNextRetry);

 retryTimes++;
})

2. Only devices that subscribe to a specific topic can receive messages about the
topic published by the broker. For details on the preset topics, see Topics. This
demo calls the subScribeTopic method to subscribe to a topic. After the
subscription is successful, wait for the platform to deliver a command.
// Subscribe to a topic for receiving commands.
function subScribeTopic() {
 client.subscribe(getCmdRequestTopic(), function (err) {
 if (err) {
 log("subscribe error:" + err);
 } else {
 log("topic : " + getCmdRequestTopic() + " is subscribed success");
 }
 })
}

3. Publishing a topic means that a device proactively reports its properties or
messages to the platform. For details, see the API Device Reporting
Properties. After the connection is successful, call the publishMessage
method to report properties.
// Report JSON data. serviceId must be the same as that defined in the product model.
function publishMessage() {
 var jsonMsg = propertiesReport;
 log("publish message topic is " + getReportTopic());
 log("publish message is " + jsonMsg);
 client.publish(getReportTopic(), jsonMsg);
 log("publish message successful");
}

Reported properties in the JSON format are as follows:
var propertiesReportJson = {'services':[{'properties':
{'alarm':1,'temperature':12.670784,'humidity':18.37673,'smokeConcentration':19.97906},'service_id':'smo
keDetector','event_time':null}]};

The following figure shows the CLI.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 181

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html

If the properties are reported, the following information is displayed on the
IoTDA console:

NO TE

If no latest data is displayed on the device details page, modify the services and
properties in the product model to ensure that the reported services and properties are
the same as those defined in the product model. Alternatively, go to the Products >
Model Definition page and delete all services.

Receiving a Command
The demo provides the method for receiving commands delivered by the platform.
After an MQTT connection is established and a topic is subscribed, you can deliver
a command on the device details page of the IoTDA console or by using the
demo on the application side. After the command is delivered, the MQTT
callback function receives the command delivered by the platform.

For example, deliver a command carrying the parameter name smokeDetector:
SILENCE and parameter value 50.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 182

https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

After the command is delivered, the demo receives a 50 message. The following
figure shows the command execution page.

NO TE

Synchronous commands require device responses. For details, see Upstream Response
Parameters.

4.4 OTA Upgrade Adaptation on the Device Side

4.4.1 Adaptation Development on the Device Side

Overview

Software OTA is implemented using the Huawei proprietary PCP protocol. You
must perform adaptation development on devices in accordance with the
interaction process defined in the protocol. The following describes how a device
constructs a PCP request and response based on the software upgrade interactions
between the IoT platform and device. This helps you better develop software
upgrade functions on the devices.

PCP requests and responses have the same message structure, as shown below.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 183

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html#section4

For details on each field in the message structure, see the table below.

Field Type Description

Start ID WORD The value is fixed at 0XFFFE.

Version BYTE The four most significant bits are
reserved. The four least significant
bits indicate the protocol version.
Currently, the version is 1.

Message code BYTE Type of the request exchanged
between the platform and device.
The message code of a response is
the same as that of the request. The
following message codes have been
defined:
● 0-18: reserved
● 19: device version query
● 20: software package notification
● 21: software package download
● 22: download result reporting
● 23: upgrade execution
● 24: upgrade result reporting
● 25-127: reserved

Check code WORD CRC16 check value calculated from
the start ID to the last byte of the
data zone. Before the calculation,
this field is set to 0. The result is then
written to the field after the CRC16
calculation.
NOTE

CRC16 algorithm: CRC16/CCITT
x16+x12+x5+1

Data zone length WORD Length of the data zone.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 184

Field Type Description

Data zone BYTE[n] Variable length, which is defined by
each instruction. For details, see the
definitions of the request and
response corresponding to each
instruction.

Data Type Description

BYTE Unsigned 1-byte integer

WORD Unsigned 2-byte integer

DWORD Unsigned 4-byte integer

BYTE[n] Hexadecimal number of n bytes

STRING String

Query on the Device Version
In the software upgrade process, the platform delivers a version query request to
the device and the device responds to the request. (The process below includes
only the PCP interactions between the platform and device.)

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 185

Message Sent by the Platform

In accordance with the PCP message structure, the platform fills each field in the
request as follows:

● Start ID: The value is fixed at the first two bytes of a message stream, that is,
FFFE.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 186

● Version: The value is a 1-byte integer and is fixed at 1 (hexadecimal value:
01).

● Message code: The value is a 1-byte integer. The message code for device
version query is 19 (hexadecimal value: 13).

● Check code: The value is a 2-byte integer. The system sets the check code to
0000, calculates the complete message stream by using the CRC16 algorithm
to obtain a new check code, and then replaces 0000 with the new code.

● Data zone length: The value is a 2-byte integer, indicating the length of the
data zone. Based on the structure of the data zone, a version query request
has no data zone. Therefore, the length is 0000.

● Data zone: indicates the data to be sent to the device. Based on the structure
of the data zone, this message does not contain the data to send. The data
zone field is null.

Field Data Type Description

No data zone

Therefore, the combined code stream is FFFE 01 13 0000 0000. This stream is
calculated using the CRC16 algorithm to obtain check code 4C9A. (The platform
provides CRC16 code examples based on Java and C.) Then, the generated check
code is used to replace 0000 in the original code stream to obtain FFFE 01 13
4C9A 0000. This code stream is sent by the platform to the device to query its
version.

Message Sent by the Device

After receiving the version query request from the platform, the device returns the
query result. The fields in the response are as follows:

● Start ID: The value is fixed at FFFE.

● Version: The value is fixed at 01.

● Message code: The value is 13 (the same as that in the request).

● Check code: The value 0000 is used before CRC16 calculation.

● Data zone length: In accordance with the data type of the fields in the data
zone, the length is 17 bytes (hexadecimal value: 0011).

● Data zone: Based on the structure of the data zone, the result code of
successful processing is 00. Assume that the version is V0.9, which is
converted to ASCII characters 56302E39. The data type of the version is
BYTE[16], which indicates 16 bytes. The version 56302E39 has only 4 bytes.
Therefore, 0 is appended to obtain 56302E39000000000000000000000000.
The data zone is 0056302E39000000000000000000000000.

Field Data Type Description

Result code BYTE The value is 0X00,
indicating that the
processing was
successful.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 187

Field Data Type Description

Current version BYTE[16] The version is described
using ASCII characters.
If there are not enough
available digits, 0X00 is
appended.

The combined code stream is FFFE 01 13 0000 0011
0056302E39000000000000000000000000. The check code after CRC16 calculation
is 8DE3. Therefore, the device returns the code stream FFFE 01 13 8DE3 0011
0056302E39000000000000000000000000 to the platform.

Notification of a New Software Package
After obtaining the software version, the platform notifies the device of the
software package of the new version.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 188

Message Sent by the Platform

In accordance with the PCP message structure, the platform fills each field in the
notification as follows:

● Start ID: The value is fixed at FFFE.

● Version: The value is fixed at 01.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 189

● Message code: Based on the message code, the message code of the new
software package notification is 20 (hexadecimal value: 14).

● Check code: The value 0000 is used before CRC16 calculation.
● Data zone length: In accordance with the data type of the fields in the data

zone, the length is 22 bytes (hexadecimal value: 0016).
● Data zone:

– Target version: The value consists of 16 bytes. If the target version is
v1.0, the hexadecimal value appended with 0 is
56312E30000000000000000000000000.

– Upgrade package segment size: The value consists of two bytes. You
can manually enter the size of the upgrade package segment when
uploading the software package. The default value is 500 bytes. The size
ranges from 32 bytes to 500 bytes. For example, if the value is 500 bytes,
the hexadecimal value is 01F4.

– Number of upgrade package segments: The value consists of two bytes.
The value is obtained by rounding up the result of the software package
size divided by the segment size. If the software package size is 500
bytes, the number of segments is 1 (hexadecimal value: 0001).

– Check code: The value consists of two bytes. This field has been
deprecated. The fixed value is 0000.

Field Data Type Description

Target version BYTE[16] The version is
described using ASCII
characters. If there
are not enough
available digits, 0X00
is appended.

Upgrade package
segment size

WORD Size of each segment.

Number of upgrade
package segments

WORD Number of upgrade
package segments.

Check code WORD The value is fixed at
0000.

The combined code stream is FFFE 01 14 0000 0016
56312E30000000000000000000000000 01F4 0001 0000. The check code after
CRC16 calculation is 02F7. Therefore, the code stream in the message sent by
the platform to instruct the device to download the new software package is
FFFE 01 14 02F7 0016 56312E3000000000000000000000000001F400010000.
Message Sent by the Device
After receiving the notification, the device returns a response to the platform,
indicating whether to allow the upgrade. The fields in the response are as
follows:
– Start ID: The value is fixed at FFFE.
– Version: The value is fixed at 01.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 190

– Message code: The value is 14 (the same as that in the request).
– Check code: The value 0000 is used before CRC16 calculation.
– Data zone length: In accordance with the data type of the fields in the

data zone, the length is 1 byte (hexadecimal value: 0001).
– Data zone: The device responds to the new software package notification

based on the actual situation. In this example, the device responds with
"The upgrade is allowed". The data zone is 00. The other result codes
must be adapted accordingly.

Field Data Type Description

Result code BYTE 0X00: The upgrade is
allowed.
0X01: The device is in
use.
0X02: The signal is
weak.
0X03: The latest
version is in use.
0X04: The battery
power is low.
0X05: The remaining
space is insufficient.
0X09: The memory is
insufficient.
0X7F: An internal
error has occurred.

The combined code stream is FFFE 01 14 0000 0001 00. The check code after
CRC16 calculation is D768. Therefore, the code stream in the message
returned by the device is FFFE 01 14 D768 000100.

Downloading the Software Package
After the platform notifies the device of the new software package, the device
requests to download the package according to the sequence number of each
segment.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 191

Message Sent by the Device

The device sends the first message to the platform to request packet
segmentation. In accordance with the PCP message structure, the device fills
each field in the first message as follows:

● Start ID: The value is fixed at FFFE.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 192

● Version: The value is fixed at 01.
● Message code: In accordance with the message code, the message code for

requesting the software package is 21 (hexadecimal value: 15).
● Check code: The value 0000 is used before CRC16 calculation.
● Data zone length: In accordance with the data type of the fields in the data

zone, the length is 18 bytes (hexadecimal value: 0012).
● Data zone: The target version is the version in the notification delivered by

the platform, v1.0 (hexadecimal value:
56312E30000000000000000000000000). The segment sequence number is 0
(hexadecimal value: 0000).

Field Data Type Description

Target version BYTE[16] The version is described
using ASCII characters.
If there are not enough
available digits, 0X00 is
appended.

Segment sequence
number

WORD Sequence number of
the requested segment.
The value starts from 0.
The total number of
segments is obtained
by rounding up the
result of the software
package size divided by
the segment size. The
device can save the
received segments and
request for the missing
segments next time.
Resumable download is
supported.

The combined code stream is FFFE 01 15 0000 0012
56312E300000000000000000000000000000. The check code after CRC16
calculation is 5618. Therefore, the code stream in the first segment request sent by
the device is FFFE 01 15 5618 0012 56312E300000000000000000000000000000.

For the code stream in other segment requests, only the segment sequence
number needs to be replaced, and the check code needs to be replaced after
CRC16 calculation. Details are not provided.

Message Sent by the Platform

After receiving a segment request, the platform delivers the segmented data to
the device. The fields in the response to the first segment request are as follows:

● Start ID: The value is fixed at FFFE.
● Version: The value is fixed at 01.
● Message code: The value is 15 (the same as that in the request).

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 193

● Check code: The value 0000 is used before CRC16 calculation.
● Data zone: The result code is 00. The segment sequence number is 0000. The

segment data depends on the content defined in the software package. If the
software package content is HELLO, IoT SOTA!, the hexadecimal value is
48454C4C4F2C20496F5420534F544121, 16 bytes in total. When uploading a
software package, you need to manually enter the size of the upgrade
package segment, which is 500 bytes. In this case, no 0 needs to be appended.

Field Data Type Description

Result code BYTE 0X00: The processing
was successful.
0X80: The upgrade task
does not exist.
0X81: The specified
segment does not exist.

Segment sequence
number

WORD Sequence number of a
returned segment.

Segment data BYTE[n] Content of the
segment. n indicates
the segment size. If the
result code is not 0, this
field is not included.

● Data zone length: In accordance with the data type of the fields in the data

zone, the length is 19 bytes (hexadecimal value: 0013).

The combined code stream is FFFE 01 15 0000 0013 00 0000
48454C4C4F2C20496F5420534F544121. The check code after CRC16 calculation is
E107. The code stream in the message sent by the platform to respond to the first
segment request is FFFE 01 15 E107 0013 00 0000
48454C4C4F2C20496F5420534F544121.

For the code stream in responses to the other segment requests, the segment
sequence number and segment data need to be replaced, and the check code
needs to be replaced after CRC16 calculation. Details are not provided.

Download Result Reporting
After receiving all segments and assembling them, the device reports the
download result to the platform.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 194

Message Sent by the Device

In accordance with the PCP message structure, the device fills each field in the
message as follows:

● Start ID: The value is fixed at FFFE.

● Version: The value is fixed at 01.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 195

● Message code: The value is 16 (the same as that in the request).

● Check code: The value 0000 is used before CRC16 calculation.

● Data zone length: In accordance with the data type of the fields in the data
zone, the length is 1 byte (hexadecimal value: 0001).

● Data zone: carries the software package download results. For example, if the
download was successful, the device reports 00.

Field Data Type Description

Download status BYTE 0X00: The upgrade
package has been
downloaded.
0X05: The remaining
space is insufficient.
0X06: The download
timed out.
0X07: The upgrade
package failed to be
verified.
0X08: The upgrade
package is not
supported.

The combined code stream is FFFE 01 16 0000 0001 00. The check code after
CRC16 calculation is 850E. The code stream in the download result message sent
by the device is FFFE 01 16 850E 0001 00.

Message Sent by the Platform

After receiving the software package download results from the device, the
platform returns a response. The fields in the response are as follows:

● Start ID: The value is fixed at FFFE.

● Version: The value is fixed at 01.

● Message code: The value is 16 (the same as that in the request).

● Check code: The value 0000 is used before CRC16 calculation.

● Data zone length: In accordance with the data type of the fields in the data
zone, the length is 1 byte (hexadecimal value: 0001).

● Data zone: If the processing is successful, 00 is returned. If the processing
fails, 80 is returned. In this example, 00 is returned.

Field Data Type Description

Result code BYTE 0X00: The processing
was successful.
0X80: The upgrade task
does not exist.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 196

The combined code stream is FFFE 01 16 0000 0001 00. The check code after
CRC16 calculation is 850E. The code stream in the message sent by the platform is
FFFE 01 16 850E 0001 00.

Upgrade Execution
After receiving the software package download result from the device, the
platform instructs the device to start the upgrade.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 197

Message Sent by the Platform

In accordance with the PCP message structure, the platform fills each field in the
instruction as follows:

● Start ID: The value is fixed at FFFE.

● Version: The value is fixed at 01.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 198

● Message code: The value is 17 (the same as that in the request).
● Check code: The value 0000 is used before CRC16 calculation.
● Data zone length: In accordance with the data type of the fields in the data

zone, the length is 0 bytes (hexadecimal value: 0000).
● Data zone: This field is not carried.

Field Data Type Description

No data zone

The combined code stream is FFFE 01 17 0000 0000. The check code after CRC16
calculation is CF90. The code stream in the message sent by the platform is FFFE
01 17 CF90 0000.

Message Sent by the Device

After receiving the upgrade execution message from the platform, the device
responds to the message. The fields in the message are as follows:

● Start ID: The value is fixed at FFFE.
● Version: The value is fixed at 01.
● Message code: The value is 17 (the same as that in the request).
● Check code: The value 0000 is used before CRC16 calculation.
● Data zone length: In accordance with the data type of the fields in the data

zone, the length is 1 byte (hexadecimal value: 0001).
● Data zone: If the processing is successful, 00 is returned. For other processing

results, see the data zone definition. In this example, 00 is returned.

Field Data Type Description

Result code BYTE 0X00: The processing
was successful.
0X01: The device is in
use.
0X04: The battery
power is low.
0X05: The remaining
space is insufficient.
0X09: The memory is
insufficient.

The combined code stream is FFFE 01 17 0000 0001 00. The check code after
CRC16 calculation is B725. The code stream in the message returned by the device
is FFFE 01 17 B725 0001 00.

Reporting the Upgrade Result
After executing the software upgrade, the device reports the upgrade result to the
platform.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 199

Message Sent by the Device

In accordance with the PCP message structure, the platform fills each field in an
upgrade result message as follows:

● Start ID: The value is fixed at FFFE.

● Version: The value is fixed at 01.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 200

● Message code: The value is 18 (the same as that in the request).

● Check code: The value 0000 is used before CRC16 calculation.

● Data zone length: In accordance with the data type of the fields in the data
zone, the length is 17 bytes (hexadecimal value: 0011).

● Data zone: carries the result code and current version. In this example, the
result code is 00, indicating that the upgrade was successful. The current
version is the same as the software version delivered by the platform, v1.0
(hexadecimal value: 56312E30000000000000000000000000).

Field Data Type Description

Result code BYTE 0X00: The upgrade was
successful.
0X01: The device is in
use.
0X04: The battery
power is low.
0X05: The remaining
space is insufficient.
0X09: The memory is
insufficient.
0X0A: The upgrade
package failed to be
installed.
0X7F: An internal error
has occurred.

Current version BYTE[16] Current version of the
device.

The combined code stream is FFFE 01 18 0000 0011
0056312E30000000000000000000000000. The check code after CRC16 calculation
is C7D2. The code stream in the upgrade result message reported by the device is
FFFE 01 18 C7D2 0011 0056312E30000000000000000000000000.

Message Sent by the Platform

After receiving the upgrade result message, the platform responds to the device.
The fields of each message are as follows:

● Start ID: The value is fixed at FFFE.

● Version: The value is fixed at 01.

● Message code: The value is 18 (the same as that in the request).

● Check code: The value 0000 is used before CRC16 calculation.

● Data zone length: In accordance with the data type of the fields in the data
zone, the length is 1 byte (hexadecimal value: 0001).

● Data zone: If the processing is successful, 00 is returned. If the upgrade task
does not exist, 80 is returned. In this example, 00 is returned.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 201

Field Data Type Description

Result code BYTE 0X00: The processing
was successful.
0X80: The upgrade task
does not exist.

The combined code stream is FFFE 01 18 0000 0001 00. The check code after
CRC16 calculation is AFA1. The code stream in the response returned by the
platform is FFFE 01 18 AFA1 0001 00.

Now, the adaptation of the software upgrade is complete.

CRC16 Code Examples

Code example using the Java-based CRC16 algorithm:

public class CRC16 {

 /*
 * CCITT standard CRC16(1021) remainder table CRC16-CCITT ISO HDLC, ITU X.25, x16+x12+x5+1
polynomial
 * Polynomial generated in the case of highest order first: Gm=0x11021; polynomial generated in the
case of lowest order first: Gm=0x8408. In this example, highest order first is used.
 */
 private static int[] crc16_ccitt_table = { 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
 0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef, 0x1231, 0x0210, 0x3273, 0x2252,
 0x52b5, 0x4294, 0x72f7, 0x62d6, 0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,
 0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485, 0xa56a, 0xb54b, 0x8528, 0x9509,
 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d, 0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
 0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc, 0x48c4, 0x58e5, 0x6886, 0x78a7,
 0x0840, 0x1861, 0x2802, 0x3823, 0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
 0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12, 0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e,
 0x9b79, 0x8b58, 0xbb3b, 0xab1a, 0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
 0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49, 0x7e97, 0x6eb6, 0x5ed5, 0x4ef4,
 0x3e13, 0x2e32, 0x1e51, 0x0e70, 0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,
 0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f, 0x1080, 0x00a1, 0x30c2, 0x20e3,
 0x5004, 0x4025, 0x7046, 0x6067, 0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
 0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256, 0xb5ea, 0xa5cb, 0x95a8, 0x8589,
 0xf56e, 0xe54f, 0xd52c, 0xc50d, 0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
 0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c, 0x26d3, 0x36f2, 0x0691, 0x16b0,
 0x6657, 0x7676, 0x4615, 0x5634, 0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
 0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3, 0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e,
 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a, 0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,
 0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9, 0x7c26, 0x6c07, 0x5c64, 0x4c45,
 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1, 0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,
 0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0 };

 /**
 *
 * @param reg_init
 * initial value during the CRC
 * @param message
 * check code
 * @return
 */
 private static int do_crc(int reg_init, byte[] message) {
 int crc_reg = reg_init;
 for (int i = 0; i < message.length; i++) {
 crc_reg = (crc_reg >> 8) ^ crc16_ccitt_table[(crc_reg ^ message[i]) & 0xff];
 }
 return crc_reg;
 }

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 202

 /**
 * Generate a CRC code based on the data.
 *
 * @param message
 * byte data
 *
 * @return int verification code
 */
 public static int do_crc(byte[] message) {
 // The initial value of the CRC starts from 0x0000.
 int crc_reg = 0x0000;
 return do_crc(crc_reg, message);
 }
}

Code example using the C-based CRC16 algorithm:

/**
* CCITT standard CRC16(1021) remainder table CRC16-CCITT ISO HDLC, ITU X.25, x16+x12+x5+1 polynomial
* Polynomial generated in the case of highest order first: Gm=0x11021; polynomial generated in the case of
lowest order first: Gm=0x8408. In this example, highest order first is used.
*/
const unsigned short crc16_table[256] = {
 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
 0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
 0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
 0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,
 0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,
 0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,
 0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
 0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,
 0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
 0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
 0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,
 0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a,
 0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
 0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49,
 0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,
 0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,
 0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,
 0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
 0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
 0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
 0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,
 0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
 0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,
 0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
 0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
 0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,
 0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,
 0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,
 0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9,
 0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,
 0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,
 0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0
};

int do_crc(int reg_init, byte* data, int length)
{
 int cnt;
 int crc_reg = reg_init;
 for (cnt = 0; cnt < length; cnt++)
 {
 crc_reg = (crc_reg >> 8) ^ crc16_table[(crc_reg ^ *(data++)) & 0xFF];
 }
 return crc_reg;
}

int main(int argc, char **argv)

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 203

{
 // FFFE011300000000 is represented by a byte array.
 byte message[8] = {0xFF,0xFE,0x01,0x13,0x00,0x00,0x00,0x00};
 // The initial value of the CRC starts from 0x0000.
 int a = do_crc(0x0000, message, 8);
 printf("a ==> %x\n", a);
}

4.4.2 PCP Introduction
The PCP protocol stipulates the communication content and format between the
IoT platform and devices.

PCP runs at the application layer for device upgrade.

Communication Method
1. PCP runs at the application layer. LwM2M, CoAP, MQTT, or other non-

streaming protocols can be used at the underlying layer.
2. PCP messages are not allocated with independent ports and are independent

from protocols at the underlying layer. To differentiate PCP messages from
device service messages, 0XFFFE is used as the start bytes of the PCP
messages, and the first two bytes of the service messages cannot be 0XFFFE.
For details, see PCP Message Identification.

3. PCP uses a question-and-answer communication mode. All request messages
have a response message.

Message Structure

Field Type Description

Start ID WORD The value is fixed at 0XFFFE.

Version BYTE The four most significant bits are
reserved. The four least significant
bits indicate the protocol version.
Currently, the version is 1.

Message code BYTE Type of the request exchanged
between the platform and device.
The message code of a response is
the same as that of the request. The
following message codes have been
defined:
● 0-18: reserved
● 19: device version query
● 20: software package notification
● 21: software package download
● 22: download result reporting
● 23: upgrade execution
● 24: upgrade result reporting
● 25-127: reserved

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 204

Field Type Description

Check code WORD CRC16 check value calculated from
the start ID to the last byte of the
data zone. Before the calculation,
this field is set to 0. The result is then
written to the field after the CRC16
calculation.
NOTE

CRC16 algorithm: CRC16/CCITT
x16+x12+x5+1

Data zone length WORD Length of the data zone.

Data zone BYTE[n] Variable length, which is defined by
each instruction. For details, see the
definitions of the request and
response corresponding to each
instruction.

Data Type

Data Type Description

BYTE Unsigned 1-byte integer

WORD Unsigned 2-byte integer

DWORD Unsigned 4-byte integer

BYTE[n] Hexadecimal number of n bytes

STRING String

NO TE

PCP uses the network sequence to transmit WORD and DWORD data.

Device Version Query

Request

Direction: from the platform to a device

Field Data Type Description

No data zone

Response

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 205

Direction: from a device to the platform

Field Data Type Description

Result code BYTE The value is 0X00,
indicating that the
processing was
successful.

Current version BYTE[16] The version is described
using ASCII characters. If
there are not enough
available digits, 0X00 is
appended.

NO TE

● The platform determines whether the device needs to be upgraded based on the
version. If it does, the platform sends a request to upgrade the device.

● If the response times out, the platform stops the upgrade task.

Software Package Notification
Request

Direction: from the platform to a device

Field Data Type Description

Target version BYTE[16] The version is described
using ASCII characters. If
there are not enough
available digits, 0X00 is
appended.

Upgrade package
segment size

WORD Size of each segment.

Number of upgrade
package segments

WORD Number of upgrade
package segments

Check code WORD The value is fixed at
0000.

Response

Direction: from a device to the platform

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 206

Field Data Type Description

Result code BYTE 0X00: The upgrade is
allowed.
0X01: The device is in
use.
0X02: The signal is weak.
0X03: The latest version
is in use.
0X04: The battery power
is low.
0X05: The remaining
space is insufficient.
0X09: The memory is
insufficient.
0X7F: An internal error
has occurred.

NO TE

● If the upgrade is not allowed by the device, the platform stops the upgrade task.
● If the response times out, and the request for the upgrade package is not received, the

platform stops the upgrade task.

Software Package Requesting
Request

Direction: from a device to the platform

Field Data Type Description

Target version BYTE[16] The version is described
using ASCII characters. If
there are not enough
available digits, 0X00 is
appended.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 207

Field Data Type Description

Segment sequence
number

WORD Sequence number of the
requested segment. The
value starts from 0. The
total number of
segments is obtained by
rounding up the result of
the software package
size divided by the
segment size. The device
can save the received
segments and request
for the missing segments
next time. Resumable
download is supported.

Response

Direction: from the platform to a device

Field Data Type Description

Result code BYTE 0X00: The processing
was successful.
0X80: The upgrade task
does not exist.
0X81: The specified
segment does not exist.

Segment sequence
number

WORD Sequence number of a
returned segment.

Segment data BYTE[n] Content of the segment.
n indicates the segment
size. If the result code is
not 0, this field is not
included.

Download Result Reporting
Request

Direction: from a device to the platform

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 208

Field Data Type Description

Download status BYTE 0X00: The upgrade
package has been
downloaded.
0X05: The remaining
space is insufficient.
0X06: The download
timed out.
0X07: The upgrade
package failed to be
verified.
0X08: The upgrade
package is not
supported.

Response

Direction: from the platform to a device

Field Data Type Description

Result code BYTE 0X00: The processing
was successful.
0X80: The upgrade task
does not exist.

Upgrade Execution
Request

Direction: from the platform to a device

Field Data Type Description

No data zone

Response

Direction: from a device to the platform

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 209

Field Data Type Description

Result code BYTE 0X00: The processing
was successful.
0X01: The device is in
use.
0X04: The battery power
is low.
0X05: The remaining
space is insufficient.
0X09: The memory is
insufficient.

Upgrade Result Reporting
Request

Direction: from a device to the platform

Field Data Type Description

Result code BYTE 0X00: The upgrade was
successful.
0X01: The device is in
use.
0X04: The battery power
is low.
0X05: The remaining
space is insufficient.
0X09: The memory is
insufficient.
0X0A: The upgrade
package failed to be
installed.
0X7F: An internal error
has occurred.

Current version BYTE[16] Current version of the
device.

Response

Direction: from the platform to a device

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 210

Field Data Type Description

Result code BYTE 0X00: The processing
was successful.
0X80: The upgrade task
does not exist.

PCP Message Identification
PCP messages and device service messages share the same port and URL. When
receiving a message from the device, the platform performs the following steps to
determine whether the message is a PCP message or a service message:

1. Checks whether the device supports software upgrades (defined by
omCapability.upgradeCapability in the product model). If the device does
not support software upgrades, the message is considered to be a service
message.

2. Checks whether the software upgrade protocol is PCP. If the protocol is not
PCP, the message is considered to be a service message.

3. Checks whether the first two bytes of the message are 0XFFFE. If the bytes
are not 0XFFFE, the message is considered to be a service message.

4. Checks whether the version is valid. If the version is invalid, the message is
considered as a service message.

5. Checks whether the message code is valid. If the message code is invalid, the
message is considered as a service message.

6. Checks whether the check code is correct. If the check code is incorrect, the
service message is considered to be a service message.

7. Checks whether the length of the data zone is correct. If the length is
incorrect, the message is considered to be a service message.

8. If all the preceding check items are passed, the message is considered as a
PCP message.

NO TE

The start bytes of a service message cannot be 0XFFFE.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 211

5 Development on the Application Side

5.1 API Usage Guide
The IoT platform provides a variety of APIs to make application development
easier and more efficient. You can call these open APIs to quickly integrate
platform functions, such as management of products, devices, subscriptions,
commands, and rules.

NO TICE

The application needs to be authenticated by the IAM service. To obtain a token,
see Debugging the API Obtaining the Token for an IAM User.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 212

Application Development Resources
The platform provides a wealth of application-side APIs to ease application
development. Applications can call these APIs to implement services such as
secure access, device management, data collection, and command delivery.

Resource Package Description Download Link

Application API Java
Demo

You can call application-
side APIs to experience
service functions and
service processes.

API Java Demo

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 213

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/north/Java/ApiDemo/javaApiDemo2.zip

Resource Package Description Download Link

Application Java SDK You can use Java
methods to call
application-side APIs to
communicate with the
platform. For details, see
Java SDK.

Java SDK

Application C# SDK You can use C# methods
to call application-side
APIs to communicate
with the platform. For
details, see C# SDK.

C# SDK

Application Python SDK You can use Python
methods to call
application-side APIs to
communicate with the
platform. For details, see
Python SDK.

Python SDK

Application Go SDK You can use Go methods
to call application-side
APIs to communicate
with the platform. For
details, see Go SDK.

Go SDK

Application Node.js SDK You can use Node.js
methods to call
application-side APIs to
communicate with the
platform. For details, see
Node.js SDK.

Node.js SDK

Application PHP SDK You can use PHP
methods to call
application-side APIs to
communicate with the
platform. For details, see
PHP SDK.

PHP SDK

API Introduction
API Group Scenario

Product
manageme
nt

Used to manage product models that have been imported to the
platform. A product model defines the capabilities or features of
all devices under a product.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 214

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-python-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-python-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-go-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-go-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-nodejs-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-nodejs-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-php-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-php-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0080.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0080.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0080.html

API Group Scenario

Device
manageme
nt

Used by applications to manage devices, including basic device
details and device data.

Device
message

Used by applications to transparently transmit messages to
devices.

Device
command

Used by applications to deliver commands to devices for control.
A product model defines commands that the platform can
deliver to devices.

Device
property

Used by applications to deliver properties to devices. A product
model defines properties that the platform can deliver to devices.

AMQP
queue
manageme
nt

Used to create, delete, and view queues. AMQP queues can
receive messages through AMQP clients after subscribing to
rules.

Access
credential
manageme
nt

Used for authentication when long connections are established
using protocols such as AMQP and MQTTS.

Data
transfer
rule
manageme
nt APIs and
device
linkage rule
APIs

Used by applications to set rules to implement service linkage or
forward data to other Huawei Cloud services. Device linkage and
data forwarding rules are available.
● A device linkage rule consists of triggers and actions. When

the configured trigger is met, the corresponding action is
triggered, for example, delivering commands, sending
notifications, reporting alarms, and clearing alarms.

● For a data forwarding rule, you need to set forwarding data,
set forwarding targets, and start the rule. Data can be
forwarded to Data Ingestion Service (DIS), Distributed
Message Service (DMS) for Kafka, Object Storage Service
(OBS), ROMA Connect, third-party application (HTTP
push), , , , and AMQP message queue.

Subscriptio
n
manageme
nt APIs

Used by applications to subscribe to resources provided by the
platform. If the subscribed resources change, the platform
notifies the applications of the change.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 215

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0058.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0058.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0038.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0038.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0034.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0034.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0103.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0103.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0103.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0103.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0111.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0111.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0111.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0111.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01306.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01306.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01306.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01306.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01306.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0082.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0082.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0082.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01201.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01201.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01201.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01201.html

API Group Scenario

Device
shadow
APIs

Used by applications to operate and manage the device shadow.
A device shadow is a file used to store and retrieve the status of
a device.
● Each device has only one device shadow, which is uniquely

identified by the device ID.
● The device shadow saves only the latest data reported by the

device and the desired data set by an application.
● You can use the device shadow to query and set the device

status regardless of whether the device is online.

Device
group
manageme
nt APIs

Used by applications to manage device groups, including group
details and device members in a group.

Tag
manageme
nt APIs

Used by applications to bind tags to or unbind tags from
resources.
Currently, only devices support tags.

Resource
space
manageme
nt

Used by applications to manage resource spaces, including
adding, deleting, modifying, and querying resource spaces.

Batch task
APIs

Used by applications to perform batch operations on devices
connected to the platform.
● Supported batch operations: upgrading software and

firmware, creating, deleting, updating, freezing, and
unfreezing devices, creating synchronous and asynchronous
commands, creating messages, and setting device shadow.

● Up to 10 unfinished tasks of the same type is allowed for a
user. When the maximum number is reached, new tasks
cannot be created.

Device CA
certificate
manageme
nt APIs

Used by applications to manage device CA certificates, including
uploading, verifying, and querying certificates. The platform
supports device access authentication using certificates.

OTA
upgrade
package
manageme
nt

Used by applications to operate and manage upgrade packages,
including creating, querying, and deleting upgrade packages.

Broadcast
message

Used by applications to broadcast messages to all online devices
that subscribe to specified topics.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 216

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0079.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0079.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0079.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0053.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0053.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0053.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0053.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0009.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0009.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0009.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_6011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_6011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_6011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_6011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0028.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0028.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0099.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0099.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0099.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0099.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateOtaPackage.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateOtaPackage.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateOtaPackage.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateOtaPackage.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateOtaPackage.html
https://support.huaweicloud.com/intl/en-us/api-iothub/BroadcastMessage.html
https://support.huaweicloud.com/intl/en-us/api-iothub/BroadcastMessage.html

API Group Scenario

Device
tunnel
manageme
nt

Used for data transmission between applications and devices.

Data
stacking
policy
manageme
nt

Used by applications to manage stacking policies, including
creating, querying, modifying, and deleting stacking policies.

Data flow
control
policy
manageme
nt

Used by applications to manage flow control policies, including
creating, querying, modifying, and deleting flow control policies.

5.2 Debugging Using Postman

Overview

Postman is a visual editing tool for building and testing API requests. It provides
an easy-to-use UI to send HTTP requests, including GET, PUT, POST, and DELETE
requests, and modify parameters in HTTP requests. Postman also returns response
to your requests.

To fully understand APIs, refer to API Reference on the Application Side. The
Postman Collection is already available, in which the structure of API call requests
are ready for use.

This topic uses Postman as an example to describe how to debug the following
APIs when the application simulator connects to the IoT platform using HTTPS:

● Obtaining the Token of an IAM User

● Listing Projects Accessible to an IAM User

● Creating a Product

● Querying a Product

● Creating a Device

● Querying a Device

Prerequisites
● You have installed Postman. If Postman is not installed, install it by following

the instructions provided in Installing and Configuring Postman.

● You have downloaded the Collection.

● You have developed a product model and a codec on the console.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 217

https://support.huaweicloud.com/intl/en-us/api-iothub/AddTunnel.html
https://support.huaweicloud.com/intl/en-us/api-iothub/AddTunnel.html
https://support.huaweicloud.com/intl/en-us/api-iothub/AddTunnel.html
https://support.huaweicloud.com/intl/en-us/api-iothub/AddTunnel.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingBacklogPolicy.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingBacklogPolicy.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingBacklogPolicy.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingBacklogPolicy.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingBacklogPolicy.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingFlowControlPolicy.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingFlowControlPolicy.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingFlowControlPolicy.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingFlowControlPolicy.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateRoutingFlowControlPolicy.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/PostmanCollection/Collection_environment_of_postman_V5.zip
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

Installing and Configuring Postman

Step 1 Install Postman.

1. Visit the Postman website, and download and install the latest version of
Postman (64-bit) for Windows.

NO TE

– Postman requires the .NET Framework 4.5 component. Download it.
– To ensure successful API calls, you are advised to download the latest version of

Postman (32-bit) for Windows.

2. Enter the email address, username, and password to register Postman.

Step 2 Import the Postman environment variables.

1. Click in the upper right corner to open the MANAGE ENVIRONMENTS
window.

2. Click Import. On the page displayed, click Select File to import the
IoTDA.postman_environment.json file (obtained after the Collection
package is decompressed).

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 218

https://dl.pstmn.io/download/latest/win64
https://www.microsoft.com/en-us/download/details.aspx?id=42642
https://www.postman.com/ https://dl.pstmn.io/download/latest/win32
https://www.postman.com/ https://dl.pstmn.io/download/latest/win32
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/PostmanCollection/Collection_environment_of_postman_V5.zip

3. Click the IoTDA environment imported.

4. Configure parameters based on the following table.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 219

Parameter Description

IAMEndpoint IAM endpoint. For details, see Regions and
Endpoints.

IoTDAEndpoint IoTDA endpoint. For details, see Step 2.5.

IAMUserName IAM username, which can be obtained from the My
Credentials page.

IAMPassword Password for logging in to Huawei Cloud.

IAMDoaminId Account name, which can be obtained from the My
Credentials page.

region Region where IoTDA is enabled.

5. Obtain IoTDA endpoints.

Log in to the console. In the navigation pane, choose Overview. Click Access
Details in the Instance Information area. Select the access address based on
the access type and protocol.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 220

https://developer.huaweicloud.com/intl/en-us/endpoint?IAM
https://developer.huaweicloud.com/intl/en-us/endpoint?IAM
https://console-intl.huaweicloud.com/iam/?locale=en-us#/mine/apiCredential
https://console-intl.huaweicloud.com/iam/?locale=en-us#/mine/apiCredential
https://console-intl.huaweicloud.com/iam/?locale=en-us#/mine/apiCredential
https://console-intl.huaweicloud.com/iam/?locale=en-us#/mine/apiCredential

Figure 5-1 Access details

6. Return to the home page and set the environment variable to the imported
IoTDA.

Step 3 Click Import in the upper left corner and click Choose Files to import the API call
(V5).postman_collection.json file.

After the file is uploaded, the dialog box shown in the following figure is
displayed.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 221

----End

Debugging the API Obtaining the Token for an IAM User
Before using platform APIs, an application must call the API Obtaining the Token
of an IAM User for authentication. After the authentication is successful, Huawei
Cloud returns X-Subject-Token.

To call this API, the application constructs an HTTP request. An example request is
as follows:

POST https://iam.cn-north-4.myhuaweicloud.com/v3/auth/tokens
Content-Type: application/json

{
 "auth": {
 "identity": {
 "methods": [
 "password"
],

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 222

 "password": {
 "user": {
 "name": "username",
 "password": "********",
 "domain": {
 "name": "domainname"
 }
 }
 }
 },
 "scope": {
 "project": {
 "name": "xxxxxxxx"
 }
 }
 }
}

Debug the API by following the instructions provided in Obtaining the Token of
an IAM User.

Step 1 Configure the HTTP method, URL, and headers of the API.

Step 2 Configure the body of the API.

Step 3 Click Send. The returned code and response are displayed in the lower part of the
page.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 223

https://support.huaweicloud.com/intl/en-us/api-iam/iam_30_0001.html
https://support.huaweicloud.com/intl/en-us/api-iam/iam_30_0001.html

Step 4 Use the returned X-Subject-Token value in the header field to update X-Auth-
Token in the IoTDA environment so that it can be used in other API calls. If the
token expires, the Authentication API must be called again to obtain a new
token.

The X-Auth-Token parameter is automatically updated in Postman. You do not
need to manually update it.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 224

----End

Debugging the API Listing Projects Accessible to an IAM User
Before accessing platform APIs, the application must call the API Listing Projects
Accessible to an IAM User to obtain the project ID of the user.

To call this API, the application constructs an HTTP request. An example request is
as follows:

GET https://iam.cn-north-4.myhuaweicloud.com/v3/auth/projects
Content-Type: application/json
X-Auth-Token: ********

Debug the API by following the instructions provided in Listing Projects
Accessible to an IAM User.

Step 1 Configure the HTTP method, URL, and headers of the API.

Step 2 Click Send. The returned code and response are displayed in the lower part of the
page.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 225

https://support.huaweicloud.com/intl/en-us/api-iam/iam_06_0003.html
https://support.huaweicloud.com/intl/en-us/api-iam/iam_06_0003.html

Step 3 The returned body contains a list of projects. Search for the item whose name is
the same as the value of region in the IoTDA environment, and use the id value
to update project_id in the IoTDA environment so that it can be used in other API
calls.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 226

In this example, the project_id parameter is automatically updated in Postman.
You do not need to manually update it.

----End

Debugging the API Creating a Product
Before connecting a device to the platform, an application must call the API
Creating a Product. The product created will be used during device registration.

To call this API, the application constructs an HTTP request. An example request is
as follows:

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 227

POST https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/{project_id}/products
Content-Type: application/json
X-Auth-Token: ********

{
 "name" : "Thermometer",
 "device_type" : "Thermometer",
 "protocol_type" : "MQTT",
 "data_format" : "binary",
 "manufacturer_name" : "ABC",
 "industry" : "smartCity",
 "description" : "this is a thermometer produced by Huawei",
 "service_capabilities" : [{
 "service_type" : "temperature",
 "service_id" : "temperature",
 "description" : "temperature",
 "properties" : [{
 "unit" : "centigrade",
 "min" : "1",
 "method" : "R",
 "max" : "100",
 "data_type" : "decimal",
 "description" : "force",
 "step" : 0.1,
 "enum_list" : ["string"],
 "required" : true,
 "property_name" : "temperature",
 "max_length" : 100
 }],
 "commands" : [{
 "command_name" : "reboot",
 "responses" : [{
 "response_name" : "ACK",
 "paras" : [{
 "unit" : "km/h",
 "min" : "1",
 "max" : "100",
 "para_name" : "force",
 "data_type" : "string",
 "description" : "force",
 "step" : 0.1,
 "enum_list" : ["string"],
 "required" : false,
 "max_length" : 100
 }]
 }],
 "paras" : [{
 "unit" : "km/h",
 "min" : "1",
 "max" : "100",
 "para_name" : "force",
 "data_type" : "string",
 "description" : "force",
 "step" : 0.1,
 "enum_list" : ["string"],
 "required" : false,
 "max_length" : 100
 }]
 }],
 "option" : "Mandatory"
 }],
 "app_id" : "jeQDJQZltU8iKgFFoW060F5SGZka"
}

Debug the API by following the instructions provided in Creating a Product.

Note: Only the parameters used in the debugging example are described in the
following steps.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 228

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html

Step 1 Configure the HTTP method, URL, and headers of the API.

Step 2 Configure the body of the API.

Step 3 Click Send. The returned code and response are displayed in the lower part of the
page.

Step 4 Use the returned product_id value to update the product_id parameter in the
IoTDA environment so that it can be used in other API calls.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 229

Note: The product_id parameter is automatically updated in Postman. You do not
need to manually update it.

----End

Debugging the API Querying a Product
An application can call the API Querying a Product to query details about a
product.

To call this API, the application constructs an HTTP request. An example request is
as follows:

GET https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/{project_id}/products/{product_id}
Content-Type: application/json
X-Auth-Token: ********

Debug the API by following the instructions provided in Querying a Product.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 230

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0052.html

Note: Only the parameters used in the debugging example are described in the
following steps.

Step 1 Configure the HTTP method, URL, and headers of the API.

Step 2 Click Send. The returned code and response are displayed in the lower part of the
page.

----End

Debugging the API Creating a Device
Before connecting a device to the platform, an application must call the API
Registering a Device. Then, the device can use the unique identification code to
get authenticated and connect to the platform.

To call this API, the application constructs an HTTP request. An example request is
as follows:

POST https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/{project_id}/devices
Content-Type: application/json
X-Auth-Token: ********

{
 "node_id" : "ABC123456789",

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 231

 "device_name" : "dianadevice",
 "product_id" : "b640f4c203b7910fc3cbd446ed437cbd",
 "auth_info" : {
 "auth_type" : "SECRET",
 "secure_access" : true,
 "fingerprint" : "dc0f1016f495157344ac5f1296335cff725ef22f",
 "secret" : "3b935a250c50dc2c6d481d048cefdc3c",
 "timeout" : 300
 },
 "description" : "watermeter device"
}

Debug the API by following the instructions provided in Creating a Device.

Note: Only the parameters used in the debugging example are described in the
following steps.

Step 1 Configure the HTTP method, URL, and headers of the API.

Step 2 Configure the body of the API.

Step 3 Click Send. The returned code and response are displayed in the lower part of the
page.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 232

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html

Step 4 Use the returned device_id value to update the device_id parameter in the IoTDA
environment so that it can be used in other API calls.

Note: The device_id parameter is automatically updated in Postman. You do not
need to manually update it.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 233

----End

Debugging the API Querying a Device
An application can call the API Querying a Device to query details about a device
registered with the platform.

To call this API, the application constructs an HTTP request. An example request is
as follows:

GET https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/{project_id}/devices/{device_id}
Content-Type: application/json
X-Auth-Token: ********

Debug the API by following the instructions provided in Querying a Device.

Note: Only the parameters used in the debugging example are described in the
following steps.

Step 1 Configure the HTTP method, URL, and headers of the API.

Step 2 Click Send. The returned code and response are displayed in the lower part of the
page.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 234

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0055.html

----End

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 1.0 (2024-10-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 235

	Contents
	1 Before You Start
	2 Obtaining Resources
	3 Product Development
	3.1 Product Development Guide
	3.2 Creating a Product
	3.3 Developing a Product Model
	3.3.1 Product Model Definition
	3.3.2 Developing a Product Model Online
	3.3.3 Developing a Product Model Offline
	3.3.4 Exporting and Importing a Product Model

	3.4 Developing a Codec
	3.4.1 Codec Definition
	3.4.2 Online Development
	3.4.3 JavaScript Script-based Development

	3.5 Online Debugging

	4 Development on the Device Side
	4.1 Device Access Guide
	4.2 Using IoT Device SDKs for Access
	4.2.1 Introduction to IoT Device SDKs
	4.2.2 IoT Device SDK (Java)
	4.2.3 IoT Device SDK (C)
	4.2.4 IoT Device SDK (C#)
	4.2.5 IoT Device SDK (Android)
	4.2.6 IoT Device SDK (Go)
	4.2.7 IoT Device SDK Tiny (C)
	4.2.8 IoT Device SDK (Python)

	4.3 Using MQTT Demos for Access
	4.3.1 MQTT Usage Guide
	4.3.2 Java Demo Usage Guide
	4.3.3 Python Demo Usage Guide
	4.3.4 Android Demo Usage Guide
	4.3.5 C Demo Usage Guide
	4.3.6 C# Demo Usage Guide
	4.3.7 Node.js Demo Usage Guide

	4.4 OTA Upgrade Adaptation on the Device Side
	4.4.1 Adaptation Development on the Device Side
	4.4.2 PCP Introduction

	5 Development on the Application Side
	5.1 API Usage Guide
	5.2 Debugging Using Postman

