
Cloud Container Instance

Developer Guide

Issue 01

Date 2024-11-04

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Contents

1 Overview..1

2 Using Native kubectl (Recommended).. 3
2.1 kubectl Configuration Guide... 3
2.2 cci-iam-authenticator Usage Reference.. 7

3 Namespace and Network.. 12

4 Pod.. 19
4.1 Pod... 19
4.2 Environment Variables.. 22
4.3 Startup Command.. 23
4.4 Initializing a Container.. 24
4.5 Calculating the Effective Resource Request or Limit of a Pod.. 25
4.6 Lifecycle Management.. 26
4.7 Liveness Probe.. 27

5 Label... 31

6 Deployment.. 34

7 EIPPool... 38
7.1 Overview.. 38
7.2 Creating an EIPPool..38
7.2.1 Creating a Dynamic EIPPool.. 39
7.2.2 Creating a Static EIPPool.. 41
7.3 Using an EIPPool... 41
7.4 Managing an EIPPool.. 42

8 EIP... 44
8.1 Overview.. 44
8.2 Binding a New EIP to a Pod.. 45
8.3 Binding an Existing EIP to a Pod... 47

9 Pod Resource Monitoring Metric... 49

10 Collecting Pod Logs.. 56

11 Managing Network Access Through Service and Ingress..61

Cloud Container Instance
Developer Guide Contents

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

11.1 Service.. 61
11.2 Ingress.. 66
11.3 Network Access Scenarios... 69
11.4 Readiness Probe.. 70

12 Using PersistentVolumeClaim to Apply for Persistent Storage............................... 75

13 ConfigMap and Secret..78
13.1 ConfigMap.. 78
13.2 Secret.. 79

14 Creating a Workload Using Job and Cron Job..82

A YAML Syntax.. 85

Cloud Container Instance
Developer Guide Contents

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

1 Overview

Cloud Container Instance (CCI) is a serverless container service that allows you to
run containers without creating and managing server clusters. Under the
serverless model, CCI allows you to directly create and use containerized
workloads on the console or by using kubectl or Kubernetes APIs, and pay only for
the resources consumed by these workloads.

This document describes how to use kubectl or call CCI APIs to implement
functions.

Document Organization

This document includes:

1. Using kubectl
This section describes how to configure kubectl on CCI. CCI allows you to use
native or customized kubectl to create resources such as workloads. Native
kubectl is recommended.

2. Namespace and Network
This section describes the concepts of the namespace and network.

3. Pod
This section describes the concept of the pod and how to use pods.

4. Label
This section describes the functions of labels and how to use labels.

5. Deployment
This section describes the application scenarios of Deployments, and how to
deploy container images to CCI using a Deployment.

6. Service and Ingress
This section describes how to use services and ingresses to manage workload
access.
– Service: an abstraction which defines a logical set of pods and a policy by

which to access them.
– Ingress: an API object that manages external access.

7. Persistent Storage

Cloud Container Instance
Developer Guide 1 Overview

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

https://support.huaweicloud.com/intl/en-us/api-cci/cci_02_0001.html

This section describes how to use storage in workloads. That is, how to use
storage volumes in containers. Storage types that can be used include Elastic
Volume Service (EVS), Scalable File Service (SFS), and Object Storage Service
(OBS).

8. ConfigMap and Secret
This section describes how to use ConfigMaps and secrets.
ConfigMaps and secrets are used to store configuration and sensitive
information to enable easier and flexible workload configuration.

9. Job and Cron Job
This section describes how to use jobs. A job is a one-off task.

Cloud Container Instance
Developer Guide 1 Overview

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

2 Using Native kubectl (Recommended)

2.1 kubectl Configuration Guide
CCI allows you to use native or customized kubectl to create resources such as
workloads. Native kubectl is recommended.

Downloading kubectl

Download the kubectl of version 1.19 from the Kubernetes version release page.

NO TE

For a device that uses the Apple M1 chip, download the kubectl corresponding to the
darwin-arm64 architecture.

Downloading cci-iam-authenticator

Download the cci-iam-authenticator binary from the CCI official website. The
latest version is v2.6.17.

Table 2-1 lists the addresses for downloading cci-iam-authenticator.

Table 2-1 Download addresses

Operating
System

Download Address View Help

Linux AMD 64-
bit

cci-iam-authenticator_linux-
amd64
cci-iam-authenticator_linux-
amd64_sha256

cci-iam-authenticator
Usage Reference

Darwin AMD
64-bit

cci-iam-authenticator_darwin-
amd64
cci-iam-authenticator_darwin-
amd64.sha256

Cloud Container Instance
Developer Guide 2 Using Native kubectl (Recommended)

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.19.md
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.21.md#client-binaries
https://cci-iam-authenticator.obs.cn-north-4.myhuaweicloud.com/latest/linux-amd64/cci-iam-authenticator
https://cci-iam-authenticator.obs.cn-north-4.myhuaweicloud.com/latest/linux-amd64/cci-iam-authenticator
https://cci-iam-authenticator.obs.cn-north-4.myhuaweicloud.com/latest/linux-amd64/cci-iam-authenticator_linux-amd64.sha256
https://cci-iam-authenticator.obs.cn-north-4.myhuaweicloud.com/latest/linux-amd64/cci-iam-authenticator_linux-amd64.sha256
https://support.huaweicloud.com/intl/en-us/devg-cci/cci_kubectl_03.html#cci_kubectl_03__section19705105411538
https://support.huaweicloud.com/intl/en-us/devg-cci/cci_kubectl_03.html#cci_kubectl_03__section19705105411538
https://cci-iam-authenticator-all-arch.obs.cn-south-1.myhuaweicloud.com/darwin-amd64/cci-iam-authenticator
https://cci-iam-authenticator-all-arch.obs.cn-south-1.myhuaweicloud.com/darwin-amd64/cci-iam-authenticator
https://cci-iam-authenticator-all-arch.obs.cn-south-1.myhuaweicloud.com/darwin-amd64/cci-iam-authenticator_darwin-amd64.sha256
https://cci-iam-authenticator-all-arch.obs.cn-south-1.myhuaweicloud.com/darwin-amd64/cci-iam-authenticator_darwin-amd64.sha256

Operating
System

Download Address View Help

Darwin Arm
64-bit

cci-iam-authenticator_darwin-
arm64
cci-iam-authenticator_darwin-
arm64.sha256

Installing and Configuring kubectl
Perform the following operations to install and configure kubectl on a Linux OS.
For more details, see Install Tools.

Step 1 Grant the execute permission on kubectl downloaded in Downloading kubectl
and save it to the PATH directory.

chmod +x ./kubectl

mv ./kubectl $PATH

In the preceding command, $PATH indicates the PATH directory (for
example, /usr/local/bin). Replace it with the actual value.

You can run the following command to view the kubectl version:

kubectl version --client=true

Client Version: version.Info{Major:"1", Minor:"19", GitVersion:"v1.19.0",
GitCommit:"e19964183377d0ec2052d1f1fa930c4d7575bd50", GitTreeState:"clean",
BuildDate:"2020-08-26T14:30:33Z", GoVersion:"go1.15", Compiler:"gc", Platform:"linux/amd64"}

Step 2 Configure IAM authentication information and persistently store it to the local
host.

1. Grant the execute permission on cci-iam-authenticator downloaded in
Downloading cci-iam-authenticator and save it to the PATH directory.
chmod +x ./cci-iam-authenticator
mv ./cci-iam-authenticator $PATH

2. Initialize the cci-iam-authenticator configuration.
You can initialize the cci-iam-authenticator configuration by using either of
the following methods:
– Using AK/SK

cci-iam-authenticator generate-kubeconfig --cci-endpoint=https://
$endpoint --ak=xxxxxxx --sk=xxxxxx
endpoint is an endpoint of CCI. For details about CCI endpoints, see
Regions and Endpoints. For details about how to obtain the AK and SK,
see Obtaining an AK/SK. ak is the access key in the file, and sk is the
secret key in the file.
For example, if endpoint is https://cci.cn-north-4.myhuaweicloud.com,
the value of ak is my-ak, and the value of sk is ABCDEFAK.., run the
following command:
cci-iam-authenticator generate-kubeconfig --cci-endpoint=https://
cci.cn-north-4.myhuaweicloud.com --ak=my-ak --sk=ABCDEFAK..

Cloud Container Instance
Developer Guide 2 Using Native kubectl (Recommended)

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

https://cci-iam-authenticator-all-arch.obs.cn-south-1.myhuaweicloud.com/darwin-arm64/cci-iam-authenticator
https://cci-iam-authenticator-all-arch.obs.cn-south-1.myhuaweicloud.com/darwin-arm64/cci-iam-authenticator
https://cci-iam-authenticator-all-arch.obs.cn-south-1.myhuaweicloud.com/darwin-arm64/cci-iam-authenticator_darwin-arm64.sha256
https://cci-iam-authenticator-all-arch.obs.cn-south-1.myhuaweicloud.com/darwin-arm64/cci-iam-authenticator_darwin-arm64.sha256
https://kubernetes.io/docs/tasks/tools/
https://developer.huaweicloud.com/intl/en-us/endpoint

Information similar to the following is displayed:
Switched to context "cci-context-cn-north-4-my-ak"

In the preceding command, cci-context-cn-north-4-my-ak is the context
name, which can be viewed by running kubectl config get-contexts.

– Using username and password
cci-iam-authenticator generate-kubeconfig --cci-endpoint=https://
$endpoint --domain-name=xxxxxxx --user-name=xxxxxx --
password='xxxxxx'
In the preceding command, endpoint is the CCI endpoint, domain-name
is the tenant name, user-name is the IAM username, and password is
the IAM user password. Replace them with the actual values.

NO TE

▪ If there is no IAM user, set user-name to the same value as domain-name.
Alternatively, do not set user-name.

▪ For details about IAM endpoints, see Regions and Endpoints. Note that the
endpoint must be in the same region as CCI.

▪ If kubectl is used in an insecure environment, you are advised to configure
environment variables to reconfigure the authentication information after this
step is complete. For details, see Configuring kubectl in an Insecure
Environment.

Step 3 After the configuration is complete, you can run kubectl commands to perform
operations on CCI resources.

For example, run the following command to view the namespace resources in CN
North-Beijing4:

kubectl get ns

No resources found.

The command output shows that there is no namespace in CN North-Beijing4.
Before creating resources in CCI, create a namespace by following the procedure
described in Namespace and Network.

----End

Cloud Container Instance
Developer Guide 2 Using Native kubectl (Recommended)

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

https://developer.huaweicloud.com/intl/en-us/endpoint

WARNING

● When you access public cloud services through APIs, the username/password or
AK/SK pair is required to encrypt the requests. This mechanism ensures the
confidentiality and integrity of the requests as well as the correctness of the
identities of both parties. Keep the $HOME/.kube/config configuration file
secure to prevent unauthorized use of the AK/SK.

● If the function of caching tokens is enabled to improve access performance, the
tokens are saved as files in the $HOME/.cci/cache directory. Delete the tokens
in a timely manner when they are unnecessary.

● If your access key is used by an unauthorized person due to loss or leakage,
you can delete the access key or notify the administrator of resetting it and
then configure the access key again.

● Deleted access keys cannot be recovered.

Configuring kubectl in an Insecure Environment

Step 1 Follow the preceding steps to install and configure kubectl.

Step 2 Edit the kubeconfig file and delete sensitive information.

On a Linux OS, the kubeconfig file is stored in $HOME/.kube/config by default.

Table 2-2 Sensitive information to be deleted

Command Flag Environment Value Description

--domain-name DOMAIN_NAME Tenant name

--user-name USER_NAME Sub-user name

--password PASSWORD User password

--ak ACCESS_KEY_ID Access key ID

--sk SECRET_ACCESS_KEY Secret access key

--cache CREDENTIAL_CACHE Whether to cache tokens

For details about more parameters, see cci-iam-authenticator Usage Reference.

Step 3 Configure the environment variables corresponding to the deleted parameters. For
example, configure AK, SK, and whether to cache tokens.

NO TE

Hardcoded or plaintext AK and SK are risky. For security, encrypt your AK and SK and store
them in the configuration file or as environment variables.

export ACCESS_KEY_ID={Access Key} #Replace it with HUAWEICLOUD_SDK_AK.

export SECRET_ACCESS_KEY={Secret Key} #Replace it with
HUAWEICLOUD_SDK_SK.

Cloud Container Instance
Developer Guide 2 Using Native kubectl (Recommended)

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://support.huaweicloud.com/intl/en-us/devg-cci/cci_kubectl_03.html#cci_kubectl_03__section19705105411538

export CREDENTIAL_CACHE=false

kubectl get ns

Information similar to the following is displayed:

No resources found.

----End

Obtaining an AK/SK
AK: access key ID. It is a unique ID associated with an SK. AK is used together with
SK to sign requests.

SK: secret access key. It is used together with an AK to sign requests. They can
identify request senders and prevent requests from being modified.

Step 1 Log in to the management console.

Step 2 Hover over the username and select My Credentials from the drop-down list.

Step 3 Choose Access Keys from the navigation pane.

Step 4 Click Create Access Key, and enter the verification code.

Step 5 Click OK to generate an access key and download it.

NO TE

Keep the AK/SK file confidential to prevent information leakage.

----End

Obtaining CCI Endpoints
Obtain the endpoint from the Regions and Endpoints page, as shown in the
following table.

Table 2-3

Region Name Region Endpoint

LA-Sao Paulo1 sa-brazil-1 cci.sa-
brazil-1.myhuaweicloud.c
om

2.2 cci-iam-authenticator Usage Reference
cci-iam-authenticator is the authentication add-on of the Kubernetes client and
provides two subcommands generate-kubeconfig and token.

A tool to authenticate to CCI using HuaweiCloud IAM credentials

Usage:
 cci-iam-authenticator [command]

Cloud Container Instance
Developer Guide 2 Using Native kubectl (Recommended)

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

https://developer.huaweicloud.com/intl/en-us/endpoint

Available Commands:
 generate-kubeconfig Generate or modify kubeconfig files based on user configuration
 help Help about any command
 token Authenticate using HuaweiCloud IAM and get token for CCI

Flags:
 --alsologtostderr log to standard error as well as files
 -h, --help help for cci-iam-authenticator
 --log_dir string If non-empty, write log files in this directory
 --log_file string If non-empty, use this log file
 --logtostderr log to standard error instead of files (default true)
 -v, --v Level number for the log level verbosity
 --version version for cci-iam-authenticator

Use "cci-iam-authenticator [command] --help" for more information about a command.

The Flags field lists log options.

token

The token command is used to obtain a user token. You can use either the
username/password or AK/SK to obtain a token.

Authenticate using HuaweiCloud IAM and get token for CCI

Usage:
 cci-iam-authenticator token [flags]

Flags:
 --ak string IAM access key ID
 --cache Cache the token credential on disk until it expires (default true)
 --domain-name string IAM domain name, typically your account name
 -h, --help help for token
 --iam-endpoint string HuaweiCloud IAM endpoint, i.e. https://iam.cn-north-4.myhuaweicloud.com
(default "https://iam.myhuaweicloud.com")
 --insecure-skip-tls-verify If true, the iam server's certificate will not be checked for validity. (default
true)
 --password string IAM user password
 --project-id string IAM project id, project id and project name should not be empty at same time
 --project-name string IAM project name, project id and project name should not be empty at same
time
 --sk string IAM secret access key
 --token-only Return token only for other tool integration
 --user-name string IAM user name. Same as domain-name when using main account, otherwise
use iam user name

The Flags field includes username, password, AK, SK, and common configurations.

Table 2-4 Username and password

Command Flag Environment Value Description

domain-name DOMAIN_NAME Tenant name, that is, the
account name. For
details, see My
Credentials.

Cloud Container Instance
Developer Guide 2 Using Native kubectl (Recommended)

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0001.html
https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0001.html

Command Flag Environment Value Description

user-name USER_NAME Sub-user name, that is,
the IAM username. If this
parameter is not
specified, the value of
domain-name is used.
For details, see My
Credentials.

password PASSWORD Password of an account
or IAM user.

Table 2-5 AK/SK

Command Flag Environment Value Description

ak ACCESS_KEY_ID For details about how to
obtain the AK and SK,
see Obtaining an
AK/SK. AK is the access
key in the file, and SK is
the secret key in the file.

sk SECRET_ACCESS_KEY

Table 2-6 Common configurations

Command Flag Environment Value Description

iam-endpoint IAM_ENDPOINT IAM endpoint, which is
mandatory. For details,
see Regions and
Endpoints.

project-name PROJECT_NAME Project name. For details,
see My Credentials.

project-id PROJECT_ID Project ID. For details,
see My Credentials.

insecure-skip-tls-verify INSECURE_SKIP_TLS_VER
IFY

Whether to skip the
verification of the CCI or
IAM server. The default
value is true.

Cloud Container Instance
Developer Guide 2 Using Native kubectl (Recommended)

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0001.html
https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0001.html
https://developer.huaweicloud.com/intl/en-us/endpoint?IAM
https://developer.huaweicloud.com/intl/en-us/endpoint?IAM
https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0001.html
https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0001.html

Command Flag Environment Value Description

cache CREDENTIAL_CACHE Whether to cache the
IAM token to the local
host to improve the
access performance. The
default value is true.
CAUTION

In an insecure
environment, you are
advised to disable this
option.

generate-kubeconfig

This command is used to generate kubeconfig configurations. If the specified
kubeconfig file already exists, new server, user, and context configurations will be
injected and the newly injected context will be used for authentication. By default,
the system verifies the user configuration and attempts to access IAM and CCI to
ensure that the IAM authentication information is correct and the CCI address is
available.

Generate or modify kubeconfig files based on user configuration.

Sets a cluster entry, a user entry and a context entry in kubeconfig and use this context as the current-
context.

 The loading order follows these rules:

 1. If the --kubeconfig flag is set, then only that file is loaded. The flag may only be set once and no
merging takes
place.
 2. If $KUBECONFIG environment variable is set, then it is used as a list of paths (normal path delimiting
rules for
your system). These paths are merged. When a value is modified, it is modified in the file that defines the
stanza. When
a value is created, it is created in the first file that exists. If no files in the chain exist, then it creates the
last file in the list.
 3. Otherwise, ${HOME}/.kube/config is used and no merging takes place.

 Examples:
 # Generate kubeconfig to ${HOME}/.kube/config using aksk
 cci-iam-authenticator generate-kubeconfig --cci-endpoint=https://cci.cn-north-4.myhuaweicloud.com --
ak=*** --sk=***
 # Generate kubeconfig to ${HOME}/.kube/config using domain name and password
 cci-iam-authenticator generate-kubeconfig --cci-endpoint=https://cci.cn-north-4.myhuaweicloud.com --
domain-name=*** --password=***

Usage:
 cci-iam-authenticator generate-kubeconfig [flags]

Flags:
 --ak string IAM access key ID
 --cache Cache the token credential on disk until it expires (default true)
 --cci-endpoint string CCI server endpoint, i.e. https://cci.cn-north-4.myhuaweicloud.com
 --domain-name string IAM domain name, typically your account name
 -h, --help help for generate-kubeconfig
 --iam-endpoint string HuaweiCloud IAM endpoint, i.e. https://iam.cn-north-4.myhuaweicloud.com
(default "https://iam.myhuaweicloud.com")
 --insecure-skip-tls-verify If true, the iam server's certificate will not be checked for validity. (default
true)
 --kubeconfig string use a particular kubeconfig file

Cloud Container Instance
Developer Guide 2 Using Native kubectl (Recommended)

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

 --password string IAM user password
 --project-id string IAM project id, project id and project name should not be empty at same time
 --project-name string IAM project name, project id and project name should not be empty at same
time
 --sk string IAM secret access key
 --token-only Return token only for other tool integration
 --user-name string IAM user name. Same as domain-name when using main account, otherwise
use iam user name
 --validation Validate kubeconfig by trying to access CCI with existing config (default true)

A kubeconfig file can contain multiple environment and authentication
information records. You can use the same IAM authentication configuration and
different cci-endpoint values to generate kubeconfig configurations for multiple
regions. For example:

Generate kubeconfig configuration for CN North-Beijing4 and switch to the corresponding context.
$ cci-iam-authenticator generate-kubeconfig --cci-endpoint=https://cci.cn-north-4.myhuaweicloud.com --
ak=my-ak --sk=xxxxxx
Switched to context "cci-context-cn-north-4-my-ak".
Generate kubeconfig configuration for CN East-Shanghai1 and switch to the corresponding context.
$ cci-iam-authenticator generate-kubeconfig --cci-endpoint=https://cci.cn-east-3.myhuaweicloud.com --
ak=my-ak --sk=xxxxxx
Switched to context "cci-context-cn-east-3-my-ak".
Switch to the context of CN North-Beijing4.
$ kubectl config use-context cci-context-cn-north-4-my-ak

Cloud Container Instance
Developer Guide 2 Using Native kubectl (Recommended)

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

3 Namespace and Network

A namespace provides a method of allocating resources among multiple users. It
applies to scenarios where multiple teams or projects exist. Currently, CCI provides
two types of resources: general-computing and GPU-accelerated resources. When
creating a namespace, you need to select a resource type. Subsequently, new
workloads will run on this type of cluster.

● General-computing: container instances and workloads with CPU resources.
This namespace type is suitable for general computing scenarios.

● GPU-accelerated: container instances and workloads with GPU resources.
This namespace type is suitable for scenarios such as deep learning, scientific
computing, and video processing.

A network is a Kubernetes resource object extended for CCI. You can associate a
network with a Virtual Private Cloud (VPC) and subnet so that CCI can use
network resources of the public cloud.

Relationship Between a Namespace and Network
A namespace corresponds to a subnet in a VPC, as shown in Figure 3-1. When a
namespace is created, it will be associated with an existing VPC or a newly created
VPC, and a subnet will be created under the VPC. In this namespace, resources
such as pods and Services are created in the corresponding VPC and subnet, and
the IP addresses in the subnet are used.

If you want to run resources of multiple services in the same VPC, you need to
plan subnet CIDR blocks and IP addresses.

Cloud Container Instance
Developer Guide 3 Namespace and Network

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

Figure 3-1 Relationship between namespaces and VPC subnets

Scenarios Where Multiple Namespaces Are Used

Because namespaces enable partial environment isolation, you can create different
namespaces, such as production, test, and development namespaces based on
project attributes when there are a large number of projects and persons.

Creating a Namespace

Under a namespace, a network is required to associate with a VPC and subnet.
After a namespace is created, a network needs to be created.

NO TE

In most cases, namespaces do not need to be frequently created. You are advised to log in
to the CCI console to create a namespace. For details, see Namespace.

In the following example, create a namespace named namespace-test, and
specify the CCI resource type to general-computing.

apiVersion: v1
kind: Namespace
metadata:
 name: namespace-test
 labels:
 sys_enterprise_project_id: "0"
 annotations:
 namespace.kubernetes.io/flavor: general-computing
spec:
 finalizers:
 - kubernetes

The definition file is in the YAML or JSON format. For more details about the
YAML format, see YAML Syntax.

● sys_enterprise_project_id: enterprise project ID, which can be obtained from
the project details page on the Enterprise Project Management (EPS)
console. This field does not need to be set if you have not enabled EPS. If this
parameter is not set, the default value 0 is used, indicating the default
enterprise project.

● namespace.kubernetes.io/flavor: general-computing: namespace type.

There are two namespace types:

Cloud Container Instance
Developer Guide 3 Namespace and Network

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

https://support.huaweicloud.com/intl/en-us/usermanual-cci/cci_01_0001.html
https://support.huaweicloud.com/intl/en-us/devg-cci/cci_05_1001.html
https://console-intl.huaweicloud.com/en-us/eps/?region=cn-north-4&locale=en-us#/projects/list

– General-computing: container instances and workloads with CPU
resources. This namespace type is suitable for general computing
scenarios.

– GPU-accelerated: container instances and workloads with GPU resources.
This namespace type is suitable for scenarios such as deep learning,
scientific computing, and video processing.

If the file name of the namespace definition is ns.yaml, run kubectl create -f
ns.yaml to create a namespace. -f indicates that the namespace is created from a
file.

kubectl create -f ns.yaml
namespace/namespace-test created

Run kubectl get ns to check whether the namespace is successfully created. In
this command, ns indicates the namespace.

kubectl get ns
NAME STATUS AGE
namespace-test Active 23s

The preceding information indicates that the namespace namespace-test is
created successfully and the duration is 23 seconds.

Log in to the CCI console. In the navigation pane, choose Namespaces. You can
see that the namespace is created successfully but the status is Abnormal. This is
because in CCI, you need to define a network policy for the namespace. For
details, see Creating a Network.

Figure 3-2 Namespace - abnormal

Creating a Network
After creating a namespace, you need to create a network policy for the
namespace and associate the namespace with the VPC and subnet.

The following example shows how to create a network named test-network.
apiVersion: networking.cci.io/v1beta1
kind: Network
metadata:
 annotations:
 network.alpha.kubernetes.io/default-security-group: security-group-id
 network.alpha.kubernetes.io/domain-id: domain-id
 network.alpha.kubernetes.io/project-id: project-id
 name: test-network
spec:
 cidr: 192.168.0.0/24
 attachedVPC: vpc-id
 networkID: network-id
 networkType: underlay_neutron
 subnetID: subnet-id

Cloud Container Instance
Developer Guide 3 Namespace and Network

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

NO TE

The CIDR blocks of the VPC and subnet cannot be 10.247.0.0/16, which is the CIDR block
reserved by CCI for Services. If you use this CIDR block, IP address conflicts may occur,
which may result in workload creation failures or service unavailability. If you do not need
to access pods through Services, you can allocate this CIDR block to a VPC.

You can obtain the preceding parameters as follows:

● network.alpha.kubernetes.io/domain-id: account ID, which can be obtained
from My Credentials.

● network.alpha.kubernetes.io/project-id: project ID, which can be obtained
from My Credentials.

● network.alpha.kubernetes.io/default-security-group: security group ID,
which can be obtained from the Security Groups page.

Figure 3-3 Obtaining the security group ID

● cidr: subnet CIDR block.
● attachedVPC: VPC ID, which can be obtained from the VPC console.

Cloud Container Instance
Developer Guide 3 Namespace and Network

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

https://console-intl.huaweicloud.com/en-us/iam/?locale=en-us#/mine/apiCredential
https://console-intl.huaweicloud.com/iam/?locale=en-us#/mine/apiCredential
https://console-intl.huaweicloud.com/vpc/?region=cn-north-4&locale=en-us#/secGroups

Figure 3-4 Obtaining the VPC ID

● networkID: subnet network ID, which can be obtained by choosing Virtual
Private Cloud under Network and then choosing Subnets in the navigation
pane.

Figure 3-5 Obtaining the subnet network ID

● networkType: network type. Currently, only the underlay_neutron network
type is supported.

● subnetID: subnet ID, which can be obtained by choosing Virtual Private
Cloud under Network and then choosing Subnets in the navigation pane.

Cloud Container Instance
Developer Guide 3 Namespace and Network

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

Figure 3-6 Obtain the subnet ID.

If the file name of the network definition is network.yaml, run kubectl create -f
network.yaml to create a namespace. -f indicates that the namespace is created
from a file. namespace namespace-test indicates that it is created in the
namespace namespace-test.

kubectl create -f network.yaml --namespace namespace-test
network.networking.cci.io/test-network created

Log in to the CCI console. In the navigation pane, choose Namespaces. You can
see that the namespace is created successfully and the status is Available.

Figure 3-7 Namespace - available

Specifying a Namespace for the kubectl Context
The network above is created in a specified namespace. The subsequent resources
are created in a namespace. It is time-consuming to specify the namespace each
time. You can specify the namespace for a kubectl context. In this way, the
resources created in the context are all under this namespace, which facilitates
operations.

To specify the namespace, you only need to add the --namespace option to the
context setting command, as shown in the following command:

kubectl config set-context $context --namespace=$ns

In the preceding command, $ns indicates the namespace name, and $context
indicates the context name, which can be customized or obtained by running the
following command:

kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO
NAMESPACE
 cci-context-cn-east-3-1C8PNI0POPPCSFGXPM6S cci-cluster-cn-east-3 cci-user-cn-
east-3-1C8PNI0POPPCSFGXPM6S
* cci-context-cn-east-3-hwuser_xxx cci-cluster-cn-east-3 cci-user-cn-east-3-hwuser_xxx
 kubernetes-admin@kubernetes kubernetes kubernetes-admin

Cloud Container Instance
Developer Guide 3 Namespace and Network

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

For example, if the namespace created above is named namespace-test, the
command is as follows:

kubectl config set-context cci-context --namespace=namespace-test

After a namespace is specified, you can run kubectl commands to directly operate
CCI resources. For example, run kubectl get pod to check pod resources. The
result shows that all resources are normal.

kubectl get pod
No resources found.

Cloud Container Instance
Developer Guide 3 Namespace and Network

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

4 Pod

4.1 Pod

What Is a Pod?
A pod is the smallest and simplest unit in the Kubernetes object model that you
create or deploy. A pod encapsulates one or more containers, storage resources, a
unique network IP address, and options that govern how the container(s) should
run.

Pods can be used in either of the following ways:

● One container runs in one pod. This is the most common usage of pods in
Kubernetes. You can view the pod as a single encapsulated container, but
Kubernetes directly manages pods instead of containers.

● Multiple containers that need to be coupled and share resources run in a pod.
In this scenario, an application contains a main container and several sidecar
containers, as shown in Figure 4-1. For example, the main container is a web
server that provides file services from a fixed directory, and the sidecar
container periodically downloads files to the directory.

Cloud Container Instance
Developer Guide 4 Pod

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

Figure 4-1 Pod

In Kubernetes, pods are rarely created directly. Instead, controllers such as
Deployments and jobs, are used to manage pods. Controllers can create and
manage multiple pods, and provide replica management, rolling upgrade, and
self-healing capabilities. A controller generally uses a pod template to create
corresponding pods.

Container Specifications

You can use GPUs in CCI only if the namespace is of the GPU-accelerated type.

Currently, three types of pods are provided, including general-computing (used in
general-computing namespaces), RDMA-accelerated, and GPU-accelerated (used
in GPU-accelerated namespaces). For details about the specifications, see "Pod
Specifications" in Notes and Constraints.

Creating a Pod

Kubernetes resources can be described using YAML or JSON files. For more details
about the YAML format, see YAML Syntax. The following example describes a pod
named nginx. This pod contains a container named container-0 and uses the
nginx:alpine image, 0.5 vCPUs, and 1024 MiB memory.

apiVersion: v1 # Kubernetes API version
kind: Pod # Kubernetes resource type
metadata:
 name: nginx # Pod name
spec: # Pod specification
 containers:
 - image: nginx:alpine # Used image is nginx:alpine
 name: container-0 # Container name
 resources: # Resources required for applying for a container. The values of limits and
requests in CCI must be the same.
 limits:
 cpu: 500m # 0.5 vCPUs
 memory: 1024Mi
 requests:
 cpu: 500m # 0.5 vCPUs
 memory: 1024Mi

Cloud Container Instance
Developer Guide 4 Pod

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

https://support.huaweicloud.com/intl/en-us/productdesc-cci/cci_03_0007.html

 imagePullSecrets: # Secret used to pull the image, which must be imagepull-secret.
 - name: imagepull-secret

As shown in the annotation of YAML, the YAML description file includes:

● metadata: Information such as name, label, and namespace
● spec: Pod specification such as image and volume used

If you query a Kubernetes resource, you can see the status field. This field
indicates the status of the Kubernetes resource, and does not need to set when
the resource is created. This example is a minimum set, and other parameter
definition will be described later.

For the parameter description of Kubernetes resources, see API Reference.

After the pod is defined, you can create it using kubectl. If the YAML file is named
nginx.yaml, run the following command to create the file. -f indicates that it is
created in the form of a file.

$ kubectl create -f nginx.yaml -n $namespace_name
pod/nginx created

NO TE

The kernel version of the OS for running on the containers has been upgraded from 4.18 to
5.10.

GPU-accelerated pods support the following GPU specifications:

● nvidia.com/gpu-tesla-v100-16GB: NVIDIA Tesla V100 16GB
● nvidia.com/gpu-tesla-v100-32GB: NVIDIA Tesla V100 32GB
● nvidia.com/gpu-tesla-t4: NVIDIA Tesla T4 GPU

Container Images
A container image is a special file system, which provides the programs, libraries,
resources, and configuration files required for running containers. A container
image also contains configuration parameters, for example, for anonymous
volumes, environment variables, and users. An image does not contain any
dynamic data. Its content remains unchanged after being built.

SoftWare Repository for Container (SWR) has synchronized some common
images from the container registry so that you can use the images named in the
format of Image name:Tag (for example, nginx:alpine) on the internal network.
You can query the synchronized images on the SWR console.

Viewing Pod Information
After the pod is created, you can run the kubectl get pods command to query the
pod information, as shown below.

$ kubectl get pods -n $namespace_name
NAME READY STATUS RESTARTS AGE
nginx 1/1 Running 0 40s

The preceding information indicates that the nginx pod is in the Running state,
indicating that the pod is running. READY is 1/1, indicating that there is one
container in the pod, and the container is in the Ready state.

Cloud Container Instance
Developer Guide 4 Pod

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

https://support.huaweicloud.com/intl/en-us/api-cci/cci_02_0001.html
https://www.huaweicloud.com/intl/en-us/product/swr.html

You can run the kubectl get command to query the configuration information
about a pod. In the following command, -o yaml indicates that the pod is
returned in YAML format. -o json indicates that the pod is returned in JSON
format.

$ kubectl get pod nginx -o yaml -n $namespace_name

You can also run the kubectl describe command to view the pod details.

$ kubectl describe pod nginx -n $namespace_name

Deleting a Pod
When a pod is deleted, Kubernetes stops all containers in the pod. Kubernetes
sends the SIGTERM signal to the process and waits for a period (30 seconds by
default) to stop the container. If it is not stopped within the period, Kubernetes
sends a SIGKILL signal to kill the process.

You can stop and delete a pod in multiple methods. For example, you can delete a
pod by name, as shown below.

$ kubectl delete po nginx -n $namespace_name
pod "nginx" deleted

Delete multiple pods at one time.

$ kubectl delete po pod1 pod2 -n $namespace_name

Delete all pods.

$ kubectl delete po --all -n $namespace_name
pod "nginx" deleted

Delete pods by labels. For details about labels, see the next section.

$ kubectl delete po -l app=nginx -n $namespace_name
pod "nginx" deleted

4.2 Environment Variables
Environment variables are set in the container running environment.

They provide great flexibility for applications. You can use environment variables
in applications, assign values to environment variables when creating containers,
and read the values of environment variables when containers are running,
realizing flexible configuration. With environment variables, you do not need to
rewrite application files to create images.

You can also use ConfigMap and secret as environment variables. For details, see
ConfigMap and Secret.

The following shows how to use an environment variable. You only need to
configure the spec.containers.env field.

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - image: nginx:1
 name: container-0

Cloud Container Instance
Developer Guide 4 Pod

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

 resources:
 limits:
 cpu: 500m
 memory: 1024Mi
 requests:
 cpu: 500m
 memory: 1024Mi
 env: # Environment variable
 - name: env_key
 value: env_value
 - name: pod_name
 valueFrom: # Name of the referenced pod
 fieldRef:
 fieldPath: metadata.name
 - name: pod_ip
 valueFrom: # IP address of the referenced pod
 fieldRef:
 fieldPath: status.podIP
 imagePullSecrets:
 - name: imagepull-secret

4.3 Startup Command
Starting the container is to start the main process. However, some preparations
must be made before the main process is started. For example, you may configure
or initialize MySQL databases before running MySQL servers. You can set
ENTRYPOINT or CMD in the Dockerfile when creating an image.

In the following Dockerfile, the ENTRYPOINT ["top", "-b"] command will be
executed when the container is started.

FROM ubuntu
ENTRYPOINT ["top", "-b"]

When calling an API, you only need to configure the containers.command
parameter of the pod. This parameter is of the list type. The first parameter is the
execution command, while the subsequent parameters are the command
parameters.

apiVersion: v1
kind: Pod
metadata:
 name: Ubuntu
spec:
 containers:
 - image: Ubuntu
 name: container-0
 resources:
 limits:
 cpu: 500m
 memory: 1024Mi
 requests:
 cpu: 500m
 memory: 1024Mi
 command: # Startup command
 - top
 - "-b"
 imagePullSecrets:
 - name: imagepull-secret

Cloud Container Instance
Developer Guide 4 Pod

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

4.4 Initializing a Container

Concepts
Before containers that run applications are started, one or some init containers are
started first. If there are multiple init containers, they will be started in the defined
sequence. The application containers are started only after all init containers run
to completion and exit. Storage volumes in a pod are shared. Therefore, the data
generated in the init containers can be used by the application containers.

Init containers can be used in multiple Kubernetes resources, such as
Deployments, DaemonSets, and jobs. They perform initialization before application
containers are started.

Scenarios
Before deploying a service, you can use an init container to make preparations
before the pod where the service is running is deployed. After the preparations are
complete, the init container runs to completion and exits, and the container to be
deployed will be started.

● Scenario 1: Wait for other modules to be ready. For example, an application
contains two containerized services: web server and database. The web server
service needs to access the database service. However, when the application is
started, the database service may have not been started. The web server may
fail to access database. To solve this problem, you can use an init container in
the pod where web server is running to check whether database is ready. The
init container runs to completion only when database is accessible. Then, the
web server is started and initiates a formal access request to database.

● Scenario 2: Initialize the configuration. For example, the init container can
check all existing member nodes in the cluster and prepare the cluster
configuration information for the application container. After the application
container is started, it can be added to the cluster using the configuration
information.

● Other scenarios: For example, register a pod with a central database and
download application dependencies.

For details, see Init Containers.

Procedure

Step 1 Edit the YAML file of the init container workload.

vi deployment.yaml

An example YAML file is provided as follows:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: mysql
spec:
 replicas: 1
 selector:

Cloud Container Instance
Developer Guide 4 Pod

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

 matchLabels:
 name: mysql
 template:
 metadata:
 labels:
 name: mysql
 spec:
 initContainers:
 - name: getresource
 image: busybox
 command: ['sleep','20']
 containers:
 - name: mysql
 image: percona:5.7.22
 imagePullPolicy: Always
 ports:
 - containerPort: 3306
 resources:
 limits:
 memory: "500Mi"
 cpu: "500m"
 requests:
 memory: "500Mi"
 cpu: "250m"
 env:
 - name: MYSQL_ROOT_PASSWORD
 value: "mysql"

Step 2 Create an init container workload.

kubectl create -f deployment.yaml

Information similar to the following is displayed:

deployment.apps/mysql created

----End

4.5 Calculating the Effective Resource Request or Limit
of a Pod

To calculate the pod's effective resource request or limit, perform the following
steps:

Step 1 Obtain the request or limit on each init container in the pod. The highest request
or limit for a resource is the effective init request or limit for the resource.

Step 2 Compare the following two items. The pod's effective request or limit for a
resource is the higher of the two items:
● The sum of all application container requests or limits for the resource
● The effective init request or limit for the resource

----End

The following example shows how to calculate pod specifications.

apiVersion: v1
kind: Pod
metadata:
 name: web-app
spec:
 initContainers:
 - name: config-generator

Cloud Container Instance
Developer Guide 4 Pod

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

 image: busybox
 resources:
 requests:
 memory: "256Mi"
 cpu: "250m"
 limits:
 memory: "256Mi"
 cpu: "250m"
 - name: mysql-checker
 image: centos
 resources:
 requests:
 memory: "1Gi"
 cpu: "500m"
 limits:
 memory: "1Gi"
 cpu: "500m"
 containers:
 - name: app
 image: images.my-company.example/app:v4
 env:
 - name: MYSQL_ROOT_PASSWORD
 value: "password"
 resources:
 requests:
 memory: "1Gi"
 cpu: "500m"
 limits:
 memory: "1Gi"
 cpu: "500m"
 - name: log-aggregator
 image: images.my-company.example/log-aggregator:v6
 resources:
 requests:
 memory: "1Gi"
 cpu: "250m"
 limits:
 memory: "1Gi"
 cpu: "250m"

Step 1 Find the highest resource request or limit on init containers. In this example, 1 Gi
for memory and 500m for CPU.

Step 2 Calculate the sum of all application container requests or limits. In this example, 2
Gi for memory and 750m for CPU.

Step 3 Compare the values and use the higher one as the effective request or limit: 2 Gi
for memory and 750m for CPU.

----End

4.6 Lifecycle Management
Based on Kubernetes, CCI provides containers with lifecycle hooks. The hooks
enable containers to run code triggered by events during their management
lifecycle. For example, if you want a container to perform a certain operation
before it is stopped, you can register a hook. The following lifecycle hooks are
provided:

● Post-Start Processing: triggered immediately after the workload is started
● Pre-Stop Processing: triggered immediately before the workload is stopped

When calling an API, you only need to set the lifecycle.postStart or
lifecycle.preStop parameter of the pod, as shown in the following:

Cloud Container Instance
Developer Guide 4 Pod

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - image: nginx:latest
 name: container-0
 resources:
 limits:
 cpu: 500m
 memory: 1024Mi
 requests:
 cpu: 500m
 memory: 1024Mi
 lifecycle:
 postStart: # Post-start processing
 exec:
 command:
 - "/postStart.sh"
 preStop: # Pre-stop processing
 exec:
 command:
 - "/preStop.sh"
 imagePullSecrets:
 - name: imagepull-secret

4.7 Liveness Probe

Overview
Kubernetes provides the self-healing capability, that is, Kubernetes can detect the
container crash and restart the container. However, sometimes memory leakage
occurs in a Java program, and the program cannot work normally, while the JVM
process is still running. For such issues, Kubernetes provides the liveness probe
mechanism to determine whether to restart the container by checking whether
the container responses normally. This is a good health check mechanism.

A liveness probe should be defined for each pod. Otherwise, Kubernetes cannot
detect whether the pod is running properly.

CCI supports the following detection mechanisms:

● HTTP GET: An HTTP GET request is sent to the container. If the probe receives
2xx or 3xx, the container is healthy.

NO TE

You need to configure the following annotation for the pod to make timeoutSeconds
take effect:
cci.io/httpget-probe-timeout-enable:"true"
For details, see the example in Advanced Configuration of Liveness Probe.

● Exec: The probe runs a command in the container and checks the exit status
code. If the exit status code is 0, the probe is healthy.

HTTP GET
HTTP GET is the most common detection method. The mechanism is to send an
HTTP GET request to the container. If the probe receives 2xx or 3xx, the container
is healthy. The method is defined as follows:

Cloud Container Instance
Developer Guide 4 Pod

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

apiVersion: v1
kind: Pod
metadata:
 name: liveness-http
spec:
 containers:
 - name: liveness
 image: k8s.gcr.io/liveness
 args:
 - /server
 livenessProbe: # liveness probe
 httpGet: # HTTP GET definition
 path: /healthz
 port: 8080

Create a pod.

$ kubectl create -f liveness-http.yaml -n $namespace_name
pod/liveness-http created

As shown above, the probe sends an HTTP GET request to port 8080 of the
container. The preceding program returns the status code 500 for the fifth request.
Then Kubernetes restarts the container.

View pod details.

$ kubectl describe po liveness-http -n $namespace_name
Name: liveness-http
......
Containers:
 container-0:

 State: Running
 Started: Mon, 12 Nov 2018 22:57:28 +0800
 Last State: Terminated
 Reason: Error
 Exit Code: 137
 Started: Mon, 12 Nov 2018 22:55:40 +0800
 Finished: Mon, 12 Nov 2018 22:57:27 +0800
 Ready: True
 Restart Count: 1
 Liveness: http-get http://:8080/ delay=0s timeout=1s period=10s #success=1 #failure=3
......
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 3m5s default-scheduler Successfully assigned default/pod-liveness to
node2
 Normal Pulling 74s (x2 over 3m4s) kubelet, node2 pulling image "pod-liveness"
 Normal Killing 74s kubelet, node2 Killing container with id docker://container-0:Container
failed liveness probe.. Container will be killed and recreated.

As shown, the pod is in the Running state, the Last State is Terminated, and the
Restart Count is 1, indicating that the pod is restarted once. In addition, you can
see the following information from the event "Killing container with id docker://
container-0:Container failed liveness probe.." Container will be killed and
recreated.

After the container is killed, a new container is created.

Exec

Exec is to execute a specific command. The mechanism is that the probe executes
the command in the container and checks the exit status code of the command. If
the status code is 0, the pod is healthy. The method is defined as follows:

Cloud Container Instance
Developer Guide 4 Pod

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: liveness
 name: liveness-exec
spec:
 containers:
 - name: liveness
 image: busybox
 args:
 - /bin/sh
 - -c
 - touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600
 livenessProbe: # liveness probe
 exec: # Exec definition
 command:
 - cat
 - /tmp/healthy

Run the cat /tmp/healthy command in the container. If the command is executed
successfully and 0 is returned, the container is healthy.

Advanced Configuration of Liveness Probe
In output of the $ kubectl describe po liveness-http command, the following
information is displayed:

Liveness: http-get http://:8080/ delay=0s timeout=1s period=10s #success=1 #failure=3

This line indicates the parameter configuration of the liveness probe. The
meanings of the parameters are as follows:

● delay=0s indicates that the probe starts immediately after the container is
started.

● timeout=1s indicates that the container must respond to the probe within 1s.
Otherwise, the detection fails.

● period=10s indicates that the detection is performed every 10s.
● #success=1 indicates that the detection is successful after succeeding once.
● #failure=3 indicates that the container will be restarted after three

consecutive detection failures.

These are set by default when the probe is created. You can also manually
configure the parameters as follows:

apiVersion: v1
kind: Pod
metadata:
 name: liveness-http
spec:
 template:
 metadata:
 annotations:
 cci.io/httpget-probe-timeout-enable:"true"
 containers:
 - image: k8s.gcr.io/liveness
 livenessProbe:
 httpGet:
 path: /
 port: 8080
 initialDelaySeconds: 10 # When does the container start detection after the container is started?
 timeoutSeconds: 2 # The container must respond to the probe within 2s, or the detection fails.
 periodSeconds: 30 # The probe is performed every 30s.

Cloud Container Instance
Developer Guide 4 Pod

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

 successThreshold: 1 # The container is considered healthy as long as the probe succeeds once.
 failureThreshold: 3 # The container will be restarted after three consecutive detection failures.

Generally, the value of initialDelaySeconds must be greater than 0, because in
most cases, although the container is started successfully, it takes a while for the
application to be ready. After the application is ready, a success message is
returned. Otherwise, the probe may fail frequently.

In addition, you can set failureThreshold to allow multiple times of loop
detection, so that you do not have to repeatedly run the health check program.

Configuring an Effect Liveness Probe
● What should a liveness probe detect?

A liveness probe should check whether all the key parts of an application are
healthy and use a dedicated URL, such as /health. This function is performed
when /health is accessed, and then the result is returned. Note that
authentication cannot be performed. Otherwise, the probe will repeatedly fail
and be restarted.
In addition, the check can be performed only within the application, and
cannot be performed outside the dependency. For example, if the frontend
web server cannot connect to the database, the web server cannot be
considered as unhealthy.

● A liveness probe must be lightweight.
A liveness probe cannot occupy too many resources or too much time.
Otherwise, the health check is wasting resources. For example, for Java
applications, the HTTP GET method is recommended. If the Exec method is
used, the JVM startup occupies too many resources.

Cloud Container Instance
Developer Guide 4 Pod

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

5 Label

Why Are Labels Required?
As resources increase, how to classify and manage resources becomes important.
Kubernetes provides a mechanism to classify resources, that is, using labels. Labels
are simple but powerful. Almost all resources in the Kubernetes can be organized
by labels.

A label is a key-value pair, which can be set when a resource is created, or can be
added or modified later.

Taking pods as an example, as the number of pods increases, pods become
cluttered and difficult to manage, as shown in the following figure.

Figure 5-1 Pods without classification

If we attach different labels to the pods, the situation is totally different, as shown
in the following figure.

Cloud Container Instance
Developer Guide 5 Label

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

Figure 5-2 Pods organized with labels

Adding a Label

A label is a key-value pair. As shown below, two labels app=nginx and env=prod
are set for a pod.

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels: # Add the following two labels to the pod.
 app: nginx
 env: prod
spec:
 containers:
 - image: nginx:latest
 name: container-0
 resources:
 limits:
 cpu: 500m
 memory: 1024Mi
 requests:
 cpu: 500m
 memory: 1024Mi
 imagePullSecrets:
 - name: imagepull-secret

When a pod has labels, you can view the label of the pod by using --show-labels
when querying the pod.

$ kubectl get pod --show-labels -n $namespace_name
NAME READY STATUS RESTARTS AGE LABELS
nginx 1/1 Running 0 50s app=nginx,env=prod

You can also use -L to query only certain labels.

$ kubectl get pod -L app,env -n $namespace_name
NAME READY STATUS RESTARTS AGE APP ENV
nginx 1/1 Running 0 1m nginx prod

For an existing pod, you can directly run the kubectl label command to add a
label.

$ kubectl label po nginx creation_method=manual -n $namespace_name
pod "nginx" labeled

$ kubectl get pod --show-labels -n $namespace_name
NAME READY STATUS RESTARTS AGE LABELS
nginx 1/1 Running 0 50s app=nginx,env=prod,creation_method=manual

Cloud Container Instance
Developer Guide 5 Label

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

Modifying a Label
If you want to modify an existing label, you need to add --overwrite to the
command, as shown below:

$ kubectl label po nginx env=debug --overwrite -n $namespace_name
pod "nginx" labeled

$ kubectl get pod --show-labels -n $namespace_name
NAME READY STATUS RESTARTS AGE LABELS
nginx 1/1 Running 0 50s app=nginx,env=debug,creation_method=manual

Cloud Container Instance
Developer Guide 5 Label

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

6 Deployment

Pod describes pod, which is the smallest and simplest unit in the Kubernetes
object model that you create or deploy. However, a pod is designed to be a one-
off entity. A pod can be evicted (when node resources are insufficient) and
disappears as the cluster node fails. Kubernetes provides controllers to manage
pods. Controllers can create and manage multiple pods, and provide replica
management, rolling upgrade, and self-healing capabilities. The most commonly
used is Deployment.

A Deployment can contain one or more pod replicas. Each pod replica has the
same role. Therefore, the system automatically distributes requests to multiple
pod replicas of a Deployment.

A Deployment integrates a lot of functions, including online deployment, rolling
upgrade, replica creation, and restoration of online jobs. To some extent,
Deployments can be used to realize unattended rollout, which greatly reduces
communication difficulties and operation risks in the rollout process.

Creating a Deployment
In the following example, a Deployment named nginx is created, and two pod
replicas are created from the nginx:latest image. Each pod replica occupies 500m
and 1024Mi memory.
apiVersion: apps/v1 # Note the difference from that of pods. It is apps/v1 instead of v1 for a
Deployment.
kind: Deployment # The resource type is Deployment.
metadata:
 name: nginx # Name of the Deployment
spec:
 replicas: 2 # Number of pod replicas. The Deployment ensures that two pod replicas are running.
 selector: # Label Selector
 matchLabels:
 app: nginx
 template: # Definition of a pod, which is used to create pods. It is also known as pod template.
 metadata:
 labels:
 app: nginx
 spec:
 volumes:
 - name: cci-sfs-test # SFS volume name
 persistentVolumeClaim:
 claimName: cci-sfs-test
 containers:
 - image: nginx:latest

Cloud Container Instance
Developer Guide 6 Deployment

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

 name: container-0
 resources:
 limits:
 cpu: 500m
 memory: 1024Mi
 requests:
 cpu: 500m
 memory: 1024Mi
 volumeMounts:
 - name: cci-sfs-test
 mountPath: /tmp/sfs0/krlp2k8j # SFS volume's mount path in a container
 imagePullSecrets: # Secret used to pull the image, which must be imagepull-secret.
 - name: imagepull-secret

In this definition, the name of the Deployment is nginx, and spec.replicas defines
the number of pods. That is, the Deployment controls two pods. spec.selector is a
label selector, indicating that the Deployment selects the pod whose label is
app=nginx. spec.template is the definition of the pod and is the same as that
defined in Pod.

Save the definition of the Deployment to deployment.yaml and use kubectl to
create the Deployment.

Run the kubectl get command to view the Deployment and the pods. The value
of DESIRED is 2, indicating that the Deployment desires two pods. The value of
CURRENT is 2, indicating that there are two pods. The value of AVAILABLE is 2,
indicating that two pods are available.

$ kubectl create -f deployment.yaml -n $namespace_name

$ kubectl get deployment -n $namespace_name
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx 2 2 2 2 8s

How Does the Deployment Control Pods?
Continue to query pods, as shown below.

$ kubectl get pods -n $namespace_name
NAME READY STATUS RESTARTS AGE
nginx-7f98958cdf-tdmqk 1/1 Running 0 13s
nginx-7f98958cdf-txckx 1/1 Running 0 13s

If you delete a pod, a new pod is immediately created, as shown below. As
mentioned above, the Deployment ensures that there are two pods running. If a
pod is deleted, the Deployment creates another pod. If a pod crashes or is faulty,
the Deployment automatically restarts the pod.

$ kubectl delete pod nginx-7f98958cdf-txckx -n $namespace_name

$ kubectl get pods -n $namespace_name
NAME READY STATUS RESTARTS AGE
nginx-7f98958cdf-tdmqk 1/1 Running 0 21s
nginx-7f98958cdf-tesqr 1/1 Running 0 21s

There are two pods, nginx-7f98958cdf-tdmqk and nginx-7f98958cdf-tesqr, in
which nginx is the name of the Deployment, and -7f98958cdf-tdmqk and
-7f98958cdf-tesqr are the suffixes randomly generated by Kubernetes.

You may notice that the first part of the two suffixes is the same, that is,
7f98958cdf. This is because the Deployment does not control the pod directly, but
through a controller named ReplicaSet. You can run the following command to
query the ReplicaSet, in which rs is the abbreviation of ReplicaSet.

Cloud Container Instance
Developer Guide 6 Deployment

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

$ kubectl get rs -n $namespace_name
NAME DESIRED CURRENT READY AGE
nginx-7f98958cdf 3 3 3 1m

The name of the ReplicaSet is nginx-7f98958cdf, and the suffix -7f98958cdf is
generated randomly.

Figure 6-1 shows how the Deployment controls the pod via the ReplicaSet.

Figure 6-1 Control flow

If you run the kubectl describe command to view the details of the Deployment,
you can see the ReplicaSet. As shown below, you can see a line NewReplicaSet:
nginx-7f98958cdf (2/2 replicas created). In events, the number of pods of the
ReplicaSet is scaled out to 2. In practice, you may not operate ReplicaSet directly,
but understanding that a Deployment controls a pod by controlling a ReplicaSet
helps you locate problems.

$ kubectl describe deploy nginx -n $namespace_name
Name: nginx
Namespace: default
CreationTimestamp: Sun, 16 Dec 2018 19:21:58 +0800
Labels: app=nginx

...

NewReplicaSet: nginx-7f98958cdf (2/2 replicas created)
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal ScalingReplicaSet 5m deployment-controller Scaled up replica set nginx-7f98958cdf to 2

Upgrade
In actual applications, upgrade is a common operation. A Deployment can easily
support application upgrade.

You can set different upgrade policies for a Deployment:

● RollingUpdate: Gradually create new pods and delete old pods). This is the
default policy.

● Recreate: Delete the current pods and then create new pods.

The Deployment upgrade can be in declarative mode. That is, you only need to
modify the YAML definition of the Deployment. For example, you can run the
kubectl edit command to change the Deployment image to nginx:alpine. After
the modification, query the ReplicaSet and pod, a new ReplicaSet is created, and
the pod is recreated.

$ kubectl edit deploy nginx -n $namespace_name

$ kubectl get rs -n $namespace_name
NAME DESIRED CURRENT READY AGE
nginx-6f9f58dffd 2 2 2 1m
nginx-7f98958cdf 0 0 0 48m

$ kubectl get pods -n $namespace_name

Cloud Container Instance
Developer Guide 6 Deployment

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

NAME READY STATUS RESTARTS AGE
nginx-6f9f58dffd-tdmqk 1/1 Running 0 21s
nginx-6f9f58dffd-tesqr 1/1 Running 0 21s

The Deployment can use the maxSurge and maxUnavailable parameters to
control the proportion of pods to be recreated during the upgrade. This is useful in
many scenarios. The configuration is as follows:

spec:
 strategy:
 rollingUpdate:
 maxSurge: 1
 maxUnavailable: 0
 type: RollingUpdate

● maxSurge: specifies the percent of pods that can exist over spec.replicas in
the Deployment. The default value is 25%. For example, if spec.replicas is set
to 4, no more than five pods can exist during the upgrade, and the upgrade
step is 1. The absolute number is calculated from the percentage by rounding
up. The value can also be set to an absolute number.

● maxUnavailable: specifies the percent of pods that can be unavailable during
the update. The default value is 25%. For example, if spec.replicas is set to 4,
there must be at least three pods during the upgrade, so the deleting step is
1. The value can also be set to an absolute number.

In the preceding example, the value of spec.replicas is 2. Suppose both maxSurge
and maxUnavailable are the default value 25%, maxSurge allows a maximum of
three pods to exist (2 * 1.25 = 2.5, rounded up to 3), and maxUnavailable does
not allow unavailable pods (2 * 0.75 = 1.5, rounded up to 2). As a result, two pods
are running during the upgrade. Each time a new pod is created, an old pod is
deleted, until all pods are new.

Rollback
Rollback is to roll an application back to the earlier version when a fault occurs
during the upgrade. A Deployment can be easily rolled back to the earlier version.

For example, if the upgraded image is faulty, you can run the kubectl rollout
undo command to roll back.

$ kubectl rollout undo deployment nginx -n $namespace_name
deployment "nginx" rolled back

A Deployment can be easily rolled back because a Deployment uses a ReplicaSet
to control a pod. After the upgrade, the ReplicaSet still exists. The Deployment is
rolled back by recreating the pod using the ReplicaSet. The number of ReplicaSets
stored in a Deployment can be restricted by the revisionHistoryLimit parameter.
The default value is 10.

Cloud Container Instance
Developer Guide 6 Deployment

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

7 EIPPool

7.1 Overview
CCI introduces a user-defined resource object named EIPPool to automatically bind
EIPs to pods. EIPPools support two EIP resource management modes: dynamic
mode (EIP resources are automatically created by CCI) and static mode (EIP
resources are created by users in advance).

Constraints
● Only one EIP can be bound to a pod.
● To enable a pod with an EIP bound to be accessed from the public network,

you need to add security group rules to allow access from the public network.
● An EIPPool being used by a pod cannot be deleted. You need to delete the

associated pod and then delete the EIPPool.
● EIPPools are namespace-level resources and cannot be used across

namespaces.
● In the rolling upgrade of a workload, by default, new pods are created before

old pods are deleted (for details, see the upgrade policy). As a result, the
upgrade may fail due to insufficient EIPs in the EIPPool. To avoid this, you can
set the number of EIPs in the EIPPool to be slightly greater than the total
number of Deployment replicas that use the EIPPool, or set maxSurge to 0.

Related Operations

You can perform the following operations on EIPPools:

Creating an EIPPool

Using an EIPPool

Managing an EIPPool

7.2 Creating an EIPPool

Cloud Container Instance
Developer Guide 7 EIPPool

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#strategy

7.2.1 Creating a Dynamic EIPPool
A dynamic EIPPool dynamically creates underlying EIP resources based on your
configuration and creates EIP objects in the CCI namespace.

The following example shows how to create a dynamic EIPPool named eippool-
demo1. For details about the fields, see Table 7-1.

● To dynamically create an EIPPool that uses a dedicated bandwidth, you do not
need to specify the bandwidth ID. Example:

apiVersion: crd.yangtse.cni/v1
kind: EIPPool
metadata:
 name: eippool-demo1
 namespace: xxx # Namespace where the EIPPool is located, which must be the same as that
of the pod.
spec:
 amount: 3 # Number of EIPs in the EIPPool
 eipAttributes:
 networkType: 5_bgp
 ipVersion: 4
 bandwidth:
 name: cci-eippool-demo1
 chargeMode: bandwidth
 shareType: PER
 size: 5

● To dynamically create an EIPPool that uses a shared bandwidth, you must and
only need to specify the bandwidth ID. Example:

apiVersion: crd.yangtse.cni/v1
kind: EIPPool
metadata:
 name: eippool-demo1
 namespace: xxx
spec:
 amount: 3
 eipAttributes:
 networkType: 5_bgp
 ipVersion: 4
 bandwidth:
 id: xxx
 shareType: WHOLE # If the shareType is WHOLE, the bandwidth ID must be specified.

Table 7-1 Parameter description

Parameter Description Constraint

name Name of the EIPPool The name should be less
than or equal to 29
bytes. If it exceeds 29
bytes, extra characters
will be truncated, but the
use of the EIPPool is not
affected.

namespace Namespace to which the
EIPPool belongs

The value must be the
same as the namespace
of the pod.

amount Number of EIPs in the
EIPPool

The value ranges from 0
to 500.

Cloud Container Instance
Developer Guide 7 EIPPool

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

Parameter Description Constraint

networkType EIP type The value can be
5_telcom (China
Telecom), 5_union
(China Unicom), 5_bgp
(dynamic BGP), 5_sbgp
(static BGP), or 5_ipv6.
The configured value
must be supported by
the system.

ipVersion EIP version The value can be 4 (IPv4
address) or 6 (IPv6
address).
The configured value
must be supported by
the system.
If this parameter is left
blank or is an empty
string, an IPv4 address is
assigned by default.

chargeMode Whether the billing is
based on traffic or
bandwidth

The value can be
bandwidth or traffic.
The value bandwidth
indicates that the
bandwidth is billed by
fixed bandwidth. The
value traffic indicates
that the bandwidth is
billed by traffic. If this
parameter is left blank,
the default value is
bandwidth. For IPv6
addresses, the default
value is bandwidth
outside China and is
traffic in China.

shareType Bandwidth type The value can be PER
(dedicated bandwidth)
or WHOLE (shared
bandwidth).
If this parameter is set to
WHOLE, the bandwidth
ID must be specified.

id Bandwidth ID The value can be the ID
of the bandwidth whose
type is set to WHOLE.

Cloud Container Instance
Developer Guide 7 EIPPool

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

Parameter Description Constraint

size Bandwidth The value ranges from 1
to 200.
Unit: Mbit/s
The specific range may
vary with the
configuration in each
region. For the specific
range, see the console.

For the function description, value range, and constraints of the above EIP-related
fields in the YAML file, see the EIP parameters page.

Run the following command to view the EIPPool details. (-n indicates the
namespace to which the EIPPool belongs.)

If the EIPPool name eippool-demo1 is displayed in the command output, the
dynamic EIPPool is created successfully.

kubectl get eippool -n $namespace_name
NAME EIPS USAGE AGE
eippool-demo1 0/3 39m

7.2.2 Creating a Static EIPPool
A static EIPPool statically manages underlying EIP resources based on multiple
unused EIPs that you specify and creates EIP objects in the CCI namespace. If EIPs
in the EIPPool are used by NAT or ELB, the management fails.

The following example shows how to create a static EIPPool named eippool-
demo2 and manage public IP addresses 10.246.173.254 and 10.246.172.3 in it.

Example:

apiVersion: crd.yangtse.cni/v1
kind: EIPPool # Type of the created object
metadata: # Metadata definition of the resource object
 name:eippool-demo2
spec: # EIPPool configuration
 eips: # Public IP addresses to be managed
 - 10.246.173.254
 - 10.246.172.3

7.3 Using an EIPPool
After creating an EIPPool in the namespace, add the specified annotation
yangtse.io/eip-pool to the pod template to use the EIPs of the EIPPool. When a
pod is created, an available EIP is automatically obtained from the EIPPool and
bound to the pod.

Cloud Container Instance
Developer Guide 7 EIPPool

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

https://support.huaweicloud.com/intl/en-us/api-eip/eip_api_0001.html

NO TE

EIPs that are being used by an EIPPool cannot be bound, unbound, or deleted on the VPC
console. Therefore, you are not advised to perform operations on such EIPs on the VPC
console.

The following uses eippool-demo1 as an example.

apiVersion: v1
kind: Pod
metadata:
 annotations:
 yangtse.io/eip-pool:eippool-demo1 # Use EIPs by specifying an EIPPool.
...

Run the following command to view the EIPPool details. (-n indicates the
namespace to which the EIPPool belongs.)

In the command output, the usage of the eippool-demo1 EIPPool increases by 1,
indicating that an EIP is successfully bound to the pod.

kubectl get eippool -n $namespace_name
NAME EIPS USAGE AGE
eippool-demo1 1/3 64m

After the pod is started, you can add the annotation yangtse.io/allocated-ipv4-
eip to query the EIP used by the pod.

apiVersion:v1
kind:Pod
metadata:
 annotations:
 yangtse.io/allocated-ipv4-eip: 116.205.XXX.XXX # EIP allocated to the pod

NO TE

If a pod is rebuilt, it will re-obtain an available EIP from the EIPPool.

7.4 Managing an EIPPool

Updating an EIPPool
Currently, you can only adjust the number of EIPs in an EIPPool, that is, scale in or
out an EIPPool. If you want to modify other EIP parameters, create an EIPPool to
replace the existing one in the workload configuration.

During EIPPool scale-in, if resources of an EIP are occupied, the EIP will not be
deleted until the resources are released.

In the following example of the dynamic EIPPool eippool-demo1, change
amount: 3 to amount: 5.
apiVersion: crd.yangtse.cni/v1
kind: EIPPool
metadata:
 name: eippool-demo1
 namespace: xxx
spec:
 amount: 5 # Number of EIPs in the EIPPool
 eipAttributes: # EIP attributes
 ...

Run the following command to view the EIPPool details. (-n indicates the
namespace to which the EIPPool belongs.)

Cloud Container Instance
Developer Guide 7 EIPPool

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

In the command output, if the USAGE value of eippool-demo1 changes from 0/3
to 0/5, the EIPPool is successfully updated.

kubectl get eippool -n $namespace_name
NAME EIPS USAGE AGE
eippool-demo1 0/5 39m

As shown in the following example of the static EIPPool eippool-demo2, updating
an EIPPool is to add or delete public IP addresses managed by the EIPPool.

apiVersion: crd.yangtse.cni/v1
kind: EIPPool # Type of the created object
metadata: # Metadata definition of the resource object
 name:eippool-demo2
spec: # EIPPool configuration
 eips: # Public IP addresses to be managed
 - 10.246.173.254
 - 10.246.172.3
 - 10.246.172.59

Deleting an EIPPool
When an EIPPool is deleted, its EIPs are also deleted. If an EIP in the EIPPool is
occupied by a pod or other resources, you cannot delete the EIPPool.

Cloud Container Instance
Developer Guide 7 EIPPool

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

8 EIP

8.1 Overview
To make it easier for you to bind an EIP to a pod in CCI, you only need to
configure the annotation when creating the pod. The EIP will be automatically
bound to the pod.

Constraints
● A pod can only have one EIP bound, and an EIP can only be bound to one

pod.
● You can set annotations when creating a pod. After the pod is created, the

annotations related to the EIP cannot be updated.
● The EIP allocated during pod creation takes precedence over the EIP created

by an EIPPool.
● When you create a pod, binding an existing EIP has priority over binding a

new EIP.
● To enable a pod with an EIP bound to be accessed from the public network,

you need to add security group rules to allow access from the public network.
● For an EIP that has been bound to a pod, do not perform operations such as

changing the alias, deleting, unbinding, and binding the EIP, and changing the
billing mode on the EIP console or through APIs. Otherwise, some resources
may not be deleted.

● If an existing EIP is to be bound to the pod and the pod is deleted and then
rebuilt, the time for the new pod to be ready is prolonged because the EIP
needs to be unbound from the old pod.

● An existing EIP must be one that is manually allocated. An EIP created using
an EIPPool cannot be used, or the EIP status will be abnormal.

Related Operations
You can perform the following operations on EIPs:

Binding a New EIP to a Pod

Binding an Existing EIP to a Pod

Cloud Container Instance
Developer Guide 8 EIP

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

8.2 Binding a New EIP to a Pod

Allocating an EIP During Pod Creation
When creating a pod, configure pod-with-eip under annotations. An EIP is
automatically assigned and bound to the pod.

The following uses a Deployment named nginx as an example. For details about
the parameters, see Table 8-1.

● To create a Deployment that uses a dedicated bandwidth, you do not need to
specify the bandwidth ID.
apiVersion: apps/v1
kind: Deployment
metadata:
 annotations:
 deployment.kubernetes.io/revision: "14"
 description: ""
 name: nginx
 namespace: eip
spec:
 ...
 template:
 metadata:
 annotations:
 yangtse.io/pod-with-eip: "true"
 yangtse.io/eip-bandwidth-size: "5"
 yangtse.io/eip-network-type: 5_g-vm
 yangtse.io/eip-charge-mode: bandwidth
 yangtse.io/eip-bandwidth-name: "xxx"

● To create a Deployment that uses a shared bandwidth, you must and only
need to specify the bandwidth ID.
apiVersion: apps/v1
kind: Deployment
metadata:
 annotations:
 deployment.kubernetes.io/revision: "14"
 description: ""
 name: nginx
 namespace: eip
spec:
 ...
 template:
 metadata:
 annotations:
 yangtse.io/pod-with-eip: "true"
 yangtse.io/eip-bandwidth-id: "xxx"

Table 8-1 Parameter description

Parameter Description Mandato
ry

Constraint

yangtse.io/pod-
with-eip

The EIP
allocated during
pod creation

Yes This option is enabled only
when the parameter value is
set to true.

Cloud Container Instance
Developer Guide 8 EIP

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

Parameter Description Mandato
ry

Constraint

yangtse.io/eip-
bandwidth-size

The bandwidth
that will be
used by the EIP

No The default value is 5.

yangtse.io/eip-
network-type

The bandwidth
type

No The default value is 5_bgp.
If your region does not
support 5_bgp and this
parameter is left empty, an
event is reported for the
pod.

yangtse.io/eip-
charge-mode

Bandwidth
billing option

No The value can be
bandwidth (default) or
traffic.

yangtse.io/eip-
bandwidth-id

ID of the shared
bandwidth

Yes (for
shared
bandwidt
hs)

If you have set this
parameter, you do not need
to set other values.

yangtse.io/eip-
bandwidth-name

Bandwidth
name

No The default value is the
same as the EIP name.

Verifying the EIP Allocation
The startup time of the pod may be earlier than the time when the EIP allocation
result is returned. During pod startup, the EIP may fail to be bound.

You can use an init container to check whether the EIP is allocated. After the pod
IP address is allocated, the container network controller binds an EIP to the pod
and returns the allocation result to the annotation (yangtse.io/allocated-ipv4-eip)
of the pod. You can configure an init container in the pod and use the downward
API to mount the annotation to the init container through a volume to check
whether the EIP is allocated. You can configure the init container as follows:

NO TICE

CCI allows EIPs to be automatically bound to pods. EIPs are allocated after pod
scheduling is complete. EIP annotations cannot be injected to pods through ENV.

apiVersion: v1
kind: Pod
metadata:
 name: example
 namespace: demo
 annotations:
 yangtse.io/pod-with-eip: "true"
 yangtse.io/eip-bandwidth-size: "5"
 yangtse.io/eip-network-type: 5_g-vm
 yangtse.io/eip-charge-mode: bandwidth
 yangtse.io/eip-bandwidth-name: "xxx"

Cloud Container Instance
Developer Guide 8 EIP

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

spec:
 initContainers:
 - name: init
 image: busybox:latest
 command: ['timeout', '60', 'sh', '-c', "until grep -E '[0-9]+' /etc/eipinfo/allocated-ipv4-eip; do echo waiting
for allocated-ipv4-eip; sleep 2; done"]
 volumeMounts:
 - name: eipinfo
 mountPath: /etc/eipinfo
 volumes:
 - name: eipinfo
 downwardAPI:
 items:
 - path: "allocated-ipv4-eip"
 fieldRef:
 fieldPath: metadata.annotations['yangtse.io/allocated-ipv4-eip']

Releasing an EIP During Pod Deletion

When you delete a pod, the EIP bound to it is also released. You can run the
following command to delete a pod:

kubectl delete pod nginx -n $namespace_name

8.3 Binding an Existing EIP to a Pod

Specifying the EIP ID for a Pod

When creating a pod, enter the yangtse.io/eip-id annotation. An EIP is
automatically assigned and bound to the pod.

The following example creates a Deployment named nginx. This Deployment has
one pod, and an EIP is automatically assigned and bound to the pod. Table 8-2
describes the parameters.

apiVersion: apps/v1
kind: Deployment
metadata:
 annotations:
 deployment.kubernetes.io/revision: "14"
 description: ""
 name: nginx
 namespace: eip
spec:
 ...
 replicas: 1
 template:
 metadata:
 annotations:
 yangtse.io/eip-id: 65eb3679-7a8d-4b24-b681-0b661axxxxcb

Table 8-2 Parameter description

Parameter Descriptio
n

Mandatory Constraint

yangtse.io/eip-id EIP ID Yes The ID that can be queried on
the EIP page.

Cloud Container Instance
Developer Guide 8 EIP

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

Verifying the EIP Allocation
The startup time of the pod may be earlier than the time when the EIP allocation
result is returned. During pod startup, the EIP may fail to be bound.

You can use an init container to check whether the EIP is allocated. After the pod
IP address is allocated, the container network controller binds an EIP to the pod
and returns the allocation result to the annotation (yangtse.io/allocated-ipv4-eip)
of the pod. You can configure an init container in the pod and use the downward
API to mount the annotation to the init container through a volume to check
whether the EIP is allocated. You can configure the init container as follows:

apiVersion: v1
kind: Pod
metadata:
 name: example
 namespace: demo
 annotations:
 yangtse.io/eip-id: 65eb3679-7a8d-4b24-b681-0b661axxxxcb
spec:
 initContainers:
 - name: init
 image: busybox:latest
 command: ['timeout', '60', 'sh', '-c', "until grep -E '[0-9]+' /etc/eipinfo/allocated-ipv4-eip; do echo waiting
for allocated-ipv4-eip; sleep 2; done"]
 volumeMounts:
 - name: eipinfo
 mountPath: /etc/eipinfo
 volumes:
 - name: eipinfo
 downwardAPI:
 items:
 - path: "allocated-ipv4-eip"
 fieldRef:
 fieldPath: metadata.annotations['yangtse.io/allocated-ipv4-eip']

Cloud Container Instance
Developer Guide 8 EIP

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

9 Pod Resource Monitoring Metric

CCI supports basic monitoring of pod resources with multiple metrics, such as
metrics for CPU, memory, disk, and network.

Pods have built-in system agents, which provide pod and container monitoring
metrics in HTTP services by default. Reserve 30 MB for the agent that integrated
into a pod.

Resource Metrics
Basic monitoring metrics include CPU, memory, and disk usage. For details, see
Resource Metrics.

Table 9-1 Resource metrics

Category Metric Description

CPU container_cpu_system_seco
nds_total

Cumulative system CPU time
consumed (unit: second)

container_cpu_usage_secon
ds_total

Cumulative time that the
container consumed on all CPU
cores (unit: second)

container_cpu_user_seconds
_total

Cumulative user CPU time
consumed (unit: second)

container_cpu_cfs_periods_t
otal

Number of elapsed enforcement
period intervals

container_cpu_cfs_throttled
_periods_total

Number of throttled period
intervals

container_cpu_cfs_throttled
_seconds_total

Total time duration the container
has been throttled (unit: second)

Cloud Container Instance
Developer Guide 9 Pod Resource Monitoring Metric

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

Category Metric Description

File system
and disk I/O

container_fs_inodes_free Number of available inodes in the
file system

container_fs_usage_bytes File system usage (unit: byte)

container_fs_inodes_total Total number of inodes in the file
system

container_fs_io_current Number of I/Os currently in
progress in the disk or file system

container_fs_io_time_secon
ds_total

Cumulative seconds spent on
doing I/Os by the disk or file
system

container_fs_io_time_weigh
ted_seconds_total

Cumulative weighted I/O time of
the disk or file system

container_fs_limit_bytes Total disk or file system capacity
that can be consumed by the
container (unit: byte)

container_fs_reads_bytes_to
tal

Cumulative amount of disk or file
system data read by the
container (unit: byte)

container_fs_read_seconds_
total

Cumulative count of seconds the
container spent on reading disk
or file system data

container_fs_reads_merged
_total

Cumulative count of merged disk
or file system reads made by the
container

container_fs_reads_total Cumulative count of disk or file
system reads completed by the
container

container_fs_sector_reads_t
otal

Cumulative count of sector reads
completed by the container in the
disk or file system

container_fs_sector_writes_t
otal

Cumulative count of sector writes
completed by the container to
the disk or file system

container_fs_writes_bytes_t
otal

Total amount of data written by
the container to the disk or file
system (unit: byte)

container_fs_write_seconds_
total

Cumulative count of seconds the
container spent on writing data
to the disk or file system

Cloud Container Instance
Developer Guide 9 Pod Resource Monitoring Metric

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

Category Metric Description

container_fs_writes_merged
_total

Cumulative count of merged
container writes to the disk or file
system

container_fs_writes_total Cumulative count of completed
container writes to the disk or file
system

container_blkio_device_usa
ge_total

Blkio device usage (unit: byte)

Memory container_memory_failures_
total

Cumulative count of container
memory allocation failures

container_memory_failcnt Number of memory usage hits
limits

container_memory_cache Total page cache memory of the
container (unit: byte)

container_memory_mapped
_file

Size of memory mapped files
(unit: byte)

container_memory_max_us
age_bytes

Maximum memory usage
recorded for the container (unit:
byte)

container_memory_rss Size of the resident memory set
for the container (unit: byte)

container_memory_swap Container swap usage (unit: byte)

container_memory_usage_b
ytes

Current memory usage of the
container (unit: byte)

container_memory_working
_set_bytes

Memory usage of the working set
of the container (unit: byte)

Network container_network_receive_
bytes_total

Total volume of data received by
the container network (unit:
byte)

container_network_receive_
errors_total

Cumulative count of errors
encountered during reception

container_network_receive_
packets_dropped_total

Cumulative count of packets
dropped during reception

container_network_receive_
packets_total

Cumulative count of packets
received

container_network_transmit
_bytes_total

Total volume of data transmitted
on the container network (unit:
byte)

Cloud Container Instance
Developer Guide 9 Pod Resource Monitoring Metric

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

Category Metric Description

container_network_transmit
_errors_total

Cumulative count of errors
encountered during transmission

container_network_transmit
_packets_dropped_total

Cumulative count of packets
dropped during transmission

container_network_transmit
_packets_total

Cumulative count of packets
transmitted

Process container_processes Number of processes running
inside the container

container_sockets Number of open sockets for the
container

container_file_descriptors Number of open file descriptors
for the container

container_threads Number of threads running inside
the container

container_threads_max Maximum number of threads
allowed inside the container

container_ulimits_soft Soft ulimit value of process 1 in
the container. Unlimited if the
value is -1, except priority and
nice.

container_spec_cpu_period CPU period of the container

container_spec_cpu_shares CPU share of the container

container_spec_memory_li
mit_bytes

Memory limit for the container

container_spec_memory_res
ervation_limit_bytes

Memory reservation limit for the
container

container_spec_memory_sw
ap_limit_bytes

Memory swap limit for the
container

container_start_time_secon
ds

Running time of the container
(unit: second)

container_last_seen Last time a container was seen by
the exporter

gpu container_accelerator_mem
ory_used_bytes

GPU accelerator memory that is
being used by the container (unit:
byte)

container_accelerator_mem
ory_total_bytes

Total available GPU accelerator
memory (unit: byte)

Cloud Container Instance
Developer Guide 9 Pod Resource Monitoring Metric

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

Category Metric Description

container_accelerator_duty_
cycle

Percentage of time when the
GPU accelerator is actually
running

The total number of monitoring metrics is 59, which is the same as that provided
by cAdvisor.

For details about the metrics, see the cAdvisor document.

Basic Configuration

The following example describes how to configure pod resource monitoring
metrics, including enabling or disabling pod-level features and customizing ports.

kind: Deployment
apiVersion: apps/v1
metadata:
 name: nginx-exporter
spec:
 replicas: 1
 selector:
 matchLabels:
 app: nginx-exporter
 template:
 metadata:
 labels:
 app: nginx-exporter
 annotations:
 monitoring.cci.io/enable-pod-metrics: "true"
 monitoring.cci.io/metrics-port: "19100"
 spec:
 containers:
 - name: container-0
 image: 'nginx:alpine'
 resources:
 limits:
 cpu: 1000m
 memory: 2048Mi
 requests:
 cpu: 1000m
 memory: 2048Mi
 imagePullSecrets:
 - name: imagepull-secret

Table 9-2 Parameter description

Annotation Function Available Value Default Value

monitoring.cci.io/
enable-pod-
metrics

Whether to
enable the
monitoring
metrics

true, false (case
insensitive)

true

monitoring.cci.io/
metrics-port

Listening port of
the pod exporter

Valid ports (1 to
65535)

19100

Cloud Container Instance
Developer Guide 9 Pod Resource Monitoring Metric

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

https://github.com/google/cadvisor/blob/v0.39.0/docs/storage/prometheus.md

Advanced Configuration

Creating a Secret

A secret is a resource object for encrypted storage. You can save the
authentication information, certificates, and private keys in a secret for configuring
sensitive data such as passwords, tokens, and keys.

The secret defined in the following example contains three key-value pairs.

apiVersion: v1
kind: Secret
metadata:
 name: cert
type: Opaque
data:
 ca.crt: ...
 server.crt: ...
 server.key: ...

Configuring a TLS Certificate

You can configure annotations to specify the TLS certificate suite of the exporter
server for encrypted communication and use the file mounting mode to associate
the certificate secret. Example:

kind: Deployment
apiVersion: apps/v1
metadata:
 name: nginx-tls
spec:
 replicas: 1
 selector:
 matchLabels:
 app: nginx-tls
 template:
 metadata:
 labels:
 app: nginx-tls
 annotations:
 monitoring.cci.io/enable-pod-metrics: "true"
 monitoring.cci.io/metrics-port: "19100"
 monitoring.cci.io/metrics-tls-cert-reference: cert/server.crt
 monitoring.cci.io/metrics-tls-key-reference: cert/server.key
 monitoring.cci.io/metrics-tls-ca-reference: cert/ca.crt
 sandbox-volume.openvessel.io/volume-names: cert
 spec:
 volumes:
 - name: cert
 secret:
 secretName: cert
 defaultMode: 384
 containers:
 - name: container-0
 image: 'nginx:alpine'
 resources:
 limits:
 cpu: 1000m
 memory: 2048Mi
 requests:
 cpu: 1000m
 memory: 2048Mi
 volumeMounts:
 - name: cert
 mountPath: /tmp/secret0
 imagePullSecrets:
 - name: imagepull-secret

Cloud Container Instance
Developer Guide 9 Pod Resource Monitoring Metric

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

Table 9-3 TLS certificate parameters

Annotation Function Available Value Default Value

monitoring.cci.io/
metrics-tls-cert-
reference

TLS certificate
volume
reference

${volume-
name}/${volume-
keyOrPath}
(Volume/Path)

None (HTTP is
used.)

monitoring.cci.io/
metrics-tls-key-
reference

TLS private key
volume
reference

${volume-
name}/${volume-
keyOrPath}

None (HTTP is
used.)

monitoring.cci.io/
metrics-tls-ca-
reference

TLS CA volume
reference

${volume-
name}/${volume-
keyOrPath}

None (HTTP is
used.)

The values of the preceding parameters are the names and paths of the storage
volume where the TLS certificate, private key, and CA file are located.

Obtaining Resource Monitoring Metrics
After configuring the preceding monitoring attributes, run the following command
in a VPC that can access the pod to obtain the pod monitoring data:

curl $podIP:$port/metrics

<podIP> indicates the IP address of the pod, and <port> indicates the listening
port, for example, curl 192.168.XXX.XXX:19100/metrics.

Cloud Container Instance
Developer Guide 9 Pod Resource Monitoring Metric

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

10 Collecting Pod Logs

This section describes how to collect logs in a pod. You can configure the log files
in a user-defined path in a container to collect logs, process the logs based on
user-defined policies, and report the logs to the Kafka log center.

Resource Restriction
You are advised to reserve 50 MiB memory for Fluent Bit.

Constraints
● Logs of soft link paths in containers cannot be collected.
● Container stdout logs cannot be collected and reported to Kafka.
● Log rotation is not supported. You need to control the log file size by yourself.
● A log larger than 250 KB cannot be collected.
● Logs cannot be collected from the directory that a specified system, device,

cgroup, tmpfs, or localdir is mounted to.
● In a container, if a log name exceeds 190 characters, the log will not be

collected. If there are logs whose name contains 180 to 190 characters, only
the first log can be collected.

● When a container is stopped, if log collection is delayed due to network
latency or high resource usage, some logs generated before the container is
stopped may be lost.

Basic Configuration
Fluent Bit is an open source multi-platform log processor. It consists of modules
SERVICE, INPUT, FILTER, PARSER, and OUTPUT. Currently, you can only define the
destination of the log contents in the OUTPUT module.

You can use the following ConfigMap to send Fluent Bit process logs to Kafka.

Constraints

● The size of output.conf must be less than 1 MB.
● [OUTPUT] is the outermost parameter and must not be indented.

Configuration items below it are indented by four spaces.

Cloud Container Instance
Developer Guide 10 Collecting Pod Logs

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

Basic Configuration

Configure the following parameters in your main configuration file:

kind: ConfigMap
apiVersion: v1
metadata:
 name: cci-logging-conf
 labels:
 logconf.k8s.io/discovery: "true"
data:
 output.conf: |
 [OUTPUT]
 Name kafka
 Match *
 Brokers 192.168.1.3:9092
 Topics test

Table 10-1 Parameter description

Parameter Description Mandatory Constraint

logconf.k8s.io/
discovery

Labels the
ConfigMap as a
Fluent Bit log
configuration file.

Yes Mandatory value:
true

Name Add-on name. Yes Mandatory value:
kafka
Currently, only the
Kafka add-on is
supported.

Match Matches the label
of the transferred
record. The
asterisk (*) is used
as a wildcard.

No If this parameter
is set, the value
must be *.

Brokers Broker (Kafka)
address. You can
configure multiple
broker addresses
at the same time.

Yes Example:
192.168.1.3:9092,
192.168.1.4:9092,
192.168.1.5:9092

Topics Log topic. No The default value
is fluent-bit.
The transferred
topic must exist.

You can configure the volume on the pod and configure annotations to specify the
sandbox volume and the corresponding log output configuration file.

kind: Deployment
apiVersion: apps/v1
metadata:
 name: kafka-dey

Cloud Container Instance
Developer Guide 10 Collecting Pod Logs

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

spec:
 replicas: 1
 selector:
 matchLabels:
 app: kafka
 template:
 metadata:
 labels:
 app: kafka
 annotations:
 logpath.k8s.io/container-0: /var/log/*.log;/var/paas/sys/log/virtual-kubelet.log
 logconf.k8s.io/fluent-bit-configmap-reference: cci-logging-conf
 spec:
 containers:
 - name: container-0
 image: 'nginx:alpine'
 resources:
 limits:
 cpu: 1000m
 memory: 2048Mi
 requests:
 cpu: 1000m
 memory: 2048Mi
 imagePullSecrets:
 - name: default-secret

Table 10-2 Parameter description

Annotation Function Constraint

logpath.k8s.io/
$containerName

Configures the
collection file using
the environment
variables of the pod
container.
$containerName is
a container name
variable.

Multiple paths can be
configured. Each path must be
an absolute path starting with
a slash (/) and paths are
separated by semicolons (;).
Only complete log file paths
or file names with the
wildcard (*) are supported. If
a file name contains the
wildcard (*), the directory
where the file is located must
exist when the container is
started.
The maximum length of a file
name is 190 characters.

logconf.k8s.io/fluent-bit-
configmap-reference

Specifies the
ConfigMap
configured for the
Fluent Bit log
collection.

The ConfigMap must exist and
meet the requirements of
configuring Fluent Bit.

Advanced Configuration

A secret is a resource object for encrypted storage. You can save the
authentication information, certificates, and private keys in a secret for configuring
sensitive data such as passwords, tokens, and keys.

Cloud Container Instance
Developer Guide 10 Collecting Pod Logs

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

apiVersion: v1
kind: Secret
metadata:
 name: cci-sfs-kafka-tls
type: Opaque
data:
 ca.crt: ...
 server.crt: ...
 server.key: ...

You can configure SSL parameters to implement encrypted secure connections.
Files such as certificates can be referenced by the sandbox volume feature.

kind: ConfigMap
apiVersion: v1
metadata:
 name: cci-logging-conf-tls
 labels:
 logconf.k8s.io/discovery: true
data:
 output.conf: |
 [OUTPUT]
 Name kafka
 Match *
 Brokers 192.168.1.3:9092
 Topics test
 rdkafka.security.protocol ssl
 rdkafka.ssl.certificate.location ${sandbox_volume_kafkatls}/client.crt
 rdkafka.ssl.key.location ${sandbox_volume_kafkatls}/client.key
 rdkafka.ssl.ca.location ${sandbox_volume_kafkatls}/ca.crt
 rdkafka.enable.ssl.certificate.verification true
 rdkafka.request.required.acks 1

Table 10-3 Parameter description

Parameter Description Mandator
y

Available Value

rdkafka.security.pr
otocol

Protocol used to
communicate with
the agent

Mandator
y if SSL
authentic
ation is
enabled

ssl

rdkafka.ssl.certific
ate.location

Path for storing SSL
public keys

Mandator
y if SSL
authentic
ation is
enabled

${sandbox_volume_$
{VOLUME_NAME}}/
some.cert

rdkafka.ssl.key.loc
ation

Path for storing SSL
private keys

Mandator
y if SSL
authentic
ation is
enabled

${sandbox_volume_$
{VOLUME_NAME}}/
some.key

Cloud Container Instance
Developer Guide 10 Collecting Pod Logs

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

Parameter Description Mandator
y

Available Value

rdkafka.ssl.ca.loca
tion

File path or
directory of the CA
certificate

Mandator
y if server
certificate
authentic
ation is
enabled

${sandbox_volume_$
{VOLUME_NAME}}/
some-bundle.crt

rdkafka.enable.ssl.
certificate.verificat
ion

Whether to start
server certificate
authentication

No The value can be true
(default) or false.

You can configure the volume on the pod and configure annotations to specify the
sandbox volume and the corresponding log output configuration file.

kind: Deployment
apiVersion: apps/v1
metadata:
 name: kafka-tls
spec:
 replicas: 1
 selector:
 matchLabels:
 app: kafka
 template:
 metadata:
 labels:
 app: kafka
 annotations:
 logpath.k8s.io/container-0: /var/log/*.log;/var/paas/sys/log/virtual-kubelet.log
 logconf.k8s.io/fluent-bit-configmap-reference: cci-logging-conf
 sandbox-volume.openvessel.io/volume-names: kafkatls
 spec:
 volumes:
 - name: kafkatls
 secret:
 secretName: cci-sfs-kafka-tls
 containers:
 - name: container-0
 image: 'nginx:alpine'
 resources:
 limits:
 cpu: 1000m
 memory: 2048Mi
 requests:
 cpu: 1000m
 memory: 2048Mi
 volumeMounts:
 - name: kafkatls
 mountPath: /tmp/sfs
 imagePullSecrets:
 - name: default-secret

For details about Kafka configuration items, see https://github.com/edenhill/
librdkafka/blob/master/CONFIGURATION.md.

Cloud Container Instance
Developer Guide 10 Collecting Pod Logs

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md
https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md

11 Managing Network Access Through
Service and Ingress

11.1 Service

Direct Access to a Pod
How can I access a workload after it is created? Accessing a workload is to access
a pod. However, the following problems may occur when you access a pod
directly:

● The pod can be deleted and recreated at any time by a controller such as a
Deployment, and the result of accessing the pod becomes unpredictable.

● The IP address of the pod is allocated only after the pod is started. Before the
pod is started, the IP address of the pod is unknown.

● An application is usually composed of multiple pods that run the same image.
Accessing pods one by one is not efficient.

For example, an application uses Deployments to create the frontend and
backend. The frontend calls the backend for computing, as shown in Figure 11-1.
Three pods are running in the backend, which are independent and replaceable.
When a backend pod is recreated, the new pod is assigned with a new IP address
and the frontend pod is unaware.

Cloud Container Instance
Developer Guide

11 Managing Network Access Through Service and
Ingress

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

Figure 11-1 Inter-workload access

How Services Work
Kubernetes Services are used to solve the preceding pod access problems. A
Service has a fixed IP address and forwards the traffic to the pods based on labels.
In addition, the Service can perform load balancing for these pods.

In the preceding example, two Services are added for accessing the frontend and
backend pods. In this way, the frontend pod does not need to sense changes on
backend pods, as shown in Figure 11-2.

Cloud Container Instance
Developer Guide

11 Managing Network Access Through Service and
Ingress

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

Figure 11-2 Accessing pods through a Service

Creating a Service
In the following example, create a Service named nginx, and use a selector to
select the pod with the label of app:nginx. The port of the target pod is port 80
while the exposed port of the Service is port 8080.

The Service can be accessed using Service name:Exposed port. In the example,
nginx:8080 is used. In this case, other workloads can access the pod associated
with nginx using nginx:8080.
apiVersion: v1
kind: Service
metadata:
 name: nginx #Service name
spec:
 selector: #Label selector, which selects pods with the label of app=nginx
 app: nginx
 ports:

Cloud Container Instance
Developer Guide

11 Managing Network Access Through Service and
Ingress

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

 - name: service0
 targetPort: 80 #Pod port
 port: 8080 #Service external port
 protocol: TCP #Forwarding protocol type. The value can be TCP or UDP.
 type: ClusterIP #Service type

NO TE

NodePort Services are not supported in CCI.

Save the Service definition to nginx-svc.yaml and use kubectl to create the
Service.

kubectl create -f nginx-svc.yaml -n $namespace_name
service/nginx created

kubectl get svc -n $namespace_name
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kube-dns ClusterIP 10.247.9.190 <none> 53/UDP,53/TCP 7m
nginx ClusterIP 10.247.148.137 <none> 8080/TCP 1h

You can see that the Service has a ClusterIP, which is fixed unless the Service is
deleted. You can use this ClusterIP to access the Service internally.

NO TE

kube-dns is a Service reserved for domain name resolution. It is automatically created in
CCI. For details about domain name resolution, see Using ServiceName to Access a
Service.

Using ServiceName to Access a Service

In CCI, you can use the coredns add-on to resolve the domain name for a Service,
and use ServiceName:Port to access to the Service. This is the most common
mode in Kubernetes. For details about how to install coredns, see Add-on
Management.

After coredns is installed, it becomes a DNS. After the Service is created, coredns
records the Service name and IP address. In this way, the pod can obtain the
Service IP address by querying the Service name from coredns.

nginx.<namespace>.svc.cluster.local is used to access the Service. nginx is the
Service name, <namespace> is the namespace, and svc.cluster.local is the
domain name suffix. In actual use, you can omit <namespace>.svc.cluster.local
and use the Service name.

For example, if the Service named nginx is created, you can access the Service
through nginx:8080 and then access backend pods.

An advantage of using ServiceName is that you can write ServiceName into the
program when developing the application. In this way, you do not need to know
the IP address of a specific Service.

NO TICE

The coredns add-on occupies compute resources. It runs two pods, with each pod
occupies 0.5 vCPUs and 1 GiB of memory. You need to pay for the resources.

Cloud Container Instance
Developer Guide

11 Managing Network Access Through Service and
Ingress

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

https://coredns.io/
https://support.huaweicloud.com/intl/en-us/usermanual-cci/cci_01_0057.html
https://support.huaweicloud.com/intl/en-us/usermanual-cci/cci_01_0057.html

LoadBalancer Services
You have known that you can create ClusterIP Services. You can access backend
pods of the Service through the IP address.

CCI also supports LoadBalancer Services. You can bind a load balancer to a
Service. In this way, the traffic for accessing the load balancer is forwarded to the
Service.

A load balancer can work on a private network or public network. If the load
balancer has a public IP address, it can route requests over the public network.
You can create a load balancer by using the API or the ELB console.

NO TE

● The load balancer must be in the same VPC as the Service.
● Cross-namespace access cannot be achieved using a Service or ELB domain name. It can

be implemented only through Private IP address of load balancer:Port.

Figure 11-3 LoadBalancer Service

Cloud Container Instance
Developer Guide

11 Managing Network Access Through Service and
Ingress

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

https://support.huaweicloud.com/intl/en-us/api-elb/en-us_topic_0096561535.html
https://console-intl.huaweicloud.com/vpc/?region=ap-southeast-1&locale=en-us#/elbs/enhancedElbs

The following is an example of creating a LoadBalancer Service. After a load
balancer is created, you can access pods using the IP address and port of the load
balancer in the format of IP address:Port.
apiVersion: v1
kind: Service
metadata:
 name: nginx
 annotations:
 kubernetes.io/elb.id: 77e6246c-a091-xxxx-xxxx-789baa571280 #ID of the load balancer
spec:
 selector:
 app: nginx
 ports:
 - name: service0
 targetPort: 80
 port: 8080 #Port configured for the load balancer
 protocol: TCP
 type: LoadBalancer #Service type

11.2 Ingress
The previous section describes how to create a LoadBalancer Service that uses a
load balancer to access pods.

Services forward requests using TCP and UDP at Layer 4. Ingresses can forward
requests using HTTP and HTTPS at Layer 7. Domain names and paths can be used
for finer granularities.

Figure 11-4 Ingress-Service

In CCI, external access is implemented by binding the load balancer's IP address
and port number to an ingress, as shown in Figure 11-5.

Cloud Container Instance
Developer Guide

11 Managing Network Access Through Service and
Ingress

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

Figure 11-5 Ingress

Load Balancers

Ingresses can be bound to load balancers. You can create a load balancer by using
the API or the ELB console.

A load balancer can work on a private network or public network. If the load
balancer has a public IP address, it can route requests over the public network.

Creating an Ingress
● Creating an HTTP ingress

Cloud Container Instance
Developer Guide

11 Managing Network Access Through Service and
Ingress

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

https://support.huaweicloud.com/intl/en-us/api-elb/en-us_topic_0096561535.html
https://console-intl.huaweicloud.com/en-us/vpc/?region=ap-southeast-1&locale=en-us#/elbs/enhancedElbs

In the following example, the associated backend is nginx:8080. When http://
10.10.10.10:6071/ is accessed, the traffic is forwarded to the Service
corresponding to nginx:8080, and then to the corresponding pod.
apiVersion: extensions/v1beta1 # Ingress version
kind: Ingress
metadata:
 name: nginx
 labels:
 app: nginx
 isExternal: "true" # This parameter is mandatory and is reserved. The value must be true.
 zone: data # Data plane mode. This parameter is reserved. The value must be data.
 annotations:
 kubernetes.io/elb.id: 2d48d034-6046-48db-8bb2-53c67e8148b5 # ID of the load balancer. This
parameter is mandatory.
 kubernetes.io/elb.ip: 192.168.137.182 # IP address of the load balancer. This
parameter is optional.
 kubernetes.io/elb.port: '6071' # Port configured for the load balancer. This
parameter is mandatory.
spec:
 rules: # Routing rules
 - http: # Using HTTP protocol
 paths:
 - path: / # Route
 backend:
 serviceName: nginx # Name of the Service to which requests are
forwarded
 servicePort: 8080 # Port of the Service to which requests are
forwarded

You can also set the external domain name in an ingress so that you can
access the load balancer through the domain name and then access backend
Services.

NO TE

Domain name-based access depends on domain name resolution. You need to point
the domain name to the IP address of the load balancer. For example, you can use
Domain Name Service (DNS) to resolve domain names.

spec:
 rules:
 - host: www.example.com # Domain name
 http:
 paths:
 - path: /
 backend:
 serviceName: nginx
 servicePort: 80

● Creating an HTTPS ingress
In the following example, the associated backend is nginx:8080. When
https://10.10.10.10:6071/ is accessed, the traffic is forwarded to the Service
corresponding to nginx:8080, and then to the corresponding pod.
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 annotations:
 kubernetes.io/elb.id: 2d48d034-6046-48db-8bb2-53c67e8148b5
 kubernetes.io/elb.ip: 192.168.137.182
 kubernetes.io/elb.port: '6071'
 labels:
 app: nginx
 isExternal: 'true'
 zone: data
 name: nginx
spec:
 rules:
 - http:

Cloud Container Instance
Developer Guide

11 Managing Network Access Through Service and
Ingress

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

https://www.huaweicloud.com/intl/en-us/product/dns.html

 paths:
 - backend:
 serviceName: nginx
 servicePort: 8080
 path: /
 tls:
 - secretName: cci-sslcertificate-20214221 # Name of the uploaded SSL
certificate

Accessing Multiple Services
An ingress can access multiple Services at the same time. The configuration is as
follows:

● When accessing http://foo.bar.com/foo, you access the backend s1:80.
● When accessing http://foo.bar.com/bar, you access the backend s2:80.
spec:
 rules:
 - host: foo.bar.com # Host address
 http:
 paths:
 - path: "/foo"
 backend:
 serviceName: s1
 servicePort: 80
 - path: "/bar"
 backend:
 serviceName: s2
 servicePort: 80

Configuring the Routing Service for URL Redirection
In the following example template, an ingress is connected to a backend service
named service-test, and access requests to the /service-test path of the ingress
will be redirected to the / path of service-test.
cat <<-EOF | kubectl apply -f -
apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
 name: ingress-redirect-test
 namespace: default
 spec:
 rules:
 - host: ingress-test.com
 http:
 paths:
 - path: /
 backend:
 serviceName: service-test
 servicePort: 80
EOF

11.3 Network Access Scenarios
The previous two sections describe how to access pods through Services and
ingresses. This section describes scenarios of accessing pods in CCI, as shown in
Figure 11-6. In each scenario, Services and ingresses can be used to solve access
problems.

● Intra-namespace access: You only need to create a Service. A workload can be
accessed from other workloads in the same namespace by using Service
name:Service port.

Cloud Container Instance
Developer Guide

11 Managing Network Access Through Service and
Ingress

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

● Intra-VPC access: A workload can be accessed from other workloads in the
same VPC by using the IP address of a Service or the IP address of the private
network load balancer bound to an ingress.

● Inter-VPC access: You can create a VPC peering connection to connect two
VPCs. A workload is accessible to workloads in the other VPC by using the IP
address of a Service or the IP address of the private network load balancer.

● Access to a workload from the public network: A workload can be accessed
from the outside of Huawei Cloud by using the IP address of the public
network load balancer bound to an ingress.

● Access to the public network from a workload: You can configure source
network address translation (SNAT) rules in NAT Gateway, so that containers
can access the public network. For details, see Accessing Public Networks
from a Container.

Figure 11-6 Network access diagram

11.4 Readiness Probe
After a pod is created, the Service can immediately select it and forward requests
to it. However, it takes time to start a pod. If the pod is not ready (it takes time to
load the configuration or data, or a preheating program may need to be
executed), the pod cannot process requests, and the requests will fail.

Kubernetes solves this problem by adding a readiness probe to pods. The Service
can forward requests to a pod only after the probe detects that the pod is ready.

Cloud Container Instance
Developer Guide

11 Managing Network Access Through Service and
Ingress

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0046655036.html
https://www.huaweicloud.com/intl/en-us/product/nat.html
https://support.huaweicloud.com/intl/en-us/usermanual-cci/cci_01_0065.html
https://support.huaweicloud.com/intl/en-us/usermanual-cci/cci_01_0065.html

The readiness probe periodically detects a pod and determines whether the pod is
ready based on the response. Similar to Liveness Probe, CCI also supports two
types of readiness probes.

● HTTP GET: The probe sends an HTTP GET request to the container by using
IP:port. If the probe receives a 2xx or 3xx status code, the container is ready.

NO TE

You need to configure the following annotation for the pod to make timeoutSeconds
take effect:
cci.io/httpget-probe-timeout-enable:"true"
For details, see the example in Advanced Configuration of Liveness Probe.

● Exec: The probe runs a command in the container and checks the exit status
code. If the exit status code is 0, the container is ready.

Working Principles of the Readiness Probe
If you run the kubectl describe command to query the Service, information
similar to the following is displayed:

$ kubectl describe svc nginx -n $namespace_name
Name: nginx
......
Endpoints: 192.168.113.81:80,192.168.165.64:80,192.168.198.10:80
......

Endpoints is displayed, which is also a resource object in Kubernetes.

$ kubectl get endpoints -n $namespace_name
NAME ENDPOINTS AGE
nginx 192.168.113.81:80,192.168.165.64:80,192.168.198.10:80 14m

192.168.113.81:80 is the IP:port of the pod. You can run the following command
to view the IP address of the pod, which is the same as the preceding IP address.

kubectl get pods -o wide -n $namespace_name
NAME READY STATUS RESTARTS AGE
IP
nginx-55c54cc5c7-49chn 1/1 Running 0 1m 192.168.198.10
nginx-55c54cc5c7-x87lb 1/1 Running 0 1m 192.168.165.64
nginx-55c54cc5c7-xp4c5 1/1 Running 0 1m 192.168.113.81

Endpoints can be used as a readiness probe. When the pod is not ready, IP:port is
deleted from the Endpoints and is added to the Endpoints after the pod is ready,
as shown in the following figure.

Cloud Container Instance
Developer Guide

11 Managing Network Access Through Service and
Ingress

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

Figure 11-7 Working principles of the readiness probe

Exec

The Exec mode is the same as the HTTP GET mode. As shown below, the probe
runs the ls /ready command. If the file exists, 0 is returned, indicating that the
pod is ready. Otherwise, another status code is returned.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - image: nginx:latest
 name: container-0
 resources:
 limits:
 cpu: 500m
 memory: 1024Mi
 requests:
 cpu: 500m
 memory: 1024Mi
 readinessProbe: # Readiness Probe
 exec: # Define the ls /ready command.
 command:
 - ls
 - /ready
 imagePullSecrets:
 - name: imagepull-secret

Cloud Container Instance
Developer Guide

11 Managing Network Access Through Service and
Ingress

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

Save the definition of the Deployment to deploy-read.yaml, delete the previously
created Deployment, and use deploy-read.yaml to recreate the Deployment.

kubectl delete deploy nginx -n $namespace_name
deployment.apps "nginx" deleted

kubectl create -f deploy-read.yaml -n $namespace_name
deployment.apps/nginx created

The nginx image does not contain the /ready file. Therefore, the container is not
in Ready state after the creation, as shown below. Note that the value in the
READY column is 0/1, indicating that the container is not ready.

kubectl get po -n $namespace_name
NAME READY STATUS RESTARTS AGE
nginx-7955fd7786-686hp 0/1 Running 0 7s
nginx-7955fd7786-9tgwq 0/1 Running 0 7s
nginx-7955fd7786-bqsbj 0/1 Running 0 7s

Check the Service again. If there are no values in the Endpoints line, no Endpoints
are found.

$ kubectl describe svc nginx -n $namespace_name
Name: nginx
......
Endpoints:
......

If a /ready file is created in the container to make the readiness probe succeed,
the container is in the Ready state. Check the pod and Endpoints. It is found that
the container for which the /ready file is created is ready and an Endpoints record
is added.

kubectl exec -n $namespace_name nginx-7955fd7786-686hp -- touch /ready

kubectl get po -o wide -n $namespace_name
NAME READY STATUS RESTARTS AGE IP
nginx-7955fd7786-686hp 1/1 Running 0 10m 192.168.93.169
nginx-7955fd7786-9tgwq 0/1 Running 0 10m 192.168.166.130
nginx-7955fd7786-bqsbj 0/1 Running 0 10m 192.168.252.160

kubectl get endpoints -n $namespace_name
NAME ENDPOINTS AGE
nginx 192.168.93.169:80 14d

HTTP GET
The configuration of a readiness probe is the same as that of a liveness probe,
which is also in the containers field of the pod description template. As shown
below, the readiness probe sends an HTTP request to the pod. If the probe receives
2xx or 3xx, the pod is ready.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:

Cloud Container Instance
Developer Guide

11 Managing Network Access Through Service and
Ingress

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

 containers:
 - image: nginx:latest
 name: container-0
 resources:
 limits:
 cpu: 500m
 memory: 1024Mi
 requests:
 cpu: 500m
 memory: 1024Mi
 readinessProbe: # readinessProbe
 httpGet: # HTTP GET definition
 path: /read
 port: 80
 imagePullSecrets:
 - name: imagepull-secret

Advanced Configuration of Readiness Probe
Similar to the liveness probe, the readiness probe also has the same advanced
configuration items. The output of the describe command of the nginx pod is as
follows:

Readiness: exec [ls /var/ready] delay=0s timeout=1s period=10s #success=1 #failure=3

This line indicates the parameter configuration of the readiness probe. The
meanings of the parameters are as follows:

● delay=0s indicates that the probe starts immediately after the container is
started.

● timeout=1s indicates that the container must respond to the probe within 1s.
Otherwise, the detection fails.

● period=10s indicates that the detection is performed every 10s.
● #success=1 indicates that the detection is successful after succeeding once.
● #failure=3 indicates that the container will be restarted after three

consecutive detection failures.

These are set by default when the probe is created. You can also manually
configure the parameters as follows:

 readinessProbe: # Readiness Probe
 exec: # Define the ls /readiness/ready command.
 command:
 - ls
 - /readiness/ready
 initialDelaySeconds: 10 # Readiness probes are initiated after the container has started for 10s.
 timeoutSeconds: 2 # The container must respond to the probe within 2s, or the detection fails.
 periodSeconds: 30 # The probe is performed every 30s.
 successThreshold: 1 # The container is considered ready as long as the probe succeeds once.
 failureThreshold: 3 # The probe is considered to be failed after three consecutive failures.

Cloud Container Instance
Developer Guide

11 Managing Network Access Through Service and
Ingress

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

12 Using PersistentVolumeClaim to
Apply for Persistent Storage

CCI supports the following persistent storage services in containers:

● Elastic Volume Service (EVS) is a block storage service that provides three
specifications: common I/O (previous-generation), high I/O (SAS), and ultra-
high I/O (SSD).

● SFS Turbo is expandable to 320 TB, and provides fully hosted shared file
storage. It features high availability and durability, and supports massive
quantities of small files and applications requiring low latency and high IOPS.
You can use SFS Turbo in high-traffic websites, log storage, compression/
decompression, DevOps, enterprise OA, and containerized applications.

● Object Storage Service (OBS) is an object-based storage service, and
provides massive, secure, highly reliable, and low-cost data storage.

EVS need to be mounted before being used. The following describes how to use
EVS.

PersistentVolumeClaim (PVC)
Kubernetes provides PVC to apply for persistent storage. The PVC allows you to
specify the type and capacity of storage without concerning about how to create
and release underlying storage resources.

In practice, you can associate a PVC with the volume in the pod and use the
persistent storage through the PVC, as shown in Figure 12-1.

Figure 12-1 Using persistent storage

Cloud Container Instance
Developer Guide

12 Using PersistentVolumeClaim to Apply for
Persistent Storage

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

https://www.huaweicloud.com/intl/en-us/product/evs.html
https://www.huaweicloud.com/intl/en-us/product/obs.html

Creating a PVC
● Creating a PVC to apply for a 100-GB SAS EVS disk

To create an encrypted EVS volume, add the paas.storage.io/cryptKeyId field
in metadata.annotations.
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-evs
 namespace: namespaces-test
 annotations: {
 paas.storage.io/cryptKeyId: ee9b610c-e356-11e9-aadc-d0efc1b3bb6b
 }
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 100Gi
 storageClassName: sas

accessModes indicates the volume access modes. The following three modes
are supported:
– ReadWriteOnce: A volume can be mounted to a single node for reading

and writing.
– ReadOnlyMany: A volume can be mounted to multiple nodes for

reading.
– ReadWriteMany: A volume can be mounted to multiple nodes for

reading and writing.
storageClassName indicates the applied storage class. Currently, the
following 3 storage classes are supported:
– sas: SAS (high I/O) EVS disk
– ssd: SSD (ultra-high I/O) EVS disk
– nfs-rw: SFS file storage of the standard file protocol

Using a PVC
After applying for storage resources using a PVC, you can use a volume in the pod
to associate the PVC and mount the volume to containers.

The following example shows how to use a PVC in a pod. A volume named pvc-
test-example is defined and mounted to the /tmp/volume0 directory of the
container. In this way, the data written to /tmp is written to the PVC named pvc-
test.

● Writing data to the applied SAS EVS disk
apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 app: nginx
spec:
 containers:
 - image: nginx:latest
 name: container-0
 resources:
 limits:
 cpu: 500m

Cloud Container Instance
Developer Guide

12 Using PersistentVolumeClaim to Apply for
Persistent Storage

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

 memory: 1024Mi
 requests:
 cpu: 500m
 memory: 1024Mi
 volumeMounts:
 - mountPath: "/tmp/volume0" # Mount the PVC to the /tmp/volume0 directory of the container.
 name: pvc-test-example # Volume name.
 volumes: # Define a volume, and associate it with the PVC.
 - name: pvc-test-example
 persistentVolumeClaim:
 claimName: pvc-test # PVC name.
 imagePullSecrets:
 - name: imagepull-secret

Cloud Container Instance
Developer Guide

12 Using PersistentVolumeClaim to Apply for
Persistent Storage

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

13 ConfigMap and Secret

13.1 ConfigMap
A ConfigMap is a resource object for storing configuration information required by
applications. It uses the key-value pair to save configuration data. It can be used
to save a single attribute or configuration file.

A ConfigMap can be used to decouple configuration and make different
configurations in different environments. Compared with the environment
variables, the ConfigMap referenced in the pod can be updated in real time. After
the ConfigMap data is updated, the ConfigMap referenced in the pod is updated
synchronously.

Creating a ConfigMap
In the following example, a ConfigMap named configmap-test is created. The
ConfigMap configuration data is defined in the data field.

apiVersion: v1
kind: ConfigMap
metadata:
 name: configmap-test
data: # Configuration data
 property_1: Hello
 property_2: World

Referencing a ConfigMap in Environment Variables
A ConfigMap is usually referenced in environment variables and volumes.

In the following example, the property_1 of configmap-test is used as the value
of the environment variable EXAMPLE_PROPERTY_1. In this case, the value of
EXAMPLE_PROPERTY_1 is the value of property_1 after the container is started,
that is, Hello.

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:

Cloud Container Instance
Developer Guide 13 ConfigMap and Secret

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

 - image: nginx:latest
 name: container-0
 resources:
 limits:
 cpu: 500m
 memory: 1024Mi
 requests:
 cpu: 500m
 memory: 1024Mi
 env:
 - name: EXAMPLE_PROPERTY_1
 valueFrom:
 configMapKeyRef: # Reference the ConfigMap.
 name: configmap-test
 key: property_1
 imagePullSecrets:
 - name: imagepull-secret

Referencing a ConfigMap in a Volume
Referencing a ConfigMap in a volume is to fill its data in configuration files in the
volume. Each piece of data is saved in a file. The key is the file name, and the key
value is the file content.

In the following example, create a volume named vol-configmap, reference the
ConfigMap named configmap-test in the volume, and mount the volume to
the /tmp directory of the container. After the pod is created, there are two files
property_1 and property_2 in the /tmp directory of the container, and the values
are Hello and World.

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - image: nginx:latest
 name: container-0
 resources:
 limits:
 cpu: 500m
 memory: 1024Mi
 requests:
 cpu: 500m
 memory: 1024Mi
 volumeMounts:
 - name: vol-configmap # Mount the volume named vol-configmap.
 mountPath: "/tmp1"
 imagePullSecrets:
 - name: imagepull-secret
 volumes:
 - name: vol-configmap
 configMap: # Reference the ConfigMap.
 name: configmap-test

13.2 Secret
A secret is a resource object for encrypted storage. You can save the
authentication information, certificates, and private keys in a secret, solving the
configuration problems of sensitive data such as passwords, tokens, and keys. In
this case, sensitive data will not be exposed to images or pod specification files.
You only need to load such data as environment variables to containers during
container startup.

Cloud Container Instance
Developer Guide 13 ConfigMap and Secret

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

Similar to a ConfigMap, a secret saves data using key-value pairs. The difference is
that a secret is encrypted and suitable for storing sensitive information.

Base64 Encoding
Similar to a ConfigMap, a secret saves data using key-value pairs. The difference is
that secret values must be encoded using the Base64 method.

To encrypt a character string using Base64, run the echo -n to-be-encoded
content | base64 command. The following is an example:
root@ubuntu:~# echo -n "3306" | base64
MzMwNg==

Creating a Secret
The secret defined in the following example contains two key-value pairs.
apiVersion: v1
kind: Secret
metadata:
 name: mysecret
type: Opaque
data:
 key1:
VkZNME0wVlpVbEpQVHpGTFdrSkRWVWhCV2s5T1ZrNUxUVlZNUjBzMFRWcElVMFpVUkVWV1N3PT0= #
Base64 encoded value
 key2: T0VkR1RGRlZVRlpVU2xCWFdUZFBVRUZCUmtzPQ== # Base64 encoded
value

Referencing a Secret in Environment Variables
In most cases, a secret is injected into a container as an environment variable, as
shown in the following example.
apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - image: nginx:latest
 name: container-0
 resources:
 limits:
 cpu: 500m
 memory: 1024Mi
 requests:
 cpu: 500m
 memory: 1024Mi
 env:
 - name: key
 valueFrom:
 secretKeyRef:
 name: mysecret
 key: key1
 imagePullSecrets:
 - name: imagepull-secret

Referencing a Secret in a Volume
Referencing a secret in a volume is to fill its data in configuration files in the
volume. Each piece of data is saved in a file. The key is the file name, and the key
value is the file content.

Cloud Container Instance
Developer Guide 13 ConfigMap and Secret

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

In the following example, create a volume named vol-secret, reference the secret
named mysecret in the volume, and mount the volume to the /tmp directory of
the container. After the pod is created, there are two files key1 and key2 in
the /tmp directory of the container, and the values are
VkZNME0wVlpVbEpQVHpGTFdrSkRWVWhCV2s5T1ZrNUxUVlZNUjBzMFRWcEl
VMFpVUkVWV1N3PT0= and
T0VkR1RGRlZVRlpVU2xCWFdUZFBVRUZCUmtzPQ==.

NO TE

The values of key1 and key2 are the values encoded using Base64.
apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - image: nginx:latest
 name: container-0
 resources:
 limits:
 cpu: 500m
 memory: 1024Mi
 requests:
 cpu: 500m
 memory: 1024Mi
 volumeMounts:
 - name: vol-secret # Mount the volume named vol-secret
 mountPath: "/tmp" # Mount path. The value contains a maximum of 256 characters.
 imagePullSecrets:
 - name: imagepull-secret
 volumes:
 - name: vol-secret
 secret: # Reference a secret
 secretName: mysecret

Cloud Container Instance
Developer Guide 13 ConfigMap and Secret

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

14 Creating a Workload Using Job and
Cron Job

A job workload is responsible for batch processing of short lived one-off tasks,
that is, tasks that are executed only once. It ensures that one or more pods are
successfully completed.

● A job is a resource object that Kubernetes uses to control batch tasks. A job is
different from a long-term servo workload (such as Deployment and
StatefulSet). The former is completed when a specified number of successful
completions is reached, while the latter runs unceasingly if not terminated.
The pods managed by the job will be automatically removed after successfully
completing the job based on user configurations.

● A cron job runs a job periodically on a specified schedule. A cron job object is
similar to a line of a crontab file in Linux.

This run-and-stop feature of the task workload is especially suitable for one-off
tasks, such as CI. It works with the per-second billing of the CCI to implement pay-
per-use in real sense.

Constraints
EVS volumes created using flexVolume can only be deleted when the pods are in
the Terminated state. When the pod status is Completed, the EVS volumes
created using this field will not be deleted.

Creating a Job
The following is an example job, which calculates π till the 2000th digit and prints
the output. 50 pods need to be run before the job is ended. In this example, print
π calculation results for 50 times, and run five pods concurrently. If a pod fails to
be run, a maximum of five retries are supported.
apiVersion: batch/v1
kind: Job
metadata:
 name: pi-with-timeout
 namespace: cci-namespace-test1
spec:
 completions: 50 # Number of pods that need to run successfully to end the job
 parallelism: 5 # Number of pods that run concurrently. The default value is 1.
 backoffLimit: 5 # Maximum number of retries performed if a pod fails. When the limit is reached,

Cloud Container Instance
Developer Guide 14 Creating a Workload Using Job and Cron Job

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

https://support.huaweicloud.com/intl/en-us/api-cci/createAppsV1NamespacedDeployment.html#createAppsV1NamespacedDeployment__request_io.k8s.api.core.v1.FlexVolumeSource

it will not try again.
 activeDeadlineSeconds: 10 # Timeout duration of pods. Once the time is reached, all pods of the job are
terminated.
 template: # Pod definition
 spec:
 containers:
 - name: pi
 image: perl
 command:
 - perl
 - "-Mbignum=bpi"
 - "-wle"
 - print bpi(2000)
 restartPolicy: Never

Based on the completions and Parallelism settings, jobs can be classified as
follows:

Table 14-1 Job types

Job Type Description Example

One-off job One pod runs until it is
successfully ends.

Database migration

Jobs with a
fixed
completion
count

One pod runs until the
specified completion count is
reached.

Pod for processing work
queues

Parallel jobs
with a fixed
completion
count

Multiple pods run until the
specified completion count is
reached.

Multiple pods for processing
work queues concurrently

Parallel jobs One or more pods run until
one pod is successfully ended.

Multiple pods for processing
work queues concurrently

Creating a Cron Job

Compared with a job, a cron job is a scheduled job. A cron job runs a job
periodically on a specified schedule, and the job creates a pod.

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: cronjob-example
 namespace: cci-namespace-test1
spec:
 schedule: "0,15,30,45 * * * *" # Scheduling configuration
 jobTemplate: # Job definition
 spec:
 template:
 spec:
 restartPolicy: OnFailure
 containers:
 - name: main
 image: pi

The format of the cron is as follows:

Cloud Container Instance
Developer Guide 14 Creating a Workload Using Job and Cron Job

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

● Minute
● Hour
● Day of month
● Month
● Day of week

For example, in 0,15,30,45 * * * *, commas separate minutes, the first asterisk (*)
indicates the hour, the second asterisk indicates the day of the month, the third
asterisk indicates the month, and the fourth asterisk indicates the day of the week.

If you want to run the job every half an hour on the first day of each month, set
this parameter to 0,30 * 1 * *. If you want to run the job at 3:00 a.m. every Sunday,
set this parameter to 0 3 * * 0.

For details about the cron format, see https://en.wikipedia.org/wiki/Cron.

Cloud Container Instance
Developer Guide 14 Creating a Workload Using Job and Cron Job

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

https://en.wikipedia.org/wiki/Cron

A YAML Syntax

YAML is a simple and powerful language. It is designed to make the language
easy to read.

Basic Syntax Rules
● Characters are case-sensitive.
● Indentation is used for denoting structure.
● Only spaces can be used for indentation, but tab characters are not allowed.
● The specific number of spaces in the indentation is unimportant as long as

parallel elements have the same left justification.
● Comments begin with the number sign (#).

Data Types Supported by YAML
● Object: A set of key-value pairs, which is also known as maps, hashes, or

dictionaries.
● Array: A group of values arranged in sequence, which is also known as

sequence or list.
● Scalar: A single and irreducible value, which is the minimum data unit.

Object
An object is a group of key-value pairs. For key: value, the colon (:) must be
followed by a space or newline character. The valid expression is as follows:

animal: pets
plant:
 tree

You can also write multiple key-value pairs into an inline object.

hash: {name: Steve, foo: bar}

However, an error occurs in the following scenario:

foo: somebody said I should put a colon here: so I did
windows_drive: c:

To resolve the issue, you can enclose values in single quotation marks (' ') as
follows:

Cloud Container Instance
Developer Guide A YAML Syntax

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

foo: 'somebody said I should put a colon here: so I did'
windows_drive: 'c:'

Array
An array is represented by a hyphen (-) and space. The valid expression is as
follows:

animal:
- Cat
- Dog
- Goldfish

You can also use the inline representation.

animal: [Cat, Dog, Goldfish]

Objects and arrays can be used in combination to form a composite structure.

languages:
 - Ruby
 - Perl
 - Python
websites:
 YAML: yaml.org
 Ruby: ruby-lang.org
 Python: python.org
 Perl: use.perl.org

Scalar
Scalars include strings, Boolean values, integers, floats, null, time, and dates.

● String:
By default, a string is not enclosed in quotation marks.
str:This_is_a_line

If a string contains spaces or special characters, the string needs to be
enclosed in quotation marks.
str: 'content: a string'

Both single and double quotation marks can be used. The difference between
them is that the former can identify escape characters while the latter cannot
convert special characters.
s1: 'content:\n a string'
s2: "content:\n a string"

If there is a single quotation mark between two single quotation marks,
ensure that two consecutive single quotation marks are used to achieve
conversion.
str: 'labor''s day'

Strings can be written into multiple lines. The lines except the first line must
be indented with one space. The newline character will be converted to a
space.
str: This_is
 a_multi_line

● Integer:
int_value: 314

● Float:
float_value: 3.14

Cloud Container Instance
Developer Guide A YAML Syntax

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

● Null:
parent: ~

● Time
The time is in the ISO8601 format.
iso8601: 2018-12-14t21:59:43.10-05:00

● Date:
The date is in the compound ISO8601 format: year-month-day.
date: 1976-07-31

Special Symbols
● Three hyphens (---) indicate the start of a YAML file. Three periods (...)

indicate the end of a YAML file.

A list of delicious fruits
- Apple
- Orange
- Strawberry
- Mango
...

● You can use two exclamation marks (!!) to forcibly convert an integer, a float,
or a Boolean value.

strbool: !!str true
strint: !!str 10

● For a string occupying multiple lines, you can use a literal block scalar (|) to
preserve newlines or folded block scalar (>) to fold newlines. The two symbols
are often used in the character strings in YAML files.

this: |
 Foo
 Bar
that: >
 Foo
 Bar

The corresponding objects are as follows:

{ this: 'Foo\nBar\n', that: 'Foo Bar\n' }

It is recommended that you use "|" to meet the requirements of most scenarios.

Comment

YAML supports comments. This is an advantage of YAML compared with JSON.

Comments in YAML files begin with the number sign (#), as shown in the
following:

languages:
 - Ruby # Ruby programming language
 - Go # Go programming language
 - Python # Python programming language

Reference Documents
● YAML 1.2 Specification
● Ansible YAML Syntax

Cloud Container Instance
Developer Guide A YAML Syntax

Issue 01 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

https://yaml.org/spec/1.2/spec.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html

	Contents
	1 Overview
	2 Using Native kubectl (Recommended)
	2.1 kubectl Configuration Guide
	2.2 cci-iam-authenticator Usage Reference

	3 Namespace and Network
	4 Pod
	4.1 Pod
	4.2 Environment Variables
	4.3 Startup Command
	4.4 Initializing a Container
	4.5 Calculating the Effective Resource Request or Limit of a Pod
	4.6 Lifecycle Management
	4.7 Liveness Probe

	5 Label
	6 Deployment
	7 EIPPool
	7.1 Overview
	7.2 Creating an EIPPool
	7.2.1 Creating a Dynamic EIPPool
	7.2.2 Creating a Static EIPPool

	7.3 Using an EIPPool
	7.4 Managing an EIPPool

	8 EIP
	8.1 Overview
	8.2 Binding a New EIP to a Pod
	8.3 Binding an Existing EIP to a Pod

	9 Pod Resource Monitoring Metric
	10 Collecting Pod Logs
	11 Managing Network Access Through Service and Ingress
	11.1 Service
	11.2 Ingress
	11.3 Network Access Scenarios
	11.4 Readiness Probe

	12 Using PersistentVolumeClaim to Apply for Persistent Storage
	13 ConfigMap and Secret
	13.1 ConfigMap
	13.2 Secret

	14 Creating a Workload Using Job and Cron Job
	A YAML Syntax

