PySpark Example Code
Development Description
Mongo can be connected only through enhanced datasource connections.
DDS is compatible with the MongoDB protocol.
- Prerequisites
An enhanced datasource connection has been created on the DLI management console and bound to a queue in packages. For details, see Enhanced Datasource Connections.
Hard-coded or plaintext passwords pose significant security risks. To ensure security, encrypt your passwords, store them in configuration files or environment variables, and decrypt them when needed.
- Connecting to data sources through DataFrame APIs
- Import dependencies.
from __future__ import print_function from pyspark.sql.types import StructType, StructField, IntegerType, StringType from pyspark.sql import SparkSession
- Create a session.
1
sparkSession = SparkSession.builder.appName("datasource-mongo").getOrCreate()
- Set connection parameters.
1 2 3 4 5 6
url = "192.168.4.62:8635,192.168.5.134:8635/test?authSource=admin" uri = "mongodb://username:pwd@host:8635/db" user = "rwuser" database = "test" collection = "test" password = "######"
For details about the parameters, see Table 1.
- Create a DataFrame.
1 2 3 4 5
dataList = sparkSession.sparkContext.parallelize([(1, "Katie", 19),(2,"Tom",20)]) schema = StructType([StructField("id", IntegerType(), False), StructField("name", StringType(), False), StructField("age", IntegerType(), False)]) dataFrame = sparkSession.createDataFrame(dataList, schema)
- Import data to Mongo.
1 2 3 4 5 6 7 8 9
dataFrame.write.format("mongo") .option("url", url)\ .option("uri", uri)\ .option("user",user)\ .option("password",password)\ .option("database",database)\ .option("collection",collection)\ .mode("Overwrite")\ .save()
- Read data from Mongo.
1 2 3 4 5 6 7 8 9 10
jdbcDF = sparkSession.read .format("mongo")\ .option("url", url)\ .option("uri", uri)\ .option("user",user)\ .option("password",password)\ .option("database",database)\ .option("collection",collection)\ .load() jdbcDF.show()
- View the operation result.
- Import dependencies.
- Connecting to data sources through SQL APIs
- Create a table to connect to a Mongo data source.
sparkSession.sql( "create table test_dds(id string, name string, age int) using mongo options( 'url' = '192.168.4.62:8635,192.168.5.134:8635/test?authSource=admin', 'uri' = 'mongodb://username:pwd@host:8635/db', 'database' = 'test', 'collection' = 'test', 'user' = 'rwuser', 'password' = '######')")
For details about the parameters, see Table 1.
- Insert data.
1
sparkSession.sql("insert into test_dds values('3', 'Ann',23)")
- Query data.
1
sparkSession.sql("select * from test_dds").show()
- Create a table to connect to a Mongo data source.
- Submitting a Spark job
- Upload the Python code file to DLI.
For details about console operations, see Creating a Package. For details about API operations, see Uploading a Package Group.
- In the Spark job editor, select the corresponding dependency module and execute the Spark job.
For details about console operations, see Creating a Spark Job. For details about API operations, see Creating a Batch Processing Job.
- If the Spark version is 2.3.2 (will be offline soon) or 2.4.5, specify the Module to sys.datasource.mongo when you submit a job.
- If the Spark version is 3.1.1, you do not need to select a module. Configure Spark parameters (--conf).
spark.driver.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/mongo/*
spark.executor.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/mongo/*
- For details about how to submit a job on the console, see the description of the table "Parameters for selecting dependency resources" in Creating a Spark Job.
- For details about how to submit a job through an API, see the description of the modules parameter in Table 2 "Request parameters" in Creating a Batch Processing Job.
- Upload the Python code file to DLI.
Complete Example Code
- Connecting to data sources through DataFrame APIs
from __future__ import print_function from pyspark.sql.types import StructType, StructField, IntegerType, StringType from pyspark.sql import SparkSession if __name__ == "__main__": # Create a SparkSession session. sparkSession = SparkSession.builder.appName("datasource-mongo").getOrCreate() # Create a DataFrame and initialize the DataFrame data. dataList = sparkSession.sparkContext.parallelize([("1", "Katie", 19),("2","Tom",20)]) # Setting schema schema = StructType([StructField("id", IntegerType(), False),StructField("name", StringType(), False), StructField("age", IntegerType(), False)]) # Create a DataFrame from RDD and schema dataFrame = sparkSession.createDataFrame(dataList, schema) # Setting connection parameters url = "192.168.4.62:8635,192.168.5.134:8635/test?authSource=admin" uri = "mongodb://username:pwd@host:8635/db" user = "rwuser" database = "test" collection = "test" password = "######" # Write data to the mongodb table dataFrame.write.format("mongo") .option("url", url)\ .option("uri", uri)\ .option("user",user)\ .option("password",password)\ .option("database",database)\ .option("collection",collection) .mode("Overwrite").save() # Read data jdbcDF = sparkSession.read.format("mongo") .option("url", url)\ .option("uri", uri)\ .option("user",user)\ .option("password",password)\ .option("database",database)\ .option("collection",collection)\ .load() jdbcDF.show() # close session sparkSession.stop()
- Connecting to data sources through SQL APIs
from __future__ import print_function from pyspark.sql import SparkSession if __name__ == "__main__": # Create a SparkSession session. sparkSession = SparkSession.builder.appName("datasource-mongo").getOrCreate() # Create a data table for DLI - associated mongo sparkSession.sql( "create table test_dds(id string, name string, age int) using mongo options(\ 'url' = '192.168.4.62:8635,192.168.5.134:8635/test?authSource=admin',\ 'uri' = 'mongodb://username:pwd@host:8635/db',\ 'database' = 'test',\ 'collection' = 'test', \ 'user' = 'rwuser', \ 'password' = '######')") # Insert data into the DLI-table sparkSession.sql("insert into test_dds values('3', 'Ann',23)") # Read data from DLI-table sparkSession.sql("select * from test_dds").show() # close session sparkSession.stop()
Feedback
Was this page helpful?
Provide feedbackThank you very much for your feedback. We will continue working to improve the documentation.See the reply and handling status in My Cloud VOC.
For any further questions, feel free to contact us through the chatbot.
Chatbot