
Cloud Service Engine

Development Guide

Issue 01

Date 2024-05-16

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 Overview..1
1.1 Development Introduction... 1
1.2 Related Concepts... 3
1.3 Development Process... 3
1.4 Development Specifications.. 6

2 Developing Microservice Applications..8

3 Preparing the Environment...9

4 Connecting Microservice Applications... 13
4.1 Connecting Spring Cloud Applications to ServiceComb Engines..13
4.2 Connecting Java Chassis Applications to ServiceComb Engines... 18

5 Deploying Microservice Applications..23

6 Using ServiceComb Engine Functions...24
6.1 Using Service Registry... 24
6.2 Using the Configuration Center... 28
6.2.1 Configuration Center Overview ...28
6.2.2 Using the Configuration Center in Spring Cloud.. 30
6.2.3 Using the Configuration Center in Java Chassis... 32
6.3 Using Service Governance..35
6.3.1 Overview...35
6.3.2 Request Marking..36
6.3.3 Rate Limiting... 38
6.3.4 Fault Tolerance... 39
6.3.5 Circuit Breaker.. 40
6.3.6 Bulkhead... 42
6.3.7 Load Balancing... 42
6.3.8 Service Degradation..43
6.3.9 Fault Injection... 44
6.3.10 Customized Governance... 44
6.3.11 Blacklist/Whitelist... 45
6.4 Using Dark Launch... 45
6.5 Using Dashboard... 47

Cloud Service Engine
Development Guide Contents

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

6.6 Using Security Authentication.. 49
6.6.1 Security Authentication Overview... 49
6.6.2 Creating a Security Authentication Account and Password... 50
6.6.3 Configuring the Security Authentication Account and Password for a Microservice................................ 50

7 Appendix..53
7.1 Java Chassis Version Upgrade Reference.. 53
7.2 Local Development Tool... 54
7.3 Using ServiceComb Engines by Mesher.. 55
7.3.1 Mesher Overview...55
7.3.2 Connecting Mesher Applications to CSE... 57
7.4 Resolved Issues in Earlier Versions of Spring Cloud Huawei and Java Chassis... 58

Cloud Service Engine
Development Guide Contents

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

1 Overview

1.1 Development Introduction
Overview

A stable and reliable microservice running environment is crucial as the
microservice architecture has become the first option for developers to build
applications.

Cloud Service Engine (CSE) is a one-stop management platform provided by
ServiceStage for microservice solutions. It enables developers to focus on service
development and improve product delivery efficiency and quality. The microservice
architecture consists of the following:

● Remote Procedure Call (RPC) communication between microservices. The
microservice architecture requires that microservices communicate with each
other through RPC instead of other traditional communication modes, such as
shared memory and pipes. Common communication protocols include REST
(HTTP+JSON), gRPC (HTTP2+protobuffer) and Web Service (HTTP+SOAP).
Using RPC for communication reduces coupling between microservices and
makes the system more open with less technological restriction. You are
advised to use standard protocols in the industry, such as REST. Proprietary
protocols can also be used in scenarios requiring high performance.

● Distributed microservice instances and service discovery. The microservice
architecture is highly elastic and needs to support multi-instance deployment
of microservices to handle the dynamic service traffic. The microservice design
is generally stateless. Increasing stateless microservice instances lets you
improve processing performance. When there are a large number of instances,
a middleware that supports service registry and discovery is required for
microservice calling and addressing.

● Dynamic and centralized configuration management. The configuration of
microservice management is increasingly complex as the number of
microservices and instances increases. The configuration management
middleware provides a unified view for all microservices, simplifying the
configuration management of microservices. Such middleware works with the
governance console to adjust microservice at microservice runtime to handle
changing service scenarios without application upgrade.

Cloud Service Engine
Development Guide 1 Overview

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

● Microservice governance capabilities, such as circuit breaker, fault tolerance,
rate limiting, load balancing, and service degradation. These governance
capabilities can mitigate the impact of some common faults of the
microservice architecture on the services.

● Tracing and centralized log collection and retrieval. Viewing logs remains the
most commonly used method for analyzing system faults. Tracing information
helps locate faults and analyze performance bottlenecks.

The microservice architecture has been implemented on many open-source
frameworks, such as Spring Cloud, Apache ServiceComb Java chassis (Java
chassis for short). ServiceComb engines support the access of these open-source
microservice frameworks and use functions such as registry, discovery, centralized
configuration, and service governance. The following figure shows the relationship.

You can use Spring Cloud and Java chassis microservice development frameworks
to access the ServiceComb engine to obtain the best development experience and
technical support. Using other development frameworks, such as Mesher to access
the ServiceComb engine depends on the technical support of the open-source
community.

This topic focuses on the development guide of Spring Cloud and Java chassis.
Microservice applications developed using other frameworks such as Mesher use
ServiceComb engine. See Using ServiceComb Engines by Mesher.

Development Capability Requirements

This document describes how the open-source microservice development
frameworks are connected to a ServiceComb engine and use its functions. Assume
that you have the following development capabilities:

● Using Java to develop microservices. You have developed an application based
on a microservice development framework supported by ServiceStage and
want to host the application on the ServiceComb engine. This document
provides technical support for connecting microservice applications to the
ServiceComb engine. This document does not describe how to use the open-
source microservice development frameworks. You can obtain the basic
materials and development guides of these frameworks in relevant open-
source communities.

● Understanding the functions of the registry center and configuration center in
microservice applications, and building and using the registry center in
projects. Different microservice development frameworks support different

Cloud Service Engine
Development Guide 1 Overview

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

https://github.com/spring-cloud
https://github.com/apache/servicecomb-java-chassis

open-source registry centers by default. Therefore, understanding the
functions of a registry center helps you change registry centers at ease.

● You are familiar with application deployment. For details, see Creating and
Deploying a Component.

1.2 Related Concepts
● Application: a software system that implements a complete service. An

application consists of multiple microservices, which can discover and call
each other.

● Microservice: a software system that implements a specific service function.
Microservices are independently developed and deployed.

● Microservice instance: An instance is generated when a microservice is
deployed in the runtime environment using the deployment system. An
instance can be considered a process, and multiple instances can be deployed
for a microservice.

● Microservice environment: a logical concept established by the service center,
which can be development or production. Microservice instances in different
environments are logically isolated and cannot be discovered or called by
each other.

1.3 Development Process

Overview
Figure 1-1 shows how to develop an application and use a ServiceComb engine.

Cloud Service Engine
Development Guide 1 Overview

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0031.html

Figure 1-1 Development process

Description
1. Developing Microservice Applications

If you have developed a microservice application, skip this step and prepare
the environment.
Before developing a microservice application, you need to select a technology.
To select an appropriate technology, technical decision makers need to
consider whether team members can master the technology, and whether the
technology can deliver the desired functions, performance, and reliability of
the project. Many other factors, such as commercial services, should also be
taken into account. This document does not discuss technology selection.
Assume that the technical team has selected a proper development
framework. Most technical teams build their services using open-source
frameworks.
For details about how to develop microservice applications, see Developing
Microservice Applications.
– For Spring Cloud, the following technology is used for local microservice

development:

Cloud Service Engine
Development Guide 1 Overview

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

– For Java chassis, the following technology is used for local microservice
development:

2. Preparing the Environment
Create a cloud environment to support the ServiceComb engine connection
test, cloud-based application deployment, and ServiceComb engine functions.
Generally, a test environment and a production environment are created.
ServiceStage facilitates cloud environment management. For details, see
Preparing the Environment.

3. Connecting Microservice Applications to CSE
Microservice applications are connected to the ServiceComb engine. To
perform this step, you need to modify the configuration files and build scripts
of developed applications. After the modification, recompile and package the
applications and deploy the application package on the ServiceComb engine
using ServiceStage. For details, see Connecting Microservice Applications.

4. Deploying Microservice Applications
Deploy the developed microservice applications to the ServiceComb engine
using ServiceStage. For details, see Deploying Microservice Applications.

5. Using ServiceComb Engine Functions
An evolving application requires continuous improvement and iteration. In
each iteration, microservice applications may need to be upgraded, requiring
more ServiceComb engine functions. The preceding application development,
compilation, packaging, and deployment will repeat during function iteration.
For details, see Using ServiceComb Engine Functions.

Cloud Service Engine
Development Guide 1 Overview

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

1.4 Development Specifications

Development Language
Using Java to develop microservices.

Requirements for Microservice Development Framework of a ServiceComb
Engine

The following table lists the recommended versions of the microservice
development framework.

● If you have used the microservice development framework of an earlier
version to build applications, you are advised to upgrade it to the
recommended version to obtain the stable and rich function experience.

● If an application has been developed using the Spring Cloud microservice
development framework, you are advised to use Spring Cloud Huawei to
access the application.

● If new microservice applications are developed based on open source and
industry ecosystem components, you are advised to use the Spring Cloud
framework.

● If you want to use the out-of-the-box governance capability and high-
performance RPC framework provided by ServiceComb engines, you are
advised to use the Java chassis framework.

Framework Recommended
Versions

Description

Spring Cloud
Huawei

1.10.9-2021.0.x or
later

Uses Spring Cloud Huawei for
connection.
● Spring Cloud version 2021.0.5
● Spring Boot 2.6.13
Version description of the Spring Cloud
microservice development framework:
https://github.com/huaweicloud/spring-
cloud-huawei/releases

Java Chassis 2.7.10 or later Uses the software package provided by
the open-source project for connection
without introducing third-party software
packages.
Version description of the Java chassis
microservice development framework:
https://github.com/apache/servicecomb-
java-chassis/releases.

Cloud Service Engine
Development Guide 1 Overview

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://github.com/huaweicloud/spring-cloud-huawei
https://github.com/huaweicloud/spring-cloud-huawei
https://github.com/huaweicloud/spring-cloud-huawei/releases
https://github.com/huaweicloud/spring-cloud-huawei/releases
https://github.com/apache/servicecomb-java-chassis/releases
https://github.com/apache/servicecomb-java-chassis/releases

NO TICE

During system upgrade and reconstruction, third-party software conflict is the
most common issue. Traditional software compatibility management policies do
not adapt to software development for fast software iteration. In this case, see
Third-Party Software Version Management Policy for version compatibility.

Cloud Service Engine
Development Guide 1 Overview

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

https://support.huaweicloud.com/intl/en-us/bestpractice-cse/cse_05_0007.html

2 Developing Microservice Applications

● If you have developed a microservice application, skip this section.
The open-source community provides development documents and help
channels to help you use the microservice development framework. For
details about microservice application development in a specific microservice
framework, see the reference documents provided in this section.
The recommended ServiceComb engine samples offer you quick connection to
the engine. Download the samples, modify the ServiceComb engine address
and AK/SK information in the configuration file, and run the examples locally.
These samples can be registered with the ServiceComb engine.
– Spring Cloud

Source code repository: https://github.com/spring-cloud
Issues: For details, see the issues in each code repository of the source
code repository.
Developer guide: https://spring.io/projects/spring-cloud
Spring Cloud Huawei project: https://github.com/huaweicloud/spring-
cloud-huawei
Recommended ServiceComb engine samples: https://github.com/
huaweicloud/spring-cloud-huawei-samples/tree/master/basic

– Java Chassis
Source code repository: https://github.com/apache/servicecomb-java-
chassis
Issues: https://github.com/apache/servicecomb-java-chassis/issues
Developer guide: https://servicecomb.apache.org/references/java-
chassis/en_US/
Recommended ServiceComb engine samples: https://github.com/
apache/servicecomb-samples/tree/master/basic

Cloud Service Engine
Development Guide 2 Developing Microservice Applications

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

https://github.com/spring-cloud
https://spring.io/projects/spring-cloud
https://github.com/huaweicloud/spring-cloud-huawei
https://github.com/huaweicloud/spring-cloud-huawei
https://github.com/huaweicloud/spring-cloud-huawei-samples/tree/master/basic
https://github.com/huaweicloud/spring-cloud-huawei-samples/tree/master/basic
https://github.com/apache/servicecomb-java-chassis
https://github.com/apache/servicecomb-java-chassis
https://github.com/apache/servicecomb-java-chassis/issues
https://servicecomb.apache.org/references/java-chassis/en_US/
https://servicecomb.apache.org/references/java-chassis/en_US/
https://github.com/apache/servicecomb-samples/tree/master/basic
https://github.com/apache/servicecomb-samples/tree/master/basic

3 Preparing the Environment

You need to prepare the local development and commissioning environment and
cloud environment.

Preparing a Local Development and Commissioning Environment

The local development and commissioning environment is used to set up a simple
test environment. The options are as follows:

● Download the local CSE.
● Use the exclusive ServiceComb engine and open the IP address for public

network access to ensure that the local environment can be accessed.

Preparing the Cloud Environment

Before deploying microservice applications on the cloud, you need to prepare the
cloud environment. Perform the following procedure to prepare the environment:

● Create a ServiceComb engine. For details, see Creating a ServiceComb
Engine.

● Create an environment. For details, see Creating an Environment. The
created environment must contain resources such as CCE clusters, load
balancers, and ServiceComb engines.

● Create an application. For details, see Creating an Application.

Common Environment Variables

Using ServiceStage to manage environments and deploy applications simplifies
user configuration. ServiceStage sets some environment variables for applications.
The following table lists some common environment variables:

Table 3-1 Common environment variables

Name Description

PAAS_CSE_SC_EN
DPOINT

Registry center address of a ServiceComb engine.

Cloud Service Engine
Development Guide 3 Preparing the Environment

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_0005.html
https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_0005.html
https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0008.html
https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0023.html

Name Description

PAAS_CSE_CC_E
NDPOINT

Configuration center address of a ServiceComb engine.

PAAS_PROJECT_
NAME

Name of a project.

CAS_APPLICATIO
N_NAME

Name of a ServiceStage application.

CAS_COMPONE
NT_NAME

Name of a ServiceStage component.

CAS_INSTANCE_
VERSION

Version of the deployed ServiceStage.

You can use these variables based on the mechanisms of different microservice
development frameworks, such as the Place Holder mechanism of Spring Cloud
and the mapping.yaml mechanism of Java chassis, to reduce manual input during
deployment.

When creating an application on ServiceStage, you can bind middleware, such as
Distributed Cache Service (DCS) and Relational Database Service (RDS), to the
application. You can obtain the configuration information about the middleware
bound to applications by using the following environment variables.

● Distributed session
Distributed sessions are stable and reliable session storage based on DCS,
supporting automatic injection for mainstream web containers, such as
tomcat context, node.js express-session, and PHP session handler.
The following table describes the environment variables of distributed
sessions.

Table 3-2 Environment variables of DCS sessions

Name Description

DISTRIBUTED_SESSION_CLUSTER Whether the instance is in cluster
mode. Value: true or false.

DISTRIBUTED_SESSION_TYPE Storage type of a distributed session
instance. Currently, only Redis is
supported.

DISTRIBUTED_SESSION_VERSION Version of a distributed session
instance.

DISTRIBUTED_SESSION_NAME Name of a distributed session
instance.

DISTRIBUTED_SESSION_HOST IP address for connecting to a
distributed session instance.

Cloud Service Engine
Development Guide 3 Preparing the Environment

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

Name Description

DISTRIBUTED_SESSION_PORT Port for connecting to a distributed
session instance.

DISTRIBUTED_SESSION_PASSWORD Password for connecting to a
distributed session instance.

● Distributed cache

DCS is an online, distributed, in-memory cache service compatible with Redis
and Memcached. It combines high reliability and scalability with instant
availability and easy management, delivering high read/write performance
and fast data access.
The following table describes the environment variables of DCS.

Table 3-3 Environment variables of DCS

Name Description

DISTRIBUTED_CACHE_CLUSTER Whether the instance is in cluster
mode. Value: true or false.

DISTRIBUTED_CACHE_TYPE Storage type of a distributed cache
instance. Currently, only Redis is
supported.

DISTRIBUTED_CACHE_VERSION Version of a DCS instance.

DISTRIBUTED_CACHE_NAME Name of a DCS instance.

DISTRIBUTED_CACHE_HOST IP address for connecting to a DCS
instance.

DISTRIBUTED_CACHE_PORT Port for connecting to a DCS
instance.

DISTRIBUTED_CACHE_PASSWORD Password for connecting to a DCS
instance.

● Cloud database

RDS for MySQL is a cloud-based web service that is reliable, scalable, easy to
manage, and out of the box.
The following table describes the environment variables of RDS.

Table 3-4 Environment variables of RDS

Name Description

RELATIONAL_DATABASE_NAME Name of an RDS instance.

Cloud Service Engine
Development Guide 3 Preparing the Environment

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

https://www.huaweicloud.com/intl/en-us/product/dcs.html
https://www.huaweicloud.com/intl/en-us/product/mysql.html

Name Description

RELATIONAL_DATABASE_CONNECTI
ON_TYPE

Connection type of an RDS instance.
Value: JNDI/
SPRING_CLOUD_CONNECTOR.

RELATIONAL_DATABASE_JNDI_NAM
E

JNDI name of an RDS instance. This
variable is used if the connection
type is JNDI.

RELATIONAL_DATABASE_DB_NAME Database name of an RDS instance.

RELATIONAL_DATABASE_DB_USER Database user of an RDS instance.

RELATIONAL_DATABASE_DB_TYPE Database type of an RDS instance.
Currently, only MySQL is supported.

RELATIONAL_DATABASE_VERSION Database version of an RDS
instance.

RELATIONAL_DATABASE_HOST Database IP address of an RDS
instance.

RELATIONAL_DATABASE_PORT Database port of an RDS instance.

RELATIONAL_DATABASE_PASSWOR
D

Database password of an RDS
instance.

Cloud Service Engine
Development Guide 3 Preparing the Environment

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

4 Connecting Microservice Applications

4.1 Connecting Spring Cloud Applications to
ServiceComb Engines

This section describes how to connect Spring Cloud applications to ServiceComb
engines and use the most common functions of ServiceComb engines. For details
about the development guide, see Using ServiceComb Engine Functions.

In the Spring Cloud Huawei Samples project, you can find the code
corresponding to the development methods in this section.

NO TE

Spring Cloud needs to use Spring Cloud Huawei to connect to ServiceComb engines. This
document describes how to integrate and use Spring Cloud Huawei in Spring Cloud.

Prerequisites
● Microservice applications have been developed based on Spring Cloud.

For details about microservice application development in the Spring Cloud
microservice framework, see https://spring.io/projects/spring-cloud.

● Version requirements. See Requirements for Microservice Development
Framework of a ServiceComb Engine.

● This document assumes that you use Maven for dependency management
and packaging in your project. You are familiar with the Maven dependency
management mechanism and are able to modify the dependency
management and dependency in the pom.xml file.

Procedure

Step 1 Add dependencies to the pom.xml file of the project.
● If you develop microservices using Spring Cloud, introduce the following

dependencies:
<dependency>
 <groupId>com.huaweicloud</groupId>

Cloud Service Engine
Development Guide 4 Connecting Microservice Applications

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

https://github.com/huaweicloud/spring-cloud-huawei-samples/tree/master/basic
https://spring.io/projects/spring-cloud

 <artifactId>spring-cloud-starter-huawei-service-engine</artifactId>
</dependency>

NO TE

The spring-cloud-starter-huawei-service-engine module consists of the following
dependent modules:
<!-- Registry and discovery module -->
<dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>spring-cloud-starter-huawei-discovery</artifactId>
</dependency>
<!-- Configuration center module -->
<dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>spring-cloud-starter-huawei-config</artifactId>
</dependency>
<!-- Service governance module -->
<dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>spring-cloud-starter-huawei-governance</artifactId>
</dependency>
<!-- Dark launch module -->
<dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>spring-cloud-starter-huawei-router</artifactId>
</dependency>

● If you develop the gateway using Spring Cloud, introduce the following
dependencies:
<dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>spring-cloud-starter-huawei-service-engine-gateway</artifactId>
</dependency>

Cloud Service Engine
Development Guide 4 Connecting Microservice Applications

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

NO TE

The spring-cloud-starter-huawei-service-engine-gateway module consists of the
following dependent modules:
<!-- Registry and discovery module -->
<dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>spring-cloud-starter-huawei-discovery</artifactId>
</dependency>
<!-- Configuration center module -->
<dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>spring-cloud-starter-huawei-config</artifactId>
</dependency>
<!-- Service governance module -->
<dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>spring-cloud-starter-huawei-governance</artifactId>
</dependency>
<!-- Dark launch module -->
<dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>spring-cloud-starter-huawei-router</artifactId>
</dependency>
<!-- Gateway module -->
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-gateway</artifactId>
</dependency>

You are advised to use Maven Dependency Management to manage the
third-party software dependencies of a project. Introduce the following
dependencies to the project:
 <dependencyManagement>
 <dependencies>
 <!-- configure user spring cloud / spring boot versions -->
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-dependencies</artifactId>
 <version>${spring-boot.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 <!-- configure spring cloud huawei version -->
 <dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>spring-cloud-huawei-bom</artifactId>
 <version>${spring-cloud-huawei.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

Cloud Service Engine
Development Guide 4 Connecting Microservice Applications

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

Skip the operation if your project already contains the preceding dependencies.

If other registry and discovery libraries, such as Eureka, are used in your project,
you need to adjust the project as follows:

● Delete the dependencies related to Eureka from the project. For example:
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-eureka-server</artifactId>
</dependency>

● If @EnableEurekaServer is used in the code, delete it and replace it with
@EnableDiscoveryClient.

NO TE

The spring-cloud-starter-huawei-service-engine component provides functions such as
service registration, configuration center, service governance, dark launch, and contract
management. Contract management is not mandatory for the running of Spring Cloud
microservice applications. The ServiceComb engine limits the number of contracts.
When the number of microservice application contracts exceeds the limit, the registry
fails. If the legacy system cannot be properly split to reduce the number of contracts,
the dependency can be excluded and the contract management function is not used.

<dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>spring-cloud-starter-huawei-service-engine</artifactId>
 <exclusions>
 <exclusion>
 <groupId>com.huaweicloud</groupId>
 <artifactId>spring-cloud-starter-huawei-swagger</artifactId>
 </exclusion>
 </exclusions>
</dependency>

Step 2 Configure microservice information.

Add the microservice description to the bootstrap.yml file. If the bootstrap.yml
file is not available in the project, create one.

spring:
 application:
 name: basic-provider
 cloud:
 servicecomb:
 discovery:
 enabled: true
 address: http://127.0.0.1:30100
 appName: basic-application
 serviceName: ${spring.application.name}
 version: 0.0.1
 healthCheckInterval: 15
 config:
 serverAddr: http://127.0.0.1:{port}
 serverType: {servertype}

NO TE

● healthCheckInterval is in seconds.

● For ServiceComb engine 1.x, {port} is 30103 and {servertype} is config-center.

● For ServiceComb engine 2.x, {port} is 30110 and {servertype} is kie (recommended) or
config-center.

Cloud Service Engine
Development Guide 4 Connecting Microservice Applications

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

Step 3 (Optional) Configure security authentication parameters.

Perform this step only when you use the exclusive ServiceComb engine and enable
security authentication. In other scenarios, skip this step.

After security authentication is enabled for a ServiceComb engine, all called APIs
can be called only after a token is obtained. For details about the authentication
process, see RBAC.

To use security authentication, obtain the username and password from the
ServiceComb engine and then add the following configuration to the configuration
file.

● Configuration in plaintext
spring:
 cloud:
 servicecomb:
 credentials:
 account:
 name: username
 password: password
 cipher: default

● Custom encryption algorithms for storage
Implement the com.huaweicloud.common.util.Cipher API using either of the following
methods:
String name(), which is the name definition of
spring.cloud.servicecomb.credentials.cipher and needs to be added to the configuration
file.
char[] decode(char[] encrypted), which is the decryption API used to decrypt secretKey.
public class CustomCipher implements Cipher
To implement encryption and decryption, you need to use BootstrapConfiguration as the
startup add-in. Add the following statement first:
@Configuration
public class MyCipherConfiguration {
 @Bean
 public Cipher customCipher() {
 return new CustomCipher();
 }
}
Add the META-INF/spring.factories file to define the configuration:
org.springframework.cloud.bootstrap.BootstrapConfiguration=\
com.huaweicloud.common.transport.MyCipherConfiguration
After the custom configuration is complete, you can use the new decryption algorithm in
the bootstrap.yaml file.
spring:
 cloud:
 servicecomb:
 credentials:
 account:
 name: username
 password: password
 cipher: user-defined algorithm name

NO TE

The RBAC function requires 1.6.0-Hoxton or later.

----End

Cloud Service Engine
Development Guide 4 Connecting Microservice Applications

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

https://service-center.readthedocs.io/en/latest/user-guides/rbac.html

4.2 Connecting Java Chassis Applications to
ServiceComb Engines

This section describes how to connect Java chassis applications to ServiceComb
engines and use the most common functions of ServiceComb engines. For details
about the development guide, see Using ServiceComb Engine Functions.

In the Apache ServiceComb Samples project, you can find the code
corresponding to the development methods in this section.

Prerequisites
● Microservice applications have been developed based on Java chassis.

For details about microservice application development in the Java chassis
framework, see https://servicecomb.apache.org/references/java-chassis/
en_US/.

● Version requirements. See Requirements for Microservice Development
Framework of a ServiceComb Engine.

● This document assumes that you use Maven for dependency management
and packaging in your project. You are familiar with the Maven dependency
management mechanism and are able to modify the dependency
management and dependency in the pom.xml file.

● Java chassis can be used together with different technologies. The name of
the configuration file is related to the technology you use. For example, if you
use Java chassis in Spring mode, the configuration file name is
microservice.yaml. If you use Java chassis in Spring Boot mode, the
configuration file name is application.yaml. This document uses
microservice.yaml to indicate the configuration file. You need to use a
configuration file name corresponding to your project.

Procedure

Step 1 Add dependencies to the pom.xml file of the project.
<dependency>
 <groupId>org.apache.servicecomb</groupId>
 <artifactId>solution-basic</artifactId>
</dependency>
<dependency>
 <groupId>org.apache.servicecomb</groupId>
 <artifactId>servicestage-environment</artifactId>
</dependency>

Cloud Service Engine
Development Guide 4 Connecting Microservice Applications

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

https://github.com/apache/servicecomb-samples/tree/master/basic
https://servicecomb.apache.org/references/java-chassis/en_US/
https://servicecomb.apache.org/references/java-chassis/en_US/

NO TE

● The solution-basic module contains common Java chassis functions, such as the
configuration center module and service governance module, which allow you to enable
these functions in one-click.
<!-- Configuration center module -->
<dependency>
<groupId>org.apache.servicecomb</groupId>
<artifactId>config-cc</artifactId>
</dependency>
<!-- Service governance module -->
<dependency>
<groupId>org.apache.servicecomb</groupId>
<artifactId>handler-governance</artifactId>
</dependency>

● The servicestage-environment module consists of the following dependent module:
<!-- Registry and discovery module -->
<dependency>
 <groupId>org.apache.servicecomb</groupId>
 <artifactId>registry-service-center</artifactId>
</dependency>

You are advised to use Maven Dependency Management to manage the third-
party software dependencies of a project. Add the following information to the
pom.xml file of the project:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.apache.servicecomb</groupId>
 <artifactId>java-chassis-dependencies</artifactId>
 <version>${java-chassis.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

Skip the operation if your project already contains the preceding dependencies.

The servicestage-environment software package is optional. This software
package provides the environment variable mapping function. When you use
ServiceStage to deploy applications, you do not need to manually modify
information such as the registry center address, configuration center address, and
project name. The default configurations in the microservice.yaml file are
overwritten by environment variables. The mapping.yaml file is contained in the
software package. You can also add the mapping.yaml file to your own project.

NO TE

The mapping.yaml file may change in later versions to support the latest functions of
ServiceComb engines. If you do not want the new version to evolve with ServiceComb
engines, you can add the mapping.yaml file to your project instead of adding the
servicestage-environment dependency.
Generally, the microservice.yaml and mapping.yaml files are stored in the /src/main/
resources/ directory in the root directory of the current project.

PAAS_CSE_ENDPOINT:
 - servicecomb.service.registry.address
 - servicecomb.config.client.serverUri
PAAS_CSE_SC_ENDPOINT:

Cloud Service Engine
Development Guide 4 Connecting Microservice Applications

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

 - servicecomb.service.registry.address
PAAS_CSE_CC_ENDPOINT:
 - servicecomb.config.client.serverUri
PAAS_PROJECT_NAME:
 - servicecomb.credentials.project

CAS_APPLICATION_NAME:
- servicecomb.service.application
CAS_COMPONENT_NAME:
- servicecomb.service.name
CAS_INSTANCE_VERSION:
- servicecomb.service.version

Common software packages are added to solution-basic, and the default
microservice.yaml file is provided. This configuration file configures common
Handlers and parameters as follows:

order of this configure file
servicecomb-config-order: -100

servicecomb:

handlers
 handler:
 chain:
 Provider:
 default: qps-flowcontrol-provider
 Consumer:
 default: qps-flowcontrol-consumer,loadbalance,fault-injection-consumer

loadbalance strategies
 references:
 version-rule: 0+
 loadbalance:
 retryEnabled: true
 retryOnNext: 1
 retryOnSame: 0

metrics and access log
 accesslog:
 enabled: true
 metrics:
 window_time: 60000
 invocation:
 latencyDistribution: 0,1,10,100,1000
 Consumer.invocation.slow:
 enabled: true
 msTime: 1000
 Provider.invocation.slow:
 enabled: true
 msTime: 1000
 publisher.defaultLog:
 enabled: true
 endpoints.client.detail.enabled: true

servicecomb-config-order is set to -100 in the microservice.yaml configuration
file, indicating that the priority of the configuration file is low. (A larger order
indicates a higher priority. The default value is 0.) If the same configuration item
is added to the service, the configuration will be overwritten.

Cloud Service Engine
Development Guide 4 Connecting Microservice Applications

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

NO TE

The microservice.yaml file may change in later versions to support the latest functions of
ServiceComb engines. If you do not want the new version to evolve with ServiceComb
engines, you can write the configuration items to your own microservice.yaml file.

Step 2 (Optional) Configure security authentication parameters.

Perform this step only when you use the exclusive ServiceComb engine and enable
security authentication. In other scenarios, skip this step.

After security authentication is enabled for a ServiceComb engine, all called APIs
can be called only after a token is obtained. For details about the authentication
process, see RBAC.

To use security authentication, obtain the username and password from the
ServiceComb engine and then add the following configuration to the configuration
file.

servicecomb:
 credentials:
 rbac.enabled: true
 account:
 name: your account name # Username obtained from the ServiceComb engine
 password: your password # Password obtained from the ServiceComb engine
 cipher: default # Returned name of the name() method in the implementation class of API
org.apache.servicecomb.foundation.auth.Cipher

cipher specifies the name of the algorithm used to encrypt the password. By
default, the password is stored in plaintext. The encryption is implemented
through customization. The details are as follows:

● Implement the org.apache.servicecomb.foundation.auth.Cipher API using
either of the following methods:
– String name()

Name definition of servicecomb.credentials.cipher, which needs to be
added to the configuration file.

– char[] decode(char[] encrypted)
Decrypt the API, which is used after secretKey is decrypted.

The implementation class must be declared as SPI. For example:
package com.example
public class MyCipher implements Cipher

Create an SPI configuration file. The file name and path are META-INF/
service/org.apache.servicecomb.foundation.auth.Cipher, and the file
content is as follows:
com.example.MyCipher

Add the following configuration to the microservice.yaml file:
servicecomb:
 credentials:
 rbac.enabled: true
 account:
 name: your account name
 password: your password # Encrypted password
 cipher: youciphername # Returned name of the name() method in the implementation
class

Cloud Service Engine
Development Guide 4 Connecting Microservice Applications

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

https://service-center.readthedocs.io/en/latest/user-guides/rbac.html

NO TE

Plaintext storage cannot ensure security. You are advised to encrypt the password.

----End

Cloud Service Engine
Development Guide 4 Connecting Microservice Applications

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

5 Deploying Microservice Applications

For details about how to deploy microservice applications, see Creating and
Deploying a Component.

Cloud Service Engine
Development Guide 5 Deploying Microservice Applications

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0031.html

6 Using ServiceComb Engine Functions

6.1 Using Service Registry
The service center of the ServiceComb engine provides the service registry function
that registers basic information, such as the application to which a microservice
belongs, microservice name, microservice version, and listening address, with the
service center when the microservice is started.

During microservice running, the basic information about other microservices can
be queried through the service center. The registered information varies with
microservice development frameworks. For example, the service contract
information is registered in Java chassis. The registered basic information and the
process of registering and discovering other microservices are the same for all
microservice development frameworks.

This section describes how different microservice development frameworks use the
service center and configure their own registry information, as well as the
configuration items related to the interaction between microservices and the
registry center. After a microservice is registered, you can use the ServiceComb
catalog, instance list, and dependencies in CSE.

Spring Cloud

When Spring Cloud uses service registry, you need to add the following
dependencies to the project:

<dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>spring-cloud-starter-huawei-servicecomb-discovery</artifactId>
</dependency>

If the dependencies have been directly or indirectly included in the project, you do
not need to add them. Table 6-1 describes the configuration items of Spring
Cloud. The values of these configuration items affect the basic information
registered in the service center and the interaction between microservices and the
service center, such as heartbeats. Information related to service registry needs to
be configured in the bootstrap.yml file.

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

Table 6-1 Common configuration items of Spring Cloud

Item Description Defa
ult
Valu
e

Remarks

spring.cloud.servicecomb.discover
y.appName

Application defau
lt

-

spring.cloud.servicecomb.discover
y.serviceName

Microservice
name

- If no service name
exists, use
spring.application.
name.

spring.cloud.servicecomb.discover
y.version

Microservice
version

- -

server.env Environment - The value can be
production,
development, etc.

spring.cloud.servicecomb.discover
y.enabled

Whether to
enable service
registry and
discovery

true -

spring.cloud.servicecomb.discover
y.address

Registry
center
address

- Use commas (,) to
separate cluster
addresses.

spring.cloud.servicecomb.discover
y.watch

Whether to
enable the
watch mode

false -

spring.cloud.servicecomb.discover
y.healthCheckInterval

Interval for
sending
heartbeat
messages, in
seconds

15 Value range: 1 ≤
configuration item
≤ 600.

spring.cloud.servicecomb.discover
y.datacenter.name

Data center
name

- -

spring.cloud.servicecomb.discover
y.datacenter.region

Data center
region

- -

spring.cloud.servicecomb.discover
y.datacenter.availableZone

AZ of the
data center

- -

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

Item Description Defa
ult
Valu
e

Remarks

spring.cloud.servicecomb.discover
y.allowCrossApp

Whether
cross-
application
calling is
supported

false Server
configuration,
indicating that
clients in different
applications are
allowed to discover
themselves.

Java Chassis

When Java chassis uses service registry, you need to add the following
dependencies to the project:
<dependency>
 <groupId>org.apache.servicecomb</groupId>
 <artifactId>registry-service-center</artifactId>
</dependency>

If the dependencies have been directly or indirectly included in the project, you do
not need to add them. Table 6-2 describes the configuration items of Java chassis.
The values of these configuration items affect the basic information registered in
the service center and the interaction between microservices and the service
center, such as heartbeats.

Table 6-2 Common configuration items of Java chassis

Item Description Default
Value

Remarks

servicecomb.service.ap
plication

Application default -

servicecomb.service.na
me

Microservice name defaultMicro
service

-

servicecomb.service.ve
rsion

Microservice version 1.0.0.0 -

servicecomb.service.en
vironment

Environment - The value
can be
production,
developme
nt, etc.

servicecomb.service.re
gistry.address

Registry center address http://
127.0.0.1:301
00

Use
commas (,)
to separate
cluster
addresses.

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

Item Description Default
Value

Remarks

servicecomb.service.re
gistry.instance.watch

Whether to enable the
watch mode

true -

servicecomb.service.re
gistry.instance.healthC
heck.interval

Interval for sending
heartbeat messages, in
seconds

30 -

servicecomb.service.re
gistry.instance.healthC
heck.times

Indicates the allowed
number of heartbeat
failures. If the heartbeat
fails for the consecutive
times+1 times, the
instance is brought
offline by the service
center. That is, interval x
(times + 1) determines
the time when an
instance is automatically
deregistered. If the
service center does not
receive a heartbeat
message for a long time,
the service center
deregisters the instance.

3 -

servicecomb.datacente
r.name

Data center name - -

servicecomb.datacente
r.region

Data center region - -

servicecomb.datacente
r.availableZone

AZ of the data center - -

The instance address and listening address registered by Java chassis are related to
the release address specified by servicecomb.service.publishAddress. The
configuration items of the service listening address are servicecomb.rest.address
and servicecomb.highway.address, which correspond to the listening addresses of
the REST and highway transmission modes, respectively. Table 6-3 shows the
relationship between the registered address, listening address, and release address.

Table 6-3 Effective rules of registered instance addresses

Listening
Address

Release
Address

Registered Instance Address

127.0.0.1 - 127.0.0.1

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

Listening
Address

Release
Address

Registered Instance Address

0.0.0.0 - Set it to the IP address of a NIC. The wildcard
address, loopback address, or broadcast address is
not selected.

Specific IP
address

- Set it to the listening address.

* Specific IP
address

Set it to the release address.

* "{NIC name}" Specifies the IP address corresponding to the NIC
name. Note that the IP address must be enclosed
in quotation marks and brackets.

6.2 Using the Configuration Center

6.2.1 Configuration Center Overview
The configuration center is used to manage microservice application
configurations. Microservices connect to the configuration center to obtain the
information and changes of configurations. The configuration center is also the
core component for the management functions of other microservices. For
example, service governance rules are delivered through the configuration center.

ServiceComb engines support config-center and kie.

NO TE

● For ServiceComb engine 1.x, the configuration center is config-center.
● For ServiceComb engine 2.x, the configuration center is kie (recommended) or config-

center.

This section describes the development details of different microservice
development frameworks using the configuration center, including how to
configure dependencies and connect to configuration items related to the
configuration center, and how to read configurations and respond to configuration
changes in microservice applications.

● ServiceComb engines use kie as the configuration center.
By default, microservices read application configurations, service
configurations, and custom configurations from the configuration center.
Application configuration refers to the configuration of the same environment
and application as the microservice. Service configuration refers to the
configuration of the same environment, application, and microservice name
as the microservice. A microservice can specify a specific label and label value
in the configuration file. Custom configuration refers to the configuration of
the same label and label value as the microservice.
Application- and service-level configurations are applicable to simple
scenarios. The application-level configuration is shared by all microservices of

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

the application. The service-level configuration is exclusive and takes effect
only for specific microservices.
In complex scenarios, customLabel and customLabelValue can be used to
define configurations. For example, if some configurations are shared by all
applications, this method can be used. Add the following configuration to the
configuration file (Spring Cloud is used as an example):
spring:
 cloud:
 servicecomb:
 config:
 kie:
 customLabel: public # The default value is public.
 customLabelValue: default # The default value is a null string.

If a configuration item has the public label and the label value is default, the
configuration item takes effect for the microservice.

a. The configuration center is considered as the table tbl_configurations of
the database. The key is the primary key, and each label is an attribute.

b. The client queries the configuration based on the following search
criteria:

▪ Custom configuration
select * from tbl_configurations where
customLabel=customLabelValue & match=false

▪ Application-level configuration
select * from tbl_configurations where app=demo_app &
environment=demo_environment & match=true

▪ Service-level configuration
select * from tbl_configurations where app=demo_app &
environment=demo_environment & service=demo_service &
match=true

When match is set to true, only the attributes specified in the condition
are available. When match is set to false, all attributes except those in
the condition are allowed. You can also specify multiple applications for
label app or services for label service. In this way, the configuration item
takes effect for multiple services and applications.

For ServiceComb engines of the TEXT and XML types, SDK uses the content as
key-value pairs. For CSE of the YAML and Properties types, SDK parses the
content and the application uses the content as the actual application
configuration items. For example,
Type: TEXT
key: cse.examples.hello
value: World

One configuration item is found in the application: cse.examples.hello =
World.
Type: YAML
key: cse.examples.hello
value: |
 cse:
 key1: value1
 key2: value2

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

Two configuration items are found in the application: cse.key1 = value1 and
cse.key2 = value2.

● ServiceComb engines use config-center as the configuration center.
By default, microservices read global configurations and service configurations
from the configuration center. Global configuration refers to the environment
shared by the microservice engine and microservice. Service configuration
refers to the microservice engine's environment, application, and microservice
name that are the same as the microservice's.
ServiceComb engines support only key-value configuration items. To use a
configuration file in YAML format, you can use the fileSource function
provided by SDK. After the key list of fileSource is specified in the
configuration file, SDK parses the values of these keys as YAML files. The
following uses Spring Cloud as an example to describe how to add a
configuration item to the bootstrap.yml file.
spring:
 cloud:
 servicecomb:
 config:
 fileSource: file1.yaml,file2.yaml

In addition, create configurations in the configuration center. The following
table lists the configuration items and their values. The value is in YAML
format.

Item Value

file1.yaml cse.example.key1: value1
cse.example.key2: value2

file2.yaml cse.example.key3: value3
cse.example.key4: value4

For details about how to create a microservice, see Configuration
Management (Applicable to Engine 1.x).
Four configuration items are found in the application:
cse.example.key1=value1, cse.example.key2=value2,
cse.example.key3=value3, and cse.example.key4=value4.

6.2.2 Using the Configuration Center in Spring Cloud
When the configuration center is used in Spring Cloud, you need to add the
following dependencies to the project:

<dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>spring-cloud-starter-huawei-config</artifactId>
</dependency>

If the dependencies have been directly or indirectly included in the project, you do
not need to add them. Spring Cloud contains the configuration items listed in
Table 6-4. The values of these configuration items specify the identity of
microservices in the configuration center and the interaction between
microservices and the configuration center.

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_22080401.html
https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_22080401.html

Table 6-4 Common configuration items of Spring Cloud

Item Description Default
Value

Remarks

spring.cloud.servicecomb.d
iscovery.appName

Application default -

spring.cloud.servicecomb.d
iscovery.serviceName

Microservice name - If no service name
exists, use
spring.applicatio
n.name.

spring.cloud.servicecomb.d
iscovery.version

Microservice
version

- -

server.env Environment - The value can be
production,
development, etc.

spring.cloud.servicecomb.c
onfig.enabled

Whether to enable
dynamic
configuration

true -

spring.cloud.servicecomb.c
onfig.serverType

Configuration
center type

config-
center

● For
ServiceComb
engine 1.x, set
it to config-
center.

● For
ServiceComb
engine 2.x, set
it to kie
(recommended
) or config-
center.

spring.cloud.servicecomb.c
onfig.serverAddr

Access address. The
format is
http(s)://{ip}:
{port}. Use
commas (,) to
separate multiple
addresses.

- -

spring.cloud.servicecomb.c
onfig.fileSource

List of YAML
configuration
items, which are
separated by
commas (,)

- This parameter is
valid only when
the configuration
center is config-
center.

Spring Cloud users who use ServiceComb engine 1.x need to frequently add
configuration files in YAML format to the configuration center. Spring Cloud
Huawei provides the configuration item

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

spring.cloud.servicecomb.config.fileSource to enable users to configure
configuration files in YAML format. The value of this configuration item is the key
list of the key-value system. Multiple keys are separated by commas (,). The
values of these keys are text content in YAML format. Spring Cloud Huawei
performs special processing and parsing on the values of these keys.

After accessing the configuration center, you can use the @Value and
@ConfigurationProperties labels to inject configurations for Spring Cloud
applications. Alternatively, you can also use Environment to read configurations
and @RefreshScope to dynamically change configurations. For details, see the
developer guide of the community.

6.2.3 Using the Configuration Center in Java Chassis
● Java chassis uses the configuration center named config-center.

You need to add the following dependencies to the project:
<dependency>
 <groupId>org.apache.servicecomb</groupId>
 <artifactId>config-cc</artifactId>
</dependency>

If the preceding dependencies have been directly or indirectly included in the
project, you do not need to add them. Java chassis contains the configuration
items listed in Table 6-5. The values of these configuration items specify the
identity of microservices in the configuration center and the interaction
between microservices and the configuration center.

Table 6-5 Common configuration items of Java chassis

Item Description Default
Value

Remarks

servicecomb.service.a
pplication

Application default -

servicecomb.service.n
ame

Microservice name defaultMicro
service

-

servicecomb.service.v
ersion

Microservice version 1.0.0.0 -

servicecomb.service.e
nvironment

Environment - The value
can be
production,
developme
nt, etc.

servicecomb.config.cli
ent.serverUri

Access address. The
format is http(s)://
{ip}:{port}. Use
commas (,) to
separate multiple
addresses.

http://
127.0.0.1:30
103

config-
center

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

https://spring.io/projects/spring-cloud

Item Description Default
Value

Remarks

servicecomb.config.cli
ent.tenantName

Tenant name of the
application

default config-
center

● Java chassis uses the configuration center named kie.

You need to add the following dependencies to the project:
<dependency>
 <groupId>org.apache.servicecomb</groupId>
 <artifactId>config-kie</artifactId>
</dependency>

If the preceding dependencies have been directly or indirectly included in the
project, you do not need to add them. Java chassis contains the configuration
items listed in Table 6-6. The values of these configuration items specify the
identity of microservices in the configuration center and the interaction
between microservices and the configuration center.

Table 6-6 Common configuration items of Java chassis

Item Description Default
Value

Remarks

servicecomb.service.a
pplication

Application default -

servicecomb.service.n
ame

Microservice name defaultMicros
ervice

-

servicecomb.service.v
ersion

Microservice version 1.0.0.0 -

servicecomb.service.e
nvironment

Environment - The value
can be
production,
developme
nt, etc.

servicecomb.kie.server
Uri

Address for accessing
kie. The format is
http(s)://{ip}:{port}.
Use commas (,) to
separate multiple
addresses.

- kie

servicecomb.kie.firstR
efreshInterval

Interval for updating
configuration items
for the first time
(ms)

3000 kie

servicecomb.kie.refres
h_interval

Interval for updating
configuration items
(ms)

3000 kie

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

Item Description Default
Value

Remarks

servicecomb.kie.doma
inName

Tenant name of the
application

default kie

Java chassis provides multiple methods to read dynamic configurations.
● The first method is to use the archaius API, for example,

DynamicDoubleProperty myprop = DynamicPropertyFactory.getInstance()
 .getDoubleProperty("trace.handler.sampler.percent", 0.1);

The archaius API supports callback to process configuration change:
myprop.addCallback(new Runnable() {
 public void run() {
 // When the value of a configuration item changes, the callback method is invoked.
 System.out.println("trace.handler.sampler.percent is changed!");
 }
 });

● The second method is to use the configuration injection mechanism provided
by Java chassis. This method can easily handle complex configurations and
configuration priorities. For example,
 @InjectProperties(prefix = "jaxrstest.jaxrsclient")
 public class Configuration {
 /*
 * The prefix attribute override of a method will overwrite @InjectProperties defined in
the class.
 * The prefix attribute of an annotation.
 *
 * The keys attribute can be a string array. A smaller subscript indicates a higher priority.
 *
 * The system searches for configuration attributes in the following sequence until the
configured configuration attributes are found:
 * 1) jaxrstest.jaxrsclient.override.high
 * 2) jaxrstest.jaxrsclient.override.low
 *
 * Test case:
 * jaxrstest.jaxrsclient.override.high: hello high
 * jaxrstest.jaxrsclient.override.low: hello low
 * Expected result:
 * hello high
 */
 @InjectProperty(prefix = "jaxrstest.jaxrsclient.override", keys = {"high", "low"})
 public String strValue;

Inject configurations.
 ConfigWithAnnotation config = SCBEngine.getInstance().getPriorityPropertyManager()
 .createConfigObject(Configuration.class,
 "key", "k");

● The third method is used when Spring and Spring Boot are integrated. The
configuration can be read in the native mode of Spring and Spring Boot, for
example, @Value and @ConfigurationProperties. Java chassis applies
configuration hierarchy to Spring Environment. Spring and Spring Boot can
also read the dynamically configured values and the values in the
microservice.yaml file.
For more information about the read configurations of Java chassis, see the
developer guide of the community.

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

https://servicecomb.apache.org/references/java-chassis/en_US/

6.3 Using Service Governance

6.3.1 Overview
Service governance is a broad concept. Generally, it refers to some measures that
ensure the reliable system running and are independent of business logic. The
following assurance measures are provided to deal with the common fault modes
in microservice scenarios:

● Load balancing management: provides load balancing policy management in
multi-instance scenarios. For example, the polling mode is used to ensure that
traffic is balanced among different instances. When an instance is faulty, the
instance can be temporarily isolated to prevent access to the instance from
causing request timeout.

● Rate limiting: provides load protection and prevents the system from breaking
down when the external traffic exceeds the processing capability of the
system. Rate limiting is also used to smooth requests so that requests are
evenly distributed to services, preventing the impact of burst traffic on the
system.

● Retry: prevents random failures, which often occur in the microservice system,
which often occur in the microservice system due to many reasons. Take the
request timeout of a Java microservice application as an example. This may
occur due to network fluctuation or software/hardware upgrade, which may
interrupt services for several seconds. The increasing latency due to JVM
garbage collection and thread scheduling may also be the cause. The system
is more prone to time out when traffic is not even, such as 1000 concurrent
requests and 1000 requests within 1s. The interaction between applications,
systems, and networks can also cause random failures. The burst traffic of an
application may affect the bandwidth and consequently the running of other
applications. In other application-related scenarios, for example, SSL needs to
obtain the OS entropy. If the entropy is too low, a latency of several seconds
will occur. The system must be capable of protection against the inevitable
random faults.

● Bulkhead: protects resource-consuming services. For example, if a time-
consuming service shares a thread pool with other services, other services will
wait when the service receives a large number of sudden requests,
compromising the performance of the entire system. The bulkhead allocates
an independent resource pool (usually implemented through the semaphore
or thread pool) to resource-intensive services to prevent other services from
being affected.

● Degradation: During peak hours, access to the target service needs to be
temporarily reduced to decrease the load of the target service. Alternatively,
access to non-key services needs to be shielded to maintain the core
processing capability of the service.

However, no governance measure is applicable to all scenarios. That is, a
governance measure that works well in one scenario may cause problems in
another. Therefore, it is important to dynamically update the governance policy
based on the service running status and metrics.

To use service governance in a service system, perform the following steps:

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

1. Develop a service. This step focuses more on service function delivery than on
service governance. The microservice development framework provides
assurance measures by default against common system faults. Selecting an
appropriate microservice development framework can save the DFx time.

2. Conduct performance tests and fault drills. Many system instability issues are
found in this process. The service governance policies are applied to resolving
these issues and written to the configuration file as the default values of the
application.

3. Bring the service online. If an unexpected scenario occurs during service
rollout, you need to use the configuration center to dynamically adjust
governance parameters for stable service running.

The preceding three steps will be continuously optimized throughout the software
lifecycle. ServiceComb engines provide unified service governance capability based
on request markers for different microservice development frameworks. If a
microservice framework is used to develop an application, the microservice is
automatically registered with the corresponding ServiceComb engine after the
application is hosted and started, and you can perform service governance on the
CSE console. For details, see Governing Microservices.

This section describes how to use the service governance capability based on
request markers.

6.3.2 Request Marking
● Java chassis implements the request marker-based governance capability

using Handler. The Provider implements rate limiting, circuit breaker, and
bulkhead, and the Consumer implements retry.
a. To use the request marker-based governance capability, you need to

introduce the following dependencies to the code:
<dependency>
 <groupId>org.apache.servicecomb</groupId>
 <artifactId>handler-governance</artifactId>
</dependency>

b. Configure the Handler chain.
servicecomb:
 handler:
 chain:
 Consumer:
 default: governance-consumer,loadbalance
 Provider:
 default: governance-provider

Java chassis is a REST/RPC framework based on open APIs. The model is
different from the REST framework. Java chassis provides REST-based and
RPC-based matching. You can use the servicecomb.governance.
{operation}.matchType configuration item to specify the matching rule. By
default, REST-based matching is used. If the highway protocol in Java chassis
is used for calling, set matchType to rpc. For example,
servicecomb:
 governance:
 matchType: rest #Set the global default matching mode to REST and set the highway protocol to
rpc.
 GovernanceEndpoint.helloRpc:
 matchType: rpc # Set the interface helloRpc on the server to use RPC-based matching.

In REST-based matching, apiPath uses a URL, for example,
servicecomb:
 matchGroup:

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_22080103.html

 userLoginAction: |
 matches:
 - apiPath:
 exact: "/user/login"

In RPC-based matching, apiPath uses an operation, for example,
servicecomb:
 matchGroup:
 userLoginAction: |
 matches:
 - apiPath:
 exact: "UserSchema.login"

For server governance, such as rate limiting, the header is obtained from
HTTP in REST-based matching. For client governance, such as retry, the
header is obtained from InvocationContext in REST-based matching.
The following describes how to configure different governance policies and
add dependencies to the POM file.
One request corresponds to one key. For example, userLoginAction is the
name of a key. Multiple marking rules can be defined for one request. In each
marking rule, the matching rules for apiPath, method, and headers can be
defined. The relationship between marking rules is OR, and the relationship
between matching rules is AND.
A series of operators are provided in match to match apiPath or headers.
– exact: exact match
– prefix: prefix match
– suffix: suffix match
– contains: whether the target string contains the scheme string
– compare: supporting the match in >, <, >=, <=, =, or != mode During the

processing, the scheme string and the target string are converted into the
Double type for comparison. The supported data range is the Double
data range. If the difference between the values of = and != is less than
1e-6, the two values are considered equal. For example, if the scheme
string is > –10, the target string greater than –10 is matched.

Request marking can be implemented at different application layers. For
example, on the server that provides REST APIs, request information can be
obtained through the HttpServletRequest API. The client called by the
RestTemplate can obtain request information from the RestTemplate.
The methods for information extraction vary with frameworks and application
layers. The implementation layer shields differences by mapping features to
GovernanceRequest. In this way, the governance capability can be used in
different frameworks and application layers.
public class GovernanceRequest {
 private Map<String, String> headers;

 private String uri;

 private String method;}

● Spring Cloud uses Aspect to intercept the RequestMappingHandlerAdater
class to implement rate limiting, circuit breaker, and bulkhead, and intercept
RestTemplate and FeignClient to implement retry.
To use the request marker-based governance capability, you need to introduce
the following dependencies to the code:

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

<dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>spring-cloud-starter-huawei-governance</artifactId>
</dependency>

Spring Cloud is based on the REST framework and can better match the
matching semantics of marker-based governance. apiPath and headers
correspond to the HTTP protocol:
servicecomb:
 matchGroup:
 userLoginAction: |
 matches:
 - apiPath:
 exact: "/user/login"
 method:
 - POST
 - headers:
 Authentication:
 prefix: Basic

6.3.3 Rate Limiting
The rate limiting rule is based on Resilience4j and works on the server. The
principles are as follows: A maximum of rate requests can be accepted at the
interval specified by limitRefreshPeriod. If the number of requests exceeds the
value of rate, the traffic is limited and the response code 429 is returned.

● Rate limiting of Java chassis is used for microservice providers. The rate
limiting module must be integrated into microservice applications and the
qps-flowcontrol-provider processing chain must be enabled.
Configuration example:
servicecomb:
 handler:
 chain:
 Provider:
 default: qps-flowcontrol-provider

Add the following dependency to the POM file:
<dependency>
 <groupId>org.apache.servicecomb</groupId>
 <artifactId>handler-flowcontrol-qps</artifactId>
 <version>${project.version}</version>
</dependency>

For details, see ServiceComb Rate Limiting Development Guide.
● Spring Cloud uses Aspect to intercept RequestMappingHandlerAdater to

implement rate limiting. After Spring Cloud Huawei is integrated, the rate
limiting module spring-cloud-starter-huawei-governance is integrated by
default. You only need to enable a specific rate limiting policy.
Configuration example:
servicecomb:
 matchGroup:
 AllOperation: |
 matches:
 - apiPath:
 prefix: "/"
 rateLimiting:
 AllOperation: |
 rate: 10 # A maximum of 10 requests are allowed in a period of time.

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

https://servicecomb.apache.org/references/java-chassis/en_US/build-provider/configuration/ratelimite-strategy/

6.3.4 Fault Tolerance
Based on whether the retry interval is fixed, retry policies are classified into fixed
interval and exponential interval. The default retry policy is fixed interval.

● Fault tolerance of Java chassis is used for microservice consumers. The fault
tolerance module must be integrated into microservice applications and the
bizkeeper processing chain must be enabled.
Configuration example:
servicecomb:
 handler:
 chain:
 Consumer:
 default: bizkeeper-consumer

Add the following dependency to the POM file:
<dependency>
 <groupId>org.apache.servicecomb</groupId>
 <artifactId>handler-bizkeeper</artifactId>
 <version>${project.version}</version>
</dependency>

NO TE

The microservice development framework Java Chassis 2.x is used as an example.

● Spring Cloud uses Aspect to intercept RequestMappingHandlerAdater to
implement fault tolerance. After Spring Cloud Huawei is integrated, the client
fault tolerance module spring-cloud-starter-huawei-governance is integrated
by default. You only need to enable a specific client fault tolerance policy.
Configuration example:
servicecomb:
 matchGroup:
 AllOperation: |
 matches:
 - apiPath:
 prefix: "/"
 retry:
 AllOperation: |
 maxAttempts: 3 # Number of retries
 retryOnSame: 1 # Instance initiated by retry
 retryOnResponseStatus: # Retry error code
 - 502
 - 503

The default policy takes effect when the error code is 502 or 503. In
1.11.4-2021.0.x/1.11.4-2022.0.x and later versions, the response header takes
effect in special scenarios.
The response header is defaulted to X-HTTP-STATUS-CODE. You can also
customize the key as follows:
spring:
 cloud:
 servicecomb:
 governance:
 response:
 header:
 status:
 key: 'X-HTTP-EEROR-STATUS-CODE'

The response code set in the response header can also be customized.
However, you need to add the corresponding error code to the fault tolerance
policy. For example, if you set X-HTTP-STATUS-CODE=511, add error code
511. The configuration is as follows:

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

servicecomb:
 matchGroup:
 AllOperation: |
 matches:
 - apiPath:
 prefix: "/"
 retry:
 AllOperation: |
 maxAttempts: 3 # Number of retries
 retryOnSame: 1 # Instance initiated by retry
 retryOnResponseStatus: # Retry error code
 - 502
 - 503
 - 511

The system checks the response code first. If the abnormal response code
meets the policy setting, the fault tolerance function is enabled. If the
abnormal response code does not meet the policy setting, the system checks
whether the response code set in the header meets the requirement.

6.3.5 Circuit Breaker
The circuit breaker rule is based on Resilience4j and works on the server. The
principles are as follows:

When the specified value of failureRateThreshold or slowCallRateThreshold is
reached, the circuit breaker is triggered and response code 429 is returned.
SlowCallDurationThreshold indicates the slow call duration threshold.
minimumNumberOfCalls indicates the minimum number of requests that meet
the circuit breaker requirement. For example, if the value of
minimumNumberOfCalls is 10, at least 10 calls must be recorded to calculate
the failure rate. If only nine calls are recorded, CircuitBreaker will not be enabled
even if all the nine calls fail. slidingWindowType specifies the type of the sliding
window. The default value is count (based on the number of requests) or time
(based on the time window). If the sliding window type is count, the latest
slidingWindowSize calls are recorded and counted. If the sliding window type is
time, the calls in the latest slidingWindowSize seconds are recorded and
counted. slidingWindowSize specifies the size of the sliding window. The unit can
be the number of requests or second, depending on the sliding window type.

● Circuit breaker of Java chassis is used for microservice consumers. The circuit
breaker module must be integrated into microservice applications and the
bizkeeper-consumer processing chain must be enabled.
Configuration example:
servicecomb:
 handler:
 chain:
 Consumer:
 default: bizkeeper-consumer

Add the following dependency to the POM file:
<dependency>
 <groupId>org.apache.servicecomb</groupId>
 <artifactId>handler-bizkeeper</artifactId>
 <version>${project.version}</version>
</dependency>

NO TE

The microservice development framework Java Chassis 2.x is used as an example.

● Spring Cloud Huawei uses Aspect to intercept RequestMappingHandlerAdater
to implement circuit breaker. After Spring Cloud Huawei is integrated, the

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

client circuit breaker module spring-cloud-starter-huawei-governance is
integrated by default. You only need to enable a specific client circuit breaker
policy.
Configuration example:
servicecomb:
 matchGroup:
 AllOperation: |
 matches:
 - apiPath:
 prefix: "/"
 instanceIsolation:
 AllOperation: |
 minimumNumberOfCalls: 10
 slidingWindowSize: 10
 slidingWindowType: COUNT_BASED
 failureRateThreshold: 20
 recordFailureStatus:
 - 502
 - 503

The default policy takes effect when the error code is 502 or 503. In
1.11.4-2021.0.x/1.11.4-2022.0.x and later versions, the response header takes
effect in special scenarios.
The default key of the response header is X-HTTP-STATUS-CODE. You can
also customize the key by configuring the following on the client:
spring:
 cloud:
 servicecomb:
 governance:
 response:
 header:
 status:
 key: 'X-HTTP-EEROR-STATUS-CODE'

The response code set in the response header can also be customized.
However, you need to add the corresponding error code to the fault tolerance
policy. For example, if you set X-HTTP-STATUS-CODE=511, add error code
511. The configuration is as follows:
servicecomb:
 matchGroup:
 AllOperation: |
 matches:
 - apiPath:
 prefix: "/"
 instanceIsolation:
 AllOperation: |
 minimumNumberOfCalls: 10
 slidingWindowSize: 10
 slidingWindowType: COUNT_BASED
 failureRateThreshold: 20
 recordFailureStatus:
 - 502
 - 503
 - 511

The preceding configuration enables the client circuit breaker policy for all
instances. This policy uses the COUNT_BASED sliding window policy. The
window size is 10 requests. When the number of requests reaches 10, the
error rate starts to be calculated. If the error rate reaches 20%, circuit breaker
is performed for subsequent requests. The default sliding window policy is
TIME_BASED. The system checks the response code first. If the abnormal
response code meets the policy setting, the fault tolerance function is
enabled. If the abnormal response code does not meet the policy setting, the

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

system checks whether the response code set in the header meets the
requirement.

6.3.6 Bulkhead
Bulkhead is an exception detection mechanism. It is used when a request timeout
or large traffic occurs. Generally, you need to set the timeout duration and the
number of concurrent requests.

● Bulkhead of Java chassis is used for microservice consumers. The bulkhead
module must be integrated into microservice applications and the bizkeeper-
consumer processing chain must be enabled.
Configuration example:
servicecomb:
 handler:
 chain:
 Consumer:
 default: bizkeeper-consumer
 isolation:
 Consumer:
 timeout:
 enabled: true #Whether to enable timeout detection
 timeoutInMilliseconds: 30000 #Timeout threshold

● The bulkhead policy of Spring Cloud Huawei is the same as that of circuit
breaker. For details about the configuration example, see Circuit Breaker.

6.3.7 Load Balancing
Load balancing functions on the client and is an indispensable key component of a
high-concurrency and high-availability system. It aims to evenly distribute network
traffic to multiple servers to improve the overall response speed and availability of
the system.

● Load balancing of Java chassis is used for microservice consumers. The load
balancing module must be integrated into microservice applications and the
loadbalance processing chain must be enabled.
Configuration example:
servicecomb:
 handler:
 chain:
 Consumer:
 default: loadbalance
 loadbalance:
 strategy:
 name: RoundRobin #The polling mode is enabled.

Add the following dependency to the POM file:
 <dependency>
 <groupId>org.apache.servicecomb</groupId>
 <artifactId>handler-loadbalance</artifactId>
 <version>${project.version}</version>
</dependency>

● Spring Cloud Huawei load balancing is based on Ribbon in Spring Cloud and
works on the client. The principles are as follows: When a random rule is
used, the client randomly accesses an instance in the downstream
microservice instance. When a polling rule is used, the client cyclically selects
a server in the downstream microservice instance in sequence.
Configuration example:

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

servicecomb:
 loadbalance:
 userLoginAction: |
 rule: Random #The random mode is enabled. The default mode is polling.

6.3.8 Service Degradation
During peak hours, access to the target service needs to be temporarily reduced to
decrease the load of the target service. Alternatively, access to non-key services
needs to be shielded to maintain the core processing capability of the service.

● Service degradation of Java chassis is used for microservice consumers. The
service degradation module must be integrated into microservice applications
and the bizkeeper-consumer processing chain must be enabled.
Configuration example:
servicecomb:
 handler:
 chain:
 Consumer:
 default: bizkeeper-consumer

Add the following dependency to the POM file:
<dependency>
 <groupId>org.apache.servicecomb</groupId>
 <artifactId>handler-bizkeeper</artifactId>
 <version>${project.version}</version>
</dependency>

NO TE

The microservice development framework Java Chassis 2.x is used as an example.

● Spring Cloud Huawei degradation is a governance rule. After Spring Cloud
Huawei is integrated, the client governance module spring-cloud-starter-
huawei-governance is integrated by default. The principles are as follows:
When the traffic target path is requested, null is returned for all requests.
forceClosed is a parameter for forcibly disabling degradation governance.
When forceClosed is set to true, degradation governance is forcibly disabled.
The default value is false.
Configuration example:
servicecomb:
 matchGroup:
 demo-test-fallback: |
 matches:
 - serviceName: "MyMicroservice"
 apiPath:
 prefix: "/"
 faultInjection:
 demo-test-fallback: |
 type: abort
 percentage: 100
 fallbackType: ReturnNull
 forceClosed: false

When the preceding configuration is enabled, requests for accessing any API
of MyMicroservice will be blocked and FaultInjectionException with error code
500 will be returned.

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

6.3.9 Fault Injection
You can use fault injection on the consumer side to configure the latency, fault,
and triggering probability of requests sent to a specified microservice to ensure
that core services are accessed only by key microservices during peak hours.

NO TE

Spring Cloud Huawei does not support fault injection.

Fault injection of Java chassis is used for microservice consumers. The fault
injection module must be integrated into microservice applications and the fault-
injection-consumer processing chain must be enabled.
servicecomb:
 handler:
 chain:
 Consumer:
 default: loadbalance,fault-injection-consumer

Add the following dependency to the POM file:

<dependency>
 <groupId>org.apache.servicecomb</groupId>
 <artifactId>handler-fault-injection</artifactId>
 <version>${project.version}</version>
</dependency>

For details, see ServiceComb Fault Injection Development Guide.

6.3.10 Customized Governance
The default implementation of service governance does not solve all service
problems. The customized governance function allows you to use request marker-
based governance capability in different scenarios, for example, rate limiting in the
gateway scenario, and URL matching in the Java chassis scenario. The SDK is
based on Spring, and all Spring-based frameworks can flexibly use these APIs with
similar methods.

The following uses rate limiting as an example to describe how to use an API. You
can also use custom API-based code to deliver services and governance rules on
the ServiceComb engine management console.

The basic code process includes declaring the reference of RateLimitingHandler,
creating GovernanceRequest, intercepting (packaging) the service logic, and
handling governance exceptions.

 @Autowired
private RateLimitingHandler rateLimitingHandler;

GovernanceRequest governanceRequest = convert(request);

CheckedFunction0<Object> next = pjp::proceed;
DecorateCheckedSupplier<Object> dcs = Decorators.ofCheckedSupplier(next);

try {
 SpringCloudInvocationContext.setInvocationContext();

 RateLimiter rateLimiter = rateLimitingHandler.getActuator(request);
 if (rateLimiter != null) {
 dcs.withRateLimiter(rateLimiter);
 }

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

https://servicecomb.apache.org/references/java-chassis/en_US/build-consumer/fault-injection/

 return dcs.get();
} catch (Throwable th) {
 if (th instanceof RequestNotPermitted) {
 response.setStatus(429);
 response.getWriter().print("rate limited.");
 LOGGER.warn("the request is rate limit by policy : {}",
 th.getMessage());
 } else {
 if (serverRecoverPolicy != null) {
 return serverRecoverPolicy.apply(th);
 }
 throw th;
 }
} finally {
 SpringCloudInvocationContext.removeInvocationContext();
}

This section describes the customized development. For in-depth usage, you can
also refer to the default implementation code in the Java chassis and Spring Cloud
projects.

6.3.11 Blacklist/Whitelist
The configured blacklist/whitelist takes effect only after public key authentication
is enabled.

6.4 Using Dark Launch
In dark launch, a small number of users test the trial version, ensuring the smooth
rollout of new features. Once new features become mature, a formal version is
released for all users. Dark launch ensures stability of the entire system. During
initial dark launch, problems can be detected and fixed.

For ServiceComb Java chassis and Spring Cloud Huawei microservices registered
with the ServiceComb engines, deliver configurations to use dark launch.

If ServiceComb Java chassis depends on handler-router and Spring Cloud Huawei
depends on spring-cloud-starter-huawei-router to implement microservice dark
launch, the delivery rules comply with the following specifications:

servicecomb:
 routeRule:
 provider: | #Service name.
 - precedence: 2 #Priority.
 match: #Matching policy.
 headers: #Header matching.
 region:
 exact: 'providerRegion'

 type:
 exact: gray
 route: #Routing rule.
 - weight: 100 #Weight value.
 tags:
 version: 1.0.0

 - precedence: 1
 route:
 - weight: 20
 tags:

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

 version: 0.0.1
 canaryProperty: group-a
 - weight: 80
 tags:
 version: 0.0.2

The preceding configurations are described as follows:

● match specifies the requests to be matched. The matching condition is
headers. Fields in headers support exact match. If match is not defined, any
request can be matched.

● The forwarding weight is defined in routeRule.{targetServiceName}.route
and is configured by weight. The value of weight indicates the percentage.
The sum of the values must be equal to 100. If the sum is smaller than 100,
the value in the latest version is calculated.

● The service group is defined under routeRule.{targetServiceName}.route and
is configured by tags. version is a special tag, indicating the microservice
version. You can also configure other properties, which are defined in the
properties of the instance.

● A larger priority value indicates a higher priority.

If ServiceComb Java chassis depends on darklaunch to implement microservice
dark launch, the rules are also delivered on the ServiceComb engine page and
comply with the following specifications:

{
 "policyType":"RULE",
 "ruleItems":[
 {
 "groupName":"self_rule_test",
 "groupCondition":"version=0.0.1",
 "policyCondition":"name=11111",
 "versions":["0.0.1"]
 }],
 "empty":false
}

The preceding configurations are described as follows:

● policyCondition: matching condition of the routing rule. This rule matches
the request parameter name. When the value is 11111, the current routing
rule is matched.

● groupName: name of the routing rule.
● groupCondition: target group of the rule. When name=11111 is matched,

the route is routed to the microservice instance with version=0.0.1.
● The configuration item is fixed to cse.darklaunch.policy.${serviceName}.

Spring Cloud Huawei
When Spring Cloud Huawei uses the dark launch, you need to add the following
dependencies to the project. If the dependencies have been directly or indirectly
included in the project, you do not need to add them.

<dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>spring-cloud-starter-huawei-router</artifactId>
</dependency>

Set the headers parameter on which the dark launch rule depends.

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

● In 1.10.7 and later versions, set the header parameter in the configuration
file. The header in the user request is not transparently transmitted to the
downstream service.
spring:
 cloud:
 servicecomb:
 context:
 headerContextMapper:
 canary: canary

● In versions earlier than 1.10.7, the header parameters set in the request are
transparently transmitted.

Java Chassis

When Java chassis uses dark launch, you need to add the following dependencies
to the project. If the dependencies have been directly or indirectly included in the
project, you do not need to add them.

<dependency>
 <groupId>org.apache.servicecomb</groupId>
 <artifactId>handler-router</artifactId>
</dependency>

or

<dependency>
 <groupId>org.apache.servicecomb</groupId>
 <artifactId>darklaunch</artifactId>
</dependency>

Add the following configuration item to the configuration file:

servicecomb.router.type: router

By default, Java chassis does not transfer non-parameter headers to microservices.
If dark launch depends on non-parameter headers, you can add the following
configuration items:

servicecomb.router.header: canaryHeader1,canaryHeader2

Java chassis uses these non-parameter headers for dark launch matching.

If the request is forwarded by EdgeService, you also need to add configurations
related to dark launch to EdgeService.

6.5 Using Dashboard
The dashboard provides some basic capabilities for monitoring microservice
running. Microservices report running status data using SDKs. The reported data
includes request statistics, such as the quantity, latency, and error rate, as well as
governance-related status, such as the circuit breaker status.

● Spring Cloud directly uses the dashboard without dependencies. Spring Cloud
contains the configuration items listed in Table 6-7. These configuration items
specify information such as the dashboard reporting address.

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

Table 6-7 Common configuration items of Spring Cloud Huawei

Item Description Default Value

spring.cloud.servicecom
b.dashboard.invocation
ProviderEnabled

Request-based
interface count is used.

true

spring.cloud.servicecom
b.dashboard.governanc
eProviderEnabled

Circuit breaker-based
interface count is used.

false

spring.cloud.servicecom
b.dashboard.enabled

Whether to enable the
dashboard data
reporting function

false

spring.cloud.servicecom
b.dashboard.address

Address to which
dashboard data is
reported. The format is
http://{ip}:{port}. Use
commas (,) to separate
multiple addresses.
NOTE

Change the port number
to 30109. For details
about how to obtain the
address for reporting
dashboard data, see
Obtaining the
Configuration Center
Address of a
ServiceComb Engine.

-

NO TE

Either request-based interface count or circuit breaker-based count takes effect each
time.

● When Java chassis uses the dashboard, you need to add the following
dependencies to the project:
<dependency>
 <groupId>org.apache.servicecomb</groupId>
 <artifactId>dashboard</artifactId>
</dependency>

If the dependencies have been directly or indirectly included in the project,
you do not need to add them. Java chassis contains the configuration items
listed in Table 6-8. These configuration items specify information such as the
dashboard reporting address.

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_0009.html
https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_0009.html
https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_0009.html
https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_0009.html

Table 6-8 Common configuration items of Java chassis

Item Description Default Value

servicecomb.monitor.cli
ent.serverUri

Address to which
dashboard data is
reported. The format is
http://{ip}:{port}. Use
commas (,) to separate
multiple addresses.
NOTE

Change the port number
to 30109. For details
about how to obtain the
address for reporting
dashboard data, see
Obtaining the
Configuration Center
Address of a
ServiceComb Engine.

-

servicecomb.monitor.cli
ent.enabled

Whether to enable data
reporting

true

servicecomb.monitor.cli
ent.interval

Report period (ms) 10000

6.6 Using Security Authentication

6.6.1 Security Authentication Overview
The exclusive ServiceComb engine with security authentication enabled provides
the system management function using the role-based access control (RBAC)
through the microservice console. You can use an account associated with the
admin role to create an account and associate a proper role with the account
based on service requirements. The user who uses this account has the access and
operation permissions on the ServiceComb engine.

After security authentication is enabled for an exclusive ServiceComb engine, all
called APIs can be called only after a token is obtained. For details about the
authentication process, see RBAC.

For an exclusive ServiceComb engine with security authentication enabled,
perform the following operations before using security authentication:

1. Creating a Security Authentication Account and Password
2. Configuring the Security Authentication Account and Password for a

Microservice

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_0009.html
https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_0009.html
https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_0009.html
https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_0009.html
https://service-center.readthedocs.io/en/latest/user-guides/rbac.html#

NO TE

● Spring Cloud must integrate Spring Cloud Huawei 1.6.1 or later and Java chassis 2.3.5 or
later to support security authentication.

● The exclusive ServiceComb engine with security authentication disabled is upgraded to
the new version and security authentication is enabled. For details, see Managing
Security Authentication for a ServiceComb Engine.

6.6.2 Creating a Security Authentication Account and
Password

Create an account name and password for the exclusive ServiceComb engine with
security authentication enabled. For details, see System Management.

6.6.3 Configuring the Security Authentication Account and
Password for a Microservice

After enabling programming interface security authentication of an exclusive
ServiceComb engine, you need to enable the same function of microservice
components connected to the engine. Programming interface security
authentication is triggered by configuring the security authentication account and
password. Currently, the configuration file configuration mode and environment
variable injection mode are supported.

For security purposes, you are advised to encrypt the account and password before
using them.

NO TE

If programming interface security authentication is not enabled for the exclusive
ServiceComb engine, but the security authentication account name and password are
configured for the microservice component, the engine will verify the account configured
for the microservice component.

Configuring the Security Authentication Account and Password for a Spring
Cloud Microservice Component

● Configure the configuration file
Add the following configurations to the bootstrap.yml file of the
microservice. If they are configured, skip this step.
spring:
 cloud:
 servicecomb:
 credentials:
 account:
 name: test # Set this parameter based on the actual value.
 password: mima # Set this parameter based on the actual value.
 cipher: default

NO TE

By default, the user password is stored in plaintext, which cannot ensure security. You
are advised to encrypt the password for storage. For details, see Custom encryption
algorithms for storage.

● Enter environment variables
Add the environment variables listed in Table 6-9 to the microservice.

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_22080901.html
https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_22080901.html
https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_0022.html

Add environment variables. For details, see Managing Application
Environment Variables.

Table 6-9 Environment variables

Name Description

spring_cloud_servicecomb_credentials_account_na
me

Set it based on the
actual value.

spring_cloud_servicecomb_credentials_account_pa
ssword

Set it based on the
actual value.
NOTE

By default, the user
password is stored in
plaintext, which cannot
ensure security. You are
advised to encrypt the
password for storage. For
details, see Custom
encryption algorithms
for storage.

Configuring the Security Authentication Account and Password for a Java
Chassis Microservice Component

● Configure the configuration file
Add the following configurations to the microservice.yml file of the
microservice. If they are configured, skip this step.
servicecomb:
 credentials:
 rbac.enabled: true # Set this parameter based on the actual value.
 cipher: default
 account:
 name: test # Set this parameter based on the actual value.
 password: mima # Set this parameter based on the actual value.
 cipher: default

NO TE

By default, the user password is stored in plaintext, which cannot ensure security. You
are advised to encrypt the password for storage. For details, see Configure security
authentication parameters.

● Enter environment variables
Add the environment variables listed in Table 6-10 to the microservice.
Add environment variables. For details, see Managing Application
Environment Variables.

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0025.html
https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0025.html
https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0025.html
https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0025.html

Table 6-10 Environment variables

Name Description

servicecomb_credentials_rbac_enabled ● true: security
authentication
enabled.

● false: security
authentication
disabled.

servicecomb_credentials_account_name Set it based on
the actual value.

servicecomb_credentials_account_password Set it based on
the actual value.
NOTE

By default, the
user password is
stored in
plaintext, which
cannot ensure
security. You are
advised to
encrypt the
password for
storage. For
details, see
Configure
security
authentication
parameters.

Cloud Service Engine
Development Guide 6 Using ServiceComb Engine Functions

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

7 Appendix

7.1 Java Chassis Version Upgrade Reference
● Java chassis earlier than 2.1.3 is used to the ServiceComb engine.

a. The CSE SDK needs to be introduced using the following dependencies:
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.huawei.paas.cse</groupId>
 <artifactId>cse-dependency</artifactId>
 <version>version</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

b. Add dependencies.
<dependency>
 <groupId>com.huawei.paas.cse</groupId>
 <artifactId>cse-solution-service-engine</artifactId>
</dependency>

The CSE SDK is introduced, and an extra repository needs to be added to
Maven settings.
 <repositories>
 <repository>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <id>huaweicloudsdk-releases</id>
 <name>huaweicloudsdk</name>
 <url>https://repo.huaweicloud.com/repository/maven/huaweicloudsdk/</
url>
 </repository>
 </repositories>

● Upgrade the version to 2.1.3 or later.

a. Modify Maven Dependency Management.
 <dependencyManagement>
 <dependencies>
 <dependency>

Cloud Service Engine
Development Guide 7 Appendix

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

 <groupId>org.apache.servicecomb</groupId>
 <artifactId>java-chassis-dependencies</artifactId>
 <version>${java-chassis.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

b. Add dependencies.
<dependency>
 <groupId>org.apache.servicecomb</groupId>
 <artifactId>solution-basic</artifactId>
</dependency>
<dependency>
 <groupId>org.apache.servicecomb</groupId>
 <artifactId>servicestage-environment</artifactId>
</dependency>

If this package depends on another software package whose groupId is
com.huawei.paas.cse, delete the depended software package. For 2.1.3
or later, all software packages can be obtained from the Maven central
repository. You do not need to configure the Maven repository.

7.2 Local Development Tool
The local development tool includes the local lightweight ServiceComb engine 2.x
and provides a lightweight service center, configuration center, and easy-to-use UI
for local development.

For details, see the README.md file in the local development tool package.

Table 7-1 Local engine resource quota

Function Resource Quota

Microservice
management

Microservice versions 10,000

Number of instances of a single
microservice

100

Number of contracts of a single
microservice

500

Configuration
management

Configuration items 600

Table 7-2 Local ServiceComb engine versions

Version ServiceComb Engine
Version

Release Date How to Obtain

2.1.8 2.x 2023.9.25 Local-CSE-2.1.8-windows-amd64.zip

Local-CSE-2.1.8-linux-amd64.zip

Cloud Service Engine
Development Guide 7 Appendix

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

https://cse-bucket.obs.cn-north-1.myhuaweicloud.com/LocalCSE/Local-CSE-2.1.8-windows-amd64.zip
https://cse-bucket.obs.cn-north-1.myhuaweicloud.com/LocalCSE/Local-CSE-2.1.8-linux-amd64.zip

Version ServiceComb Engine
Version

Release Date How to Obtain

Local-CSE-2.1.8-linux-arm64.zip

Local-CSE-2.1.8-darwin-amd64.zip

Local-CSE-2.1.8-darwin-arm64.zip

NO TE

● Local ServiceComb engines are used only for local development and debugging and are
not commercial.

● The local ServiceComb engine can be used in Windows, Mac, and Linux OSs. If Mac OS
is used, you need to run the downloaded Mac package in the Users/xxx directory. xxx
indicates the user name for logging in to the system.

7.3 Using ServiceComb Engines by Mesher

7.3.1 Mesher Overview

What Is Mesher?
Mesher provides the Service Mesh, which is a lightweight proxy service that runs
together with microservices in Sidecar mode.

Service Mesh is defined by William Morgan.

A Service Mesh is a dedicated infrastructure layer for handling service-to-service
communication. It's responsible for the reliable delivery of requests through the
complex topology of services that comprise a modern, cloud native application. In
practice, the Service Mesh is typically implemented as an array of lightweight
network proxies that are deployed alongside application code, without the
application needing to be aware.

The concept of the Service Mesh as a separate layer is tied to the rise of the cloud
native application. In the cloud native model, a single application might consist of
hundreds of services; each service might have thousands of instances; and each of
those instances might be in a constantly-changing state. Not only is service
communication in this world incredibly complex, it's a pervasive and fundamental
part of runtime behavior. Managing it is vital to ensuring end-to-end performance
and reliability.

Cloud Service Engine
Development Guide 7 Appendix

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

https://cse-bucket.obs.cn-north-1.myhuaweicloud.com/LocalCSE/Local-CSE-2.1.8-linux-arm64.zip
https://cse-bucket.obs.cn-north-1.myhuaweicloud.com/LocalCSE/Local-CSE-2.1.8-darwin-amd64.zip
https://cse-bucket.obs.cn-north-1.myhuaweicloud.com/LocalCSE/Local-CSE-2.1.8-darwin-arm64.zip

The Service Mesh is a networking model that sits at a layer of abstraction above
TCP/IP. It assumes that the underlying L3/L4 network is present and capable of
delivering bytes from point to point. (It also assumes that this network, as with
every other aspect of the environment, is unreliable; the Service Mesh must
therefore also be capable of handling network failures.)

In some ways, the Service Mesh is analogous to TCP/IP. Just as the TCP stack
abstracts the mechanics of reliably delivering bytes between network endpoints,
the Service Mesh abstracts the mechanics of reliably delivering requests between
services. Like TCP, the Service Mesh does not care about the actual payload or how
it is encoded. The application has a high-level goal ("send something from A to
B"), and the job of the Service Mesh, like that of TCP, is to accomplish this goal
while handling any failures along the way.

Unlike TCP, the Service Mesh has a significant goal beyond "just make it work": it
provides a uniform, application-wide point for introducing visibility and control
into the application runtime. The explicit goal of the Service Mesh is to move
service communication out of the realm of the invisible, implied infrastructure, so
that it can be monitored, managed and controlled in the ecosystem.

Why Mesher?
● Service codes do not need to be reconstructed.
● Existing applications can be accessed.
● Common applications quickly become cloud-native.
● Service codes do no need to be modified.

Basic Implementation Principle

Mesher is the proxy of Layer 7 protocols. It runs in Sidecar mode in a pod where
applications reside, and shares network and storage resources with the pod.

1. Applications in the Pod use Mesher as the HTTP proxy to automatically
discover other services.

2. Instead of applications in the Pod, Mesher registers with the registry center to
be discovered by other services.

The network request process of a consumer and provider using Service Mesh is as
follows:

● Scenario 1. Only the consumer uses Mesher in Sidecar mode.

Cloud Service Engine
Development Guide 7 Appendix

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

Provider needs to implement service registry and discovery or use the Java
development framework. Otherwise, the consumer connected through Mesher
cannot discover the provider.
The network request process between applications is as follows:
consumer-> Mesher -> provider

● Scenario 2: Both the consumer and provider use Mesher in Sidecar mode.
In this scenario, the microservice development framework is not required.
The network request process between applications is as follows:
consumer -> Mesher -> Mesher ->provider

● Scenario 3. Only the provider uses Mesher in Sidecar mode.
Consumer needs the Java development framework.
The network request process between applications is as follows:
consumer -> Mesher -> provider

Precautions
Configurations need to be modified after applications are deployed on the cloud.
For example, before Mesher is deployed, the consumer uses http://IP:port/ to
access the provider; after Mesher is deployed, the consumer uses http://
provider:port/ to access the provider. For details, see Connecting Mesher
Applications to CSE.

7.3.2 Connecting Mesher Applications to CSE

NO TICE

Unlike the microservice development framework, the Mesher capability is provided
by ServiceStage. You must enable multi-language access to Service Mesh on
ServiceStage.

This section describes how to connect HTTP applications to ServiceComb engines
using Mesher. Mesher supports multiple languages. This section describes only the
specifications for connecting Mesher applications to ServiceComb engines. For
details about the sample code, see the following:

● Connecting to the Service Mesh Through .NET Core
● Connecting PHP to Service Mesh

Prerequisites
An HTTP application (supporting multiple languages) has been developed.

Procedure

Step 1 Change ${IP:Port} in the URL called by the microservice to a service name.

For example, if the microservice name is provider and the API is /hello, the URL is
http://${IP:Port}/hello. For example:

Cloud Service Engine
Development Guide 7 Appendix

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

https://github.com/servicestage-demo/microservice-solution/tree/master/dotnet
https://github.com/go-mesh/mesher-examples/tree/master/PHP-Mesher-Example

http://127.0.0.1:80/hello

You need to change the called URL to:

http://provider/hello

Step 2 Deploy components on ServiceStage, bind the ServiceComb engine, and connect
the components to the ServiceComb engine. You can select the bound

ServiceComb engine in Advanced Settings, click , and enter the listening
port number of the application process to enable multi-language access to
Mesher. For details, see Creating and Deploying a Component .

NO TE

If the component is deployed in a container, multi-language access to Service Mesh is
supported. If the component is deployed on a VM, multi-language access to Service Mesh is
not supported.

----End

7.4 Resolved Issues in Earlier Versions of Spring Cloud
Huawei and Java Chassis

This section lists all the issues that have been resolved in earlier versions of Spring
Cloud Huawei and Java chassis.

Spring Cloud Huawei

Spring Cloud Huawei
Version

Resolved Issues

1.11.6-2023.0.x ● Security vulnerabilities existed in the snakeyaml,
jackson, and guava configuration files.

● After the routing was disabled, the microservice
application failed to be started and the nacos/
servicecomb adaptation implementation class
cannot be found.

● When a configuration update event was released
in the same configuration center configurations,
the pooling configuration may not be found
during the request.

1.11.6-2022.0.x

1.11.6-2021.0.x

1.11.4-2022.0.x ● When RBAC security authentication was not
enabled, the framework still listened to
authentication expiration events.

● The gateway and webflux routes cannot obtain
the request header setting information.

● When microservice API security authentication
was enabled, all requests failed because the rule
was not set.

● The circuit breaker rule on the server did not take
effect.

1.11.4-2021.0.x

Cloud Service Engine
Development Guide 7 Appendix

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0031.html

1.11.3-2022.0.x When a service name was specified, the instance
isolation policy did not take effect.

1.11.3-2021.0.x

1.11.2-2022.0.x ● When no blacklist or whitelist policy was
configured for API security authentication, a null
pointer exception occurred.

● When the same request header was set on both
the server and client, the key did not take effect.

1.11.2-2021.0.x

1.11.0-2022.0.x The trace context configuration did not take effect
based on dynamic configuration.

1.11.0-2021.0.x

1.10.13-2021.0.x When multiple services were called at the same time,
the degradation did not take effect.

1.10.11-2021.0.x Instance isolation governance did not take effect.

1.10.9-2021.0.x ● When a service name was specified, the retry
policy did not take effect.

● When a service degradation error occurred, the
response was empty instead of the null string.

1.10.8-2021.0.x The load balancing rule did not take effect.

1.10.8-2020.0.x

1.10.7-2021.0.x When service registry and discovery was disabled, the
start failed.

1.10.7-2020.0.x

1.10.6-2021.0.x Environment information was missing from the
monitoring information.

1.10.6-2020.0.x

1.10.5-2021.0.x There were too many retries. As a result, the request
was not responded for a long time.

1.10.5-2020.0.x

1.10.4-2021.0.x The identifierRateLimiting context failed to be
obtained.

1.10.4-2020.0.x

1.10.3-2021.0.x The governance configuration did not take effect
when it was changed for the first time.

1.10.3-2020.0.x

1.10.2-2021.0.x ● The default configuration update interval was
changed to 15s.

● The null pointer of the instance isolation filter was
abnormal.

1.10.2-2020.0.x

Cloud Service Engine
Development Guide 7 Appendix

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

1.10.1-2021.0.x ● A null pointer exception occurred in the context of
a non-client request.

● The routing client failed to compile the request
header.

● The dark launch version policy took effect.
● A conversion exception occurred when

ClientRequest was not of the RequestData type.

1.10.1-2020.0.x

1.10.0-2021.0.x ● When a service was deleted or restarted, the
Ribbon cache cannot be updated. As a result, the
request was sent to an unavailable service, and
the error "no host to route" was displayed.

● After a dark launch release rule was configured in
dynamic configuration, the modification did not
take effect.

● The startup application failed to be started at the
outer layer of the service package.

● The maximum number of gateway retries did not
take effect.

1.10.0-2020.0.x

1.9.1-2020.0.x ● In some scenarios, the ags attribute of the startup
class was incorrectly loaded.

● The maximum number of retries was unlimited.
● The dark launch dynamic configuration did not

take effect.

1.9.0-2020.0.x When instance.healthCheck.mode was pull, the
custom healthCheckInterval did not take effect.

1.8.0-2020.0.x ● When too many query tasks were configured in
non-long polling mode, the tasks were triggered
at no interval.

● After a service instance was brought offline on the
CSE page, the service instance can still be called.

● management.server.port and server.port were
different, causing an error during startup.

● The gateway obtained instances in different
environments.

1.7.0-2020.0.x ● The gateway failed to be started because Web
MVC was combined with the route.

● The gateway cannot implement route definition
based on service discovery.

● The gateway cannot implement service discovery
across applications.

1.6.1-2020.0.x NOTE
Major problems exist. You are not advised to use it:
● The configuration center was queried frequently.
● Incorrect configurations were found.

Cloud Service Engine
Development Guide 7 Appendix

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

1.9.4-Hoxton When a configuration update event was released in
the same configuration center configurations, the
pooling configuration may not be found during the
request.

1.9.3-Hoxton When a service was deleted or restarted, the Ribbon
cache cannot be updated. As a result, the request
was sent to an unavailable service.

1.9.2-Hoxton After an instance was deleted and another instance
was registered on the server, the client selected an
incorrect server instance.

1.9.1-Hoxton ● In some scenarios, the ags attribute of the startup
class was incorrectly loaded.

● The maximum number of retries was unlimited.
● The dark launch dynamic configuration did not

take effect.

1.9.0-Hoxton When instance.healthCheck.mode was pull, the
custom healthCheckInterval did not take effect.

1.8.0-Hoxton ● When too many query tasks were configured in
non-long polling mode, the tasks were triggered
at no interval.

● After a service instance was brought offline on the
CSE page, the service instance can still be called.

● management.server.port and server.port were
different, causing an error during startup.

● The gateway obtained instances in different
environments.

1.7.0-Hoxton ● The gateway failed to be started because Web
MVC was combined with the route.

● The gateway cannot implement route definition
based on service discovery.

● The gateway cannot implement service discovery
across applications.

1.6.0-Hoxton ● SDK sent a retry request to the engine based on
error codes 401 and 403.

● The default routing rule of the gateway did not
take effect.

● Cross-application calling was not supported.

1.5.9-Hoxton ● RBAC authentication did not take effect.
● The latest microservice version cannot be

obtained during dark launch routing.
● Some JDK versions did not support swagger cyclic

dependency.

Cloud Service Engine
Development Guide 7 Appendix

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

1.5.8-Hoxton ● An incorrect instance was selected during gateway
service discovery.

● A calling exception occurred when the instance
status was empty.

1.5.6-Hoxton ● The AK/SK did not take effect after being
configured, and the authentication failed.

● The server.env configurations did not take effect
and were empty.

● Governance configuration items in the
configuration center can still be used after being
deleted.

● The circuit breaker configuration attribute of the
sliding window did not take effect.

● A null pointer exception occurred after the watch
mode was enabled in the registry center.

● Only the first address can be read when the
environment variable PAAS_CSE_SC_ENDPOINT
was read.

1.5.0-Hoxton ● Incorrect governance rules caused a null pointer
exception.

● A null pointer exception occurred when the AK/SK
was not configured.

● The traffic limiting policy did not take effect for
the first concurrent request after the service was
started.

● An incorrect service was selected for governance.
As a result, the request was abnormal.

● When the environment was production and the
schema remained unchanged, the service failed to
be restarted.

1.6.4-Greenwich When a configuration update event was released in
the same configuration center configurations, the
pooling configuration may not be found during the
request.

1.6.3-Greenwich When a service was deleted or restarted, the Ribbon
cache cannot be updated. As a result, the request
was sent to an unavailable service.

1.6.1-Greenwich An exception occurred during cross-application
service discovery of the gateway.

Cloud Service Engine
Development Guide 7 Appendix

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

1.6.0-Greenwich ● SDK sent a retry request to the engine based on
error codes 401 and 403.

● The routing rule of the gateway did not take
effect.

● The latest microservice version cannot be
obtained during dark launch routing.

● The AK/SK configuration did not take effect.
● The server.env configurations did not take effect

and were empty.
● Service center failed to be started in watch mode.
● Only the first address can be read when the

environment variable PAAS_CSE_SC_ENDPOINT
was read.

● Cross-application calling was not supported.

1.5.0-Greenwich ● Incorrect governance rules caused a null pointer
exception.

● A null pointer exception occurred when the AK/SK
was not configured.

● The traffic limiting policy did not take effect for
the first concurrent request after the service was
started.

● A service forwarding error occurred in governance.
● When the environment was production, the

schema was repeatedly registered. As a result, the
startup failed.

v1.3.3-Greenwich The listening function of the registry center did not
take effect.

1.6.1-Finchley ● The calling failed randomly during the first
concurrency after the service was started.

● Microservices failed to be called across
applications.

Cloud Service Engine
Development Guide 7 Appendix

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

1.6.0-Finchley ● SDK sent a retry request to the engine based on
error codes 401 and 403.

● The routing rule of the gateway did not take
effect.

● The latest microservice version cannot be
obtained during dark launch routing.

● The AK/SK configuration did not take effect.
● The server.env configurations did not take effect

and were empty.
● Service center failed to be started in watch mode.
● Only the first address can be read when the

environment variable PAAS_CSE_SC_ENDPOINT
was read.

● Cross-application calling was not supported.

1.5.1-Finchley Governance configurations in the configuration
center can still be used after being deleted.

v1.3.9 NOTE
Major problems exist. You are not advised to use it:
A critical service forwarding error occurred in governance.

v1.3.8 NOTE
Major problems exist. You are not advised to use it:
A critical service forwarding error occurred in governance.

v1.3.4 ● The registry thread pool cannot be closed
correctly, causing leakage.

● The microservice failed to be registered after the
actuator was enabled.

● There were too many heartbeats in some
scenarios.

v1.3.3 ● WebSocket failed to send a WebService request.
● The watch of the registry center did not take

effect.

v1.3.2 ● When the environment was production, the
schema failed to be registered.

● Random address selection failed when the registry
center URL was not set.

● The watch was abnormal when the domain name
was configured in the registry center.

v1.2.0 When the default AK/SK configuration was read from
ServiceStage, too many objects were initialized,
causing memory leakage.

Cloud Service Engine
Development Guide 7 Appendix

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

v1.1.0 ● There were too many heartbeat information logs.
● SSL calling between microservices did not take

effect.
● The request was abnormal when the URL

contained spaces.

v1.0.0 Automatic service discovery cannot be performed in
some scenarios.

v0.0.3 ● The service discovered instances in the down
state.

● The configured path was too long.
● The microservice failed to connect to the local CSE

engine.

Java Chassis
Java Chassis
Version

Resolved Issues

3.1.0 ● "UnsupportedOperationException" was reported when
the @RestController annotation class was scanned.

● idleTimeout was incorrectly set. As a result, some
connections were closed.

3.0.2 ● When multiple identical keys existed in the configuration
center, the updated configuration did not take effect.

● The node information was not correctly destroyed. As a
result, the request was abnormal.

3.0.1 Fallback label-based routing was supported.

2.8.16 idleTimeout was incorrectly set. As a result, some
connections were closed.

2.8.15 When multiple identical keys existed in the configuration
center, the updated configuration did not take effect.

2.8.14 ● The request context was lost.
● An exception occurred when SCBEngine was shut down.
● When the content was empty, buffer reader was

incorrect.

2.8.13 ● The connection timed out, and the metric statistics were
incorrect.

● SDK was abnormal when the attachment to be uploaded
was empty.

Cloud Service Engine
Development Guide 7 Appendix

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

2.8.12 ● The registry center frequently changed microservices. As
a result, the newly deployed instance cannot be found
and the cache instance was still used.

● Vertx was occasionally shut down abnormally, and the
blocking service was shut down normally.

2.8.11 When DefaultHttpClientFilter failed to deserialize the
response body, the exception information was incorrect.

2.8.10 ● Content-Type set for ResponseEntity did not take effect.
● The registry center frequently changed microservices. As

a result, the newly deployed instance cannot be found
and the cache instance was still used.

2.8.9 ● The bean of the service startup registry class was
initialized twice.

● The configuration was compatible with the registry center
configuration of engine 1.x.

● The cache instance information was not updated during
concurrent registry.

2.8.8 ● Microservice routing should obtain attributes from
instances to determine the route distribution policy.

● An error occurred when HttpUtils parsed Content-
Disposition. As a result, ReadStreamPart cannot obtain
the file name.

2.8.7 The available AZ was null by default.

2.8.6 ● Configuration item keep-alive of the HTTP client was
modified.

● The microservice version number was obtained during
concurrent access.

2.8.5 If the number of consecutive errors was 0 or fewer, the error
percentage cannot take effect.

2.8.4 The request was incorrect because the instance change time
was abnormal.

2.8.3 The definition of caseInsensitive in the routing rule was
modified.

2.8.2 ● During the effective matching of a governance rule, the
apiPath matching was incorrect.

● An exception occurred when the body parameter in the
MVC request was null.

2.8.1 The load isolation switch did not take effect.

Cloud Service Engine
Development Guide 7 Appendix

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

2.8.0 ● idleTimeout and keepAliveTimeout were incorrect.
● The highway protocol time in the edge gateway was

incorrectly parsed.
● A null pointer exception occurred on the rate limiting

governance rule.

2.7.10 ● The environment variables reported by the dashboard
were incorrect.

● When registry was unavailable, the cached service was
cleared. As a result, the request was abnormal.

2.7.9 A null pointer exception occurred when autoDiscovery was
enabled.

2.7.8 ● A metadata memory leak occurred.
● The findByContext method caused memory overflow.
● PriorityInstancePropertyDiscoveryFilter generated debug

logs.

2.7.6 ● The ProducerOperationHandler error log recorded a
wrong traceID.

● The instance isolation filter did not take effect.
● A null pointer exception occurred when the routing rule

version was empty.

2.7.5 ● Too many events were queued each time an instance was
pulled to release events.

● Span was empty in some scenarios of Zipkin.
● The kie configuration center did not support filesource

separation by commas (,).

2.7.3 ● The dynamic configuration modification of dark launch
release was invalid.

● The request context combination logic conflicted.

2.7.0 IsolationDiscoveryFilter created too many objects.

2.6.3 ● The retry was abnormal when a service failed to be
selected for load balancing.

● The calculation of retries did not take effect.

2.6.0 ● During file download, the part content was empty. As a
result, a null pointer exception occurred.

● The empty string of the highway protocol was serialized.
● The key pulled the configuration too fast in non-long

pulling mode.
● A null pointer exception occurred when the SDK was

deployed for the first time after an engine was created.
● The highway protocol was added and the default

response body size limit was 20 MB.

Cloud Service Engine
Development Guide 7 Appendix

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

2.5.2 The default value of idleTimeout for the ServiceComb client
connection was changed from 60s to 30s.

2.5.1 An exception was thrown when the kie pulled an empty
configuration for the first time.

2.5.0 RPC failed to be called in the vert.x work pool.

2.3.0 ● After the configuration in the configuration center was
updated, the rate limiting component was abnormal.

● The custom executor failed to be added to the edge
gateway service.

● The AK/SK switch was on, and the encryption class failed
to be obtained for the first time.

● Placeholder were not supported.
● slidingWindowType did not take effect for circuit breaker.
● OOM occurred when a request was forwarded to a

microservice that did not exist.
● Error 404 occurred when a wrong address was retried.
● The registration center failed to listen to the instance.
● A deadlock occurred when a bean class was injected in

XmlViewResolver and SPI modes at the same time.
● After the configuration was changed, the dark launch

route did not use the latest version.
● The configuration change event was incorrectly triggered

when filesource was configured.
● The registry center address supported array placeholder

configuration.
● When the dashboard was enabled, the startup failed due

to a null pointer exception.

2.2.4

2.2.3

2.2.2

2.2.1

2.2.0 ● The governance configuration did not correctly process
empty configurations and print incorrect operations.

● RestTemplate failed to upload multiple files randomly.
● When deleteAfterSuccess was set to true, the

downloaded file in the servlet context failed to be
deleted.

2.1.6

2.1.5 ● The start failed when the main method did not contain
the package name.

● An exception occurred when the third-party service was
registered and started.

● An exception occurred when setting the response header
for the HTTP2 request.

● YAML was parsed insecurely.
● The collection placeholders were parsed.
● APP_MAPPING failed to parse the ServiceStage

environment variables.

Cloud Service Engine
Development Guide 7 Appendix

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

2.1.3 ● The isolated instance was not restored after the response
was correctly returned.

● Asynchronous callback was triggered when the
connection was closed due to timeout.

● The service configuration and the default spring value
did not take effect.

● servicecomb.references.version-rule did not take effect.
● Service isolation did not take effect due to timeout.

2.1.2 ● The API remained unchanged and the JDK version was
different. The schema reading sequence was inconsistent.
As a result, the schema verification failed.

● The service status was incorrect. As a result, the isolated
instance cannot be called.

● A null pointer exception occurred when the gateway read
the microservice name.

2.1.1 ● When the native parameters were empty, a null pointer
exception was thrown during highway protocol parsing.

● When the connection timed out, the obtained connection
time was 0.

● The yaml and properties configurations cannot be
correctly processed.

● RegistryUtils API did not use the version rule parameters.

2.1.0 ● OOM occurred because the instance information failed to
be set continuously.

● The client label in the microservice metadata was
incorrect.

● A service calling exception occurred on the instances of
different versions and APIs.

● A request exception occurred when the highway protocol
contained an appId.

2.0.2 ● The jackson conversion overwrote all objects.
● The kie parsing configuration was incorrect.
● The version number query configuration was added to

kie.

2.0.1 ● idleTimeoutInSeconds in HTTP2 was not used.
● A null pointer exception occurred when

@RequestHeader(value ="xxx") and the aggregation
parameters were used at the same time.

● A request exception occurred when the interface
parameter was defined as an object.

Cloud Service Engine
Development Guide 7 Appendix

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

1.3.11 ● Configuration item keep-alive of the HTTP client was
modified.

● If the number of consecutive errors was 0 or fewer, the
error percentage cannot take effect.

1.3.10 ● The load isolation switch did not take effect.
● An exception occurred when setting the response header

for the HTTP2 request.

1.3.9 A null pointer exception occurred on the rate limiting
governance rule.

1.3.8 The instance isolation filter did not take effect.

1.3.7 IsolationDiscoveryFilter created too many objects.

1.3.5 ● idleTimeout of the request client did not take effect.
● The server was suspended and there was no stack

information.

1.3.3 ● YAML was parsed insecurely.
● The isolated instance was not restored after the response

was correctly returned.
1.3.2

1.3.1 ● The API remained unchanged and the JDK version was
different. The schema reading sequence was inconsistent.
As a result, the schema verification failed.

● A null pointer exception occurred when
@RequestHeader(value ="xxx") and the aggregation
parameters were used at the same time.

● The service status was incorrect. As a result, the isolated
instance cannot be called.

● The CPU was overloaded when there were too many
instances.

● The file upload was abnormal. As a result, no response
was returned.

● The default status was reset when the registry center was
re-registered due to an exception.

● SwaggerProducerOperation printed sensitive information
logs.

Cloud Service Engine
Development Guide 7 Appendix

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

1.3.0 ● No exception was returned for FallbackPolicy.
● CseAsyncRestTemplate did not support header settings.
● RSAProviderTokenManager caused a memory leak.
● ServiceCombServerStats.getFailedRate threw

ArithmeticException: /by zero.
● The swagger failed to generate a schema when a

rewriting method existed.
● When the RPC calling method had multiple parameters

and the first parameter was Object, the second
parameter was empty.

1.2.0 ● The @ConfigurationProperties annotation was not
supported.

● HTTP2 did not support file download.
● When acceptType existed on the client, the file download

was abnormal.
● When the startup failed, the destruction method

overwrote the original exception information.
● An exception occurred when metrics-prometheus adapted

to prometheus-2.x.
● The CPU usage calculated by the framework was

incorrect.
● An exception occurred when the schema was empty.
● The Spring MVC application developed based on

ServiceComb failed to be started.
● The collected information was incorrect when an

exception occurred during REST calling.
● A null pointer exception occurred when the return type

was defined as ResponseEntity<Void>.
● The AZ affinity was abnormal when the instance was

empty.
● The request policy was rejected when the thread queue

was full.
● httpClientResponse.exceptionHandler threw an exception.

Cloud Service Engine
Development Guide 7 Appendix

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

1.1.0 ● A service thread deadlock occurred after delayed error
injection was enabled.

● The latest service failed to be accessed.
● The request was abnormal because unavailable services

were not cleared in a timely manner.
● The edge service did not correctly return the servlet

response code.
● The mvn install command was used for packaging in

Ubuntu.
● The sequence of parameters generated by

BeanParamAnnotationProcessor was unstable.
● In the callback scenario, the instance attribute of the old

version was used. As a result, the request was incorrect.
● The downloaded content was incorrect.
● The @ApiResponse annotation lost the response type.
● The encoding and decoding of request parameters were

incorrect.
● JSON parsing was incorrect and the return code was

incorrect.
● servicecomb.xx.xx did not take effect as a governance

rule.
● The request connection was suspended when the request

path contained invalid characters.
● The NotFoundException exception was thrown during

internal class parsing.

1.0.0 ● The traffic limiting policy did not take effect.
● The configurations starting with cse and servicecomb

were set at the same time. As a result, the configuration
values cannot be obtained.

● An exception occurred when RPC requested the void
method.

● After a client requested an unregistered service, the
request still cannot find the server even if the service was
registered again.

● A null pointer was returned when an unregistered service
as queried.

Cloud Service Engine
Development Guide 7 Appendix

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

● 1.0.0-m2 ● When Zuul was used as the gateway for routing, and the
same microservice API was opened in REST and highway
modes at the same time, the client cannot call the API.

● When the service name or schema ID contained a period
(.), the QPS handler was abnormal.

● The weighted load policy initialization and stateless
access were responded.

● Files with Chinese names cannot be downloaded.
● An exception occurred during re-registration when the

service contained environment variables.
● A null pointer exception was thrown when the producer

implementation class did not have an implementation
method.

● A null pointer exception was thrown when the uploaded
content was empty.

● When the size of the file to be uploaded exceeded the
upper limit on the server, the client returned an error
response.

● The edge gateway threw an exception when the server
returned Transfer-Encoding header.

● Concurrent service discovery occurred when concurrent
requests were sent.

● The edge gateway service covered all error codes and
returned error code 502.

● Graceful shutdown did not take effect in some scenarios.

0.5.0 ● RSAConsumerTokenManager created an authentication
token.

● When a service was shut down, the service was not
deregistered from the registry center.

● Automatic service discovery did not take effect.
● The edge gateway service did not correctly process the

404 request.

0.4.0 ● When a servlet request timed out, the async call was not
supported or a null pointer exception was thrown.

● No response can be obtained when an exception occurred
during calling.

● The REST producer returned an error type.

0.2.0 ● Re-registration cannot be performed in the retry thread.
● When a schema failed to be registered, the logs did not

contain the exception information.
● When the service was started, a null pointer exception

occurred during registry.

Cloud Service Engine
Development Guide 7 Appendix

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

Cloud Service Engine
Development Guide 7 Appendix

Issue 01 (2024-05-16) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

	Contents
	1 Overview
	1.1 Development Introduction
	1.2 Related Concepts
	1.3 Development Process
	1.4 Development Specifications

	2 Developing Microservice Applications
	3 Preparing the Environment
	4 Connecting Microservice Applications
	4.1 Connecting Spring Cloud Applications to ServiceComb Engines
	4.2 Connecting Java Chassis Applications to ServiceComb Engines

	5 Deploying Microservice Applications
	6 Using ServiceComb Engine Functions
	6.1 Using Service Registry
	6.2 Using the Configuration Center
	6.2.1 Configuration Center Overview
	6.2.2 Using the Configuration Center in Spring Cloud
	6.2.3 Using the Configuration Center in Java Chassis

	6.3 Using Service Governance
	6.3.1 Overview
	6.3.2 Request Marking
	6.3.3 Rate Limiting
	6.3.4 Fault Tolerance
	6.3.5 Circuit Breaker
	6.3.6 Bulkhead
	6.3.7 Load Balancing
	6.3.8 Service Degradation
	6.3.9 Fault Injection
	6.3.10 Customized Governance
	6.3.11 Blacklist/Whitelist

	6.4 Using Dark Launch
	6.5 Using Dashboard
	6.6 Using Security Authentication
	6.6.1 Security Authentication Overview
	6.6.2 Creating a Security Authentication Account and Password
	6.6.3 Configuring the Security Authentication Account and Password for a Microservice

	7 Appendix
	7.1 Java Chassis Version Upgrade Reference
	7.2 Local Development Tool
	7.3 Using ServiceComb Engines by Mesher
	7.3.1 Mesher Overview
	7.3.2 Connecting Mesher Applications to CSE

	7.4 Resolved Issues in Earlier Versions of Spring Cloud Huawei and Java Chassis

