Help Center > > Developer Guide> SQL Reference> Functions and Operators> Aggregate Functions

Aggregate Functions

Updated at: Jul 15, 2020 GMT+08:00

Aggregate Functions

  • sum(expression)

    Description: Sum of expression across all input values

    Return type:

    Generally, same as the argument data type. In the following cases, type conversion occurs:

    • BIGINT for SMALLINT or INT arguments
    • NUMBER for BIGINT arguments
    • DOUBLE PRECISION for floating-point arguments

    For example:

    1
    2
    3
    4
    5
    SELECT SUM(ss_ext_tax) FROM tpcds.STORE_SALES;
      sum      
    --------------
     213267594.69
    (1 row)
    
  • max(expression)

    Description:

    Maximum value of expression across all input values

    Argument types: any array, numeric, string, or date/time type

    Return type: same as the argument type

    For example:

    1
    SELECT MAX(inv_quantity_on_hand) FROM tpcds.inventory;
    
  • min(expression)

    Description:

    Minimum value of expression across all input values

    Argument types: any array, numeric, string, or date/time type

    Return type: same as the argument type

    For example:

    1
    2
    3
    4
    5
    SELECT MIN(inv_quantity_on_hand) FROM tpcds.inventory;
     min 
    -----
       0
    (1 row)
    
  • avg(expression)

    Description: Average (arithmetic mean) of all input values

    Return type:

    NUMBER for any integer-type argument.

    DOUBLE PRECISION for floating-point parameters.

    otherwise the same as the argument data type.

    For example:

    1
    2
    3
    4
    5
    SELECT AVG(inv_quantity_on_hand) FROM tpcds.inventory;
             avg          
    ----------------------
     500.0387129084044604
    (1 row)
    
  • count(expression)

    Description: Number of input rows for which the value of expression is not null

    Return type: bigint

    For example:

    1
    2
    3
    4
    5
    SELECT COUNT(inv_quantity_on_hand) FROM tpcds.inventory;
      count   
    ----------
     11158087
    (1 row)
    
  • count(*)

    Description: Number of input rows

    Return type: bigint

    For example:

    1
    2
    3
    4
    5
    SELECT COUNT(*) FROM tpcds.inventory;
      count   
    ----------
     11745000
    (1 row)
    
  • array_agg(expression)

    Description: Input values, including nulls, concatenated into an array

    Return type: array of the argument type

    For example:

    1
    2
    3
    4
    5
    SELECT ARRAY_AGG(sr_fee) FROM tpcds.store_returns WHERE sr_customer_sk = 2;
       array_agg   
    ---------------
     {22.18,63.21}
    (1 row)
    
  • string_agg(expression, delimiter)

    Description: Input values concatenated into a string, separated by delimiter

    Return type: same as the argument type

    For example:

    1
    2
    3
    4
    5
    6
    7
    SELECT string_agg(sr_item_sk, ',') FROM tpcds.store_returns where sr_item_sk < 3;
             string_agg         
    ---------------------------------------------------------------------------------
    ------------------------------
     1,2,1,2,2,1,1,2,2,1,2,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,2,1,1,1,1,1,1,1,1,1,2,
    2,1,1,1,1,1,1,2,2,1,1,2,1,1,1
    (1 row)
    
  • listagg(expression [, delimiter]) WITHIN GROUP(ORDER BY order-list)

    Description: Aggregation column data sorted according to the mode specified by WITHIN GROUP, and concatenated to a string using the specified delimiter

    • expression: Mandatory. It specifies an aggregation column name or a column-based, valid expression. It does not support the DISTINCT keyword and the VARIADIC parameter.
    • delimiter: Optional. It specifies a delimiter, which can be a string constant or a deterministic expression based on a group of columns. The default value is empty.
    • order-list: Mandatory. It specifies the sorting mode in a group.

    Return type: text

    listagg is a column-to-row aggregation function, compatible with Oracle Database 11g Release 2. You can specify the OVER clause as a window function. When listagg is used as a window function, the OVER clause does not support the window sorting or framework of ORDER BY, so as to avoid ambiguity in listagg and ORDER BY of the WITHIN GROUP clause.

    For example:

    The aggregation column is of the text character set type.

    1
    2
    3
    4
    5
    6
    7
    SELECT deptno, listagg(ename, ',') WITHIN GROUP(ORDER BY ename) AS employees FROM emp GROUP BY deptno;
     deptno |              employees               
    --------+--------------------------------------
         10 | CLARK,KING,MILLER
         20 | ADAMS,FORD,JONES,SCOTT,SMITH
         30 | ALLEN,BLAKE,JAMES,MARTIN,TURNER,WARD
    (3 rows)
    

    The aggregation column is of the integer type.

    1
    2
    3
    4
    5
    6
    7
    SELECT deptno, listagg(mgrno, ',') WITHIN GROUP(ORDER BY mgrno NULLS FIRST) AS mgrnos FROM emp GROUP BY deptno;
     deptno |            mgrnos             
    --------+-------------------------------
         10 | 7782,7839
         20 | 7566,7566,7788,7839,7902
         30 | 7698,7698,7698,7698,7698,7839
    (3 rows)
    

    The aggregation column is of the floating point type.

    1
    2
    3
    4
    5
    6
    7
    8
    9
    SELECT job, listagg(bonus, '($); ') WITHIN GROUP(ORDER BY bonus DESC) || '($)' AS bonus FROM emp GROUP BY job;
        job     |                      bonus                      
    ------------+-------------------------------------------------
     CLERK      | 10234.21($); 2000.80($); 1100.00($); 1000.22($)
     PRESIDENT  | 23011.88($)
     ANALYST    | 2002.12($); 1001.01($)
     MANAGER    | 10000.01($); 2399.50($); 999.10($)
     SALESMAN   | 1000.01($); 899.00($); 99.99($); 9.00($)
    (5 rows)
    

    The aggregation column is of the time type.

    1
    2
    3
    4
    5
    6
    7
    SELECT deptno, listagg(hiredate, ', ') WITHIN GROUP(ORDER BY hiredate DESC) AS hiredates FROM emp GROUP BY deptno;
     deptno |                                                          hiredates                                                           
    --------+------------------------------------------------------------------------------------------------------------------------------
         10 | 1982-01-23 00:00:00, 1981-11-17 00:00:00, 1981-06-09 00:00:00
         20 | 2001-04-02 00:00:00, 1999-12-17 00:00:00, 1987-05-23 00:00:00, 1987-04-19 00:00:00, 1981-12-03 00:00:00
         30 | 2015-02-20 00:00:00, 2010-02-22 00:00:00, 1997-09-28 00:00:00, 1981-12-03 00:00:00, 1981-09-08 00:00:00, 1981-05-01 00:00:00
    (3 rows)
    

    The aggregation column is of the time interval type.

    1
    2
    3
    4
    5
    6
    7
    SELECT deptno, listagg(vacationTime, '; ') WITHIN GROUP(ORDER BY vacationTime DESC) AS vacationTime FROM emp GROUP BY deptno;
     deptno |                                    vacationtime                                    
    --------+------------------------------------------------------------------------------------
         10 | 1 year 30 days; 40 days; 10 days
         20 | 70 days; 36 days; 9 days; 5 days
         30 | 1 year 1 mon; 2 mons 10 days; 30 days; 12 days 12:00:00; 4 days 06:00:00; 24:00:00
    (3 rows)
    

    By default, the delimiter is empty.

    1
    2
    3
    4
    5
    6
    7
    SELECT deptno, listagg(job) WITHIN GROUP(ORDER BY job) AS jobs FROM emp GROUP BY deptno;
     deptno |                     jobs                     
    --------+----------------------------------------------
         10 | CLERKMANAGERPRESIDENT
         20 | ANALYSTANALYSTCLERKCLERKMANAGER
         30 | CLERKMANAGERSALESMANSALESMANSALESMANSALESMAN
    (3 rows)
    

    When listagg is used as a window function, the OVER clause does not support the window sorting of ORDER BY, and the listagg column is an ordered aggregation of the corresponding groups.

     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    SELECT deptno, mgrno, bonus, listagg(ename,'; ') WITHIN GROUP(ORDER BY hiredate) OVER(PARTITION BY deptno) AS employees FROM emp;
     deptno | mgrno |  bonus   |                 employees                 
    --------+-------+----------+-------------------------------------------
         10 |  7839 | 10000.01 | CLARK; KING; MILLER
         10 |       | 23011.88 | CLARK; KING; MILLER
         10 |  7782 | 10234.21 | CLARK; KING; MILLER
         20 |  7566 |  2002.12 | FORD; SCOTT; ADAMS; SMITH; JONES
         20 |  7566 |  1001.01 | FORD; SCOTT; ADAMS; SMITH; JONES
         20 |  7788 |  1100.00 | FORD; SCOTT; ADAMS; SMITH; JONES
         20 |  7902 |  2000.80 | FORD; SCOTT; ADAMS; SMITH; JONES
         20 |  7839 |   999.10 | FORD; SCOTT; ADAMS; SMITH; JONES
         30 |  7839 |  2399.50 | BLAKE; TURNER; JAMES; MARTIN; WARD; ALLEN
         30 |  7698 |     9.00 | BLAKE; TURNER; JAMES; MARTIN; WARD; ALLEN
         30 |  7698 |  1000.22 | BLAKE; TURNER; JAMES; MARTIN; WARD; ALLEN
         30 |  7698 |    99.99 | BLAKE; TURNER; JAMES; MARTIN; WARD; ALLEN
         30 |  7698 |  1000.01 | BLAKE; TURNER; JAMES; MARTIN; WARD; ALLEN
         30 |  7698 |   899.00 | BLAKE; TURNER; JAMES; MARTIN; WARD; ALLEN
    (14 rows)
    
  • covar_pop(Y, X)

    Description: Overall covariance

    Return type: double precision

    For example:

    1
    2
    3
    4
    5
     SELECT COVAR_POP(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
        covar_pop     
    ------------------
     829.749627587403
    (1 row)
    
  • covar_samp(Y, X)

    Description: Sample covariance

    Return type: double precision

    For example:

    1
    2
    3
    4
    5
    SELECT COVAR_SAMP(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
        covar_samp    
    ------------------
     830.052235037289
    (1 row)
    
  • stddev_pop(expression)

    Description: Overall standard difference

    Return type: double precision for floating-point arguments, otherwise numeric

    For example:

    1
    2
    3
    4
    5
    SELECT STDDEV_POP(inv_quantity_on_hand) FROM tpcds.inventory WHERE inv_warehouse_sk = 1;
        stddev_pop    
    ------------------
     289.224294957556
    (1 row)
    
  • stddev_samp(expression)

    Description: Sample standard deviation of the input values

    Return type: double precision for floating-point arguments, otherwise numeric

    For example:

    1
    2
    3
    4
    5
    SELECT STDDEV_SAMP(inv_quantity_on_hand) FROM tpcds.inventory WHERE inv_warehouse_sk = 1;
       stddev_samp    
    ------------------
     289.224359757315
    (1 row)
    
  • var_pop(expression)

    Description: Population variance of the input values (square of the population standard deviation)

    Return type: double precision for floating-point arguments, otherwise numeric

    For example:

    1
    2
    3
    4
    5
    SELECT VAR_POP(inv_quantity_on_hand) FROM tpcds.inventory WHERE inv_warehouse_sk = 1;
          var_pop       
    --------------------
     83650.692793695475
    (1 row)
    
  • var_samp(expression)

    Description: Sample variance of the input values (square of the sample standard deviation)

    Return type: double precision for floating-point arguments, otherwise numeric

    For example:

    1
    2
    3
    4
    5
    SELECT VAR_SAMP(inv_quantity_on_hand) FROM tpcds.inventory WHERE inv_warehouse_sk = 1;
          var_samp      
    --------------------
     83650.730277028768
    (1 row)
    
  • bit_and(expression)

    Description: The bitwise AND of all non-null input values, or null if none

    Return type: same as the argument type

    For example:

    1
    2
    3
    4
    5
    SELECT BIT_AND(inv_quantity_on_hand) FROM tpcds.inventory WHERE inv_warehouse_sk = 1;
     bit_and 
    ---------
           0
    (1 row)
    
  • bit_or(expression)

    Description: The bitwise OR of all non-null input values, or null if none

    Return type: same as the argument type

    For example:

    1
    2
    3
    4
    5
    SELECT BIT_OR(inv_quantity_on_hand) FROM tpcds.inventory WHERE inv_warehouse_sk = 1;
     bit_or 
    --------
       1023
    (1 row)
    
  • bool_and(expression)

    Description: Its value is true if all input values are true, otherwise false.

    Return type: bool

    For example:

    1
    2
    3
    4
    5
    SELECT bool_and(100 <2500);
     bool_and
    ----------
     t
    (1 row)
    
  • bool_or(expression)

    Description: Its value is true if at least one input value is true, otherwise false.

    Return type: bool

    For example:

    1
    2
    3
    4
    5
    SELECT bool_or(100 <2500);
     bool_or
    ----------
     t
    (1 row)
    
  • corr(Y, X)

    Description: Correlation coefficient

    Return type: double precision

    For example:

    1
    2
    3
    4
    5
    SELECT CORR(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
           corr        
    -------------------
     .0381383624904186
    (1 row)
    
  • every(expression)

    Description: Equivalent to bool_and

    Return type: bool

    For example:

    1
    2
    3
    4
    5
    SELECT every(100 <2500);
     every
    -------
     t
    (1 row)
    
  • rank(expression)

    Description: The tuples in different groups are sorted non-consecutively by expression.

    Return type: bigint

    For example:

     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    SELECT d_moy, d_fy_week_seq, rank() OVER(PARTITION BY d_moy ORDER BY d_fy_week_seq) FROM tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2;
       d_moy | d_fy_week_seq | rank 
    -------+---------------+------
         1 |             1 |    1
         1 |             1 |    1
         1 |             1 |    1
         1 |             1 |    1
         1 |             1 |    1
         1 |             1 |    1
         1 |             1 |    1
         1 |             2 |    8
         1 |             2 |    8
         1 |             2 |    8
         1 |             2 |    8
         1 |             2 |    8
         1 |             2 |    8
         1 |             2 |    8
         1 |             3 |   15
         1 |             3 |   15
         1 |             3 |   15
         1 |             3 |   15
         1 |             3 |   15
         1 |             3 |   15
         1 |             3 |   15
         1 |             4 |   22
         1 |             4 |   22
         1 |             4 |   22
         1 |             4 |   22
         1 |             4 |   22
         1 |             4 |   22
         1 |             4 |   22
         1 |             5 |   29
         1 |             5 |   29
         2 |             5 |    1
         2 |             5 |    1
         2 |             5 |    1
         2 |             5 |    1
         2 |             5 |    1
         2 |             6 |    6
         2 |             6 |    6
         2 |             6 |    6
         2 |             6 |    6
         2 |             6 |    6
         2 |             6 |    6
         2 |             6 |    6
    (42 rows)
    
  • regr_avgx(Y, X)

    Description: Average of the independent variable (sum(X)/N)

    Return type: double precision

    For example:

    1
    2
    3
    4
    5
    SELECT REGR_AVGX(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
        regr_avgx     
    ------------------
     578.606576740795
    (1 row)
    
  • regr_avgy(Y, X)

    Description: Average of the dependent variable (sum(Y)/N)

    Return type: double precision

    For example:

    1
    2
    3
    4
    5
    SELECT REGR_AVGY(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
        regr_avgy     
    ------------------
     50.0136711629602
    (1 row)
    
  • regr_count(Y, X)

    Description: Number of input rows in which both expressions are non-null

    Return type: bigint

    For example:

    1
    2
    3
    4
    5
    SELECT REGR_COUNT(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
     regr_count 
    ------------
           2743
    (1 row)
    
  • regr_intercept(Y, X)

    Description: y-intercept of the least-squares-fit linear equation determined by the (X, Y) pairs

    Return type: double precision

    For example:

    1
    2
    3
    4
    5
    SELECT REGR_INTERCEPT(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
      regr_intercept  
    ------------------
     49.2040847848607
    (1 row)
    
  • regr_r2(Y, X)

    Description: Square of the correlation coefficient

    Return type: double precision

    For example:

    1
    2
    3
    4
    5
    SELECT REGR_R2(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
          regr_r2       
    --------------------
     .00145453469345058
    (1 row)
    
  • regr_slope(Y, X)

    Description: Slope of the least-squares-fit linear equation determined by the (X, Y) pairs

    Return type: double precision

    For example:

    1
    2
    3
    4
    5
    SELECT REGR_SLOPE(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
         regr_slope     
    --------------------
     .00139920009665259
    (1 row)
    
  • regr_sxx(Y, X)

    Description: sum(X^2) - sum(X)^2/N (sum of squares of the independent variables)

    Return type: double precision

    For example:

    1
    2
    3
    4
    5
    SELECT REGR_SXX(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
         regr_sxx     
    ------------------
     1626645991.46135
    (1 row)
    
  • regr_sxy(Y, X)

    Description: sum(X*Y) - sum(X) * sum(Y)/N ("sum of products" of independent times dependent variable)

    Return type: double precision

    For example:

    1
    2
    3
    4
    5
    SELECT REGR_SXY(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
         regr_sxy     
    ------------------
     2276003.22847225
    (1 row)
    
  • regr_syy(Y, X)

    Description: sum(Y^2) - sum(Y)^2/N ("sum of squares" of the dependent variable)

    Return type: double precision

    For example:

    1
    2
    3
    4
    5
    SELECT REGR_SYY(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
        regr_syy     
    -----------------
     2189417.6547314
    (1 row)
    
  • stddev(expression)

    Description: Alias of stddev_samp

    Return type: double precision for floating-point arguments, otherwise numeric

    For example:

    1
    2
    3
    4
    5
    SELECT STDDEV(inv_quantity_on_hand) FROM tpcds.inventory WHERE inv_warehouse_sk = 1;
          stddev      
    ------------------
     289.224359757315
    (1 row)
    
  • variance(expexpression,ression)

    Description: Alias of var_samp

    Return type: double precision for floating-point arguments, otherwise numeric

    For example:

    1
    2
    3
    4
    5
    SELECT VARIANCE(inv_quantity_on_hand) FROM tpcds.inventory WHERE inv_warehouse_sk = 1;
          variance      
    --------------------
     83650.730277028768
    (1 row)
    
  • checksum(expression)

    Description: Returns the CHECKSUM value of all input values. This function can be used to check whether the data in the tables before and after DWS data restoration or migration is the same. Other databases cannot be checked by using this function. Before and after database backup, database restoration, or data migration, you need to manually run SQL commands to obtain the execution results. Compare the obtained execution results to check whether the data in the tables before and after the backup or migration is the same.

    • For large tables, the CHECKSUM function may take a long time.
    • If the CHECKSUM values of two tables are different, it indicates that the contents of the two tables are different. Using the hash function in the CHECKSUM function may incur conflicts. There is low possibility that two tables with different contents may have the same CHECKSUM value. The same problem may occur when CHECKSUM is used for columns.
    • If the time type is timestamp, timestamptz, or smalldatetime, ensure that the time zone settings are the same when calculating the CHECKSUM value.
    • If the CHECKSUM value of a column is calculated and the column type can be changed to TEXT by default, set expression to the column name.
    • If the CHECKSUM value of a column is calculated and the column type cannot be changed to TEXT by default, set expression to Column name::TEXT.
    • If the CHECKSUM value of all columns is calculated, set expression to Table name::TEXT.

    The following types of data can be converted into TEXT types by default: char, name, int8, int2, int1, int4, raw, pg_node_tree, float4, float8, bpchar, varchar, nvarchar2, date, timestamp, timestamptz, numeric, and smalldatetime. Other types need to be forcibly converted to TEXT.

    Return type: numeric

    For example:

    The following shows the CHECKSUM value of a column that can be converted to the TEXT type by default:

    1
    2
    3
    4
    5
    SELECT CHECKSUM(inv_quantity_on_hand) FROM tpcds.inventory;
         checksum      
    -------------------
     24417258945265247
    (1 row)
    

    The following shows the CHECKSUM value of a column that cannot be converted to the TEXT type by default: The CHECKSUM parameter is set to Column name::TEXT.

    1
    2
    3
    4
    5
    SELECT CHECKSUM(inv_quantity_on_hand::TEXT) FROM tpcds.inventory;
         checksum      
    -------------------
     24417258945265247
    (1 row)
    

    The following shows the CHECKSUM value of all columns in a table. Note that the CHECKSUM parameter is set to Table name::TEXT. The table name is not modified by its schema.

    1
    2
    3
    4
    5
    SELECT CHECKSUM(inventory::TEXT) FROM tpcds.inventory;                    
         checksum      
    -------------------
     25223696246875800
    (1 row)
    

Did you find this page helpful?

Submit successfully!

Thank you for your feedback. Your feedback helps make our documentation better.

Failed to submit the feedback. Please try again later.

Which of the following issues have you encountered?







Please complete at least one feedback item.

Content most length 200 character

Content is empty.

OK Cancel