
Data Warehouse Service
9.1.0.210

Developer Guide

Issue 01

Date 2024-12-18

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 Before You Start... 1

2 GaussDB(DWS) Development Design Proposal... 5
2.1 Overview.. 5
2.2 GaussDB(DWS) Connection Management Specifications...9
2.3 GaussDB(DWS) Object Design Specifications...10
2.3.1 DATABASE Object Design... 11
2.3.2 USER Object Design..12
2.3.3 Schema Object Design...12
2.3.4 TABLESPACE Object Design..13
2.3.5 TABLE Object Design (Prioritized)... 13
2.3.6 INDEX Object Design (Prioritized)...17
2.3.7 VIEW Object Design..18
2.4 GaussDB(DWS) SQL Statement Development Specifications... 18
2.4.1 DDL Operations..19
2.4.2 INSERT Operation .. 19
2.4.3 UPDATE and DELETE Operations...20
2.4.4 SELECT Operation..21
2.5 GaussDB(DWS) Stored Procedure Development Specifications... 24
2.6 Detailed Design Rules for GaussDB(DWS) Objects.. 26
2.6.1 GaussDB(DWS) Database Object Naming Rules... 26
2.6.2 GaussDB(DWS) Database Object Design Rules..26
2.6.2.1 GaussDB(DWS) Database and Schema Design Rules... 26
2.6.2.2 GaussDB(DWS) Table Design Rules...27
2.6.2.3 GaussDB(DWS) Column Design Rules..30
2.6.2.4 GaussDB(DWS) Constraint Design Rules... 32
2.6.2.5 Design Rules for GaussDB(DWS) Views and Associated Tables.. 33
2.6.3 GaussDB(DWS) JDBC Configuration Rules... 33
2.6.4 GaussDB(DWS) SQL Writing Rules... 34
2.6.5 Rules for Using Custom GaussDB(DWS) External Functions (pgSQL/Java)... 37
2.6.6 Rules for Using GaussDB(DWS) PL/pgSQL...38

3 Creating and Managing GaussDB(DWS) Database Objects....................................... 42
3.1 Creating and Managing GaussDB(DWS) Databases.. 42

Data Warehouse Service
Developer Guide Contents

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

3.2 Creating and Managing GaussDB(DWS) Schemas... 43
3.3 Creating and Managing GaussDB(DWS) Tables.. 46
3.4 Selecting a GaussDB(DWS) Table Storage Model...52
3.5 Creating and Managing GaussDB(DWS) Partitioned Tables... 56
3.6 Creating and Managing GaussDB(DWS) Indexes..59
3.7 Creating and Using GaussDB(DWS) Sequences...62
3.8 Creating and Managing GaussDB(DWS) Views... 64
3.9 Creating and Managing GaussDB(DWS) Scheduled Tasks.. 65
3.10 Viewing GaussDB(DWS) System Catalogs...68

4 Syntax Compatibility Differences Among Oracle, Teradata, and MySQL................71

5 GaussDB(DWS) Database Security Management... 78
5.1 GaussDB(DWS) User and Permissions Management...78
5.1.1 GaussDB(DWS) Database User Types.. 78
5.1.2 GaussDB(DWS) Database User Management.. 80
5.1.3 Creating a Custom Password Policy for GaussDB(DWS)... 81
5.1.4 GaussDB(DWS) Database Permissions Management.. 89
5.1.5 Separation of Duties in GaussDB(DWS)..93
5.2 GaussDB(DWS) Sensitive Data Management...95
5.2.1 GaussDB(DWS) Row-Level Access Control... 95
5.2.2 GaussDB(DWS) Data Masking..96
5.2.3 Encrypting and Decrypting GaussDB(DWS) Strings... 100
5.2.4 Using pgcrypto to Encrypt GaussDB(DWS) Data.. 103

6 GaussDB(DWS) Data Query... 114
6.1 GaussDB(DWS) Single-Table Query...114
6.2 GaussDB(DWS) Multi-Table Join Query... 115
6.3 GaussDB(DWS) Subquery Expressions.. 121
6.4 GaussDB(DWS) WITH Expressions... 124
6.5 Usage of GaussDB(DWS) UNION...129
6.6 Data Reading/Writing Across Logical Clusters... 132
6.7 SQL on Hudi... 134
6.7.1 Introduction to Hudi.. 134
6.7.2 Preparations Before Using Hudi...135
6.7.3 Hudi User Interfaces.. 135
6.7.4 Creating a Hudi Data Description (Foreign Table)..137
6.7.5 Synchronizing Hudi Tasks... 139
6.7.6 Querying a Hudi Foreign Table.. 141
6.7.7 Accessing Hudi Tables on MRS...142

7 GaussDB(DWS) Sorting Rules.. 144

8 GaussDB(DWS) User-Defined Functions... 148
8.1 GaussDB(DWS) PL/Java Functions... 148

Data Warehouse Service
Developer Guide Contents

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

8.2 GaussDB(DWS) PL/pgSQL Functions...159

9 GaussDB(DWS) Stored Procedure... 161
9.1 Overview..161
9.2 Converting Data Types in GaussDB(DWS) Stored Procedures..161
9.3 GaussDB(DWS) Stored Procedure Array and Record... 163
9.3.1 Arrays.. 163
9.3.2 record.. 169
9.4 GaussDB(DWS) Stored Procedure Declaration Syntax.. 171
9.5 Basic Statements of GaussDB(DWS) Stored Procedures.. 173
9.6 Dynamic Statements of GaussDB(DWS) Stored Procedures...177
9.6.1 Executing Dynamic Query Statements.. 177
9.6.2 Executing Dynamic Non-query Statements...179
9.6.3 Dynamically Calling Stored Procedures...180
9.6.4 Dynamically Calling Anonymous Blocks... 182
9.7 GaussDB(DWS) Stored Procedure Control Statements... 183
9.7.1 RETURN Statements.. 184
9.7.2 Conditional Statements.. 186
9.7.3 Loop Statements... 188
9.7.4 Branch Statements... 191
9.7.5 NULL Statements.. 192
9.7.6 Error Trapping Statements... 192
9.7.7 GOTO Statements... 194
9.8 Other Statements in a GaussDB(DWS) Stored Procedure... 196
9.9 GaussDB(DWS) Stored Procedure Cursor.. 197
9.9.1 Overview.. 197
9.9.2 Explicit Cursor...197
9.9.3 Implicit Cursor.. 201
9.9.4 Cursor Loop... 202
9.10 GaussDB(DWS) Stored Procedure Advanced Package.. 204
9.10.1 DBMS_LOB.. 204
9.10.2 DBMS_RANDOM... 213
9.10.3 DBMS_OUTPUT... 214
9.10.4 UTL_RAW... 215
9.10.5 DBMS_JOB... 217
9.10.6 DBMS_SQL.. 227
9.11 GaussDB(DWS) Stored Procedure Debugging... 238

10 Using PostGIS Extension..241
10.1 PostGIS... 241
10.2 Using PostGIS.. 242
10.3 PostGIS Support and Constraints..243
10.4 OPEN SOURCE SOFTWARE NOTICE (For PostGIS).. 255

Data Warehouse Service
Developer Guide Contents

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iv

11 Using JDBC or ODBC for GaussDB(DWS) Secondary Development......................303
11.1 Prerequisites... 303
11.2 JDBC-Based Development... 303
11.2.1 JDBC Development Process... 303
11.2.2 JDBC Package and Driver Class... 305
11.2.3 Loading a Driver... 305
11.2.4 Connecting to a Database... 305
11.2.5 Executing SQL Statements.. 309
11.2.6 Processing Data in a Result Set... 312
11.2.7 Common JDBC Development Examples... 315
11.2.8 Processing RoaringBitmap Result Sets and Importing It to GaussDB (DWS)... 325
11.2.9 JDBC Interfaces.. 328
11.3 ODBC-Based Development... 341
11.3.1 ODBC Package and Its Dependent Libraries and Header Files...343
11.3.2 Configuring a Data Source in the Linux OS.. 343
11.3.3 Configuring a Data Source in the Windows OS...351
11.3.4 ODBC Development Example...356
11.3.5 ODBC Interfaces.. 361

12 GaussDB(DWS) Resource Monitoring.. 381
12.1 User Resource Monitoring.. 381
12.2 Resource Pool Monitoring...383
12.3 Monitoring Memory Resources... 386
12.4 Instance Resource Monitoring... 387
12.5 Real-time Top SQL... 389
12.6 Historical Top SQL... 393
12.7 Example for Querying for Top SQLs.. 398

13 GaussDB(DWS) Performance Tuning... 402
13.1 Overview... 402
13.2 Performance Diagnosis.. 404
13.2.1 Cluster Performance Analysis... 404
13.2.2 Slow SQL Analysis.. 404
13.2.2.1 Querying SQL Statements That Affect Performance Most...405
13.2.2.2 Checking Blocked Statements...406
13.2.3 SQL Diagnosis.. 407
13.2.4 Table Diagnosis... 408
13.3 System Optimization.. 409
13.3.1 Tuning Database Parameters... 409
13.3.2 SMP Parallel Execution... 416
13.3.3 Configuring LLVM... 420
13.4 SQL Tuning... 423
13.4.1 SQL Query Execution Process... 423
13.4.2 SQL Execution Plan.. 425

Data Warehouse Service
Developer Guide Contents

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. v

13.4.3 Execution Plan Operator.. 437
13.4.4 SQL Tuning Process.. 442
13.4.5 Updating Statistics... 443
13.4.6 Reviewing and Modifying a Table Definition..452
13.4.7 Advanced SQL Tuning... 453
13.4.7.1 SQL Self-Diagnosis... 453
13.4.7.2 Optimizing Statement Pushdown..457
13.4.7.3 Optimizing Subqueries.. 464
13.4.7.4 Optimizing Statistics.. 472
13.4.7.5 Optimizing Operators.. 477
13.4.7.6 Optimizing Data Skew...479
13.4.7.7 Proactive Preheating and Tuning of Disk Cache.. 485
13.4.7.8 SQL Statement Rewriting Rules... 486
13.4.8 Configuring Optimizer Parameters...487
13.4.9 Hint-based Tuning.. 489
13.4.9.1 Plan Hint Optimization... 489
13.4.9.2 Join Order Hints... 491
13.4.9.3 Join Operation Hints.. 495
13.4.9.4 Rows Hints... 496
13.4.9.5 Stream Operation Hints.. 497
13.4.9.6 Scan Operation Hints...500
13.4.9.7 Sublink Name Hints... 501
13.4.9.8 Skew Hints... 502
13.4.9.9 Hint That Disables Subquery Pull-up... 507
13.4.9.10 Dictionary Code Hint... 508
13.4.9.11 Configuration Parameter Hints.. 510
13.4.9.12 Hint Errors, Conflicts, and Other Warnings... 513
13.4.9.13 Plan Hint Cases..515
13.4.10 Routinely Maintaining Tables.. 520
13.4.11 Routinely Recreating an Index... 522
13.4.12 Automatic Retry upon SQL Statement Execution Errors.. 523
13.4.13 Query Band Load Identification.. 526
13.5 SQL Tuning Examples... 531
13.5.1 Case: Selecting an Appropriate Distribution Column...531
13.5.2 Case: Creating an Appropriate Index... 532
13.5.3 Case: Adding NOT NULL for JOIN Columns.. 533
13.5.4 Case: Pushing Down Sort Operations to DNs...535
13.5.5 Case: Configuring cost_param for Better Query Performance..536
13.5.6 Case: Adjusting the Partial Clustering Key...540
13.5.7 Case: Adjusting the Table Storage Mode in a Medium Table... 542
13.5.8 Case: Reconstructing Partition Tables..543
13.5.9 Case: Adjusting the GUC Parameter best_agg_plan...544

Data Warehouse Service
Developer Guide Contents

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. vi

13.5.10 Case: Rewriting SQL Statements and Eliminating Prune Interference.. 546
13.5.11 Case: Rewriting SQL Statements and Deleting in-clause...548
13.5.12 Case: Setting Partial Cluster Keys... 549
13.5.13 Case: Converting from NOT IN to NOT EXISTS... 552

14 GaussDB(DWS) System Catalogs and Views..554
14.1 Overview of System Catalogs and System Views... 554
14.2 System Catalogs... 555
14.2.1 GS_BLOCKLIST_QUERY... 555
14.2.2 GS_BLOCKLIST_SQL... 556
14.2.3 GS_OBSSCANINFO... 557
14.2.4 GS_RESPOOL_RESOURCE_HISTORY... 557
14.2.5 GS_WLM_INSTANCE_HISTORY...561
14.2.6 GS_WLM_OPERATOR_INFO.. 562
14.2.7 GS_WLM_SESSION_INFO... 564
14.2.8 GS_WLM_USER_RESOURCE_HISTORY...564
14.2.9 PG_AGGREGATE.. 566
14.2.10 PG_AM... 567
14.2.11 PG_AMOP..569
14.2.12 PG_AMPROC.. 570
14.2.13 PG_ATTRDEF.. 571
14.2.14 PG_ATTRIBUTE.. 571
14.2.15 PG_AUTHID.. 574
14.2.16 PG_AUTH_HISTORY... 575
14.2.17 PG_AUTH_MEMBERS.. 576
14.2.18 PG_BLOCKLISTS.. 576
14.2.19 PG_CAST.. 578
14.2.20 PG_CLASS.. 578
14.2.21 PG_COLLATION...583
14.2.22 PG_CONSTRAINT..584
14.2.23 PG_CONVERSION... 586
14.2.24 PG_DATABASE... 587
14.2.25 PG_DB_ROLE_SETTING...588
14.2.26 PG_DEFAULT_ACL... 589
14.2.27 PG_DEPEND... 589
14.2.28 PG_DESCRIPTION... 591
14.2.29 PG_ENUM... 592
14.2.30 PG_EXCEPT_RULE... 592
14.2.31 PG_EXTENSION... 593
14.2.32 PG_EXTENSION_DATA_SOURCE..594
14.2.33 PG_FINE_DR_INFO... 594
14.2.34 PG_FOREIGN_DATA_WRAPPER... 595
14.2.35 PG_FOREIGN_SERVER... 596

Data Warehouse Service
Developer Guide Contents

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. vii

14.2.36 PG_FOREIGN_TABLE.. 596
14.2.37 PG_INDEX.. 597
14.2.38 PG_INHERITS... 599
14.2.39 PG_JOB_INFO...600
14.2.40 PG_JOBS.. 600
14.2.41 PG_LANGUAGE... 601
14.2.42 PG_LARGEOBJECT.. 602
14.2.43 PG_LARGEOBJECT_METADATA.. 603
14.2.44 PG_MATVIEW.. 603
14.2.45 PG_NAMESPACE... 604
14.2.46 PG_OBJECT... 605
14.2.47 PG_OBSSCANINFO...606
14.2.48 PG_OPCLASS.. 607
14.2.49 PG_OPERATOR.. 607
14.2.50 PG_OPFAMILY.. 608
14.2.51 PG_PARTITION.. 609
14.2.52 PG_PLTEMPLATE... 612
14.2.53 PG_PROC... 612
14.2.54 PG_PUBLICATION...615
14.2.55 PG_PUBLICATION_NAMESPACE..616
14.2.56 PG_PUBLICATION_REL... 617
14.2.57 PG_RANGE.. 618
14.2.58 PG_REDACTION_COLUMN..618
14.2.59 PG_REDACTION_POLICY.. 620
14.2.60 PG_RELFILENODE_SIZE.. 621
14.2.61 PG_RLSPOLICY... 621
14.2.62 PG_RESOURCE_POOL... 622
14.2.63 PG_REWRITE.. 623
14.2.64 PG_SECLABEL... 624
14.2.65 PG_SHDEPEND.. 625
14.2.66 PG_SHDESCRIPTION... 626
14.2.67 PG_SHSECLABEL... 626
14.2.68 PG_STATISTIC...627
14.2.69 PG_STATISTIC_EXT... 628
14.2.70 PG_STAT_OBJECT..630
14.2.71 PG_SUBSCRIPTION.. 634
14.2.72 PG_SYNONYM... 635
14.2.73 PG_TABLESPACE..635
14.2.74 PG_TRIGGER... 636
14.2.75 PG_TS_CONFIG..636
14.2.76 PG_TS_CONFIG_MAP.. 637
14.2.77 PG_TS_DICT.. 637

Data Warehouse Service
Developer Guide Contents

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. viii

14.2.78 PG_TS_PARSER.. 638
14.2.79 PG_TS_TEMPLATE.. 639
14.2.80 PG_TYPE...639
14.2.81 PG_USER_MAPPING.. 643
14.2.82 PG_USER_STATUS...644
14.2.83 PG_WORKLOAD_ACTION.. 644
14.2.84 PGXC_CLASS... 645
14.2.85 PGXC_GROUP.. 645
14.2.86 PGXC_NODE... 647
14.2.87 PLAN_TABLE_DATA.. 649
14.2.88 SNAPSHOT..650
14.2.89 TABLES_SNAP_TIMESTAMP...650
14.2.90 System Catalogs for Performance View Snapshot..651
14.3 System Views... 652
14.3.1 ALL_ALL_TABLES... 652
14.3.2 ALL_CONSTRAINTS.. 652
14.3.3 ALL_CONS_COLUMNS.. 653
14.3.4 ALL_COL_COMMENTS.. 653
14.3.5 ALL_DEPENDENCIES.. 653
14.3.6 ALL_IND_COLUMNS.. 654
14.3.7 ALL_IND_EXPRESSIONS.. 655
14.3.8 ALL_INDEXES.. 655
14.3.9 ALL_OBJECTS.. 656
14.3.10 ALL_PROCEDURES... 656
14.3.11 ALL_SEQUENCES.. 656
14.3.12 ALL_SOURCE.. 657
14.3.13 ALL_SYNONYMS... 657
14.3.14 ALL_TAB_COLUMNS.. 658
14.3.15 ALL_TAB_COMMENTS.. 659
14.3.16 ALL_TABLES.. 659
14.3.17 ALL_USERS.. 660
14.3.18 ALL_VIEWS.. 660
14.3.19 DBA_DATA_FILES.. 660
14.3.20 DBA_USERS.. 661
14.3.21 DBA_COL_COMMENTS.. 661
14.3.22 DBA_CONSTRAINTS.. 661
14.3.23 DBA_CONS_COLUMNS...662
14.3.24 DBA_IND_COLUMNS...662
14.3.25 DBA_IND_EXPRESSIONS.. 663
14.3.26 DBA_IND_PARTITIONS... 663
14.3.27 DBA_INDEXES.. 664
14.3.28 DBA_OBJECTS.. 665

Data Warehouse Service
Developer Guide Contents

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ix

14.3.29 DBA_PART_INDEXES.. 665
14.3.30 DBA_PART_TABLES...666
14.3.31 DBA_PROCEDURES.. 667
14.3.32 DBA_SEQUENCES... 667
14.3.33 DBA_SOURCE...667
14.3.34 DBA_SYNONYMS..668
14.3.35 DBA_TAB_COLUMNS...668
14.3.36 DBA_TAB_COMMENTS... 669
14.3.37 DBA_TAB_PARTITIONS..669
14.3.38 DBA_TABLES... 671
14.3.39 DBA_TABLESPACES.. 671
14.3.40 DBA_TRIGGERS... 671
14.3.41 DBA_VIEWS.. 672
14.3.42 DUAL.. 672
14.3.43 GET_ALL_TSC_INFO... 672
14.3.44 GET_TSC_INFO.. 673
14.3.45 GLOBAL_COLUMN_TABLE_IO_STAT.. 673
14.3.46 GLOBAL_REDO_STAT.. 674
14.3.47 GLOBAL_REL_IOSTAT.. 675
14.3.48 GLOBAL_ROW_TABLE_IO_STAT... 675
14.3.49 GLOBAL_STAT_DATABASE... 676
14.3.50 GLOBAL_TABLE_CHANGE_STAT.. 678
14.3.51 GLOBAL_TABLE_STAT..679
14.3.52 GLOBAL_WORKLOAD_SQL_COUNT.. 680
14.3.53 GLOBAL_WORKLOAD_SQL_ELAPSE_TIME...681
14.3.54 GLOBAL_WORKLOAD_TRANSACTION.. 682
14.3.55 GS_ALL_CONTROL_GROUP_INFO.. 683
14.3.56 GS_BLOCKLIST_QUERY... 683
14.3.57 GS_BLOCKLIST_SQL... 684
14.3.58 GS_CLUSTER_RESOURCE_INFO... 684
14.3.59 GS_COLUMN_TABLE_IO_STAT... 685
14.3.60 GS_OBS_READ_TRAFFIC...685
14.3.61 GS_OBS_WRITE_TRAFFIC... 686
14.3.62 GS_INSTR_UNIQUE_SQL.. 687
14.3.63 GS_NODE_STAT_RESET_TIME.. 691
14.3.64 GS_OBS_LATENCY.. 692
14.3.65 GS_QUERY_MONITOR.. 692
14.3.66 GS_QUERY_RESOURCE_INFO...694
14.3.67 GS_REL_IOSTAT... 695
14.3.68 GS_RESPOOL_RUNTIME_INFO.. 696
14.3.69 GS_RESPOOL_RESOURCE_INFO.. 696
14.3.70 GS_RESPOOL_MONITOR... 700

Data Warehouse Service
Developer Guide Contents

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. x

14.3.71 GS_ROW_TABLE_IO_STAT..702
14.3.72 GS_SESSION_CPU_STATISTICS... 702
14.3.73 GS_SESSION_MEMORY_STATISTICS.. 703
14.3.74 GS_SQL_COUNT... 704
14.3.75 GS_STAT_DB_CU... 705
14.3.76 GS_STAT_SESSION_CU..706
14.3.77 GS_TABLE_CHANGE_STAT... 706
14.3.78 GS_TABLE_STAT...707
14.3.79 GS_TOTAL_NODEGROUP_MEMORY_DETAIL.. 708
14.3.80 GS_USER_MONITOR..709
14.3.81 GS_USER_TRANSACTION.. 711
14.3.82 GS_VIEW_DEPENDENCY.. 711
14.3.83 GS_VIEW_DEPENDENCY_PATH... 712
14.3.84 GS_VIEW_INVALID... 712
14.3.85 GS_WAIT_EVENTS.. 713
14.3.86 GS_WLM_OPERAROR_INFO... 714
14.3.87 GS_WLM_OPERATOR_HISTORY.. 716
14.3.88 GS_WLM_OPERATOR_STATISTICS.. 718
14.3.89 GS_WLM_SESSION_INFO...721
14.3.90 GS_WLM_SESSION_HISTORY... 728
14.3.91 GS_WLM_SESSION_STATISTICS... 736
14.3.92 GS_WLM_SQL_ALLOW... 741
14.3.93 GS_WORKLOAD_SQL_COUNT... 741
14.3.94 GS_WORKLOAD_SQL_ELAPSE_TIME..742
14.3.95 GS_WORKLOAD_TRANSACTION...743
14.3.96 MPP_TABLES.. 744
14.3.97 PG_AVAILABLE_EXTENSION_VERSIONS... 744
14.3.98 PG_AVAILABLE_EXTENSIONS... 745
14.3.99 PG_BULKLOAD_STATISTICS.. 745
14.3.100 PG_COMM_CLIENT_INFO... 746
14.3.101 PG_COMM_DELAY... 747
14.3.102 PG_COMM_STATUS...747
14.3.103 PG_COMM_RECV_STREAM... 748
14.3.104 PG_COMM_SEND_STREAM.. 749
14.3.105 PG_COMM_QUERY_SPEED... 751
14.3.106 PG_CONTROL_GROUP_CONFIG... 751
14.3.107 PG_CURSORS...751
14.3.108 PG_EXT_STATS.. 752
14.3.109 PG_GET_INVALID_BACKENDS... 754
14.3.110 PG_GET_SENDERS_CATCHUP_TIME.. 755
14.3.111 PG_GROUP... 755
14.3.112 PG_INDEXES...756

Data Warehouse Service
Developer Guide Contents

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. xi

14.3.113 PG_JOB.. 757
14.3.114 PG_JOB_PROC... 759
14.3.115 PG_JOB_SINGLE.. 759
14.3.116 PG_LIFECYCLE_DATA_DISTRIBUTE... 761
14.3.117 PG_LOCKS... 761
14.3.118 PG_LWLOCKS...763
14.3.119 PG_NODE_ENV... 764
14.3.120 PG_OS_THREADS... 764
14.3.121 PG_POOLER_STATUS.. 765
14.3.122 PG_PREPARED_STATEMENTS...766
14.3.123 PG_PREPARED_XACTS.. 767
14.3.124 PG_PUBLICATION_TABLES.. 767
14.3.125 PG_QUERYBAND_ACTION.. 768
14.3.126 PG_REPLICATION_SLOTS...768
14.3.127 PG_ROLES... 769
14.3.128 PG_RULES... 770
14.3.129 PG_RUNNING_XACTS... 771
14.3.130 PG_SECLABELS.. 771
14.3.131 PG_SEQUENCES..772
14.3.132 PG_SESSION_WLMSTAT.. 773
14.3.133 PG_SESSION_IOSTAT.. 775
14.3.134 PG_SETTINGS.. 776
14.3.135 PG_SHADOW...777
14.3.136 PG_SHARED_MEMORY_DETAIL.. 778
14.3.137 PG_STATS.. 778
14.3.138 PG_STAT_ACTIVITY.. 780
14.3.139 PG_STAT_ALL_INDEXES..783
14.3.140 PG_STAT_ALL_TABLES.. 784
14.3.141 PG_STAT_BAD_BLOCK.. 786
14.3.142 PG_STAT_BGWRITER... 786
14.3.143 PG_STAT_DATABASE... 787
14.3.144 PG_STAT_DATABASE_CONFLICTS...788
14.3.145 PG_STAT_GET_MEM_MBYTES_RESERVED... 789
14.3.146 PG_STAT_USER_FUNCTIONS... 790
14.3.147 PG_STAT_USER_INDEXES.. 790
14.3.148 PG_STAT_USER_TABLES... 791
14.3.149 PG_STAT_REPLICATION... 792
14.3.150 PG_STAT_SYS_INDEXES.. 793
14.3.151 PG_STAT_SYS_TABLES...793
14.3.152 PG_STAT_XACT_ALL_TABLES.. 794
14.3.153 PG_STAT_XACT_SYS_TABLES.. 795
14.3.154 PG_STAT_XACT_USER_FUNCTIONS... 796

Data Warehouse Service
Developer Guide Contents

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. xii

14.3.155 PG_STAT_XACT_USER_TABLES...796
14.3.156 PG_STATIO_ALL_INDEXES... 797
14.3.157 PG_STATIO_ALL_SEQUENCES.. 797
14.3.158 PG_STATIO_ALL_TABLES..798
14.3.159 PG_STATIO_SYS_INDEXES... 798
14.3.160 PG_STATIO_SYS_SEQUENCES.. 799
14.3.161 PG_STATIO_SYS_TABLES.. 799
14.3.162 PG_STATIO_USER_INDEXES..800
14.3.163 PG_STATIO_USER_SEQUENCES... 800
14.3.164 PG_STATIO_USER_TABLES.. 801
14.3.165 PG_THREAD_WAIT_STATUS... 802
14.3.166 PG_TABLES... 814
14.3.167 PG_TDE_INFO.. 815
14.3.168 PG_TIMEZONE_ABBREVS.. 816
14.3.169 PG_TIMEZONE_NAMES... 816
14.3.170 PG_TOTAL_MEMORY_DETAIL.. 816
14.3.171 PG_TOTAL_SCHEMA_INFO... 818
14.3.172 PG_TOTAL_USER_RESOURCE_INFO... 819
14.3.173 PG_USER... 821
14.3.174 PG_USER_MAPPINGS..822
14.3.175 PG_VIEWS... 823
14.3.176 PG_WLM_STATISTICS... 823
14.3.177 PGXC_AIO_RESOURCE_POOL_STATS.. 824
14.3.178 PGXC_BULKLOAD_PROGRESS... 826
14.3.179 PGXC_BULKLOAD_INFO...827
14.3.180 PGXC_BULKLOAD_STATISTICS...830
14.3.181 PGXC_COLUMN_TABLE_IO_STAT..831
14.3.182 PGXC_COMM_CLIENT_INFO.. 832
14.3.183 PGXC_COMM_DELAY..832
14.3.184 PGXC_COMM_RECV_STREAM..833
14.3.185 PGXC_COMM_SEND_STREAM... 834
14.3.186 PGXC_COMM_STATUS... 836
14.3.187 PGXC_COMM_QUERY_SPEED.. 836
14.3.188 PGXC_DEADLOCK.. 837
14.3.189 PGXC_DISK_CACHE_STATS..839
14.3.190 PGXC_DISK_CACHE_ALL_STATS.. 839
14.3.191 PGXC_DISK_CACHE_PATH_INFO...841
14.3.192 PGXC_GET_STAT_ALL_TABLES... 841
14.3.193 PGXC_GET_STAT_ALL_PARTITIONS..842
14.3.194 PGXC_GET_TABLE_SKEWNESS...844
14.3.195 PGXC_GTM_SNAPSHOT_STATUS.. 844
14.3.196 PGXC_INSTANCE_TIME.. 845

Data Warehouse Service
Developer Guide Contents

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. xiii

14.3.197 PGXC_LOCKWAIT_DETAIL... 845
14.3.198 PGXC_INSTR_UNIQUE_SQL.. 847
14.3.199 PGXC_LOCK_CONFLICTS... 850
14.3.200 PGXC_LWLOCKS... 851
14.3.201 PGXC_MEMORY_DEBUG_INFO... 852
14.3.202 PGXC_NODE_ENV.. 855
14.3.203 PGXC_NODE_STAT_RESET_TIME.. 855
14.3.204 PGXC_OBS_IO_SCHEDULER_STATS..856
14.3.205 PGXC_OBS_IO_SCHEDULER_PERIODIC_STATS.. 857
14.3.206 PGXC_OS_RUN_INFO..859
14.3.207 PGXC_OS_THREADS.. 860
14.3.208 PGXC_POOLER_STATUS... 860
14.3.209 PGXC_PREPARED_XACTS... 861
14.3.210 PGXC_REDO_STAT... 861
14.3.211 PGXC_REL_IOSTAT... 862
14.3.212 PGXC_REPLICATION_SLOTS... 862
14.3.213 PGXC_RESPOOL_RUNTIME_INFO.. 863
14.3.214 PGXC_RESPOOL_RESOURCE_INFO.. 863
14.3.215 PGXC_RESPOOL_RESOURCE_HISTORY...867
14.3.216 PGXC_ROW_TABLE_IO_STAT.. 870
14.3.217 PGXC_RUNNING_XACTS.. 871
14.3.218 PGXC_SETTINGS... 871
14.3.219 PGXC_SESSION_WLMSTAT... 872
14.3.220 PGXC_STAT_ACTIVITY... 875
14.3.221 PGXC_STAT_BAD_BLOCK... 878
14.3.222 PGXC_STAT_BGWRITER..878
14.3.223 PGXC_STAT_DATABASE.. 879
14.3.224 PGXC_STAT_OBJECT.. 881
14.3.225 PGXC_STAT_REPLICATION.. 885
14.3.226 PGXC_STAT_TABLE_DIRTY... 886
14.3.227 PGXC_STAT_WAL.. 889
14.3.228 PGXC_SQL_COUNT.. 891
14.3.229 PGXC_TABLE_CHANGE_STAT... 891
14.3.230 PGXC_TABLE_STAT... 892
14.3.231 PGXC_THREAD_WAIT_STATUS.. 893
14.3.232 PGXC_TOTAL_MEMORY_DETAIL... 895
14.3.233 PGXC_TOTAL_SCHEMA_INFO.. 897
14.3.234 PGXC_TOTAL_SCHEMA_INFO_ANALYZE.. 897
14.3.235 PGXC_TOTAL_USER_RESOURCE_INFO..898
14.3.236 PGXC_USER_TRANSACTION... 901
14.3.237 PGXC_VARIABLE_INFO... 902
14.3.238 PGXC_WAIT_DETAIL.. 903

Data Warehouse Service
Developer Guide Contents

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. xiv

14.3.239 PGXC_WAIT_EVENTS.. 905
14.3.240 PGXC_WLM_OPERATOR_HISTORY...906
14.3.241 PGXC_WLM_OPERATOR_INFO.. 907
14.3.242 PGXC_WLM_OPERATOR_STATISTICS.. 909
14.3.243 PGXC_WLM_SESSION_INFO... 912
14.3.244 PGXC_WLM_SESSION_HISTORY... 918
14.3.245 PGXC_WLM_SESSION_STATISTICS... 926
14.3.246 PGXC_WLM_TABLE_DISTRIBUTION_SKEWNESS... 931
14.3.247 PGXC_WLM_USER_RESOURCE_HISTORY...933
14.3.248 PGXC_WLM_WORKLOAD_RECORDS... 936
14.3.249 PGXC_WORKLOAD_SQL_COUNT... 937
14.3.250 PGXC_WORKLOAD_SQL_ELAPSE_TIME.. 938
14.3.251 PGXC_WORKLOAD_TRANSACTION... 939
14.3.252 PLAN_TABLE.. 940
14.3.253 PV_FILE_STAT.. 940
14.3.254 PV_INSTANCE_TIME.. 941
14.3.255 PV_MATVIEW_DETAIL.. 942
14.3.256 PV_OS_RUN_INFO... 943
14.3.257 PV_SESSION_MEMORY.. 943
14.3.258 PV_SESSION_MEMORY_DETAIL.. 943
14.3.259 PV_SESSION_STAT... 945
14.3.260 PV_SESSION_TIME... 945
14.3.261 PV_TOTAL_MEMORY_DETAIL...946
14.3.262 PV_REDO_STAT... 948
14.3.263 PV_RUNTIME_ATTSTATS... 948
14.3.264 PV_RUNTIME_RELSTATS..950
14.3.265 REDACTION_COLUMNS.. 951
14.3.266 REDACTION_POLICIES... 952
14.3.267 REMOTE_TABLE_STAT.. 953
14.3.268 SHOW_TSC_INFO...954
14.3.269 SHOW_ALL_TSC_INFO... 955
14.3.270 USER_COL_COMMENTS.. 955
14.3.271 USER_CONSTRAINTS.. 955
14.3.272 USER_CONS_COLUMNS.. 956
14.3.273 USER_INDEXES..957
14.3.274 USER_IND_COLUMNS.. 957
14.3.275 USER_IND_EXPRESSIONS.. 957
14.3.276 USER_IND_PARTITIONS... 958
14.3.277 USER_JOBS... 959
14.3.278 USER_OBJECTS.. 960
14.3.279 USER_PART_INDEXES..961
14.3.280 USER_PART_TABLES.. 961

Data Warehouse Service
Developer Guide Contents

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. xv

14.3.281 USER_PROCEDURES.. 962
14.3.282 USER_SEQUENCES... 962
14.3.283 USER_SOURCE.. 963
14.3.284 USER_SYNONYMS... 963
14.3.285 USER_TAB_COLUMNS.. 963
14.3.286 USER_TAB_COMMENTS... 964
14.3.287 USER_TAB_PARTITIONS... 965
14.3.288 USER_TABLES.. 965
14.3.289 USER_TRIGGERS... 966
14.3.290 USER_VIEWS.. 966
14.3.291 V$SESSION... 967
14.3.292 V$SESSION_LONGOPS... 967

15 GUC Parameters of the GaussDB(DWS) Database... 968
15.1 Viewing GUC Parameters.. 968
15.2 Configuring GUC Parameters...969
15.3 GUC Parameter Usage... 971
15.4 Connection and Authentication.. 971
15.4.1 Connection Settings... 971
15.4.2 Security and Authentication (postgresql.conf).. 973
15.4.3 Communication Library Parameters.. 980
15.5 Resource Consumption...987
15.5.1 Memory.. 987
15.5.2 Statement Disk Space Control... 998
15.5.3 Kernel Resources... 999
15.5.4 Cost-based Vacuum Delay.. 1000
15.5.5 Asynchronous I/O Operations.. 1002
15.5.6 Disk Caching.. 1004
15.6 Parallel Data Import... 1006
15.7 Write Ahead Logs.. 1008
15.7.1 Settings.. 1008
15.7.2 Checkpoints.. 1012
15.7.3 Archiving..1014
15.8 HA Replication.. 1015
15.8.1 Sending Server.. 1015
15.8.2 Primary Server... 1016
15.8.3 Standby Server.. 1018
15.9 Query Planning...1018
15.9.1 Optimizer Method Configuration... 1018
15.9.2 Optimizer Cost Constants..1035
15.9.3 Genetic Query Optimizer...1038
15.9.4 Other Optimizer Options...1040
15.10 Error Reporting and Logging...1062

Data Warehouse Service
Developer Guide Contents

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. xvi

15.10.1 Logging Destination..1062
15.10.2 Logging Time.. 1062
15.10.3 Logging Content...1066
15.11 Alarm Detection.. 1072
15.12 Statistics During the Database Running... 1072
15.12.1 Query and Index Statistics Collector... 1073
15.12.2 Performance Statistics..1080
15.13 Resource Management... 1080
15.14 Automatic Cleanup... 1099
15.15 Default Settings of Client Connection... 1108
15.15.1 Statement Behavior.. 1108
15.15.2 Zone and Formatting..1114
15.15.3 Other Default Parameters.. 1118
15.16 Lock Management.. 1119
15.17 Version and Platform Compatibility... 1125
15.17.1 Compatibility with Earlier Versions... 1125
15.17.2 Platform and Client Compatibility... 1128
15.18 Fault Tolerance... 1171
15.19 Connection Pool Parameters... 1172
15.20 Cluster Transaction Parameters..1175
15.21 Developer Operations.. 1178
15.22 Auditing.. 1199
15.22.1 Audit Switch...1199
15.22.2 Operation Audit..1200
15.23 Transaction Monitoring... 1209
15.24 GTM Parameters.. 1210
15.25 Miscellaneous Parameters..1211

16 GaussDB(DWS) Developer Terms... 1221

Data Warehouse Service
Developer Guide Contents

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. xvii

1 Before You Start

Target Readers

This document is intended for database designers, application developers, and
database administrators, and provides information required for designing, building,
querying and maintaining data warehouses.

As a database administrator or application developer, you need to be familiar
with:

● Knowledge about OSs, which is the basis for everything.
● SQL syntax, which is the necessary skill for database operation.

Prerequisites

Complete the following tasks before you perform operations described in this
document:
● Create a GaussDB(DWS) cluster.
● Install a SQL client.
● Connect the SQL client to the default database of the cluster.

For details about these tasks, see Getting Started with GaussDB(DWS).

Reading Guide

If you are a new GaussDB(DWS) user, you are advised to read the following
contents first:

● Sections describing the features, functions, and application scenarios of
GaussDB(DWS).

● "Getting Started": guides you through creating a data warehouse cluster,
creating a database table, uploading data, and testing queries.

If you intend to or are migrating applications from other data warehouses to
GaussDB(DWS), you might want to know how GaussDB(DWS) differs from them.

You can find useful information from the following table for GaussDB(DWS)
database application development.

Data Warehouse Service
Developer Guide 1 Before You Start

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

https://support.huaweicloud.com/intl/en-us/qs-dws/index.html

Operation Query Suggestion

Quickly getting
started with
GaussDB(DWS)

Deploy a cluster, connect to the database, and perform
some queries by referring to Getting Started.
When you are ready to construct a database, load data to
tables and compile the query content to operate the data in
the data warehouse. Then, you can return to the Data
Warehouse Service Database Developer Guide.

Understand the
internal
architecture of a
GaussDB(DWS)
data warehouse.

To know more about GaussDB(DWS), go to the
GaussDB(DWS) homepage.

Learn how to
design tables to
achieve the
excellent
performance.

GaussDB(DWS) Development Design Proposal introduces
the design specifications that should be complied with
during the development of database applications. Modeling
compliant with these specifications fits the distributed
processing architecture of GaussDB(DWS) and provides
efficient SQL code.
To accelerate service execution through optimization, refer
to GaussDB(DWS) Performance Tuning. Database
administrators' experience and judgment play a more
significant role in achieving successful performance
optimization than instructions and explanations. However,
GaussDB(DWS) Performance Tuning still attempts to
illustrate the performance optimization methods that can be
referred to by application development personnel and new
GaussDB(DWS) database administrators.

Loading data Importing Data describes how to import data to
GaussDB(DWS).
Excellent Practices for Data Import provides key points for
quick data import.

Managing users,
groups, and
database security

GaussDB(DWS) Database Security Management covers
database security topics.

Monitoring and
optimizing
system
performance

GaussDB(DWS) System Catalogs and Views describes the
system catalogs where you can query the database status
and monitor the query content and process.
You should also refer to Management Guide to learn how
to use the GaussDB(DWS) console to check the system
running status and monitoring metrics.

SQL Syntax Text Conventions

To better understand how to use the syntax, you can refer to the following
description of SQL syntax text conventions.

Data Warehouse Service
Developer Guide 1 Before You Start

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

https://support.huaweicloud.com/intl/en-us/qs-dws/index.html
https://support.huaweicloud.com/intl/en-us/migration-dws/dws_15_0003.html
https://support.huaweicloud.com/intl/en-us/bestpractice-dws/dws_05_0001.html
https://support.huaweicloud.com/intl/en-us/mgtg-dws/dws_01_0022.html

Format Description

Uppercase
characters

Keywords must be in uppercase.

Lowercase
characters

Parameters must be in lowercase.

[] Items in brackets [] are optional.

... Preceding elements can appear repeatedly.

[x | y | ...] One item is selected from two or more options or no item
is selected.

{ x | y | ... } One item is selected from two or more options.

[x | y | ...] [...] You can choose either multiple parameters or no
parameters. If you choose multiple parameters, simply
separate them with spaces.

[x | y | ...] [,...] You can choose either multiple parameters or no
parameters. If you choose multiple parameters, simply
separate them with commas (,).

{ x | y | ... } [...] You must select at least one parameter. If you select
multiple parameters, separate them with spaces.

{ x | y | ... } [,...] You must select at least one parameter. If you select
multiple parameters, separate them with commas (,).

Statement
When writing documents, the writers of GaussDB(DWS) try their best to provide
guidance from the perspective of commercial use, application scenarios, and task
completion. Even so, references to PostgreSQL content may still exist in the
document. For this type of content, the following PostgreSQL Copyright is
applicable:

Postgres-XC is Copyright © 1996-2013 by the PostgreSQL Global Development
Group.

PostgreSQL is Copyright © 1996-2013 by the PostgreSQL Global Development
Group.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND
ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE

Data Warehouse Service
Developer Guide 1 Before You Start

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

PROVIDED HEREUNDER IS ON AN "AS-IS" BASIS, AND THE UNIVERSITY OF
CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Data Warehouse Service
Developer Guide 1 Before You Start

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

2 GaussDB(DWS) Development Design
Proposal

2.1 Overview

Objective
This document outlines the rules for design and development that need to be
followed when developing the GaussDB(DWS) database. The objective is to
enhance development efficiency and ensure the continuity and stability of the
service.

Application Scope
These specifications apply to all GaussDB(DWS) self-development scenarios,
including designing and developing applications and database services.

Terms
Rule: a mandatory requirement that must be followed during database design and
development.

Suggestion: an option that you need to consider for the design and development
process.

Description: a detailed explanation of a rule or suggestion.

Overall Development and Design Specifications
The table below provides a list of development and design specifications that must
be followed during GaussDB(DWS) development. You can click the links to access
the corresponding rules for more details.

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

Table 2-1 GaussDB(DWS) development and design specifications

N
o.

Category Rule/Suggestion

1 Conn
ectio
n
man
agem
ent
regul
ation
s

- Rule 1.1: Configuring Load Balancing for
GaussDB(DWS) Clusters

2 Rule 1.2: Ending the Database Connection After
Necessary Operations (Except in Connection Pool
Scenarios)

3 Rule 1.3: Ensuring a Started Transaction Is
Committed or Rolled Back

4 Rule 1.4: Ensuring the Idle Timeout Duration Is
Shorter Than SESSION_TIMEOUT Value When
Connection Pool Is Used for Applications

5 Rule 1.5: Restoring Parameters to Default Values in
Connections Before Returning Them to the Pool

6 Rule 1.6: Manually Clearing Temporary Tables
Created with a Connection Before Returning it to
the Pool

7 Obje
ct
desig
n
specif
icatio
ns

DATABAS
E object
design

Rule 2.1: Avoiding Direct Usage of Built-in
Databases Such As postgres and gaussdb

8 Rule 2.2: Selecting the Suitable Database Code
During Database Creation

9 Rule 2.3: Choosing the Right Database Type for
Compatibility with the Database to Be Created

10 Suggestion 2.4: Storing Objects with Associated
Calculations in the Same Database

11 USER
object
design

Rule 2.5: Following the Least Privilege Principle and
Avoiding Running Services Using Users with Special
Permissions

12 Rule 2.6: Avoiding the Use of a Single Database
Account for All Services

13 SCHEMA
object
design

Suggestion 2.7: Avoiding the Creation of Objects
Under Other Users' Private Schemas

14 TABLESPA
CE object
design

Rule 2.8 Avoiding Tablespace Customization

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

N
o.

Category Rule/Suggestion

15 TABLE
object
design
(prioritize
d)

Rule 2.9: Selecting the Optimal Distribution
Method and Columns During Table Creation

16 Rule 2.10 Selecting an Optimal Storage Type
During Table Creation

17 Rule 2.11 Selecting an Optimal Partitioning Policy
During Table Creation

18 Suggestion 2.12: Designing Table Columns for Fast
and Accurate Queries

19 Suggestion 2.13: Avoiding the Usage of Auto-
increment Columns or Data Types

20 INDEX
object
design
(prioritize
d)

Rule 2.14: Creating Necessary Indexes and Selecting
Optimal Columns and Sequences for Them

21 Suggestion 2.15: Optimizing Performance by
Choosing the Right Index Type and Avoiding
Indexes for Column-Store Tables

22 VIEW
object
design

Suggestion 2.16: Limiting View Nesting to Three
Layers

23 SQL
devel
opme
nt
specif
icatio
ns

DDL
operation
specificati
ons

Suggestion 3.1: Avoiding Performing DDL
Operations (Except CREATE) During Peak Hours or
in Long Transactions

24 Rule 3.2: Specifying the Scope of Objects to Be
Deleted When Using DROP

25 INSERT
operation
specificati
ons

Rule 3.3: Replacing INSERT with COPY for Efficient
Multi-Value Batch Insertion

26 Suggestion 3.4: Avoiding Performing Real-time
INSERT Operations on Common Column-store
Tables

27 UPDATE/
DELETE
operation
specificati
ons

Suggestion 3.5: Preventing Simultaneous Updates
or Deletions of the Same Row in a Row-store Table

28 Suggestion 3.6: Avoiding Frequent or Simultaneous
UPDATE and DELETE Operations on Column-store
Tables

29 SELECT
operation
specificati
ons

Rule 3.7: Avoiding Executing SQL Statements That
Do Not Support Pushdown

30 Rule 3.8: Specifying Association Conditions when
Multiple Tables Are Associated

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

N
o.

Category Rule/Suggestion

31 Rule 3.9: Ensuring Consistency of Data Types in
Associated Fields across Multiple Tables

32 Suggestion 3.10: Avoiding Function Calculation on
Association and Filter Condition Fields

33 Suggestion 3.11: Performing Pressure Tests and
Concurrency Control for Resource-intensive SQL
Statements

34 Rule 3.12: Avoiding Excessive COUNT Operations on
Large Row-store Tables

35 Suggestion 3.13: Avoid Getting Large Result Sets
(Except for Data Exports)

36 Suggestion 3.14: Avoiding the Usage of SELECT * for
Queries

37 Suggestion 3.15: Using WITH RECURSIVE with
Defined Termination Condition for Recursion

38 Suggestion 3.16: Setting Schema Prefix for Table
and Function Access

39 Suggestion 3.17: Identifying an SQL Statement with
a Unique SQL Comment

40 Store
d
proce
dure
devel
opme
nt
specif
icatio
ns

- Suggestion 4.1: Simplifying Stored Procedures and
Avoiding Nesting

41 Rule 4.2: Avoiding Non-CREATE DDL Operations in
Stored Procedures

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

2.2 GaussDB(DWS) Connection Management
Specifications

Rule 1.1: Configuring Load Balancing for GaussDB(DWS) Clusters
NO TE

Impact of rule violation:

● Load imbalance causes performance problems and even service interruption.

● When a CN is faulty, services cannot be automatically recovered or the recovery may
take a long time.

Solution:

● Configure ELB load balancing and connect the application to the load balancing IP
address.

● For how to use JDBC for load balancing, see Configuring JDBC to Connect to a Cluster
(Load Balancing Mode).

Rule 1.2: Ending the Database Connection After Necessary Operations
(Except in Connection Pool Scenarios)

NO TE

Impact of rule violation:

● The number of idle connections exceeds the maximum limit, causing connection
creation failure.

● Resource overload occurs because there are too many idle connections.

Solution:

● After the connection between the application and the database is established and used,
manually end the connection.

● Set the session_timeout parameter on the service side to set the idle timeout duration.
The connection will be automatically ended when the idle timeout duration expires.

Rule 1.3: Ensuring a Started Transaction Is Committed or Rolled Back
NO TE

Impact of rule violation:

● If a transaction remains uncommitted for an extended period, it blocks operations such
as ALTER, thereby affecting all services.

● The number of idle connections exceeds the maximum limit, causing connection
creation failure.

Solution:

● autocommit is enabled by default, so there is no need to manually commit any
transaction unless you modify the default setting.

● If a transaction is explicitly started, it must be explicitly ended (either by committing or
rolling back) once the relevant operations are finished.

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

https://support.huaweicloud.com/intl/en-us/mgtg-dws/dws_01_0169.html
https://support.huaweicloud.com/intl/en-us/mgtg-dws/dws_01_0169.html

Rule 1.4: Ensuring the Idle Timeout Duration Is Shorter Than
SESSION_TIMEOUT Value When Connection Pool Is Used for Applications

NO TE

Impact of rule violation:
● The idle timeout mechanism on the service side clears connections in the connection

pool, which negatively impacts connection reuse.
Solution:
● To ensure everything works correctly, make sure the idle timeout duration of the

connection pool is shorter than the SESSION_TIMEOUT value in GaussDB(DWS). It is
advised to adjust the idle timeout duration rather than modifying the
SESSION_TIMEOUT value.

Rule 1.5: Restoring Parameters to Default Values in Connections Before
Returning Them to the Pool

NO TE

Impact of rule violation:
● When a connection is reused by another service, the parameters set by the service may

also be reused. This can result in performance issues or service errors.
Solution:
● Before returning the connection to the connection pool, use SET SESSION

AUTHORIZATION DEFAULT;RESET ALL; to reset parameters.
Notes:
When connection pool is used for applications, if you set the global GUC parameter using
GS_GUC RELOAD in GaussDB(DWS), restart the connection pool for the changes to be
applied. This is because the modification only affects new connections in the connection
pool.

Rule 1.6: Manually Clearing Temporary Tables Created with a Connection
Before Returning it to the Pool

NO TE

Impact of rule violation:
● When a connection is reused by other services, an error may be reported when a

temporary table is created.
Solution:
● Before returning a connection to the connection pool, use DROP to clear the temporary

table created by the current session.

2.3 GaussDB(DWS) Object Design Specifications

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

2.3.1 DATABASE Object Design

Rule 2.1: Avoiding Direct Usage of Built-in Databases Such As postgres and
gaussdb

NO TE

Impact of rule violation:
● If the code or the compatibility setting of the built-in databases does not meet service

requirements, you may need to migrate your data again.
● The time for changes to be applied may be prolonged if all services use built-in

databases.
Solution:
● To meet the specific requirements of each service, it is recommended to create a

dedicated database and allocate it accordingly.

Rule 2.2: Selecting the Suitable Database Code During Database Creation
NO TE

Impact of rule violation:
● Selecting the wrong database code may result in displaying garbled characters, and it is

not possible to directly change the database code. In such cases, you will need to create
a database and import the data again.

Solution:
● It is advisable to set the ENCODING to the UTF-8 format during database creation,

unless there are specific requirements for a different encoding.

Rule 2.3: Choosing the Right Database Type for Compatibility with the
Database to Be Created

NO TE

Impact of rule violation:
● Selecting the wrong type can lead to behavior inconsistencies after migrating the

database from a different vendor to GaussDB(DWS). Unfortunately, it is not possible to
directly change the compatibility setting. The only solution is to create a database and
import the data again.

Solution:
● GaussDB(DWS) supports compatibility with databases like Teradata, Oracle, and MySQL.

You can specify DBCOMPATIBILITY to set the compatible database type when creating
a database.

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

Suggestion 2.4: Storing Objects with Associated Calculations in the Same
Database

NO TE

Impact of rule violation:
● Cross-database access tends to have poorer performance compared to performing

operations within the same database.
Solution:
● If multiple databases are created, it is advisable to store objects requiring associated

calculations in the same database.

2.3.2 USER Object Design

Rule 2.5: Following the Least Privilege Principle and Avoiding Running
Services Using Users with Special Permissions

NO TE

Impact of rule violation:
● Super users and administrators have full access to a lot of things in the system and

using these users to run services can pose security and control risks.
Solution:
● It is advised to use common users for service running, reserving users with special

permissions for management operations.

Rule 2.6: Avoiding the Use of a Single Database Account for All Services
NO TE

Impact of rule violation:
● Cross-database access typically has lower performance compared to accessing

operations within the same database.
Solution:
● Create administrators , service operation users, and O&M users for different purposes.
● Use different users to run different services for improved management and allocation of

services and resources.

2.3.3 Schema Object Design

Suggestion 2.7: Avoiding the Creation of Objects Under Other Users' Private
Schemas

NO TE

A private schema refers to a schema with the same name as the user when the user is
created. This schema is only accessible to the user.
Impact of rule violation:
● When you create an object under someone else's private schema, the permissions for

that object are determined by the schema owner.
Solution:
● Create objects under your own private schema to have full control over the object

permissions.

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

2.3.4 TABLESPACE Object Design

Rule 2.8 Avoiding Tablespace Customization
NO TE

Impact of rule violation:

● In a distributed scenario, using a custom tablespace to create a table can result in the
table data not being stored in a distributed manner by DN, leading to storage skew.

Solution:

● Use the built-in default tablespace when creating a table object.

2.3.5 TABLE Object Design (Prioritized)

Rule 2.9: Selecting the Optimal Distribution Method and Columns During
Table Creation

NO TE

Impact of rule violation:

● Incorrect distribution method and column selection can cause storage skew, deteriorate
access performance, and even overload storage and computing resources.

Solution:

● When creating a table, it is important to use the DISTRIBUTE BY clause to explicitly
specify the distribution method and distribution columns. The table below provides
principles for selecting the distribution columns.

Table 2-2 Distribution column selection

Distribut
ion
Method

Description Scenario

Hash Table data is distributed to each
DN based on the mapping
between hash values generated
by distribution columns and DNs.
● Advantage: Each DN contains

only part of data, which is
space-saving.

● Disadvantage: The even
distribution of data depends
heavily on the selection of
distribution columns. If the
join condition does not include
the distribution columns of
each node, data
communication between
nodes will be required.

Large tables and fact tables

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

Distribut
ion
Method

Description Scenario

RoundRo
bin

Table data is distributed to DNs
in polling mode.
● Advantage: Each DN only

contains a portion of the data,
taking up a small amount of
space. Data is evenly
distributed in polling mode
and does not rely on
distribution columns,
eliminating data skews.

● Disadvantage: Using
distribution column conditions
cannot eliminate or reduce
inter-node communication. In
this scenario, the performance
is inferior to that of HASH.

Large tables, fact tables, and
tables without proper
distribution columns

Replicati
on

Full data in a table is copied to
each DN in the cluster.
● Advantage: Each DN holds the

complete data of the table.
The JOIN operation avoids
data communication between
nodes, reducing network
overhead and the overhead of
starting and stopping the
STREAM thread.

● Disadvantage: Each DN
retains complete table data,
which is redundant and
occupies more storage space.

Small tables and dimension
tables

Rule 2.10 Selecting an Optimal Storage Type During Table Creation
NO TE

Impact of rule violation:
● Row-store tables are not properly used. As a result, the query performance is poor and

resources are overloaded.
● Improper use of column-store tables causes CU expansion, poor performance, and

resource overload.
Solution:
● When creating a table, use orientation to explicitly specify the storage type. The

following table describes the rules for selecting a storage type.

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

Table 2-3 Storage type selection

Storag
e Type

Applicable Scenario Inapplicable Scenario

Row
storage

● DML addition, deletion, and
modification: scenarios with
many UPDATE and DELETE
operations

● DML query: point query (simple
index–based query that returns
only a few records)

DML query: statistical analysis
query (with mass data involved
in GROUP and JOIN processes)
CAUTION

When creating a row-store table
(orientation is set to row), do not
specify the compress attribute or
use a row-store compressed table.

Colum
n
storage

● DML addition, deletion, and
modification: INSERT batch
import scenario (The number of
data records imported to a
single partition at a time is
approximately 60,000 times the
number of DNs or greater.)

● DML query: statistical analysis
query (with mass data involved
in GROUP and JOIN processes)

● DML addition, deletion, and
modification: scenarios with
many UPDATE/DELETE
operations or a small number
of INSERT operations

● DML query: high-concurrency
point query

Rule 2.11 Selecting an Optimal Partitioning Policy During Table Creation
NO TE

Impact of rule violation:
Without partitioning, query performance and data governance efficiency will deteriorate.
The larger the data volume, the greater the deterioration. The advantages of partitioning
include:
● High query performance: The system queries only the concerned partitions rather than

the whole table, improving the query efficiency.
● Improved data governance efficiency: In the data lifecycle management scenario,

performing TRUNCATE or DROP PARTITION on historical partitions is much more
efficient and effective than using DELETE.

Solution:
● Design partitions for tables that contain fields of the time type.

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

Table 2-4 Partitioning policy selection

Partitioning
Policy

Description Scenario

Range
partitioning

Data is stored in different
partitions based on the range
of partition key values. The
partition key ranges are
consecutive but not
overlapped.

1. The date or time field is used
as the partition key.

2. Most queries contain
partition keys as filter criteria.

3. Periodically delete data based
on the partition key.

List
partitioning

Partitioning is performed
based on a unique list of
partition key values.

1. A specific number of
enumerated values are used
as partition key values.

2. Most queries contain
partition keys as filter criteria.

Suggestion 2.12: Designing Table Columns for Fast and Accurate Queries
NO TE

Impact of rule violation:
● The system may have limited storage space and low query efficiency.
Solution:
1. Design the table columns well for fast queries.

● If possible, use integers instead of floating points or characters.
● When using variable-length character type, specify the maximum length based on

data features.
2. Design the table columns well for accurate queries.

● Use the time type instead of the character type to store time data.
● Use the minimum numeric type that meets the requirements. Avoid using bigint if

int or smallint is sufficient to save space.
3. Correctly use the constraints.

● Add NOT NULL constraints to columns that never have NULL values. The optimizer
automatically optimizes the columns in certain scenarios.

● Do not use the DEFAULT constraint for fields that can be supplemented at the
service layer. Otherwise, unexpected results may be generated during data loading.

4. Avoid unnecessary data type conversion.
● In tables that are logically related, columns having the same meaning should use

the same data type.
● Different types of comparison operations cause data type conversion, which may

cause index and partition pruning failures and affect query performance.

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

Suggestion 2.13: Avoiding the Usage of Auto-increment Columns or Data
Types

NO TE

Impact of rule violation:
● When auto-increment sequences or data types are heavily used, the GTM may become

overloaded and slow down sequence generation.
Solution:
● Set a UUID to obtain a unique ID.
● If the auto-increment sequence must be used and there is no strict requirement for

increasing order, you can set the cache, for example, 1000, to reduce the pressure on
GTM.

2.3.6 INDEX Object Design (Prioritized)

Rule 2.14: Creating Necessary Indexes and Selecting Optimal Columns and
Sequences for Them

NO TE

Impact of rule violation:
● Redundant indexes consume unnecessary space and can impact data import efficiency.
● The column sequence in the composite index is incorrect, affecting the query efficiency.
Best practices:
The following conditions must be met when indexes are used:
● The index column should be a column commonly used for filtering or joining conditions.
● The index column should have more distinct values.
● When creating a multi-column combination index, prioritize columns with more distinct

values.
● The number of indexes in a single table should be limited to less than five. You can

control the number of indexes by combining them.
● In scenarios where data is added, deleted, or modified in batches, delete the index first

and then add it back after the batch operation is complete to improve performance
(real-time access may be affected).

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

Suggestion 2.15: Optimizing Performance by Choosing the Right Index Type
and Avoiding Indexes for Column-Store Tables

NO TE

Impact of rule violation:
● Incorrect indexes do not improve column-store access and can negatively affect query

performance.
Solution:
1. Specify the appropriate index type when creating indexes, avoiding the default psort

index.
2. In point queries where small amounts of data need to be retrieved from mass datasets,

consider creating a B-tree index.
3. For high range query performance, create a partial cluster key (PCK) to quickly filter and

scan fact tables using the min/max sparse index. Comply with the following rules to
create a PCK:
● [Notice] Only one PCK can be created in a table. A PCK can contain multiple

columns, preferably no more than two columns.
● [Suggestion] Create a PCK for the filter condition column of the expression (e.g.,

col op const, where op is the operator =, >, >=, <=, and <, and const is a constant
value).

2.3.7 VIEW Object Design

Suggestion 2.16: Limiting View Nesting to Three Layers
NO TE

Impact of rule violation:
● Too many nested views can lead to unstable execution plans and unpredictable time

consumption.
● The risk of rebuilding objects on which views depend is high and the probability of lock

conflicts increases.
Solution:
● Create views based on physical tables.

2.4 GaussDB(DWS) SQL Statement Development
Specifications

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

2.4.1 DDL Operations

Suggestion 3.1: Avoiding Performing DDL Operations (Except CREATE)
During Peak Hours or in Long Transactions

NO TE

Impact of rule violation:
DDL operations like ALTER, DROP, TRUNCATE, REINDEX, and VACUUM FULL have high
lock levels and can block services during execution.
● During peak hours, these DDL operations with high lock levels should be avoided to

prevent service blockage.
● Long transactions involving DDL operations with held or waited locks can also block

services.
Solution:
● Choose off-peak hours or maintenance windows for DDL operations based on service

periods. Specify the DDL execution environment and time consumption to avoid service
blockage due to long lock waiting duration.

Rule 3.2: Specifying the Scope of Objects to Be Deleted When Using DROP

D ANGER

Impact of rule violation:
Be cautious when using DROP OBJECT (e.g., DATABASE, USER/ROLE, SCHEMA,
TABLE, VIEW) as it may cause data loss, especially with CASCADE deletions.
● DROP DATABASE: deletes all objects in the database.
● DROP USER: deletes the USER object and its schemas and table objects.
● DROP SCHEMA: deletes all objects in the schema.
● DROP TABLE: deletes the TABLE object and the indexes and views that depend

on it.
Solution:
● Exercise caution when performing the DROP operation and back up data in

advance.

2.4.2 INSERT Operation

Rule 3.3: Replacing INSERT with COPY for Efficient Multi-Value Batch
Insertion

NO TE

Impact of rule violation:
● Parsing multiple values is time-consuming and resource-intensive, leading to low

efficiency when importing data into the database.
Solution:
● Instead of using INSERT VALUES, the frontend should use APIs like CopyManager of

JDBC.

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

Suggestion 3.4: Avoiding Performing Real-time INSERT Operations on
Common Column-store Tables

NO TE

Impact of rule violation:
● Importing a small batch of data in real-time to a common column-store table can

significantly expand the small CU, occupying a lot of storage space and impacting the
query performance.

Solution:
● In real-time INSERT scenarios, evaluate the amount of data to be imported at once and

the total amount of data. If the total amount of data is small, use row-store tables.
● In the real-time INSERT scenario, import around 60,000 data records to a single table,

partition, or DN at a time. The minimum import batch is 5,000 data records.
● In the real-time INSERT scenario, use H-Store column-store tables (for version 8.3.0 or

later).

2.4.3 UPDATE and DELETE Operations

Suggestion 3.5: Preventing Simultaneous Updates or Deletions of the Same
Row in a Row-store Table

NO TE

Impact of rule violation:
● Concurrent UPDATE and DELETE operations on row-store tables may cause row lock

blockage and distributed deadlocks, which can lead to service errors and performance
degradation.

Solution:
● Group UPDATE and DELETE operations by primary key or distribution column. Perform

parallel operations between groups while keeping operations within a group serial.

Suggestion 3.6: Avoiding Frequent or Simultaneous UPDATE and DELETE
Operations on Column-store Tables

NO TE

Impact of rule violation:
● Frequent UPDATE and DELETE operations on column-store tables can result in CU

bloat, leading to large space occupation and decreased access performance.
● Concurrent UPDATE and DELETE operations on row-store tables may cause row lock

blockage and distributed deadlocks, which can lead to service errors and performance
degradation.

Solution:
● Design tables with frequent UPDATE and DELETE operations as row-store tables.
● Group UPDATE and DELETE operations by primary key or distribution column. Perform

parallel operations between groups while keeping operations within a group serial.

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

2.4.4 SELECT Operation

Rule 3.7: Avoiding Executing SQL Statements That Do Not Support
Pushdown

NO TE

GaussDB(DWS) uses a distributed architecture, and to achieve optimal performance, SQL
statements need to be pushed down to utilize distributed computing resources.
Impact of rule violation:
● SQL statements that are not pushed down may experience poor execution performance

and, in severe cases, can lead to CN resource bottlenecks, impacting overall services.
Solution:
● Do not use syntax or functions that cannot be executed near the data source. For

details, see Optimizing Statement Pushdown.

Rule 3.8: Specifying Association Conditions when Multiple Tables Are
Associated

NO TE

Impact of rule violation:
● If no association condition is specified when linking multiple tables, it will result in a

Cartesian product calculation. This can lead to an expanded result set, posing risks of
performance issues and resource overload.

Solution:
● Specify filter and association conditions for each table during the association process.

Rule 3.9: Ensuring Consistency of Data Types in Associated Fields across
Multiple Tables

NO TE

Impact of rule violation:
● Ensure consistent data types for associated fields to avoid unnecessary type conversions,

data redistribution issues, and hindered generation of optimal plans.
Solution:
● Use the same data type for associated fields when tables are associated.

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

https://support.huaweicloud.com/intl/en-us/devg-dws/dws_04_0447.html

Suggestion 3.10: Avoiding Function Calculation on Association and Filter
Condition Fields

NO TE

Impact of rule violation:

● In cases where function calculations are involved in association and filter conditions, the
optimizer may fail to obtain accurate field statistics, impacting execution performance.

Solution:

● When comparing association condition fields, process the data before importing it into
the database, especially when calculations are required for comparison.

● When filter criteria are compared with constants, perform function calculation only on
constant columns. The following is an example:
SELECT id, from_image_id, from_person_id, from_video_id
FROM face_data
WHERE SS.DEL_FLAG = 'N'
AND NVL(SS.DELETE_FLAG, 'N') = 'N'
The modification is as follows:
SELECT id, from_image_id, from_person_id, from_video_id
FROM face_data
where SS.DEL_FLAG = 'N'
AND (SS.DELETE_FLAG = 'N' or SS.DELETE_FLAG is null)

Suggestion 3.11: Performing Pressure Tests and Concurrency Control for
Resource-intensive SQL Statements

NO TE

Impact of rule violation:

● Storage and computing resources are overloaded, and the overall running performance
deteriorates.

Solution:

A resource-intensive SQL statement contains:

● A large number of UNION ALL.

● A large number of AGGs (such as COUNT DISTINCT and MAX).

● A lot of JOIN operations for a large number of tables.

● A large number of STREAM operators (plan dimension).

Before rolling out, conduct pressure tests and implement concurrency control for certain
SQL statements. If the resource capacity is exceeded, optimizing the service should be
prioritized before reassessing the rollout plan.

Rule 3.12: Avoiding Excessive COUNT Operations on Large Row-store Tables
NO TE

If SSDs or other high-performance disk types are used, it may not be necessary to adhere
strictly to this rule, but it is still crucial to monitor the I/O consumption.

Impact of rule violation:

● Performing frequent COUNT operations on large row-store tables can consume a
significant amount of I/O resources, potentially leading to performance issues if an I/O
bottleneck occurs.

Solution:

● Reduce the frequency of COUNT operations, use result caching, and collect statistics by
partition to minimize I/O consumption.

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

Suggestion 3.13: Avoid Getting Large Result Sets (Except for Data Exports)
NO TE

Impact of rule violation:
● If you do not need to view all the results, querying ultra-large result sets becomes

inefficient and wasteful in terms of resources.
Solution:
● Use the LIMIT clause to retrieve only the necessary result segments.
● Use a cursor to obtain the result sets by segment and set an appropriate value for

FETCH SIZE if you need to query a large number of result sets.

Suggestion 3.14: Avoiding the Usage of SELECT * for Queries
NO TE

Impact of rule violation:
● Querying unnecessary columns increases the computing load and wastes computing

resources.
Solution:
● Clearly list the fields required for the query in the SELECT statement to improve the

query performance.

Suggestion 3.15: Using WITH RECURSIVE with Defined Termination
Condition for Recursion

NO TE

Impact of rule violation:
● In cases where there is no specific termination condition, recursive operations can enter

an infinite loop.
● Recursive operations generate duplicate data and occupy excessive resources.
Solution:
● Design proper termination conditions based on the volume and characteristics of the

data in the service table.

Suggestion 3.16: Setting Schema Prefix for Table and Function Access
NO TE

Impact of rule violation:
● If the schema name prefix is not specified, the search will be performed sequentially

across all tablespaces based on the tablespace list in the current search_path. This can
lead to accessing unexpected tables due to schema switchover.

Solution:
● To enhance readability, stability, and portability, explicitly specify the schema prefix as

SCHEMA. when accessing tables and function objects.

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

Suggestion 3.17: Identifying an SQL Statement with a Unique SQL Comment
NO TE

Impact of rule violation:
● The service's source tracing capability is limited. You can only verify it with R&D

engineers using the database, user name, and client IP address.
Solution:
● You are advised to use query_band. The following is an example:

SET query_band='JobName=abc;AppName=test;UserName=user';

● Add a unique comment for each SQL statement to facilitate troubleshooting and
application performance analysis. The following is an example of such comment.
/* Module name_Tool name_Job name_Step */, for example, /* mca_python_xxxxxx_step1 */ insert
into xxx select … from

2.5 GaussDB(DWS) Stored Procedure Development
Specifications

Suggestion 4.1: Simplifying Stored Procedures and Avoiding Nesting
NO TE

Impact of rule violation:
● The maintenance cost for complex and nested stored procedures is high, making fault

locating and recovery time-consuming.
Solution:
● Avoid using stored procedures altogether or limit their usage to a single layer. Nested

stored procedures should be avoided.
● Create a corresponding log table for the stored procedure design and record information

before and after key steps in the log table. Follow the steps below to implement this.

Saving and Viewing Logs

Step 1 Create a log table.
CREATE TABLE func_exec_log
(
id varchar2(32) default lower(sys_guid()),
pro_name varchar2(60),
exec_times int,
log_date date,
deal_date date,
log_mesage text
);

Step 2 Create a table and import data.
CREATE TABLE demo_table(data_id int, data_number int);
INSERT INTO demo_table values(generate_series(1,1000),generate_series(1,1000));

Step 3 Create a service stored procedure.
CREATE OR REPLACE FUNCTION demo_table_process(out exe_info text)
LANGUAGE plpgsql
AS $$
declare v_count int;
pro_result text;
fun_name text;
exec_times int;
begin
fun_name := 'demo_table_process';

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

select nvl(max(exec_times), '0') + 1 into exec_times from func_exec_log where pro_name = fun_name;
-- Insert data into the service table.
insert into demo_table values (dbms_random.value(1, 1000)::int,generate_series(1,
dbms_random.value(10000, 20000)::int));
get diagnostics v_count = ROW_COUNT;
exe_info = sysdate || '# step1:insert count:' || v_count || ' rows;';
-- Delete specified data from a service table.
delete from demo_table where data_id = dbms_random.value(1, 1000)::int;
get diagnostics v_count = ROW_COUNT;
exe_info = exe_info || sysdate || '# step2:delete count:' || v_count || ' rows;';
-- Update service table data.
update demo_table set data_number = dbms_random.value(1, 100)::int where data_id =
dbms_random.value(1, 1000)::int;
exe_info = exe_info || sysdate || '# step3:update count:' || sql%rowcount || ' rows';
-- Record logs either before the entire program ends or after each step completes. You can also create a
function specifically for logging purposes.
insert into func_exec_log(pro_name, exec_times, log_date, deal_date, log_mesage) values
(fun_name,exec_times,sysdate,split_part(regexp_split_to_table(exe_info, ';'), '#',
1),split_part(regexp_split_to_table(exe_info, ';'), '#', 2));
-- EXCEPTION is used to ensure that logs can be properly recorded when the insertion, update, or deletion
exits abnormally.
EXCEPTION
WHEN OTHERS THEN
pro_result := exe_info || sysdate || '# exception error message is: ' || sqlerrm;
insert into func_exec_log(pro_name, exec_times, log_date, deal_date, log_mesage)
values(fun_name,exec_times,sysdate,split_part(regexp_split_to_table(pro_result, ';'), '#',
1),split_part(regexp_split_to_table(pro_result, ';'), '#', 2));
END; $$;

Step 4 Invoke the stored procedure (normal execution).
SELECT demo_table_process();

Step 5 View the created log table to check the service running status.
SELECT * FROM func_exec_log ORDER BY log_date desc,deal_date,log_mesage;

Step 6 Invoke the stored procedure again to construct an execution exception.
SELECT demo_table_process(); -- Delete the data_number column of demo_table to construct an exception,
and then call the stored procedure again.

Step 7 View the log to check the service running status.

----End

Rule 4.2: Avoiding Non-CREATE DDL Operations in Stored Procedures
NO TE

Impact of rule violation:

● A stored procedure is a large transaction. If a non-CREATE DDL operation, especially one
with a high lock level, is executed, it can block external access to related tables during
the stored procedure's execution window.

Solution:

● Avoid using non-CREATE DDL operations within stored procedures whenever possible. If
there is a necessity to use such operations, carefully assess the duration of the stored
procedures and the potential impact of the DDL operations. It is advised to schedule
non-CREATE DDL operations during off-peak hours when external access services are
less active.

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

2.6 Detailed Design Rules for GaussDB(DWS) Objects

2.6.1 GaussDB(DWS) Database Object Naming Rules
The name of a database object must contain 1 to 63 characters, start with a letter
or underscore (_), and can contain letters, digits, underscores (_), and dollar signs
($).

● [Proposal] Do not use reserved or non-reserved keywords to name database
objects.

NO TE

You can run SELECT * FROM pg_get_keywords() to query GaussDB(DWS) keywords
or view the keywords in section "Keywords" in SQL Syntax Reference.

● [Proposal] Do not use strings enclosed in double quotation marks to define
database object names. In GaussDB(DWS), double quotation marks are used
to specify that the enclosed database object names are case sensitive. Case
sensitivity of database object names makes problem location difficult.

● [Proposal] Use the same naming format for database objects.
– In a system undergoing incremental development or service migration,

you are advised to comply with its historical naming conventions.
– A database object name consists of letters, digits, and underscores (_);

and cannot start with a digit. You are advised to use multiple words
separated with hyphens (-).

– You are advised to use intelligible names and common acronyms or
abbreviations for database objects. Acronyms or abbreviations that are
generally understood are recommended. For example, you can use
English words indicating actual business terms. The naming format
should be consistent within a cluster.

– A variable name must be descriptive and meaningful. It must have a
prefix indicating its type.

● [Proposal] The name of a table object should indicate its main characteristics,
for example, whether it is an ordinary, temporary, or unlogged table.
– An ordinary table name should indicate the business relevant to a data

set.
– Temporary tables are named in the format of tmp_Suffix.
– Unlogged tables are named in the format of ul_Suffix.
– Foreign tables are named in the format of f_Suffix.

2.6.2 GaussDB(DWS) Database Object Design Rules

2.6.2.1 GaussDB(DWS) Database and Schema Design Rules
In GaussDB(DWS), services can be isolated by databases and schemas. Databases
share little resources and cannot directly access each other. Connections to and
permissions on them are also isolated. Schemas share more resources than

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

databases do. User permissions on schemas and subordinate objects can be
controlled using the GRANT and REVOKE syntax.

● You are advised to use schemas to isolate services for convenience and
resource sharing.

● It is recommended that system administrators create schemas and databases
and then assign required permissions to users.

Database Design Suggestions
● Create databases as required. Do not use the default gaussdb database of a

cluster.
● Create a maximum of three user-defined databases in a cluster.
● To make your database encoding compatible with most characters, you are

advised to use the UTF-8 encoding when creating a database.
● Exercise caution when you set ENCODING and DBCOMPATIBILITY

configuration items during database creation. In GaussDB(DWS),
DBCOMPATIBILITY can be set to TD, Oracle, or MySQL to be compatible
with Teradata, Oracle, or MySQL syntax, respectively. Syntax behavior may
vary with the three modes. For details, see Syntax Compatibility Differences
Among Oracle, Teradata, and MySQL.

● By default, a database owner has all permissions for all objects in the
database, including the deletion permission. Exercise caution when using the
deletion permission.

Schema Design Suggestions
● To let a user access an object in a schema, grant the usage permission and

the permissions for the object to the user, unless the user has the sysadmin
permission or is the schema owner.

● To let a user create an object in the schema, grant the CREATE permission for
the schema to the user.

● By default, a schema owner has all permissions for all objects in the schema,
including the deletion permission. Exercise caution when using the deletion
permission.

2.6.2.2 GaussDB(DWS) Table Design Rules

GaussDB(DWS) uses a distributed architecture. Data is distributed on DNs. Comply
with the following principles to properly design a table:

● [Notice] Evenly distribute data on each DN to prevent data skew. If most data
is stored on several DNs, the effective capacity of a cluster decreases. Select a
proper distribution column to avoid data skew.

● [Notice] Evenly scan each DN when querying tables. Otherwise, DNs most
frequently scanned will become the performance bottleneck. For example,
when you use equivalent filter conditions on a fact table, the nodes are not
evenly scanned.

● [Notice] Reduce the amount of data to be scanned. You can use the pruning
mechanism of a partitioned table.

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

● [Notice] Minimize random I/O. By clustering or local clustering, you can
sequentially store hot data, converting random I/O to sequential I/O to reduce
the cost of I/O scanning.

● [Notice] Try to avoid data shuffling. To shuffle data is to physically transfer it
from one node to another. This unnecessarily occupies many network
resources. To reduce network pressure, locally process data, and to improve
cluster performance and concurrency, you can minimize data shuffling by
using proper association and grouping conditions.

Selecting a Storage Mode

[Proposal] Selecting a storage mode is the first step in defining a table. The
storage mode mainly depends on the user's service type. For details, see Table
2-5.

Table 2-5 Table storage modes and scenarios

Storage
Mode

Application Scenarios

Row storage ● Point queries (simple index-based queries that only return a
few records)

● Scenarios requiring frequent addition, deletion, and
modification

Column
storage

● Statistical analysis queries (requiring a large number of
association and grouping operations)

● Ad hoc queries (using uncertain query conditions and unable
to utilize indexes to scan row-store tables)

When creating a table for analysis, make sure to set the ORIENTATION to column
storage explicitly.

CREATE TABLE public.t1
(
id integer not null,
data integer,
age integer
)
WITH (ORIENTATION =COLUMN);

Selecting a Distribution Mode

[Proposal] Comply with the following rules to distribute table data.

Table 2-6 Table distribution modes and scenarios

Distribution
Mode

Description Application Scenarios

Hash Table data is distributed on
all DNs in a cluster by hash.

Fact tables containing a large
amount of data

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

Distribution
Mode

Description Application Scenarios

Replication Full data in a table is stored
on every DN in a cluster.

Dimension tables and fact
tables containing a small
amount of data

Round-robin Each row of the table is sent
to each DN in turn.
Therefore, data is evenly
distributed on each DN.

Fact tables that contain a large
amount of data and cannot
find a proper distribution
column in hash mode

Selecting a Partitioning Mode
Comply with the following rules to partition a table containing a large amount of
data:

● [Proposal] Create partitions on columns that indicate certain ranges, such as
dates and regions.

● [Proposal] A partition name should show the data characteristics of a
partition. For example, its format can be Keyword+Range characteristics.

● [Proposal] Set the upper limit of a partition to MAXVALUE to prevent data
overflow.

The example of a partitioned table definition is as follows:

CREATE TABLE staffS_p1
(
 staff_ID NUMBER(6) not null,
 FIRST_NAME VARCHAR2(20),
 LAST_NAME VARCHAR2(25),
 EMAIL VARCHAR2(25),
 PHONE_NUMBER VARCHAR2(20),
 HIRE_DATE DATE,
 employment_ID VARCHAR2(10),
 SALARY NUMBER(8,2),
 COMMISSION_PCT NUMBER(4,2),
 MANAGER_ID NUMBER(6),
 section_ID NUMBER(4)
)
PARTITION BY RANGE (HIRE_DATE)
(
 PARTITION HIRE_19950501 VALUES LESS THAN ('1995-05-01 00:00:00'),
 PARTITION HIRE_19950502 VALUES LESS THAN ('1995-05-02 00:00:00'),
 PARTITION HIRE_maxvalue VALUES LESS THAN (MAXVALUE)
);

Selecting a Distribution Key
Selecting a distribution key is important for a hash table. An improper distribution
key may cause data skew. As a result, the I/O load is heavy on several DNs,
affecting the overall query performance. After you select a distribution policy for a
hash table, check for data skew to ensure that data is evenly distributed. Comply
with the following rules to select a distribution key:

● [Proposal] Select a column containing discrete data as the distribution key, so
that data can be evenly distributed on each DN. If a single column is not

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

discrete enough, consider using multiple columns as distribution keys. You can
select the primary key of a table as the distribution key. For example, in an
employee information table, select the certificate number column as the
distribution key.

● [Proposal] If the first rule is met, do not select a column having constant filter
conditions as the distribution key. For example, in a query on the dwcjk table,
if the zqdh column contains the constant filter condition zqdh='000001',
avoid selecting the zqdh column as the distribution key.

● [Proposal] If the first and second rules are met, select the join conditions in a
query as distribution keys. If a join condition is used as a distribution key, the
data involved in a join task is locally distributed on DNs, which greatly
reduces the data flow cost among DNs.

2.6.2.3 GaussDB(DWS) Column Design Rules

Selecting a Data Type

Comply with the following rules to improve query efficiency when you design
columns:

● [Proposal] Use the most efficient data types allowed.

If all of the following number types provide the required service precision,
they are recommended in descending order of priority: integer, floating point,
and numeric.

● [Proposal] In tables that are logically related, columns having the same
meaning should use the same data type.

● [Proposal] For string data, you are advised to use variable-length strings and
specify the maximum length. To avoid truncation, ensure that the specified
maximum length is greater than the maximum number of characters to be
stored. You are not advised to use CHAR(n), BPCHAR(n), NCHAR(n), or
CHARACTER(n), unless you know that the string length is fixed.

For details about string types, see Common String Types.

Common String Types

Every column requires a data type suitable for its data characteristics. The
following table lists common string types in GaussDB(DWS).

Table 2-7 Common string types

Parameter Description Max. Storage
Capacity

CHAR(n) Fixed-length string, where n
indicates the stored bytes. If the
length of an input string is smaller
than n, the string is automatically
padded to n bytes using NULL
characters.

10 MB

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

Parameter Description Max. Storage
Capacity

CHARACTER(n) Fixed-length string, where n
indicates the stored bytes. If the
length of an input string is smaller
than n, the string is automatically
padded to n bytes using NULL
characters.

10 MB

NCHAR(n) Fixed-length string, where n
indicates the stored bytes. If the
length of an input string is smaller
than n, the string is automatically
padded to n bytes using NULL
characters.

10 MB

BPCHAR(n) Fixed-length string, where n
indicates the stored bytes. If the
length of an input string is smaller
than n, the string is automatically
padded to n bytes using NULL
characters.

10 MB

VARCHAR(n) Variable-length string, where n
indicates the maximum number of
bytes that can be stored.

10 MB

CHARACTER
VARYING(n)

Variable-length string, where n
indicates the maximum number of
bytes that can be stored. This data
type and VARCHAR(n) are different
representations of the same data
type.

10 MB

VARCHAR2(n) Variable-length string, where n
indicates the maximum number of
bytes that can be stored. This data
type is added to be compatible with
the Oracle database, and its
behavior is the same as that of
VARCHAR(n).

10 MB

NVARCHAR2(n) Variable-length string, where n
indicates the maximum number of
bytes that can be stored.

10 MB

TEXT Variable-length string. Its maximum
length is 8203 bytes less than 1 GB.

8203 bytes less
than 1 GB

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

2.6.2.4 GaussDB(DWS) Constraint Design Rules

DEFAULT and NULL Constraints
● [Proposal] If all the column values can be obtained from services, you are not

advised to use the DEFAULT constraint, because doing so will generate
unexpected results during data loading.

● [Proposal] Add NOT NULL constraints to columns that never have NULL
values. The optimizer automatically optimizes the columns in certain
scenarios.

● [Proposal] Explicitly name all constraints excluding NOT NULL and DEFAULT.

Partial Cluster Key
A partial cluster key (PCK) is a local clustering technology used for column-store
tables. After creating a PCK, you can quickly filter and scan fact tables using min
or max sparse indexes in GaussDB(DWS). Comply with the following rules to
create a PCK:

● [Notice] Only one PCK can be created in a table. A PCK can contain multiple
columns, preferably no more than two columns.

● [Proposal] Create a PCK on simple expression filter conditions in a query. Such
filter conditions are usually in the form of col op const, where col specifies a
column name, op specifies an operator (such as =, >, >=, <=, and <), and
const specifies a constant.

● [Proposal] If the preceding conditions are met, create a PCK on the column
having the least distinct values.

Unique Constraint
● [Notice] Both row-store and column-store tables support unique constraints.
● [Proposal] The constraint name should indicate that it is a unique constraint,

for example, UNIIncluded columns.

Primary Key Constraint
● [Notice] Both row-store and column-store tables support the primary key

constraint.
● [Proposal] The constraint name should indicate that it is a primary key

constraint, for example, PKIncluded columns.

Check Constraint
● [Notice] Check constraints can be used in row-store tables but not in column-

store tables.
● [Proposal] The constraint name should indicate that it is a check constraint,

for example, CKIncluded columns.

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

2.6.2.5 Design Rules for GaussDB(DWS) Views and Associated Tables

View Design
● [Proposal] Do not nest views unless they have strong dependency on each

other.
● [Proposal] Try to avoid sort operations in a view definition.

Joined Table Design
● [Proposal] Minimize joined columns across tables.
● [Proposal] Joined columns should use the same data type.
● [Proposal] The names of associated fields should show the associations. For

example, they can use the same name.

2.6.3 GaussDB(DWS) JDBC Configuration Rules
Currently, third-party tools are connected to GaussDB(DWS) trough JDBC. This
section describes the precautions for configuring the tools.

Connection Parameters
● [Notice] When a third-party tool connects to GaussDB(DWS) through JDBC,

JDBC sends a connection request to GaussDB(DWS). By default, the following
parameters are added. For details, see the implementation of the
ConnectionFactoryImpl JDBC code.
params = {
{ "user", user },
{ "database", database },
{ "client_encoding", "UTF8" },
{ "DateStyle", "ISO" },
{ "extra_float_digits", "2" },
{ "TimeZone", createPostgresTimeZone() },
};

These parameters may cause the JDBC and gsql clients to display inconsistent
data, for example, date data display mode, floating point precision
representation, and timezone.
If the result is not as expected, you are advised to explicitly set these
parameters in the Java connection setting.

● [Proposal] When connecting to the database through JDBC, ensure that the
following two time zones are the same:
– Time zone of the host where the JDBC client is located
– Time zone of the host where the GaussDB(DWS) server is located

fetchsize
[Notice] To use fetchsize in applications, disable the autocommit switch. Enabling
the autocommit switch makes the fetchsize configuration invalid.

autocommit
[Proposal] It is recommended that you enable the autocommit switch in the code
for connecting to GaussDB(DWS) by the JDBC. If autocommit needs to be

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

disabled to improve performance or for other purposes, applications need to
ensure their transactions are committed. For example, explicitly commit
translations after specifying service SQL statements. Particularly, ensure that all
transactions are committed before the client exits.

Connection Releasing

[Proposal] You are advised to use connection pools to limit the number of
connections from applications. Do not connect to a database every time you run
an SQL statement.

[Proposal] After an application completes its tasks, disconnect its connection to
GaussDB(DWS) to release occupied resources. You are advised to set the session
timeout interval in the task.

[Proposal] Reset the session environment before releasing connections to the JDBC
connection tool. Otherwise, historical session information may cause object
conflicts.

● If GUC parameters are set in the connection, before you return the connection
to the connection pool, run SET SESSION AUTHORIZATION DEFAULT;RESET
ALL; to clear the connection status.

● If a temporary table is used, delete it before you return the connection to the
connection pool.

CopyManager

[Proposal] In the scenario where the ETL tool is not used and real-time data
import is required, it is recommended that you use the CopyManager interface
driven by the GaussDB(DWS) JDBC to import data in batches during application
development.

For how to use CopyManager, see CopyManager.

2.6.4 GaussDB(DWS) SQL Writing Rules

DDL
● [Proposal] In GaussDB(DWS), you are advised to execute DDL operations,

such as creating table or making comments, separately from batch processing
jobs to avoid performance deterioration caused by many concurrent
transactions.

● [Proposal] Execute data truncation after unlogged tables are used because
GaussDB(DWS) cannot ensure the security of unlogged tables in abnormal
scenarios.

● [Proposal] Suggestions on the storage mode of temporary and unlogged
tables are the same as those on base tables. Create temporary tables in the
same storage mode as the base tables to avoid high computing costs caused
by hybrid row and column correlation.

● [Proposal] The total length of an index column cannot exceed 50 bytes.
Otherwise, the index size will increase greatly, resulting in large storage cost
and low index performance.

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

● [Proposal] Do not delete objects using DROP...CASCADE, unless the
dependency between objects is specified. Otherwise, the objects may be
deleted by mistake.

Data Loading and Uninstalling
● [Proposal] Provide the inserted column list in the insert statement. Example:

INSERT INTO task(name,id,comment) VALUES ('task1','100','100th task');

● [Proposal] After data is imported to the database in batches or the data
increment reaches the threshold, you are advised to analyze tables to prevent
the execution plan from being degraded due to inaccurate statistics.

● [Proposal] To clear all data in a table, you are advised to use TRUNCATE
TABLE instead of DELETE TABLE. DELETE TABLE is not efficient and cannot
release disk space occupied by the deleted data.

Type conversion
● [Proposal] Perform type coercion to convert data types. If you perform

implicit conversion, the result may differ from expected.
● [Proposal] During data query, explicitly specify the data type for constants,

and do not attempt to perform any implicit data type conversion.
● [Notice] In Oracle compatibility mode, null strings will be automatically

converted to NULL during data import. If a null string needs to be reserved,
you need to create a database that is compatible with Teradata.

Query Operation
● [Proposal] Do not return a large number of result sets to a client except the

ETL program. If a large result set is returned, consider modifying your service
design.

● [Proposal] Perform DDL and DML operations encapsulated in transactions.
Operations like table truncation, update, deletion, and dropping, cannot be
rolled back once committed. You are advised to encapsulate such operations
in transactions so that you can roll back the operations if necessary.

● [Proposal] During query compilation, you are advised to list all columns to be
queried and avoid using *. Doing so reduces output lines, improves query
performance, and avoids the impact of adding or deleting columns on front-
end service compatibility.

● [Proposal] During table object access, add the schema prefix to the table
object to avoid accessing an unexpected table due to schema switchover.

● [Proposal] The cost of joining more than eight tables or views, especially full
joins, is difficult to be estimated. You are advised to use the WITH TABLE AS
statement or other methods to create interim tables to improve the
readability of SQL statements.

● [Proposal] Do not use Cartesian products or full joins. Cartesian products and
full joins will result in a sharp expansion of result sets and poor performance.

● [Notice] Only IS NULL and IS NOT NULL can be used to determine NULL
value comparison results. If any other method is used, NULL is returned. For
example, NULL instead of expected Boolean values is returned for
NULL<>NULL, NULL=NULL, and NULL<>1.

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

● [Notice] Do not use count(col) instead of count(*) to count the total number
of records in a table. count(*) counts the NULL value (actual rows) while
count (col) does not.

● [Notice] While executing count(col), the number of NULL record rows is
counted as 0. While executing sum(col), NULL is returned if all records are
NULL. If not all the records are NULL, the number of NULL record rows is
counted as 0.

● [Notice] To count multiple columns using count(), column names must be
enclosed with parentheses. For example, count ((col1, col2, col3)). Note:
When multiple columns are used to count the number of NULL record rows, a
row is counted even if all the selected columns are NULL. The result is the
same as that when count(*) is executed.

● [Notice] Null records are not counted when count(distinct col) is used to
calculate the number of non-null columns that are not repeated.

● [Notice] If all statistical columns are NULL when count(distinct (col1,col2,...))
is used to count the number of unique values in multiple columns, Null
records are also counted, and the records are considered the same.

● [Notice] When constants are used to filter data, the system searches for
functions used for calculating these two data types based on the data types
of the constants and matched columns. If no function is found, the system
converts the data type implicitly. Then, the system searches for a function
used for calculating the converted data type.
SELECT * FROM test WHERE timestamp_col = 20000101;

In the preceding example, if timestamp_col is the timestamp type, the
system first searches for the function that supports the "equal" operation of
the timestamp and int types (constant numbers are considered as the int
type). If no such function is found, the timestamp_col data and constant
numbers are implicitly converted into the text type for calculation.

● [Proposal] Do not use scalar subquery statements. A scalar subquery appears
in the output list of a SELECT statement. In the following example, the part
enclosed in parentheses is a scalar subquery statement:
SELECT id, (SELECT COUNT(*) FROM films f WHERE f.did = s.id) FROM staffs_p1 s;

Scalar subqueries often result in query performance deterioration. During
application development, scalar subqueries need to be converted into
equivalent table associations based on the service logic.

● [Proposal] In WHERE clauses, the filtering conditions should be sorted. The
condition that few records are selected for reading (the number of filtered
records is small) is listed at the beginning.

● [Proposal] Filtering conditions in WHERE clauses should comply with
unilateral rules. That is, when the column name is placed on one side of a
comparison operator, the optimizer automatically performs pruning
optimization in some scenarios. Filtering conditions in a WHERE clause will be
displayed in col op expression format, where col indicates a table column, op
indicates a comparison operator, such as = and >, and expression indicates an
expression that does not contain a column name. For example:
SELECT id, from_image_id, from_person_id, from_video_id FROM face_data WHERE
current_timestamp(6) - time < '1 days'::interval;

The modification is as follows:
SELECT id, from_image_id, from_person_id, from_video_id FROM face_data where time >
current_timestamp(6) - '1 days'::interval;

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

● [Proposal] Do not perform unnecessary sorting operations. Sorting requires a
large amount of memory and CPU. If service logic permits, ORDER BY and
LIMIT can be combined to reduce resource overhead. By default, data in
GaussDB(DWS) is sorted by ASC & NULL LAST.

● [Proposal] When the ORDER BY clause is used for sorting, specify sorting
modes (ASC or DESC), and use NULL FIRST or NULL LAST for NULL record
sorting.

● [proposal] Do not rely on only the LIMIT clause to return the result set
displayed in a specific sequence. Combine ORDER BY and LIMIT clauses for
some specific result sets and use offset to skip specific results if necessary.

● [Proposal] If the service logic is accurate, you are advised to use UNION ALL
instead of UNION.

● [Proposal] If a filtering condition contains only an OR expression, convert the
OR expression to UNION ALL to improve performance. SQL statements that
use OR expressions cannot be optimized, resulting in slow execution. Example:
SELECT * FROM scdc.pub_menu
WHERE (cdp= 300 AND inline=301) OR (cdp= 301 AND inline=302) OR (cdp= 302 AND inline=301);

Convert the statement to the following:
SELECT * FROM scdc.pub_menu
WHERE (cdp= 300 AND inline=301)
union all
SELECT * FROM scdc.pub_menu
WHERE (cdp= 301 AND inline=302)
union all
SELECT * FROM scdc.pub_menu
WHERE (cdp= 302 AND inline=301);

● [Proposal] If an in(val1, val2, va...) expression contains a large number of
columns, you are advised to replace it with the in (values (va1), (val2),
(val3...) statement. The optimizer will automatically convert the IN constraint
into a non-correlated subquery to improve the query performance.

● [Proposal] Replace (not) in with (not) exist when associated columns do not
contain NULL values. For example, in the following query statement, if the
T1.C1 column does not contain any NULL value, add the NOT NULL constraint
to the T1.C1 column, and then rewrite the statements.
SELECT * FROM T1 WHERE T1.C1 NOT IN (SELECT T2.C2 FROM T2);

Rewrite the statement as follows:
SELECT * FROM T1 WHERE NOT EXISTS (SELECT * FROM T1,T2 WHERE T1.C1=T2.C2);

NO TE

● If the value of the T1.C1 column will possibly be NULL, the preceding rewriting
cannot be performed.

● If T1.C1 is the output of a subquery, check whether the output is NOT NULL based
on the service logic.

● [Proposal] Use cursors instead of the LIMIT OFFSET syntax to perform
pagination queries to avoid resource overheads caused by multiple executions.
A cursor must be used in a transaction, and you must disable it and commit
transaction once the query is finished.

2.6.5 Rules for Using Custom GaussDB(DWS) External
Functions (pgSQL/Java)

● [Notice] Java UDFs can perform some Java logic calculation. Do not
encapsulate services in Java UDFs.

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

● [Notice] Do not connect to a database in any way (for example, by using
JDBC) in Java functions.

● [Notice] Only the data types listed in the following table can be used. User-
defined types and complex data types (Java Array and derived classes) are not
supported.

● [Notice] User-defined aggregation functions (UDAFs) and user-defined table-
generating functions (UDTFs) are not supported.

Table 2-8 PL/Java mapping for default data types

GaussDB(DWS) Java

BOOLEAN boolean

"char" byte

bytea byte[]

SMALLINT short

INTEGER int

BIGINT long

FLOAT4 float

FLOAT8 double

CHAR java.lang.String

VARCHAR java.lang.String

TEXT java.lang.String

name java.lang.String

DATE java.sql.Timestamp

TIME java.sql.Time (stored value treated as
local time)

TIMETZ java.sql.Time

TIMESTAMP java.sql.Timestamp

TIMESTAMPTZ java.sql.Timestamp

2.6.6 Rules for Using GaussDB(DWS) PL/pgSQL

General Principles
1. Development shall strictly comply with design documents.
2. Program modules shall be highly cohesive and loosely coupled.
3. Proper, comprehensive troubleshooting measures shall be developed.

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

4. Code shall be reasonable and clear.
5. Program names shall comply with a unified naming rule.
6. Fully consider the program efficiency, including the program execution

efficiency and database query and storage efficiency. Use efficient and
effective processing methods.

7. Program comments shall be detailed, correct, and standard.
8. The commit or rollback operation shall be performed at the end of a stored

procedure, unless otherwise required by applications.
9. Programs shall support 24/7 processing. In the case of an interruption, the

applications shall provide secure, easy-to-use resuming features.
10. Application output shall be standard and simple. The output shall show the

progress, error description, and execution results for application maintenance
personnel, and provide clear and intuitive reports and documents for business
personnel.

Programming Principles
1. Use bound variables in SQL statements in the PL/pgSQL.
2. RETURNING is recommended for SQL statements in PL/pgSQL.
3. Principles for using stored procedures:

a. Do not use more than 50 output parameters of the Varchar or Varchar2
type in a stored procedure.

b. Do not use the LONG type for input or output parameters.
c. Use the CLOB type for output strings that exceed 10 MB.

4. Variable declaration principles:

a. Use %TYPE to declare a variable that has the same meaning as that of a
column or variable in an application table.

b. Use %ROWTYPE to declare a record that has the same meaning as that
of a row in an application table.

c. Each line of a variable declaration shall contain only one statement.
d. Do not declare variables of the LONG type.

5. Principles for using cursors:

a. Explicit cursors shall be closed after being used.
b. A cursor variable shall be closed after being used. If the cursor variable

needs to transfer data to an invoked application, the cursor shall be
closed in the application. If the cursor variable is used only in a stored
procedure, the cursor shall be closed explicitly.

c. Before using DBMS_SQL.CLOSE_CURSOR to close a cursor, use
DBMS_SQL.IS_OPEN to check whether the cursor is open.

6. Principles for collections:

a. You are advised to use the FOR ALL statement instead of the FOR loop
statement to reference elements in a collection.

7. Principles for using dynamic statements:

a. Dynamic SQL shall not be used in the transaction programs of online
systems.

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

b. Dynamic SQL statements can be used to implement DDL statements and
system control commands in PL/pgSQL.

c. Variable binding is recommended.
8. Principles for assembling SQL statements:

a. You are advised to use bound variables to assemble SQL statements.
b. If the conditions for assembling SQL statements contain external input

sources, the characters in the input conditions shall be checked to prevent
attacks.

c. In a PL/pgSQL script, the length of a single line of code cannot exceed
2499 characters.

9. Principles for using triggers:

a. Triggers can be used to implement availability design in scenarios where
differential data logs are irrelevant to service processing.

b. Do not use triggers to implement service processing functions.

Exception Handling Principles
Any error that occurs in a PL/pgSQL function aborts the execution of the function
and related transactions. You can use a BEGIN block with an EXCEPTION clause to
catch and fix errors.

1. In a PL/pgSQL block, if an SQL statement cannot return a definite result, you
are advised to handle exceptions (if any) in EXCEPTION. Otherwise,
unhandled errors may be transferred to the external block and cause program
logic errors.

2. You can directly use the exceptions that have been defined in the system.
DWS does not support custom exceptions.

3. A block containing an EXCEPTION clause is more expensive to enter and exit
than a block without one. Therefore, do not use EXCEPTION without need.

Writing Standard
1. Variable naming rules:

a. The input parameter format of a procedure or function is
IN_Parameter_name. The parameter name shall be in uppercase.

b. The output parameter format of a procedure or function is
OUT_Parameter_name. The parameter name shall be in uppercase.

c. The format for input and output parameters in a procedure or function is
IO_Parameter name, with the parameter name written in uppercase.

d. Variables used in procedures and functions shall be composed of
v_Variable_name. The variable name shall be in lower case.

e. In query concatenation, the concatenation variable name of the WHERE
statement shall be v_where, and the concatenation variable name of the
SELECT statement shall be v_select.

f. The record type (TYPE) name shall consist of T and a variable name. The
name shall be in uppercase.

g. A cursor name shall consist of CUR and a variable name. The name shall
be in uppercase.

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

h. The name of a reference cursor (REF CURSOR) shall consist of REF and a
variable name. The name shall be in uppercase.

2. Rules for defining variable types:

a. Use %TYPE to declare the type of a variable that has the same meaning
as that of a column in an application table.

b. Use %ROWTYPE to declare the type of a record that has the same
meaning as that of a row in an application table.

3. Rules for writing comments:

a. Comments shall be meaningful and shall not just repeat the code
content.

b. Comments shall be concise and easy to understand.
c. Comments shall be provided at the beginning of each stored procedure or

function. The comments shall contain a brief function description, author,
compilation date, program version number, and program change history.
The format of the comments at the beginning of stored procedures shall
be the same.

d. Comments shall be provided next to the input and output parameters to
describe the meaning of variables.

e. Comments shall be provided at the beginning of each block or large
branch to briefly describe the function of the block. If an algorithm is
used, comments shall be provided to describe the purpose and result of
the algorithm.

4. Variable declaration format:
Each line shall contain only one statement. To assign initial values, write them
in the same line.

5. Letter case:
Use uppercase letters except for variable names.

6. Indentation:
In the statements used for creating a stored procedure, the keywords CREATE,
AS/IS, BEGIN, and END at the same level shall have the same indent.

7. Statement rules:

a. For statements that define variables, Each line shall contain only one
statement.

b. The keywords IF, ELSE IF, ELSE, and END at the same level shall have the
same indent.

c. The keywords CASE and END shall have the same indent. The keywords
WHEN and ELSE shall be indented.

d. The keywords LOOP and END LOOP at the same level shall have the
same indent. Nested statements or statements at lower levels shall have
more indent.

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

3 Creating and Managing GaussDB(DWS)
Database Objects

3.1 Creating and Managing GaussDB(DWS) Databases
A database is a collection of objects such as tables, indexes, views, stored
procedures, and operators. GaussDB (DWS) supports the creation of multiple
databases. However, a client program can connect to and access only one
database at a time, and cross-database query is not supported.

Template and Default Databases
● GaussDB (DWS) provides two template databases template0 and template1

and a default database gaussdb.
● By default, each newly created database is based on a template database. The

GaussDB(DWS) database uses template1 as the template by default. The
encoding format is SQL_ASCII, and user-defined character encoding is not
allowed. If you need to specify the character encoding when creating a
database, use template0 to create the database.

● Do not use a client or any other tools to connect to or to perform operations
on both the two template databases.

NO TE

You can run the show server_encoding command to view the current database
encoding.

Creating a Database.
Run the CREATE DATABASE statement to create a database.

CREATE DATABASE mydatabase;

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

NO TE

● When you create a database, if the length of the database name exceeds 63 bytes, the
server truncates the database name and retains the first 63 bytes. Therefore, you are
advised to set the length of the database name to a value less than or equal to 63
bytes. Do not use multi-byte characters as object names. If an object whose name is
truncated mistakenly cannot be deleted, delete the object using the name before the
truncation, or manually delete it from the corresponding system catalog on each node.

● Database names must comply with the naming convention of SQL identifiers. The
current user automatically becomes the owner of this new database.

● If a database system is used to support independent users and projects, store them in
different databases.

● If the projects or users are associated with each other and share resources, store them in
different schemas in the same database.

● A maximum of 128 databases can be created in GaussDB(DWS).

● You must have the permission to create a database or the permission that the system
administrator owns.

Viewing Databases

To view databases, perform the following steps:
● Run the \l meta-command to view the database list of the database system.

\l

● Querying the database list using the pg_database system catalog
SELECT datname FROM pg_database;

Modifying a Database

You can use the ALTER DATABASE statement modify database configuration such
as the database owner, name, and default settings.

● Run the following command to set the default search path for the database:
ALTER DATABASE mydatabase SET search_path TO pa_catalog,public;

● Rename the database.
ALTER DATABASE mydatabase RENAME TO newdatabase;

Deleting a Database

You can run DROP DATABASE statement to delete a database. This statement
deletes the system catalog of the database and the database directory on the disk.
Only the database owner or system administrator can delete a database. A
database being accessed by users cannot be deleted, You need to connect to
another database before deleting this database.

Run the DROP DATABASE statement to delete a database:
DROP DATABASE newdatabase;

3.2 Creating and Managing GaussDB(DWS) Schemas
A schema is the logical organization of objects and data in a database. Schema
management allows multiple users to use the same database without interfering
with each other. Third-party applications can be added to corresponding schemas
to avoid conflicts.

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

The same database object name can be used in different schemas in a database
without causing conflicts. For example, both a_schema and b_schema can contain
a table named mytable. Users with required permissions can access objects across
multiple schemas in a database.

If a user is created, a schema named after the user will also be created in the
current database.

Public mode
Each database has a schema named public. All users have the ability to use the
public schema in the database, but only certain roles have the authority to create
objects within it.

Creating a Schema
● Run the CREATE SCHEMA command to create a schema.

CREATE SCHEMA myschema;

To create or access an object in the schema, the object name in the command
should be composed of the schema name and the object name, which are
separated by a dot (.), for example, myschema.table.

● Users can create a schema owned by others. For example, run the following
command to create a schema named myschema and set the owner of the
schema to user jack:
CREATE SCHEMA myschema AUTHORIZATION jack;

If authorization username is not specified, the schema owner is the user
who runs the command.

Modifying a Schema
● Run the ALTER SCHEMA command to change the schema name. Only the

schema owner can change the schema name.
ALTER SCHEMA schema_name RENAME TO new_name;

● Run the ALTER SCHEMA command to change the schema owner.
ALTER SCHEMA schema_name OWNER TO new_owner;

Setting the Schema Search Path
The GUC parameter search_path specifies the schema search sequence. The
parameter value is a series of schema names separated by commas (,). If no
schema is specified during object creation, the object will be added to the first
schema displayed in the search path. If there are objects with the same name in
different schemas and no schema is specified for an object query, the object will
be returned from the first schema containing the object in the search path.

● Run the SHOW command to view the current search path.
SHOW SEARCH_PATH;
 search_path

 "$user",public
(1 row)

The default value of search_path is "$user",public. $user indicates the name
of the schema with the same name as the current session user. If the schema
does not exist, $user will be ignored. By default, after a user connects to a
database that has schemas with the same name, objects will be added to all

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

the schemas. If there are no such schemas, objects will be added to only to
the public schema.

● Run the SET command to modify the default schema of the current session.
For example, if the search path is set to "myschema, public", myschema is
searched first.
SET SEARCH_PATH TO myschema, public;

You can also run the ALTER ROLE command to set search_path for a role
(user). For example:
ALTER ROLE jack SET search_path TO myschema, public;

Using a Schema
If you want to create or access an object in a specified schema, the object name
must contain the schema name. To be specific, the name consists of a schema
name and an object name, which are separated by a dot (.).

● Create a table mytable in myschema. Create a table in
schema_name.table_name format.
CREATE TABLE myschema.mytable(id int, name varchar(20));

● Query all data in the table mytable in myschema.
SELECT * FROM myschema.mytable;
 id | name
----+------
(0 rows)

Viewing a Schema
● Use the current_schema() function to view the current schema.

SELECT current_schema();
 current_schema

 myschema
(1 row)

● To view the owner of a schema, perform the following join query on the
system catalogs PG_NAMESPACE and PG_USER. Replace schema_name in the
statement with the name of the schema to be queried.
SELECT s.nspname,u.usename AS nspowner FROM PG_NAMESPACE s, PG_USER u WHERE
nspname='schema_name' AND s.nspowner = u.usesysid;

● To view a list of all schemas, query the system catalog PG_NAMESPACE.
SELECT * FROM PG_NAMESPACE;

● Use the PGXC_TOTAL_SCHEMA_INFO view to query the space usage of
schemas in the cluster.
SELECT * FROM PGXC_TOTAL_SCHEMA_INFO;

● To view a list of tables in a schema, query the system catalog PG_TABLES. For
example, the following query will return a table list from PG_CATALOG in the
schema.
SELECT distinct(tablename),schemaname FROM PG_TABLES where schemaname = 'pg_catalog';

Schema Permission Control
By default, a user can only access database objects in its own schema. To access
objects in other schemas, the user must have the usage permission of the
corresponding schema.

By granting the CREATE permission for a schema to a user, the user can create
objects in this schema.

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

● Grant the usage permission of myschema to user jack.
GRANT USAGE ON schema myschema TO jack;

● Run the following command to revoke the USAGE permission for myschema
from jack:
REVOKE USAGE ON schema myschema FROM jack;

Drop Schema
● Run the DROP SCHEMA command to delete an empty schema (no database

objects in the schema).
DROP SCHEMA IF EXISTS myschema;

● By default, a schema must be empty before being deleted. To delete a schema
and all its objects (such as tables, data, and functions), use the CASCADE
keyword.
DROP SCHEMA myschema CASCADE;

System Schema
● Each database has a pg_catalog schema, which contains system catalogs and

all built-in data types, functions, and operators. pg_catalog is a part of the
search path and has the second highest search priority. It is searched after the
schema of temporary tables and before other schemas specified in
search_path. This search order ensures that database built-in objects can be
found. To use a custom object that has the same name as a built-in object,
you can specify the schema of the custom object.

● The information_schema consists of a collection of views that contain object
information in a database. These views obtain system information from the
system catalogs in a standardized way.

3.3 Creating and Managing GaussDB(DWS) Tables

Creating a Table
You can run the CREATE TABLE command to create a table. When creating a
table, you can define the following information:

● Columns and data type of the table.
● Table or column constraints that restrict a column or the data contained in a

table. For details, see Definition of Table Constraints.
● Distribution policy of a table, which determines how the GaussDB (DWS)

database divides data between segments. For details, see Definition of Table
Distribution.

● Table storage format. For details, see Selecting a GaussDB(DWS) Table
Storage Model.

● Partition table information. For details, see Creating and Managing
GaussDB(DWS) Partitioned Tables.

Example: Use CREATE TABLE to create a table web_returns_p1, use wr_item_sk
as the distribution key, and sets the range distribution function through
wr_returned_date_sk.

CREATE TABLE web_returns_p1
(

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

https://support.huaweicloud.com/intl/en-us/sqlreference-dws/dws_06_0008.html

 wr_returned_date_sk integer,
 wr_returned_time_sk integer,
 wr_item_sk integer NOT NULL,
 wr_refunded_customer_sk integer
)
WITH (orientation = column)
DISTRIBUTE BY HASH (wr_item_sk)
PARTITION BY RANGE(wr_returned_date_sk)
(
 PARTITION p2019 START(20191231) END(20221231) EVERY(10000),
 PARTITION p0 END(maxvalue)
);

Definition of Table Constraints
You can define constraints on columns and tables to restrict data in a table.
However, there are the following restrictions:

● The primary key constraint and unique constraint in the table must contain a
distribution column.

● Column-store tables support the PARTIAL CLUSTER KEY and table-level
primary key and unique constraints, but do not support table-level foreign key
constraints.

● Only the NULL, NOT NULL, and DEFAULT constant values can be used as
column-store table column constraints.

Table 3-1 Table constraints

Constrain
t

Description Example

Check
constraint

A CHECK constraint allows
you to specify that values
in a specific column must
satisfy a Boolean (true)
expression.

Create the products table. The price
column must be positive.
CREATE TABLE products
(
 product_no integer,
 name text,
 price numeric CHECK (price > 0)
);

NOT
NULL
constraint

A NOT NULL constraint
specifies that a column
cannot have null values. A
non-null constraint is
always written as a
column constraint.

Create the products table. The values
of product_no and name cannot be
null.
CREATE TABLE products
(
 product_no integer NOT NULL,
 name text NOT NULL,
 price numeric
);

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

Constrain
t

Description Example

UNIQUE
constraint

A UNIQUE constraint
specifies that the values in
a column or a group of
columns are all unique. If
DISTRIBUTE BY
REPLICATION is not
specified, the column
table that contains only
unique values must
contain distribution
columns.

Create the products table. The values
of product_no must be unique.
CREATE TABLE products
(
 product_no integer UNIQUE,
 name text,
 price numeric
)DISTRIBUTE BY HASH(product_no);

Primary
key
constraint

A primary key constraint is
the combination of a
UNIQUE constraint and a
NOT NULL constraint. If
DISTRIBUTE BY
REPLICATION is not
specified, the column set
with a primary key
constraint must contain
distributed columns. If a
table has a primary key,
the column (or group of
columns) of the primary
key is selected as the
distribution keys of the
table by default.

Create the products table. The primary
key constraint is product_no.
CREATE TABLE products
(
 product_no integer PRIMARY KEY,
 name text,
 price numeric
)DISTRIBUTE BY HASH(product_no);

Partial
cluster
key

Partial cluster key can
minimize or maximize
sparse indexes to quickly
filter base tables. Partial
cluster key can specify
multiple columns, but you
are advised to specify no
more than two columns.

Create the products table with PCK set
to product_no:
CREATE TABLE products
(
 product_no integer,
 name text,
 price numeric,
 PARTIAL CLUSTER KEY(product_no)
) WITH (ORIENTATION = COLUMN);

Definition of Table Distribution
GaussDB(DWS) supports the following distribution modes: replication, hash, and
roundrobin.

NO TE

The roundrobin distribution mode is supported only by cluster version 8.1.2 or later.

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

Policy Description Scenario Advantages/Disadvantages

Replicatio
n

Full data in a
table is stored
on each DN in
the cluster.

Small tables
and dimension
tables

● The advantage of
replication is that each DN
has full data of the table.
During the join operation,
data does not need to be
redistributed, reducing
network overheads and
reducing plan segments
(each plan segment starts a
corresponding thread).

● The disadvantage of
replication is that each DN
retains the complete data
of the table, resulting in
data redundancy. Generally,
replication is only used for
small dimension tables.

Hash Table data is
distributed on
all DNs in the
cluster.

Fact tables
containing a
large amount of
data

● The I/O resources of each
node can be used during
data read/write, greatly
improving the read/write
speed of a table.

● Generally, a large table
(containing over 1 million
records) is defined as a
hash table.

Polling
(Round-
robin)

Each row in the
table is sent to
each DN in
turn. Data can
be evenly
distributed on
each DN.

Fact tables that
contain a large
amount of data
and cannot find
a proper
distribution
column in hash
mode

● Round-robin can avoid data
skew, improving the space
utilization of the cluster.

● Round-robin does not
support local DN
optimization like a hash
table does, and the query
performance of Round-
robin is usually lower than
that of a hash table.

● If a proper distribution
column can be found for a
large table, use the hash
distribution mode with
better performance.
Otherwise, define the table
as a round-robin table.

Selecting a Distribution Key

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

If the hash distribution mode is used, a distribution key must be specified for the
user table. When a record is inserted, the system hashes it based on the
distribution key and then stores it on the corresponding DN.

Select a hash distribution key based on the following principles:

1. The values of the distribution key should be discrete so that data can be
evenly distributed on each DN. You can select the primary key of the table
as the distribution key. For example, for a person information table, choose
the ID number column as the distribution key.

2. Do not select the column that has a constant filter. For example, if a
constant constraint (for example, zqdh= '000001') exists on the zqdh column
in some queries on the dwcjk table, you are not advised to use zqdh as the
distribution key.

3. With the above principles met, you can select join conditions as
distribution keys, so that join tasks can be pushed down to DNs for
execution, reducing the amount of data transferred between the DNs.
For a hash table, an inappropriate distribution key may cause data skew or
poor I/O performance on certain DNs. Therefore, you need to check the table
to ensure that data is evenly distributed on each DN. You can run the
following SQL statements to check for data skew:
select
xc_node_id, count(1)
from tablename
group by xc_node_id
order by xc_node_id desc;

xc_node_id corresponds to a DN. Generally, over 5% difference between the
amount of data on different DNs is regarded as data skew. If the
difference is over 10%, choose another distribution key.

4. You are not advised to add a column as a distribution key, especially add a
new column and use the SEQUENCE value to fill the column. (Sequences may
cause performance bottlenecks and unnecessary maintenance costs.)

View the data in the table.
● Run the following command to query information about all tables in a

database in the system catalog pg_tables:
SELECT * FROM pg_tables;

● Run the \d+ command of the gsql tool to query table attributes:
\d+ customer_t1;

● Run the following command to query the data volume of table customer_t1:
SELECT count(*) FROM customer_t1;

● Run the following command to query all data in table customer_t1:
SELECT * FROM customer_t1;

● Run the following command to query data in column c_customer_sk:
SELECT c_customer_sk FROM customer_t1;

● Run the following command to filter repeated data in column c_customer_sk:
SELECT DISTINCT(c_customer_sk) FROM customer_t1;

● Run the following command to query all data whose column c_customer_sk
is 3869:
SELECT * FROM customer_t1 WHERE c_customer_sk = 3869;

● Run the following command to sort data based on column c_customer_sk.
SELECT * FROM customer_t1 ORDER BY c_customer_sk;

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

Deleting Data in a Table

CA UTION

Exercise caution when running the DROP TABLE and TRUNCATE TABLE
statements. After a table is deleted, data cannot be restored.

● Delete the customer_t1 table from the database.
DROP TABLE customer_t1;

● You can use DELETE or TRUNCATE to clear rows in a table without removing
the definition of the table.
Delete all rows from the customer_t1 table.
TRUNCATE TABLE customer_t1;

Delete all rows from the customer_t1 table.
DELETE FROM customer_t1;

Delete all records whose c_customer_sk is 3869 from the customer_t1 table.
DELETE FROM customer_t1 WHERE c_customer_sk = 3869;

Managing UNLOGGED Tables
UNLOGGED indicates an unlogged table. Unlogged tables are faster than regular
tables because data written to them is not written to the WALs. However, an
unlogged table is automatically cleared after a crash or unclean shutdown,
incurring data loss risks. The contents of an unlogged table are also not replicated
to standby servers. Any indexes created on an unlogged table are not
automatically logged as well.

Usage scenario: Unlogged tables do not ensure safe data. Users can back up data
before using unlogged tables; for example, users should back up the data before a
system upgrade. When creating an unlogged table, disable cnretry (that is, set the
GUC parameter max_query_retry_times to 0).

Troubleshooting: If data is missing in the indexes of unlogged tables due to some
unexpected operations such as an unclean shutdown, users should re-create the
indexes with errors.

● Starting from version 9.1.0, UNLOGGED tables are automatically saved in the
pg_unlogged tablespace and cannot be moved or assigned to other
tablespaces.

● After an earlier version is upgraded to 9.1.0, the UNLOGGED table created in
the earlier version is still stored in the original tablespace.

Version 9.1.0 has a script called switch_unlogged_tablespace.py that can move
unlogged tables to optimize the recovery time objective (RTO). This script works
together with the GUC parameter enable_unlogged_tablespace_compat.

1. The script is stored in the $GPHOME/script directory. You can use the -?
command to obtain help information.

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

2. Migrate all unlogged tables (recommended).
python3 switch_unlogged_tablepace.py -t switch

3. After the migration, the GUC parameter enable_unlogged_tablespace_compat
is automatically set to off.

NO TICE

After the upgrade to 9.1.0, you are advised to perform the following two steps to
improve the instance restart RTO:
1. Use the switch_unlogged_tablespace.py script to migrate all unlogged tables

to the pg_unlogged tablespace.
2. If the old version does not use any unlogged table, you are advised to set the

GUC parameter enable_unlogged_tablespace_compat to OFF.

3.4 Selecting a GaussDB(DWS) Table Storage Model
GaussDB(DWS) supports hybrid row and column storage. When creating a table,
you can set the table storage mode to row storage or column storage.

Row storage stores tables to disk partitions by row, and column storage stores
tables to disk partitions by column. By default, a table is created in row storage
mode. For details about differences between row storage and column storage, see
Figure 3-1.

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

Figure 3-1 Differences between row storage and column storage

In the preceding figure, the upper left part is a row-store table, and the upper
right part shows how the row-store table is stored on a disk; the lower left part is
a column-store table, and the lower right part shows how the column-store table
is stored on a disk.

The row/column storage of a table is specified by the orientation attribute in the
table definition. The value row indicates a row-store table and column indicates a
column-store table. The default value is row. Each storage mode applies to
specific scenarios. Select an appropriate mode when creating a table.

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

Table 3-2 Table storage modes and scenarios

Storage
Mode

Benefit Drawback Application Scenarios

Row
storage

Data is stored by
row. When you
query a row of
data, you can
quickly locate the
target row.

All data in the
queried row is
read while only a
few columns are
needed.

1. The number of
columns in the table is
small, and most fields
in the table are
queried.

2. Point queries (simple
index–based query that
returns only a few
records) are performed.

3. Add, Delete, Modify,
and Query operations
on entire rows are
frequently performed.

Column
storage

1. Only necessary
columns in a
query are read.

2. The
homogeneity
of data within
a column
facilitates
efficient
compression.

It is not suitable
for INSERT or
UPDATE
operations on a
small amount of
data.

1. Query a few columns
in a table that contains
a large number of
columns.

2. Statistical analysis
queries (requiring a
large number of
association and
grouping operations)

3. Ad hoc queries (using
uncertain query
conditions and unable
to utilize indexes to
scan row-store tables)

Creating a Row-store Table
For example, to create a row-store table named customer_t1, run the following
command:

CREATE TABLE customer_t1
(
 state_ID CHAR(2),
 state_NAME VARCHAR2(40),
 area_ID NUMBER
);

Creating a column-store table.
For example, to create a column-store table named customer_t2, run the
following command:

CREATE TABLE customer_t2
(
 state_ID CHAR(2),

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

 state_NAME VARCHAR2(40),
 area_ID NUMBER
)
WITH (ORIENTATION = COLUMN);

Table Compression
Table compression can be enabled when a table is created. Table compression
enables data in the table to be stored in compressed format to reduce memory
usage.

In scenarios where I/O is large (much data is read and written) and CPU is
sufficient (little data is computed), select a high compression ratio. In scenarios
where I/O is small and CPU is insufficient, select a low compression ratio. Based
on this principle, you are advised to select different compression ratios and test
and compare the results to select the optimal compression ratio as required.
Specify a compressions ratio using the COMPRESSION parameter. The supported
values are as follows:

● The valid value of column-store tables is YES, NO, LOW, MIDDLE, or HIGH,
and the default value is LOW.

● The valid values of row-store tables are YES and NO, and the default is NO.
(The row-store table compression function is not put into commercial use. To
use this function, contact technical support.)

The service scenarios applicable to each compression level are described in the
following table.

Compression
Level

Application Scenario

LOW The system CPU usage is high and the disk storage space is
sufficient.

MIDDLE The system CPU usage is moderate and the disk storage
space is insufficient.

HIGH The system CPU usage is low and the disk storage space is
insufficient.

For example, to create a compressed column-store table named customer_t3, run
the following command:

CREATE TABLE customer_t3
(
 state_ID CHAR(2),
 state_NAME VARCHAR2(40),
 area_ID NUMBER
)
WITH (ORIENTATION = COLUMN,COMPRESSION=middle);

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

3.5 Creating and Managing GaussDB(DWS) Partitioned
Tables

Partitioning refers to splitting what is logically one large table into smaller
physical pieces based on specific schemes. The table based on the logic is called a
partition cable, and a physical piece is called a partition. Data is stored on these
smaller physical pieces, namely, partitions, instead of the larger logical partitioned
table. During conditional query, the system scans only the partitions that meet the
conditions rather than scanning the entire table improving query performance.

Advantages of partitioned tables:

● Improved query performance. You can search in specific partitions, improving
the search efficiency.

● Enhanced availability. If a partition is faulty, data in other partitions is still
available.

● Improved maintainability. For expired historical data that needs to be
periodically deleted, you can quickly delete it by dropping or truncate
partitions.

Supported Table Partition Types
● Range partitioning: partitions are created based on a numeric range, for

example, by date or price range.
● List partitioning: partitions are created based on a list of values, such as sales

scope or product attribute. Only clusters of 8.1.3 and later versions support
this function.

Choosing to Partition a Table
You can choose to partition a table when the table has the following
characteristics:

● There are obvious ranges among the fields of the table.
A table is partitioned based on obvious rangeable fields. Generally, columns
such as date, area, and value are used for partitioning. The time column is
most commonly used.

● Queries to the table have obvious range characteristics.
If the queried data fall into specific ranges, its better tables are partitioned so
that through partition pruning, only the queried partition needs to be
scanned, improving data scanning efficiency and reducing the I/O overhead of
data scanning.

● The table contains a large amount of data.
Scanning small tables does not take much time, therefore the performance
benefits of partitioning are not significant. Therefore, you are advised to
partition only large tables. In column-store table, each column is an
independent file storage unit, and the minimum storage unit CU can store
60,000 rows of data. Therefore, for column-store partitioned tables, it is
recommended that the data volume in each partition be greater than or
equal to the number of DNs multiplied by 60,000.

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

Creating a Range Partitioned Table
Example: Create a table web_returns_p1 partitioned by the range
wr_returned_date_sk.
CREATE TABLE web_returns_p1
(
 wr_returned_date_sk integer,
 wr_returned_time_sk integer,
 wr_item_sk integer NOT NULL,
 wr_refunded_customer_sk integer
)
WITH (orientation = column)
DISTRIBUTE BY HASH (wr_item_sk)
PARTITION BY RANGE (wr_returned_date_sk)
(
 PARTITION p2016 VALUES LESS THAN(20161231),
 PARTITION p2017 VALUES LESS THAN(20171231),
 PARTITION p2018 VALUES LESS THAN(20181231),
 PARTITION p2019 VALUES LESS THAN(20191231),
 PARTITION pxxxx VALUES LESS THAN(maxvalue)
);

Create partitions in batches, with fixed partition ranges. The following example
can be used:
CREATE TABLE web_returns_p2
(
 wr_returned_date_sk integer,
 wr_returned_time_sk integer,
 wr_item_sk integer NOT NULL,
 wr_refunded_customer_sk integer
)
WITH (orientation = column)
DISTRIBUTE BY HASH (wr_item_sk)
PARTITION BY RANGE(wr_returned_date_sk)
(
 PARTITION p2016 START(20161231) END(20191231) EVERY(10000),
 PARTITION p0 END(maxvalue)
);

Partition the table web_returns_p2 by date and time, using time as the partition
key.
CREATE TABLE web_returns_p2
(
 id integer,
 idle numeric,
 IO numeric,
 scope text,
 IP text,
 time timestamp
)
 WITH (TTL='7 days',PERIOD='1 day')
PARTITION BY RANGE(time)
 (
 PARTITION P1 VALUES LESS THAN('2022-01-05 16:32:45'),
 PARTITION P2 VALUES LESS THAN('2022-01-06 16:56:12')
);

Creating a List Partitioned Table
A list partitioned table can use any column that allows value comparison as the
partition key column. When creating a list partitioned table, you must declare the
value partition for each partition.

Example: Create a list partitioned table sales_info.
CREATE TABLE sales_info
(

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

sale_time timestamptz,
period int,
city text,
price numeric(10,2),
remark varchar2(100)
)
DISTRIBUTE BY HASH(sale_time)
PARTITION BY LIST (period, city)
(
PARTITION province1_202201 VALUES (('202201', 'city1'), ('202201', 'city2')),
PARTITION province2_202201 VALUES (('202201', 'city3'), ('202201', 'city4'), ('202201', 'city5')),
PARTITION rest VALUES (DEFAULT)
);

Partitioning an Existing Table
A table can be partitioned only when it is created. If you want to partition a table,
you must create a partitioned table, load the data in the original table to the
partitioned table, delete the original table, and rename the partitioned table as
the name of the original table. You must also re-grant permissions on the table to
users. For example:
CREATE TABLE web_returns_p2
(
 wr_returned_date_sk integer,
 wr_returned_time_sk integer,
 wr_item_sk integer NOT NULL,
 wr_refunded_customer_sk integer
)
WITH (orientation = column)
DISTRIBUTE BY HASH (wr_item_sk)
PARTITION BY RANGE(wr_returned_date_sk)
(
 PARTITION p2016 START(20161231) END(20191231) EVERY(10000),
 PARTITION p0 END(maxvalue)
);
INSERT INTO web_returns_p2 SELECT * FROM web_returns_p1;
DROP TABLE web_returns_p1;
ALTER TABLE web_returns_p2 RENAME TO web_returns_p1;
GRANT ALL PRIVILEGES ON web_returns_p1 TO dbadmin;
GRANT SELECT ON web_returns_p1 TO jack;

Adding a Partition
Run the ALTER TABLE statement to add a partition to a partitioned table. For
example, to add partition P2020 to the web_returns_p1 table, run the following
command:
ALTER TABLE web_returns_p1 ADD PARTITION P2020 VALUES LESS THAN (20201231);

Splitting a Partition
The syntax for splitting a partition varies between a range partitioned table and a
list partitioned table.

● Run the ALTER TABLE statement to split a partition in a range partitioned
table. For example, the partition pxxxx of the table web_returns_p1 is split
into two partitions p2020 and p20xx at the splitting point 20201231.
ALTER TABLE web_returns_p1 SPLIT PARTITION pxxxx AT(20201231) INTO (PARTITION
p2020,PARTITION p20xx);

● Run the ALTER TABLE statement to split a partition in a list partitioned table.
For example, split the partition province2_202201 of table sales_inf into two
partitions province3_202201 and province4_202201.

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

ALTER TABLE sales_info SPLIT PARTITION province2_202201 VALUES(('202201', 'city5')) INTO
(PARTITION province3_202201,PARTITION province4_202201);

Merging Partitions
Run the ALTER TABLE statement to merge two partitions in a partitioned table.
For example, merge partitions p2016 and p2017 of table web_returns_p1 into
one partition p20162017.

ALTER TABLE web_returns_p1 MERGE PARTITIONS p2016,p2017 INTO PARTITION p20162017;

Deleting a Partition
Run the ALTER TABLE statement to delete a partition from a partitioned table. For
example, run the following command to delete partition P2020 from the
web_returns_p1 table:
ALTER TABLE web_returns_p1 DROP PARTITION P2020;

Querying a Partition
● Query partition p2019.

SELECT * FROM web_returns_p1 PARTITION (p2019);
SELECT * FROM web_returns_p1 PARTITION FOR (20201231);

● View partitioned tables using the system catalog dba_tab_partitions.
SELECT * FROM dba_tab_partitions where table_name='web_returns_p1';

Deleting a Partitioned Table
Run the DROP TABLE statement to delete a partitioned table.

DROP TABLE web_returns_p1;

3.6 Creating and Managing GaussDB(DWS) Indexes
Indexes accelerate the data access speed but also add the processing time of the
insert, update, and delete operations. Therefore, before creating an index, consider
whether it is necessary and determine the columns where indexes will be created.
You can determine whether to add an index for a table by analyzing the service
processing and data use of applications, as well as columns that are frequently
used as search criteria or need to be sorted.

Index type
● btree: The B-tree index uses a structure that is similar to the B+ tree structure

to store data key values, facilitating index search. btree supports comparison
queries with ranges specified.

● gin: GIN indexes are reverse indexes and can process values that contain
multiple keys (for example, arrays).

● gist: GiST indexes are suitable for the set data type and multidimensional
data types, such as geometric and geographic data types.

● Psort: psort index. It is used to perform partial sort on column-store tables.

Row-based tables support the following index types: btree (default), gin, and gist.
Column-based tables support the following index types: Psort (default), btree,
and gin.

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

NO TE

Create a B-tree index for point queries.

Index Selection Principles
Indexes are created based on columns in database tables. When creating indexes,
you need to determine the columns, which can be:

● Columns that are frequently searched: The search efficiency can be improved.
● The uniqueness of the columns and the data sequence structures is ensured.
● Columns that usually function as foreign keys and are used for connections.

Then the connection efficiency is improved.
● Columns that are usually searched for by a specified scope. These indexes

have already been arranged in a sequence, and the specified scope is
contiguous.

● Columns that need to be arranged in a sequence. These indexes have already
been arranged in a sequence, so the sequence query time is accelerated.

● Columns that usually use the WHERE clause. Then the condition decision
efficiency is increased.

● Fields that are frequently used after keywords, such as ORDER BY, GROUP
BY, and DISTINCT.

NO TE

● After an index is created, the system automatically determines when to reference
it. If the system determines that indexing is faster than sequenced scanning, the
index will be used.

● After an index is successfully created, it must be synchronized with the associated
table to ensure new data can be accurately located. Therefore, data operations
increase. Therefore, delete unnecessary indexes periodically.

Creating an Index
GaussDB(DWS) supports four methods for creating indexes. For details, see Table
3-3.

NO TE

● After an index is created, the system automatically determines when to reference it. If
the system determines that indexing is faster than sequenced scanning, the index will be
used.

● After an index is successfully created, it must be synchronized with the associated table
to ensure new data can be accurately located. Therefore, data operations increase.
Therefore, delete unnecessary indexes periodically.

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

Table 3-3 Indexing Method

Indexing
Method

Description

Unique index Refers to an index that constrains the uniqueness of an index
attribute or an attribute group. If a table declares unique
constraints or primary keys, GaussDB(DWS) automatically
creates unique indexes (or composite indexes) for columns that
form the primary keys or unique constraints. Currently, only B-
tree can create a unique index in GaussDB(DWS).

Composite
index

Refers to an index that can be defined for multiple attributes of
a table. Currently, composite indexes can be created only for B-
tree in GaussDB(DWS) and a maximum of 32 columns can
share a composite index.

Partial index Refers to an index that can be created for subsets of a table.
This indexing method contains only tuples that meet condition
expressions.

Expression
index

Refers to an index that is built on a function or an expression
calculated based on one or more attributes of a table. An
expression index works only when the queried expression is the
same as the created expression.

● Run the following command to create an ordinary table:
CREATE TABLE tpcds.customer_address_bak AS TABLE tpcds.customer_address;

● Create a common index.

You need to query the following information in the
tpcds.customer_address_bak table:
SELECT ca_address_sk FROM tpcds.customer_address_bak WHERE ca_address_sk=14888;

Generally, the database system needs to scan the
tpcds.customer_address_bak table row by row to find all matched tuples. If
the size of the tpcds.customer_address_bak table is large but only a few
(possibly zero or one) of the WHERE conditions are met, the performance of
this sequential scan is low. If the database system uses an index to maintain
the ca_address_sk attribute, the database system only needs to search a few
tree layers for the matched tuples. This greatly improves data query
performance. Furthermore, indexes can improve the update and delete
operation performance in the database.

Run the following command to create an index:
CREATE INDEX index_wr_returned_date_sk ON tpcds.customer_address_bak (ca_address_sk);

● Create a unique index.

If a table declares a unique constraint or primary key, GaussDB(DWS)
automatically creates a unique index (possibly a multi-column index) on the
columns that form the primary key or unique constraint. If no unique
constraint or primary key is specified during table creation, you can run the
CREATE INDEX statement to create an index.
CREATE UNIQUE INDEX unique_index ON tpcds.customer_address_bak(ca_address_sk);

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

● Create a multi-column index.
Assume you need to frequently query records with ca_address_sk being 5050
and ca_street_number smaller than 1000 in the
tpcds.customer_address_bak table. Run the following command:
SELECT ca_address_sk,ca_address_id FROM tpcds.customer_address_bak WHERE ca_address_sk =
5050 AND ca_street_number < 1000;

Run the following command to define a multiple-column index on
ca_address_sk and ca_street_number columns:
CREATE INDEX more_column_index ON
tpcds.customer_address_bak(ca_address_sk ,ca_street_number);

● Create a partition index.
If you only want to find records whose ca_address_sk is 5050, you can create
a partial index to facilitate your query.
CREATE INDEX part_index ON tpcds.customer_address_bak(ca_address_sk) WHERE ca_address_sk =
5050;

● Create an expression index.
Assume you need to frequently query records with ca_street_number smaller
than 1000, run the following command:
SELECT * FROM tpcds.customer_address_bak WHERE trunc(ca_street_number) < 1000;

The following expression index can be created for this query task:
CREATE INDEX para_index ON tpcds.customer_address_bak (trunc(ca_street_number));

Querying an Index
● Run the following command to query all indexes defined by the system and

users:
SELECT RELNAME FROM PG_CLASS WHERE RELKIND='i';

● Run the following command to query information about a specified index:
\di+ index_wr_returned_date_sk

Recreating an Index
● Recreate the index index_wr_returned_date_sk.

REINDEX INDEX index_wr_returned_date_sk;

● Recreate all indexes of a table.
REINDEX TABLE tpcds.customer_address_bak;

Deleting an Index
You can use the DROP INDEX statement to delete indexes.
DROP INDEX index_wr_returned_date_sk;

3.7 Creating and Using GaussDB(DWS) Sequences
A sequence is a database object that generates unique integers according to a
certain rule and is usually used to generate primary key values.

You can create a sequence for a column in either of the following methods:
● Set the data type of a column to sequence integer. A sequence will be

automatically created by the database for this column.
● Use CREATE SEQUENCE to create a new sequenc. Use the

nextval('sequence_name') function to increment the sequence and return a

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

new value. Specify the default value of the column as the sequence value
returned by the nextval('sequence_name') function. In this way, this column
can be used as a unique identifier.

Creating a Sequence.

Method 1: Set the data type of a column to a sequence integer. For example:
CREATE TABLE T1
(
 id serial,
 name text
);

Method 2: Create a sequence and set the initial value of the
nextval('sequence_name') function to the default value of a column. You can
cache a specific number of sequence values to reduce the requests to the GTM,
improving the performance.

1. Create a sequence.
CREATE SEQUENCE seq1 cache 100;

2. Set the initial value of the nextval('sequence_name') function to the default
value of a column.
CREATE TABLE T2
(
 id int not null default nextval('seq1'),
 name text
);

NO TE

Methods 1 and 2 are similar except that method 2 specifies cache for the sequence. A
sequence using cache has holes (non-consecutive values, for example, 1, 4, 5) and cannot
keep the order of the values. After a sequence is deleted, its sub-sequences will be deleted
automatically. A sequence shared by multiple columns is not forbidden in a database, but
you are not advised to do that.

Currently, the preceding two methods cannot be used for existing tables.

Modifying a Sequence

The ALTER SEQUENCE statement changes the attributes of an existing sequence,
including the owner, owning column, and maximum value.

● Associate the sequence with a column.

The sequence will be deleted when you delete the column or the table where
the column resides.
ALTER SEQUENCE seq1 OWNED BY T2.id;

● Modify the maximum value of serial to 300.
ALTER SEQUENCE seq1 MAXVALUE 300;

Deleting a Sequence

Run the DROP SEQUENCE command to delete a sequence. For example, to delete
the sequence named seq1, run the following command:

DROP SEQUENCE seq1;

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

Precautions

Sequence values are generated by the GTM. By default, each request for a
sequence value is sent to the GTM. The GTM calculates the result of the current
value plus the step and then returns the result. As GTM is a globally unique node,
generating default sequence numbers can cause performance issues. For
operations that need frequent sequence number generation, such as bulkload data
import, this is not recommended. For example, the INSERT FROM SELECT
statement has poor performance in the following scenario:

CREATE SEQUENCE newSeq1;
CREATE TABLE newT1
 (
 id int not null default nextval('newSeq1'),
 name text
);
INSERT INTO newT1(name) SELECT name from T1;

To improve the performance, run the following statements (assume that data of
10,000 rows will be imported from T1 to newT1):

INSERT INTO newT1(id, name) SELECT id,name from T1;
SELECT SETVAL('newSeq1',10000);

NO TE

Rollback is not supported by sequence functions, including nextval() and setval(). The
value of the setval function immediately takes effect on nextval in the current session in
any cases and take effect in other sessions only when no cache is specified for them. If
cache is specified for a session, it takes effect only after all the cached values have been
used. To avoid duplicate values, use setval only when necessary. Do not set it to an existing
sequence value or a cached sequence value.

If BulkLoad is used, set sufficient cache for newSeq1 and do not set Maxvalue or
Minvalue. To improve the performance, database may push down the invocation
of nextval('sequence_name') to DNs. Currently, the concurrent connection
requests that can be processed by the GTM are limited. If there are too many DNs,
a large number of concurrent connection requests will be sent to the GTM. In this
case, you need to limit the concurrent connection of BulkLoad to save the GTM
connection resources. If the target table is a replication table (DISTRIBUTE BY
REPLICATION), pushdown cannot be performed. If the data volume is large, this
will be a disaster for the database. In addition, the database space may be
exhausted. After the import is complete, do VACUUM FULL. Therefore, you are
not advised to use sequences when BulkLoad is used.

After a sequence is created, a single-row table is maintained on each node to
store the sequence definition and value, which is obtained from the last
interaction with the GTM rather than updated in real time. The single-row table
on a node does not update when other nodes request a new value from the GTM
or when the sequence is modified using setval.

3.8 Creating and Managing GaussDB(DWS) Views
Views allow users to save queries. Views are not physically stored on disks. Queries
to a view run as subqueries. A database only stores the definition of a view and
does not store its data. The data is still stored in the original base table. If data in
the base table changes, the data in the view changes accordingly. In this sense, a

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

view is like a window through which users can know their interested data and
data changes in the database. A view is triggered every time it is referenced.

Creating a view

Run the CREATE VIEW command to create a view.
CREATE OR REPLACE VIEW MyView AS SELECT * FROM tpcds.customer WHERE c_customer_sk < 150;

NO TE

The OR REPLACE parameter in this command is optional. It indicates that if the view exists,
the new view will replace the existing view.

View Details
● View the MyView view. Real-time data will be returned.

SELECT * FROM myview;

● Run the following command to query the views in the current user:
SELECT * FROM user_views;

● Run the following command to query all views:
SELECT * FROM dba_views;

● View details about a specified view.
Run the following command to view details about the dba_users view:
\d+ dba_users
 View "PG_CATALOG.DBA_USERS"
 Column | Type | Modifiers | Storage | Description
----------+-----------------------+-----------+----------+-------------
 USERNAME | CHARACTER VARYING(64) | | extended |
View definition:
 SELECT PG_AUTHID.ROLNAME::CHARACTER VARYING(64) AS USERNAME
 FROM PG_AUTHID;

Rebuilding a View

Run the ALTER VIEW command to rebuild a view without entering query
statements.

ALTER VIEW myview REBUILD;

Deleting a View

Run the DROP VIEW command to delete a view.
DROP VIEW myview;

DROP VIEW ... The CASCADE command can be used to delete objects that depend
on the view. For example, view A depends on view B. If view B is deleted, view A
will also be deleted. Without the CASCADE option, the DROP VIEW command will
fail.

3.9 Creating and Managing GaussDB(DWS) Scheduled
Tasks

GaussDB(DWS) allows users to create scheduled tasks, which are automatically
executed at specified time points, reducing O&M workload.

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

Database complies with the Oracle scheduled task function using the DBMS.JOB
interface, which can be used to create scheduled tasks, execute tasks
automatically, delete a task, and modify task attributes(including task ID, enable/
disable a task, the task triggering time/interval and task contents).

NO TE

● The hybrid data warehouse (standalone) does not support scheduled tasks.
● The execution statements of scheduled tasks are not recorded in the Real-time Top SQL

logs. The statements can be recorded only in versions later than 8.2.1.
● By default, GaussDB(DWS) uses the UTC time. The execution time of the scheduled task

needs to be converted to the time zone of the user.

Periodic Task Management

Step 1 Creates a test table.
CREATE TABLE test(id int, time date);

If the following information is displayed, the table has been created.

CREATE TABLE

Step 2 Create the customized storage procedure.
CREATE OR REPLACE PROCEDURE PRC_JOB_1()
AS
N_NUM integer :=1;
BEGIN
FOR I IN 1..1000 LOOP
INSERT INTO test VALUES(I,SYSDATE);
END LOOP;
END;
/

If the following information is displayed, the procedure has been created.

CREATE PROCEDURE

Step 3 Create a task.
● Create a task with unspecified job_id and execute the PRC_JOB_1 storage

procedure every two minutes.
call dbms_job.submit('call public.prc_job_1(); ', sysdate, 'interval ''1 minute''', :a);
job

1
(1 row)

● Create task with specified job_id.
call dbms_job.isubmit(2,'call public.prc_job_1(); ', sysdate, 'interval ''1 minute''');
isubmit

(1 row)

Step 4 View the created task information about the current user in the USER_JOBS view.

Only the system administrator can access this system view. For details about the
fields, see Table 14-337.

postgresselect job,dbname,start_date,last_date,this_date,next_date,broken,status,interval,failures,what from
user_jobs;
 job | dbname | start_date | last_date | this_date | next_date |
broken | status | interval | failures | what

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

-----+----------+----------------------------+----------------------------+----------------------------
+---------------------+--------+--------+---------------------+----------+----------------

 1 | db_demo | 2022-03-25 07:58:01.829436 | 2022-03-25 07:58:03.174817 | 2022-03-25 07:58:01.829436 |
2022-03-25 07:59:01 | n | s | interval '1 minute' | 0 | call public.prc
_job_1();
 2 | db_demo | 2022-03-25 07:58:15.893383 | 2022-03-25 07:58:16.608959 | 2022-03-25 07:58:15.893383 |
2022-03-25 07:59:15 | n | s | interval '1 minute' | 0 | call public.prc
_job_1();
(2 rows)

Step 5 Stop a task.
call dbms_job.broken(1,true);
broken

(1 row)

Step 6 Start a task.
call dbms_job.broken(1,false);
broken

(1 row)

Step 7 Modify attributes of a task.

● Modify the Next_date parameter information about a task. For example,
change the value of Next_date of Job1 to 1 hour.
call dbms_job.next_date(1, sysdate+1.0/24);
next_date

(1 row)

● Modify the Interval parameter information of a task. For example, change
the value of Interval of Job1 to 1 hour.
call dbms_job.interval(1,'sysdate + 1.0/24');
interval

(1 row)

● Modify the What parameter information of a JOB. For example, change
What of Job1 to insert into public.test values(333, sysdate+5).
call dbms_job.what(1,'insert into public.test values(333, sysdate+5);');
what

(1 row)

● Modify Next_date, Interval, and What parameter information of JOB.
call dbms_job.change(1, 'call public.prc_job_1();', sysdate, 'interval ''1 minute''');
change

(1 row)

Step 8 Delete a job.
call dbms_job.remove(1);
remove

(1 row)

Step 9 Set job permissions.

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

● During the creation of a job, the job is bound to the user and database that
created the job. Accordingly, the user and database are added to dbname and
log_user columns in the pg_job system view, respectively.

● If the current user is a DBA user, system administrator, or the user who
created the job (log_user in pg_job), the user has the permissions to delete
or modify parameter settings of the job using the remove, change, next_data,
what, or interval interface. Otherwise, the system displays a message
indicating that the current user has no permission to perform operations on
the JOB.

● If the current database is the one that created a job, (that is, dbname in
pg_job), you can delete or modify parameter settings of the job using the
remove, change, next_data, what, or interval interface.

● When deleting the database that created a job, (that is, dbname in pg_job),
the system associatively deletes the job records of the database.

● When deleting the user who created a job, (that is, log_user in pg_job), the
system associatively deletes the job records of the user.

----End

3.10 Viewing GaussDB(DWS) System Catalogs
In addition to the created tables, a database contains many system catalogs These
system catalogs contain cluster installation information and information about
various queries and processes in GaussDB(DWS). You can collect information
about the database by querying the system catalog.

Querying Database Tables
For example, query the PG_TABLES system catalog for all tables in the public
schema.

SELECT distinct(tablename) FROM pg_tables WHERE SCHEMANAME = 'public';

Information similar to the following is displayed:

 tablename

 err_hr_staffs
 test
 err_hr_staffs_ft3
 web_returns_p1
 mig_seq_table
 films4
(6 rows)

Viewing Database Users
You can run the PG_USER command to view the list of all users in the database,
and view the user ID (USESYSID) and permissions.

SELECT * FROM pg_user;
usename | usesysid | usecreatedb | usesuper | usecatupd | userepl | passwd | valbegin | valuntil | respool
| parent | spacelimit | useconfig | nodegroup | tempspacelimit | spillspacelim
it
---------+----------+-------------+----------+-----------+---------+----------+----------+----------+--------------
+--------+------------+-----------+-----------+----------------+--------------

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

 Ruby | 10 | t | t | t | t | ******** | | | default_pool | 0 |
| | | |
 dbadmin | 16393 | f | f | f | f | ******** | | | default_pool | 0 |
| | | |
 lily | 16691 | f | f | f | f | ******** | | | default_pool | 0 |
| | | |
 jack | 70694 | f | f | f | f | ******** | | | default_pool | 0 |
| | | |
(4 rows)

GaussDB(DWS) uses Ruby to perform routine management and maintenance. You
can add WHERE usesysid > 10 to the SELECT statement to filter queries so that
only specified user names are displayed.

SELECT * FROM pg_user WHERE usesysid > 10;
 usename | usesysid | usecreatedb | usesuper | usecatupd | userepl | passwd | valbegin | valuntil |
respool | parent | spacelimit | useconfig | nodegroup | tempspacelimit | spillspacelim
it
---------+----------+-------------+----------+-----------+---------+----------+----------+----------+--------------
+--------+------------+-----------+-----------+----------------+--------------

 dbadmin | 16393 | f | f | f | f | ******** | | | default_pool | 0 |
| | | |
 lily | 16691 | f | f | f | f | ******** | | | default_pool | 0 |
| | | |
 jack | 70694 | f | f | f | f | ******** | | | default_pool | 0 |
| | | |
(3 rows)

Viewing and Stopping the Running Query Statements
You can view the running query statements in the PG_STAT_ALL_INDEXES view.
Do as follows:

Step 1 Set the parameter track_activities to on.
SET track_activities = on;

The database collects the running information about active queries only if the
parameter is set to on.

Step 2 View the running query statements. Run the following command to view the
database names, users, query statuses, and PIDs of the running query statements:
SELECT datname, usename, state,pid FROM pg_stat_activity;

If the state column is idle, the connection is idle and requires a user to enter a
command.

To identify only active query statements, run the following command:

SELECT datname, usename, state FROM pg_stat_activity WHERE state != 'idle';

Step 3 To cancel queries that have been running for a long time, use the
PG_TERMINATE_BACKEND function to end sessions based on the thread ID.
SELECT PG_TERMINATE_BACKEND(139834759993104);

If information similar to the following is displayed, the session is successfully
terminated:

PG_TERMINATE_BACKEND

 t
(1 row)

If information similar to the following is displayed, a user has terminated the
current session.

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

FATAL: terminating connection due to administrator command
FATAL: terminating connection due to administrator command

NO TE

If the PG_TERMINATE_BACKEND function is used to terminate the backend threads of the
current session, the gsql client will be reconnected automatically rather than be logged out.
The message "The connection to the server was lost." is returned. Attempting reset:
Succeeded."
FATAL: terminating connection due to administrator command
FATAL: terminating connection due to administrator command
The connection to the server was lost. Attempting reset: Succeeded.

----End

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

4 Syntax Compatibility Differences Among
Oracle, Teradata, and MySQL

In GaussDB(DWS), DBCOMPATIBILITY can be set to TD, Oracle, or MySQL to be
compatible with Teradata, Oracle, or MySQL syntax, respectively. Syntax behavior
varies with the three modes.

The database compatibility model can be specified using the DBCOMPATIBILITY
parameter when creating a database. For details, refer to the CREATE DATABASE
syntax.

CREATE DATABASE ora_compatible_db DBCOMPATIBILITY 'ORA';

Table 4-1 Compatibility differences

Compatibility
Item

Oracle Teradata MySQL

Empty string Only null is
available.

An empty string is
distinguished from
null.

An empty string is
distinguished from
null.

Conversion of
an empty
string to a
number

null 0 0

Automatic
truncation of
overlong
characters

Not supported Supported (set GUC
parameter
td_compatible_trun
cation to ON)

Not supported

Data Warehouse Service
Developer Guide

4 Syntax Compatibility Differences Among Oracle,
Teradata, and MySQL

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

Compatibility
Item

Oracle Teradata MySQL

null
concatenation

Returns a non-
null object after
combining a
non-null object
with null.
For example,
'abc'||null
returns 'abc'.

The
strict_text_concat_t
d option is added to
the GUC parameter
behavior_compat_o
ptions to be
compatible with the
Teradata behavior.
After the null type is
concatenated, null is
returned.
For example, 'abc'||
null returns null.

Compatible with
MySQL behavior.
After the null type is
concatenated, null is
returned.
For example, 'abc'||
null returns null.

Concatenatio
n of the
char(n) type

Removes spaces
and placeholders
on the right
when the char(n)
type is
concatenated.
For example,
cast('a' as
char(3))||'b'
returns 'ab'.

After the
bpchar_text_withou
t_rtrim option is
added to the GUC
parameter
behavior_compat_o
ptions, when the
char(n) type is
concatenated,
spaces are reserved
and supplemented
to the specified
length n.
Currently, ignoring
spaces at the end of
a string for
comparison is not
supported. If the
concatenated string
contains spaces at
the end, the
comparison is space-
sensitive.
For example,
cast('a' as
char(3))||'b' returns
'a b'.

Removes spaces and
placeholders on the
right.

concat(str1,str
2)

Returns the
concatenation of
all non-null
strings.

Returns the
concatenation of all
non-null strings.

If an input
parameter is null,
null is returned.

Data Warehouse Service
Developer Guide

4 Syntax Compatibility Differences Among Oracle,
Teradata, and MySQL

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

Compatibility
Item

Oracle Teradata MySQL

left and right
processing of
negative
values

Returns all
characters except
the first and last
|n| characters.

Returns all
characters except
the first and last |n|
characters.

Returns an empty
string.

lpad(string
text, length
int [, fill text])
rpad(string
text, length
int [, fill text])

Fills up the string
to the specified
length by
appending the
fill characters (a
space by
default). If the
string is already
longer than
length then it is
truncated (on
the right). If fill
is an empty
string or length
is a negative
number, null is
returned.

If fill is an empty
string and the string
length is less than
the specified length,
the original string is
returned. If length is
a negative number,
an empty string is
returned.

If fill is an empty
string and the string
length is less than
the specified length,
an empty string is
returned. If length is
a negative number,
null is returned.

substr(str, s[,
n])

If s is set to 0,
the first n
characters are
returned.

If s is set to 0, the
first n characters are
returned.

If s is set to 0, an
empty string is
returned.

substring(str,
s[, n])
substring(str
[from s] [for
n])

If s is set to 0,
the first n - 1
characters are
returned.
If s is < 0, the
first s + n - 1
characters are
returned.
If n is < 0, an
error is reported.

If s is set to 0, the
first n - 1 characters
are returned.
If s is < 0, the first s
+ n - 1 characters
are returned.
If n is < 0, an error is
reported.

If s is set to 0, an
empty string is
returned.
If s is < 0, n
characters starting
from the last |s|
character are
truncated.
If n is < 0, an empty
string is returned.

trim, ltrim,
rtrim,
btrim(string[,
characters])

Removes the
longest string
that contains
only the
characters (a
space by default)
in the characters
from a specified
position of the
string.

Removes the longest
string that contains
only the characters
(a space by default)
in the characters
from a specified
position of the
string.

Removes the string
that is equivalent to
characters (a space
by default) from a
specified position of
the string.

Data Warehouse Service
Developer Guide

4 Syntax Compatibility Differences Among Oracle,
Teradata, and MySQL

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

Compatibility
Item

Oracle Teradata MySQL

log(x) Returns the
logarithm with
10 as the base.

Returns the
logarithm with 10 as
the base.

Returns the natural
logarithm.

mod(x, 0) Returns x if the
divisor is 0.

Returns x if the
divisor is 0.

Reports an error if
the divisor is 0.

date data
type

Converts the
date data type to
the timestamp
data type which
stores year,
month, day, hour,
minute, and
second values.

Stores year and
month values.

Stores year and
month values.

to_char(date) The maximum
value of the
input parameter
can only be the
maximum value
of the timestamp
type. The
maximum value
of the date type
is not supported.
The return value
is of the
timestamp type.

The maximum value
of the input
parameter can only
be the maximum
value of the
timestamp type. The
maximum value of
the date type is not
supported. The
return value is of the
date type in
YYYY/MM/DD
format. (The GUC
parameter
convert_empty_str_
to_null_td is
enabled.)

Only the timestamp
type and the date
type support the
maximum input
value. The return
value is of the date
type.

to_date,
to_timestamp,
and
to_number
processing of
empty strings

Returns null. Returns null. (The
convert_empty_str_
to_null_td
parameter is
enabled.)

to_date and
to_timestamp
returns null. If the
parameter passed to
to_number is an
empty string, 0 is
returned.

Return value
types of
last_day and
next_day

Returns values of
the timestamp
type.

Returns values of
the timestamp type.

Returns values of
the date type.

Data Warehouse Service
Developer Guide

4 Syntax Compatibility Differences Among Oracle,
Teradata, and MySQL

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

Compatibility
Item

Oracle Teradata MySQL

Return value
type of
add_months

Returns values of
the timestamp
type.

Returns values of
the timestamp type.

If the input
parameter is of the
date type, the return
value is of the date
type.
If the input
parameter is of the
timestamp type, the
return value is of the
timestamp type.
If the input
parameter is of the
timestamptz type,
the return value is of
the timestamptz
type.

CURRENT_TI
ME
CURRENT_TI
ME(p)

Obtains the time
of the current
transaction. The
return value is of
the timetz type.

Obtains the time of
the current
transaction. The
return value is of the
timetz type.

Obtains the
execution time of
the current
statement. The
return value is of the
time type.

CURRENT_TI
MESTAMP
CURRENT_TI
MESTAMP(p)

Obtains the
execution time of
the current
statement. The
return value is of
the timestamptz
type.

Obtains the
execution time of
the current
statement. The
return value is of the
timestamptz type.

Obtains the
execution time of
the current
statement. The
return value is of the
timestamp type.

CURDATE Not supported Not supported Obtains the
execution date of
the current
statement. The
return value is of the
date type.

CURTIME(p) Not supported Not supported Obtains the
execution time of
the current
statement. The
return value is of the
time type.

Data Warehouse Service
Developer Guide

4 Syntax Compatibility Differences Among Oracle,
Teradata, and MySQL

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

Compatibility
Item

Oracle Teradata MySQL

LOCALTIME
LOCALTIME(p
)

Obtains the time
of the current
transaction. The
return value is of
the time type.

Obtains the time of
the current
transaction. The
return value is of the
time type.

Obtains the
execution time of
the current
statement. The
return value is of the
timestamp type.

LOCALTIMEST
AMP
LOCALTIMEST
AMP(p)

Obtains the time
of the current
transaction. The
return value is of
the timestamp
type.

Obtains the time of
the current
transaction. The
return value is of the
timestamp type.

Obtains the
execution time of
the current
statement. The
return value is of the
timestamp type.

SYSDATE
SYSDATE(p)

Obtains the
execution time of
the current
statement. The
return value is of
the timestamp(0)
type.

Obtains the
execution time of
the current
statement. The
return value is of the
timestamp(0) type.

Obtains the current
system time. The
return value is of the
timestamp(0) type.
This function cannot
be pushed down.
You are advised to
use current_date
instead.

now() Obtains the time
of the current
transaction. The
return value is of
the timestamptz
type.

Obtains the time of
the current
transaction. The
return value is of the
timestamptz type.

Obtains the
statement execution
time. The return
value is of the
timestamptz type.

Operator ^ Performs
exponentiation.

Performs
exponentiation.

Performs the
exclusive OR
operation.

Expressions
GREATEST
and LEAST

Returns the
comparison
results of all
non-null input
parameters.

Returns the
comparison results
of all non-null input
parameters.

If an input
parameter is null,
null is returned.

Data Warehouse Service
Developer Guide

4 Syntax Compatibility Differences Among Oracle,
Teradata, and MySQL

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

Compatibility
Item

Oracle Teradata MySQL

Different
input
parameter
types of CASE,
COALESCE, IF,
and IFNULL
expressions

Reports error. Is compatible with
behavior of Teradata
and supports type
conversion between
digits and strings.
For example, if input
parameters for
COALESCE are of
INT and VARCHAR
types, the
parameters are
resolved as
VARCHAR type.

Is compatible with
behavior of MySQL
and supports type
conversion between
strings and other
types. For example,
if input parameters
for COALESCE are of
DATE, INT, and
VARCHAR types, the
parameters are
resolved as
VARCHAR type.

Backquote (`) Not supported Not supported Distinguishes
MySQL reserved
words from common
characters.

Data Warehouse Service
Developer Guide

4 Syntax Compatibility Differences Among Oracle,
Teradata, and MySQL

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

5 GaussDB(DWS) Database Security
Management

5.1 GaussDB(DWS) User and Permissions Management

5.1.1 GaussDB(DWS) Database User Types
Without separation of permissions, GaussDB(DWS) supports two types of
database accounts: administrator and common user. For details about user types
and permissions under separation of permissions, see Separation of Duties in
GaussDB(DWS).

● The administrator can manage all common users and databases.
● Common users can connect to and access the database, and perform specific

database operations and execute SQL statements after being authorized.

Users are authenticated when they log in to the GaussDB(DWS) database. A user
can own databases and database objects (such as tables), and grant permissions
of these objects to other users and roles. In addition to system administrators,
users with the CREATEDB attribute can create databases and grant permissions to
these databases.

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

Database User Types

Table 5-1 Database user types

User
Type

Description Allowed Operations How to Create

Admi
nistra
tor
dbad
min

An
administrator,
also called a
system
administrator,
is an account
with the
SYSADMIN
attribute.

If separation of
permissions is not
enabled, this account has
the highest permission in
the system and can
perform all operations.
The system administrator
has the same permissions
as the object owner.

● User dbadmin created
during cluster creation
on the GaussDB(DWS)
management console is
a system administrator.

● Use the CREATE USER
or ALTER USER syntax
to create an
administrator.
CREATE USER sysadmin WITH
SYSADMIN password
'{Password}';
ALTER USER u1 SYSADMIN;

Com
mon
user

Common user ● Use a tool to connect
to the database.

● Have the attributes of
specific database
system operations, such
as CREATEDB,
CREATEROLE, and
SYSADMIN.

● Access database
objects.

● Run SQL statements.

Run the CREATE USER
syntax to create a
common user.
CREATE USER u1 PASSWORD
'{Password}';

Private user A user created with the
INDEPENDENT attribute
in non-separation-of-
permissions mode.
Database administrators
can manage (DROP,
ALTER, and TRUNCATE)
objects of private users
but cannot access
(INSERT, DELETE,
SELECT, UPDATE, COPY,
GRANT, REVOKE, and
ALTER OWNER) the
objects before being
authorized.

Use the CREATE USER
syntax to create a private
user.
CREATE USER user_independent
WITH INDEPENDENT IDENTIFIED
BY '{Password}';

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

5.1.2 GaussDB(DWS) Database User Management
You can use CREATE USER and ALTER USER to create and manage database
users.

● In the non-separation-of-permission mode, a GaussDB(DWS) user account
can be created and deleted only by a system administrator or a security
administrator with the CREATEROLE attribute.

● In separation-of-permission mode, a user account can be created only by a
security administrator.

Creating a User

The CREATE USER statement is used to create a GaussDB (DWS) user. After
creating a user, you can use the user to connect to the database.

● Create common user u1 and assign the CREATEDB attribute to the user.
CREATE USER u1 WITH CREATEDB PASSWORD '{Password}';

● To create the system administrator mydbadmin, you need to specify the
SYSADMIN parameter.
CREATE USER mydbadmin sysadmin PASSWORD '{Password}';

● View the created user in the PG_USER view.
SELECT * FROM pg_user;

● To view user attributes, query the system catalog PG_AUTHID.
SELECT * FROM pg_authid;

Altering User Attributes

The ALTER USER statement is used to alter user attributes, such as changing user
passwords or permissions.

Example:

● Rename user u1 to u2.
ALTER USER u1 RENAME TO u2;

● Grant the CREATEROLE permission to user u1:
ALTER USER u1 CREATEROLE;

● For details about how to change the user password, see Setting and
Changing a Password.

Locking a User

The ACCOUNT LOCK | ACCOUNT UNLOCK parameter in the statement is used to
lock or unlock a user. A locked user cannot log in to the system. If an account is
stolen or illegally accessed, the administrator can manually lock the account. After
the account is secured, the administrator can manually unlock the account.

Example:

● To lock user u1, run the following command:
ALTER USER u1 ACCOUNT LOCK;

● To unlock user u1, run the following command:
ALTER USER u1 ACCOUNT UNLOCK;

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

Deleting a User

The DROP USER statement is used to delete one or more GaussDB(DWS) users.
An administrator can delete an account that is no longer used. Deleted users
cannot be restored.

● If multiple users are deleted at the same time, separate them with commas
(,).

● After a user is deleted successfully, all the permissions of the user are also
deleted.

● When an account to be deleted is in the active state, it is deleted after the
session is disconnected.

● When CASCADE is specified in the DROP USER statement, objects such as
tables that depend on the user will be deleted. That is, the objects whose
owner is the user are deleted, and the authorizations of other objects to the
user are also deleted.

Example:

● -- Delete user u1.
DROP USER u1;

● Delete account u2 in a cascading manner.
DROP USER u2 CASCADE;

5.1.3 Creating a Custom Password Policy for GaussDB(DWS)
When creating or modifying a user, you need to specify a password.
GaussDB(DWS) has default password complexity requirements. You can also
define database account password policies.

Default GaussDB(DWS) Password Policy

By default, GaussDB(DWS) verifies the password complexity (that is, the GUC
parameter password_policy is set to 1 by default). The default password policy
requires that the password:

● Contain 8 to 32 characters.

● Contain at least three types of the following characters: uppercase letters,
lowercase letters, digits, and special characters.

● Cannot be the same as the user name or the user name in reverse order, case
insensitive.

● Cannot be the current password or the current password in reverse order.

User-defined Password Policy

The password policy includes the password complexity requirements, password
validity period, password reuse settings, password encryption mode, and password
retry and lock policies. Different policy items are controlled by the corresponding
GUC parameters. For details, see Security and Authentication (postgresql.conf).

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

Table 5-2 User-defined password policies and corresponding GUC parameters

Password
Policy

Parameter Description Value Range Defa
ult
Value
in
Gaus
sDB(
DWS
)

Password
complexity
check

password_p
olicy

Specifies
whether to
check the
password
complexity
when a
GaussDB(DW
S) account is
created or
modified.

Integer, 0 or 1
● 0 indicates that no

password complexity
policy is used. Setting
this parameter to 0
leads to security risks.
You are advised not to
set this parameter to 0.

● 1 indicates that the
default password
complexity policy is
used.

1

Password
complexity
requirement

password_
min_length

Specifies the
minimum
password
length.

An integer ranging from 6
to 999

8

password_
max_length

Specifies the
maximum
password
length.

An integer ranging from 6
to 999

32

password_
min_upperc
ase

Minimum
number of
uppercase
letters (A-Z)

An integer ranging from 0
to 999
● 0 means no

requirements.
● 1-999 indicates the

minimum number of
uppercase letters in the
password.

0

password_
min_lowerc
ase

Minimum
number of
lowercase
letters (a-z)

An integer ranging from 0
to 999
● 0 means no

requirements.
● 1-999 indicates the

minimum number of
lower letters in the
password.

0

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

Password
Policy

Parameter Description Value Range Defa
ult
Value
in
Gaus
sDB(
DWS
)

password_
min_digital

Minimum
number of
digits (0-9)

An integer ranging from 0
to 999
● 0 means no

requirements.
● 1-999 indicates the

minimum number of
digits in the password.

0

password_
min_special

Minimum
number of
special
characters
(Table 5-3
lists the
special
characters.)

An integer ranging from 0
to 999
● 0 means no

requirements.
● 1-999 indicates the

minimum number of
special characters in
the password.

0

Password
validity

password_ef
fect_time

Password
validity period
When the
number of
days in
advance a
user is
notified that
the password
is about to
expire reaches
the value of
password_no
tify_time, the
system
prompts the
user to
change the
password
when the user
logs in to the
database.

The value is a floating
point number ranging
from 0 to 999. The unit is
day.
● 0 indicates the validity

period is disabled.
● A floating point

number from 1 to 999
indicates the validity
period of the password.
When the password is
about to expire or has
expired, the system
prompts the user to
change the password.

90

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

Password
Policy

Parameter Description Value Range Defa
ult
Value
in
Gaus
sDB(
DWS
)

password_n
otify_time

Specifies for
how many
days you are
reminded of
the password
expiry.

The value is an integer
ranging from 0 to 999.
The unit is day.
● 0 indicates the

reminder is disabled.
● A value ranging from 1

to 999 indicates the
number of days prior
to password expiration
that a user will receive
a notification.

7

Password
reuse
settings

password_r
euse_time

Specifies the
number of
days after
which the
password
cannot be
reused.

A Floating point number
ranging from 0 to 3650.
The unit is day.
● 0 indicates that the

password reuse days
are not checked.

● A positive number
indicates that the new
password cannot be
chosen from passwords
in history that are
newer than the
specified number of
days.

60

password_r
euse_max

Specifies the
number of
the most
recent
passwords
that the new
password
cannot be
chosen from.

An integer ranging from 0
to 1000
● 0 indicates that the

password reuse times
are not checked.

● A positive number
indicates that the new
password cannot be
chosen from the
specified number of the
most recent passwords.

0

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

Password
Policy

Parameter Description Value Range Defa
ult
Value
in
Gaus
sDB(
DWS
)

Encryption
mode

password_e
ncryption_t
ype

Specifies the
password
storage
encryption
mode.

0, 1, 2
● 0 indicates that

passwords are
encrypted in MD5
mode. The password is
encrypted using MD5.
This mode is not
recommended for
users.

● 1 indicates that
passwords are
encrypted with
SHA-256, which is
compatible with the
MD5 user
authentication method
of the PostgreSQL
client. The password is
stored in ciphertext
encrypted by MD5 and
SHA256.

● 2 indicates that
passwords are
encrypted using
SHA-256. The password
is encrypted using
SHA256.

1

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

Password
Policy

Parameter Description Value Range Defa
ult
Value
in
Gaus
sDB(
DWS
)

Retry and
lock

password_lo
ck_time

Specifies the
duration for a
locked
account to be
automatically
unlocked.

A Floating point number
ranging from 0 to 365.
The unit is day.
● 0 indicates that the

account is not
automatically locked if
the password
verification fails.

● A positive number
indicates the duration
after which a locked
account is
automatically unlocked.
NOTE

The integral part of the
value of the
password_lock_time
parameter indicates the
number of days and its
decimal part can be
converted into hours,
minutes, and seconds.

1

failed_login
_attempts

If the number
of incorrect
password
attempts
reaches the
value of
failed_login_a
ttempts, the
account is
locked and
will be
automatically
unlocked in X
(which
indicates the
value of
password_loc
k_time)
seconds.

An integer ranging from 0
to 1000
● 0 indicates that the

automatic locking
function does not take
effect.

● A positive number
indicates that an
account is locked when
the number of incorrect
password attempts
reaches the value of
failed_login_attempts.

10

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

Table 5-3 Special characters

No. Chara
cter

No. Charac
ter

No. Charac
ter

No. Charact
er

1 ~ 9 * 17 | 25 <

2 ! 10 (18 [26 .

3 @ 11) 19 { 27 >

4 # 12 - 20 } 28 /

5 $ 13 _ 21] 29 ?

6 % 14 = 22 ; - -

7 ^ 15 + 23 : - -

8 & 16 \ 24 , - -

Example of User-defined Password Policies

Example 1: Configure the password complexity parameter password_policy.

1. Log in to the GaussDB(DWS) management console.

2. In the navigation pane on the left, choose Clusters.

3. In the cluster list, find the target cluster and click the cluster name. The
Cluster Information page is displayed.

4. Click the Parameters tab, change the value of password_policy, and click
Save. The password_policy parameter takes effect immediately after being
modified. You do not need to restart the cluster.

Figure 5-1 password_policy

Example 2: Configure password_effect_time for password validity period.

1. Log in to the GaussDB(DWS) management console.

2. In the navigation pane on the left, choose Clusters.

3. In the cluster list, find the target cluster and click the cluster name. The
Cluster Information page is displayed.

4. Click the Parameters tab, change the value of password_effect_time, and
click Save. The modification of password_effect_time takes effect
immediately. You do not need to restart the cluster.

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

Figure 5-2 password_effect_time

Setting and Changing a Password
● Both system administrators and common users need to periodically change

their passwords to prevent the accounts from being stolen.
For example, to change the password of the user user1, connect to the
database as the administrator and run the following command:
ALTER USER user1 IDENTIFIED BY 'newpassword' REPLACE 'oldpassword';

NO TE

The password must meet input requirements, or the execution will fail.

● An administrator can change its own password and other accounts'
passwords. With the permission for changing other accounts' passwords, the
administrator can resolve a login failure when a user forgets its password.
To change the password of the user joe, run the following command:
ALTER USER joe IDENTIFIED BY 'password';

NO TE

● System administrators are not allowed to change passwords for each other.
● When a system administrator changes the password of a common user, the original

password is not required.
● However, when a system administrator changes its own password, the original password

is required.

● Password verification
Password verification is required when you set the user or role in the current
session. If the entered password is inconsistent with the stored password of
the user, an error is reported.
To set the password of the user joe, run the following command:
SET ROLE joe PASSWORD 'password';

If the following information is displayed, the role setting has been modified:
SET ROLE

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

5.1.4 GaussDB(DWS) Database Permissions Management

Permission Overview

Permissions are used to control whether a user is allowed to access a database
object (including schemas, tables, functions, and sequences) to perform operations
such as adding, deleting, modifying, querying, and creating a database object.

Permission management in GaussDB(DWS) falls into three categories:

● System permissions
System permissions are also called user attributes, including SYSADMIN,
CREATEDB, CREATEROLE, AUDITADMIN, and LOGIN.
They can be specified only by the CREATE ROLE or ALTER ROLE syntax. The
SYSADMIN permission can be granted and revoked using GRANT ALL
PRIVILEGE and REVOKE ALL PRIVILEGE, respectively. System permissions
cannot be inherited by a user from a role, and cannot be granted using
PUBLIC.

● Object permissions
Permissions on a database object (table, view, column, database, function,
schema, or tablespace) can be granted to a role or user. The GRANT
command can be used to grant permissions to a user or role. These
permissions granted are added to the existing ones.

● Permissions
Grant a role's or user's permissions to one or more roles or users. In this case,
every role or user can be regarded as a set of one or more database
permissions.
If WITH ADMIN OPTION is specified, the member can in turn grant
permissions in the role to others, and revoke permissions in the role as well. If
a role or user granted with certain permissions is changed or revoked, the
permissions inherited from the role or user also change.
A database administrator can grant permissions to and revoke them from any
role or user. Roles having CREATEROLE permission can grant or revoke
membership in any role that is not an administrator.

Hierarchical Permission Management

GaussDB(DWS) implements a hierarchical permission management on databases,
schemas, and data objects.

● Databases cannot communicate with each other and share very few
resources. Their connections and permissions can be isolated. The database
cluster has one or more named databases. Users and roles are shared within
the entire cluster, but their data is not shared. That is, a user can connect to
any database, but after the connection is successful, any user can access only
the database declared in the connection request.

● Schemas share more resources than databases do. User permissions on
schemas and subordinate objects can be flexibly configured using the GRANT
and REVOKE syntax. Each database has one or more schemas. Each schema
contains various types of objects, such as tables, views, and functions. To

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

access an object contained in a specified schema, a user must have the
USAGE permission on the schema.

● After an object is created, by default, only the object owner or system
administrator can query, modify, and delete the object. To access a specific
database object, for example, table1, other users must be granted the
CONNECT permission of database, the USAGE permission of schema, and the
SELECT permission of table1. To access an object at the bottom layer, a user
must be granted the permission on the object at the upper layer. To create or
delete a schema, you must have the CREATE permission on its database.

Figure 5-3 Hierarchical Permission Management

Roles

The permission management model of GaussDB(DWS) is a typical implementation
of the role-based permission control (RBAC). It manages users, roles, and
permissions through this model.

A role is a set of permissions.

● The concept of "user" is equivalent to that of "role". The only difference is
that "user" has the login permission while "role" has the nologin permission.

● Roles are assigned with different permissions based on their responsibilities in
the database system. A role is a set of database permissions and represents
the behavior constraints of a database user or a group of data users.

● Roles and users can be converted. You can use ALTER to assign the login
permission to a role.

● After a role is granted to a user through GRANT, the user will have all the
permissions of the role. It is recommended that roles be used to efficiently
grant permissions. For example, you can create different roles of design,
development, and maintenance personnel, grant the roles to users, and then
grant specific data permissions required by different users. When permissions
are granted or revoked at the role level, these permission changes take effect
for all the members of the role.

● In non-separation-of-duty scenarios, a role can be created, modified, and
deleted only by a system administrator or a user with the CREATEROLE
attribute. In separation-of-duty scenarios, a role can be created, modified, and
deleted only by a user with the CREATEROLE attribute.

To view all roles, query the system catalog PG_ROLES.

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

SELECT * FROM PG_ROLES;

For how to create, modify, and delete a role, see "CREATE ROLE/ALTER ROLE/
DROP ROLE" in SQL Syntax Reference.

Preset Roles

GaussDB(DWS) provides a group of preset roles. Their names start with gs_role_.
These roles allow access to operations that require high permissions. You can
grant these roles to other users or roles in the database for them to access or use
specific information and functions. Exercise caution and ensure security when
using preset roles.

The following table describes the permissions of preset roles.

Table 5-4 Permissions of preset roles

Role Permission

gs_role_signal_bac
kend

Invokes functions such as pg_cancel_backend,
pg_terminate_backend, pg_terminate_query,
pg_cancel_query, pgxc_terminate_query, and
pgxc_cancel_query to cancel or terminate sessions,
excluding those of the initial users.

gs_role_read_all_s
tats

Reads the system status view and uses various extension-
related statistics, including information that is usually
visible only to system administrators. For example:
Resource management views:
● pgxc_wlm_operator_history
● pgxc_wlm_operator_info
● pgxc_wlm_operator_statistics
● pgxc_wlm_session_info
● pgxc_wlm_session_statistics
● pgxc_wlm_workload_records
● pgxc_workload_sql_count
● pgxc_workload_sql_elapse_time
● pgxc_workload_transaction
Status information views:
● pgxc_stat_activity
● pgxc_get_table_skewness
● table_distribution
● pgxc_total_memory_detail
● pgxc_os_run_info
● pg_nodes_memory
● pgxc_instance_time
● pgxc_redo_stat

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

Role Permission

gs_role_analyze_a
ny

A user with the system-level ANALYZE permission can skip
the schema permission check and perform ANALYZE on all
tables.

gs_role_vacuum_a
ny

A user with the system-level VACUUM permission can skip
the schema permission check and perform ANALYZE on all
tables.

gs_redaction_polic
y

A user with the permission to create, modify, and delete
data masking policies and can execute CREATE | ALTER |
DROP REDACTION POLICY on all tables. Clusters of 9.1.0
and later versions support this function.

Restrictions on using preset roles:

● gs_role_ is the name field dedicated to preset roles in the database. Do not
create users or roles starting with gs_role_ or rename existing users or roles
starting with gs_role_.

● Do not perform ALTER or DROP operations on preset roles.
● By default, a preset role does not have the LOGIN permission, so there is no

preset login password for the role.
● The gsql meta-commands \du and \dg do not display information about

preset roles. However, if PATTERN is specified, information about preset roles
will be displayed.

● If the separation of permissions is disabled, the system administrator and
users with the ADMIN OPTION permission of preset roles are allowed to
perform GRANT and REVOKE operations on preset roles. If the separation of
permissions is enabled, the security administrator (with the CREATEROLE
attribute) and users with the ADMIN OPTION permission of preset roles are
allowed to perform GRANT and REVOKE operations on preset roles. Example:
GRANT gs_role_signal_backend TO user1;
REVOKE gs_role_signal_backend FROM user1;

Granting or Revoking Permissions
A user who creates an object is the owner of this object. By default, Separation of
Duties in GaussDB(DWS) is disabled after cluster installation. A database system
administrator has the same permissions as object owners.

After an object is created, only the object owner or system administrator can
query, modify, and delete the object, and grant permissions for the object to other
users through GRANT by default. To enable a user to use an object, the object
owner or administrator can run the GRANT or REVOKE command to grant
permissions to or revoke permissions from the user or role.

● Run the GRANT statement to grant permissions.
For example, grant the permission of schema myschema to role u1, and
grant the SELECT permission of table myschema.t1 to role u1.
GRANT USAGE ON SCHEMA myschema TO u1;
GRANT SELECT ON TABLE myschema.t1 to u1;

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

● Run the REVOKE command to revoke a permission that has been granted.
For example, revoke all permissions of user u1 on the myschema.t1 table.
REVOKE ALL PRIVILEGES ON myschema.t1 FROM u1;

5.1.5 Separation of Duties in GaussDB(DWS)
By default, the system administrator with the SYSADMIN attribute has the highest
permission in the system. To avoid risks caused by centralized permissions, you can
enable the separation of permissions to delegate system administrator permissions
to security administrators and audit administrators.

● After the separation of permissions is enabled, a system administrator does
not have the CREATEROLE attribute (security administrator) and
AUDITADMIN attribute (audit administrator). That is, you do not have the
permissions for creating roles and users and the permissions for viewing and
maintaining database audit logs. For details about the CREATEROLE and
AUDITADMIN attributes, see CREATE ROLE.

● After the separation of permissions is enabled, system administrators have the
permissions only for the objects owned by them.

For how to configure permission separation, see Configuring Separation of
Duties for the GaussDB(DWS) Cluster

For details about permission changes before and after enabling the separation of
permissions, see Table 5-5 and Table 5-6.

Table 5-5 Default user permissions

Object System
Administrator

Security
Administrator

Audit
Administrato
r

Common
User

Tables
pace

Can create, modify,
delete, access, and
allocate
tablespaces.

Cannot create, modify, delete, or allocate
tablespaces, with authorization required for
accessing tablespaces.

Table Has permissions for
all tables.

Has permissions for its own tables, but does not
have permissions for other users' tables.

Index Can create indexes
on all tables.

Can create indexes on their own tables.

Schem
a

Has permissions for
all schemas.

Has all permissions for its own schemas, but
does not have permissions for other users'
schemas.

Functio
n

Has permissions for
all functions.

Has permissions for its own functions, has the
call permission for other users' functions in the
public schema, but does not have permissions
for other users' functions in other schemas.

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

https://support.huaweicloud.com/intl/en-us/mgtg-dws/dws_01_0074.html
https://support.huaweicloud.com/intl/en-us/mgtg-dws/dws_01_0074.html

Object System
Administrator

Security
Administrator

Audit
Administrato
r

Common
User

Custo
mized
view

Has permissions for
all views.

Has permissions for its own views, but does not
have permissions for other users' views.

System
catalog
and
system
view

Has permissions for
querying all system
catalogs and views.

Has permissions for querying only some system
catalogs and views. For details, see
GaussDB(DWS) System Catalogs and Views.

Table 5-6 Changes in permissions after the separation of permissions

Objec
t

System Administrator Securi
ty
Admi
nistra
tor

Audit
Admi
nistra
tor

Common
User

Tables
pace

No change No change

Table Permissions reduced
Has all permissions for its own tables, but
does not have permissions for other
users' tables in their schemas.

No change

Index Permissions reduced
Can create indexes on its own tables.

No change

Sche
ma

Permissions reduced
Has all permissions for its own schemas,
but does not have permissions for other
users' schemas.

No change

Functi
on

Permissions reduced
Has all permissions for its own functions,
but does not have permissions for other
users' functions in their schemas.

No change

Custo
mized
view

Permissions reduced
Has all permissions for its own views and
other users' views in the public schema,
but does not have permissions for other
users' views in their schemas.

No change

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

Objec
t

System Administrator Securi
ty
Admi
nistra
tor

Audit
Admi
nistra
tor

Common
User

Syste
m
catalo
g and
syste
m
view

No change No
chang
e

No
chang
e

Has no
permissio
n for
viewing
any
system
catalogs
or views.

5.2 GaussDB(DWS) Sensitive Data Management

5.2.1 GaussDB(DWS) Row-Level Access Control
The row-level access control feature enables database access control to be
accurate to each row of data tables. In this way, the same SQL query may return
different results for different users.

You can create a row-level access control policy for a data table. The policy defines
an expression that takes effect only for specific database users and SQL
operations. When a database user accesses the data table, if a SQL statement
meets the specified row-level access control policies of the data table, the
expressions that meet the specified condition will be combined by using AND or
OR based on the attribute type (PERMISSIVE | RESTRICTIVE) and applied to the
execution plan in the query optimization phase.

Row-level access control is used to control the visibility of row-level data in tables.
By predefining filters for data tables, the expressions that meet the specified
condition can be applied to execution plans in the query optimization phase,
which will affect the final execution result. Currently, the SQL statements that can
be affected include SELECT, UPDATE, and DELETE.

Scenario 1: A table summarizes the data of different users. Users can view only
their own data.

-- Create users alice, bob, and peter.
CREATE ROLE alice PASSWORD 'password';
CREATE ROLE bob PASSWORD 'password';
CREATE ROLE peter PASSWORD 'password';

-- Create the public.all_data table that contains user information.
CREATE TABLE public.all_data(id int, role varchar(100), data varchar(100));

-- Insert data into the data table.
INSERT INTO all_data VALUES(1, 'alice', 'alice data');
INSERT INTO all_data VALUES(2, 'bob', 'bob data');
INSERT INTO all_data VALUES(3, 'peter', 'peter data');

-- Grant the read permission for the all_data table to users alice, bob, and peter.
GRANT SELECT ON all_data TO alice, bob, peter;

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

-- Enable row-level access control.
ALTER TABLE all_data ENABLE ROW LEVEL SECURITY;

-- Create a row-level access control policy to specify that the current user can view only their own data.
CREATE ROW LEVEL SECURITY POLICY all_data_rls ON all_data USING(role = CURRENT_USER);

-- View table details.
 \d+ all_data
 Table "public.all_data"
 Column | Type | Modifiers | Storage | Stats target | Description
--------+------------------------+-----------+----------+--------------+-------------
 id | integer | | plain | |
 role | character varying(100) | | extended | |
 data | character varying(100) | | extended | |
Row Level Security Policies:
 POLICY "all_data_rls"
 USING (((role)::name = "current_user"()))
Has OIDs: no
Distribute By: HASH(id)
Location Nodes: ALL DATANODES
Options: orientation=row, compression=no, enable_rowsecurity=true

-- Switch to user alice and run SELECT * FROM all_data.
SET ROLE alice PASSWORD 'password';
SELECT * FROM all_data;
 id | role | data
----+-------+------------
 1 | alice | alice data
(1 row)

EXPLAIN(COSTS OFF) SELECT * FROM all_data;
 QUERY PLAN
--
 Streaming (type: GATHER)
 Node/s: All datanodes
 -> Seq Scan on all_data
 Filter: ((role)::name = 'alice'::name)
 Notice: This query is influenced by row level security feature
(5 rows)

-- Switch to user peter and run SELECT * FROM .all_data.
SET ROLE peter PASSWORD 'password';
SELECT * FROM all_data;
 id | role | data
----+-------+------------
 3 | peter | peter data
(1 row)

 EXPLAIN(COSTS OFF) SELECT * FROM all_data;
 QUERY PLAN
--
 Streaming (type: GATHER)
 Node/s: All datanodes
 -> Seq Scan on all_data
 Filter: ((role)::name = 'peter'::name)
 Notice: This query is influenced by row level security feature
(5 rows)

5.2.2 GaussDB(DWS) Data Masking
GaussDB(DWS) provides the column-level dynamic data masking (DDM) function.
For sensitive data (such as the ID card number, mobile number, and bank card
number), the DDM function is used to redact the original data to protect data
security and user privacy.

● Creating a data masking policy for a table

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

GaussDB(DWS) uses the CREATE REDACTION POLICY syntax to create a
data masking policy on a table (Do not perform masking), MASK_FULL
(Mask data into a fixed value), and MASK_PARTIAL (Perform partial masking
based on the character type, numeric type, or time type.) to specify the
application scope of the masking policy.

● Modifying the data masking policy of a table
The ALTER REDACTION POLICY syntax is used to modify the expression for
enabling a masking policy, rename a masking policy, and add, modify, or
delete masked columns.

● Deleting the masking policy of a table
The DROP REDACTION POLICY syntax is used to delete the masking function
information of a masking policy on all columns of a table.

● Viewing the masking policy and masked columns
Masking policy information is stored in the system catalog
PG_REDACTION_POLICY, and masked column information is stored in the
system catalog PG_REDACTION_COLUMN. You can view information about
the masking policy and masked columns in the system views
REDACTION_POLICIES and REDACTION_COLUMNS.

NO TE

● Generally, you can run the SELECT statement to view the data masking result. If a
statement has the following features, sensitive data may be deliberately obtained. In
this case, an error will be reported during statement execution.
● The GROUP BY clause references the Target Entry containing masked columns as

the target column.
● DISTINCT works on the output masked columns.
● The statement contains CTE.
● Operations on sets are involved.
● The target columns of a subquery are not masked columns of the base table, but

the expressions or function calls for masked columns of the base table.
● You can use COPY TO or GDS to export the masked data. Due to the irreversibility of the

data masking, secondary masking of the data is meaningless.
● Do not set target columns of UPDATE, MERGE INTO, and DELETE statements to masked

columns.
● The UPSERT statement allows you to insert update data through EXCLUDED. If data in

the base table is updated by referencing masked columns, the data may be modified by
mistake. As a result, an error will be reported during the execution.

● In the 8.2.1 cluster version, multiple masking policies can be created for the same table
to implement diversified sensitive data classification. The principles for selecting and
applying masking policies are as follows:
● Select the policy with the largest policy_order among multiple candidate policies

that meet the requirements of the current session. A larger policy_order indicates
a later creation.

● During data masking, the DML statement inherits only the policy with the largest
policy_order.

Examples
The following uses the employee table emp, table owner alice, and roles matu
and july as an example to illustrate the data masking process. The emp table
contains private data such as the employee name, mobile number, email address,
bank card number, and salary.

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

https://support.huaweicloud.com/intl/en-us/sqlreference-dws/dws_06_0168.html
https://support.huaweicloud.com/intl/en-us/sqlreference-dws/dws_06_0132.html
https://support.huaweicloud.com/intl/en-us/sqlreference-dws/dws_06_0199.html

Step 1 After connecting to the database as the administrator, create roles alice, matu,
and july.
CREATE ROLE alice PASSWORD 'password';
CREATE ROLE matu PASSWORD 'password';
CREATE ROLE july PASSWORD 'password';

Step 2 Grant schema permissions on the current database to alice, matu, and july.
GRANT ALL PRIVILEGES on schema public to alice,matu,july;

Step 3 Switch to role alice, create the emp table, and insert three pieces of employee
information.
SET ROLE alice PASSWORD 'password';

CREATE TABLE emp(id int, name varchar(20), phone_no varchar(11), card_no number, card_string
varchar(19), email text, salary numeric(100, 4), birthday date);

INSERT INTO emp VALUES(1, 'anny', '13420002340', 1234123412341234, '1234-1234-1234-1234',
'smithWu@163.com', 10000.00, '1999-10-02');
INSERT INTO emp VALUES(2, 'bob', '18299023211', 3456345634563456, '3456-3456-3456-3456',
'66allen_mm@qq.com', 9999.99, '1989-12-12');
INSERT INTO emp VALUES(3, 'cici', '15512231233', NULL, NULL, 'jonesishere@sina.com', NULL,
'1992-11-06');

Step 4 alice grants the read permission on the emp table to matu and july.
GRANT SELECT ON emp TO matu, july;

Step 5 Create the masking policy mask_emp: Only user alice can view all employee
information. User matu and july cannot view employee bank card numbers and
salary data. The card_no column is of the numeric type and all of its data is
masked into 0 by the MASK_FULL function. The card_string column is of the
character type and part of its data is masked by the MASK_PARTIAL function
based on the specified input and output formats. The salary column is of the
numeric type and the MASK_PARTIAL function is used to mask all digits before
the penultimate digit using the number 9.
CREATE REDACTION POLICY mask_emp ON emp WHEN (current_user IN ('matu', 'july'))
 ADD COLUMN card_no WITH mask_full(card_no),
 ADD COLUMN card_string WITH mask_partial(card_string, 'VVVVFVVVVFVVVVFVVVV','VVVV-VVVV-VVVV-
VVVV','#',1,12),
 ADD COLUMN salary WITH mask_partial(salary, '9', 1, length(salary) - 2);

Step 6 Switch to matu and july and view the employee table emp.
SET ROLE matu PASSWORD 'password';
SELECT * FROM emp;
 id | name | phone_no | card_no | card_string | email | salary | birthday
----+------+-------------+---------+---------------------+----------------------+------------+---------------------
 1 | anny | 13420002340 | 0 | ####-####-####-1234 | smithWu@163.com | 99999.9990 |
1999-10-02 00:00:00
 2 | bob | 18299023211 | 0 | ####-####-####-3456 | 66allen_mm@qq.com | 9999.9990 |
1989-12-12 00:00:00
 3 | cici | 15512231233 | | | jonesishere@sina.com | | 1992-11-06 00:00:00
(3 rows)

SET ROLE july PASSWORD 'password';
SELECT * FROM emp;
 id | name | phone_no | card_no | card_string | email | salary | birthday
----+------+-------------+---------+---------------------+----------------------+------------+---------------------
 1 | anny | 13420002340 | 0 | ####-####-####-1234 | smithWu@163.com | 99999.9990 |
1999-10-02 00:00:00
 2 | bob | 18299023211 | 0 | ####-####-####-3456 | 66allen_mm@qq.com | 9999.9990 |
1989-12-12 00:00:00
 3 | cici | 15512231233 | | | jonesishere@sina.com | | 1992-11-06 00:00:00
(3 rows)

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

Step 7 If you want matu to have the permission to view all employee information, but do
not want july to have. In this case, you only need to modify the effective scope of
the policy.
SET ROLE alice PASSWORD 'password';
ALTER REDACTION POLICY mask_emp ON emp WHEN(current_user = 'july');

Step 8 Switch to users matu and july and view the emp table again, respectively.
SET ROLE matu PASSWORD 'password';
SELECT * FROM emp;
 id | name | phone_no | card_no | card_string | email | salary | birthday
----+------+-------------+------------------+---------------------+----------------------+------------
+---------------------
 1 | anny | 13420002340 | 1234123412341234 | 1234-1234-1234-1234 | smithWu@163.com |
10000.0000 | 1999-10-02 00:00:00
 2 | bob | 18299023211 | 3456345634563456 | 3456-3456-3456-3456 | 66allen_mm@qq.com |
9999.9900 | 1989-12-12 00:00:00
 3 | cici | 15512231233 | | | jonesishere@sina.com | | 1992-11-06 00:00:00
(3 rows)

SET ROLE july PASSWORD 'password';
SELECT * FROM emp;
 id | name | phone_no | card_no | card_string | email | salary | birthday
----+------+-------------+---------+---------------------+----------------------+------------+---------------------
 1 | anny | 13420002340 | 0 | ####-####-####-1234 | smithWu@163.com | 99999.9990 |
1999-10-02 00:00:00
 2 | bob | 18299023211 | 0 | ####-####-####-3456 | 66allen_mm@qq.com | 9999.9990 |
1989-12-12 00:00:00
 3 | cici | 15512231233 | | | jonesishere@sina.com | | 1992-11-06 00:00:00
(3 rows)

Step 9 The information in the phone_no, email, and birthday columns is private data.
Update masking policy mask_emp and add three masked columns.
SET ROLE alice PASSWORD 'password';
ALTER REDACTION POLICY mask_emp ON emp ADD COLUMN phone_no WITH mask_partial(phone_no, '*',
4);
ALTER REDACTION POLICY mask_emp ON emp ADD COLUMN email WITH mask_partial(email, '*', 1,
position('@' in email));
ALTER REDACTION POLICY mask_emp ON emp ADD COLUMN birthday WITH mask_full(birthday);

Step 10 Switch to july and view data in the emp table.
SET ROLE july PASSWORD 'password';
SELECT * FROM emp;
 id | name | phone_no | card_no | card_string | email | salary | birthday
----+------+-------------+---------+---------------------+----------------------+------------+---------------------
 1 | anny | 134******** | 0 | ####-####-####-1234 | ********163.com | 99999.9990 | 1970-01-01
00:00:00
 2 | bob | 182******** | 0 | ####-####-####-3456 | ***********qq.com | 9999.9990 | 1970-01-01
00:00:00
 3 | cici | 155******** | | | ************sina.com | | 1970-01-01 00:00:00
(3 rows)

Step 11 Query redaction_policies and redaction_columns to view details about the
current redaction policy mask_emp.
SELECT * FROM redaction_policies;
 object_schema | object_owner | object_name | policy_name | expression | enable |
policy_description | inherited
---------------+--------------+-------------+-------------+-----------------------------------+--------
+--------------------+-----------
 public | alice | emp | mask_emp | ("current_user"() = 'july'::name) | t | |
f
(1 row)

SELECT object_name, column_name, function_info FROM redaction_columns;
 object_name | column_name | function_info
-------------+-------------
+---

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

 emp | card_no | mask_full(card_no)
 emp | card_string | mask_partial(card_string, 'VVVVFVVVVFVVVVFVVVV'::text, 'VVVV-VVVV-VVVV-
VVVV'::text, '#'::text, 1, 12)
 emp | email | mask_partial(email, '*'::text, 1, "position"(email, '@'::text))
 emp | salary | mask_partial(salary, '9'::text, 1, (length((salary)::text) - 2))
 emp | birthday | mask_full(birthday)
 emp | phone_no | mask_partial(phone_no, '*'::text, 4)
(6 rows)

Step 12 Add the salary_info column. To replace the salary information in text format with
., you can create a user-defined masking function. In this step, you can use the
PL/pgSQL to define the masking function mask_regexp_salary. To create a
masking column, you simply need to customize the function name and parameter
list. For details, see GaussDB(DWS) User-Defined Functions.
SET ROLE alice PASSWORD 'password';

ALTER TABLE emp ADD COLUMN salary_info TEXT;
UPDATE emp SET salary_info = salary::text;

CREATE FUNCTION mask_regexp_salary(salary_info text) RETURNS text AS
$$
 SELECT regexp_replace($1, '[0-9]+','*','g');
$$
 LANGUAGE SQL
STRICT SHIPPABLE;

ALTER REDACTION POLICY mask_emp ON emp ADD COLUMN salary_info WITH
mask_regexp_salary(salary_info);

SET ROLE july PASSWORD 'password';
SELECT id, name, salary_info FROM emp;
 id | name | salary_info
----+------+-------------
 1 | anny | *.*
 2 | bob | *.*
 3 | cici |
(3 rows)

Step 13 If there is no need to set a redaction policy for the emp table, delete redaction
policy mask_emp.
SET ROLE alice PASSWORD 'password';
DROP REDACTION POLICY mask_emp ON emp;

----End

5.2.3 Encrypting and Decrypting GaussDB(DWS) Strings
GaussDB(DWS) supports encryption and decryption of strings using the following
functions:

● gs_encrypt(encryptstr, keystr, cryptotype, cryptomode, hashmethod)
Description: Encrypts an encryptstr string using the keystr key based on the
encryption algorithm specified by cryptotype and cryptomode and the
HMAC algorithm specified by hashmethod, and returns the encrypted string.
cryptotype can be aes128, aes192, aes256, or sm4. cryptomode is cbc.
hashmethod can be sha256, sha384, sha512, or sm3. Currently, the
following types of data can be encrypted: numerals supported in the
database; character type; RAW in binary type; and DATE, TIMESTAMP, and
SMALLDATETIME in date/time type. The keystr length is related to the
encryption algorithm and contains 1 to KeyLen bytes. If cryptotype is aes128
or sm4, KeyLen is 16; if cryptotype is aes192, KeyLen is 24; if cryptotype is
aes256, KeyLen is 32.

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

Return type: text
Length of the return value: at least 4 x [(maclen + 56)/3] bytes and no more
than 4 x [(Len + maclen + 56)/3] bytes, where Len indicates the string length
(in bytes) before the encryption and maclen indicates the length of the
HMAC value. If hashmethod is sha256 or sm3, maclen is 32; if hashmethod
is sha384, maclen is 48; if hashmethod is sha512, maclen is 64. That is, if
hashmethod is sha256 or sm3, the returned string contains 120 to 4 x [(Len
+ 88)/3] bytes; if hashmethod is sha384, the returned string contains 140 to
4 x [(Len + 104)/3] bytes; if hashmethod is sha512, the returned string
contains 160 to 4 x [(Len + 120)/3] bytes.
Example:
SELECT gs_encrypt('GaussDB(DWS)', '1234', 'aes128', 'cbc', 'sha256');
 gs_encrypt

 AAAAAAAAAACcFjDcCSbop7D87sOa2nxTFrkE9RJQGK34ypgrOPsFJIqggI8tl
+eMDcQYT3po98wPCC7VBfhv7mdBy7IVnzdrp0rdMrD6/zTl8w0v9/s2OA==
(1 row)

NO TE

● A decryption password is required during the execution of this function. For
security purposes, the gsql tool does not record this function in the execution
history. That is, the execution history of this function cannot be found in gsql by
paging up and down.

● Do not use the ge_encrypt and gs_encrypt_aes128 functions for the same data
table.

● gs_decrypt(decryptstr, keystr, cryptotype, cryptomode, hashmethod)
Description: Decrypts a decryptstr string using the keystr key based on the
encryption algorithm specified by cryptotype and cryptomode and the
HMAC algorithm specified by hashmethod, and returns the decrypted string.
The keystr used for decryption must be consistent with that used for
encryption. keystr cannot be empty.
Return type: text
Example:
SELECT gs_decrypt('AAAAAAAAAACcFjDcCSbop7D87sOa2nxTFrkE9RJQGK34ypgrOPsFJIqggI8tl
+eMDcQYT3po98wPCC7VBfhv7mdBy7IVnzdrp0rdMrD6/zTl8w0v9/s2OA==', '1234', 'aes128', 'cbc',
'sha256');
 gs_decrypt

 GaussDB(DWS)
(1 row)

NO TE

● A decryption password is required during the execution of this function. For
security purposes, the gsql tool does not record this function in the execution
history. That is, the execution history of this function cannot be found in gsql by
paging up and down.

● This function works with the gs_encrypt function, and the two functions must use
the same encryption algorithm and HMAC algorithm.

● gs_encrypt_aes128(encryptstr,keystr)
Description: Encrypts encryptstr strings using keystr as the key and returns
encrypted strings. The length of keystr ranges from 1 to 16 bytes. Currently,
the following types of data can be encrypted: numerals supported in the

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

database; character type; RAW in binary type; and DATE, TIMESTAMP, and
SMALLDATETIME in date/time type.
Return type: text
Length of the return value: At least 92 bytes and no more than (4*[Len/
3]+68) bytes, where Len indicates the length of the data before encryption
(unit: byte).
Example:
SELECT gs_encrypt_aes128('DWS','1234');
 gs_encrypt_aes128
--
 ZrCp794vO5I9qJ+jHFf/sQqRyMBy0lKIDGP5S8RJXzgmpXoa/
e4EgmK82P5y5xe1bOXbJeoNxyHagK9OhPVVeJDbn/M=
(1 row)

NO TE

● A decryption password is required during the execution of this function. For
security purposes, the gsql tool does not record this function in the execution
history. That is, the execution history of this function cannot be found in gsql by
paging up and down.

● Do not use the ge_encrypt and gs_encrypt_aes128 functions for the same data
table.

● gs_decrypt_aes128(decryptstr,keystr)
Description: Decrypts a decryptstr string using the keystr key and returns the
decrypted string. The keystr used for decryption must be consistent with that
used for encryption. keystr cannot be empty.
Return type: text
Example:
SELECT gs_decrypt_aes128('ZrCp794vO5I9qJ+jHFf/sQqRyMBy0lKIDGP5S8RJXzgmpXoa/
e4EgmK82P5y5xe1bOXbJeoNxyHagK9OhPVVeJDbn/M=','1234');
 gs_decrypt_aes128

 DWS
(1 row)

NO TE

● A decryption password is required during the execution of this function. For
security purposes, the gsql tool does not record this function in the execution
history. That is, the execution history of this function cannot be found in gsql by
paging up and down.

● This function works with the gs_encrypt_aes128 function.

● gs_hash(hashstr, hashmethod)
Description: Obtains the digest string of a hashstr string based on the
algorithm specified by hashmethod. hashmethod can be sha256, sha384,
sha512, or sm3.
Return type: text
Length of the return value: 64 bytes if hashmethod is sha256 or sm3; 96
bytes if hashmethod is sha384; 128 bytes if hashmethod is sha512
Example:
SELECT gs_hash('GaussDB(DWS)', 'sha256');
 gs_hash
--

e59069daa6541ae20af7c747662702c731b26b8abd7a788f4d15611aa0db608efdbb5587ba90789a983f8

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

5dd51766609
(1 row)

● md5(string)
Description: Encrypts a string in MD5 mode and returns a value in
hexadecimal form.

NO TE

MD5 is insecure and is not recommended.

Return type: text
Example:
SELECT md5('ABC');
 md5

 902fbdd2b1df0c4f70b4a5d23525e932
(1 row)

5.2.4 Using pgcrypto to Encrypt GaussDB(DWS) Data
GaussDB(DWS) 8.2.0 and later provides a built-in cryptographic module pgcrypto.
The pgcrypto module allows database users to store certain columns of data after
encryption, enhancing sensitive data security. Users without the encryption key
cannot read the encrypted data stored in GaussDB(DWS).

The pgcrypto function runs inside database servers, which means that all data and
passwords are transmitted in plaintext between pgcrypto and client applications.
For security purposes, you are advised to use the SSL connection between the
client and the GaussDB(DWS) server.

The functions in the pgcrypto module are as follows.

General Hash Functions
● digest()

The digest() function can generate binary hash values by using a specified
algorithm. The syntax is as follows:
digest(data text, type text) returns bytea
digest(data bytea, type text) returns bytea

data indicates the original data, and type indicates the encryption algorithm
(md5, sha1, sha224, sha256, sha384, sha512, or sm3). The return value of
the function is a binary string.
Example:
Use the digest() function to encrypt the GaussDB(DWS) string using SHA256
for storage.
select digest('GaussDB(DWS)', 'sha256');
 digest
--
 \xcc2d1b97c6adfba44bbce7386516f63f16fc6e6a10bd938861d3aba501ac8aab
(1 row)

● hmac()
The hmac() function can calculate the MAC value for data with a key by using
a specified algorithm. The syntax is as follows:
hmac(data text, key text, type text) returns bytea
hmac(data bytea, key bytea, type text) returns bytea

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

data indicates the original data, key indicates the encryption key, and type
indicates the encryption algorithm (md5, sha1, sha224, sha256, sha384,
sha512, or sm3). The return value of the function is a binary string.

Example:

Use key123 and the SHA256 algorithm to calculate the MAC value for the
string GaussDB(DWS).
select hmac('GaussDB(DWS)', 'key123', 'sha256');
hmac
--
\x14e1d9e110e9b11ab8379dc02b49533d50a6f4deafe6d6cd451d06c106c97d83
(1 row)

If both the original data and its encryption result are modified, the digest()
function cannot identify the changes. The hmac() function can identify the
changes as long as the key is not disclosed.

If the key is longer than the hash block, it will be hashed first, and the hash
result will be used as the key.

Cryptographic Hash Functions

The crypt() and gen_salt() functions are used for password hashing. crypt()
executes hashes to encrypt data, and gen_salt() generates salted hashes.

The algorithms in crypt() differ from the common MD5 and SHA1 hash algorithms
in the following aspects:

● The algorithms used in crypt() are slow. This is the only way to make it
difficult for brute-force attackers to crack passwords, which only contain a
small amount of data.

● A random value (called salt) is used for encryption, so that users will get
different ciphertexts even if they use the same passwords. This can protect
passwords for cracking algorithms.

● The encryption results include algorithm types. Passwords can be encrypted
using different algorithms for different users.

● Some of the algorithms are self-adaptive. They can slow down computing if it
is too fast, and do not cause incompatibility issues with existing passwords.

The following table lists the algorithms supported by the crypt() function.

Table 5-7 Algorithms supported by crypt()

Algorith
m

Maximu
m
Password
Length

Adaptabi
lity

Salt Bits Standard
Output
Length

Description

bf 72 √ 128 60 Blowfish-based 2a
variation

md5 unlimited × 48 34 MD5-based
algorithm

xdes 8 √ 24 20 Extended DES

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

Algorith
m

Maximu
m
Password
Length

Adaptabi
lity

Salt Bits Standard
Output
Length

Description

des 8 × 12 13 Native UNIX
algorithm

● crypt()
The syntax of crypt() is as follows:
crypt(password text, salt text) returns text

This function returns a hash value of the password string in crypt(3) format.
The salt parameter is generated by the gen_salt() function.
For the same password, the crypt() function returns a different result each
time, because the gen_salt() function generates a different salt each time.
During password verification, the previously generated hash result can be
used as the salt.
For example, to set a new password, run the following command:
UPDATE ... SET pswhash = crypt('new password', gen_salt('bf',10));

The hash values of the entered password and the stored password are
compared.
SELECT (pswhash = crypt('entered password', pswhash)) AS pswmatch FROM ... ;

If the entered password is correct, true is returned.
Example:
create table userpwd(userid int8, pwd text);
CREATE TABLE

insert into userpwd values (1, crypt('this is a pwd', gen_salt('bf',10)));
INSERT 0 1

select crypt('this is a pwd', pwd)=pwd as result from userpwd where userid =1;
 result

 t
(1 row)

select crypt('this is a wrong pwd', pwd)=pwd as result from userpwd where userid =1;
 result

 f
(1 row)

● gen_salt()
The gen_salt() function is used to generate random parameters for crypt. The
syntax is as follows:
gen_salt(type text [, iter_count integer]) returns text

This function generates a random salt string each time. The string determines
the algorithm used by the crypt() function. The type parameter specifies a
hash algorithm (des, xdes, md5, or bf) for generating a string. For the xdes
and bf algorithms, iter_count indicates the number of iterations. A large
value indicates a long encryption or cracking time.
SELECT gen_salt('des'), gen_salt('xdes'), gen_salt('md5'), gen_salt('bf');
 gen_salt | gen_salt | gen_salt | gen_salt

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

----------+-----------+-------------+-------------------------------
 qh | _J9..uEUi | 1SNgqyKAi | $2a$06$B/Etc3J8zYBV49LrDU97MO
(1 row)

The salt generated by an algorithm has a fixed format. For example, in $2a
06 in the bf algorithm result, 2a indicates the 2a variation of Blowfish, and
06 indicates the number of iterations.
If iter_count is ignored, the default number of iterations will be used. The
valid iter_count values depend on the algorithm used, as shown in the table
below. For the xdes algorithm, the number of iterations must be an odd
number.

Table 5-8 Iteration counts of crypt()

Algorithm Default Value Min. Max.

xdes 725 1 16777215

bf 6 4 31

PGP Encryption Functions

The PGP encryption function of GaussDB(DWS) complies with the OpenPGP (RFC
4880) standard, which includes requirements for symmetric key (private key)
encryption and asymmetric key (public key) encryption.

An encrypted PGP message consists of the following parts:

● Session key (encrypted symmetric key or public key) of the message
● Data encrypted using the session key

For symmetric key (password) encryption:

1. The key is encrypted using the String2Key (S2K) algorithm, which is like a
slowed down crypt() algorithm with a random salt. A full-length binary key
will be generated.

2. If a separate session key is required, a random key will be generated. If it is
not required, the S2K key will be used as the session key.

3. If the S2K key is directly used for a session, this key will be put in the session
key packet. Otherwise, the S2K key will be used to encrypt the session key,
and the encryption result will be put in the session key packet.

For public key encryption:

1. A random session key is generated.
2. This random key is encrypted using the public key and then put in the session

key packet.

In either case, the data encryption process is as follows:

1. (Optional) Compress data, convert data to UTF-8, or convert newline
characters.

2. A block consisting of random bytes is added before the data, serving as a
random initial value (IV).

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

3. A random prefix and the SHA1 hash value suffix are added to the data.
4. The entire content is encrypted using the session key and then placed in the

data packet.

Supported PGP encryption functions

● pgp_sym_encrypt()
Description: Encrypts a symmetric key.
Syntax:
pgp_sym_encrypt(data text, psw text [, options text]) returns bytea
pgp_sym_encrypt_bytea(data bytea, psw text [, options text]) returns bytea

data indicates the data to be encrypted, psw indicates the PGP symmetric
key, and options is used to set options. For details, see Table 5-9.

● pgp_sym_decrypt()
Description: Decrypts a message encrypted using a PGP symmetric key.
Syntax:
pgp_sym_decrypt(msg bytea, psw text [, options text]) returns text
pgp_sym_decrypt_bytea(msg bytea, psw text [, options text]) returns bytea

msg indicates the data to be decrypted, psw indicates the PGP symmetric key,
and options is used to set options. For details, see Table 5-9. To avoid
generating invalid characters, you are not allowed to use the
pgp_sym_decrypt function to decrypt bytea data. You can use the
pgp_sym_decrypt_bytea function instead.

● pgp_pub_encrypt()
Description: Encrypts a public key.
Syntax:
pgp_pub_encrypt(data text, key bytea [, options text]) returns bytea
pgp_pub_encrypt_bytea(data bytea, key bytea [, options text]) returns bytea

data indicates the data to be encrypted. key indicates the PGP public key. If a
private key is used as input, an error will be returned. options is used to set
options. For details, see Table 5-9.

● pgp_pub_decrypt()
Description: Decrypts a message encrypted using a PGP public key.
Syntax:
pgp_pub_decrypt(msg bytea, key bytea [, psw text [, options text]]) returns text
pgp_pub_decrypt_bytea(msg bytea, key bytea [, psw text [, options text]]) returns bytea

You can decrypt a message encrypted using a public key. The key must be the
private key corresponding to the public key used for encryption. If the private
key is password protected, specify the password in psw. If you have not
specified any password but want to specify this option now, provide an empty
password.
To avoid generating invalid characters, you are not allowed to use the
pgp_pub_decrypt function to decrypt bytea data. You can use
pgp_pub_decrypt_bytea function instead.
The key must be the private key corresponding to the public key used for
encryption. If the private key is password protected, specify the password in
psw. If you have not specified any password but want to specify this option
now, provide an empty password. The options parameter is used to set
options. For details, see Table 5-9.

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

● pgp_key_id()
Description: Extracts the key ID of the PGP public or private key. If an
encrypted message is used as the input, the ID of the key used to encrypt the
message will be returned.
Syntax:
pgp_key_id(bytea) returns text

This function can return two special key IDs:
– SYMKEY, indicating that a message is encrypted using a symmetric key.
– ANYKEY, indicating that a message is encrypted using the public key, but

the key ID has been deleted. To decrypt the message in this case, you
need to try all the keys until you find the correct private key. pgcrypto
does not produce such encrypted messages.

NO TE

Different keys may have the same ID. This situation rarely occurs. In this case, the
client application needs to try different keys for decryption, in the same way it deals
with ANYKEY.

● armor()
Description: Converts binary data into PGP ASCII-armor format by the CRC
calculation and formatting of a Base64 string.
Syntax:
armor(data bytea [, keys text[], values text[]]) returns text

● dearmor()
Description: Performs the reverse conversion.
Syntax:
dearmor(data text) returns bytea

Converts the encrypted data bytea to the PGP ASCII-armor format, or the
other way around.
data indicates the data to be converted. If multiple pairs of keys and values
are specified, an armor header will be generated for each key-value pair and
added to the output. The two arrays are both one-dimensional arrays with the
same length, and cannot contain non-ASCII characters.

● pgp_armor_headers()
Description: Returns the armor header in the data.
pgp_armor_headers(data text, key out text, value out text) returns setof record

The return result is a data row set consisting of key and value columns. Any
non-ASCII characters contained in the set are regarded as UTF-8 characters.

Using GnuPG to generate PGP keys
To generate a key, run the following command:
gpg --gen-key

DSA and Elgamal keys are recommended.
To use an RSA key, you must create a DSA or RSA key as the master key used
only for signature, and then specify gpg --edit-key to add an RSA encryption
subkey.
To list keys, run the following command:
gpg --list-secret-keys

To export a public key in ASCII-protected format, run the following command:

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

gpg -a --export KEYID > public.key

To export a private key in ASCII-protected format, run the following
command:
gpg -a --export-secret-keys KEYID > secret.key

Before using these keys as the input to the PGP function, run dearmor() on
them. Alternatively, if you can process binary data, remove -a from the
command.

NO TICE

The PGP encryption function has the following restrictions:
● Signatures are not supported. This function does not check whether the

encryption subkey belongs to the master key.
● The encryption key cannot be used as the master key. This constraint does

not impose much impact, because it is rarely violated.
● Only one subkey is allowed. This may be a problem, because multiple

subkeys are often required. General GPG and PGP keys cannot be used as
pgcrypto encryption keys. Their usage is totally different.

PGP function parameters
The option names in the pgcrypto function are similar to those in the GnuPG
function. Option values are set using equal signs (=), and the options are
separated by commas (,). Example:
pgp_sym_encrypt(data, psw, 'compress-algo=1, cipher-algo=aes256')

Options other than convert-crlf can be used only for encryption functions.
The decryption function obtains parameters from PGP data.
The most common options are compress-algo and unicode-mode. You can
retain the default values for other options.

Table 5-9 pgcrypto encryption options

Option Description Defa
ult
Valu
e

Value Function

cipher-
algo

Cryptographic
algorithm

aes12
8

bf, aes128, aes192,
aes256, 3des, cast5

pgp_sym_enc
rypt,
pgp_pub_enc
rypt

compre
ss-algo

Compression
algorithm

0 ● 0: not
compressed

● 1: ZIP
compression

● 2: ZLIB
compression (ZIP
+ Metadata +
CRC)

pgp_sym_enc
rypt,
pgp_pub_enc
rypt

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

Option Description Defa
ult
Valu
e

Value Function

compre
ss-level

Compression level.
A high level
indicates the
compression will
be slow, but the
data size after
compression will
be small. 0
disables
compression.

6 0, 1-9 pgp_sym_enc
rypt,
pgp_pub_enc
rypt

convert
-crlf

Indicates whether
to convert \n to \r
\n during
encryption, and
whether to
convert \r\n to \n
during decryption.
RFC4880 requires
that \r\n must be
used as the
newline character
in text data
storage.

0 0, 1 pgp_sym_enc
rypt,
pgp_pub_enc
rypt,
pgp_sym_dec
rypt,
pgp_pub_dec
rypt

disable-
mdc

SHA-1 is not used
to protect data. It
is used only for
compatibility with
old PGP products.

0 0, 1 pgp_sym_enc
rypt,
pgp_pub_enc
rypt

sess-
key

A separate session
key is used. Public
key encryption
always uses a
separate session
key. This option is
used for
symmetric key
encryption, which
directly uses the
S2K key by
default.

0 0, 1 pgp_sym_enc
rypt

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

Option Description Defa
ult
Valu
e

Value Function

s2k-
mode

S2K algorithm 3 ● 0: Salt is not
used. This setting
is not
recommended.

● 1: Salt is used,
but the number
of iterations is
fixed.

● 3: Salt is used,
and the number
of iterations can
be changed.

pgp_sym_enc
rypt

s2k-
count

Number of
iterations of the
S2K algorithm

A
rand
om
value
betw
een
65,53
6 and
253,9
52.

1024 ≤ Value ≤
65,011,712

pgp_sym_en
crypt and
s2k-mode=3

s2k-
digest-
algo

Digest algorithm
used during S2K
calculation

sha1 md5, sha1 pgp_sym_enc
rypt

s2k-
cipher-
algo

Password used to
encrypt a separate
session key

ciphe
r-
algo
algori
thm

bf, aes, aes128,
aes192, aes256

pgp_sym_enc
rypt

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

Option Description Defa
ult
Valu
e

Value Function

unicode
-mode

Whether to
convert text data
between database
internal encoding
and UTF-8. If the
database already
uses UTF-8
encoding, no
conversion will be
performed, but
the message will
be marked as
UTF-8. If this
parameter is not
specified, the
message will not
be marked.

0 0, 1 pgp_sym_enc
rypt,
pgp_pub_enc
rypt

Raw Encryption Functions
Raw encryption functions only run a cipher over data. They don't have any
advanced features of PGP encryption. Therefore they have the following problems:

● They use user key directly as cipher key.
● No integrity check is performed to check whether the encrypted data was

modified.
● You need to associate all encryption parameters yourself, including IV.
● Text data cannot be processed.

With the introduction of PGP encryption, these raw encryption functions are not
recommended.

encrypt(data bytea, key bytea, type text) returns bytea
decrypt(data bytea, key bytea, type text) returns bytea
encrypt_iv(data bytea, key bytea, iv bytea, type text) returns bytea
decrypt_iv(data bytea, key bytea, iv bytea, type text) returns bytea

data indicates the data to be encrypted, and type indicates the encryption/
decryption method. The syntax of the type parameter is as follows:

algorithm [- mode] [/pad: padding]

The options of algorithm are as follows:

● bf: Blowfish algorithm. Synonyms: BF, BF-CBC; BLOWFISH, BF-CBC;
BLOWFISH-CBC, BF-CBC; BLOWFISH-ECB, BF-ECB; BLOWFISH-CFB, BF-CFB

● aes: AES algorithm (Rijndael-128, -192, or -256). Synonyms: AES, AES-CBC,
RIJNDAEL, AES-CBC, RIJNDAEL, AES-CBC, RIJNDAEL-CBC, AES-CBC,
RIJNDAEL-ECB, AES-ECB

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

● DES algorithm. Synonyms: DES, DES-CBC; 3DES, DES3-CBC, 3DES-ECB, DES3-
ECB; 3DES-CBC, DES3-CBC

● sm4: SM4 algorithm. Synonym: SM4-CBC
● CAST5 algorithm. Synonym: CAST5-CBC

The options of mode are as follows:

● cbc: The next block depends on the previous block. (This is the default value.)
● ecb: Each block is encrypted separately. (This value is used only for tests.)

The options of padding are as follows:

● pkcs: The data can be of any length. (This is the default value.)
● none: The data must be a multiple of cipher block size.

For example, the encryption results of the following functions are the same:

encrypt(data, 'fooz', 'bf')
encrypt(data, 'fooz', 'bf-cbc/pad:pkcs')

For the encrypt_iv and decrypt_iv functions, the iv parameter indicates the initial
value for the CBC mode. This parameter is ignored for ECB. It is truncated or
padded with zeroes if not exactly block size. It defaults to all zeroes in the
functions without this parameter.

Random Data Functions
● The gen_random_bytes() function is used to generate cryptographically strong

random bytes.
gen_random_bytes(count integer) returns bytea

count indicates the number of returned bytes. The value range is 1 to 1024.
Example:
SELECT gen_random_bytes(16);
 gen_random_bytes

 \x1f1eddc11153afdde0f9e1229f8f4caf
(1 row)

● The gen_random_uuid() function is used to return a random UUID of version
4.
SELECT gen_random_uuid();
gen_random_uuid

2bd664a2-b760-4859-8af6-8d09ccc5b830

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 113

6 GaussDB(DWS) Data Query

6.1 GaussDB(DWS) Single-Table Query
Example table:

CREATE TABLE newproducts
(
product_id INTEGER NOT NULL,
product_name VARCHAR2(60),
category VARCHAR2(60),
quantity INTEGER
)
WITH (ORIENTATION = COLUMN) DISTRIBUTE BY HASH(product_id);

INSERT INTO newproducts VALUES (1502, 'earphones', 'electronics',150);
INSERT INTO newproducts VALUES (1601, 'telescope', 'toys',80);
INSERT INTO newproducts VALUES (1666, 'Frisbee', 'toys',244);
INSERT INTO newproducts VALUES (1700, 'interface', 'books',100);
INSERT INTO newproducts VALUES (2344, 'milklotion', 'skin care',320);
INSERT INTO newproducts VALUES (3577, 'dumbbell', 'sports',550);
INSERT INTO newproducts VALUES (1210, 'necklace', 'jewels', 200);

Simple Queries
Run the SELECT... FROM... statement to obtain the result from the database.

SELECT category FROM newproducts;
 category

 electr
 sports
 jewels
 toys
 books
 skin care
 toys
(7 rows)

Filtering Test Results
Run the WHERE statement to filter the query result and find the queried part.

SELECT * FROM newproducts WHERE category='toys';
 product_id | product_name | category | quantity

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 114

------------+--------------+----------+----------
 1601 | telescope | toys | 80
 1666 | Frisbee | toys | 244
(2 rows)

Sorting Results

Use the ORDER BY statement to sort query results.

SELECT product_id,product_name,category,quantity FROM newproducts ORDER BY quantity DESC;
 product_id | product_name | category | quantity
------------+--------------+-------------+----------
 3577 | dumbbell | sports | 550
 2344 | milklotion | skin care | 320
 1666 | Frisbee | toys | 244
 1210 | necklace | jewels | 200
 1502 | earphones | electronics | 150
 1700 | interface | books | 100
 1601 | telescope | toys | 80
(7 rows)

Limiting the Number of Query Results

If you want the query to return only part of the result, you can use the LIMIT
statement to limit the number of records returned in the query result.

SELECT product_id,product_name,category,quantity FROM newproducts ORDER BY quantity DESC limit 5;
 product_id | product_name | category | quantity
------------+--------------+-------------+----------
 3577 | dumbbell | sports | 550
 2344 | milklotion | skin care | 320
 1666 | Frisbee | toys | 244
 1210 | necklace | jewels | 200
 1502 | earphones | electronics | 150
(5 rows)

Aggregated Query

If you want query data comprehensively, you can use the GROUP BY statement
and aggregate functions to construct an aggregated query.

SELECT category, string_agg(quantity,',') FROM newproducts group by category;
 category | string_agg
-------------+------------
 toys | 80,244
 books | 100
 sports | 550
 jewels | 200
 skin care | 320
 electronics | 150

6.2 GaussDB(DWS) Multi-Table Join Query

Join Types

Multiple joins are necessary for accomplishing complex queries. Joins are classified
into inner joins and outer joins. Each type of joins have their subtypes.

● Inner join: inner join, cross join, and natural join.
● Outer join: left outer join, right outer join, and full join.

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 115

To better illustrate the differences between these joins, the following provides
some examples.

Create the sample tables student and math_score and insert data into them. Set
enable_fast_query_shipping to off (on by default), that is, the query optimizer
uses the distributed framework. Set explain_perf_mode to pretty (default value)
to specify the EXPLAIN display format.

CREATE TABLE student(
 id INTEGER,
 name varchar(50)
);

CREATE TABLE math_score(
 id INTEGER,
 score INTEGER
);

INSERT INTO student VALUES(1, 'Tom');
INSERT INTO student VALUES(2, 'Lily');
INSERT INTO student VALUES(3, 'Tina');
INSERT INTO student VALUES(4, 'Perry');

INSERT INTO math_score VALUES(1, 80);
INSERT INTO math_score VALUES(2, 75);
INSERT INTO math_score VALUES(4, 95);
INSERT INTO math_score VALUES(6, NULL);

SET enable_fast_query_shipping = off;
SET explain_perf_mode = pretty;

Inner Join
● Inner join

Syntax:
left_table [INNER] JOIN right_table [ON join_condition | USING (join_column)]

Description: Rows that meet join_condition in both the left and right tables
are joined and output. Tuples that do not meet join_condition are not output.
Example 1: Query students' math scores.
SELECT s.id, s.name, ms.score FROM student s JOIN math_score ms on s.id = ms.id;
 id | name | score
----+-------+-------
 2 | Lily | 75
 1 | Tom | 80
 4 | Perry | 95
(3 rows)

EXPLAIN SELECT s.id, s.name, ms.score FROM student s JOIN math_score ms on s.id = ms.id;
 QUERY PLAN
--
 id | operation | E-rows | E-memory | E-width | E-costs
 ----+---+--------+----------+---------+---------
 1 | -> Streaming (type: GATHER) | 4 | | 13 | 19.47
 2 | -> Hash Join (3,4) | 4 | 1MB | 13 | 11.47
 3 | -> Seq Scan on math_score ms | 30 | 1MB | 8 | 10.10
 4 | -> Hash | 12 | 16MB | 9 | 1.28
 5 | -> Streaming(type: BROADCAST) | 12 | 2MB | 9 | 1.28
 6 | -> Seq Scan on student s | 4 | 1MB | 9 | 1.01

 Predicate Information (identified by plan id)

 2 --Hash Join (3,4)
 Hash Cond: (ms.id = s.id)

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 116

 ====== Query Summary =====

 System available mem: 1761280KB
 Query Max mem: 1761280KB
 Query estimated mem: 4400KB
(19 rows)

● Cross join
Syntax:
left_table CROSS JOIN right_table

Description: Each row in the left table is joined with each row in the right
table. The number of final rows is the product of the number of rows on both
sides. The product is also called Cartesian product.
Example 2: Cross join of student tables and math score tables.
SELECT s.id, s.name, ms.score FROM student s CROSS JOIN math_score ms;
 id | name | score
----+-------+-------
 3 | Tina | 80
 2 | Lily | 80
 1 | Tom | 80
 4 | Perry | 80
 3 | Tina |
 2 | Lily |
 1 | Tom |
 4 | Perry |
 3 | Tina | 95
 2 | Lily | 95
 1 | Tom | 95
 4 | Perry | 95
 2 | Lily | 75
 3 | Tina | 75
 1 | Tom | 75
 4 | Perry | 75
(16 rows)

EXPLAIN SELECT s.id, s.name, ms.score FROM student s CROSS JOIN math_score ms;
 QUERY PLAN
--
 id | operation | E-rows | E-memory | E-width | E-costs
 ----+---+--------+----------+---------+---------
 1 | -> Streaming (type: GATHER) | 120 | | 13 | 19.89
 2 | -> Nested Loop (3,4) | 120 | 1MB | 13 | 11.89
 3 | -> Seq Scan on math_score ms | 30 | 1MB | 4 | 10.10
 4 | -> Materialize | 12 | 16MB | 9 | 1.30
 5 | -> Streaming(type: BROADCAST) | 12 | 2MB | 9 | 1.28
 6 | -> Seq Scan on student s | 4 | 1MB | 9 | 1.01

 ====== Query Summary =====

 System available mem: 1761280KB
 Query Max mem: 1761280KB
 Query estimated mem: 4144KB
(14 rows)

● Natural join
Syntax:
left_table NATURAL JOIN right_table

Description: Columns with the same name in left table and right table are
joined by equi-join, and the columns with the same name are merged into
one column.
Example 3: Natural join between the student table and the math_score table.
The columns with the same name in the two tables are the id columns,
therefore equivalent join is performed based on the id columns.

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 117

SELECT * FROM student s NATURAL JOIN math_score ms;
 id | name | score
----+-------+-------
 1 | Tom | 80
 4 | Perry | 95
 2 | Lily | 75
(3 rows)

EXPLAIN SELECT * FROM student s NATURAL JOIN math_score ms;
 QUERY PLAN
--
 id | operation | E-rows | E-memory | E-width | E-costs
 ----+---+--------+----------+---------+---------
 1 | -> Streaming (type: GATHER) | 4 | | 13 | 19.47
 2 | -> Hash Join (3,4) | 4 | 1MB | 13 | 11.47
 3 | -> Seq Scan on math_score ms | 30 | 1MB | 8 | 10.10
 4 | -> Hash | 12 | 16MB | 9 | 1.28
 5 | -> Streaming(type: BROADCAST) | 12 | 2MB | 9 | 1.28
 6 | -> Seq Scan on student s | 4 | 1MB | 9 | 1.01

 Predicate Information (identified by plan id)

 2 --Hash Join (3,4)
 Hash Cond: (ms.id = s.id)

 ====== Query Summary =====

 System available mem: 1761280KB
 Query Max mem: 1761280KB
 Query estimated mem: 4400KB
(19 rows)

Outer Join
● Left Join

Syntax:
left_table LEFT [OUTER] JOIN right_table [ON join_condition | USING (join_column)]

Description: The result set of a left outer join includes all rows of left table,
not only the joined rows. If a row in the left table does not match any row in
right table, the row will be NULL in the result set.
Example 4: Perform left join on the student table and math_score table. The
right table data corresponding to the row where ID is 3 in the student table is
filled with NULL in the result set.
SELECT s.id, s.name, ms.score FROM student s LEFT JOIN math_score ms on (s.id = ms.id);
 id | name | score
----+-------+-------
 3 | Tina |
 1 | Tom | 80
 2 | Lily | 75
 4 | Perry | 95
(4 rows)

EXPLAIN SELECT s.id, s.name, ms.score FROM student s LEFT JOIN math_score ms on (s.id = ms.id);
 QUERY PLAN

 id | operation | E-rows | E-memory | E-width | E-costs
 ----+--+--------+----------+---------+---------
 1 | -> Streaming (type: GATHER) | 4 | | 13 | 10.26
 2 | -> Hash Left Join (3, 5) | 4 | 1MB | 13 | 2.26
 3 | -> Streaming(type: REDISTRIBUTE) | 4 | 2MB | 9 | 1.11
 4 | -> Seq Scan on student s | 4 | 1MB | 9 | 1.01
 5 | -> Hash | 4 | 16MB | 8 | 1.11
 6 | -> Streaming(type: REDISTRIBUTE) | 4 | 2MB | 8 | 1.11
 7 | -> Seq Scan on math_score ms | 4 | 1MB | 8 | 1.01

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 118

 Predicate Information (identified by plan id)

 2 --Hash Left Join (3, 5)
 Hash Cond: (s.id = ms.id)

 ====== Query Summary =====

 System available mem: 901120KB
 Query Max mem: 901120KB
 Query estimated mem: 7520KB
(20 rows)

● Right join
Syntax:
left_table RIGHT [OUTER] JOIN right_table [ON join_condition | USING (join_column)]

Description: Contrary to the left join, the result set of a right join includes all
rows of the right table, not just the joined rows. If a row in the right table
does not match any row in right table, the row will be NULL in the result set.
Example 5: Perform right join on the student table and math_score table.
The right table data corresponding to the row where ID is 6 in the
math_score table is filled with NULL in the result set.
SELECT ms.id, s.name, ms.score FROM student s RIGHT JOIN math_score ms on (s.id = ms.id);
 id | name | score
----+-------+-------
 1 | Tom | 80
 6 | |
 4 | Perry | 95
 2 | Lily | 75

EXPLAIN SELECT ms.id, s.name, ms.score FROM student s RIGHT JOIN math_score ms on (s.id = ms.id);
 QUERY PLAN
--
 id | operation | E-rows | E-memory | E-width | E-costs
 ----+---+--------+----------+---------+---------
 1 | -> Streaming (type: GATHER) | 30 | | 13 | 19.47
 2 | -> Hash Left Join (3, 4) | 30 | 1MB | 13 | 11.47
 3 | -> Seq Scan on math_score ms | 30 | 1MB | 8 | 10.10
 4 | -> Hash | 12 | 16MB | 9 | 1.28
 5 | -> Streaming(type: BROADCAST) | 12 | 2MB | 9 | 1.28
 6 | -> Seq Scan on student s | 4 | 1MB | 9 | 1.01

 Predicate Information (identified by plan id)

 2 --Hash Left Join (3, 4)
 Hash Cond: (ms.id = s.id)

 ====== Query Summary =====

 System available mem: 1761280KB
 Query Max mem: 1761280KB
 Query estimated mem: 5424KB
(19 rows)

In a right join, Left is displayed in the join operator. This is because a right
join is actually the process replacing the left table with the right table then
performing left join.

● Full join
Syntax:
left_table FULL [OUTER] JOIN right_table [ON join_condition | USING (join_column)]

Description: A full join is a combination of a left outer join and a right outer
join. The result set of a full outer join includes all rows of the left table and
the right table, not just the joined rows. If a row in the left table does not

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 119

match any row in the right table, the row will be NULL in the result set. If a
row in the right table does not match any row in right table, the row will be
NULL in the result set.
Example 6: Perform full outer join on the student table and math_score
table. The right table data corresponding to the row where ID is 3 is filled
with NULL in the result set. The left table data corresponding to the row
where ID is 6 is filled with NULL in the result set.
SELECT s.id, s.name, ms.id, ms.score FROM student s FULL JOIN math_score ms ON (s.id = ms.id);
 id | name | id | score
----+-------+----+-------
 2 | Lily | 2 | 75
 4 | Perry | 4 | 95
 1 | Tom | 1 | 80
 3 | Tina | |
 | | 6 |
(5 rows)

EXPLAIN SELECT s.id, s.name, ms.id, ms.score FROM student s FULL JOIN math_score ms ON (s.id =
ms.id);
 QUERY PLAN

 id | operation | E-rows | E-memory | E-width | E-costs
 ----+--+--------+----------+---------+---------
 1 | -> Streaming (type: GATHER) | 30 | | 17 | 20.24
 2 | -> Hash Full Join (3, 5) | 30 | 1MB | 17 | 12.24
 3 | -> Streaming(type: REDISTRIBUTE) | 30 | 2MB | 8 | 11.06
 4 | -> Seq Scan on math_score ms | 30 | 1MB | 8 | 10.10
 5 | -> Hash | 4 | 16MB | 9 | 1.11
 6 | -> Streaming(type: REDISTRIBUTE) | 4 | 2MB | 9 | 1.11
 7 | -> Seq Scan on student s | 4 | 1MB | 9 | 1.01

 Predicate Information (identified by plan id)

 2 --Hash Full Join (3, 5)
 Hash Cond: (ms.id = s.id)

 ====== Query Summary =====

 System available mem: 1761280KB
 Query Max mem: 1761280KB
 Query estimated mem: 6496KB
(20 rows)

Differences Between the ON Condition and the WHERE Condition in Multi-
Table Query

According to the preceding join syntax, except natural join and cross join, the ON
condition (USING is converted to the ON condition during query parsing) is used
on the join result of both the two tables. Generally, the WHERE condition is used
in the query statement to restrict the query result. The ON join condition and
WHERE filter condition do not contain conditions that can be pushed down to
tables. The differences between ON and WHERE are as follows:

● The ON condition is used for joining two tables.
● WHERE is used to filter the result set.

To sum up, the ON condition is used when two tables are joined. After the join
result set of two tables is generated, the WHERE condition is used.

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 120

6.3 GaussDB(DWS) Subquery Expressions
A subquery allows you to nest one query within another, enabling more complex
data query and analysis.

Subquery Expressions
● EXISTS/NOT EXISTS

Before the main query runs, the subquery runs and its result determines if the
main query continues. EXISTS returns true if the subquery returns at least one
row. NOT EXISTS returns true if the subquery returns no rows.

Syntax:
WHERE column_name EXISTS/NOT EXISTS (subquery)

● IN/NOT IN
IN and NOT IN are operators that check if a value is in a set of values. IN
returns true when the outer query row matches a subquery row. NOT IN
returns true when the outer query row does not match any subquery row.

Syntax:
WHERE column_name IN/NOT IN (subquery)

● ANY/SOME
ANY indicates that any value in a subquery can match a value in an outer
query. SOME is the same as ANY, but the syntax is different.
The subquery can return only one column. The expression on the left uses
operators (=, <>, <, <=, >, >=) to compare the value with each subquery row.
The result must be a Boolean value. The result of ANY is true if any true
result is obtained. The result is false if no true result is found (including the
case where the subquery returns no rows).

Syntax:

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 121

WHERE column_name operator ANY/SOME (subquery)

● ALL
The subquery on the right must return only one field. The expression on the
left uses operators (=, <>, <, <=, >, >=) to compare the value with each
subquery row. The result must be a Boolean value. The result of ALL is true if
all rows yield true (including the case where the subquery returns no rows).
The result is false if any false result is found.

Syntax:
WHERE column_name operator ALL (subquery)

Table 6-1 ALL conditions

Condition Description

column_name > ALL(...) The column_name value must be
greater than the maximum value of
a set to be true.

column_name >= ALL(...) The column_name value must be
greater than or equal to the
maximum value of a set to be true.

column_name < ALL(...) The column_name value must be
smaller than the minimum value of
a set to be true.

column_name <= ALL(...) The column_name value must be
smaller than or equal to the
minimum value of a set to be true.

column_name <> ALL(...) The column_name value cannot be
equal to any value in a set to be
true.

column_name = ALL(...) The column_name value must be
equal to any value in a set to be
true.

Example
Create the course table and insert data into the table.
CREATE TABLE course(cid VARCHAR(10) COMMENT 'No.course',cname VARCHAR(10) COMMENT 'course
name',teid VARCHAR(10) COMMENT 'No.teacher');

INSERT INTO course VALUES('01' , 'course1' , '02');
INSERT INTO course VALUES('02' , 'course2' , '01');
INSERT INTO course VALUES('03' , 'course3' , '03');

Create the teacher table and insert data into the table.
CREATE TABLE teacher(teid VARCHAR(10) COMMENT 'Teacher ID',tname VARCHAR(10)
COMMENT'Teacher name');

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 122

INSERT INTO teacher VALUES('01' , 'teacher1');
INSERT INTO teacher VALUES('02' , 'teacher2');
INSERT INTO teacher VALUES('03' , 'teacher3');
INSERT INTO teacher VALUES('04' , 'teacher4');

● EXISTS/NOT EXISTS example

Query the teacher records in the course table.
SELECT * FROM teacher WHERE EXISTS (SELECT * FROM course WHERE course.teid = teacher.teid);

Query the teacher records that are not in the course table.
SELECT * FROM teacher WHERE NOT EXISTS (SELECT * FROM course WHERE course.teid = teacher.teid);

● IN/NOT IN example

Query the course table for teacher information based on the teacher ID.
SELECT * FROM course WHERE teid IN (SELECT teid FROM teacher);

Query the information about teachers who are not in the course table.
SELECT * FROM teacher WHERE teid NOT IN (SELECT teid FROM course);

● ANY/SOME example

Compare the main query fields on the left with the subquery fields on the right to
obtain the required result set.
SELECT * FROM course WHERE teid < ANY (SELECT teid FROM teacher where teid<>'04');

or
SELECT * FROM course WHERE teid < some (SELECT teid FROM teacher where teid<>'04');

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 123

● ALL example

The value in the teid column must be smaller than the minimum value in the set
to be true.

SELECT * FROM course WHERE teid < ALL(SELECT teid FROM teacher WHERE teid<>'01');

Important Notes
● Duplicate subquery statements are not allowed in an SQL statement.
● Avoid scalar sub-queries whenever possible. A scalar subquery is a subquery

whose result is one value and whose condition expression uses an equal
operator.

● Do not use subqueries in the SELECT target columns. Otherwise, the plan
cannot be pushed down, affecting the execution performance.

● It is recommended that the nested subqueries cannot exceed two layers.
Subqueries cause temporary table overhead. Therefore, complex queries must
be optimized based on service logic.

A subquery can be nested in the SELECT statement to implement a more complex
query. A subquery can also use the results of other queries in the WHERE clause to
better filter data. However, subqueries may cause query performance problems
and make code difficult to read and understand. Therefore, when using SQL
subqueries in databases such as GaussDB, use them based on the site
requirements.

6.4 GaussDB(DWS) WITH Expressions
The WITH expression is used to define auxiliary statements used in large queries.
These auxiliary statements are usually called common table expressions (CTE),
which can be understood as a named subquery. The subquery can be referenced
multiple times by its name in the quey.

An auxiliary statement may use SELECT, INSERT, UPDATE, or DELETE. The WITH
clause can be attached to a main statement, which can be a SELECT, INSERT, or
DELETE statement.

SELECT in WITH

This section describes the usage of SELECT in a WITH clause.

Syntax

[WITH [RECURSIVE] with_query [, ...]] SELECT ...

The syntax of with_query is as follows:

with_query_name [(column_name [, ...])]
 AS [[NOT] MATERIALIZED] ({select | values | insert | update | delete})

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 124

CA UTION

● If you use MATERIALIZED, the subquery runs once and its result set is saved. If
you use NOT MATERIALIZED, the subquery is replaced with its reference in the
main query.

● The SQL statement specified by the AS statement of a CTE must be a
statement that can return query results. It can be a common SELECT query
statement or other data modification statements such as INSERT, UPDATE,
DELETE, and VALUES. When using a data modification statement, you need to
use the RETURNING clause to return tuples. Example:
WITH s AS (INSERT INTO t VALUES(1) RETURNING a) SELECT * FROM s;

● A WITH expression indicates the CTE definition in a SQL statement block.
Multiple CTEs can be defined at the same time. You can specify column names
for each CTE or use the aliases of the columns in the query output. Example:
WITH s1(a, b) AS (SELECT x, y FROM t1), s2 AS (SELECT x, y FROM t2) SELECT * FROM s1 JOIN s2 ON
s1.a=s2.x;

This statement defines two CTEs: s1 and s2. s1 specifies the column names a
and b, and s2 does not specify the column names. Therefore, the column
names are the output column names x and y.

● Each CTE can be referenced zero, one, or more times in the main query.
● CTEs with the same name cannot exist in the same statement block. If CTEs

with the same name exist in different statement blocks, the CTE in the nearest
statement block is referenced.

● An SQL statement may contain multiple SQL statement blocks. Each statement
block can contain a WITH expression. The CTE in each WITH expression can be
referenced in the current statement block, subsequent CTEs of the current
statement block, and sub-layer statement blocks, however, it cannot be
referenced in the parent statement block. The definition of each CTE is also a
statement block. Therefore, a WITH expression can also be defined in the
statement block.

The purpose of SELECT in WITH is to break down complex queries into simple
parts. Example:

 WITH regional_sales AS (
 SELECT region, SUM(amount) AS total_sales
 FROM orders
 GROUP BY region
), top_regions AS (
 SELECT region
 FROM regional_sales
 WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)
)
 SELECT region,
 product,
 SUM(quantity) AS product_units,
 SUM(amount) AS product_sales
 FROM orders
 WHERE region IN (SELECT region FROM top_regions)
 GROUP BY region, product;

The WITH clause defines two auxiliary statements: regional_sales and
top_regions. The output of regional_sales is used in top_regions, and the output
of top_regions is used in the main SELECT query. This example can be written
without WITH. In that case, it must be written with a two-layer nested sub-
SELECT statement, making the query longer and difficult to maintain.

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 125

Recursive WITH Query
By declaring the keyword RECURSIVE, a WITH query can reference its own output.

The common form of a recursive WITH query is as follows:

non_recursive_term UNION [ALL] recursive_term

UNION performs deduplication when merging sets, while UNION ALLL directly
merges result sets without deduplication. Only recursive items can contain
references to the output of the query itself.

When using recursive WITH, ensure that the recursive item of the query does not
return a tuple. Otherwise, the query will loop infinitely.

The table tree is used to store information about all nodes in the following figure.

The table definition statement is as follows:

CREATE TABLE tree(id INT, parentid INT);

The data in the table is as follows:

INSERT INTO tree VALUES(1,0),(2,1),(3,1),(4,2),(5,2),(6,3),(7,3),(8,4),(9,4),(10,6),(11,6),(12,10);

SELECT * FROM tree;
 id | parentid
----+----------
 1 | 0
 2 | 1
 3 | 1
 4 | 2
 5 | 2
 6 | 3

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 126

 7 | 3
 8 | 4
 9 | 4
 10 | 6
 11 | 6
 12 | 10
(12 rows)

You can run the following WITH RECURSIVE statement to return the nodes and
hierarchy information of the entire tree starting from node 1 at the top layer:

WITH RECURSIVE nodeset AS
(
-- recursive initializing query
SELECT id, parentid, 1 AS level FROM tree
WHERE id = 1
UNION ALL
-- recursive join query
SELECT tree.id, tree.parentid, level + 1 FROM tree, nodeset
WHERE tree.parentid = nodeset.id
)
SELECT * FROM nodeset ORDER BY id;

In the preceding query, a typical WITH RECURSIVE expression contains the CTE of
at least one recursive query. The CTE is defined as a UNION ALL set operation.
The first branch is the recursive start query, and the second branch is the recursive
join query, the first part is referenced for continuous recursive join. When this
statement is executed, the recursive start query is executed once, and the join
query is executed several times. The results are added to the start query result set
until the results of some join queries are empty.

The command output is as follows:

 id | parentid | level
----+----------+-------
 1 | 0 | 1
 2 | 1 | 2
 3 | 1 | 2
 4 | 2 | 3
 5 | 2 | 3
 6 | 3 | 3
 7 | 3 | 3
 8 | 4 | 4
 9 | 4 | 4
 10 | 6 | 4
 11 | 6 | 4
 12 | 10 | 5
(12 rows)

According to the returned result, the start query result contains the result set
whose level is 1. The join query is executed for five times. The result sets whose
levels are 2, 3, 4, and 5 are output for the first four times. During the fifth
execution, there is no record whose parentid is the same as the output result set
ID, that is, there is no redundant child node. Therefore, the query ends.

NO TE

GaussDB(DWS) supports distributed execution of WITH RECURSIVE expressions. WITH
RECURSIVE involves cyclic calculation. Therefore, GaussDB(DWS) introduces the
max_recursive_times parameter to control the maximum number of cycles of WITH
RECURSIVE. The default value is 200. If the number of cycles exceeds 200, an error is
reported.

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 127

Data Modification Statements in WITH

Use the INSERT, UPDATE, and DELETE commands in the WITH clause. This allows
the user to perform multiple different operations in the same query. The following
is an example:

WITH moved_tree AS (
 DELETE FROM tree
 WHERE parentid = 4
 RETURNING *)
 INSERT INTO tree_log
 SELECT * FROM moved_tree;

The preceding query example actually moves rows from tree to tree_log. The
DELETE command in the WITH clause deletes the specified rows from tree,
returns their contents through the RETURNING clause, and then the main query
reads the output and inserts it into tree_log.

To retrieve the modified content instead of the target table, the data modification
statement in the WITH clause should include the RETURNING clause. This clause
creates a temporary table that can be accessed by the rest of the query. If a data
modification statement in the WITH statement lacks a RETURNING clause, it
cannot form a temporary table and cannot be referenced in the remaining queries.

If the RECURSIVE keyword is declare, recursive self-reference is not allowed in
data modification statements. In some cases, you can bypass this restriction by
referencing the output of recursive the WITH statement. For example:

WITH RECURSIVE included_parts(sub_part, part) AS (
 SELECT sub_part, part FROM parts WHERE part = 'our_product'
 UNION ALL
 SELECT p.sub_part, p.part
 FROM included_parts pr, parts p
 WHERE p.part = pr.sub_part
)
DELETE FROM parts
 WHERE part IN (SELECT part FROM included_parts);

This query will remove all direct or indirect subparts of a product.

The substatements in the WITH clause are executed at the same time as the main
query. Therefore, when using the data modification statement in a WITH
statement, the actual update order is in an unpredictable manner. All statements
are executed in the same snapshot, and the effect of the statements is invisible on
the target table. This mitigates the unpredictability of the actual order of row
updates and means that RETURNING data is the only way to convey changes
between different WITH substatements and the main query.

In this example, the outer layer SELECT can return the data before the update.

WITH t AS (
 UPDATE tree SET id = id + 1
 RETURNING *)
SELECT * FROM tree;

In this example, the external SELECT returns the updated data.

WITH t AS (
UPDATE tree SET id = id + 1
 RETURNING *)
SELECT * FROM t;

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 128

The same row cannot be updated twice in a single statement. Otherwise, the
update effect will be unpredictable. If only one update takes effect, it is difficult
(and sometimes impossible) to predict which one takes effect.

6.5 Usage of GaussDB(DWS) UNION
UNION is a powerful SQL operator that combines the result sets of two or more
SELECT statements into one. During combination, the number of columns and
data types in the two tables must be the same and correspond to each other. Use
the UNION or UNION ALL keyword between SELECT statements.

UNION removes duplicate rows, while UNION ALL keeps them. Deduplication is
time-consuming, so UNION ALL can be faster than UNION if the data sets are
already distinct by logic.

Syntax
SELECT column,... FROM table1 UNION [ALL]SELECT column,... FROM table2

Example

Step 1 Create the student information table student (ID, name, gender, and school).
SET current_schema=public;
DROP TABLE IF EXISTS student;
CREATE table student(
sId VARCHAR(10) NOT NULL,
sname VARCHAR(10) NOT NULL,
sgender VARCHAR(10) NOT NULL,
sschool VARCHAR(10) NOT NULL);

Step 2 Insert data into the student table.
INSERT INTO student VALUES('s01' , 'ZhaoLei' , 'male', 'NENU');
INSERT INTO student VALUES('s02' , 'QianDian' , 'male', 'SJTU');
INSERT INTO student VALUES('s03' , 'SunFenng' , 'male', 'Tongji');
INSERT INTO student VALUES('s04' , 'LIYun' , 'male', 'CCOM');
INSERT INTO student VALUES('s05' , 'ZhouMei' , 'female', 'FuDan');
INSERT INTO student VALUES('s06' , 'WuLan' , 'female', 'WHU');
INSERT INTO student VALUES('s07' , 'ZhengZhu' , 'female', 'NWAFU');
INSERT INTO student VALUES('s08' , 'ZhangShan' , 'female', 'Tongji');

Step 3 View the student table.
SELECT * FROM student;

Information similar to the following is displayed.

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 129

Step 4 Create the teacher information table teacher (ID, name, gender, and school).
DROP TABLE IF EXISTS teacher;
CREATE table teacher(
tid VARCHAR(10) NOT NULL,
tname VARCHAR(10) NOT NULL,
tgender VARCHAR(10) NOT NULL,
tschool VARCHAR(10) NOT NULL);

Step 5 Insert data to the teacher table.
INSERT INTO teacher VALUES('t01' , 'ZhangLei', 'male', 'FuDan');
INSERT INTO teacher VALUES('t02' , 'LiLiang', 'male', 'WHU');
INSERT INTO teacher VALUES('t03' , 'WangGang', 'male', 'Tongji');

Step 6 Query the teacher table.
SELECT * FROM teacher;

Step 7 Use UNION (combine and deduplicate) to obtain the schools of students and
teachers and sort the schools in ascending order by initial letter of the school
name.
SELECT t.school FROM (
 SELECT sschool AS school
 FROM student
 UNION
 SELECT tschool AS school
 FROM teacher
) t
 ORDER BY t.school ASC;

Information similar to the following is displayed.

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 130

Step 8 Use UNION ALL (combine without deduplication) to obtain the schools of all
students and teachers and sort the schools by initial letter of the school name in
ascending order.
SELECT t.school FROM (
 SELECT sschool AS school
 FROM student
 UNION ALL
 SELECT tschool AS school
 FROM teacher
) t
 ORDER BY t.school ASC;

Step 9 Use UNION ALL (combine the result sets of SQL statements with WHERE clause)
to get all information about students and teachers from "Tongji' and sort by
student and teacher number in ascending order.
SELECT t.* FROM (
 SELECT Sid AS id,Sname AS name,Sgender AS gender,Sschool AS school
 FROM student
 WHERE Sschool='Tongji'
 UNION ALL
 SELECT Tid AS id,Tname AS name,Tgender AS gender,Tschool AS school
 FROM teacher
 WHERE Tschool='Tongji'
) t
 ORDER BY t.id ASC;

----End

Summary

In actual service scenarios, pay attention to the following points when using
UNION and UNION ALL:

● The number of SQL fields and field types on the left and right sides must be
the same.

● Check whether data deduplication (deduplication before combination or
during combination) is needed based on service requirements.

● Based on the data volume, valuate the SQL execution efficiency and
determine whether to use temporary tables.

● Select UNION or UNION ALL wisely and consider the complexity when
writing SQL statements.

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 131

6.6 Data Reading/Writing Across Logical Clusters

Scenario
After an associated logical cluster user is created, the query or modification
(including Insert, Delete, and Update) submitted by the user is calculated and
executed in the associated logical cluster. If the user submits a query or
modification request to a table in a different logical cluster, the optimizer
generates a cross-logical cluster query or modification plan to enable the user to
query or modify the table.

Figure 6-1 Querying data across logical clusters

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 132

Figure 6-2 Writing data across logical clusters

Procedure

Step 1 Create a cluster by referring to Creating a DWS 3.0 Cluster with Decoupled
Storage and Compute. After a cluster is created, it is converted to a logical cluster
v3_logical by default.

Step 2 Add three nodes to the elastic cluster, and then add the logical cluster lc2.

Step 3 Create user u1 and associate it with logical cluster v3_logical.
CREATE USER u1 with SYSADMIN NODE GROUP "v3_logical" password "Password@123";

Step 4 Create user u2 and associate it with logical cluster lc2.
CREATE USER u2 with SYSADMIN NODE GROUP "lc2" password "Password@123";

Step 5 Log in to the database as user u1, create tables t1 and t2, and insert test data
into the tables.
CREATE TABLE public.t1
(
id integer not null,
data integer,
age integer
)
WITH (ORIENTATION =COLUMN, COLVERSION =3.0)
DISTRIBUTE BY ROUNDROBIN;

CREATE TABLE public.t2
(
id integer not null,
data integer,
age integer
)
WITH (ORIENTATION = COLUMN, COLVERSION =3.0)
DISTRIBUTE BY ROUNDROBIN;

INSERT INTO public.t1 VALUES (1,2,10),(2,3,11);
INSERT INTO public.t2 VALUES (1,2,10),(2,3,11);

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 133

https://support.huaweicloud.com/intl/en-us/mgtg-dws/dws_01_0219.html
https://support.huaweicloud.com/intl/en-us/mgtg-dws/dws_01_0219.html

Step 6 Log in to the database as user u2 and run the commands below to query t1 and
write data.

According to the result, user u2 can query and write data across logical clusters.
SELECT * FROM t1;
INSERT INTO t1 SELECT * FROM t2;

----End

6.7 SQL on Hudi
This feature is supported only by 8.2.1.100 and later versions.

6.7.1 Introduction to Hudi
Apache Hudi indicates Hadoop Upserts Deletes and Incrementals. It is used to
manage large analysis data sets stored on the DFS in Hadoop.

Hudi is not just a data format. It is also a set of data access methods (similar to
the access layer of GaussDB(DWS) storage). In Apache Hudi 0.9, big data
components such as Spark and Flink have their own clients. The following figure
shows the logical storage of Hudi.

● Write Mode
COW: copy-on-write, applicable to scenarios with few updates.
MOR: replication on read. For UPDATE & DELETE, delta log files are written
incrementally. During analysis, base and delta log files are compacted
asynchronously.

● Storage Format
index: index of the primary key. The default value is bloomfilter at the file
group level.
data files: base file + delta log file (for updating and deleting base files)
timeline metadata: manages version logs.

● Views

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 134

Read-optimized view: reads the base file generated after compaction. The
reading of data that is not compacted has some latency (efficient read).

Real-time view: reads the latest data. The base file and delta file are
combined during the read (frequent updates).

Incremental view: reads the incremental data written to Hudi, similar to CDC
(stream and batch integration).

6.7.2 Preparations Before Using Hudi

Prerequisites

You have created an OBS agency and OBS data source. For details, see Managing
OBS Data Sources.

Authorizing the Use of OBS Data Sources

Run the GRANT command to grant a user the permission to use OBS data
sources.

GRANT USAGE ON FOREIGN SERVER server_name TO role_name;

Example:

Run the following command to grant user sbi_fnd the permission to access data
source obs_hudi:

GRANT USAGE ON FOREIGN SERVER obs_hudi TO sbi_fnd;

Granting Permissions for Using Foreign Tables

Run the following command to grant a user the permission to use foreign tables:

ALTER USER role_name USEFT;

Example:

Run the following command to grant the foreign table access permission to user
sbi_fnd:

ALTER USER sbi_fnd USEFT;

6.7.3 Hudi User Interfaces

Querying Real-Time Views and Incremental Views

GaussDB (DWS) provides table-level parameters similar to spark-sql to support
real-time and incremental views.

The parameters are described as follows. Replace SCHEMA.FOREIGN_TABLE with
the actual schema name and foreign table name.

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 135

https://support.huaweicloud.com/intl/en-us/mgtg-dws/dws_01_1602.html
https://support.huaweicloud.com/intl/en-us/mgtg-dws/dws_01_1602.html

Table 6-2 Parameters for querying real-time views and incremental views

Parameter Value Description

hoodie.SCHEMA.FOREIGN_TABLE
.consume.mode

SNAPSHOT Queries the real-time view.

INCREMENTAL Queries the incremental
view.

hoodie.SCHEMA.FOREIGN_TABLE
.consume. start.timestamp

hudi
timestamp

Specifies the start commit
of incremental
synchronization.

hoodie.SCHEMA.FOREIGN_TABLE
.consume. ending.timestamp

hudi
timestamp

Specifies the end commit
of incremental
synchronization. If this
parameter is not specified,
the latest commit is used.

NO TE

● The preceding parameters can be set by running the set command and are valid only in
the current session. You can run the reset command to restore the default values.

● You can use the system function pg_catalog.pg_show_custom_settings() to query the
parameter setting details.

● When querying the incremental view of the MOR table, you need to use the WHERE
condition to filter the _hoodie_commit_time column to prevent the log file data that is
not compacted from being read. This operation is not required for the COW table.

Querying Hudi Foreign Table and Automatically Synchronizing Tasks
GaussDB(DWS) provides a series of system functions to obtain Hudi foreign table
information and create Hudi automatic synchronization tasks. The automatic Hudi
synchronization task periodically synchronizes data from Hudi foreign tables to
GaussDB(DWS) internal tables.

Table 6-3 Hudi system functions

No. Function Type Functionality

1 pg_show_custom_settings() Built-in
function
s

Queries details about the
parameter settings of an
HUDI foreign table.

2 hudi_get_options(regclass) Built-in
function
s

Queries the attributes of an
HUDI foreign table
(hoodie.properties).

3 hudi_get_max_commit(regcla
ss)

Built-in
function
s

Obtains the latest commit
timestamp of the current
HUDI foreign table.

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 136

No. Function Type Functionality

4 hudi_sync_task_submit(regcla
ss, regclass)

Built-in
function
s

Submits the HUDI
automatic synchronization
task.

hudi_sync_task_submit(regcla
ss, regclass, text, text)

5 hudi_show_sync_state() Built-in
function
s

Obtains the synchronization
status of the HUDI
automatic synchronization
task.

6 hudi_sync(regclass, regclass) Stored
procedur
e

Specifies the entry for
invoking the HUDI
automatic synchronization
task.

7 hudi_sync_custom(regclass,
regclass, text)

Stored
procedur
e

Specifies the entry for
invoking the HUDI
automatic synchronization
task. Users can define the
mapping between fields in
the target table and data
source table.

8 hudi_set_sync_commit(regclas
s, regclass, text)

Built-in
function
s

Sets the start timestamp of
the first synchronization of
the HUDI automatic
synchronization task to
prevent resynchronization.

hudi_set_sync_commit(text,
text)

Sets the start timestamp of
the next synchronization of
a HUDI automatic
synchronization task. You
can use it to sync historical
data again or to skip some
data.

6.7.4 Creating a Hudi Data Description (Foreign Table)
A foreign table maps data on OBS. GaussDB(DWS) accesses Hudi data on OBS
through foreign tables. For details, see section CREATE FOREIGN TABLE (SQL on
OBS or Hadoop).

Compared with OBS foreign tables, you only need to set format to hudi for Hudi
foreign tables. For Hudi bucket tables, you need to set distribute by to
hash(bk_col1,bk_col2...). Only 9.1.0.100 and later versions support Hudi bucket
tables.

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 137

https://support.huaweicloud.com/intl/en-us/sqlreference-dws/dws_06_0161.html
https://support.huaweicloud.com/intl/en-us/sqlreference-dws/dws_06_0161.html

Obtaining the Definitions of Tables on MRS.
Hudi foreign tables on GaussDB(DWS) are read-only. Before creating a foreign
table, you need to specify the number of fields defined in the target data and the
type of each field. A Hudi foreign table supports a maximum of 5000 columns.

For example, for a Hudi table on MRS, you can use spark-sql to query the original
table definitions:

SHOW create table rtd_mfdt_int_currency_t;

Compiling GaussDB(DWS) Table Definitions
● Non-bucket table

Copy the definitions of all columns in the MRS table, perform proper type
conversion to adapt to the GaussDB(DWS) syntax, and create an OBS foreign
table.
CREATE FOREIGN TABLE rtd_mfdt_int_currency_ft(
_hoodie_commit_time text,
_hoodie_commit_seqno text,
_hoodie_record_key text,
_hoodie_partition_path text,
_hoodie_file_name text,
...
)SERVER obs_server OPTIONS (
foldername '/erpgc-obs-test-01/s000/sbi_fnd/rtd_mfdt_int_currency_t/',
format 'hudi',
encoding 'utf-8'
)distribute by roundrobin;

foldername indicates the storage path of the Hudi data on OBS, which
corresponds to LOCATION in the Spark-sql table definitions of MRS. The path
must end with a slash (/).

● Bucket table
Copy the definitions of all columns in the MRS table, perform proper type
conversion to adapt to the GaussDB(DWS) syntax, create an OBS foreign
table, and specify the hash distribution mode.
CREATE FOREIGN TABLE rtd_mfdt_int_currency_ft(
_hoodie_commit_time text,
_hoodie_commit_seqno text,
_hoodie_record_key text,
_hoodie_partition_path text,
_hoodie_file_name text,
...
)SERVER obs_server OPTIONS (
foldername '/erpgc-obs-test-01/s000/sbi_fnd/rtd_mfdt_int_currency_t/',
format 'hudi',
encoding 'utf-8'
)distribute by hash(bk_col1,bk_col2...);

foldername indicates the storage path of the Hudi data on OBS, which
corresponds to LOCATION in the Spark-sql table definitions of MRS. The path
must end with a slash (/).
distribute by indicates the distribution column of the bucket table. The value
must be the same as that of hoodie.bucket.index.hash.field in the
foldername/.hoodie/hoodie.index.properties file.

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 138

6.7.5 Synchronizing Hudi Tasks

Creating a Hudi Task
Migration

If data has been imported to the GaussDB(DWS) table using CDL, use SQL on
Hudi to migrate data. Alternatively, use CDM to perform full initialization and
then use SQL on Hudi to synchronize incremental data.

Step 1 To create the hudi.hudi_sync_state synchronization status table, you must have
the administrator permission.
SELECT pg_catalog.create_hudi_sync_table();

Generally, hudi.hudi_sync_state is created only once in each database.

Step 2 To set the CDL synchronization progress, you must have the INSERT and UPDATE
permissions on the target table and the SELECT permission on the HUDI foreign
table. Otherwise, the synchronization progress cannot be set.
SELECT hudi_set_sync_commit('SCHEMA.TABLE', 'SCHEMA.FOREIGN_TABLE', 'LATEST_COMMIT');

Where:

● SCHEMA.TABLE indicates the name and schema of the target table for data
synchronization.

● SCHEMA.FOREIGN_TABLE indicates the name and schema of the OBS foreign
table.

● LATEST_COMMIT indicates the end time of the Hudi synchronization.

Example: Data has been synchronized to the target table public.in_rel from hudi
by 20220913152131. Use SQL on Hudi to continue to export data from the OBS
foreign table hudi_read1.

SELECT hudi_set_sync_commit('public.in_rel', 'public.hudi_read1', '20220913152131');

Step 3 Submit the Hudi synchronization task.
SELECT hudi_sync_task_submit('SCHEMA.TABLE', 'SCHEMA.FOREIGN_TABLE');

Example: Use SQL on Hudi to continue to export data from the OBS foreign table
hudi_read1 to the target table public.in_rel.

SELECT hudi_sync_task_submit('public.in_rel', 'public.hudi_read1');

----End

Creation

If the GaussDB(DWS) table is empty and data is synchronized from Hudi for the
first time, run the following command to create a task:

SELECT hudi_sync_task_submit('SCHEMA.TABLE', 'SCHEMA.FOREIGN_TABLE');

Querying Hudi Synchronization Tasks
Query a Hudi synchronization task. In the query result, task_id uniquely identifies
a Hudi synchronization task.

SELECT * FROM pg_task_show('SQLonHudi');

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 139

Suspending Hudi Synchronization Tasks

Query the Hudi task and obtain task_id to suspend the Hudi task.

SELECT pg_task_pause('task_id');

Example:

Suspend the synchronization task whose task_id is 64479410-a04c-0700-
d150-3037d700fffe.

SELECT pg_task_pause('64479410-a04c-0700-d150-3037d700fffe');

Resuming Hudi Synchronization Tasks

Query the Hudi task, obtain the value of task_id, and resume the Hudi task.

SELECT pg_task_resume('task_id');

Example:

Resume the synchronization task whose task_id is 64479410-a04c-0700-
d150-3037d700fffe.

SELECT pg_task_resume('64479410-a04c-0700-d150-3037d700fffe');

Deleting a Hudi Synchronization Task

Query the Hudi task, obtain task_id, and delete the Hudi synchronization task.

SELECT pg_task_remove('task_id');

Example:

Delete the synchronization task whose task_id is 64479410-a04c-0700-
d150-3037d700fffe.

SELECT pg_task_remove('64479410-a04c-0700-d150-3037d700fffe');

Querying Past Synchronization Information

Use the hudi_sync_state_history_view view to query information about past Hudi
synchronization tasks. This view is supported only by clusters of version 9.1.0 and
later.

SELECT * FROM pg_catalog.hudi_sync_state_history_view;

Table 6-4 hudi_sync_state_history_view columns

Column Type Description

task_id TEXT Task ID

target_tbl TEXT Name of the synchronization
target table

source_ftbl TEXT Name of the synchronization
source table (foreign table)

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 140

Column Type Description

latest_commit TEXT Timestamp of the latest
successful synchronization

latest_sync_count BIGINT Number of rows that are
successfully synchronized last
time

latest_sync_start TIMESTAMP WITH TIME
ZONE

Start time of the latest
synchronization task

latest_sync_end TIMESTAMP WITH TIME
ZONE

Time when the latest
synchronization task ends

hudi_flushdisk_tim
e

TEXT Time when the hudi file is
flushed to disks

Querying the Status of a Synchronization Task

Use the hudi_show_sync_state() function to query the status of a Hudi
synchronization task.

SELECT * FROM hudi_show_sync_state();

Resetting a Hudi Synchronization Task with Consecutive Failures

Use the pg_task_resume() function to reset a Hudi synchronization task that fails
consecutively.

If the number of consecutive failures is greater than or equal to 10, the task is
automatically suspended. You need to manually call the pg_task_resume()
function to reset the task. This function is supported only by clusters of version
9.1.0 and later.

Input parameter: task_id of the Hudi task that fails consecutively

SELECT pg_task_resume('task_id');

6.7.6 Querying a Hudi Foreign Table
You can query data in a Hudi foreign table. By default, it gives you a real-time
view. You can set parameters to query the incremental data.

Querying Incremental Data

You can set incremental query parameters to implement incremental query.

SET hoodie.SCHEMA.FOREIGN_TABLE.consume.mode=incremental;
SET hoodie.SCHEMA.FOREIGN_TABLE.consume.start.timestamp=start_timestamp;
SET hoodie.SCHEMA.FOREIGN_TABLE.consume.ending.timestamp=end_timestamp;
SELECT * FROM SCHEMA.FOREIGN_TABLE;

Example:

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 141

Query the incremental data of the MOR hudi foreign table
public.rtd_mfdt_int_currency_ft from 20221207164617 to 20221207170234.
Where:

SET hoodie.public.rtd_mfdt_int_currency_ft.consume.mode=incremental;
SET hoodie.public.rtd_mfdt_int_currency_ft.consume.start.timestamp=20221207164617;
SET hoodie.public.rtd_mfdt_int_currency_ft.consume.ending.timestamp=20221207170234;
SELECT * FROM public.rtd_mfdt_int_currency_ft where _hoodie_commit_time>20221207164617 and
_hoodie_commit_time<=20221207170234;

Querying the Configured Incremental Parameters
You can use the following function to check the incremental parameter
configuration.
SELECT * FROM pg_show_custom_settings();

Querying the Properties of a Hudi Foreign Table (hoodie.properties)
Run the following command to query the hoodie.properties of the Hudi data on
OBS:
SELECT * FROM hudi_get_options('SCHEMA.FOREIGN_TABLE');

Example: Query the hudi properties of the OBS foreign table rtd_mfdt_int_unit_ft
in the current schema.

SELECT * FROM hudi_get_options('rtd_mfdt_int_unit_ft');

Querying the Maximum Timeline of a Hudi Foreign Table
Run the following command to query the maximum timeline of the hudi data on
OBS, that is, the latest submitted data:

SELECT * FROM hudi_get_max_commit('SCHEMA.FOREIGN_TABLE');

Example: Query the maximum timeline of the OBS foreign table
rtd_mfdt_int_unit_ft in the current schema.

SELECT * FROM hudi_get_max_commit('rtd_mfdt_int_unit_ft');

6.7.7 Accessing Hudi Tables on MRS
SQL on Hudi supports access to hudi tables stored on MRS. This function is
supported only by clusters of version 9.1.0 or later.

Prerequisites
You have created an MRS data source. For details, see MRS Data Sources.

NO TE

SQL on Hudi can read hudi tables stored on MRS. The only difference in usage compared to
OBS is when creating data sources.

Accessing Multiple MRS Clusters Concurrently
Due to JDK restrictions, one JVM can store only one Kerberos configuration file at
a time. As a result, one GaussDB(DWS) cluster cannot concurrently access hudi
tables in multiple MRS clusters through SQL on Hudi. To avoid this issue, do as
follows:

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 142

https://support.huaweicloud.com/intl/en-us/mgtg-dws/dws_01_0055.html

Step 1 Obtain the krb5.conf file of each MRS cluster from the downloaded client.

Step 2 Use the krb5.conf file of any MRS cluster as the file to be combined (cluster A for
short).

Step 3 Add the KDC domain information of cluster B to realms in cluster A's
configuration file.

Example:
[realms]
CLUSTER.A.COM = {
admin_server = ClusterA_SERVER_IP:PORT
kdc = ClusterA_KDC_IP:PORT
kdc = ClusterA_KDC_IP:PORT
}
CLUSTER.B.COM = {
admin_server = ClusterB_SERVER_IP:PORT
kdc = ClusterB_KDC_IP:PORT
kdc = ClusterB_KDC_IP:PORT
}

Step 4 Add the domain information of cluster B to domain_realm in cluster A's
configuration file.

Example:
[domain_realm]
.cluster.a.com = CLUSTER.A.COM
.cluster.b.com = CLUSTER.B.COM

Step 5 Replace the original krb5.conf file with the combined one in the original path of
each node in each cluster.

----End

CA UTION

The preceding example is for reference only. During actual operations, you need to
combine the actual KDC domain information in the cluster' realms or
domain_realm.

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 143

7 GaussDB(DWS) Sorting Rules

The collation feature allows specifying the data sorting order and data
classification rules in a character set. This alleviates the restriction that the
LC_COLLATE and LC_CTYPE settings of a database cannot be changed after its
creation.

Overview

Every expression of a collatable data type has a collation. (The built-in collatable
data types are text, varchar, and char. User-defined base types can also be marked
collatable, and of course a domain over a collatable data type is collatable.) If the
expression is a column reference, the collation of the expression is the defined
collation of the column. If the expression is a constant, the collation is the default
collation of the data type of the constant. The collation of a more complex
expression is derived from the collations of its inputs.

Collation Combination Principles
● The collation of an expression can be the default collation, which means the

locale settings defined for the database. It is also possible for an expression's
collation to be indeterminate. In such cases, ordering operations and other
operations that need to know the collation will fail.

● For a function or operator call, the collation that is derived by examining the
argument collations is used at run time for performing the specified
operation. If the result of the function or operator call is of a collatable data
type, the collation is also used as the defined collation of the function or
operator expression, in case there is a surrounding expression that requires
knowledge of its collation.

● The collation derivation of an expression can be implicit or explicit. This
distinction affects how collations are combined when multiple different
collations appear in an expression. An explicit collation derivation occurs
when a COLLATE clause is used; all other collation derivations are implicit.
When multiple collations need to be combined, the following rules are used:

– If any input expression has an explicit collation derivation, then all
explicitly derived collations among the input expressions must be the
same, otherwise an error is raised. If any explicitly derived collation is
present, that is the result of the collation combination.

Data Warehouse Service
Developer Guide 7 GaussDB(DWS) Sorting Rules

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 144

– Otherwise, all input expressions must have the same implicit collation
derivation or the default collation. If any non-default collation is present,
that is the result of the collation combination. Otherwise, the result is the
default collation.

– If there are conflicting non-default implicit collations among the input
expressions, then the combination is deemed to have indeterminate
collation. This is not an error condition unless the particular function
being invoked requires knowledge of the collation it should apply. If it
does, an error will be raised at run-time.

● In a CASE expression, the comparison rule is subject to the COLLATE setting in
the WHEN clause.

● Explicit COLLATE derivation takes effect only in the current query (CTE or
SUBQUERY). Outside the query, implicit derivation takes effect.

Collation Tips
● Do not use multiple collations in the same query statement. Otherwise,

exceptional result sets may be generated.
● Do not use multiple COLLATE clauses to specify a collation.

Case-insensitive Collation Support
Since cluster 8.1.3, GaussDB(DWS) has added the built-in case_insensitive
collation, which is case-insensitive to character types in some actions (such as
sorting, comparison, and hash).

Constraints:

● Supported character types: char, character, nchar, and varchar/character
varying/varchar2/nvarchar2/clob/text.

● The character types char and name are not supported.
● The following encoding formats are not supported: PG_EUC_JIS_2004,

PG_MULE_INTERNAL, PG_LATIN10 and PG_WIN874.
● It cannot be specified to LC_COLLATE when CREATE DATABASE is executed.
● Regular expressions are not supported.
● Record comparison of the character type (for example, record_eq) is not

supported.
● Time series tables are not supported.
● Skew optimization is not supported.
● RoughCheck optimization is not supported.

Examples
The COLLATE clause is specified in the statement.

SELECT 'a' = 'A', 'a' = 'A' COLLATE case_insensitive;
 ?column? | ?column?
----------+----------
 f | t
(1 row)

Set the column attribute to case_insensitive when creating a table.

Data Warehouse Service
Developer Guide 7 GaussDB(DWS) Sorting Rules

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 145

CREATE TABLE t1 (a text collate case_insensitive);
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using round-robin as the distribution mode by default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE
\d t1
 Table "public.t1"
 Column | Type | Modifiers
--------+------+--------------------------
 a | text | collate case_insensitive

INSERT INTO t1 values('a'),('A'),('b'),('B');
INSERT 0 4

This parameter is specified during table creation and does not need to be specified
during query.

SELECT a, a='a' FROM t1;
 a | ?column?
---+----------
 A | t
 B | f
 a | t
 b | f
(4 rows)
SELECT a, count(1) FROM t1 GROUP BY a;
 a | count
---+-------
 a | 2
 B | 2
(2 rows)

CASE expression, which is subject to the COLLATE setting in the WHEN clause.

SELECT a,case a when 'a' collate case_insensitive then 'case1' when 'b' collate "C" then 'case2' else 'case3'
end FROM t1;
 a | case
---+-------
 A | case1
 B | case3
 a | case1
 b | case2
(4 rows)

Implicit derivation across subqueries.

SELECT * FROM (SELECT a collate "C" from t1) WHERE a in ('a','b');
 a

 a
 b
(2 rows)
SELECT * FROM t1,(SELECT a collate "C" from t1) t2 WHERE t1.a=t2.a;
ERROR: could not determine which collation to use for string hashing
HINT: Use the COLLATE clause to set the collation explicitly.

Data Warehouse Service
Developer Guide 7 GaussDB(DWS) Sorting Rules

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 146

CA UTION

● collate case_insensitive is an insensitive sorting, and the result set is uncertain.
If sensitive sorting is used after collate case_insensitive sorting, the result set
may be unstable. Therefore, do not use sensitive sorting and insensitive sorting
together in statements.

● If collate case_insensitive is used to specify character behaviors as case-
insensitive, the performance will be affected. If you require high performance,
exercise caution when configuring this parameter.

Data Warehouse Service
Developer Guide 7 GaussDB(DWS) Sorting Rules

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 147

8 GaussDB(DWS) User-Defined Functions

NO TE

● The hybrid data warehouse (deployed in standalone mode) does not support user-
defined functions.

● The hybrid data warehouse (standalone) does 8.2.0.100 and later versions support OBS
import and export.

8.1 GaussDB(DWS) PL/Java Functions
With the GaussDB(DWS) PL/Java functions, you can choose your favorite Java IDE
to write Java methods and install the JAR files containing these methods into the
GaussDB(DWS) database before invoking them. GaussDB(DWS) PL/Java is
developed based on open-source PL/Java 1.5.5 and uses JRE 1.8.0_322.

Constraints
Java UDF can be used for some Java logical computing. You are not advised to
encapsulate services in Java UDF.

● You are not advised to connect to a database in any way (for example, JDBC)
in Java functions.

● Currently, only data types listed in Table 8-1 are supported. Other data types,
such as user-defined data types and complex data types (for example, Java
array and its derived types) are not supported.

● Currently, UDAF and UDTF are not supported.

Examples
Before using PL/Java, you need to pack the implementation of Java methods into
a JAR package and deploy it into the database. Then, create functions as a
database administrator. For compatibility purposes, use JRE 1.8.0_322 for
compilation.

Step 1 Compile a JAR package.

Java method implementation and JAR package archiving can be achieved in an
integrated development environment (IDE). The following is a simple example of

Data Warehouse Service
Developer Guide 8 GaussDB(DWS) User-Defined Functions

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 148

compilation and archiving through command lines. You can create a JAR package
that contains a single method in the similar way.

First, prepare an Example.java file that contains a method for converting
substrings to uppercase. In the following example, Example is the class name and
upperString is the method name:

public class Example
{
 public static String upperString (String text, int beginIndex, int endIndex)
 {
 return text.substring(beginIndex, endIndex).toUpperCase();
 }
}

Then, create a manifest.txt file containing the following content:

Manifest-Version: 1.0
Main-Class: Example
Specification-Title: "Example"
Specification-Version: "1.0"
Created-By: 1.6.0_35-b10-428-11M3811
Build-Date: 08/14/2018 10:09 AM

Manifest-Version specifies the version of the manifest file. Main-Class specifies
the main class used by the .jar file. Specification-Title and Specification-Version
are the extended attributes of the package. Specification-Title specifies the title
of the extended specification and Specification-Version specifies the version of
the extended specification. Created-By specifies the person who created the file.
Build-Date specifies the date when the file was created.

Finally, archive the .java file and package it into javaudf-example.jar.

javac Example.java
jar cfm javaudf-example.jar manifest.txt Example.class

NO TICE

JAR package names must comply with JDK rules. If a name contains invalid
characters, an error occurs when a function is deployed or used.

Step 2 Deploy the JAR package.

Place the JAR package on the OBS server using the method described in For
details, see "Uploading a File" in Object Storage Service Console Operation Guide..
Then, create the AK/SK. For details about how to obtain the AK/SK, see section
Creating Access Keys (AK and SK). Log in to the database and run the
gs_extend_library function to import the file to GaussDB(DWS).

SELECT gs_extend_library('addjar', 'obs://bucket/path/javaudf-example.jar
accesskey=access_key_value_to_be_replaced secretkey=secret_access_key_value_to_be_replaced
region=region_name libraryname=example');

For details about how to use the gs_extend_library function, see Manage JAR
packages and files. Change the values of AK and SK as needed. Replace
region_name with an actual region name.

Step 3 Use a PL/Java function.

Log in to the database as a user who has the sysadmin permission (for example,
dbadmin) and create the java_upperstring function:

Data Warehouse Service
Developer Guide 8 GaussDB(DWS) User-Defined Functions

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 149

https://support.huaweicloud.com/intl/en-us/migration-dws/dws_15_0007.html

CREATE FUNCTION java_upperstring(VARCHAR, INTEGER, INTEGER)
 RETURNS VARCHAR
 AS 'Example.upperString'
LANGUAGE JAVA;

NO TE

● The data type defined in the java_upperstring function should be a type in
GaussDB(DWS) and match the data type defined in Step 1 in the upperString method
in Java. For details about the mapping between GaussDB(DWS) and Java data types, see
Table 8-1.

● The AS clause specifies the class name and static method name of the Java method
invoked by the function. The format is Class name.Method name. The class name and
method name must match the Java class and method defined in Step 1.

● To use PL/Java functions, set LANGUAGE to JAVA.

● For details about CREATE FUNCTION, see Create functions.

Execute the java_upperstring function.

SELECT java_upperstring('test', 0, 1);

The expected result is as follows:

 java_upperstring

 T
(1 row)

Step 4 Authorize a common user to use the PL/Java function.

Create a common user named udf_user.

CREATE USER udf_user PASSWORD 'password';

This command grants user udf_user the permission for the java_upperstring
function. Note that the user can use this function only if it also has the permission
for using the schema of the function.

GRANT ALL PRIVILEGES ON SCHEMA public TO udf_user;
GRANT ALL PRIVILEGES ON FUNCTION java_upperstring(VARCHAR, INTEGER, INTEGER) TO udf_user;

Log in to the database as user udf_user.

SET SESSION SESSION AUTHORIZATION udf_user PASSWORD 'password';

Execute the java_upperstring function.

SELECT public.java_upperstring('test', 0, 1);

The expected result is as follows:

 java_upperstring

 T
(1 row)

Step 5 Delete the function.

If you no longer need this function, delete it.
DROP FUNCTION java_upperstring;

Step 6 Uninstall the JAR package.

Use the gs_extend_library function to uninstall the JAR package.

Data Warehouse Service
Developer Guide 8 GaussDB(DWS) User-Defined Functions

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 150

SELECT gs_extend_library('rmjar', 'libraryname=example');

----End

SQL Definition and Usage
● Manage JAR packages and files.

A database user having the sysadmin permission can use the
gs_extend_library function to deploy, view, and delete JAR packages in the
database. The syntax of the function is as follows:
SELECT gs_extend_library('[action]', '[operation]');

NO TE

● action: operation action. The options are as follows:
● ls: Displays JAR packages in the database and checks the MD5 value

consistency of files on each node.
● addjar: deploys a JAR package on the OBS server in the database.
● rmjar: Deletes JAR packages from the database.

● operation: operation string. The format can be either of the following:
obs://[bucket]/[source_filepath] accesskey=[accesskey] secretkey=[secretkey]
region=[region] libraryname=[libraryname]
● bucket: name of the bucket to which the OBS file belongs. It is mandatory.
● source_filepath: file path on the OBS server. Only .jar files are supported.
● accesskey: key obtained for accessing the OBS service. It is mandatory.
● secret_key: secret key obtained for the OBS service. It is mandatory.
● region: region where the OBS bucket stored in the JAR package of a user-

defined function belongs to. This parameter is mandatory.
● libraryname: user-defined library name, which is used to invoke JAR files in

GaussDB(DWS). If action is set to addjar or rmjar, libraryname must be
specified. If action is set to ls, libraryname is optional. Note that a user-
defined library name cannot contain the following characters: /|;&$<>\'{}"()
[]~*?!

● Create functions.
PL/Java functions can be created using the CREATE FUNCTION syntax and
are defined as LANGUAGE JAVA, including the RETURNS and AS clauses.
– To use CREATE FUNCTION, specify the name and parameter type for the

function to be created.
– The RETURNS clause specifies the return type for the function.
– The AS clause specifies the class name and static method name of the

Java method to be invoked. If the NULL value needs to be transferred to
the Java method as an input parameter, specify the name of the Java
encapsulation class corresponding to the parameter type. For details, see
NULL Handling.

– For details about the syntax, see CREATE FUNCTION.
CREATE [OR REPLACE] FUNCTION function_name
([{ argname [argmode] argtype [{ DEFAULT | := | = } expression]} [, ...]])
[RETURNS rettype [DETERMINISTIC]]
LANGUAGE JAVA
[
 { IMMUTABLE | STABLE | VOLATILE }
 | [NOT] LEAKPROOF
 | WINDOW
 | { CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT |STRICT }

Data Warehouse Service
Developer Guide 8 GaussDB(DWS) User-Defined Functions

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 151

 | {[EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER | AUTHID DEFINER |
AUTHID CURRENT_USER}
 | { FENCED }
 | COST execution_cost
 | ROWS result_rows
 | SET configuration_parameter { {TO |=} value | FROM CURRENT}
] [...]
{
 AS 'class_name.method_name' ({ argtype } [, ...])
}

● Use functions.
During execution, PL/Java searches for the Java class specified by a function
among all the deployed JAR packages, which are ranked by name in
alphabetical order, invokes the Java method in the first found class, and
returns results.

● Delete functions.
PL/Java functions can be deleted by using the DROP FUNCTION syntax. For
details about the syntax, see DROP FUNCTION.
DROP FUNCTION [IF EXISTS] function_name [([{[argmode] [argname] argtype} [, ...]])
[CASCADE | RESTRICT]];

To delete an overloaded function (for details, see Overloaded Functions),
specify argtype in the function. To delete other functions, simply specify
function_name.

● Authorize permissions for functions.
Only user sysadmin can create PL/Java functions. It can also grant other users
the permission to use the PL/Java functions. For details about the syntax, see
GRANT.
GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON { FUNCTION {function_name ([{[argmode] [arg_name] arg_type} [, ...]])} [, ...]
 | ALL FUNCTIONS IN SCHEMA schema_name [, ...] }
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION];

Mapping for Basic Data Types

Table 8-1 PL/Java mapping for default data types

GaussDB(DWS) Java

BOOLEAN boolean

"char" byte

bytea byte[]

SMALLINT short

INTEGER int

BIGINT long

FLOAT4 float

FLOAT8 double

CHAR java.lang.String

Data Warehouse Service
Developer Guide 8 GaussDB(DWS) User-Defined Functions

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 152

GaussDB(DWS) Java

VARCHAR java.lang.String

TEXT java.lang.String

name java.lang.String

DATE java.sql.Timestamp

TIME java.sql.Time (stored value treated as
local time)

TIMETZ java.sql.Time

TIMESTAMP java.sql.Timestamp

TIMESTAMPTZ java.sql.Timestamp

Array Type Processing
GaussDB(DWS) can convert basic array types. You only need to append a pair of
square brackets ([]) to the data type when creating a function.

CREATE FUNCTION java_arrayLength(INTEGER[])
 RETURNS INTEGER
 AS 'Example.getArrayLength'
LANGUAGE JAVA;

Java code is similar to the following:

public class Example
{
 public static int getArrayLength(Integer[] intArray)
 {
 return intArray.length;
 }
}

Invoke the following statement:

SELECT java_arrayLength(ARRAY[1, 2, 3]);

The expected result is as follows:

java_arrayLength

3
(1 row)

NULL Handling
NULL values cannot be handled for GaussDB(DWS) data types that are mapped
and can be converted to simple Java types by default. If you use a Java function to
obtain and process the NULL value transferred from GaussDB(DWS), specify the
Java encapsulation class in the AS clause as follows:

CREATE FUNCTION java_countnulls(INTEGER[])
 RETURNS INTEGER
 AS 'Example.countNulls(java.lang.Integer[])'
LANGUAGE JAVA;

Data Warehouse Service
Developer Guide 8 GaussDB(DWS) User-Defined Functions

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 153

Java code is similar to the following:

public class Example
{
 public static int countNulls(Integer[] intArray)
 {
 int nullCount = 0;
 for (int idx = 0; idx < intArray.length; ++idx)
 {
 if (intArray[idx] == null)
 nullCount++;
 }
 return nullCount;
 }
}

Invoke the following statement:

SELECT java_countNulls(ARRAY[null, 1, null, 2, null]);

The expected result is as follows:

java_countNulls

3
(1 row)

Overloaded Functions

PL/Java supports overloaded functions. You can create functions with the same
name or invoke overloaded functions from Java code. The procedure is as follows:

Step 1 Create overloaded functions.

For example, create two Java methods with the same name, and specify the
methods dummy(int) and dummy(String) with different parameter types.

public class Example
{
 public static int dummy(int value)
 {
 return value*2;
 }
 public static String dummy(String value)
 {
 return value;
 }
}

In addition, create two functions with the same names as the above two functions
in GaussDB(DWS).

CREATE FUNCTION java_dummy(INTEGER)
 RETURNS INTEGER
 AS 'Example.dummy'
LANGUAGE JAVA;

CREATE FUNCTION java_dummy(VARCHAR)
 RETURNS VARCHAR
 AS 'Example.dummy'
LANGUAGE JAVA;

Step 2 Invoke the overloaded functions.

GaussDB(DWS) invokes the functions that match the specified parameter type.
The results of invoking the above two functions are as follows:

Data Warehouse Service
Developer Guide 8 GaussDB(DWS) User-Defined Functions

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 154

SELECT java_dummy(5);
 java_dummy

 10
(1 row)

SELECT java_dummy('5');
 java_dummy

5
(1 row)

Note that GaussDB(DWS) may implicitly convert data types. Therefore, you are
advised to specify the parameter type when invoking an overloaded function.
SELECT java_dummy(5::varchar);
 java_dummy

5
(1 row)

In this case, the specified parameter type is preferentially used for matching. If
there is no Java method matching the specified parameter type, the system
implicitly converts the parameter and searches for Java methods based on the
conversion result.
SELECT java_dummy(5::INTEGER);
 java_dummy

10
(1 row)

DROP FUNCTION java_dummy(INTEGER);

SELECT java_dummy(5::INTEGER);
 java_dummy

5
(1 row)

NO TICE

Data types supporting implicit conversion are as follows:
● SMALLINT: It can be converted to the INTEGER type by default.
● SMALLINT and INTEGER: They can be converted to the BIGINT type by

default.
● TINYINT, SMALLINT, INTEGER, and BIGINT: They can be converted to the

BOOL type by default.
● The following data types can be converted to TEXT by default: CHAR, NAME,

BIGINT, INTEGER, SMALLINT, TINYINT, RAW, FLOAT4, FLOAT8, BPCHAR,
VARCHAR, NVARCHAR2, DATE, TIMESTAMP, TIMESTAMPTZ, NUMERIC, and
SMALLDATETIME.

● The following data types can be converted to VARCHAR by default: TEXT,
CHAR, BIGINT, INTEGER, SMALLINT, TINYINT, RAW, FLOAT4, FLOAT8, BPCHAR,
DATE, NVARCHAR2, TIMESTAMP, NUMERIC, and SMALLDATETIME.

Step 3 Delete the overloaded functions.

To delete an overloaded function, specify the parameter type for the function.
Otherwise, the function cannot be deleted.

Data Warehouse Service
Developer Guide 8 GaussDB(DWS) User-Defined Functions

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 155

DROP FUNCTION java_dummy(INTEGER);

----End

GUC Parameters
● udf_memory_limit

A system-level GUC parameter. It is used to limit the physical memory used by
each CN or DN for executing UDFs. The default value is 0.05 *
max_process_memory. You can use the postgresql.conf file to modify the
parameter setting. The modification takes effect only after the database is
restarted.

Data Warehouse Service
Developer Guide 8 GaussDB(DWS) User-Defined Functions

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 156

NO TICE

● udf_memory_limit is a part of max_process_memory. When a CN or DN
is started, memory calculated by udf_memory_limit minus 200 MB will be
reserved for UDF Worker processes. CN and DN processes are different
from the UDF Worker process, and the CN and DN processes will save
memory for the UDF Worker process.

For example, if max_process_memory is set to 10GB on a DN and
udf_memory_limit is set to 4GB, the DN can use a maximum of 6.2 GB
memory, that is, 10 GB – (4 GB – 200 MB). This case applies even if no
UDF is executed. By default, the value of udf_memory_limit is 0.05 *
max_process_memory. Querying the pv_total_memory_detail view will
prove that the value of process_used_memory would never exceed the
calculation result of max_process_memory – (udf_memory_limit – 200
MB).

● If the UDF process is disconnected, an error message will be displayed.
Example: "memory in UDF Work Process is limited by cgroup: [usage: xxx,
max_usage_history: xxx, limit: xxx]." You can learn the current memory
usage from this message. In the error information, usage indicates the
total physical memory used by the rest of the UDF process after a UDF
process is killed. max_usage_history indicates the highest memory usage
of the UDF process after the UDF instance is started. limit indicates the
maximum memory used by the UDF process. If the value of
max_usage_history is close to the value of limit, the memory usage of the
current cluster may exceed the limit. In this case, optimize workloads or
adjust the value of udf_memory_limit as needed.

● Executing a simplest Java UDF on a CN consumes about 50 MB physical
memory. You can set this parameter based on the memory usage and
concurrency of Java functions to be used. After this parameter is added,
you are not advised to set UDFWorkerMemHardLimit and
FencedUDFMemoryLimit.

● If the parallelism of the UDF process is excessively high and the memory
usage exceeds the udf_memory_limit value, unexpected situations such as
process exit may occur. In this scenario, the execution result may be
unreliable. You are advised to set this parameter to reserve sufficient
memory based on the site requirements. If the system has the /var/log/
messages log, check the log to see whether the memory is insufficient
because the cgroup memory limit has been reached. If the memory is
severely insufficient, the UDF master process may exit. You can view the
UDF log for analysis. The default UDF log path is $GAUSSLOG/cm/
cm_agent/pg_log. For example, if the log below is displayed, the memory
resources are insufficient and the UDF master process exits. In this case,
you need to check the udf_memory_limit parameter.

0 [BACKEND] FATAL: poll() failed: Bad address, please check the
parameter:udf_memory_limit to make sure there is enough memory.

● FencedUDFMemoryLimit

A session-level GUC parameter. It is used to specify the maximum virtual
memory used by a single Fenced UDF Worker process initiated by a session.
SET FencedUDFMemoryLimit='512MB';

Data Warehouse Service
Developer Guide 8 GaussDB(DWS) User-Defined Functions

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 157

The value range of this parameter is (150 MB, 1G). If the value is greater
than 1G, an error will be reported immediately. If the value is less than or
equal to 150 MB, an error will be reported during function invoking.

NO TICE

● If FencedUDFMemoryLimit is set to 0, the virtual memory for a Fenced
UDF Worker process will not be limited.

● You are advised to use udf_memory_limit to control the physical memory
used by Fenced UDF Worker processes. You are not advised to use
FencedUDFMemoryLimit, especially when Java UDFs are used. If you are
clear about the impact of this parameter, set it based on the following
information:
● After a C Fenced UDF Worker process is started, it will occupy about

200 MB virtual memory, and about 16 MB physical memory.
● After a Java Fenced UDF Worker process is started, it will occupy

about 2.5 GB virtual memory, and about 50 MB physical memory.

Exception Handling

If there is an exception in a JVM, PL/Java will export JVM stack information during
the exception to a client.

Logging

PL/Java uses the standard Java Logger. Therefore, you can record logs as follows:

Logger.getAnonymousLogger().config("Time is " + new
Date(System.currentTimeMillis()));

An initialized Java Logger class is set to the CONFIG level by default,
corresponding to the LOG level in GaussDB(DWS). In this case, log messages
generated by Java Logger are all redirected to the GaussDB(DWS) backend. Then,
the log messages are written into server logs or displayed on the user interface.
MPPDB server logs record information at the LOG, WARNING, and ERROR levels.
The SQL user interface displays logs at the WARNING and ERROR levels. The
following table lists mapping between Java Logger levels and GaussDB(DWS) log
levels.

Table 8-2 PL/Java log levels

java.util.logging.Level GaussDB(DWS) Log Level

SERVER ERROR

WARNING WARNING

CONFIG LOG

INFO INFO

FINE DEBUG1

Data Warehouse Service
Developer Guide 8 GaussDB(DWS) User-Defined Functions

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 158

java.util.logging.Level GaussDB(DWS) Log Level

FINER DEBUG2

FINEST DEBUG3

You can change Java Logger levels. For example, if the Java Logger level is
changed to SEVERE by the following Java code, log messages (msg) will not be
recorded in GaussDB(DWS) logs during WARNING logging.

Logger log = Logger.getAnonymousLogger();
Log.setLevel(Level.SEVERE);
log.log(Level.WARNING, msg);

Security Issues
In GaussDB(DWS), PL/Java is an untrusted language. Only user sysadmin can
create PL/Java functions. The user can grant other users the permission for using
the PL/Java functions. For details, see Authorize permissions for functions.

In addition, PL/Java controls user access to file systems, forbidding users from
reading most system files, or writing, deleting, or executing any system files in
Java methods.

8.2 GaussDB(DWS) PL/pgSQL Functions
PL/pgSQL is similar to PL/SQL of Oracle. It is a loadable procedural language.

The functions created using PL/pgSQL can be used in any place where you can use
built-in functions. For example, you can create calculation functions with complex
conditions and use them to define operators or use them for index expressions.

SQL is used by most databases as a query language. It is portable and easy to
learn. Each SQL statement must be executed independently by a database server.

In this case, when a client application sends a query to the server, it must wait for
it to be processed, receive and process the results, and then perform some
calculation before sending more queries to the server. If the client and server are
not on the same machine, all these operations will cause inter-process
communication and increase network loads.

PL/pgSQL enables a whole computing part and a series of queries to be grouped
inside a database server. This makes procedural language available and SQL easier
to use. In addition, the client/server communication cost is reduced.

● Extra round-trip communication between clients and servers is eliminated.
● Intermediate results that are not required by clients do not need to be sorted

or transmitted between the clients and servers.
● Parsing can be skipped in multiple rounds of queries.

PL/pgSQL can use all data types, operators, and functions in SQL.

For details about the PL/pgSQL syntax for creating functions, see CREATE
FUNCTION. As mentioned earlier, PL/pgSQL is similar to PL/SQL of Oracle and is a

Data Warehouse Service
Developer Guide 8 GaussDB(DWS) User-Defined Functions

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 159

loadable procedural language. Its application method is similar to that of
GaussDB(DWS) Stored Procedure. There is only one difference. Stored
procedures have no return values but the functions have.

Data Warehouse Service
Developer Guide 8 GaussDB(DWS) User-Defined Functions

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 160

9 GaussDB(DWS) Stored Procedure

9.1 Overview

What Is a GaussDB(DWS) Stored Procedure?

In GaussDB(DWS), business rules and logics are saved as stored procedures.

A stored procedure is a combination of SQL, PL/SQL, and Java statements. Stored
procedures can move the code that executes business rules from applications to
databases. In this way, code can be used by multiple programs at a time.

For details about how to create and call a stored procedure, see CREATE
PROCEDURE.

The functions created using the PL/pgSQL language mentioned in GaussDB(DWS)
PL/pgSQL Functions are similar to the application methods of stored procedures.
Unless otherwise specified, the following sections apply to stored procedures and
PL/pgSQL functions.

GaussDB(DWS) Stored Procedure Data Types

A data type refers to a value set and an operation set defined on the value set. A
GaussDB(DWS) database consists of tables, each of which is defined by its own
columns. Each column corresponds to a data type. GaussDB(DWS) uses
corresponding functions to perform operations on data based on data types. For
example, GaussDB(DWS) can perform addition, subtraction, multiplication, and
division operations on data of numeric values.

9.2 Converting Data Types in GaussDB(DWS) Stored
Procedures

Certain data types in the database support implicit data type conversions, such as
assignments and parameters invoked by functions. For other data types, you can
use the type conversion functions provided by GaussDB(DWS), such as the CAST
function, to forcibly convert them.

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 161

https://support.huaweicloud.com/intl/en-us/sqlreference-910-dws/dws_06_0170.html
https://support.huaweicloud.com/intl/en-us/sqlreference-910-dws/dws_06_0170.html

Table 9-1 lists common implicit data type conversions in GaussDB(DWS).

NO TICE

The valid value range of DATE supported by GaussDB(DWS) is from 4713 B.C. to
294276 A.D.

Table 9-1 Implicit data type conversions

Raw Data Type Target Data Type Remarks

CHAR VARCHAR2 N/A

CHAR NUMBER Raw data must consist of
digits.

CHAR DATE Raw data cannot exceed
the valid date range.

CHAR RAW N/A

CHAR CLOB N/A

VARCHAR2 CHAR N/A

VARCHAR2 NUMBER Raw data must consist of
digits.

VARCHAR2 DATE Raw data cannot exceed
the valid date range.

VARCHAR2 CLOB N/A

NUMBER CHAR N/A

NUMBER VARCHAR2 N/A

DATE CHAR N/A

DATE VARCHAR2 N/A

RAW CHAR N/A

RAW VARCHAR2 N/A

CLOB CHAR N/A

CLOB VARCHAR2 N/A

CLOB NUMBER Raw data must consist of
digits.

INT4 CHAR N/A

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 162

9.3 GaussDB(DWS) Stored Procedure Array and Record

9.3.1 Arrays

Use of Array Types
Before the use of arrays, an array type needs to be defined:

Define an array type immediately after the AS keyword in a stored procedure. Run
the following statement:
TYPE array_type IS VARRAY(size) OF data_type [NOT NULL];

Its parameters are as follows:

● array_type: indicates the name of the array type to be defined.
● VARRAY: indicates the array type to be defined.
● size: indicates the maximum number of members in the array type to be

defined. The value is a positive integer.
● data_type: indicates the types of members in the array type to be created.
● NOT NULL: an optional constraint. It can be used to ensure that none of the

elements in the array is NULL.

NO TE

● In GaussDB(DWS), an array automatically increases. If an access violation occurs, a null
value will be returned, and no error message will be reported. If out-of-bounds write
occurs in an array, the message Subscript outside of limit is displayed.

● The scope of an array type defined in a stored procedure takes effect only in this storage
process.

● It is recommended that you use one of the preceding methods to define an array type. If
both methods are used to define the same array type, GaussDB(DWS) prefers the array
type defined in a stored procedure to declare array variables.

In GaussDB(DWS) 8.1.0 and earlier versions, the system does not verify the length
of array elements and out-of-bounds write because the array can automatically
increase. This version adds related constraints to be compatible with Oracle
databases. If out-of-bounds write exists, you can configure varray_verification in
the parameter behavior_compat_options to be compatible with previously
unverified operations.

Example:

-- Declare an array in a stored procedure.
CREATE OR REPLACE PROCEDURE array_proc
AS
 TYPE ARRAY_INTEGER IS VARRAY(1024) OF INTEGER;--Define the array type.
 TYPE ARRAY_INTEGER_NOT_NULL IS VARRAY(1024) OF INTEGER NOT NULL;-- Defines non-null array
types.
 ARRINT ARRAY_INTEGER: = ARRAY_INTEGER(); --Declare the variable of the array type.
BEGIN
 ARRINT.extend(10);
 FOR I IN 1..10 LOOP
 ARRINT(I) := I;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE(ARRINT.COUNT);
 DBMS_OUTPUT.PUT_LINE(ARRINT(1));

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 163

 DBMS_OUTPUT.PUT_LINE(ARRINT(10));
 DBMS_OUTPUT.PUT_LINE(ARRINT(ARRINT.FIRST));
 DBMS_OUTPUT.PUT_LINE(ARRINT(ARRINT.last));
END;
/

-- Invoke the stored procedure.
CALL array_proc();
10
1
10
1
10
-- Delete the stored procedure.
DROP PROCEDURE array_proc;

Declaration and Use of Rowtype Arrays
In addition to the declaration and use of common arrays and non-null arrays in
the preceding example, the array also supports the declaration and use of rowtype
arrays.

Example:
-- Use the COUNT function on an array in a stored procedure.
CREATE TABLE tbl (a int, b int);
INSERT INTO tbl VALUES(1, 2),(2, 3),(3, 4);
CREATE OR REPLACE PROCEDURE array_proc
AS
 CURSOR all_tbl IS SELECT * FROM tbl ORDER BY a;
 TYPE tbl_array_type IS varray(50) OF tbl%rowtype; -- Defines the array of the rowtype type. tbl indicates
any table.
 tbl_array tbl_array_type;
 tbl_item tbl%rowtype;
 inx1 int;
BEGIN
 tbl_array := tbl_array_type();
 inx1 := 0;
 FOR tbl_item IN all_tbl LOOP
 inx1 := inx1 + 1;
 tbl_array(inx1) := tbl_item;
 END LOOP;
 WHILE inx1 IS NOT NULL LOOP
 DBMS_OUTPUT.PUT_LINE('tbl_array(inx1).a=' || tbl_array(inx1).a || ' tbl_array(inx1).b=' ||
tbl_array(inx1).b);
 inx1 := tbl_array.PRIOR(inx1);
 END LOOP;
END;
/

The execution output is as follows:
call array_proc();
tbl_array(inx1).a=3 tbl_array(inx1).b=4
tbl_array(inx1).a=2 tbl_array(inx1).b=3
tbl_array(inx1).a=1 tbl_array(inx1).b=2

Array Related Functions
GaussDB(DWS) supports Oracle-related array functions. You can use the following
functions to obtain array attributes or perform operations on the array content.

COUNT
Returns the number of elements in the current array. Only the initialized elements
or the elements extended by the EXTEND function are counted.

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 164

Use:

varray.COUNT or varray.COUNT()

Example:

-- Use the COUNT function on an array in a stored procedure.
CREATE OR REPLACE PROCEDURE test_varray
AS
 TYPE varray_type IS VARRAY(20) OF INT;
 v_varray varray_type;
BEGIN
 v_varray := varray_type(1, 2, 3);
 DBMS_OUTPUT.PUT_LINE('v_varray.count=' || v_varray.count);
 v_varray.extend;
 DBMS_OUTPUT.PUT_LINE('v_varray.count=' || v_varray.count);
END;
/

The execution output is as follows:

call test_varray();
v_varray.count=3
v_varray.count=4

FIRST and LAST
The FIRST function can return the subscript of the first element. The LAST function
can return the subscript of the last element.

Use:

varray.FIRST or varray.FIRST()

varray.LAST or varray.LAST()

Example:

-- Use the FIRST and LAST functions on an array in a stored procedure.
CREATE OR REPLACE PROCEDURE test_varray
AS
 TYPE varray_type IS VARRAY(20) OF INT;
 v_varray varray_type;
BEGIN
 v_varray := varray_type(1, 2, 3);
 DBMS_OUTPUT.PUT_LINE('v_varray.first=' || v_varray.first);
 DBMS_OUTPUT.PUT_LINE('v_varray.last=' || v_varray.last);
END;
/

The execution output is as follows:

call test_varray();
v_varray.first=1
v_varray.last=3

EXTEND
NO TE

The EXTEND function is used to be compatible with two Oracle database operations. In
GaussDB(DWS), an array automatically grows, and the EXTEND function is not necessary.
For a newly written stored procedure, you do not need to use the EXTEND function.

The EXTEND function can extend arrays. The EXTEND function can be invoked in
either of the following ways:

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 165

● Method 1:
EXTEND contains an integer input parameter, indicating that the array size is
extended by the specified length. When the EXTEND function is executed, the
values returned by the COUNT and LAST functions will be updated
accordingly.
Use:
varray.EXTEND(size)
By default, one bit is added to the end of varray.EXTEND, which is equivalent
to varray.EXTEND(1).

● Method 2:
EXTEND contains two integer input parameters. The first parameter indicates
the length of the extended size. The second parameter indicates that the
value of the extended array element is the same as that of the element with
the index subscript.
Use:
varray.EXTEND(size, index)

Example:

-- Use the EXTEND function on an array in a stored procedure.
CREATE OR REPLACE PROCEDURE test_varray
AS
 TYPE varray_type IS VARRAY(20) OF INT;
 v_varray varray_type;
BEGIN
 v_varray := varray_type(1, 2, 3);
 v_varray.extend(3);
 DBMS_OUTPUT.PUT_LINE('v_varray.count=' || v_varray.count);
 v_varray.extend(2,3);
 DBMS_OUTPUT.PUT_LINE('v_varray.count=' || v_varray.count);
 DBMS_OUTPUT.PUT_LINE('v_varray(7)=' || v_varray(7));
 DBMS_OUTPUT.PUT_LINE('v_varray(8)=' || v_varray(7));
END;
/

The execution output is as follows:

call test_varray();
v_varray.count=6
v_varray.count=8
v_varray(7)=3
v_varray(8)=3

NEXT and PRIOR
The NEXT and PRIOR functions are used for cyclic array traversal. The NEXT
function returns the subscript of the next array element based on the input
parameter index. If the subscript reaches the maximum value, NULL is returned.
The PRIOR function returns the subscript of the previous array element based on
the input parameter index. If the minimum value of the array subscript is reached,
NULL is returned.

Use:

varray.NEXT(index)

varray.PRIOR(index)

Example:

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 166

-- Use the NEXT and PRIOR functions on an array in a stored procedure.
CREATE OR REPLACE PROCEDURE test_varray
AS
 TYPE varray_type IS VARRAY(20) OF INT;
 v_varray varray_type;
 i int;
BEGIN
 v_varray := varray_type(1, 2, 3);

 i := v_varray.COUNT;
 WHILE i IS NOT NULL LOOP
 DBMS_OUTPUT.PUT_LINE('test prior v_varray('||i||')=' || v_varray(i));
 i := v_varray.PRIOR(i);
 END LOOP;

 i := 1;
 WHILE i IS NOT NULL LOOP
 DBMS_OUTPUT.PUT_LINE('test next v_varray('||i||')=' || v_varray(i));
 i := v_varray.NEXT(i);
 END LOOP;
END;
/

The execution output is as follows:

call test_varray();
test prior v_varray(3)=3
test prior v_varray(2)=2
test prior v_varray(1)=1
test next v_varray(1)=1
test next v_varray(2)=2
test next v_varray(3)=3

EXISTS
Determines whether an array subscript exists.

Use:

varray.EXISTS(index)

Example:

-- Use the EXISTS function on an array in a stored procedure.
CREATE OR REPLACE PROCEDURE test_varray
AS
 TYPE varray_type IS VARRAY(20) OF INT;
 v_varray varray_type;
BEGIN
 v_varray := varray_type(1, 2, 3);
 IF v_varray.EXISTS(1) THEN
 DBMS_OUTPUT.PUT_LINE('v_varray.EXISTS(1)');
 END IF;
 IF NOT v_varray.EXISTS(10) THEN
 DBMS_OUTPUT.PUT_LINE('NOT v_varray.EXISTS(10)');
 END IF;
END;
/

The execution output is as follows:

call test_varray();
v_varray.EXISTS(1)
NOT v_varray.EXISTS(10)

TRIM
Deletes a specified number of elements from the end of an array.

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 167

Use:

varray.TRIM(size)

varray.TRIM is equivalent to varray.TRIM(1), because the default input parameter
is 1.

Example:

-- Use the TRIM function on an array in a stored procedure.
CREATE OR REPLACE PROCEDURE test_varray
AS
 TYPE varray_type IS VARRAY(20) OF INT;
 v_varray varray_type;
BEGIN
 v_varray := varray_type(1, 2, 3, 4, 5);
 v_varray.trim(3);
 DBMS_OUTPUT.PUT_LINE('v_varray.count' || v_varray.count);
 v_varray.trim;
 DBMS_OUTPUT.PUT_LINE('v_varray.count:' || v_varray.count);
END;
/

The execution output is as follows:

call test_varray();
v_varray.count:2
v_varray.count:1

DELETE
Deletes all elements from an array.

Use:

varray.DELETE or varray.DELETE()

Example:

-- Use the DELETE function on an array in a stored procedure.
CREATE OR REPLACE PROCEDURE test_varray
AS
 TYPE varray_type IS VARRAY(20) OF INT;
 v_varray varray_type;
BEGIN
 v_varray := varray_type(1, 2, 3, 4, 5);
 v_varray.delete;
 DBMS_OUTPUT.PUT_LINE('v_varray.count:' || v_varray.count);
END;
/

The execution output is as follows:

call test_varray();
v_varray.count:0

LIMIT
Returns the allowed maximum length of an array.

Use:

varray.LIMIT or varray.LIMIT()

Example:

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 168

-- Use the LIMIT function on an array in a stored procedure.
CREATE OR REPLACE PROCEDURE test_varray
AS
 TYPE varray_type IS VARRAY(20) OF INT;
 v_varray varray_type;
BEGIN
 v_varray := varray_type(1, 2, 3, 4, 5);
 DBMS_OUTPUT.PUT_LINE('v_varray.limit:' || v_varray.limit);
END;
/

The execution output is as follows:

call test_varray();
v_varray.limit:20

9.3.2 record

record Variables
Perform the following operations to create a record variable:

Define a record type and use this type to declare a variable.

Syntax
For the syntax of the record type, see Figure 9-1.

Figure 9-1 Syntax of the record type

The syntax is described as follows:

● record_type: record name
● field: record columns
● datatype: record data type
● expression: expression for setting a default value

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 169

NO TE

In GaussDB(DWS):

● When assigning values to record variables, you can:

● Declare a record type and define member variables of this type when you declare a
function or stored procedure.

● Assign the value of a record variable to another record variable.

● Use SELECT INTO or FETCH to assign values to a record type.

● Assign the NULL value to a record variable.

● The INSERT and UPDATE statements cannot use a record variable to insert or update
data.

● Just like a variable, a record column of the compound type does not have a default
value in the declaration.

Examples
The table used in the following stored procedure is defined as follows:
CREATE TABLE emp_rec
(
 empno numeric(4,0),
 ename character varying(10),
 job character varying(9),
 mgr numeric(4,0),
 hiredate timestamp(0) without time zone,
 sal numeric(7,2),
 comm numeric(7,2),
 deptno numeric(2,0)
)
with (orientation = column,compression=middle)
distribute by hash (sal);
\d emp_rec
 Table "public.emp_rec"
 Column | Type | Modifiers
----------+--------------------------------+-----------
 empno | numeric(4,0) | not null
 ename | character varying(10) |
 job | character varying(9) |
 mgr | numeric(4,0) |
 hiredate | timestamp(0) without time zone |
 sal | numeric(7,2) |
 comm | numeric(7,2) |
 deptno | numeric(2,0) |

-- Perform array operations in the stored procedure.
CREATE OR REPLACE FUNCTION regress_record(p_w VARCHAR2)
RETURNS
VARCHAR2 AS $$
DECLARE

 -- Declare a record type.
 type rec_type is record (name varchar2(100), epno int);
 employer rec_type;

 -- Use %type to declare the record type.
 type rec_type1 is record (name emp_rec.ename%type, epno int not null :=10);
 employer1 rec_type1;

 -- Declare a record type with a default value.
 type rec_type2 is record (
 name varchar2 not null := 'SCOTT',
 epno int not null :=10);
 employer2 rec_type2;
 CURSOR C1 IS select ename,empno from emp_rec order by 1 limit 1;

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 170

BEGIN
 -- Assign a value to a member record variable.
 employer.name := 'WARD';
 employer.epno = 18;
 raise info 'employer name: % , epno:%', employer.name, employer.epno;

 -- Assign the value of a record variable to another variable.
 employer1 := employer;
 raise info 'employer1 name: % , epno: %',employer1.name, employer1.epno;

 -- Assign the NULL value to a record variable.
 employer1 := NULL;
 raise info 'employer1 name: % , epno: %',employer1.name, employer1.epno;

 -- Obtain the default value of a record variable.
 raise info 'employer2 name: % ,epno: %', employer2.name, employer2.epno;

 -- Use a record variable in the FOR loop.
 for employer in select ename,empno from emp_rec order by 1 limit 1
 loop
 raise info 'employer name: % , epno: %', employer.name, employer.epno;
 end loop;

 -- Use a record variable in the SELECT INTO statement.
 select ename,empno into employer2 from emp_rec order by 1 limit 1;
 raise info 'employer name: % , epno: %', employer2.name, employer2.epno;

 -- Use a record variable in a cursor.
 OPEN C1;
 FETCH C1 INTO employer2;
 raise info 'employer name: % , epno: %', employer2.name, employer2.epno;
 CLOSE C1;
 RETURN employer.name;
END;
$$
LANGUAGE plpgsql;

-- Invoke the stored procedure.
CALL regress_record('abc');
INFO: employer name: WARD , epno:18
INFO: employer1 name: WARD , epno: 18
INFO: employer1 name: <NULL> , epno: <NULL>
INFO: employer2 name: SCOTT ,epno: 10
-- Delete the stored procedure.
DROP PROCEDURE regress_record;

9.4 GaussDB(DWS) Stored Procedure Declaration
Syntax

Basic Structure
A PL/SQL block can contain a sub-block which can be placed in any section. The
following describes the architecture of a PL/SQL block:

● DECLARE: declares variables, types, cursors, and regional stored procedures
and functions used in the PL/SQL block.
DECLARE

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 171

NO TE

This part is optional if no variable needs to be declared.

● An anonymous block may omit the DECLARE keyword if no variable needs to be
declared.

● For a stored procedure, AS is used, which is equivalent to DECLARE. The AS
keyword must be reserved even if there is no variable declaration part.

● EXECUTION: specifies procedure and SQL statements. It is the main part of a
program. It is mandatory.
BEGIN

● EXCEPTION: processes errors. It is optional.
EXCEPTION

● END
END;
/

NO TICE

You are not allowed to use consecutive tabs in the PL/SQL block, because they
may result in an exception when the parameter -r is executed using the gsql
tool.

PL/SQL Block Classification

PL/SQL blocks are classified into the following types:

● Anonymous block: a dynamic block that can be executed only for once. For
details about the syntax, see Anonymous Block.

● Subprogram: a stored procedure, function, operator, or packages stored in a
database. A subprogram created in a database can be called by other
programs.

Anonymous Block

An anonymous block applies to a script infrequently executed or a one-off activity.
An anonymous block is executed in a session and is not stored.

Syntax

Figure 9-2 shows the syntax diagrams for an anonymous block.

Figure 9-2 anonymous_block::=

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 172

Details about the syntax diagram are as follows:

● The execute part of an anonymous block starts with a BEGIN statement, has
a break with an END statement, and ends with a semicolon (;). Type a slash
(/) and press Enter to execute the statement.

NO TICE

The terminator "/" must be written in an independent row.

● The declaration section includes the variable definition, type, and cursor
definition.

● A simplest anonymous block does not execute any commands. At least one
statement, even a null statement, must be presented in any implementation
blocks.

Examples

The following lists basic anonymous block programs:

-- Null statement block:
BEGIN
 NULL;
END;
/

-- Print information to the console:
BEGIN
 dbms_output.put_line('hello world!');
END;
/

-- Print variable contents to the console:
DECLARE
 my_var VARCHAR2(30);
BEGIN
 my_var :='world';
 dbms_output.put_line('hello'||my_var);
END;
/

Subprogram

A subprogram stores stored procedures, functions, operators, and advanced
packages. A subprogram created in a database can be called by other programs.

9.5 Basic Statements of GaussDB(DWS) Stored
Procedures

Variable Definition Statement

This section describes the declaration of variables in the PL/SQL and the scope of
this variable in codes.

Variable declaration

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 173

For details about the variable declaration syntax, see Figure 9-3.

Figure 9-3 declare_variable::=

The syntax is described as follows:

● variable_name indicates the name of a variable.
● type indicates the type of a variable.
● value indicates the initial value of the variable. (If the initial value is not

given, NULL is taken as the initial value.) value can also be an expression.

Examples

DECLARE
 emp_id INTEGER := 7788; -- Define a variable and assign a value to it.
BEGIN
 emp_id := 5*7784; -- Assign a value to the variable.
END;
/

In addition to the declaration of basic variable types, %TYPE and %ROWTYPE can
be used to declare variables related to table columns or table structures.

%TYPE attribute

%TYPE declares a variable to be of the same data type as a previously declared
variable (for example, a column in a table). For example, if you want to define a
my_name variable that has the same data type as the firstname column in the
employee table, you can define the variable as follows:

my_name employee.firstname%TYPE

In this way, you can declare my_name even if you do not know the data type of
firstname in employee, and the data type of my_name can be automatically
updated when the data type of firstname changes.

%ROWTYPE attribute

%ROWTYPE declares data types of a set of data. It stores a row of table data or
results fetched from a cursor. For example, if you want to define a set of data with
the same column names and column data types as the employee table, you can
define the data as follows:

my_employee employee%ROWTYPE

NO TICE

If multiple CNs are used, the %ROWTYPE and %TYPE attributes of temporary
tables cannot be declared in a stored procedure, because a temporary table is
valid only in the current session and is invisible to other CNs in the compilation
phase. In this case, a message is displayed indicating that the temporary table
does not exist.

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 174

Variable scope

The scope of a variable indicates the accessibility and availability of a variable in
code block. In other words, a variable takes effect only within its scope.

● To define a function scope, a variable must declare and create a BEGIN-END
block in the declaration section. The necessity of such declaration is also
determined by block structure, which requires that a variable has different
scopes and lifetime during a process.

● A variable can be defined multiple times in different scopes, and inner
definition can cover outer one.

● A variable defined in an outer block can also be used in a nested block.
However, the outer block cannot access variables in the nested block.

Examples

DECLARE
 emp_id INTEGER :=7788; -- Define a variable and assign a value to it.
 outer_var INTEGER :=6688; -- Define a variable and assign a value to it.
BEGIN
 DECLARE
 emp_id INTEGER :=7799; -- Define a variable and assign a value to it.
 inner_var INTEGER :=6688; -- Define a variable and assign a value to it.
 BEGIN
 dbms_output.put_line('inner emp_id ='||emp_id); -- Display the value as 7799.
 dbms_output.put_line('outer_var ='||outer_var); -- Cite variables of an outer block.
 END;
 dbms_output.put_line('outer emp_id ='||emp_id); -- Display the value as 7788.
END;
/

Assignment Statement

Syntax

Figure 9-4 shows the syntax diagram for assigning a value to a variable.

Figure 9-4 assignment_value::=

The syntax is described as follows:

● variable_name indicates the name of a variable.

● value can be a value or an expression. The type of value must be compatible
with the type of variable_name.

Examples

DECLARE
 emp_id INTEGER := 7788; --Assignment
BEGIN
 emp_id := 5; --Assignment
 emp_id := 5*7784;
END;
/

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 175

Call Statement
Syntax

Figure 9-5 shows the syntax diagram for calling a clause.

Figure 9-5 call_clause::=

The syntax is described as follows:

● procedure_name specifies the name of a stored procedure.
● parameter specifies the parameters for the stored procedure. You can set no

parameter or multiple parameters.

Examples

-- Create the stored procedure proc_staffs:
CREATE OR REPLACE PROCEDURE proc_staffs
(
section NUMBER(6),
salary_sum out NUMBER(8,2),
staffs_count out INTEGER
)
IS
BEGIN
SELECT sum(salary), count(*) INTO salary_sum, staffs_count FROM staffs where section_id = section;
END;
/

-- Create the stored procedure proc_return:
CREATE OR REPLACE PROCEDURE proc_return
AS
v_num NUMBER(8,2);
v_sum INTEGER;
BEGIN
proc_staffs(30, v_sum, v_num); --Invoke a statement:
dbms_output.put_line(v_sum||'#'||v_num);
RETURN; --Return a statement.
END;
/

-- Invoke a stored procedure proc_return:
CALL proc_return();

-- Delete a stored procedure:
DROP PROCEDURE proc_staffs;
DROP PROCEDURE proc_return;

--Create the function func_return.
CREATE OR REPLACE FUNCTION func_return returns void
language plpgsql
AS $$
DECLARE
v_num INTEGER := 1;
BEGIN
dbms_output.put_line(v_num);
RETURN; --Return a statement.
END $$;

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 176

-- Invoke the function func_return.
CALL func_return();
1

-- Delete the function:
DROP FUNCTION func_return;

9.6 Dynamic Statements of GaussDB(DWS) Stored
Procedures

9.6.1 Executing Dynamic Query Statements
You can perform dynamic queries using EXECUTE IMMEDIATE or OPEN FOR in
GaussDB(DWS). EXECUTE IMMEDIATE dynamically executes SELECT statements
and OPEN FOR combines use of cursors. If you need to store query results in a
data set, use OPEN FOR.

EXECUTE IMMEDIATE

Figure 9-6 shows the syntax diagram.

Figure 9-6 EXECUTE IMMEDIATE dynamic_select_clause::=

Figure 9-7 shows the syntax diagram for using_clause.

Figure 9-7 using_clause-1

The above syntax diagram is explained as follows:

● define_variable: specifies variables to store single-line query results.

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 177

● USING IN bind_argument: specifies where the variable passed to the
dynamic SQL value is stored, that is, in the dynamic placeholder of
dynamic_select_string.

● USING OUT bind_argument: specifies where the dynamic SQL returns the
value of the variable.

NO TICE

● In query statements, INTO and OUT cannot coexist.
● A placeholder name starts with a colon (:) followed by digits, characters, or

strings, corresponding to bind_argument in the USING clause.
● bind_argument can only be a value, variable, or expression. It cannot be a

database object such as a table name, column name, and data type. That
is, bind_argument cannot be used to transfer schema objects for dynamic
SQL statements. If a stored procedure needs to transfer database objects
through bind_argument to construct dynamic SQL statements (generally,
DDL statements), you are advised to use double vertical bars (||) to
concatenate dynamic_select_clause with a database object.

● A dynamic PL/SQL block allows duplicate placeholders. That is, a
placeholder can correspond to only one bind_argument in the USING
clause.

Example

--Retrieve values from dynamic statements (INTO clause).
DECLARE
 staff_count VARCHAR2(20);
BEGIN
 EXECUTE IMMEDIATE 'select count(*) from staffs'
 INTO staff_count;
 dbms_output.put_line(staff_count);
END;
/

--Pass and retrieve values (the INTO clause is used before the USING clause).
CREATE OR REPLACE PROCEDURE dynamic_proc
AS
 staff_id NUMBER(6) := 200;
 first_name VARCHAR2(20);
 salary NUMBER(8,2);
BEGIN
 EXECUTE IMMEDIATE 'select first_name, salary from staffs where staff_id = :1'
 INTO first_name, salary
 USING IN staff_id;
 dbms_output.put_line(first_name || ' ' || salary);
END;
/

-- Invoke the stored procedure.
CALL dynamic_proc();

-- Delete the stored procedure.
DROP PROCEDURE dynamic_proc;

OPEN FOR
Dynamic query statements can be executed by using OPEN FOR to open dynamic
cursors.

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 178

For details about the syntax, see Figure 9-8.

Figure 9-8 open_for::=

Parameter description:

● cursor_name: specifies the name of the cursor to be opened.
● dynamic_string: specifies the dynamic query statement.
● USING value: applies when a placeholder exists in dynamic_string.

For use of cursors, see GaussDB(DWS) Stored Procedure Cursor.

Example

DECLARE
 name VARCHAR2(20);
 phone_number VARCHAR2(20);
 salary NUMBER(8,2);
 sqlstr VARCHAR2(1024);

 TYPE app_ref_cur_type IS REF CURSOR; -- Define the cursor type.
 my_cur app_ref_cur_type; -- Define the cursor variable.

BEGIN
 sqlstr := 'select first_name,phone_number,salary from staffs
 where section_id = :1';
 OPEN my_cur FOR sqlstr USING '30'; -- Open the cursor. using is optional.
 FETCH my_cur INTO name, phone_number, salary; -- Retrieve the data.
 WHILE my_cur%FOUND LOOP
 dbms_output.put_line(name||'#'||phone_number||'#'||salary);
 FETCH my_cur INTO name, phone_number, salary;
 END LOOP;
 CLOSE my_cur; -- Close the cursor.
END;
/

9.6.2 Executing Dynamic Non-query Statements

Syntax
Figure 9-9 shows the syntax diagram.

Figure 9-9 noselect::=

Figure 9-10 shows the syntax diagram for using_clause.

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 179

Figure 9-10 using_clause-2

The above syntax diagram is explained as follows:

USING IN bind_argument is used to specify the variable that transfers values to
dynamic SQL statements. It is used when a placeholder exists in
dynamic_noselect_string. That is, a placeholder is replaced by the corresponding
bind_argument when a dynamic SQL statement is executed. Note that
bind_argument can only be a value, variable, or expression, and cannot be a
database object such as a table name, column name, and data type. If a stored
procedure needs to transfer database objects through bind_argument to construct
dynamic SQL statements (generally, DDL statements), you are advised to use
double vertical bars (||) to concatenate dynamic_select_clause with a database
object. In addition, a dynamic PL/SQL block allows duplicate placeholders. That is,
a placeholder can correspond to only one bind_argument.

Examples
-- Create a table:
CREATE TABLE sections_t1
(
 section NUMBER(4) ,
 section_name VARCHAR2(30),
 manager_id NUMBER(6),
 place_id NUMBER(4)
)
DISTRIBUTE BY hash(manager_id);

--Declare a variable:
DECLARE
 section NUMBER(4) := 280;
 section_name VARCHAR2(30) := 'Info support';
 manager_id NUMBER(6) := 103;
 place_id NUMBER(4) := 1400;
 new_colname VARCHAR2(10) := 'sec_name';
BEGIN
-- Execute the query:
 EXECUTE IMMEDIATE 'insert into sections_t1 values(:1, :2, :3, :4)'
 USING section, section_name, manager_id,place_id;
-- Execute the query (duplicate placeholders):
 EXECUTE IMMEDIATE 'insert into sections_t1 values(:1, :2, :3, :1)'
 USING section, section_name, manager_id;
-- Run the ALTER statement. (You are advised to use double vertical bars (||) to concatenate the dynamic
DDL statement with a database object.)
 EXECUTE IMMEDIATE 'alter table sections_t1 rename section_name to ' || new_colname;
END;
/

-- Query data:
SELECT * FROM sections_t1;

--Delete the table.
DROP TABLE sections_t1;

9.6.3 Dynamically Calling Stored Procedures
This section describes how to dynamically call store procedures. You must use
anonymous statement blocks to package stored procedures or statement blocks

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 180

and append IN and OUT behind the EXECUTE IMMEDIATE...USING statement to
input and output parameters.

Syntax
Figure 9-11 shows the syntax diagram.

Figure 9-11 call_procedure::=

Figure 9-12 shows the syntax diagram for using_clause.

Figure 9-12 using_clause-3

The above syntax diagram is explained as follows:

● CALL procedure_name: calls the stored procedure.
● [:placeholder1,:placeholder2,...]: specifies the placeholder list of the stored

procedure parameters. The numbers of the placeholders and the parameters
are the same.

● USING [IN|OUT|IN OUT]bind_argument: specifies where the variable passed
to the stored procedure parameter value is stored. The modifiers in front of
bind_argument and of the corresponding parameter are the same.

Examples
--Create the stored procedure proc_add:
CREATE OR REPLACE PROCEDURE proc_add
(
 param1 in INTEGER,
 param2 out INTEGER,
 param3 in INTEGER
)
AS

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 181

BEGIN
 param2:= param1 + param3;
END;
/

DECLARE
 input1 INTEGER:=1;
 input2 INTEGER:=2;
 statement VARCHAR2(200);
 param2 INTEGER;
BEGIN
 --Declare the call statement:
 statement := 'call proc_add(:col_1, :col_2, :col_3)';
 --Execute the statement:
 EXECUTE IMMEDIATE statement
 USING IN input1, OUT param2, IN input2;
 dbms_output.put_line('result is: '||to_char(param2));
END;
/

-- Delete the stored procedure.
DROP PROCEDURE proc_add;

9.6.4 Dynamically Calling Anonymous Blocks
This section describes how to execute anonymous blocks in dynamic statements.
Append IN and OUT behind the EXECUTE IMMEDIATE...USING statement to
input and output parameters.

Syntax
Figure 9-13 shows the syntax diagram.

Figure 9-13 call_anonymous_block::=

Figure 9-14 shows the syntax diagram for using_clause.

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 182

Figure 9-14 using_clause-4

The above syntax diagram is explained as follows:

● The execute part of an anonymous block starts with a BEGIN statement, has
a break with an END statement, and ends with a semicolon (;).

● USING [IN|OUT|IN OUT]bind_argument: specifies where the variable passed
to the stored procedure parameter value is stored. The modifiers in front of
bind_argument and of the corresponding parameter are the same.

● The input and output parameters in the middle of an anonymous block are
designated by placeholders. The numbers of the placeholders and the
parameters are the same. The sequences of the parameters corresponding to
the placeholders and the USING parameters are the same.

● Currently in GaussDB(DWS), when dynamic statements call anonymous
blocks, placeholders cannot be used to pass input and output parameters in
an EXCEPTION statement.

Example
--Create the stored procedure dynamic_proc.
CREATE OR REPLACE PROCEDURE dynamic_proc
AS
 staff_id NUMBER(6) := 200;
 first_name VARCHAR2(20);
 salary NUMBER(8,2);
BEGIN
--Execute the anonymous block.
 EXECUTE IMMEDIATE 'begin select first_name, salary into :first_name, :salary from staffs where
staff_id= :dno; end;'
 USING OUT first_name, OUT salary, IN staff_id;
 dbms_output.put_line(first_name|| ' ' || salary);
END;
/

-- Invoke the stored procedure.
CALL dynamic_proc();

-- Delete the stored procedure.
DROP PROCEDURE dynamic_proc;

9.7 GaussDB(DWS) Stored Procedure Control
Statements

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 183

9.7.1 RETURN Statements
GaussDB(DWS) provides two methods for returning data: RETURN (or RETURN
NEXT) and RETURN QUERY. RETURN NEXT and RETURN QUERY are used only
for functions and cannot be used for stored procedures.

RETURN
Syntax

Figure 9-15 shows the syntax of a return statement.

Figure 9-15 return_clause::=

The syntax is explained as follows:

This statement returns control from a stored procedure or function to a caller.

Examples

-- Create the stored procedure proc_staffs:
CREATE OR REPLACE PROCEDURE proc_staffs
(
section NUMBER(6),
salary_sum out NUMBER(8,2),
staffs_count out INTEGER
)
IS
BEGIN
SELECT sum(salary), count(*) INTO salary_sum, staffs_count FROM staffs where section_id = section;
END;
/

-- Create the stored procedure proc_return:
CREATE OR REPLACE PROCEDURE proc_return
AS
v_num NUMBER(8,2);
v_sum INTEGER;
BEGIN
proc_staffs(30, v_sum, v_num); --Call a statement.
dbms_output.put_line(v_sum||'#'||v_num);
RETURN; --Return a statement.
END;
/

-- Invoke a stored procedure proc_return:
CALL proc_return();

-- Delete a stored procedure:
DROP PROCEDURE proc_staffs;
DROP PROCEDURE proc_return;

--Create the function func_return.
CREATE OR REPLACE FUNCTION func_return returns void
language plpgsql
AS $$
DECLARE
v_num INTEGER := 1;
BEGIN
dbms_output.put_line(v_num);
RETURN; --Return a statement.

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 184

END $$;

-- Invoke the function func_return.
CALL func_return();
1

-- Delete the function:
DROP FUNCTION func_return;

RETURN NEXT and RETURN QUERY
Syntax

When creating a function, specify SETOF datatype for the return values.

return_next_clause::=

return_query_clause::=

The syntax is explained as follows:

If a function needs to return a result set, use RETURN NEXT or RETURN QUERY
to add results to the result set, and then continue to execute the next statement
of the function. As the RETURN NEXT or RETURN QUERY statement is executed
repeatedly, more and more results will be added to the result set. After the
function is executed, all results are returned.

RETURN NEXT can be used for scalar and compound data types.

RETURN QUERY has a variant RETURN QUERY EXECUTE. You can add dynamic
queries and add parameters to the queries by using USING.

Examples

CREATE TABLE t1(a int);
INSERT INTO t1 VALUES(1),(10);

--RETURN NEXT
CREATE OR REPLACE FUNCTION fun_for_return_next() RETURNS SETOF t1 AS $$
DECLARE
 r t1%ROWTYPE;
BEGIN
 FOR r IN select * from t1
 LOOP
 RETURN NEXT r;
 END LOOP;
 RETURN;
END;
$$ LANGUAGE PLPGSQL;
call fun_for_return_next();
 a

 1
 10
(2 rows)

-- RETURN QUERY

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 185

CREATE OR REPLACE FUNCTION fun_for_return_query() RETURNS SETOF t1 AS $$
DECLARE
 r t1%ROWTYPE;
BEGIN
 RETURN QUERY select * from t1;
END;
$$
language plpgsql;
call fun_for_return_next();
 a

 1
 10
(2 rows)

9.7.2 Conditional Statements
Conditional statements are used to decide whether given conditions are met.
Operations are executed based on the decisions made.

GaussDB(DWS) supports five usages of IF:

● IF_THEN

Figure 9-16 IF_THEN::=

IF_THEN is the simplest form of IF. If the condition is true, statements are
executed. If it is false, they are skipped.
Examples
IF v_user_id <> 0 THEN
 UPDATE users SET email = v_email WHERE user_id = v_user_id;
END IF;

● IF_THEN_ELSE

Figure 9-17 IF_THEN_ELSE::=

IF-THEN-ELSE statements add ELSE branches and can be executed if the
condition is false.
Examples
IF parentid IS NULL OR parentid = ''
THEN
 RETURN;
ELSE
 hp_true_filename(parentid); -- Call the stored procedure.
END IF;

● IF_THEN_ELSE IF
IF statements can be nested in the following way:

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 186

IF gender = 'm' THEN
 pretty_gender := 'man';
ELSE
 IF gender = 'f' THEN
 pretty_gender := 'woman';
 END IF;
END IF;

Actually, this is a way of an IF statement nesting in the ELSE part of another
IF statement. Therefore, an END IF statement is required for each nesting IF
statement and another END IF statement is required to end the parent IF-
ELSE statement. To set multiple options, use the following form:

● IF_THEN_ELSIF_ELSE

Figure 9-18 IF_THEN_ELSIF_ELSE::=

Examples
IF number_tmp = 0 THEN
 result := 'zero';
ELSIF number_tmp > 0 THEN
 result := 'positive';
ELSIF number_tmp < 0 THEN
 result := 'negative';
ELSE
 result := 'NULL';
END IF;

● IF_THEN_ELSEIF_ELSE
ELSEIF is an alias of ELSIF.
Example
CREATE OR REPLACE PROCEDURE proc_control_structure(i in integer)
AS
 BEGIN
 IF i > 0 THEN
 raise info 'i:% is greater than 0. ',i;
 ELSIF i < 0 THEN
 raise info 'i:% is smaller than 0. ',i;
 ELSE
 raise info 'i:% is equal to 0. ',i;
 END IF;
 RETURN;
 END;
/

CALL proc_control_structure(3);

-- Delete the stored procedure.
DROP PROCEDURE proc_control_structure;

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 187

9.7.3 Loop Statements

Simple LOOP Statements
The syntax diagram is as follows.

Figure 9-19 loop::=

Examples
CREATE OR REPLACE PROCEDURE proc_loop(i in integer, count out integer)
AS
 BEGIN
 count:=0;
 LOOP
 IF count > i THEN
 raise info 'count is %. ', count;
 EXIT;
 ELSE
 count:=count+1;
 END IF;
 END LOOP;
 END;
/

CALL proc_loop(10,5);

NO TICE

The loop must be exploited together with EXIT; otherwise, a dead loop occurs.

WHILE-LOOP Statements
The syntax diagram is as follows.

Figure 9-20 while_loop::=

If the conditional expression is true, a series of statements in the WHILE
statement are repeatedly executed and the condition is decided each time the
loop body is executed.

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 188

Examples

CREATE TABLE integertable(c1 integer) DISTRIBUTE BY hash(c1);
CREATE OR REPLACE PROCEDURE proc_while_loop(maxval in integer)
AS
 DECLARE
 i int :=1;
 BEGIN
 WHILE i < maxval LOOP
 INSERT INTO integertable VALUES(i);
 i:=i+1;
 END LOOP;
 END;
/

-- Invoke a function:
CALL proc_while_loop(10);

-- Delete the stored procedure and table:
DROP PROCEDURE proc_while_loop;
DROP TABLE integertable;

FOR_LOOP (Integer variable) Statement

The syntax diagram is as follows.

Figure 9-21 for_loop::=

NO TE

● The variable name is automatically defined as the integer type and exists only in this
loop. The variable name falls between lower_bound and upper_bound.

● When the keyword REVERSE is used, the lower bound must be greater than or equal to
the upper bound; otherwise, the loop body is not executed.

Examples

-- Loop from 0 to 5:
CREATE OR REPLACE PROCEDURE proc_for_loop()
AS
 BEGIN
 FOR I IN 0..5 LOOP
 DBMS_OUTPUT.PUT_LINE('It is '||to_char(I) || ' time;') ;
 END LOOP;
END;
/

-- Invoke a function:
CALL proc_for_loop();

-- Delete the stored procedure:
DROP PROCEDURE proc_for_loop;

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 189

FOR_LOOP Query Statements
The syntax diagram is as follows.

Figure 9-22 for_loop_query::=

NO TE

The variable target is automatically defined, its type is the same as that in the query result,
and it is valid only in this loop. The target value is the query result.

Examples

-- Display the query result from the loop:
CREATE OR REPLACE PROCEDURE proc_for_loop_query()
AS
 record VARCHAR2(50);
BEGIN
 FOR record IN SELECT spcname FROM pg_tablespace LOOP
 dbms_output.put_line(record);
 END LOOP;
END;
/

-- Invoke a function.
CALL proc_for_loop_query();

-- Delete the stored procedure.
DROP PROCEDURE proc_for_loop_query;

FORALL Batch Query Statements
The syntax diagram is as follows.

Figure 9-23 forall::=

NO TE

The variable index is automatically defined as the integer type and exists only in this loop.
The index value falls between low_bound and upper_bound.

Examples

CREATE TABLE hdfs_t1 (
 title NUMBER(6),

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 190

 did VARCHAR2(20),
 data_peroid VARCHAR2(25),
 kind VARCHAR2(25),
 interval VARCHAR2(20),
 time DATE,
 isModified VARCHAR2(10)
)
DISTRIBUTE BY hash(did);

INSERT INTO hdfs_t1 VALUES(8, 'Donald', 'OConnell', 'DOCONNEL', '650.507.9833', to_date('21-06-1999',
'dd-mm-yyyy'), 'SH_CLERK');

CREATE OR REPLACE PROCEDURE proc_forall()
AS
BEGIN
 FORALL i IN 100..120
 insert into hdfs_t1(title) values(i);
END;
/

-- Invoke a function:
CALL proc_forall();

-- Query the invocation result of the stored procedure:
SELECT * FROM hdfs_t1 WHERE title BETWEEN 100 AND 120;

-- Delete the stored procedure and table:
DROP PROCEDURE proc_forall;
DROP TABLE hdfs_t1;

9.7.4 Branch Statements

Syntax
Figure 9-24 shows the syntax diagram.

Figure 9-24 case_when::=

Figure 9-25 shows the syntax diagram for when_clause.

Figure 9-25 when_clause::=

Parameter description:

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 191

● case_expression: specifies the variable or expression.
● when_expression: specifies the constant or conditional expression.
● statement: specifies the statement to execute.

Examples
CREATE OR REPLACE PROCEDURE proc_case_branch(pi_result in integer, pi_return out integer)
AS
 BEGIN
 CASE pi_result
 WHEN 1 THEN
 pi_return := 111;
 WHEN 2 THEN
 pi_return := 222;
 WHEN 3 THEN
 pi_return := 333;
 WHEN 6 THEN
 pi_return := 444;
 WHEN 7 THEN
 pi_return := 555;
 WHEN 8 THEN
 pi_return := 666;
 WHEN 9 THEN
 pi_return := 777;
 WHEN 10 THEN
 pi_return := 888;
 ELSE
 pi_return := 999;
 END CASE;
 raise info 'pi_return : %',pi_return ;
END;
/

CALL proc_case_branch(3,0);

-- Delete the stored procedure:
DROP PROCEDURE proc_case_branch;

9.7.5 NULL Statements
In PL/SQL programs, a NULL statement can be used to indicate "do nothing",
which is also known as an empty statement.

A NULL statement acts as a placeholder and can give meaning to certain
statements, improving the readability of the program.

Syntax
The following shows example use of NULL statements.
DECLARE
 ...
BEGIN
 ...
 IF v_num IS NULL THEN
 NULL; --No data needs to be processed.
 END IF;
END;
/

9.7.6 Error Trapping Statements
By default, any error occurring in a PL/SQL function aborts execution of the
function, and indeed of the surrounding transaction as well. You can trap errors

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 192

and restore from them by using a BEGIN block with an EXCEPTION clause. The
syntax is an extension of the normal syntax for a BEGIN block:
[<<label>>]
[DECLARE
 declarations]
BEGIN
 statements
EXCEPTION
 WHEN condition [OR condition ...] THEN
 handler_statements
 [WHEN condition [OR condition ...] THEN
 handler_statements
 ...]
END;

If no error occurs, this form of block simply executes all the statements, and then
control passes to the next statement after END. But if an error occurs inside the
executed statement, the statement rolls back and goes to the EXCEPTION list to
find the first condition that matches the error. If a match is found, the
corresponding handler_statements are executed, and then control passes to the
next statement after END. If no match is found, the error propagates out as
though the EXCEPTION clause were not there at all:

The error can be caught by an enclosing block with EXCEPTION, or if there is
none it aborts processing of the function.

The condition can be any of those shown in SQL standard error codes. The special
condition name OTHERS matches every error type except QUERY_CANCELED.

If a new error occurs within the selected handler_statements, it cannot be caught
by this EXCEPTION clause, but is propagated out. A surrounding EXCEPTION
clause could catch it.

When an error is caught by an EXCEPTION clause, the local variables of the
PL/SQL function remain as they were when the error occurred, but all changes to
persistent database state within the block are rolled back.

Example:

CREATE TABLE mytab(id INT,firstname VARCHAR(20),lastname VARCHAR(20)) DISTRIBUTE BY hash(id);

INSERT INTO mytab(firstname, lastname) VALUES('Tom', 'Jones');

CREATE FUNCTION fun_exp() RETURNS INT
AS $$
DECLARE
 x INT :=0;
 y INT;
BEGIN
 UPDATE mytab SET firstname = 'Joe' WHERE lastname = 'Jones';
 x := x + 1;
 y := x / 0;
EXCEPTION
 WHEN division_by_zero THEN
 RAISE NOTICE 'caught division_by_zero';
 RETURN x;
END;$$
LANGUAGE plpgsql;

CALL fun_exp();
NOTICE: caught division_by_zero
 fun_exp

 1
(1 row)

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 193

SELECT * FROM mytab;
 id | firstname | lastname
----+-----------+----------
 | Tom | Jones
(1 row)

DROP FUNCTION fun_exp();
DROP TABLE mytab;

When control reaches the assignment to y, it will fail with a division_by_zero
error. This will be caught by the EXCEPTION clause. The value returned in the
RETURN statement will be the incremented value of x.

NO TE

A block containing an EXCEPTION clause is more expensive to enter and exit than a block
without one. Therefore, do not use EXCEPTION without need.

In the following scenario, an exception cannot be caught, and the entire transaction rolls
back. The threads of the nodes participating the stored procedure exit abnormally due to
node failure and network fault, or the source data is inconsistent with that of the table
structure of the target table during the COPY FROM operation.

Example: Exceptions with UPDATE/INSERT

This example uses exception handling to perform either UPDATE or INSERT, as
appropriate:

CREATE TABLE db (a INT, b TEXT);

CREATE FUNCTION merge_db(key INT, data TEXT) RETURNS VOID AS
$$
BEGIN
 LOOP

-- Try updating the key:
 UPDATE db SET b = data WHERE a = key;
 IF found THEN
 RETURN;
 END IF;
-- Not there, so try to insert the key. If someone else inserts the same key concurrently, we could get a
unique-key failure.
 BEGIN
 INSERT INTO db(a,b) VALUES (key, data);
 RETURN;
 EXCEPTION WHEN unique_violation THEN
 -- Loop to try the UPDATE again:
 END;
 END LOOP;
END;
$$
LANGUAGE plpgsql;

SELECT merge_db(1, 'david');
SELECT merge_db(1, 'dennis');

-- Delete FUNCTION and TABLE:
DROP FUNCTION merge_db;
DROP TABLE db ;

9.7.7 GOTO Statements
The GOTO statement unconditionally transfers the control from the current
statement to a labeled statement. The GOTO statement changes the execution
logic. Therefore, use this statement only when necessary. Alternatively, you can use

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 194

the EXCEPTION statement to handle issues in special scenarios. To run the GOTO
statement, the labeled statement must be unique.

Syntax
label declaration ::=

goto statement ::=

Examples
CREATE OR REPLACE PROCEDURE GOTO_test()
AS
DECLARE
 v1 int;
BEGIN
 v1 := 0;
 LOOP
 EXIT WHEN v1 > 100;
 v1 := v1 + 2;
 if v1 > 25 THEN
 GOTO pos1;
 END IF;
 END LOOP;
<<pos1>>
v1 := v1 + 10;
raise info 'v1 is %. ', v1;
END;
/

call GOTO_test();
DROP PROCEDURE GOTO_test();

Constraints
The GOTO statement has the following constraints:

● The GOTO statement does not allow multiple labeled statements even if they
are in different blocks.
BEGIN
 GOTO pos1;
 <<pos1>>
 SELECT * FROM ...
 <<pos1>>
 UPDATE t1 SET ...
END;

● The GOTO statement cannot transfer control to the IF, CASE, or LOOP
statement.
BEGIN
 GOTO pos1;
 IF valid THEN
 <<pos1>>
 SELECT * FROM ...
 END IF;
 END;

● The GOTO statement cannot transfer control from one IF clause to another,
or from one WHEN clause in the CASE statement to another.

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 195

BEGIN
 IF valid THEN
 GOTO pos1;
 SELECT * FROM ...
 ELSE
 <<pos1>>
 UPDATE t1 SET ...
 END IF;
 END;

● The GOTO statement cannot transfer control from an outer block to an inner
BEGIN-END block.
BEGIN
 GOTO pos1;
 BEGIN
 <<pos1>>
 UPDATE t1 SET ...
 END;
 END;

● The GOTO statement cannot transfer control from an EXCEPTION block to
the current BEGIN-END block but can transfer to an outer BEGIN-END block.
BEGIN
 <<pos1>>
 UPDATE t1 SET ...
 EXCEPTION
 WHEN condition THEN
 GOTO pos1;
 END;

● If the labeled statement in the GOTO statement does not exist, you need to
add the NULL statement.
DECLARE
 done BOOLEAN;
BEGIN
 FOR i IN 1..50 LOOP
 IF done THEN
 GOTO end_loop;
 END IF;
 <<end_loop>> -- not allowed unless an executable statement follows
 NULL; -- add NULL statement to avoid error
 END LOOP; -- raises an error without the previous NULL
END;
/

9.8 Other Statements in a GaussDB(DWS) Stored
Procedure

Lock Operations
GaussDB(DWS) provides multiple lock modes to control concurrent accesses to
table data. These modes are used when Multi-Version Concurrency Control
(MVCC) cannot give expected behaviors. Alike, most GaussDB(DWS) commands
automatically apply appropriate locks to ensure that called tables are not deleted
or modified in an incompatible manner during command execution. For example,
when concurrent operations exist, ALTER TABLE cannot be executed on the same
table.

Cursor Operations
GaussDB(DWS) provides cursors as a data buffer for users to store execution
results of SQL statements. Each cursor region has a name. Users can use SQL

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 196

statements to obtain records one by one from cursors and grant them to master
variables, then being processed further by host languages.

Cursor operations include cursor definition, open, fetch, and close operations.

For the complete example of cursor operations, see Explicit Cursor.

9.9 GaussDB(DWS) Stored Procedure Cursor

9.9.1 Overview
To process SQL statements, the stored procedure process assigns a memory
segment to store context association. Cursors are handles or pointers to context
areas. With cursors, stored procedures can control alterations in context areas.

NO TICE

If JDBC is used to call a stored procedure whose returned value is a cursor, the
returned cursor is not available.

Cursors are classified into explicit cursors and implicit cursors. Table 9-2 shows the
usage conditions of explicit and implicit cursors for different SQL statements.

Table 9-2 Cursor usage conditions

SQL Statement Cursor

Non-query statements Implicit

Query statements with single-line
results

Implicit or explicit

Query statements with multi-line
results

Explicit

9.9.2 Explicit Cursor
An explicit cursor is used to process query statements, particularly when the query
results contain multiple records.

Procedure

An explicit cursor performs the following six PL/SQL steps to process query
statements:

Step 1 Define a static cursor: Define a cursor name and its corresponding SELECT
statement.

Figure 9-26 shows the syntax diagram for defining a static cursor.

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 197

Figure 9-26 static_cursor_define::=

Parameter description:

● cursor_name: defines a cursor name.
● parameter: specifies cursor parameters. Only input parameters are allowed in

the following format:
parameter_name datatype

● select_statement: specifies a query statement.

NO TE

The system automatically determines whether the cursor can be used for backward fetches
based on the execution plan.

Define a dynamic cursor: Define a ref cursor, which means that the cursor can be
opened dynamically by a set of static SQL statements. Define the type of the ref
cursor first and then the cursor variable of this cursor type. Dynamically bind a
SELECT statement through OPEN FOR when the cursor is opened.

Figure 9-27 and Figure 9-28 show the syntax diagrams for defining a dynamic
cursor.

Figure 9-27 cursor_typename::=

GaussDB(DWS) supports the dynamic cursor type sys_refcursor. A function or
stored procedure can use the sys_refcursor parameter to pass on or pass out the
cursor result set. A function can return sys_refcursor to return the cursor result
set.

Figure 9-28 dynamic_cursor_define::=

Step 2 Open the static cursor: Execute the SELECT statement corresponding to the
cursor. The query result is placed in the work area and the pointer directs to the
head of the work area to identify the cursor result set. If the cursor query
statement contains the FOR UPDATE option, the OPEN statement locks the data
row corresponding to the cursor result set in the database table.

Figure 9-29 shows the syntax diagram for opening a static cursor.

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 198

Figure 9-29 open_static_cursor::=

Open the dynamic cursor: Use the OPEN FOR statement to open the dynamic
cursor and the SQL statement is dynamically bound.

Figure 9-30 shows the syntax diagram for opening a dynamic cursor.

Figure 9-30 open_dynamic_cursor::=

A PL/SQL program cannot use the OPEN statement to repeatedly open a cursor.

Step 3 Fetch cursor data: Retrieve data rows in the result set and place them in specified
output variables.

Figure 9-31 shows the syntax diagram for fetching cursor data.

Figure 9-31 fetch_cursor::=

Step 4 Process the record.

Step 5 Continue to process until the active set has no record.

Step 6 Close the cursor: When fetching and finishing the data in the cursor result set,
close the cursor immediately to release system resources used by the cursor and
invalidate the work area of the cursor so that the FETCH statement cannot be
used to fetch data any more. A closed cursor can be reopened using the OPEN
statement.

Figure 9-32 shows the syntax diagram for closing a cursor.

Figure 9-32 close_cursor::=

----End

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 199

Attributes

Cursor attributes are used to control program procedures or learn about program
status. When a DML statement is executed, the PL/SQL opens a built-in cursor and
processes its result. A cursor is a memory segment for maintaining query results. It
is opened when a DML statement is executed and closed when the execution is
finished. An explicit cursor has the following attributes:

● %FOUND: Boolean attribute, which returns TRUE if the last fetch returns a
row.

● %NOTFOUND: Boolean attribute, which works opposite to the %FOUND
attribute.

● %ISOPEN: Boolean attribute, which returns TRUE if the cursor has been
opened.

● %ROWCOUNT: numeric attribute, which returns the number of records
fetched from the cursor.

Examples
-- Specify the method for passing cursor parameters:
CREATE OR REPLACE PROCEDURE cursor_proc1()
AS
DECLARE
 DEPT_NAME VARCHAR(100);
 DEPT_LOC NUMBER(4);
 -- Define a cursor:
 CURSOR C1 IS
 SELECT section_name, place_id FROM sections WHERE section_id <= 50;
 CURSOR C2(sect_id INTEGER) IS
 SELECT section_name, place_id FROM sections WHERE section_id <= sect_id;
 TYPE CURSOR_TYPE IS REF CURSOR;
 C3 CURSOR_TYPE;
 SQL_STR VARCHAR(100);
BEGIN
 OPEN C1;-- Open the cursor:
 LOOP
 -- Fetch data from the cursor:
 FETCH C1 INTO DEPT_NAME, DEPT_LOC;
 EXIT WHEN C1%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(DEPT_NAME||'---'||DEPT_LOC);
 END LOOP;
 CLOSE C1;-- Close the cursor.

 OPEN C2(10);
 LOOP
 FETCH C2 INTO DEPT_NAME, DEPT_LOC;
 EXIT WHEN C2%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(DEPT_NAME||'---'||DEPT_LOC);
 END LOOP;
 CLOSE C2;

 SQL_STR := 'SELECT section_name, place_id FROM sections WHERE section_id <= :DEPT_NO;';
 OPEN C3 FOR SQL_STR USING 50;
 LOOP
 FETCH C3 INTO DEPT_NAME, DEPT_LOC;
 EXIT WHEN C3%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(DEPT_NAME||'---'||DEPT_LOC);
 END LOOP;
 CLOSE C3;
END;
/

CALL cursor_proc1();

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 200

DROP PROCEDURE cursor_proc1;
-- Increase the salary of employees whose salary is lower than CNY3000 by CNY500:
CREATE TABLE staffs_t1 AS TABLE staffs;

CREATE OR REPLACE PROCEDURE cursor_proc2()
AS
DECLARE
 V_EMPNO NUMBER(6);
 V_SAL NUMBER(8,2);
 CURSOR C IS SELECT staff_id, salary FROM staffs_t1;
BEGIN
 OPEN C;
 LOOP
 FETCH C INTO V_EMPNO, V_SAL;
 EXIT WHEN C%NOTFOUND;
 IF V_SAL<=3000 THEN
 UPDATE staffs_t1 SET salary =salary + 500 WHERE staff_id = V_EMPNO;
 END IF;
 END LOOP;
 CLOSE C;
END;
/

CALL cursor_proc2();

-- Drop the stored procedure:
DROP PROCEDURE cursor_proc2;
DROP TABLE staffs_t1;
-- Use function parameters of the SYS_REFCURSOR type:
CREATE OR REPLACE PROCEDURE proc_sys_ref(O OUT SYS_REFCURSOR)
IS
C1 SYS_REFCURSOR;
BEGIN
OPEN C1 FOR SELECT section_ID FROM sections ORDER BY section_ID;
O := C1;
END;
/

DECLARE
C1 SYS_REFCURSOR;
TEMP NUMBER(4);
BEGIN
proc_sys_ref(C1);
LOOP
 FETCH C1 INTO TEMP;
 DBMS_OUTPUT.PUT_LINE(C1%ROWCOUNT);
 EXIT WHEN C1%NOTFOUND;
END LOOP;
END;
/

-- Drop the stored procedure:
DROP PROCEDURE proc_sys_ref;

9.9.3 Implicit Cursor
The system automatically sets implicit cursors for non-query statements, such as
ALTER and DROP, and creates work areas for these statements. These implicit
cursors are named SQL, which is defined by the system.

Overview

Implicit cursor operations, such as definition, opening, value-grant, and closing,
are automatically performed by the system. Users can use only the attributes of
implicit cursors to complete operations. The data stored in the work area of an

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 201

implicit cursor is the latest SQL statement, and is not related to the user-defined
explicit cursors.

Format call: SQL%

NO TE

INSERT, UPDATE, DROP, and SELECT statements do not require defined cursors.

Attributes
An implicit cursor has the following attributes:

● SQL%FOUND: Boolean attribute, which returns TRUE if the last fetch returns
a row.

● SQL%NOTFOUND: Boolean attribute, which works opposite to the SQL
%FOUND attribute.

● SQL%ROWCOUNT: numeric attribute, which returns the number of records
fetched from the cursor.

● SQL%ISOPEN: Boolean attribute, whose value is always FALSE. Close implicit
cursors immediately after an SQL statement is executed.

Examples
-- Delete all employees in a department from the EMP table. If the department has no employees, delete
the department from the DEPT table.
CREATE TABLE staffs_t1 AS TABLE staffs;
CREATE TABLE sections_t1 AS TABLE sections;

CREATE OR REPLACE PROCEDURE proc_cursor3()
AS
 DECLARE
 V_DEPTNO NUMBER(4) := 100;
 BEGIN
 DELETE FROM staffs WHERE section_ID = V_DEPTNO;
 -- Proceed based on cursor status:
 IF SQL%NOTFOUND THEN
 DELETE FROM sections_t1 WHERE section_ID = V_DEPTNO;
 END IF;
 END;
/

CALL proc_cursor3();

-- Drop the stored procedure and the temporary table:
DROP PROCEDURE proc_cursor3;
DROP TABLE staffs_t1;
DROP TABLE sections_t1;

9.9.4 Cursor Loop
The use of cursors in WHILE and LOOP statements is called a cursor loop.
Generally, OPEN, FETCH, and CLOSE statements are needed in cursor loop. The
following describes a loop that is applicable to a static cursor loop without
executing the four steps of a static cursor.

Syntax
Figure 9-33 shows the syntax diagram for the FOR AS loop.

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 202

Figure 9-33 FOR_AS_loop::=

Precautions
● The UPDATE operation for the queried table is not allowed in the loop

statement.

● The variable loop_name is automatically defined and is valid only in this loop.
The type and value of loop_name are the same as those of the query result of
select_statement.

● The %FOUND, %NOTFOUND, and %ROWCOUNT attributes access the same
internal variable in GaussDB(DWS). Transactions and anonymous blocks
cannot be accessed by multiple cursors at the same time.

Examples
BEGIN
FOR ROW_TRANS IN
 SELECT first_name FROM staffs
 LOOP
 DBMS_OUTPUT.PUT_LINE (ROW_TRANS.first_name);
 END LOOP;
END;
/

-- Create a table:
CREATE TABLE integerTable1(A INTEGER) DISTRIBUTE BY hash(A);
CREATE TABLE integerTable2(B INTEGER) DISTRIBUTE BY hash(B);
INSERT INTO integerTable2 VALUES(2);

-- Multiple cursors share the parameters of cursor attributes:
DECLARE
 CURSOR C1 IS SELECT A FROM integerTable1;--Declare the cursor.
 CURSOR C2 IS SELECT B FROM integerTable2;
 PI_A INTEGER;
 PI_B INTEGER;
BEGIN
 OPEN C1;-- Open the cursor.
 OPEN C2;
 FETCH C1 INTO PI_A; ---- The value of C1%FOUND and C2%FOUND is FALSE.
 FETCH C2 INTO PI_B; ---- The value of C1%FOUND and C2%FOUND is TRUE.
-- Determine the cursor status:
 IF C1%FOUND THEN
 IF C2%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Dual cursor share paremeter.');
 END IF;
 END IF;
 CLOSE C1;-- Close the cursor.
 CLOSE C2;
END;
/

-- Drop the temporary table:
DROP TABLE integerTable1;
DROP TABLE integerTable2;

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 203

9.10 GaussDB(DWS) Stored Procedure Advanced
Package

9.10.1 DBMS_LOB

Related Interfaces

Table 9-3 provides all interfaces supported by the DBMS_LOB package.

Table 9-3 DBMS_LOB

API Description

DBMS_LOB.GETLENGTH Obtains and returns the specified length of a LOB
object.

DBMS_LOB.OPEN Opens a LOB and returns a LOB descriptor.

DBMS_LOB.READ Loads a part of LOB contents to BUFFER area
according to the specified length and initial
position offset.

DBMS_LOB.WRITE Copies contents in BUFFER area to LOB according
to the specified length and initial position offset.

DBMS_LOB.WRITEAPPEN
D

Copies contents in BUFFER area to the end part of
LOB according to the specified length.

DBMS_LOB.COPY Copies contents in BLOB to another BLOB
according to the specified length and initial
position offset.

DBMS_LOB.ERASE Deletes contents in BLOB according to the
specified length and initial position offset.

DBMS_LOB.CLOSE Closes a LOB descriptor.

DBMS_LOB.INSTR Returns the position of the Nth occurrence of a
character string in LOB.

DBMS_LOB.COMPARE Compares two LOBs or a certain part of two LOBs.

DBMS_LOB.SUBSTR Reads the substring of a LOB and returns the
number of read bytes or the number of characters.

DBMS_LOB.TRIM Truncates the LOB of a specified length. After the
execution is complete, the length of the LOB is set
to the length specified by the newlen parameter.

DBMS_LOB.CREATETEMP
ORARY

Creates a temporary BLOB or CLOB.

DBMS_LOB.APPEND Adds the content of a LOB to another LOB.

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 204

● DBMS_LOB.GETLENGTH
Specifies the length of a LOB type object obtained and returned by the stored
procedure GETLENGTH.
The function prototype of DBMS_LOB.GETLENGTH is:
DBMS_LOB.GETLENGTH (
lob_loc IN BLOB)
RETURN INTEGER;

DBMS_LOB.GETLENGTH (
lob_loc IN CLOB)
RETURN INTEGER;

Table 9-4 DBMS_LOB.GETLENGTH interface parameters

Parameter Description

lob_loc LOB type object whose length is to be obtained

● DBMS_LOB.OPEN

A stored procedure opens a LOB and returns a LOB descriptor. This process is
used only for compatibility.
The function prototype of DBMS_LOB.OPEN is:
DBMS_LOB.LOB (
lob_loc INOUT BLOB,
open_mode IN BINARY_INTEGER);

DBMS_LOB.LOB (
lob_loc INOUT CLOB,
open_mode IN BINARY_INTEGER);

Table 9-5 DBMS_LOB.OPEN interface parameters

Parameter Description

lob_loc BLOB or CLOB descriptor that is opened

open_mode IN
BINARY_INTEG
ER

Open mode (currently, DBMS_LOB.LOB_READWRITE is
supported)

● DBMS_LOB.READ

The stored procedure READ loads a part of LOB contents to BUFFER according
to the specified length and initial position offset.
The function prototype of DBMS_LOB.READ is:
DBMS_LOB.READ (
lob_loc IN BLOB,
amount IN INTEGER,
offset IN INTEGER,
buffer OUT RAW);

DBMS_LOB.READ (
lob_loc IN CLOB,

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 205

amount IN OUT INTEGER,
offset IN INTEGER,
buffer OUT VARCHAR2);

Table 9-6 DBMS_LOB.READ interface parameters

Parameter Description

lob_loc LOB type object to be loaded

amount Load data length
NOTE

If the read length is negative, the error message "ERROR:
argument 2 is null, invalid, or out of range." is displayed.

offset Indicates where to start reading the LOB contents, that
is, the offset bytes to initial position of LOB contents.

buffer Target buffer to store the loaded LOB contents

● DBMS_LOB.WRITE

The stored procedure WRITE copies contents in BUFFER to LOB variables
according to the specified length and initial position offset.
The function prototype of DBMS_LOB.WRITE is:
DBMS_LOB.WRITE (
lob_loc IN OUT BLOB,
amount IN INTEGER,
offset IN INTEGER,
buffer IN RAW);

DBMS_LOB.WRITE (
lob_loc IN OUT CLOB,
amount IN INTEGER,
offset IN INTEGER,
buffer IN VARCHAR2);

Table 9-7 DBMS_LOB.WRITE interface parameters

Parameter Description

lob_loc LOB type object to be written

amount Write data length
NOTE

If the write data is shorter than 1 or longer than the contents to
be written, an error is reported.

offset Indicates where to start writing the LOB contents, that is,
the offset bytes to initial position of LOB contents.
NOTE

If the offset is shorter than 1 or longer than the maximum
length of LOB type contents, an error is reported.

buffer Content to be written

● DBMS_LOB.WRITEAPPEND

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 206

The stored procedure WRITEAPPEND copies contents in BUFFER to the end
part of LOB according to the specified length.

The function prototype of DBMS_LOB.WRITEAPPEND is:
DBMS_LOB.WRITEAPPEND (
lob_loc IN OUT BLOB,
amount IN INTEGER,
buffer IN RAW);

DBMS_LOB.WRITEAPPEND (
lob_loc IN OUT CLOB,
amount IN INTEGER,
buffer IN VARCHAR2);

Table 9-8 DBMS_LOB.WRITEAPPEND interface parameters

Parameter Description

lob_loc LOB type object to be written

amount Write data length
NOTE

If the write data is shorter than 1 or longer than the contents to
be written, an error is reported.

buffer Content to be written

● DBMS_LOB.COPY

The stored procedure COPY copies contents in BLOB to another BLOB
according to the specified length and initial position offset.

The function prototype of DBMS_LOB.COPY is:
DBMS_LOB.COPY (
dest_lob IN OUT BLOB,
src_lob IN BLOB,
amount IN INTEGER,
dest_offset IN INTEGER DEFAULT 1,
src_offset IN INTEGER DEFAULT 1);

Table 9-9 DBMS_LOB.COPY interface parameters

Parameter Description

dest_lob BLOB type object to be pasted

src_lob BLOB type object to be copied

amount Replication length.
NOTE

If the copied data is shorter than 1 or longer than the maximum
length of BLOB type contents, an error is reported.

dest_offset Indicates where to start pasting the BLOB contents, that
is, the offset bytes to initial position of BLOB contents.
NOTE

If the offset is shorter than 1 or longer than the maximum
length of BLOB type contents, an error is reported.

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 207

Parameter Description

src_offset Indicates where to start copying the BLOB contents, that
is, the offset bytes to initial position of BLOB contents.
NOTE

If the offset is shorter than 1 or longer than the length of source
BLOB, an error is reported.

● DBMS_LOB.ERASE

The stored procedure ERASE deletes contents in BLOB according to the
specified length and initial position offset.
The function prototype of DBMS_LOB.ERASE is:
DBMS_LOB.ERASE (
lob_loc IN OUT BLOB,
amount IN OUT INTEGER,
offset IN INTEGER DEFAULT 1);

Table 9-10 DBMS_LOB.ERASE interface parameters

Parameter Description

lob_loc BLOB type object whose contents are to be deleted

amount Length of contents to be deleted
NOTE

If the deleted data is shorter than 1 or longer than the
maximum length of BLOB type contents, an error is reported.

offset Indicates where to start deleting the BLOB contents, that
is, the offset bytes to initial position of BLOB contents.
NOTE

If the offset is shorter than 1 or longer than the maximum
length of BLOB type contents, an error is reported.

● DBMS_LOB.CLOSE

The procedure CLOSE disables the enabled contents of LOB according to the
specified length and initial position offset.
The function prototype of DBMS_LOB.CLOSE is:
DBMS_LOB.CLOSE(
src_lob IN BLOB);

DBMS_LOB.CLOSE (
src_lob IN CLOB);

Table 9-11 DBMS_LOB.CLOSE interface parameters

Parameter Description

src_loc LOB type object to be disabled

● DBMS_LOB.INSTR

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 208

This function returns the Nth occurrence position in LOB. If invalid values are
entered, NULL is returned. The invalid values include offset < 1 or offset >
LOBMAXSIZE, nth < 1, and nth > LOBMAXSIZE.
The function prototype of DBMS_LOB.INSTR is:
DBMS_LOB.INSTR (
lob_loc IN BLOB,
pattern IN RAW,
offset IN INTEGER := 1,
nth IN INTEGER := 1)
RETURN INTEGER;

DBMS_LOB.INSTR (
lob_loc IN CLOB,
pattern IN VARCHAR2 ,
offset IN INTEGER := 1,
nth IN INTEGER := 1)
RETURN INTEGER;

Table 9-12 DBMS_LOB.INSTR interface parameters

Parameter Description

lob_loc LOB descriptor to be searched for

pattern Matched pattern. It is RAW for BLOB and TEXT for CLOB.

offset For BLOB, the absolute offset is in the unit of byte. For
CLOB, the offset is in the unit of character. The matching
start position is 1.

nth Number of pattern matching times. The minimum value
is 1.

● DBMS_LOB.COMPARE

This function compares two LOBs or a certain part of two LOBs.
– If the two parts are equal, 0 is returned. Otherwise, a non-zero value is

returned.
– If the first CLOB is smaller than the second, -1 is returned. If the first

CLOB is larger than the second, 1 is returned.
– If any of the amount, offset_1, and offset_2 parameters is invalid, NULL

is returned. The valid offset range is 1 to LOBMAXSIZE.
The function prototype of DBMS_LOB.READ is:
DBMS_LOB.COMPARE (
lob_1 IN BLOB,
lob_2 IN BLOB,
amount IN INTEGER := DBMS_LOB.LOBMAXSIZE,
offset_1 IN INTEGER := 1,
offset_2 IN INTEGER := 1)
RETURN INTEGER;

DBMS_LOB.COMPARE (
lob_1 IN CLOB,
lob_2 IN CLOB,
amount IN INTEGER := DBMS_LOB.LOBMAXSIZE,
offset_1 IN INTEGER := 1,
offset_2 IN INTEGER := 1)
RETURN INTEGER;

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 209

Table 9-13 DBMS_LOB.COMPARE interface parameters

Parameter Description

lob_1 First LOB descriptor to be compared

lob_2 Second LOB descriptor to be compared

amount Number of characters or bytes to be compared. The
maximum value is DBMS_LOB.LOBMAXSIZE.

offset_1 Offset of the first LOB descriptor. The initial position is 1.

offset_2 Offset of the second LOB descriptor. The initial position
is 1.

● DBMS_LOB.SUBSTR

This function reads the substring of a LOB and returns the number of read
bytes or the number of characters. If amount > 1, amount < 32767, offset < 1,
or offset > LOBMAXSIZE, NULL is returned.
The function prototype of DBMS_LOB.SUBSTR is:
DBMS_LOB.SUBSTR (
lob_loc IN BLOB,
amount IN INTEGER := 32767,
offset IN INTEGER := 1)
RETURN RAW;

DBMS_LOB.SUBSTR (
lob_loc IN CLOB,
amount IN INTEGER := 32767,
offset IN INTEGER := 1)
RETURN VARCHAR2;

Table 9-14 DBMS_LOB.SUBSTR interface parameters

Parameter Description

lob_loc LOB descriptor of the substring to be read. For BLOB, the
return value is the number of read bytes. For CLOB, the
return value is the number of characters.

offset Number of bytes or characters to be read.

buffer Number of characters or bytes offset from the start
position.

● DBMS_LOB.TRIM

This stored procedure truncates the LOB of a specified length. After this stored
procedure is executed, the length of the LOB is set to the length specified by
the newlen parameter. If an empty LOB is truncated, no execution result is
displayed. If the specified length is longer than the length of LOB, an
exception occurs.
The function prototype of DBMS_LOB.TRIM is:
DBMS_LOB.TRIM (
lob_loc IN OUT BLOB,
newlen IN INTEGER);

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 210

DBMS_LOB.TRIM (
lob_loc IN OUT CLOB,
newlen IN INTEGER);

Table 9-15 DBMS_LOB.TRIM interface parameters

Parame
ter

Description

lob_loc BLOB type object to be read

newlen After truncation, the new LOB length for BLOB is in the unit of
byte and that for CLOB is in the unit of character.

● DBMS_LOB.CREATETEMPORARY

This stored procedure creates a temporary BLOB or CLOB and is used only for
syntax compatibility.
The function prototype of DBMS_LOB.CREATETEMPORARY is:
DBMS_LOB.CREATETEMPORARY (
lob_loc IN OUT BLOB,
cache IN BOOLEAN,
dur IN INTEGER);

DBMS_LOB.CREATETEMPORARY (
lob_loc IN OUT CLOB,
cache IN BOOLEAN,
dur IN INTEGER);

Table 9-16 DBMS_LOB.CREATETEMPORARY interface parameters

Parameter Description

lob_loc LOB descriptor

cache This parameter is used only for syntax compatibility.

dur This parameter is used only for syntax compatibility.

● DBMS_LOB.APPEND

The stored procedure READ loads a part of BLOB contents to BUFFER
according to the specified length and initial position offset.
The function prototype of DBMS_LOB.APPEND is:
DBMS_LOB.APPEND (
dest_lob IN OUT BLOB,
src_lob IN BLOB);

DBMS_LOB.APPEND (
dest_lob IN OUT CLOB,
src_lob IN CLOB);

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 211

Table 9-17 DBMS_LOB.APPEND interface parameters

Parameter Description

dest_lob LOB descriptor to be written

src_lob LOB descriptor to be read

Examples
-- Obtain the length of the character string.
SELECT DBMS_LOB.GETLENGTH('12345678');

DECLARE
myraw RAW(100);
amount INTEGER :=2;
buffer INTEGER :=1;
begin
DBMS_LOB.READ('123456789012345',amount,buffer,myraw);
dbms_output.put_line(myraw);
end;
/

CREATE TABLE blob_Table (t1 blob) DISTRIBUTE BY REPLICATION;
CREATE TABLE blob_Table_bak (t2 blob) DISTRIBUTE BY REPLICATION;
INSERT INTO blob_Table VALUES('abcdef');
INSERT INTO blob_Table_bak VALUES('22222');

DECLARE
str varchar2(100) := 'abcdef';
source raw(100);
dest blob;
copyto blob;
amount int;
PSV_SQL varchar2(100);
PSV_SQL1 varchar2(100);
a int :=1;
len int;
BEGIN
source := utl_raw.cast_to_raw(str);
amount := utl_raw.length(source);

PSV_SQL :='select * from blob_Table for update';
PSV_SQL1 := 'select * from blob_Table_bak for update';

EXECUTE IMMEDIATE PSV_SQL into dest;
EXECUTE IMMEDIATE PSV_SQL1 into copyto;

DBMS_LOB.WRITE(dest, amount, 1, source);
DBMS_LOB.WRITEAPPEND(dest, amount, source);

DBMS_LOB.ERASE(dest, a, 1);
DBMS_OUTPUT.PUT_LINE(a);
DBMS_LOB.COPY(copyto, dest, amount, 10, 1);
DBMS_LOB.CLOSE(dest);
RETURN;
END;
/

--Delete the table.
DROP TABLE blob_Table;
DROP TABLE blob_Table_bak;

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 212

9.10.2 DBMS_RANDOM

Related Interfaces
Table 9-18 provides all interfaces supported by the DBMS_RANDOM package.

Table 9-18 DBMS_RANDOM interface parameters

API Description

DBMS_RANDO
M.SEED

Sets a seed for a random number.

DBMS_RANDO
M.VALUE

Generates a random number between a specified low and a
specified high.

● DBMS_RANDOM.SEED
The stored procedure SEED is used to set a seed for a random number. The
DBMS_RANDOM.SEED function prototype is:
DBMS_RANDOM.SEED (seed IN INTEGER);

Table 9-19 DBMS_RANDOM.SEED interface parameters

Parameter Description

seed Generates a seed for a random number.

● DBMS_RANDOM.VALUE

The stored procedure VALUE generates a random number between a specified
low and a specified high. The DBMS_RANDOM.VALUE function prototype is:
DBMS_RANDOM.VALUE(
low IN NUMBER,
high IN NUMBER)
RETURN NUMBER;

Table 9-20 DBMS_RANDOM.VALUE interface parameters

Paramet
er

Description

low Sets the low bound for a random number. The generated
random number is greater than or equal to the low.

high Sets the high bound for a random number. The generated
random number is less than the high.

NO TE

The only requirement is that the parameter type is NUMERIC regardless of the right and
left bound values.

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 213

Example

Generate a random number between 0 and 1:

SELECT DBMS_RANDOM.VALUE(0,1);

Generate a random integer ranging from 0 to 100. The random integer is greater
than or equal to the specified value of low and less than the specified value of
high.

SELECT TRUNC(DBMS_RANDOM.VALUE(0,100));

9.10.3 DBMS_OUTPUT

Related Interfaces

Table 9-21 provides all interfaces supported by the DBMS_OUTPUT package.

Table 9-21 DBMS_OUTPUT

API Description

DBMS_OUTP
UT.PUT_LINE

Outputs the specified text. The text length cannot exceed
32,767 bytes.

DBMS_OUTP
UT.PUT

Outputs the specified text to the front of the specified text
without adding a line break. The text length cannot exceed
32,767 bytes.

DBMS_OUTP
UT.ENABLE

Sets the buffer area size. If this interface is not specified, the
maximum buffer size is 20,000 bytes and the minimum buffer
size is 2000 bytes. If the specified buffer size is less than 2000
bytes, the default minimum buffer size is applied.

● DBMS_OUTPUT.PUT_LINE

The PUT_LINE procedure writes a row of text carrying a line end symbol in the
buffer. The DBMS_OUTPUT.PUT_LINE function prototype is:

DBMS_OUTPUT.PUT_LINE (
item IN VARCHAR2);

Table 9-22 DBMS_OUTPUT.PUT_LINE interface parameters

Parameter Description

item Specifies the text that was written to the buffer.

● DBMS_OUTPUT.PUT

The stored procedure PUT outputs the specified text to the front of the specified
text without adding a linefeed. The DBMS_OUTPUT.PUT function prototype is:

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 214

DBMS_OUTPUT.PUT (
item IN VARCHAR2);

Table 9-23 DBMS_OUTPUT.PUT interface parameters

Parameter Description

item Specifies the text that was written to the specified text.

● DBMS_OUTPUT.ENABLE

The stored procedure ENABLE sets the output buffer size. If the size is not
specified, it contains a maximum of 20,000 bytes. The DBMS_OUTPUT.ENABLE
function prototype is:

DBMS_OUTPUT.ENABLE (
buf IN INTEGER);

Table 9-24 DBMS_OUTPUT.ENABLE interface parameters

Parameter Description

buf Sets the buffer area size.

Examples
BEGIN
 DBMS_OUTPUT.ENABLE(50);
 DBMS_OUTPUT.PUT ('hello, ');
 DBMS_OUTPUT.PUT_LINE('database!');-- Displaying "hello, database!"
END;
/

9.10.4 UTL_RAW

Related Interfaces
Table 9-25 provides all interfaces supported by the UTL_RAW package.

Table 9-25 UTL_RAW

API Description

UTL_RAW.CAST_FROM_BI
NARY_INTEGER

Converts an INTEGER type value to a binary
representation (RAW type).

UTL_RAW.CAST_TO_BINA
RY_INTEGER

Converts a binary representation (RAW type) to an
INTEGER type value.

UTL_RAW.LENGTH Obtains the length of the RAW type object.

UTL_RAW.CAST_TO_RAW Converts a VARCHAR2 type value to a binary
expression (RAW type).

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 215

NO TICE

The external representation of the RAW type data is hexadecimal and its internal
storage form is binary. For example, the representation of the RAW type data
11001011 is 'CB'. The input of the actual type conversion is 'CB'.

● UTL_RAW.CAST_FROM_BINARY_INTEGER
The stored procedure CAST_FROM_BINARY_INTEGER converts an INTEGER
type value to a binary representation (RAW type).
The UTL_RAW.CAST_FROM_BINARY_INTEGER function prototype is:
UTL_RAW.CAST_FROM_BINARY_INTEGER (
n IN INTEGER,
endianess IN INTEGER)
RETURN RAW;

Table 9-26 UTL_RAW.CAST_FROM_BINARY_INTEGER interface parameters

Paramete
r

Description

n Specifies the INTEGER type value to be converted to the RAW
type.

endianess Specifies the INTEGER type value 1 or 2 of the byte sequence.
(1 indicates BIG_ENDIAN and 2 indicates LITTLE-ENDIAN.)

● UTL_RAW.CAST_TO_BINARY_INTEGER

The stored procedure CAST_TO_BINARY_INTEGER converts an INTEGER type
value in a binary representation (RAW type) to the INTEGER type.
The UTL_RAW.CAST_TO_BINARY_INTEGER function prototype is:
UTL_RAW.CAST_TO_BINARY_INTEGER (
r IN RAW,
endianess IN INTEGER)
RETURN BINARY_INTEGER;

Table 9-27 UTL_RAW.CAST_TO_BINARY_INTEGER interface parameters

Parameter Description

r Specifies an INTEGER type value in a binary representation
(RAW type).

endianess Specifies the INTEGER type value 1 or 2 of the byte sequence.
(1 indicates BIG_ENDIAN and 2 indicates LITTLE-ENDIAN.)

● UTL_RAW.LENGTH

The stored procedure LENGTH returns the length of a RAW type object.
The UTL_RAW.LENGTH function prototype is:
UTL_RAW.LENGTH(
r IN RAW)
RETURN INTEGER;

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 216

Table 9-28 UTL_RAW.LENGTH interface parameters

Parameter Description

r Specifies a RAW type object.

● UTL_RAW.CAST_TO_RAW

The stored procedure CAST_TO_RAW converts a VARCHAR2 type object to the
RAW type.

The UTL_RAW.CAST_TO_RAW function prototype is:
UTL_RAW.CAST_TO_RAW(
c IN VARCHAR2)
RETURN RAW;

Table 9-29 UTL_RAW.CAST_TO_RAW interface parameters

Parameter Description

c Specifies a VARCHAR2 type object to be converted.

Example

Perform operations on RAW data in a stored procedure:

CREATE OR REPLACE PROCEDURE proc_raw
AS
str varchar2(100) := 'abcdef';
source raw(100);
amount integer;
BEGIN
source := utl_raw.cast_to_raw(str);--Convert the type.
amount := utl_raw.length(source);--Obtain the length.
dbms_output.put_line(amount);
END;
/

Call the stored procedure:

CALL proc_raw();

9.10.5 DBMS_JOB

Related Interfaces

Table 9-30 lists all interfaces supported by the DBMS_JOB package.

Table 9-30 DBMS_JOB

Interface Description

DBMS_JOB.SUBMIT Submits a job to the job queue. The job number is
automatically generated by the system.

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 217

Interface Description

DBMS_JOB.SUBMIT
_NODE

Submits a job to the job queue. The execution node is
specified by the user, and the job number is automatically
generated by the system.

DBMS_JOB.ISUBMI
T

Submits a job to the job queue. The job number is
specified by the user.

DBMS_JOB.REMOV
E

Removes a job from the job queue by job number.

DBMS_JOB.BROKE
N

Disables or enables job execution.

DBMS_JOB.CHANG
E

Modifies user-definable attributes of a job, including the
job description, next execution time, and execution
interval.

DBMS_JOB.WHAT Modifies the job description of a job.

DBMS_JOB.NEXT_D
ATE

Modifies the next execution time of a job.

DBMS_JOB.INTERV
AL

Modifies the execution interval of a job.

DBMS_JOB.CHANG
E_OWNER

Modifies the owner of a job.

DBMS_JOB.CHANG
E_NODE

Modifies the execution node of the scheduled task.

● DBMS_JOB.SUBMIT
The stored procedure SUBMIT submits a job provided by the system.
A prototype of the DBMS_JOB.SUBMIT function is as follows:
DMBS_JOB.SUBMIT(
what IN TEXT,
next_date IN TIMESTAMP DEFAULT sysdate,
job_interval IN TEXT DEFAULT 'null',
job OUT INTEGER);

NO TE

When a job is created (using DBMS_JOB), the system binds the current database and
the username to the job by default. This function can be invoked by using call or
select. If you invoke this function by using select, there is no need to specify output
parameters. To invoke this function within a stored procedure, use perform.

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 218

Table 9-31 DBMS_JOB.SUBMIT interface parameters

Parame
ter

Typ
e

Input/
Output
Parame
ter

Can
Be
Empt
y

Description

what text IN No SQL statement to be executed. One or
multiple DMLs, anonymous blocks, and
SQL statements that invoke stored
procedures, or all three combined are
supported.

next_dat
e

tim
esta
mp

IN No Specifies the next time the job will be
executed. The default value is the
current system time (sysdate). If the
specified time has past, the job is
executed at the time it is submitted.

interval text IN Yes Calculates the next time to execute the
job. It can be an interval expression, or
sysdate followed by a numeric value,
for example, sysdate+1.0/24. If this
parameter is left blank or set to null,
the job will be executed only once, and
the job status will change to 'd'
afterward.

job inte
ger

OUT No Specifies the job number. The value
ranges from 1 to 32767. When
dbms.submit is invoked using select,
this parameter can be skipped.

For example:
select DBMS_JOB.SUBMIT('call pro_xxx();', to_date('20180101','yyyymmdd'),'sysdate+1');

select DBMS_JOB.SUBMIT('call pro_xxx();', to_date('20180101','yyyymmdd'),'sysdate+1.0/24');

CALL DBMS_JOB.SUBMIT('INSERT INTO T_JOB VALUES(1); call pro_1(); call pro_2();',
add_months(to_date('201701','yyyymm'),1), 'date_trunc(''day'',SYSDATE) + 1 +(8*60+30.0)/
(24*60)' ,:jobid);

● DBMS_JOB.SUBMIT_NODE
The stored procedure SUBMIT submits a job provided by the system. The
execution node is specified by the user. This interface is supported only by
clusters of version 8.3.0 or later.
The prototype of the DBMS_JOB.SUBMIT_NODE function is:
DMBS_JOB.SUBMIT_NODE(
what IN TEXT,
next_date IN TIMESTAMP DEFAULT sysdate,
job_interval IN TEXT DEFAULT 'null',
job_node IN TEXT DEFAULT NULL,
job OUT INTEGER);

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 219

Table 9-32 DBMS_JOB.SUBMIT_NODE interface parameters

Parame
ter

Typ
e

Input/
Output
Parame
ter

Can
Be
Empt
y

Description

what text IN No Specifies the SQL statement to be
executed. One or multiple DMLs,
anonymous blocks, and SQL
statements that invoke stored
procedures, or all three combined are
supported.

next_dat
e

tim
esta
mp

IN No Specifies the next time the job will be
executed. The default value is the
current system time (sysdate). If the
specified time has past, the job is
executed at the time it is submitted.

interval text IN Yes Calculates the next time to execute the
job. It can be an interval expression, or
sysdate followed by a numeric value,
for example, sysdate+1.0/24. If this
parameter is left blank or set to null,
the job will be executed only once, and
the job status will change to 'd'
afterward.

node text IN Yes Specifies the name of the job
execution node.

job inte
ger

OUT No Specifies the job number. The value
ranges from 1 to 32767. When
dbms.submit is invoked using select,
this parameter can be skipped.

For example:
select DBMS_JOB.SUBMIT_NODE('call pro_xxx();', to_date('20180101','yyyymmdd'),'sysdate
+1','coordinator1');

select DBMS_JOB.SUBMIT_NODE('call pro_xxx();', to_date('20180101','yyyymmdd'),'sysdate+1.0/24');

CALL DBMS_JOB.SUBMIT('INSERT INTO T_JOB VALUES(1); call pro_1(); call pro_2();',
add_months(to_date('201701','yyyymm'),1), 'date_trunc(''day'',SYSDATE) + 1 +(8*60+30.0)/(24*60)',
'coordinator1', :jobid);

● DBMS_JOB.ISUBMIT

ISUBMIT has the same syntax function as SUBMIT, but the first parameter of
ISUBMIT is an input parameter, that is, a specified job number. In contrast,
that last parameter of SUBMIT is an output parameter, indicating the job
number automatically generated by the system.

For example:
CALL dbms_job.isubmit(101, 'insert_msg_statistic1;', sysdate, 'sysdate+3.0/24');

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 220

NO TICE

The pgstats persistence function of GaussDB(DWS) writes the statistics in the
memory to the pg_stat_object system catalog. If the cluster version is
9.1.0.100 or later, 1 is used as job_id. If an earlier cluster version is upgraded
to 9.1.0.100 or later and pg_job contains tasks, an unoccupied job_id is used
as the ID of the persistence task. Therefore, when using the
dbms_job.isubmit interface, ensure that the ID is different from the ID of an
existing pgstats persistence task. Otherwise, the task registration fails.

● DBMS_JOB.REMOVE
The stored procedure REMOVE deletes a specified job.
A prototype of the DBMS_JOB.REMOVE function is as follows:
REMOVE(job IN INTEGER);

Table 9-33 DBMS_JOB.REMOVE interface parameters

Para
mete
r

Type Input/
Output
Paramet
er

Can Be
Empty

Description

job integ
er

IN No Specifies the job number.

For example:
CALL dbms_job.remove(101);

● DBMS_JOB.BROKEN
The stored procedure BROKEN sets the broken flag of a job.
A prototype of the DBMS_JOB.BROKEN function is as follows:
DMBS_JOB.BROKEN(
job IN INTEGER,
broken IN BOOLEAN,
next_date IN TIMESTAMP DEFAULT sysdate);

Table 9-34 DBMS_JOB.BROKEN interface parameters

Param
eter

Type Input/
Outpu
t
Param
eter

Ca
n
Be
Em
pty

Description

job integer IN No Specifies the job number.

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 221

Param
eter

Type Input/
Outpu
t
Param
eter

Ca
n
Be
Em
pty

Description

broken boolean IN No Specifies the status flag, true for
broken and false for not broken.
Setting this parameter to true or false
updates the current job. If the
parameter is left blank, the job status
remains unchanged.

next_da
te

timesta
mp

IN Yes Specifies the next execution time. The
default is the current system time. If
broken is set to true, next_date is
updated to '4000-1-1'. If broken is
false and next_date is not empty,
next_date is updated for the job. If
next_date is empty, it will not be
updated. This parameter can be
omitted, and its default value will be
used in this case.

For example:
CALL dbms_job.broken(101,true);
CALL dbms_job.broken(101,false,sysdate);

● DBMS_JOB.CHANGE
The stored procedure CHANGE modifies user-definable attributes of a job,
including the job content, next-execution time, and execution interval.
A prototype of the DBMS_JOB.CHANGE function is as follows:
DMBS_JOB.CHANGE(
job IN INTEGER,
what IN TEXT,
next_date IN TIMESTAMP,
interval IN TEXT);

Table 9-35 DBMS_JOB.CHANGE interface parameters

Para
met
er

Type Input/
Output
Paramet
er

Can Be
Empty

Description

job integ
er

IN No Specifies the job number.

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 222

Para
met
er

Type Input/
Output
Paramet
er

Can Be
Empty

Description

wha
t

text IN Yes Specifies the name of the stored
procedure or SQL statement block
that is executed. If this parameter is
left blank, the system does not update
the what parameter for the specified
job. Otherwise, the system updates
the what parameter for the specified
job.

next
_dat
e

time
stam
p

IN Yes Specifies the next execution time. If
this parameter is left blank, the
system does not update the
next_date parameter for the specified
job. Otherwise, the system updates
the next_date parameter for the
specified job.

inter
val

text IN Yes Specifies the time expression for
calculating the next time the job will
be executed. If this parameter is left
blank, the system does not update the
interval parameter for the specified
job. Otherwise, the system updates
the interval parameter for the
specified job after necessary validity
check. If this parameter is set to null,
the job will be executed only once,
and the job status will change to 'd'
afterward.

For example:
CALL dbms_job.change(101, 'call userproc();', sysdate, 'sysdate + 1.0/1440');
CALL dbms_job.change(101, 'insert into tbl_a values(sysdate);', sysdate, 'sysdate + 1.0/1440');

● DBMS_JOB.WHAT
The stored procedure WHAT modifies the procedures to be executed by a
specified job.
A prototype of the DBMS_JOB.WHAT function is as follows:
DMBS_JOB.WHAT(
job IN INTEGER,
what IN TEXT);

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 223

Table 9-36 DBMS_JOB.WHAT interface parameters

Par
am
ete
r

Type Input/
Output
Paramet
er

Can Be
Empty

Description

job intege
r

IN No Specifies the job number.

wh
at

text IN No Specifies the name of the stored
procedure or SQL statement
block that is executed.

NO TE

● If the value specified by the what parameter is one or multiple executable SQL
statements, program blocks, or stored procedures, this procedure can be executed
successfully; otherwise, it will fail to be executed.

● If the what parameter is a simple statement such as insert and update, a schema
name must be added in front of the table name.

For example:
CALL dbms_job.what(101, 'call userproc();');
CALL dbms_job.what(101, 'insert into tbl_a values(sysdate);');

● DBMS_JOB.NEXT_DATE
The stored procedure NEXT_DATE modifies the next-execution time attribute
of a job.
A prototype of the DBMS_JOB.NEXT_DATE function is as follows:
DMBS_JOB.NEXT_DATE(
job IN INTEGER,
next_date IN TIMESTAMP);

Table 9-37 DBMS_JOB.NEXT_DATE interface parameters

Parame
ter

Type Input/
Output
Param
eter

Can Be
Empty

Description

job integer IN No Specifies the job number.

next_da
te

timesta
mp

IN No Specifies the next execution
time.

NO TE

If the specified next_date value is earlier than the current date, the job is executed
once immediately.

For example:
CALL dbms_job.next_date(101,sysdate);

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 224

● DBMS_JOB.INTERVAL
The stored procedure INTERVAL modifies the execution interval attribute of a
job.
A prototype of the DBMS_JOB.INTERVAL function is as follows:
DMBS_JOB.INTERVAL(
job IN INTEGER,
interval IN TEXT);

Table 9-38 DBMS_JOB.INTERVAL interface parameters

Parame
ter

Type Input
/
Outp
ut
Para
meter

Can Be
Empty

Description

job intege
r

IN No Specifies the job number.

interval text IN Yes Specifies the time expression for
calculating the next time the job
will be executed. If this parameter is
left blank or set to null, the job will
be executed only once, and the job
status will change to 'd' afterward.
interval must be a valid time or
interval type.

For example:
CALL dbms_job.interval(101, 'sysdate + 1.0/1440');

NO TE

For a job that is currently running (that is, job_status is 'r'), it is not allowed to use
remove, change, next_date, what, or interval to delete or modify job parameters.

● DBMS_JOB.CHANGE_OWNER
The stored procedure CHANGE_OWNER modifies the owner of a job.
A prototype of the DBMS_JOB.CHANGE_OWNER function is as follows:
DMBS_JOB.CHANGE_OWNER(
job IN INTEGER,
new_owner IN NAME);

Table 9-39 DBMS_JOB.CHANGE_OWNER interface parameters

Paramet
er

Type Input/
Output
Paramet
er

Can Be
Empty

Description

job integer IN No Specifies the job number.

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 225

Paramet
er

Type Input/
Output
Paramet
er

Can Be
Empty

Description

new_own
er

name IN No Specifies the new username.

For example:
CALL dbms_job.change_owner(101, 'alice');

● DBMS_JOB.CHANGE_NODE
The stored procedure CHANGE_NODE modifies the execution node of the
scheduled task. This interface is supported only by clusters of version 8.3.0 or
later.
A prototype of the DBMS_JOB.CHANGE_NODE function is:
DMBS_JOB.CHANGE_NODE(
job IN INTEGER,
new_node IN text);

Table 9-40 DBMS_JOB.CHANGE_OWNER interface parameters

Paramet
er

Type Input/
Output
Paramet
er

Can Be
Empty

Description

job integer IN No Specifies the job number.

new_nod
e

text IN No Specifies the new execution
node.

For example:
CALL dbms_job.change_node(101, 'coordinator2');

Constraints
1. After a new job is created, this job belongs to the current coordinator only,

that is, this job can be scheduled and executed only on the current
coordinator. Other coordinators will not schedule or execute this job. All
coordinators can query, modify, and delete jobs created on other CNs.

2. Create, update, and delete jobs only using the procedures provided by the
DBMS_JOB package. These procedures synchronize job information between
different CNs and associate primary keys between the pg_jobs tables. If you
use DML statements to add, delete, or modify records in the pg_jobs table,
job information will become inconsistent between CNs and system tables may
fail to be associated, compromising internal job management.

3. Each user-created task is bound to a CN. If the automatic migration function
is not enabled, task statuses cannot be updated in real time when the CN is

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 226

faulty during task execution. When a CN fails, all jobs on this CN cannot be
scheduled or executed until the CN is restored manually. Enable the
automatic migration function on CNs, so that jobs on the faulty CN will be
migrated to other CNs for scheduling.

4. For each job, the hosting CN updates the real-time job information (including
the job status, last execution start time, last execution end time, next
execution start time, the number of execution failures if any) to the pg_jobs
table, and synchronizes the information to other CNs, ensuring consistent job
information between different CNs. In the case of CN failures, job information
synchronization is reattempted by the hosting CNs, which increases job
execution time. Although job information fails to be synchronized between
CNs, job information can still be properly updated in the pg_jobs table on the
hosting CNs, and jobs can be executed successfully. After a CN recovers, job
information such as job execution time and status in its pg_jobs table may be
incorrect and will be updated only after the jobs are executed again on
related CNs.

5. For each job, a thread is established to execute it. If multiple jobs are
triggered concurrently as scheduled, the system will need some time to start
the required threads, resulting in a latency of 0.1 ms in job execution.

6. The length of the SQL statement to be executed in a job is limited. The
maximum length is 8 KB.

9.10.6 DBMS_SQL

Related Interfaces

Table 9-41 lists interfaces supported by the DBMS_SQL package.

Table 9-41 DBMS_SQL

API Description

DBMS_SQL.OPEN_CURSOR Opens a cursor.

DBMS_SQL.CLOSE_CURSOR Closes an open cursor.

DBMS_SQL.PARSE Transmits a group of SQL
statements to a cursor. Currently,
only the SELECT statement is
supported.

DBMS_SQL.EXECUTE Performs a set of dynamically
defined operations on the cursor.

DBMS_SQL.FETCHE_ROWS Reads a row of cursor data.

DBMS_SQL.DEFINE_COLUMN Dynamically defines a column.

DBMS_SQL.DEFINE_COLUMN_CHAR Dynamically defines a column of
the CHAR type.

DBMS_SQL.DEFINE_COLUMN_INT Dynamically defines a column of
the INT type.

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 227

API Description

DBMS_SQL.DEFINE_COLUMN_LONG Dynamically defines a column of
the LONG type.

DBMS_SQL.DEFINE_COLUMN_RAW Dynamically defines a column of
the RAW type.

DBMS_SQL.DEFINE_COLUMN_TEXT Dynamically defines a column of
the TEXT type.

DBMS_SQL.DEFINE_COLUMN_UNKNOW
N

Dynamically defines a column of
an unknown type.

DBMS_SQL.COLUMN_VALUE Reads a dynamically defined
column value.

DBMS_SQL.COLUMN_VALUE_CHAR Reads a dynamically defined
column value of the CHAR type.

DBMS_SQL.COLUMN_VALUE_INT Reads a dynamically defined
column value of the INT type.

DBMS_SQL.COLUMN_VALUE_LONG Reads a dynamically defined
column value of the LONG type.

DBMS_SQL.COLUMN_VALUE_RAW Reads a dynamically defined
column value of the RAW type.

DBMS_SQL.COLUMN_VALUE_TEXT Reads a dynamically defined
column value of the TEXT type.

DBMS_SQL.COLUMN_VALUE_UNKNOWN Reads a dynamically defined
column value of an unknown type.

DBMS_SQL.IS_OPEN Checks whether a cursor is
opened.

NO TE

● You are advised to use dbms_sql.define_column and dbms_sql.column_value to define
columns.

● If the size of the result set is greater than the value of work_mem, the result set will be
flushed to disk. The value of work_mem must be no greater than 512 MB.

● DBMS_SQL.OPEN_CURSOR

This function opens a cursor and is the prerequisite for the subsequent
dbms_sql operations. This function does not transfer any parameter. It
automatically generates cursor IDs in an ascending order and returns values
to integer variables.

The function prototype of DBMS_SQL.OPEN_CURSOR is:
DBMS_SQL.OPEN_CURSOR (
)
RETURN INTEGER;

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 228

● DBMS_SQL.CLOSE_CURSOR
This function closes a cursor. It is the end of each dbms_sql operation. If this
function is not invoked when the stored procedure ends, the memory is still
occupied by the cursor. Therefore, remember to close a cursor when you do
not need to use it. If an exception occurs, the stored procedure exits but the
cursor is not closed. Therefore, you are advised to include this interface in the
exception handling of the stored procedure.
The function prototype of DBMS_SQL.CLOSE_CURSOR is:
DBMS_SQL.CLOSE_CURSOR (
cursorid IN INTEGER
)
RETURN INTEGER;

Table 9-42 DBMS_SQL.CLOSE_CURSOR interface parameters

Parameter Name Description

cursorid ID of the cursor to be closed

● DBMS_SQL.PARSE

This function parses the query statement of a given cursor. The input query
statement is executed immediately. Currently, only the SELECT query
statement can be parsed. The statement parameters can be transferred only
through the TEXT type. The length cannot exceed 1 GB.
The function prototype of DBMS_SQL.PARSE is:
DBMS_SQL.PARSE (
cursorid IN INTEGER,
query_string IN TEXT,
label IN INTEGER
)
RETURN BOOLEAN;

Table 9-43 DBMS_SQL.PARSE interface parameters

Parameter Name Description

cursorid ID of the cursor whose query
statement is parsed

query_string Query statements to be parsed

language_flag Version language number. Currently,
only 1 is supported.

● DBMS_SQL.EXECUTE

This function executes a given cursor. This function receives a cursor ID. The
obtained data after is used for subsequent operations. Currently, only the
SELECT query statement can be executed.
The function prototype of DBMS_SQL.EXECUTE is:
DBMS_SQL.EXECUTE(
cursorid IN INTEGER,
)
RETURN INTEGER;

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 229

Table 9-44 DBMS_SQL.EXECUTE interface parameters

Parameter Name Description

cursorid ID of the cursor whose query
statement is parsed

● DBMS_SQL.FETCHE_ROWS

This function returns the number of data rows that meet query conditions.
Each time the interface is executed, the system obtains a set of new rows
until all data is read.
The function prototype of DBMS_SQL.FETCHE_ROWS is:
DBMS_SQL.FETCHE_ROWS(
cursorid IN INTEGER,
)
RETURN INTEGER;

Table 9-45 DBMS_SQL.FETCH_ROWS interface parameters

Parameter Name Description

curosorid ID of the cursor to be executed

● DBMS_SQL.DEFINE_COLUMN

This function defines columns returned from a given cursor and can be used
only for the cursors defined by SELECT. The defined columns are identified by
the relative positions in the query list. The data type of the input variable
determines the column type.
The function prototype of DBMS_SQL.DEFINE_COLUMN is:
DBMS_SQL.DEFINE_COLUMN(
cursorid IN INTEGER,
position IN INTEGER,
column_ref IN ANYELEMENT,
column_size IN INTEGER default 1024
)
RETURN INTEGER;

Table 9-46 DBMS_SQL.DEFINE_COLUMN interface parameters

Parameter Name Description

cursorid ID of the cursor to be executed

position Position of a dynamically defined
column in the query

column_ref Variable of any type. You can select
an appropriate interface to
dynamically define columns based
on variable types.

column_size Length of a defined column

● DBMS_SQL.DEFINE_COLUMN_CHAR

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 230

This function defines columns of the CHAR type returned from a given cursor
and can be used only for the cursors defined by SELECT. The defined columns
are identified by the relative positions in the query list. The data type of the
input variable determines the column type.
The function prototype of DBMS_SQL.DEFINE_COLUMN_CHAR is:
DBMS_SQL.DEFINE_COLUMN_CHAR(
cursorid IN INTEGER,
position IN INTEGER,
column IN TEXT,
column_size IN INTEGER
)
RETURN INTEGER;

Table 9-47 DBMS_SQL.DEFINE_COLUMN_CHAR interface parameters

Parameter Name Description

cursorid ID of the cursor to be executed

position Position of a dynamically defined
column in the query

column Parameter to be defined

column_size Length of a dynamically defined
column

● DBMS_SQL.DEFINE_COLUMN_INT

This function defines columns of the INT type returned from a given cursor
and can be used only for the cursors defined by SELECT. The defined columns
are identified by the relative positions in the query list. The data type of the
input variable determines the column type.
The function prototype of DBMS_SQL.DEFINE_COLUMN_INT is:
DBMS_SQL.DEFINE_COLUMN_INT(
cursorid IN INTEGER,
position IN INTEGER
)
RETURN INTEGER;

Table 9-48 DBMS_SQL.DEFINE_COLUMN_INT interface parameters

Parameter Name Description

cursorid ID of the cursor to be executed

position Position of a dynamically defined
column in the query

● DBMS_SQL.DEFINE_COLUMN_LONG

This function defines columns of a long type (not LONG) returned from a
given cursor and can be used only for the cursors defined by SELECT. The
defined columns are identified by the relative positions in the query list. The
data type of the input variable determines the column type. The maximum
size of a long column is 1 GB.
The function prototype of DBMS_SQL.DEFINE_COLUMN_LONG is:

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 231

DBMS_SQL.DEFINE_COLUMN_LONG(
cursorid IN INTEGER,
position IN INTEGER
)
RETURN INTEGER;

Table 9-49 DBMS_SQL.DEFINE_COLUMN_LONG interface parameters

Parameter Name Description

cursorid ID of the cursor to be executed

position Position of a dynamically defined
column in the query

● DBMS_SQL.DEFINE_COLUMN_RAW

This function defines columns of the RAW type returned from a given cursor
and can be used only for the cursors defined by SELECT. The defined columns
are identified by the relative positions in the query list. The data type of the
input variable determines the column type.

The function prototype of DBMS_SQL.DEFINE_COLUMN_RAW is:
DBMS_SQL.DEFINE_COLUMN_RAW(
cursorid IN INTEGER,
position IN INTEGER,
column IN BYTEA,
column_size IN INTEGER
)
RETURN INTEGER;

Table 9-50 DBMS_SQL.DEFINE_COLUMN_RAW interface parameters

Parameter Name Description

cursorid ID of the cursor to be executed

position Position of a dynamically defined
column in the query

column Parameter of the RAW type

column_size Column length

● DBMS_SQL.DEFINE_COLUMN_TEXT

This function defines columns of the TEXT type returned from a given cursor
and can be used only for the cursors defined by SELECT. The defined columns
are identified by the relative positions in the query list. The data type of the
input variable determines the column type.

The function prototype of DBMS_SQL.DEFINE_COLUMN_TEXT is:
DBMS_SQL.DEFINE_COLUMN_CHAR(
cursorid IN INTEGER,
position IN INTEGER,
max_size IN INTEGER
)
RETURN INTEGER;

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 232

Table 9-51 DBMS_SQL.DEFINE_COLUMN_TEXT interface parameters

Parameter Name Description

cursorid ID of the cursor to be executed

position Position of a dynamically defined
column in the query

max_size Maximum length of the defined
TEXT type

● DBMS_SQL.DEFINE_COLUMN_UNKNOWN

This function processes columns of unknown data types returned from a given
cursor and is used only for the system to report an error and exist when the
type cannot be identified.

The function prototype of DBMS_SQL.DEFINE_COLUMN_UNKNOWN is:
DBMS_SQL.DEFINE_COLUMN_CHAR(
cursorid IN INTEGER,
position IN INTEGER,
column IN TEXT
)
RETURN INTEGER;

Table 9-52 DBMS_SQL.DEFINE_COLUMN_UNKNOWN interface parameters

Parameter Name Description

cursorid ID of the cursor to be executed

position Position of a dynamically defined
column in the query

column Dynamically defined parameter

● DBMS_SQL.COLUMN_VALUE

This function returns the cursor element value specified by a cursor and
accesses the data obtained by DBMS_SQL.FETCH_ROWS.

The function prototype of DBMS_SQL.COLUMN_VALUE is:
DBMS_SQL.COLUMN_VALUE(
cursorid IN INTEGER,
position IN INTEGER,
column_value INOUT ANYELEMENT
)
RETURN ANYELEMENT;

Table 9-53 DBMS_SQL.COLUMN_VALUE interface parameters

Parameter Name Description

cursorid ID of the cursor to be executed

position Position of a dynamically defined
column in the query

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 233

Parameter Name Description

column_value Return value of a defined column

● DBMS_SQL.COLUMN_VALUE_CHAR

This function returns the value of the CHAR type in a specified position of a
cursor and accesses the data obtained by DBMS_SQL.FETCH_ROWS.

The function prototype of DBMS_SQL.COLUMN_VALUE_CHAR is:
DBMS_SQL.COLUMN_VALUE_CHAR(
cursorid IN INTEGER,
position IN INTEGER,
column_value INOUT CHARACTER,
err_num INOUT NUMERIC default 0,
actual_length INOUT INTEGER default 1024
)
RETURN RECORD;

Table 9-54 DBMS_SQL.COLUMN_VALUE_CHAR interface parameters

Parameter Name Description

cursorid ID of the cursor to be executed

position Position of a dynamically defined
column in the query

column_value Return value

err_num Error No. It is an output parameter
and the argument must be a
variable. Currently, the output value
is –1 regardless of the argument.

actual_length Length of a return value

● DBMS_SQL.COLUMN_VALUE_INT

This function returns the value of the INT type in a specified position of a
cursor and accesses the data obtained by DBMS_SQL.FETCH_ROWS. The
function prototype of DBMS_SQL.COLUMN_VALUE_INT is:
DBMS_SQL.COLUMN_VALUE_INT(
cursorid IN INTEGER,
position IN INTEGER
)
RETURN INTEGER;

Table 9-55 DBMS_SQL.COLUMN_VALUE_INT interface parameters

Parameter Name Description

cursorid ID of the cursor to be executed

position Position of a dynamically defined
column in the query

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 234

● DBMS_SQL.COLUMN_VALUE_LONG
This function returns the value of a long type (not LONG or BIGINT) in a
specified position of a cursor and accesses the data obtained by
DBMS_SQL.FETCH_ROWS.
The function prototype of DBMS_SQL.COLUMN_VALUE_LONG is:
DBMS_SQL.COLUMN_VALUE_LONG(
cursorid IN INTEGER,
position IN INTEGER,
length IN INTEGER,
off_set IN INTEGER,
column_value INOUT TEXT,
actual_length INOUT INTEGER default 1024
)
RETURN RECORD;

Table 9-56 DBMS_SQL.COLUMN_VALUE_LONG interface parameters

Parameter Name Description

cursorid ID of the cursor to be executed

position Position of a dynamically defined
column in the query

length Length of a return value

off_set Start position of a return value

column_value Return value

actual_length Length of a return value

● DBMS_SQL.COLUMN_VALUE_RAW

This function returns the value of the RAW type in a specified position of a
cursor and accesses the data obtained by DBMS_SQL.FETCH_ROWS.
The function prototype of DBMS_SQL.COLUMN_VALUE_RAW is:
DBMS_SQL.COLUMN_VALUE_RAW(
cursorid IN INTEGER,
position IN INTEGER,
column_value INOUT BYTEA,
err_num INOUT NUMERIC default 0,
actual_length INOUT INTEGER default 1024
)
RETURN RECORD;

Table 9-57 DBMS_SQL.COLUMN_VALUE_RAW interface parameters

Parameter Name Description

cursorid ID of the cursor to be executed

position Position of a dynamically defined
column in the query

column_value Returned column value

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 235

Parameter Name Description

err_num Error No. It is an output parameter
and the argument must be a
variable. Currently, the output value
is –1 regardless of the argument.

actual_length Length of a return value. The value
longer than this length will be
truncated.

● DBMS_SQL.COLUMN_VALUE_TEXT

This function returns the value of the TEXT type in a specified position of a
cursor and accesses the data obtained by DBMS_SQL.FETCH_ROWS.
The function prototype of DBMS_SQL.COLUMN_VALUE_TEXT is:
DBMS_SQL.COLUMN_VALUE_TEXT(
cursorid IN INTEGER,
position IN INTEGER
)
RETURN TEXT;

Table 9-58 DBMS_SQL.COLUMN_VALUE_TEXT interface parameters

Parameter Name Description

cursorid ID of the cursor to be executed

position Position of a dynamically defined
column in the query

● DBMS_SQL.COLUMN_VALUE_UNKNOWN

This function returns the value of an unknown type in a specified position of a
cursor. This is an error handling interface when the type is not unknown.
The function prototype of DBMS_SQL.COLUMN_VALUE_UNKNOWN is:
DBMS_SQL.COLUMN_VALUE_UNKNOWN(
cursorid IN INTEGER,
position IN INTEGER,
COLUMN_TYPE IN TEXT
)
RETURN TEXT;

Table 9-59 DBMS_SQL.COLUMN_VALUE_UNKNOWN interface parameters

Parameter Name Description

cursorid ID of the cursor to be executed

position Position of a dynamically defined
column in the query

column_type Returned parameter type

● DBMS_SQL.IS_OPEN

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 236

This function returns the status of a cursor: open, parse, execute, or define. The
value is TRUE. If the status is unknown, an error is reported. In other cases, the
value is FALSE.

The function prototype of DBMS_SQL.IS_OPEN is:
DBMS_SQL.IS_OPEN(
cursorid IN INTEGER
)
RETURN BOOLEAN;

Table 9-60 DBMS_SQL.IS_OPEN interface parameters

Parameter Name Description

cursorid ID of the cursor to be queried

Examples
-- Perform operations on RAW data in a stored procedure.
create or replace procedure pro_dbms_sql_all_02(in_raw raw,v_in int,v_offset int)
as
cursorid int;
v_id int;
v_info bytea :=1;
query varchar(2000);
execute_ret int;
define_column_ret_raw bytea :='1';
define_column_ret int;
begin
drop table if exists pro_dbms_sql_all_tb1_02 ;
create table pro_dbms_sql_all_tb1_02(a int ,b blob);
insert into pro_dbms_sql_all_tb1_02 values(1,HEXTORAW('DEADBEEE'));
insert into pro_dbms_sql_all_tb1_02 values(2,in_raw);
query := 'select * from pro_dbms_sql_all_tb1_02 order by 1';
-- Open a cursor.
cursorid := dbms_sql.open_cursor();
-- Compile the cursor.
dbms_sql.parse(cursorid, query, 1);
-- Define a column.
define_column_ret:= dbms_sql.define_column(cursorid,1,v_id);
define_column_ret_raw:= dbms_sql.define_column_raw(cursorid,2,v_info,10);
-- Execute the cursor.
execute_ret := dbms_sql.execute(cursorid);
loop
exit when (dbms_sql.fetch_rows(cursorid) <= 0);
-- Obtain values.
dbms_sql.column_value(cursorid,1,v_id);
dbms_sql.column_value_raw(cursorid,2,v_info,v_in,v_offset);
-- Output the result.
dbms_output.put_line('id:'|| v_id || ' info:' || v_info);
end loop;
-- Close the cursor.
dbms_sql.close_cursor(cursorid);
end;
/
-- Invoke the stored procedure.
call pro_dbms_sql_all_02(HEXTORAW('DEADBEEF'),0,1);

-- Delete the stored procedure.
DROP PROCEDURE pro_dbms_sql_all_02;

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 237

9.11 GaussDB(DWS) Stored Procedure Debugging

Syntax
RAISE has the following five syntax formats:

Figure 9-34 raise_format::=

Figure 9-35 raise_condition::=

Figure 9-36 raise_sqlstate::=

Figure 9-37 raise_option::=

Figure 9-38 raise::=

Parameter description:

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 238

● The level option is used to specify the error level, that is, DEBUG, LOG, INFO,
NOTICE, WARNING, or EXCEPTION (default). EXCEPTION reports an error
that normally terminates the current transaction and the others only generate
information at their levels. The log_min_messages and client_min_messages
parameters control whether the error messages of specific levels are reported
to the client and are written to the server log.

● format: specifies the error message text to be reported, a format character
string. The format character string can be appended with an expression for
insertion to the message text. In a format character string, % is replaced by
the parameter value attached to format and %% is used to print %. For
example:
--v_job_id replaces % in the character string.
RAISE NOTICE 'Calling cs_create_job(%)',v_job_id;

● option = expression: inserts additional information to an error report. The
keyword option can be MESSAGE, DETAIL, HINT, or ERRCODE, and each
expression can be any character string.
– MESSAGE: specifies the error message text. This option cannot be used in

a RAISE statement that contains a format character string in front of
USING.

– DETAIL: specifies detailed information of an error.
– HINT: prints hint information.
– ERRCODE: designates an error code (SQLSTATE) to a report. A condition

name or a five-character SQLSTATE error code can be used.
● condition_name: specifies the condition name corresponding to the error

code.
● sqlstate: specifies the error code.

If neither a condition name nor an SQLSTATE is designated in a RAISE
EXCEPTION command, the RAISE EXCEPTION (P0001) is used by default. If no
message text is designated, the condition name or SQLSTATE is used as the
message text by default.

NO TICE

If the SQLSTATE designates an error code, the error code is not limited to a
defined error code. It can be any error code containing five digits or ASCII
uppercase rather than 00000. Do not use an error code ended with three zeros
because this kind of error codes are type codes and can be captured by the whole
category.

NO TE

The syntax described in Figure 9-38 does not append any parameter. This form is used only
for the EXCEPTION statement in a BEGIN block so that the error can be re-processed.

Examples
Display error and hint information when a transaction terminates:
CREATE OR REPLACE PROCEDURE proc_raise1(user_id in integer)
AS
BEGIN

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 239

RAISE EXCEPTION 'Noexistence ID --> %',user_id USING HINT = 'Please check your user ID';
END;
/

call proc_raise1(300011);

-- Execution result:
ERROR: Noexistence ID --> 300011
HINT: Please check your user ID

Two methods are available for setting SQLSTATE:
CREATE OR REPLACE PROCEDURE proc_raise2(user_id in integer)
AS
BEGIN
RAISE 'Duplicate user ID: %',user_id USING ERRCODE = 'unique_violation';
END;
/

\set VERBOSITY verbose
call proc_raise2(300011);

-- Execution result:
ERROR: Duplicate user ID: 300011
SQLSTATE: 23505
LOCATION: exec_stmt_raise, pl_exec.cpp:3482

If the main parameter is a condition name or SQLSTATE, the following applies:

RAISE division_by_zero;

RAISE SQLSTATE '22012';

For example:

CREATE OR REPLACE PROCEDURE division(div in integer, dividend in integer)
AS
DECLARE
res int;
 BEGIN
 IF dividend=0 THEN
 RAISE division_by_zero;
 RETURN;
 ELSE
 res := div/dividend;
 RAISE INFO 'division result: %', res;
 RETURN;
 END IF;
 END;
/
call division(3,0);

-- Execution result:
ERROR: division_by_zero

Alternatively:
RAISE unique_violation USING MESSAGE = 'Duplicate user ID: ' || user_id;

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 240

10 Using PostGIS Extension

10.1 PostGIS
NO TE

● The third-party software that the PostGIS Extension depends on needs to be installed
separately. If you need to use PostGIS, submit a service ticket or contact technical
support to submit an application.

● If the error message "ERROR: EXTENSION is not yet supported." is displayed, the
PostGIS software package is not installed. Contact technical support.

GaussDB(DWS) provides PostGIS Extension (PostGIS-2.4.2 and PostGIS-3.2.2).
PostGIS Extension is a spatial database extender for PostgreSQL. It provides the
following spatial information services: spatial objects, spatial indexes, spatial
functions, and spatial operators. PostGIS Extension complies with the OpenGIS
specifications.

In GaussDB(DWS), PostGIS Extension depends on the listed third-party open-
source software.

● PostGIS 2.4.2 depends on the following third-party open-source software:
– Geos 3.6.2
– Proj 4.9.2
– Json 0.12.1
– Libxml2 2.7.1
– Gdal 1.11.0

● PostGIS 3.2.2 depends on the following third-party open-source software:
– Geos-3.11.0
– Proj-6.0.0
– Json 0.12.1
– Libxml2 2.7.1
– Sqlite3
– protobuf-c 1.4.1

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 241

– protobuf 3.6.1

10.2 Using PostGIS
NO TE

● The third-party software that the PostGIS Extension depends on needs to be installed
separately. If you need to use PostGIS, submit a service ticket or contact technical
support to submit an application.

● If the error message "ERROR: EXTENSION is not yet supported." is displayed, the
PostGIS software package is not installed. Contact technical support.

Creating PostGIS Extension

Run the CREATE EXTENSION command to create PostGIS Extension.

CREATE EXTENSION postgis;

Using PostGIS Extension

Use the following function to invoke a PostGIS Extension:

SELECT GisFunction (Param1, Param2,......);

GisFunction is the function, and Param1 and Param2 are function parameters.
The following SQL statements are a simple illustration for PostGIS use. For details
about related functions, see PostGIS 2.4.2 Manual.

Example 1: Create a geometry table.

CREATE TABLE cities (id integer, city_name varchar(50));
SELECT AddGeometryColumn('cities', 'position', 4326, 'POINT', 2);

Example 2: Insert geometry data.

INSERT INTO cities (id, position, city_name) VALUES (1,ST_GeomFromText('POINT(-9.5 23)',4326),'CityA');
INSERT INTO cities (id, position, city_name) VALUES (2,ST_GeomFromText('POINT(-10.6 40.3)',4326),'CityB');
INSERT INTO cities (id, position, city_name) VALUES (3,ST_GeomFromText('POINT(20.8 30.3)',4326), 'CityC');

Example 3: Calculate the distance between any two cities among three cities.

SELECT p1.city_name,p2.city_name,ST_Distance(p1.position,p2.position) FROM cities AS p1, cities AS p2
WHERE p1.id > p2.id;

Deleting PostGIS Extension

Run the following command to delete PostGIS Extension from GaussDB(DWS):

DROP EXTENSION postgis [CASCADE];

NO TE

If PostGIS Extension is the dependee of other objects (for example, geometry tables), you
need to add the CASCADE keyword to delete all these objects.

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 242

https://download.osgeo.org/postgis/docs/postgis-2.4.2.pdf

10.3 PostGIS Support and Constraints

Supported Data Types
In GaussDB(DWS), PostGIS Extension support the following data types:

● box2d
● box3d
● geometry_dump
● geometry
● geography
● raster

NO TE

If PostGIS is used by a user other than the creator of the PostGIS, set the following GUC
parameters:
SET behavior_compat_options = 'bind_procedure_searchpath';

Supported Operators and Functions
NO TE

The ST_Intersects function in PostGIS uses a caching strategy that enables a high cache hit
ratio for the spatial data structures of foreign tables. When there is a significant disparity in
the width between the inner and foreign tables, caching the wide table's data avoid the
repeated loading of large objects, leading to significant performance enhancements.
Practically, leveraging Join Order Hints to designate a wide table as the foreign table
ensures that the execution plan is optimized for such scenarios.

Table 10-1 Operators and functions supported by PostGIS2.4.2

Category Function

Management
functions

AddGeometryColumn, DropGeometryColumn,
DropGeometryTable, PostGIS_Full_Version,
PostGIS_GEOS_Version, PostGIS_Liblwgeom_Version,
PostGIS_Lib_Build_Date, PostGIS_Lib_Version,
PostGIS_PROJ_Version, PostGIS_Scripts_Build_Date,
PostGIS_Scripts_Installed, PostGIS_Version,
PostGIS_LibXML_Version, PostGIS_Scripts_Released,
Populate_Geometry_Columns, UpdateGeometrySRID

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 243

Category Function

Geometry
constructors

ST_BdPolyFromText, ST_BdMPolyFromText,
ST_Box2dFromGeoHash, ST_GeogFromText,
ST_GeographyFromText, ST_GeogFromWKB,
ST_GeomCollFromText, ST_GeomFromEWKB,
ST_GeomFromEWKT, ST_GeometryFromText,
ST_GeomFromGeoHash, ST_GeomFromGML,
ST_GeomFromGeoJSON, ST_GeomFromKML, ST_GMLToSQL,
ST_GeomFromText, ST_GeomFromWKB,
ST_LineFromMultiPoint, ST_LineFromText, ST_LineFromWKB,
ST_LinestringFromWKB, ST_MakeBox2D, ST_3DMakeBox,
ST_MakeEnvelope, ST_MakePolygon, ST_MakePoint,
ST_MakePointM, ST_MLineFromText, ST_MPointFromText,
ST_MPolyFromText, ST_Point, ST_PointFromGeoHash,
ST_PointFromText, ST_PointFromWKB, ST_Polygon,
ST_PolygonFromText, ST_WKBToSQL, ST_WKTToSQL

Geometry
accessors

GeometryType, ST_Boundary, ST_CoordDim, ST_Dimension,
ST_EndPoint, ST_Envelope, ST_ExteriorRing, ST_GeometryN,
ST_GeometryType, ST_InteriorRingN, ST_IsClosed,
ST_IsCollection, ST_IsEmpty, ST_IsRing, ST_IsSimple,
ST_IsValid, ST_IsValidReason, ST_IsValidDetail, ST_M,
ST_NDims, ST_NPoints, ST_NRings, ST_NumGeometries,
ST_NumInteriorRings, ST_NumInteriorRing, ST_NumPatches,
ST_NumPoints, ST_PatchN, ST_PointN, ST_SRID,
ST_StartPoint, ST_Summary, ST_X, ST_XMax, ST_XMin, ST_Y,
ST_YMax, ST_YMin, ST_Z, ST_ZMax, ST_Zmflag, ST_ZMin

Geometry editors ST_AddPoint, ST_Affine, ST_Force2D, ST_Force3D,
ST_Force3DZ, ST_Force3DM, ST_Force4D, ST_ForceCollection,
ST_ForceSFS, ST_ForceRHR, ST_LineMerge,
ST_CollectionExtract, ST_CollectionHomogenize, ST_Multi,
ST_RemovePoint, ST_Reverse, ST_Rotate, ST_RotateX,
ST_RotateY, ST_RotateZ, ST_Scale, ST_Segmentize,
ST_SetPoint, ST_SetSRID, ST_SnapToGrid, ST_Snap,
ST_Transform, ST_Translate, ST_TransScale

Geometry
outputs

ST_AsBinary, ST_AsEWKB, ST_AsEWKT, ST_AsGeoJSON,
ST_AsGML, ST_AsHEXEWKB, ST_AsKML, ST_AsLatLonText,
ST_AsSVG, ST_AsText, ST_AsX3D, ST_GeoHash

Operators &&, &&&, &<, &<|, &>, <<, <<|, =, >>, @, |&>, |>>, ~, ~=, <->,
<#>

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 244

Category Function

Spatial
relationships and
measurements

ST_3DClosestPoint, ST_3DDistance, ST_3DDWithin,
ST_3DDFullyWithin, ST_3DIntersects, ST_3DLongestLine,
ST_3DMaxDistance, ST_3DShortestLine, ST_Area,
ST_Azimuth, ST_Centroid, ST_ClosestPoint, ST_Contains,
ST_ContainsProperly, ST_Covers, ST_CoveredBy, ST_Crosses,
ST_LineCrossingDirection, ST_Disjoint, ST_Distance,
ST_HausdorffDistance, ST_MaxDistance, ST_DistanceSphere,
ST_DistanceSpheroid, ST_DFullyWithin, ST_DWithin,
ST_Equals, ST_HasArc, ST_Intersects, ST_Length,
ST_Length2D, ST_3DLength, ST_Length_Spheroid,
ST_Length2D_Spheroid, ST_3DLength_Spheroid,
ST_LongestLine, ST_OrderingEquals, ST_Overlaps,
ST_Perimeter, ST_Perimeter2D, ST_3DPerimeter,
ST_PointOnSurface, ST_Project, ST_Relate, ST_RelateMatch,
ST_ShortestLine, ST_Touches, ST_Within

Geometry
processing

ST_Buffer, ST_BuildArea, ST_Collect, ST_ConcaveHull,
ST_ConvexHull, ST_CurveToLine, ST_DelaunayTriangles,
ST_Difference, ST_Dump, ST_DumpPoints, ST_DumpRings,
ST_FlipCoordinates, ST_Intersection, ST_LineToCurve,
ST_MakeValid, ST_MemUnion, ST_MinimumBoundingCircle,
ST_Polygonize, ST_Node, ST_OffsetCurve,
ST_RemoveRepeatedPoints, ST_SharedPaths,
ST_Shift_Longitude, ST_Simplify, ST_SimplifyPreserveTopolo-
gy, ST_Split, ST_SymDifference, ST_Union, ST_UnaryUnion

Linear
referencing

ST_LineInterpolatePoint, ST_LineLocatePoint,
ST_LineSubstring, ST_LocateAlong, ST_LocateBetween,
ST_LocateBetweenElevations, ST_InterpolatePoint,
ST_AddMeasure

Miscellaneous
functions

ST_Accum, Box2D, Box3D, ST_Expand, ST_Extent,
ST_3Dextent, Find_SRID, ST_MemSize

Exceptional
functions

PostGIS_AddBBox, PostGIS_DropBBox, PostGIS_HasBBox

Raster
Management
Functions

AddRasterConstraints, DropRasterConstraints,
AddOverviewConstraints, DropOverviewConstraints,
PostGIS_GDAL_Version, PostGIS_Raster_Lib_Build_Date,
PostGIS_Raster_Lib_Version, and ST_GDALDrivers, and
UpdateRasterSRID

Raster
Constructors

ST_AddBand, ST_AsRaster, ST_Band, ST_MakeEmptyRaster,
ST_Tile, and ST_FromGDALRaster

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 245

Category Function

Raster Accessors ST_GeoReference, ST_Height, ST_IsEmpty, ST_MetaData,
ST_NumBands, ST_PixelHeight, ST_PixelWidth, ST_ScaleX,
ST_ScaleY, ST_RasterToWorldCoord,
ST_RasterToWorldCoordX, ST_RasterToWorldCoordY,
ST_Rotation, ST_SkewX, ST_SkewY, ST_SRID, ST_Summary,
ST_UpperLeftX, ST_UpperLeftY, ST_Width,
ST_WorldToRasterCoord, ST_WorldToRasterCoordX,
ST_WorldToRasterCoordY

Raster Band
Accessors

ST_BandMetaData, ST_BandNoDataValue,
ST_BandIsNoData, ST_BandPath, ST_BandPixelType, and
ST_HasNoBand

Raster Pixel
Accessors and
Setters

ST_PixelAsPolygon, ST_PixelAsPolygons, ST_PixelAsPoint,
ST_PixelAsPoints, ST_PixelAsCentroid, ST_PixelAsCentroids,
ST_Value, ST_NearestValue, ST_Neighborhood, ST_SetValue,
ST_SetValues, ST_DumpValues, and ST_PixelOfValue

Raster Editors ST_SetGeoReference, ST_SetRotation, ST_SetScale,
ST_SetSkew, ST_SetSRID, ST_SetUpperLeft, ST_Resample,
ST_Rescale, ST_Reskew, and ST_SnapToGrid, ST_Resize, and
ST_Transform

Raster Band
Editors

ST_SetBandNoDataValue and ST_SetBandIsNoData

Raster Band
Statistics and
Analytics

ST_Count, ST_CountAgg, ST_Histogram, ST_Quantile,
ST_SummaryStats, ST_SummaryStatsAgg, and
ST_ValueCount

Raster Outputs ST_AsBinary, ST_AsGDALRaster, ST_AsJPEG, ST_AsPNG, and
ST_AsTIFF

Raster Processing ST_Clip, ST_ColorMap, ST_Intersection, ST_MapAlgebra,
ST_Reclass, and ST_Union ST_Distinct4ma,
ST_InvDistWeight4ma, ST_Max4ma, ST_Mean4ma,
ST_Min4ma, ST_MinDist4ma, ST_Range4ma, ST_StdDev4ma,
and ST _Sum4ma, ST_Aspect, ST_HillShade, ST_Roughness,
ST_Slope, ST_TPI, ST_TRI, Box3D, ST_ConvexHull,
ST_DumpAsPolygons, and ST_ Envelope, ST_MinConvexHull,
ST_Polygon, ST_Contains, ST_ContainsProperly, ST_Covers,
ST_CoveredBy, ST_Disjoint, ST_Intersects, and ST_Overlaps,
ST_Touches, ST_SameAlignment, ST_NotSameAlignmentRea-
son, ST_Within, ST_DWithin, and ST_DFullyWithin

Raster Operators &&, &<, &>, =, @, ~=, and ~

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 246

Table 10-2 Operators and functions supported by PostGIS3.2.2

Category Function

Management
functions

AddGeometryColumn, DropGeometryColumn,
DropGeometryTable, PostGIS_Full_Version,
PostGIS_GEOS_Version, PostGIS_Liblwgeom_Version,
PostGIS_Lib_Build_Date, PostGIS_Lib_Version,
PostGIS_PROJ_Version, PostGIS_Scripts_Build_Date,
PostGIS_Scripts_Installed, PostGIS_Version,
PostGIS_LibXML_Version, PostGIS_Scripts_Released,
Populate_Geometry_Columns, UpdateGeometrySRID,
PostGIS_Libprotobuf_Version, PostGIS_Wagyu_Version

Geometry
constructors

ST_BdPolyFromText, ST_BdMPolyFromText,
ST_Box2dFromGeoHash, ST_GeneratePoints,
ST_GeogFromText, ST_GeographyFromText,
ST_GeogFromWKB, ST_GeomCollFromText,
ST_GeomFromEWKB, ST_GeomFromEWKT,
ST_GeometryFromText, ST_GeomFromGeoHash,
ST_GeomFromGML, ST_GeomFromGeoJSON,
ST_GeomFromKML, ST_GMLToSQL, ST_GeomFromText,
ST_GeomFromWKB, ST_LineFromMultiPoint,
ST_LineFromText, ST_LineFromWKB, ST_LinestringFromWKB,
ST_MakeBox2D, ST_3DMakeBox, ST_MakeEnvelope,
ST_MakePolygon, ST_MakePoint, ST_MakePointM,
ST_MLineFromText, ST_MPointFromText, ST_MPolyFromText,
ST_Point, ST_Points, ST_PointFromGeoHash,
ST_PointFromText, ST_PointFromWKB, ST_Polygon,
ST_PolygonFromText, ST_WKBToSQL, ST_WKTToSQL,
Geography_Distance_Knn, Geometry_Distance_Cpa,
Geometry_Hash, ST_3Dlineinterpolate,
ST_AsEncodedPolyline

Geometry
accessors

GeometryType, ST_Boundary, ST_CoordDim, ST_Dimension,
ST_EndPoint, ST_Envelope, ST_ExteriorRing, ST_GeometryN,
ST_GeometryType, ST_InteriorRingN, ST_IsClosed,
ST_IsCollection, ST_IsEmpty, ST_IsPolygonCCW,
ST_IsPolygonCW, ST_IsRing, ST_IsSimple, ST_IsValid,
ST_IsValidReason, ST_IsValidDetail, ST_M, ST_NDims,
ST_NPoints, ST_NRings, ST_NumGeometries,
ST_NumInteriorRings, ST_NumInteriorRing, ST_NumPatches,
ST_NumPoints, ST_PatchN, ST_PointN, ST_SRID,
ST_StartPoint, ST_Summary, ST_X, ST_XMax, ST_XMin, ST_Y,
ST_YMax, ST_YMin, ST_Z, ST_ZMax, ST_Zmflag, ST_ZMin,
ST_Wrapx, ST_Asmvt

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 247

Category Function

Geometry editors ST_AddPoint, ST_Affine, ST_Force2D, ST_Force3D,
ST_Force3DZ, ST_Force3DM, ST_Force4D, ST_ForceCollection,
ST_ForcePolygonCCW, ST_ForcePolygonCW, ST_ForceSFS,
ST_ForceRHR, ST_LineMerge, ST_CollectionExtract,
ST_CollectionHomogenize, ST_Multi, ST_Normalize,
ST_RemovePoint, ST_Reverse, ST_Rotate, ST_RotateX,
ST_RotateY, ST_RotateZ, ST_Scale, ST_Segmentize,
ST_SetPoint, ST_SetSRID, ST_SnapToGrid, ST_Snap,
ST_Transform, ST_Translate, ST_TransScale, ST_AsmvtGeom,
ST_isvalidTrajectory, ST_linefromencodedpolyline,
ST_lineinterpolatepoints, ST_MaximuminScribedCircle,
ST_OrientedEnvelope, ST_QuantizeCoordinates,
ST_ReducePrecision, ST_Scroll, ST_SetEffectiveArea,
ST_simplifyvw, ST_square, ST_squaregrid, ST_Swapordinates,
ST_Voronoilines, ST_VoronoiPolygons

Geometry
outputs

ST_AsBinary, ST_AsEWKB, ST_AsEWKT, ST_AsGeoJSON,
ST_AsGML, ST_AsHEXEWKB, ST_AsKML, ST_AsLatLonText ,
ST_AsSVG, ST_AsText, ST_AsTwkb, ST_AsX3D, ST_GeoHash,
Json, Jsonb, ST_GeomfromGeojson

Operators && , &&& , &< , &<|, &> , << , <<|, =, >> , @ , |&> , |>> , ~,
~=, <-> , <#> , <-> , |=|, <<->>

Spatial
relationships and
measurements

ST_3DClosestPoint, ST_3DDistance, ST_3DDWithin,
ST_3DDFullyWithin, ST_3DIntersects, ST_3DLongestLine,
ST_3DMaxDistance, ST_3DShortestLine, ST_Area,
ST_Azimuth, ST_Centroid, ST_ClosestPoint, ST_Contains,
ST_ContainsProperly, ST_Covers, ST_CoveredBy, ST_Crosses,
ST_LineCrossingDirection, ST_Disjoint, ST_Distance,
ST_HausdorffDistance, ST_MaxDistance, ST_DistanceSphere,
ST_DistanceSpheroid, ST_DFullyWithin, ST_DWithin,
ST_Equals, ST_HasArc, ST_Intersects, ST_Length,
ST_Length2D, ST_3DLength, ST_LengthSpheroid,
ST_Length2DSpheroid, ST_LongestLine,
ST_MinimumBoundingRadius, ST_OrderingEquals,
ST_Overlaps, ST_Perimeter, ST_Perimeter2D,
ST_3DPerimeter, ST_PointOnSurface, ST_Project, ST_Relate,
ST_RelateMatch, ST_ShortestLine, ST_Touches, ST_Within,
_ST_DistancerectTree, _ST_DistancerectTreeCached,
_ST_SorTableHash

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 248

Category Function

Geometry
processing

ST_Buffer, ST_BuildArea, ST_ClipByBox2D,
ST_ClusterDBSCAN, ST_ClusterIntersecting,
ST_ClusterKMeans, ST_ClusterWithin, ST_Collect,
ST_ConcaveHull, ST_ConvexHull, ST_CurveToLine,
ST_DelaunayTriangles, ST_Difference, ST_Dump,
ST_DumpPoints, ST_DumpRings, ST_FlipCoordinates,
ST_Intersection, ST_LineToCurve, ST_MakeValid,
ST_MemUnion, ST_MinimumBoundingCircle, ST_Polygonize,
ST_Node, ST_OffsetCurve, ST_RemoveRepeatedPoints,
ST_SharedPaths, ST_ShiftLongitude, ST_Simplify,
ST_SimplifyPreserveTopology, ST_Split, ST_Subdivide,
ST_SymDifference, ST_Union, ST_UnaryUnion,
ST_BoundingDiagonal, ST_ChaikinsMoothing,
ST_ClosestPointofApproach, ST_CollectionExtract,
ST_CPAwithin, ST_DistanceCPA, ST_DumpSegments,
ST_EstimatedExtent, ST_Filterbym, ST_SetEffectiveArea,
ST_Forcecurve

Linear
referencing

ST_LineInterpolatePoint, ST_LineLocatePoint,
ST_LineSubstring, ST_LocateAlong, ST_LocateBetween,
ST_LocateBetweenElevations, ST_InterpolatePoint,
ST_AddMeasure

Miscellaneous
functions

Array_Agg, Box2D, Box3D, ST_Expand, ST_Extent,
ST_3Dextent, Find_SRID, ST_MemSize

Exceptional
functions

PostGIS_AddBBox, PostGIS_DropBBox, PostGIS_HasBBox

Spatial Indexes

In GaussDB(DWS), PostGIS Extension supports Generalized Search Tree (GIST)
spatial indexes. This index type is inapplicable to partitioned tables. Different from
B-tree indexes, GIS indexes are adaptable to all kinds of irregular data structures,
which can effectively improve the retrieval efficiency for geometry and geographic
data.

Run the following command to create a GiST index:

CREATE INDEX indexname ON tablename USING GIST (geometryfield);

Extension Constraints
● Only row-store tables are supported. Column-store indexes are not supported.

● Only Oracle-compatible databases are supported.

● The topology object management module, Topology, is not supported.

● BRIN indexes are not supported.

● The spatial_ref_sys table can only be queried during scale-out.

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 249

Plug-in Upgrade Compatibility
When upgrading from PostGIS 2.4.2 to 3.2.2, note that certain functions may
become incompatible or not fully forward compatible. This can lead to
inconsistencies in the functionality before and after the upgrade. Therefore, it is
necessary to assess the impact of upgrade incompatibility on your services.

The following table provides compatibility details for related functions.

Category PostGIS 2.4.2 PostGIS 3.2.2

Added
functions in
3.2.2

N/A ST_IsPolygonCW(geometry)

N/A ST_IsPolygonCCW(geometry)

N/A ST_PointInsideCircle(geometry,floa
t8,float8,float8)

N/A ST_ForcePolygonCW(geometry)

N/A ST_ForcePolygonCCW(geometry)

N/A ST_Normalize(geom geometry)

N/A ST_AsTWKB(geom geometry, prec
int4 default 0, prec_z int4 default
0, prec_m int4 default 0, with_sizes
boolean default false, with_boxes
boolean default false)

N/A ST_AsTWKB(geom geometry[], ids
bigint[], prec int4 default 0, prec_z
int4 default 0, prec_m int4 default
0, with_sizes boolean default false,
with_boxes boolean default false)

N/A ST_MakeLine (geometry[])

N/A ST_TileEnvelope(zoom integer, x
integer, y integer, bounds
geometry DEFAULT
'SRID=3857;LINESTRING(-2003750
8.342789244
-20037508.342789244,
20037508.342789244
20037508.342789244)'::geometry,
margin float8 DEFAULT 0.0)

N/A ST_ClusterIntersect-
ing(geometry[])

N/A ST_ClusterWithin(geometry[],
float8)

N/A ST_ClusterDBSCAN (geometry, eps
float8, minpoints int)

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 250

Category PostGIS 2.4.2 PostGIS 3.2.2

N/A ST_Scale(geometry,geometry,origi
n geometry)

N/A ST_GeneratePoints(area geometry,
npoints integer, seed integer)

N/A ST_FrechetDistance(geom1
geometry, geom2 geometry, float8
default -1)

N/A ST_Points(geometry)

N/A ST_ClipByBox2d(geom geometry,
box box2d)

N/A ST_Subdivide(geom geometry,
maxvertices integer DEFAULT 256,
gridSize float8 DEFAULT -1.0)

N/A ST_ClusterIntersecting (geometry)

N/A ST_ClusterWithin (geometry,
float8)

N/A ST_ClusterKMeans(geom
geometry, k integer, max_radius
float8 default null)

N/A ST_AsText(geometry, int4)

N/A ST_AsEWKT(geography, int4)

N/A _ST_CoveredBy(geog1 geography,
geog2 geography)

N/A ST_Point(float8, float8, srid
integer)

Functions no
longer
supported in
3.2.2

ST_3DLength_spheroid(ge
ometry, spheroid)

N/A

ST_length2d_spheroid(geo
metry, spheroid)

N/A

ST_locate_between_measu
res(geometry, float8,
float8)

N/A

ST_locate_along_measure(
geometry, float8)

N/A

ST_Buffer(geometry,float8,
text)

N/A

ST_GeneratePoints(area
geometry, npoints integer)

N/A

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 251

Category PostGIS 2.4.2 PostGIS 3.2.2

ST_Combine_BBox(box3d,
geometry)

N/A

ST_Combine_BBox(box2d,
geometry)

N/A

pgis_abs_in(cstring) N/A

pgis_abs_out(pgis_abs) N/A

pgis_abs (internallength =
16, input = pgis_abs_in,
output = pgis_abs_out,
alignment = double)

N/A

ST_MemUnion(geometry) N/A

pgis_geometry_accum_fin
alfn(pgis_abs)

N/A

ST_MakeLine (geometry) N/A

ST_Accum (geometry) N/A

ST_Accum (geometry) N/A

_ST_AsKML(int4,geometry,
int4, text)

N/A

ST_MemUnion(geometry) N/A

_ST_AsGeoJson(int4,
geometry, int4, int4)

N/A

ST_AsGeoJson(gj_version
int4, geom geometry,
maxdecimaldigits int4
DEFAULT 15, options int4
DEFAULT 0)

N/A

_ST_DWithin(geography,
geography, float8,
boolean)

N/A

ST_point_inside_circle(geo
metry,float8,float8,float8)

N/A

ST_CurveToLine(geometry
)

N/A

ST_Shift_Longitude(geome
try)

Use ST_ShiftLongitude instead.

ST_find_extent(text,text,te
xt) and
ST_find_extent(text,text)

Use ST_FindExtent instead.

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 252

Category PostGIS 2.4.2 PostGIS 3.2.2

ST_mem_size(geometry) Use ST_MemSize instead.

ST_length_spheroid(geom
etry, spheroid)

Use ST_LengthSpheroid instead.

ST_distance_spheroid(geo
m1 geometry, geom2
geometry,spheroid)

Use ST_DistanceSpheroid instead.

ST_force_2d(geometry) Use ST_Force2D instead.

ST_force_3dz(geometry) Use ST_Force3DZ instead.

ST_force_3d(geometry) Use ST_Force3D instead.

ST_force_3dm(geometry) Use ST_Force3DM instead.

ST_force_4d(geometry) Use ST_Force4D instead.

ST_force_collection(geome
try)

Use ST_ForceCollection instead.

ST_line_locate_point(geo
m1 geometry, geom2
geometry)

Use ST_LineLocatePoint instead.

ST_line_interpolate_point(
geometry, float8)

Use ST_LineInterpolatePoint
instead.

ST_Buffer(geometry,float8
)

Use ST_Buffer instead.

Functions
with
parameter
type changed
in 3.2.2

pgis_geometry_accum_tra
nsfn(pgis_abs, geometry)

pgis_geometry_accum_transfn(inte
rnal, geometry)

pgis_geometry_accum_tra
nsfn(pgis_abs, geometry,
float8)

pgis_geometry_accum_transfn(inte
rnal, geometry, float8)

pgis_geometry_accum_tra
nsfn(pgis_abs, geometry,
float8, int)

pgis_geometry_accum_transfn(inte
rnal, geometry, float8, int)

pgis_geometry_union_final
fn(pgis_abs)

pgis_geometry_union_finalfn(inter
nal)

pgis_geometry_collect_fin
alfn(pgis_abs)

pgis_geometry_collect_finalfn(inter
nal)

pgis_geometry_polygonize
_finalfn(pgis_abs)

pgis_geometry_polygonize_finalfn(
internal)

pgis_geometry_clusterinter
secting_finalfn(pgis_abs)

pgis_geometry_clusterintersect-
ing_finalfn(internal)

ST_Union (geometry) ST_Union (geometry)

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 253

Category PostGIS 2.4.2 PostGIS 3.2.2

ST_Collect (geometry) ST_Collect (geometry)

ST_Buffer(geometry,float8,
integer)

ST_Buffer(geom geometry, radius
float8, quadsegs integer)

Functions
with API
changed in
3.2.2

ST_AsKML(version int4,
geom geometry,
maxdecimaldigits int4
DEFAULT 15, nprefix text
DEFAULT null)

ST_AsKML(geom geometry,
maxdecimaldigits int4 DEFAULT
15, nprefix TEXT default ' ')

ST_AsKML(geom
geometry,
maxdecimaldigits int4
DEFAULT 15)

ST_AsKML(geom geometry,
maxdecimaldigits int4 DEFAULT
15, nprefix TEXT default ' ')

ST_AsKML(version int4,
geom geometry,
maxdecimaldigits int4
DEFAULT 15, nprefix text
DEFAULT null)

ST_AsGML(version int4, geog
geography, maxdecimaldigits int4
DEFAULT 15, options int4 DEFAULT
0, nprefix text DEFAULT 'gml', id
text DEFAULT '')

Functions
with default
parameters
changed in
3.2.2

ST_SymDifference(geom1
geometry, geom2
geometry)

ST_SymDifference(geom1
geometry, geom2 geometry,
gridSize float8 DEFAULT -1.0)

ST_UnaryUnion(geometry) ST_UnaryUnion(geometry, gridSize
float8 DEFAULT -1.0)

ST_AsGeoJson(geom
geometry,
maxdecimaldigits int4
DEFAULT 15, options int4
DEFAULT 0)

ST_AsGeoJson(geom geometry,
maxdecimaldigits int4 DEFAULT 9,
options int4 DEFAULT 8)

ST_Buffer(geometry,float8,
cstring)

ST_Buffer(geom geometry, radius
float8, options text DEFAULT ' ')

_ST_DWithin(geography,
geography, float8,
boolean)

_ST_DWithin(geog1 geography,
geog2 geography, tolerance float8,
use_spheroid boolean DEFAULT
true)

ST_IsValidDetail(geometry
)

ST_IsValidDetail(geom geometry,
flags int4 DEFAULT 0)

ST_CurveToLine(geom
geometry, tol float8,
toltype integer, flags
integer)

ST_CurveToLine(geom geometry,
tol float8 DEFAULT 32, toltype
integer DEFAULT 0, flags integer
DEFAULT 0)

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 254

Category PostGIS 2.4.2 PostGIS 3.2.2

Functions
supported
hash join and
merge join in
3.2.2

OPERATOR = OPERATOR =

Functions
with
commutor
undefined in
3.2.2

OPERATOR
&< ,OPERATOR
&<|,OPERATOR |&>

OPERATOR &< ,OPERATOR
&<|,OPERATOR |&>

10.4 OPEN SOURCE SOFTWARE NOTICE (For PostGIS)
This document contains open source software notice for the product. And this
document is confidential information of copyright holder. Recipient shall protect it
in due care and shall not disseminate it without permission.

Warranty Disclaimer

This document is provided "as is" without any warranty whatsoever, including the
accuracy or comprehensiveness. Copyright holder of this document may change
the contents of this document at any time without prior notice, and copyright
holder disclaims any liability in relation to recipient's use of this document.

Open source software is provided by the author "as is" and any express or implied
warranties, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose are disclaimed. In no event shall the author be
liable for any direct, indirect, incidental, special, exemplary, or consequential
damages (including, but not limited to, procurement of substitute goods or
services; loss of data or profits; or business interruption) however caused and on
any theory of liability, whether in contract, strict liability, or tort (including
negligence or otherwise) arising in any way out of the use of open source
software, even if advised of the possibility of such damage.

Copyright Notice And License Texts

Software: postgis-2.4.2

Copyright notice:

"Copyright (C) 1996-2015 Free Software Foundation, Inc.

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301

Copyright 2008 Kevin Neufeld

Copyright (c) 2009 Walter Bruce Sinclair

Copyright 2006-2013 Stephen Woodbridge.

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 255

Copyright (c) 2008 Walter Bruce Sinclair

Copyright (c) 2012 TJ Holowaychuk <tj@vision-media.ca>

Copyright (c) 2008, by Attractive Chaos <attractivechaos@aol.co.uk>

Copyright (c) 2001-2012 Walter Bruce Sinclair

Copyright (c) 2010 Walter Bruce Sinclair

Copyright 2006 Stephen Woodbridge

Copyright 2006-2010 Stephen Woodbridge.

Copyright (c) 2006-2014 Stephen Woodbridge.

Copyright (c) 2017, Even Rouault <even.rouault at spatialys.com>

Copyright (C) 2004-2015 Sandro Santilli <strk@kbt.io>

Copyright (C) 2008-2011 Paul Ramsey <pramsey@cleverelephant.ca>

Copyright (C) 2008 Mark Cave-Ayland <mark.cave-ayland@siriusit.co.uk>

Copyright 2015 Nicklas Avén <nicklas.aven@jordogskog.no>

Copyright 2008 Paul Ramsey

Copyright (C) 2012 Sandro Santilli <strk@kbt.io>

Copyright 2012 Sandro Santilli <strk@kbt.io>

Copyright (C) 2014 Sandro Santilli <strk@kbt.io>

Copyright 2013 Olivier Courtin <olivier.courtin@oslandia.com>

Copyright 2009 Paul Ramsey <pramsey@cleverelephant.ca>

Copyright 2008 Paul Ramsey <pramsey@cleverelephant.ca>

Copyright 2011 Sandro Santilli <strk@kbt.io>

Copyright 2015 Daniel Baston

Copyright 2009 Olivier Courtin <olivier.courtin@oslandia.com>

Copyright 2014 Kashif Rasul <kashif.rasul@gmail.com> and

Shoaib Burq <saburq@gmail.com>

Copyright 2013 Sandro Santilli <strk@kbt.io>

Copyright 2010 Paul Ramsey <pramsey@cleverelephant.ca>

Copyright (C) 2017 Sandro Santilli <strk@kbt.io>

Copyright (C) 2015 Sandro Santilli <strk@kbt.io>

Copyright (C) 2009 Paul Ramsey <pramsey@cleverelephant.ca>

Copyright (C) 2011 Sandro Santilli <strk@kbt.io>

Copyright 2010 Olivier Courtin <olivier.courtin@oslandia.com>

Copyright 2014 Nicklas Avén

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 256

Copyright 2011-2016 Regina Obe

Copyright (C) 2008 Paul Ramsey

Copyright (C) 2011-2015 Sandro Santilli <strk@kbt.io>

Copyright 2010-2012 Olivier Courtin <olivier.courtin@oslandia.com>

Copyright (C) 2015 Daniel Baston <dbaston@gmail.com>

Copyright (C) 2013 Nicklas Avén

Copyright (C) 2016 Sandro Santilli <strk@kbt.io>

Copyright 2017 Darafei Praliaskouski <me@komzpa.net>

Copyright (c) 2016, Paul Ramsey <pramsey@cleverelephant.ca>

Copyright (C) 2011-2012 Sandro Santilli <strk@kbt.io>

Copyright (C) 2011 Paul Ramsey <pramsey@cleverelephant.ca>

Copyright (C) 2007-2008 Mark Cave-Ayland

Copyright (C) 2001-2006 Refractions Research Inc.

Copyright 2015 Daniel Baston <dbaston@gmail.com>

Copyright 2009 David Skea <David.Skea@gov.bc.ca>

Copyright (C) 2012-2015 Paul Ramsey <pramsey@cleverelephant.ca>

Copyright (C) 2012-2015 Sandro Santilli <strk@kbt.io>

Copyright 2001-2006 Refractions Research Inc.

Copyright (C) 2004 Refractions Research Inc.

Copyright 2011-2014 Sandro Santilli <strk@kbt.io>

Copyright 2009-2010 Sandro Santilli <strk@kbt.io>

Copyright 2015-2016 Daniel Baston <dbaston@gmail.com>

Copyright 2011-2015 Sandro Santilli <strk@kbt.io>

Copyright 2007-2008 Mark Cave-Ayland

Copyright 2012-2013 Oslandia <infos@oslandia.com>

Copyright (C) 2015-2017 Sandro Santilli <strk@kbt.io>

Copyright (C) 2001-2003 Refractions Research Inc.

Copyright 2016 Sandro Santilli <strk@kbt.io>

Copyright 2011 Kashif Rasul <kashif.rasul@gmail.com>

Copyright (C) 2014 Nicklas Avén

Copyright (C) 2010 Paul Ramsey <pramsey@cleverelephant.ca>

Copyright (C) 2010-2015 Paul Ramsey <pramsey@cleverelephant.ca>

Copyright (C) 2011 Sandro Santilli <strk@kbt.io>

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 257

Copyright (C) 2011-2014 Sandro Santilli <strk@kbt.io>

Copyright (C) 1984, 1989-1990, 2000-2015 Free Software Foundation, Inc.

Copyright (C) 2011 Paul Ramsey

Copyright 2001-2003 Refractions Research Inc.

Copyright 2009-2010 Olivier Courtin <olivier.courtin@oslandia.com>

Copyright 2010-2012 Oslandia

Copyright 2006 Corporacion Autonoma Regional de Santander

Copyright 2013 Nicklas Avén

Copyright 2011-2016 Arrival 3D, Regina Obe

Copyright (C) 2009 David Skea <David.Skea@gov.bc.ca>

Copyright (C) 2017 Sandro Santilli <strk@kbt.io>

Copyright (C) 2009-2012 Paul Ramsey <pramsey@cleverelephant.ca>

Copyright (C) 2010 - Oslandia

Copyright (C) 2006 Mark Leslie <mark.leslie@lisasoft.com>

Copyright (C) 2008-2009 Mark Cave-Ayland <mark.cave-ayland@siriusit.co.uk>

Copyright (C) 2009-2015 Paul Ramsey <pramsey@cleverelephant.ca>

Copyright (C) 2010 Olivier Courtin <olivier.courtin@camptocamp.com>

Copyright 2010 Nicklas Avén

Copyright 2012 Paul Ramsey

Copyright 2011 Nicklas Avén

Copyright 2002 Thamer Alharbash

Copyright 2011 OSGeo

Copyright (C) 2009-2011 Paul Ramsey <pramsey@cleverelephant.ca>

Copyright (C) 2008 Mark Cave-Ayland <mark.cave-ayland@siriusit.co.uk>

Copyright (C) 2004-2007 Refractions Research Inc.

Copyright 2010 LISAsoft Pty Ltd

Copyright 2010 Mark Leslie

Copyright (c) 1999, Frank Warmerdam

Copyright 2009 Mark Cave-Ayland <mark.cave-ayland@siriusit.co.uk>

Copyright (c) 2007, Frank Warmerdam

Copyright 2008 OpenGeo.org

Copyright (C) 2008 OpenGeo.org

Copyright (C) 2009 Mark Cave-Ayland <mark.cave-ayland@siriusit.co.uk>

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 258

Copyright 2010 LISAsoft

Copyright (C) 2010 Mark Cave-Ayland <mark.cave-ayland@siriusit.co.uk>

Copyright (c) 1999, 2001, Frank Warmerdam

Copyright (C) 2016-2017 Bj?rn Harrtell <bjorn@wololo.org>

Copyright (C) 2017 Danny G?tte <danny.goette@fem.tu-ilmenau.de>

Copyright 2009-2011 Paul Ramsey <pramsey@cleverelephant.ca>

^copyright^

Copyright 2012 (C) Paul Ramsey <pramsey@cleverelephant.ca>

Copyright (C) 2006 Refractions Research Inc.

Copyright 2009 Paul Ramsey <pramsey@opengeo.org>

Copyright 2001-2009 Refractions Research Inc.

Copyright (C) 2010 Olivier Courtin <olivier.courtin@oslandia.com>

By Nathan Wagner, copyright disclaimed,

this entire file is in the public domain

Copyright 2009-2011 Olivier Courtin <olivier.courtin@oslandia.com>

Copyright (C) 2001-2005 Refractions Research Inc.

Copyright 2001-2011 Refractions Research Inc.

Copyright 2009-2014 Sandro Santilli <strk@kbt.io>

Copyright (C) 2008 Paul Ramsey <pramsey@cleverelephant.ca>

Copyright (C) 2007 Refractions Research Inc.

Copyright (C) 2010 Sandro Santilli <strk@kbt.io>

Copyright 2012 J Smith <dark.panda@gmail.com>

Copyright 2009 - 2010 Oslandia

Copyright 2009 Oslandia

Copyright 2001-2005 Refractions Research Inc.

Copyright 2016 Paul Ramsey <pramsey@cleverelephant.ca>

Copyright 2016 Daniel Baston <dbaston@gmail.com>

Copyright (C) 2011 OpenGeo.org

Copyright (c) 2003-2017, Troy D. Hanson http:troydhanson.github.com/uthash/

Copyright (C) 2011 Regents of the University of California

Copyright (C) 2011-2013 Regents of the University of California

Copyright (C) 2010-2011 Jorge Arevalo <jorge.arevalo@deimos-space.com>

Copyright (C) 2010-2011 David Zwarg <dzwarg@azavea.com>

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 259

Copyright (C) 2009-2011 Pierre Racine <pierre.racine@sbf.ulaval.ca>

Copyright (C) 2009-2011 Mateusz Loskot <mateusz@loskot.net>

Copyright (C) 2008-2009 Sandro Santilli <strk@kbt.io>

Copyright (C) 2013 Nathaneil Hunter Clay <clay.nathaniel@gmail.com

Copyright (C) 2013 Nathaniel Hunter Clay <clay.nathaniel@gmail.com>

Copyright (C) 2013 Bborie Park <dustymugs@gmail.com>

Copyright (C) 2013 Nathaniel Hunter Clay <clay.nathaniel@gmail.com>

(C) 2009 Mateusz Loskot <mateusz@loskot.net>

Copyright (C) 2009 Mateusz Loskot <mateusz@loskot.net>

Copyright (C) 2009-2010 Mateusz Loskot <mateusz@loskot.net>

Copyright (C) 2009-2010 Jorge Arevalo <jorge.arevalo@deimos-space.com>

Copyright (C) 2012 Regents of the University of California

Copyright (C) 2013 Regents of the University of California

Copyright (C) 2012-2013 Regents of the University of California

Copyright (C) 2009 Sandro Santilli <strk@kbt.io>

"

License: The GPL v2 License.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change free software--to make sure the
software is free for all its users. This General Public License applies to most of the
Free Software Foundation's software and to any other program whose authors
commit to using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to your
programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish), that you
receive source code or can get it if you want it, that you can change the software

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 260

or use pieces of it in new free programs; and that you know you can do these
things.

To protect your rights, we need to make restrictions that forbid anyone to deny
you these rights or to ask you to surrender the rights. These restrictions translate
to certain responsibilities for you if you distribute copies of the software, or if you
modify it.

For example, if you distribute copies of such a program, whether gratis or for a
fee, you must give the recipients all the rights that you have. You must make sure
that they, too, receive or can get the source code. And you must show them these
terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer
you this license which gives you legal permission to copy, distribute and/or modify
the software.

Also, for each author's protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the
software is modified by someone else and passed on, we want its recipients to
know that what they have is not the original, so that any problems introduced by
others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to
avoid the danger that redistributors of a free program will individually obtain
patent licenses, in effect making the program proprietary. To prevent this, we have
made it clear that any patent must be licensed for everyone's free use or not
licensed at all.

The precise terms and conditions for copying, distribution and modification
follow.?

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms of this
General Public License. The "Program", below, refers to any such program or work,
and a "work based on the Program" means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in the term
"modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not
restricted, and the output from the Program is covered only if its contents
constitute a work based on the Program (independent of having been made by
running the Program). Whether that is true depends on what the Program does.

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 261

1. You may copy and distribute verbatim copies of the Program's source code as
you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty;
keep intact all the notices that refer to this License and to the absence of any
warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifications
or work under the terms of Section 1 above, provided that you also meet all of
these conditions:

a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright
notice and a notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions,
and telling the user how to view a copy of this License. (Exception: if the Program
itself is interactive but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole, and thus to each
and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control
the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or
distribution medium does not bring the other work under the scope of this
License.

3. You may copy and distribute the Program (or a work based on it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above
provided that you also do one of the following:

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 262

a) Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing source
distribution, a complete machine-readable copy of the corresponding source code,
to be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable
form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all the
source code for all modules it contains, plus any associated interface definition
files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not
include anything that is normally distributed (in either source or binary form) with
the major components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from
the same place counts as distribution of the source code, even though third parties
are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically terminate your
rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Program
or its derivative works. These actions are prohibited by law if you do not accept
this License. Therefore, by modifying or distributing the Program (or any work
based on the Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying the Program or
works based on it.

6. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor to copy,
distribute or modify the Program subject to these terms and conditions. You may
not impose any further restrictions on the recipients' exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this
License.

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 263

7. If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not
distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly
or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system,
which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that
system in reliance on consistent application of that system; it is up to the author/
donor to decide if he or she is willing to distribute software through any other
system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder who
places the Program under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and "any later version", you
have the option of following the terms and conditions either of that version or of
any later version published by the Free Software Foundation. If the Program does
not specify a version number of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for
permission. For software which is copyrighted by the Free Software Foundation,
write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of all

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 264

derivatives of our free software and of promoting the sharing and reuse of
software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES,INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use
to the public, the best way to achieve this is to make it free software which
everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to
the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the "copyright" line and a pointer to where the
full notice is found.

<one line to give the program's name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 265

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St,
Fifth Floor, Boston, MA 02110-1301

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts
in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.

This is free software, and you are welcome to redistribute it under certain
conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may be
called something other than `show w' and `show c'; they could even be mouse-
clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school,
if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a
sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it
more useful to permit linking proprietary applications with the library. If this is
what you want to do, use the GNU Library General Public License instead of this
License.

Software:Geos

Copyright notice:

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Refractions Research Inc.

Copyright (C) 2013 Sandro Santilli <strk@keybit.net>

Copyright (C) 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2005-2011 Refractions Research Inc.

Copyright (C) 2009 Ragi Y. Burhum <ragi@burhum.com>

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 266

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2005 2006 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006-2011 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net

Copyright (C) 2009-2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2016 Daniel Baston

Copyright (C) 2008 Sean Gillies

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Refractions Research Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2008-2010 Safe Software Inc.

Copyright (C) 2006-2007 Refractions Research Inc.

Copyright (C) 2005-2007 Refractions Research Inc.

Copyright (C) 2007 Refractions Research Inc.

Copyright (C) 2014 Mika Heiskanen <mika.heiskanen@fmi.fi>

Copyright (C) 2009-2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Mateusz Loskot

Copyright (C) 2005-2009 Refractions Research Inc.

Copyright (C) 2001-2009 Vivid Solutions Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Wu Yongwei

Copyright (C) 2012 Excensus LLC.

Copyright (C) 1996-2015 Free Software Foundation, Inc.

Copyright (c) 1995 Olivier Devillers <Olivier.Devillers@sophia.inria.fr>

Copyright (C) 2007-2010 Safe Software Inc.

Copyright (C) 2010 Safe Software Inc.

Copyright (C) 2006 Refractions Research

Copyright 2004 Sean Gillies, sgillies@frii.com

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 267

Copyright (C) 2011 Mateusz Loskot <mateusz@loskot.net>

Copyright (C) 2015 Nyall Dawson <nyall dot dawson at gmail dot com>

Original code (2.0 and earlier)copyright (c) 2000-2006 Lee Thomason
(www.grinninglizard.com)

Original code (2.0 and earlier)copyright (c) 2000-2002 Lee Thomason
(www.grinninglizard.com)

License: LGPL V2.1

GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin Street, Fifth
Floor, Boston, MA 02110-1301

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Copyright (C) 2005-2011 Refractions Research Inc.

Copyright (C) 2009 Ragi Y. Burhum <ragi@burhum.com>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2005 2006 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006-2011 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net

Copyright (C) 2009-2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2016 Daniel Baston

Copyright (C) 2008 Sean Gillies

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Refractions Research Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2008-2010 Safe Software Inc.

Copyright (C) 2006-2007 Refractions Research Inc.

Copyright (C) 2005-2007 Refractions Research Inc.

Copyright (C) 2007 Refractions Research Inc.

Copyright (C) 2014 Mika Heiskanen <mika.heiskanen@fmi.fi>

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 268

Copyright (C) 2009-2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Mateusz Loskot

Copyright (C) 2005-2009 Refractions Research Inc.

Copyright (C) 2001-2009 Vivid Solutions Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Wu Yongwei

Copyright (C) 2012 Excensus LLC.

Copyright (C) 1996-2015 Free Software Foundation, Inc.

Copyright (c) 1995 Olivier Devillers <Olivier.Devillers@sophia.inria.fr>

Copyright (C) 2007-2010 Safe Software Inc.

Copyright (C) 2010 Safe Software Inc.

Copyright (C) 2006 Refractions Research

Copyright 2004 Sean Gillies, sgillies@frii.com

Copyright (C) 2011 Mateusz Loskot <mateusz@loskot.net>

Copyright (C) 2015 Nyall Dawson <nyall dot dawson at gmail dot com>

Original code (2.0 and earlier)copyright (c) 2000-2006 Lee Thomason
(www.grinninglizard.com)

Original code (2.0 and earlier)copyright (c) 2000-2002 Lee Thomason
(www.grinninglizard.com)

License: LGPL V2.1

GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin Street, Fifth
Floor, Boston, MA 02110-1301

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Copyright (C) 2005-2011 Refractions Research Inc.

Copyright (C) 2009 Ragi Y. Burhum <ragi@burhum.com>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2005 2006 Refractions Research Inc.

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 269

Copyright (C) 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006-2011 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net

Copyright (C) 2009-2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2016 Daniel Baston

Copyright (C) 2008 Sean Gillies

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Refractions Research Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2008-2010 Safe Software Inc.

Copyright (C) 2006-2007 Refractions Research Inc.

Copyright (C) 2005-2007 Refractions Research Inc.

Copyright (C) 2007 Refractions Research Inc.

Copyright (C) 2014 Mika Heiskanen <mika.heiskanen@fmi.fi>

Copyright (C) 2009-2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Mateusz Loskot

Copyright (C) 2005-2009 Refractions Research Inc.

Copyright (C) 2001-2009 Vivid Solutions Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Wu Yongwei

Copyright (C) 2012 Excensus LLC.

Copyright (C) 1996-2015 Free Software Foundation, Inc.

Copyright (c) 1995 Olivier Devillers <Olivier.Devillers@sophia.inria.fr>

Copyright (C) 2007-2010 Safe Software Inc.

Copyright (C) 2010 Safe Software Inc.

Copyright (C) 2006 Refractions Research

Copyright 2004 Sean Gillies, sgillies@frii.com

Copyright (C) 2011 Mateusz Loskot <mateusz@loskot.net>

Copyright (C) 2015 Nyall Dawson <nyall dot dawson at gmail dot com>

Original code (2.0 and earlier)copyright (c) 2000-2006 Lee Thomason
(www.grinninglizard.com)

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 270

Original code (2.0 and earlier)copyright (c) 2000-2002 Lee Thomason
(www.grinninglizard.com)

License: LGPL V2.1

GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin Street, Fifth
Floor, Boston, MA 02110-1301

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Copyright (C) 2005-2011 Refractions Research Inc.

Copyright (C) 2009 Ragi Y. Burhum <ragi@burhum.com>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2005 2006 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006-2011 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net

Copyright (C) 2009-2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2016 Daniel Baston

Copyright (C) 2008 Sean Gillies

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Refractions Research Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2008-2010 Safe Software Inc.

Copyright (C) 2006-2007 Refractions Research Inc.

Copyright (C) 2005-2007 Refractions Research Inc.

Copyright (C) 2007 Refractions Research Inc.

Copyright (C) 2014 Mika Heiskanen <mika.heiskanen@fmi.fi>

Copyright (C) 2009-2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Mateusz Loskot

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 271

Copyright (C) 2005-2009 Refractions Research Inc.

Copyright (C) 2001-2009 Vivid Solutions Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Wu Yongwei

Copyright (C) 2012 Excensus LLC.

Copyright (C) 1996-2015 Free Software Foundation, Inc.

Copyright (c) 1995 Olivier Devillers <Olivier.Devillers@sophia.inria.fr>

Copyright (C) 2007-2010 Safe Software Inc.

Copyright (C) 2010 Safe Software Inc.

Copyright (C) 2006 Refractions Research

Copyright 2004 Sean Gillies, sgillies@frii.com

Copyright (C) 2011 Mateusz Loskot <mateusz@loskot.net>

Copyright (C) 2015 Nyall Dawson <nyall dot dawson at gmail dot com>

Original code (2.0 and earlier)copyright (c) 2000-2006 Lee Thomason
(www.grinninglizard.com)

Original code (2.0 and earlier)copyright (c) 2000-2002 Lee Thomason
(www.grinninglizard.com)

License: LGPL V2.1

GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin Street, Fifth
Floor, Boston, MA 02110-1301

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Copyright (C) 2005-2011 Refractions Research Inc.

Copyright (C) 2009 Ragi Y. Burhum <ragi@burhum.com>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2005 2006 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006-2011 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net

Copyright (C) 2009-2011 Sandro Santilli <strk@keybit.net>

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 272

Copyright (C) 2016 Daniel Baston

Copyright (C) 2008 Sean Gillies

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Refractions Research Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2008-2010 Safe Software Inc.

Copyright (C) 2006-2007 Refractions Research Inc.

Copyright (C) 2005-2007 Refractions Research Inc.

Copyright (C) 2007 Refractions Research Inc.

Copyright (C) 2014 Mika Heiskanen <mika.heiskanen@fmi.fi>

Copyright (C) 2009-2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Mateusz Loskot

Copyright (C) 2005-2009 Refractions Research Inc.

Copyright (C) 2001-2009 Vivid Solutions Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Wu Yongwei

Copyright (C) 2012 Excensus LLC.

Copyright (C) 1996-2015 Free Software Foundation, Inc.

Copyright (c) 1995 Olivier Devillers <Olivier.Devillers@sophia.inria.fr>

Copyright (C) 2007-2010 Safe Software Inc.

Copyright (C) 2010 Safe Software Inc.

Copyright (C) 2006 Refractions Research

Copyright 2004 Sean Gillies, sgillies@frii.com

Copyright (C) 2011 Mateusz Loskot <mateusz@loskot.net>

Copyright (C) 2015 Nyall Dawson <nyall dot dawson at gmail dot com>

Original code (2.0 and earlier)copyright (c) 2000-2006 Lee Thomason
(www.grinninglizard.com)

Original code (2.0 and earlier)copyright (c) 2000-2002 Lee Thomason
(www.grinninglizard.com)

License: LGPL V2.1

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 273

GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin Street, Fifth
Floor, Boston, MA 02110-1301

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Copyright (C) 2005-2011 Refractions Research Inc.

Copyright (C) 2009 Ragi Y. Burhum <ragi@burhum.com>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2005 2006 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006-2011 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net

Copyright (C) 2009-2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2016 Daniel Baston

Copyright (C) 2008 Sean Gillies

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Refractions Research Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2008-2010 Safe Software Inc.

Copyright (C) 2006-2007 Refractions Research Inc.

Copyright (C) 2005-2007 Refractions Research Inc.

Copyright (C) 2007 Refractions Research Inc.

Copyright (C) 2014 Mika Heiskanen <mika.heiskanen@fmi.fi>

Copyright (C) 2009-2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Mateusz Loskot

Copyright (C) 2005-2009 Refractions Research Inc.

Copyright (C) 2001-2009 Vivid Solutions Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 274

Copyright (C) 2006 Wu Yongwei

Copyright (C) 2012 Excensus LLC.

Copyright (C) 1996-2015 Free Software Foundation, Inc.

Copyright (c) 1995 Olivier Devillers <Olivier.Devillers@sophia.inria.fr>

Copyright (C) 2007-2010 Safe Software Inc.

Copyright (C) 2010 Safe Software Inc.

Copyright (C) 2006 Refractions Research

Copyright 2004 Sean Gillies, sgillies@frii.com

Copyright (C) 2011 Mateusz Loskot <mateusz@loskot.net>

Copyright (C) 2015 Nyall Dawson <nyall dot dawson at gmail dot com>

Original code (2.0 and earlier)copyright (c) 2000-2006 Lee Thomason
(www.grinninglizard.com)

Original code (2.0 and earlier)copyright (c) 2000-2002 Lee Thomason
(www.grinninglizard.com)

License: LGPL V2.1

GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin Street, Fifth
Floor, Boston, MA 02110-1301

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Copyright (C) 2005-2011 Refractions Research Inc.

Copyright (C) 2009 Ragi Y. Burhum <ragi@burhum.com>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2005 2006 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006-2011 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net

Copyright (C) 2009-2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2016 Daniel Baston

Copyright (C) 2008 Sean Gillies

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 275

Copyright (C) 2006 Refractions Research Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2008-2010 Safe Software Inc.

Copyright (C) 2006-2007 Refractions Research Inc.

Copyright (C) 2005-2007 Refractions Research Inc.

Copyright (C) 2007 Refractions Research Inc.

Copyright (C) 2014 Mika Heiskanen <mika.heiskanen@fmi.fi>

Copyright (C) 2009-2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Mateusz Loskot

Copyright (C) 2005-2009 Refractions Research Inc.

Copyright (C) 2001-2009 Vivid Solutions Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Wu Yongwei

Copyright (C) 2012 Excensus LLC.

Copyright (C) 1996-2015 Free Software Foundation, Inc.

Copyright (c) 1995 Olivier Devillers <Olivier.Devillers@sophia.inria.fr>

Copyright (C) 2007-2010 Safe Software Inc.

Copyright (C) 2010 Safe Software Inc.

Copyright (C) 2006 Refractions Research

Copyright 2004 Sean Gillies, sgillies@frii.com

Copyright (C) 2011 Mateusz Loskot <mateusz@loskot.net>

Copyright (C) 2015 Nyall Dawson <nyall dot dawson at gmail dot com>

Original code (2.0 and earlier)copyright (c) 2000-2006 Lee Thomason
(www.grinninglizard.com)

Original code (2.0 and earlier)copyright (c) 2000-2002 Lee Thomason
(www.grinninglizard.com)

License: LGPL V2.1

GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 276

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin Street, Fifth
Floor, Boston, MA 02110-1301

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Copyright (C) 2005-2011 Refractions Research Inc.

Copyright (C) 2009 Ragi Y. Burhum <ragi@burhum.com>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2005 2006 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006-2011 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net

Copyright (C) 2009-2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2016 Daniel Baston

Copyright (C) 2008 Sean Gillies

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Refractions Research Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2008-2010 Safe Software Inc.

Copyright (C) 2006-2007 Refractions Research Inc.

Copyright (C) 2005-2007 Refractions Research Inc.

Copyright (C) 2007 Refractions Research Inc.

Copyright (C) 2014 Mika Heiskanen <mika.heiskanen@fmi.fi>

Copyright (C) 2009-2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Mateusz Loskot

Copyright (C) 2005-2009 Refractions Research Inc.

Copyright (C) 2001-2009 Vivid Solutions Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Wu Yongwei

Copyright (C) 2012 Excensus LLC.

Copyright (C) 1996-2015 Free Software Foundation, Inc.

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 277

Copyright (c) 1995 Olivier Devillers <Olivier.Devillers@sophia.inria.fr>

Copyright (C) 2007-2010 Safe Software Inc.

Copyright (C) 2010 Safe Software Inc.

Copyright (C) 2006 Refractions Research

Copyright 2004 Sean Gillies, sgillies@frii.com

Copyright (C) 2011 Mateusz Loskot <mateusz@loskot.net>

Copyright (C) 2015 Nyall Dawson <nyall dot dawson at gmail dot com>

Original code (2.0 and earlier)copyright (c) 2000-2006 Lee Thomason
(www.grinninglizard.com)

Original code (2.0 and earlier)copyright (c) 2000-2002 Lee Thomason
(www.grinninglizard.com)

License: LGPL V2.1

GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin Street, Fifth
Floor, Boston, MA 02110-1301

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Copyright (C) 2005-2011 Refractions Research Inc.

Copyright (C) 2009 Ragi Y. Burhum <ragi@burhum.com>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2005 2006 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006-2011 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net

Copyright (C) 2009-2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2016 Daniel Baston

Copyright (C) 2008 Sean Gillies

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Refractions Research Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 278

Copyright (C) 2008-2010 Safe Software Inc.

Copyright (C) 2006-2007 Refractions Research Inc.

Copyright (C) 2005-2007 Refractions Research Inc.

Copyright (C) 2007 Refractions Research Inc.

Copyright (C) 2014 Mika Heiskanen <mika.heiskanen@fmi.fi>

Copyright (C) 2009-2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Mateusz Loskot

Copyright (C) 2005-2009 Refractions Research Inc.

Copyright (C) 2001-2009 Vivid Solutions Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Wu Yongwei

Copyright (C) 2012 Excensus LLC.

Copyright (C) 1996-2015 Free Software Foundation, Inc.

Copyright (c) 1995 Olivier Devillers <Olivier.Devillers@sophia.inria.fr>

Copyright (C) 2007-2010 Safe Software Inc.

Copyright (C) 2010 Safe Software Inc.

Copyright (C) 2006 Refractions Research

Copyright 2004 Sean Gillies, sgillies@frii.com

Copyright (C) 2011 Mateusz Loskot <mateusz@loskot.net>

Copyright (C) 2015 Nyall Dawson <nyall dot dawson at gmail dot com>

Original code (2.0 and earlier)copyright (c) 2000-2006 Lee Thomason
(www.grinninglizard.com)

Original code (2.0 and earlier)copyright (c) 2000-2002 Lee Thomason
(www.grinninglizard.com)

License: LGPL V2.1

GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin Street, Fifth
Floor, Boston, MA 02110-1301

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 279

Copyright (C) 2005-2011 Refractions Research Inc.

Copyright (C) 2009 Ragi Y. Burhum <ragi@burhum.com>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2005 2006 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006-2011 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net

Copyright (C) 2009-2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2016 Daniel Baston

Copyright (C) 2008 Sean Gillies

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Refractions Research Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2008-2010 Safe Software Inc.

Copyright (C) 2006-2007 Refractions Research Inc.

Copyright (C) 2005-2007 Refractions Research Inc.

Copyright (C) 2007 Refractions Research Inc.

Copyright (C) 2014 Mika Heiskanen <mika.heiskanen@fmi.fi>

Copyright (C) 2009-2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Mateusz Loskot

Copyright (C) 2005-2009 Refractions Research Inc.

Copyright (C) 2001-2009 Vivid Solutions Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Wu Yongwei

Copyright (C) 2012 Excensus LLC.

Copyright (C) 1996-2015 Free Software Foundation, Inc.

Copyright (c) 1995 Olivier Devillers <Olivier.Devillers@sophia.inria.fr>

Copyright (C) 2007-2010 Safe Software Inc.

Copyright (C) 2010 Safe Software Inc.

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 280

Copyright (C) 2006 Refractions Research

Copyright 2004 Sean Gillies, sgillies@frii.com

Copyright (C) 2011 Mateusz Loskot <mateusz@loskot.net>

Copyright (C) 2015 Nyall Dawson <nyall dot dawson at gmail dot com>

Original code (2.0 and earlier)copyright (c) 2000-2006 Lee Thomason
(www.grinninglizard.com)

Original code (2.0 and earlier)copyright (c) 2000-2002 Lee Thomason
(www.grinninglizard.com)

License: LGPL V2.1

GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin Street, Fifth
Floor, Boston, MA 02110-1301

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Copyright (C) 2005-2011 Refractions Research Inc.

Copyright (C) 2009 Ragi Y. Burhum <ragi@burhum.com>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2005 2006 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006-2011 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net

Copyright (C) 2009-2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2016 Daniel Baston

Copyright (C) 2008 Sean Gillies

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Refractions Research Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2008-2010 Safe Software Inc.

Copyright (C) 2006-2007 Refractions Research Inc.

Copyright (C) 2005-2007 Refractions Research Inc.

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 281

Copyright (C) 2007 Refractions Research Inc.

Copyright (C) 2014 Mika Heiskanen <mika.heiskanen@fmi.fi>

Copyright (C) 2009-2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Mateusz Loskot

Copyright (C) 2005-2009 Refractions Research Inc.

Copyright (C) 2001-2009 Vivid Solutions Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Wu Yongwei

Copyright (C) 2012 Excensus LLC.

Copyright (C) 1996-2015 Free Software Foundation, Inc.

Copyright (c) 1995 Olivier Devillers <Olivier.Devillers@sophia.inria.fr>

Copyright (C) 2007-2010 Safe Software Inc.

Copyright (C) 2010 Safe Software Inc.

Copyright (C) 2006 Refractions Research

Copyright 2004 Sean Gillies, sgillies@frii.com

Copyright (C) 2011 Mateusz Loskot <mateusz@loskot.net>

Copyright (C) 2015 Nyall Dawson <nyall dot dawson at gmail dot com>

Original code (2.0 and earlier)copyright (c) 2000-2006 Lee Thomason
(www.grinninglizard.com)

Original code (2.0 and earlier)copyright (c) 2000-2002 Lee Thomason
(www.grinninglizard.com)

License: LGPL V2.1

GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin Street, Fifth
Floor, Boston, MA 02110-1301

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Copyright (C) 2005-2011 Refractions Research Inc.

Copyright (C) 2009 Ragi Y. Burhum <ragi@burhum.com>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 282

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2005 2006 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006-2011 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net

Copyright (C) 2009-2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2016 Daniel Baston

Copyright (C) 2008 Sean Gillies

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Refractions Research Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2008-2010 Safe Software Inc.

Copyright (C) 2006-2007 Refractions Research Inc.

Copyright (C) 2005-2007 Refractions Research Inc.

Copyright (C) 2007 Refractions Research Inc.

Copyright (C) 2014 Mika Heiskanen <mika.heiskanen@fmi.fi>

Copyright (C) 2009-2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Mateusz Loskot

Copyright (C) 2005-2009 Refractions Research Inc.

Copyright (C) 2001-2009 Vivid Solutions Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Wu Yongwei

Copyright (C) 2012 Excensus LLC.

Copyright (C) 1996-2015 Free Software Foundation, Inc.

Copyright (c) 1995 Olivier Devillers <Olivier.Devillers@sophia.inria.fr>

Copyright (C) 2007-2010 Safe Software Inc.

Copyright (C) 2010 Safe Software Inc.

Copyright (C) 2006 Refractions Research

Copyright 2004 Sean Gillies, sgillies@frii.com

Copyright (C) 2011 Mateusz Loskot <mateusz@loskot.net>

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 283

Copyright (C) 2015 Nyall Dawson <nyall dot dawson at gmail dot com>

Original code (2.0 and earlier)copyright (c) 2000-2006 Lee Thomason
(www.grinninglizard.com)

Original code (2.0 and earlier)copyright (c) 2000-2002 Lee Thomason
(www.grinninglizard.com)

License: LGPL V2.1

GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin Street, Fifth
Floor, Boston, MA 02110-1301

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Copyright (C) 2005-2011 Refractions Research Inc.

Copyright (C) 2009 Ragi Y. Burhum <ragi@burhum.com>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2005 2006 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006-2011 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net

Copyright (C) 2009-2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2016 Daniel Baston

Copyright (C) 2008 Sean Gillies

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Refractions Research Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2008-2010 Safe Software Inc.

Copyright (C) 2006-2007 Refractions Research Inc.

Copyright (C) 2005-2007 Refractions Research Inc.

Copyright (C) 2007 Refractions Research Inc.

Copyright (C) 2014 Mika Heiskanen <mika.heiskanen@fmi.fi>

Copyright (C) 2009-2010 Sandro Santilli <strk@keybit.net>

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 284

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Mateusz Loskot

Copyright (C) 2005-2009 Refractions Research Inc.

Copyright (C) 2001-2009 Vivid Solutions Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Wu Yongwei

Copyright (C) 2012 Excensus LLC.

Copyright (C) 1996-2015 Free Software Foundation, Inc.

Copyright (c) 1995 Olivier Devillers <Olivier.Devillers@sophia.inria.fr>

Copyright (C) 2007-2010 Safe Software Inc.

Copyright (C) 2010 Safe Software Inc.

Copyright (C) 2006 Refractions Research

Copyright 2004 Sean Gillies, sgillies@frii.com

Copyright (C) 2011 Mateusz Loskot <mateusz@loskot.net>

Copyright (C) 2015 Nyall Dawson <nyall dot dawson at gmail dot com>

Original code (2.0 and earlier)copyright (c) 2000-2006 Lee Thomason
(www.grinninglizard.com)

Original code (2.0 and earlier)copyright (c) 2000-2002 Lee Thomason
(www.grinninglizard.com)

License: LGPL V2.1

GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin Street, Fifth
Floor, Boston, MA 02110-1301

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Copyright (C) 2005-2011 Refractions Research Inc.

Copyright (C) 2009 Ragi Y. Burhum <ragi@burhum.com>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2005 2006 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net>

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 285

Copyright (C) 2006-2011 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net

Copyright (C) 2009-2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2016 Daniel Baston

Copyright (C) 2008 Sean Gillies

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Refractions Research Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2008-2010 Safe Software Inc.

Copyright (C) 2006-2007 Refractions Research Inc.

Copyright (C) 2005-2007 Refractions Research Inc.

Copyright (C) 2007 Refractions Research Inc.

Copyright (C) 2014 Mika Heiskanen <mika.heiskanen@fmi.fi>

Copyright (C) 2009-2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Mateusz Loskot

Copyright (C) 2005-2009 Refractions Research Inc.

Copyright (C) 2001-2009 Vivid Solutions Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Wu Yongwei

Copyright (C) 2012 Excensus LLC.

Copyright (C) 1996-2015 Free Software Foundation, Inc.

Copyright (c) 1995 Olivier Devillers <Olivier.Devillers@sophia.inria.fr>

Copyright (C) 2007-2010 Safe Software Inc.

Copyright (C) 2010 Safe Software Inc.

Copyright (C) 2006 Refractions Research

Copyright 2004 Sean Gillies, sgillies@frii.com

Copyright (C) 2011 Mateusz Loskot <mateusz@loskot.net>

Copyright (C) 2015 Nyall Dawson <nyall dot dawson at gmail dot com>

Original code (2.0 and earlier)copyright (c) 2000-2006 Lee Thomason
(www.grinninglizard.com)

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 286

Original code (2.0 and earlier)copyright (c) 2000-2002 Lee Thomason
(www.grinninglizard.com)

License: LGPL V2.1

GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin Street, Fifth
Floor, Boston, MA 02110-1301

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Copyright (C) 2005-2011 Refractions Research Inc.

Copyright (C) 2009 Ragi Y. Burhum <ragi@burhum.com>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2005 2006 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006-2011 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net

Copyright (C) 2009-2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2016 Daniel Baston

Copyright (C) 2008 Sean Gillies

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Refractions Research Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2008-2010 Safe Software Inc.

Copyright (C) 2006-2007 Refractions Research Inc.

Copyright (C) 2005-2007 Refractions Research Inc.

Copyright (C) 2007 Refractions Research Inc.

Copyright (C) 2014 Mika Heiskanen <mika.heiskanen@fmi.fi>

Copyright (C) 2009-2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Mateusz Loskot

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 287

Copyright (C) 2005-2009 Refractions Research Inc.

Copyright (C) 2001-2009 Vivid Solutions Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Wu Yongwei

Copyright (C) 2012 Excensus LLC.

Copyright (C) 1996-2015 Free Software Foundation, Inc.

Copyright (c) 1995 Olivier Devillers <Olivier.Devillers@sophia.inria.fr>

Copyright (C) 2007-2010 Safe Software Inc.

Copyright (C) 2010 Safe Software Inc.

Copyright (C) 2006 Refractions Research

Copyright 2004 Sean Gillies, sgillies@frii.com

Copyright (C) 2011 Mateusz Loskot <mateusz@loskot.net>

Copyright (C) 2015 Nyall Dawson <nyall dot dawson at gmail dot com>

Original code (2.0 and earlier)copyright (c) 2000-2006 Lee Thomason
(www.grinninglizard.com)

Original code (2.0 and earlier)copyright (c) 2000-2002 Lee Thomason
(www.grinninglizard.com)

License: LGPL V2.1

GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin Street, Fifth
Floor, Boston, MA 02110-1301

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Copyright (C) 2005-2011 Refractions Research Inc.

Copyright (C) 2009 Ragi Y. Burhum <ragi@burhum.com>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2005 2006 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006-2011 Refractions Research Inc.

Copyright (C) 2011 Sandro Santilli <strk@keybit.net

Copyright (C) 2009-2011 Sandro Santilli <strk@keybit.net>

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 288

Copyright (C) 2016 Daniel Baston

Copyright (C) 2008 Sean Gillies

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Refractions Research Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Sandro Santilli <strk@keybit.net>

Copyright (C) 2008-2010 Safe Software Inc.

Copyright (C) 2006-2007 Refractions Research Inc.

Copyright (C) 2005-2007 Refractions Research Inc.

Copyright (C) 2007 Refractions Research Inc.

Copyright (C) 2014 Mika Heiskanen <mika.heiskanen@fmi.fi>

Copyright (C) 2009-2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 2011 Sandro Santilli <strk@keybit.net>

Copyright (C) 2010 Sandro Santilli <strk@keybit.net>

Copyright (C) 2009 Mateusz Loskot

Copyright (C) 2005-2009 Refractions Research Inc.

Copyright (C) 2001-2009 Vivid Solutions Inc.

Copyright (C) 2012 Sandro Santilli <strk@keybit.net>

Copyright (C) 2006 Wu Yongwei

Copyright (C) 2012 Excensus LLC.

Copyright (C) 1996-2015 Free Software Foundation, Inc.

Copyright (c) 1995 Olivier Devillers <Olivier.Devillers@sophia.inria.fr>

Copyright (C) 2007-2010 Safe Software Inc.

Copyright (C) 2010 Safe Software Inc.

Copyright (C) 2006 Refractions Research

Copyright 2004 Sean Gillies, sgillies@frii.com

Copyright (C) 2011 Mateusz Loskot <mateusz@loskot.net>

Copyright (C) 2015 Nyall Dawson <nyall dot dawson at gmail dot com>

Original code (2.0 and earlier)copyright (c) 2000-2006 Lee Thomason
(www.grinninglizard.com)

Original code (2.0 and earlier)copyright (c) 2000-2002 Lee Thomason
(www.grinninglizard.com)

License: LGPL V2.1

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 289

GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin Street, Fifth
Floor, Boston, MA 02110-1301

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts as the successor
of the GNU Library Public License, version 2, hence the version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public

Licenses are intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially
designated software packages--typically libraries--of the Free Software Foundation
and other authors who decide to use it. You can use it too, but we suggest you
first think carefully about whether this license or the ordinary General Public
License is the better strategy to use in any particular case, based on the
explanations below.

When we speak of free software, we are referring to freedom of use, not price.
Our General Public Licenses are designed to make sure that you have the freedom
to distribute copies of free software (and charge for this service if you wish); that
you receive source code or can get it if you want it; that you can change the
software and use pieces of it in new free programs; and that you are informed
that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to
deny you these rights or to ask you to surrender these rights. These restrictions
translate to certain responsibilities for you if you distribute copies of the library or
if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you
must give the recipients all the rights that we gave you. You must make sure that
they, too, receive or can get the source code. If you link other code with the library,
you must provide complete object files to the recipients, so that they can relink
them with the library after making changes to the library and recompiling it. And
you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and
(2) we offer you this license, which gives you legal permission to copy, distribute
and/or modify the library.

To protect each distributor, we want to make it very clear that there is no warranty
for the free library. Also, if the library is modified by someone else and passed on,

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 290

the recipients should know that what they have is not the original version, so that
the original author's reputation will not be affected by problems that might be
introduced by others.

Finally, software patents pose a constant threat to the existence of any free
program. We wish to make sure that a company cannot effectively restrict the
users of a free program by obtaining a restrictive license from a patent holder.
Therefore, we insist that any patent license obtained for a version of the library
must be consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU
General Public License. This license, the GNU Lesser General Public License, applies
to certain designated libraries, and

is quite different from the ordinary General Public License. We use this license for
certain libraries in order to permit linking those libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared
library, the combination of the two is legally speaking a combined work, a
derivative of the original library. The ordinary General Public License therefore
permits such linking only if the entire combination fits its criteria of freedom. The
Lesser General Public License permits more lax criteria for linking other code with
the library.

We call this license the "Lesser" General Public License because it does Less to
protect the user's freedom than the ordinary General Public License. It also
provides other free software developers Less of an advantage over competing
non-free programs. These disadvantages are the reason we use the ordinary
General Public License for many libraries. However, the Lesser license provides
advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the
widest possible use of a certain library, so that it becomes a de-facto standard. To
achieve this, non-free programs must be allowed to use the library. A more
frequent case is that a free library does the same job as widely used non-free
libraries. In this case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables
a greater number of people to use a large body of free software. For example,
permission to use the GNU C Library in

non-free programs enables many more people to use the whole GNU operating
system, as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users' freedom,
it does ensure that the user of a program that is linked with the Library has the
freedom and the wherewithal to run that program using a modified version of the
Library.

The precise terms and conditions for copying, distribution and modification follow.
Pay close attention to the difference between a "work based on the library" and a
"work that uses the library". The

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 291

former contains code derived from the library, whereas the latter must be
combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which
contains a notice placed by the copyright holder or other authorized party saying
it may be distributed under the terms of this Lesser General Public License (also
called "this License"). Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to
be conveniently linked with application programs (which use some of those
functions and data) to form executables.

The "Library", below, refers to any such software library or work which has been
distributed under these terms. A "work based on the Library" means either the
Library or any derivative work under

copyright law: that is to say, a work containing the Library or a portion of it, either
verbatim or with modifications and/or translated straightforwardly into another
language. (Hereinafter, translation is included without limitation in the term
"modification".)

"Source code" for a work means the preferred form of the work for making
modifications to it. For a library, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the
scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library
is not restricted, and output from such a program is covered only if its contents
constitute a work based on the Library (independent of the use of the Library in a
tool for writing it). Whether that is true depends on what the Library does and
what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source
code as you receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an

appropriate copyright notice and disclaimer of warranty; keep intact all the notices
that refer to this License and to the absence of any warranty; and distribute a
copy of this License along with the

Library.

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus
forming a work based on the Library, and copy and distribute such modifications
or work under the terms of Section 1

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 292

above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be
supplied by an application program that uses the facility, other than as an
argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of

its purpose remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is
entirely well-defined independent of the application. Therefore, Subsection 2d
requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must
still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Library, and can be reasonably considered
independent and separate works in

themselves, then this License, and its terms, do not apply to those sections when
you distribute them as separate works. But when you distribute the same sections
as part of a whole which is a work based on the Library, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every part regardless of who
wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control
the distribution of derivative or

collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the
Library (or with a work based on the Library) on a volume of a storage or
distribution medium does not bring the other work under the scope of this
License.

3. You may opt to apply the terms of the ordinary GNU General Public License
instead of this License to a given copy of the Library. To do this, you must alter all
the notices that refer to this License, so that they refer to the ordinary GNU
General Public License, version 2, instead of to this License. (If a newer version
than version 2 of the ordinary GNU General Public License has appeared, then you

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 293

can specify that version instead if you wish.) Do not make any other change in
these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the
ordinary GNU General Public License applies to all subsequent copies and
derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a
program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under
Section 2) in object code or executable form under the terms of Sections 1 and 2
above provided that you accompany

it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange.

If distribution of object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same
place satisfies the requirement to

distribute the source code, even though third parties are not compelled to copy
the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is
designed to work with the Library by being compiled or linked with it, is called a
"work that uses the Library". Such a

work, in isolation, is not a derivative work of the Library, and therefore falls
outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an
executable that is a derivative of the Library (because it contains portions of the
Library), rather than a "work that uses the library". The executable is therefore
covered by this License.

Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part
of the Library, the object code for the work may be a derivative work of the
Library even though the source code is not. Whether this is true is especially
significant if the work can be linked without the Library, or if the work is itself a
library. The threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and
accessors, and small macros and small inline functions (ten lines or less in length),
then the use of the object

file is unrestricted, regardless of whether it is legally a derivative work.
(Executables containing this object code plus portions of the Library will still fall
under Section 6.)

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 294

Otherwise, if the work is a derivative of the Library, you may distribute the object
code for the work under the terms of Section 6. Any executables containing that
work also fall under Section 6,

whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a "work
that uses the Library" with the Library to produce a work containing portions of
the Library, and distribute that work

under terms of your choice, provided that the terms permit modification of the
work for the customer's own use and reverse engineering for debugging such
modifications.

You must give prominent notice with each copy of the work that the Library is
used in it and that the Library and its use are covered by this License. You must
supply a copy of this License. If the work during execution displays copyright
notices, you must include the copyright notice for the Library among them, as well
as a reference directing the user to the copy of this License. Also, you must do one
of these things:

a) Accompany the work with the complete corresponding machine-readable
source code for the Library including whatever changes were used in the work
(which must be distributed under Sections 1 and 2 above); and, if the work is an
executable linked with the Library, with the complete machine-readable "work
that uses the Library", as object code and/or source code, so that the user can
modify the Library and then relink to produce a modified executable containing
the modified Library. (It is understood that the user who changes the contents of
definitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the Library. A suitable
mechanism is one that (1) uses at run time a copy of the library already present
on the user's computer system,

rather than copying library functions into the executable, and (2) will operate
properly with a modified version of the library, if the user installs one, as long as
the modified version is interface-compatible with the version that the work was
made with.

c) Accompany the work with a written offer, valid for at least three years, to give
the same user the materials specified in Subsection 6a, above, for a charge no
more than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same
place.

e) Verify that the user has already received a copy of these materials or that you
have already sent this user a copy.

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 295

For an executable, the required form of the "work that uses the Library" must
include any data and utility programs needed for reproducing the executable from
it. However, as a special exception,

the materials to be distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on

which the executable runs, unless that component itself accompanies the
executable.

It may happen that this requirement contradicts the license restrictions of other
proprietary libraries that do not normally accompany the operating system. Such a
contradiction means you cannot

use both them and the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side
in a single library together with other library facilities not covered by this License,
and distribute such a combined library, provided that the separate distribution of
the work based on the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed
under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a
work based on the Library, and explaining where to find the accompanying
uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except
as expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically
terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Library or
its derivative works. These actions are prohibited by law if you do not accept this
License. Therefore, by modifying or distributing the Library (or any work based on
the Library), you indicate your acceptance of this License to do so, and all its
terms and conditions for copying, distributing or modifying the Library or works
based on it.

10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy,
distribute, link with or modify the Library subject to these terms and conditions.
You may not impose any further restrictions on the recipients' exercise of the
rights granted herein.

You are not responsible for enforcing compliance by third parties with this License.

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 296

11. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed on
you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this
License. If you cannot distribute so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent license would not
permit royalty-free redistribution of the Library by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and
this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the

integrity of the free software distribution system which is implemented by public
license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder who
places the Library under this License may add an explicit geographical distribution
limitation excluding those countries, so that distribution is permitted only in or
among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the
Lesser General Public License from time to time.

Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a
version number of this License which applies to it and "any later version", you
have the option of following the terms and conditions either of that version or of
any later version published by the Free Software Foundation. If the Library does
not specify a license version number, you may choose any version ever published
by the Free Software Foundation.

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 297

14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask for
permission. For software which is

copyrighted by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision will be guided
by the two goals of preserving the free status

of all derivatives of our free software and of promoting the sharing and reuse of
software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to
the public, we recommend making it free software that everyone can redistribute
and change. You can do so by permitting redistribution under these terms (or,
alternatively, under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to
attach them to the start of each source file to most effectively convey the
exclusion of warranty; and each file should have at least the "copyright" line and a
pointer to where the full notice is found.

<one line to give the library's name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 298

This library is free software; you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin
Street, Fifth Floor, Boston, MA 02110-1301

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school,
if any, to sign a "copyright disclaimer" for the library, if necessary. Here is a
sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library `Frob' (a library
for tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990

Ty Coon, President of Vice

That's all there is to it!

Software: JSON-C

Copyright notice:

Copyright (c) 2004, 2005 Metaparadigm Pte. Ltd.

Copyright (c) 2009-2012 Eric Haszlakiewicz

Copyright (c) 2004, 2005 Metaparadigm Pte Ltd

Copyright (c) 2009 Hewlett-Packard Development Company, L.P.

Copyright 2011, John Resig

Copyright 2011, The Dojo Foundation

Copyright (c) 2012 Eric Haszlakiewicz

Copyright (c) 2009-2012 Hewlett-Packard Development Company, L.P.

Copyright (c) 2008-2009 Yahoo! Inc. All rights reserved.

Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005, 2006,

2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.

Copyright (c) 2013 Metaparadigm Pte. Ltd.

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 299

License: MIT License

Copyright (c) 2009-2012 Eric Haszlakiewicz

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

--

Copyright (c) 2004, 2005 Metaparadigm Pte Ltd

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Software: proj

Copyright notice:

"Copyright (C) 2010 Mateusz Loskot <mateusz@loskot.net>

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 300

Copyright (C) 2007 Douglas Gregor <doug.gregor@gmail.com>

Copyright (C) 2007 Troy Straszheim

CMake, Copyright (C) 2009-2010 Mateusz Loskot <mateusz@loskot.net>)

Copyright (C) 2011 Nicolas David <nicolas.david@ign.fr>

Copyright (c) 2000, Frank Warmerdam

Copyright (c) 2011, Open Geospatial Consortium, Inc.

Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005, 2006,

2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.

Copyright (c) Charles Karney (2012-2015) <charles@karney.com> and licensed

Copyright (c) 2005, Antonello Andrea

Copyright (c) 2010, Frank Warmerdam

Copyright (c) 1995, Gerald Evenden

Copyright (c) 2000, Frank Warmerdam <warmerdam@pobox.com>

Copyright (c) 2010, Frank Warmerdam <warmerdam@pobox.com>

Copyright (c) 2013, Frank Warmerdam

Copyright (c) 2003 Gerald I. Evenden

Copyright (c) 2012, Frank Warmerdam <warmerdam@pobox.com>

Copyright (c) 2002, Frank Warmerdam

Copyright (c) 2004 Gerald I. Evenden

Copyright (c) 2012 Martin Raspaud

Copyright (c) 2001, Thomas Flemming, tf@ttqv.com

Copyright (c) 2002, Frank Warmerdam <warmerdam@pobox.com>

Copyright (c) 2009, Frank Warmerdam

Copyright (c) 2003, 2006 Gerald I. Evenden

Copyright (c) 2011, 2012 Martin Lambers <marlam@marlam.de>

Copyright (c) 2006, Andrey Kiselev

Copyright (c) 2008-2012, Even Rouault <even dot rouault at mines-paris dot org>

Copyright (c) 2001, Frank Warmerdam

Copyright (c) 2001, Frank Warmerdam <warmerdam@pobox.com>

Copyright (c) 2008 Gerald I. Evenden

"

License: MIT License

Please see above

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 301

Software: libxml2

Copyright notice:

"See Copyright for the status of this software.

Copyright (C) 1998-2003 Daniel Veillard. All Rights Reserved.

Copyright (C) 2003 Daniel Veillard.

copy: see Copyright for the status of this software.

copy: see Copyright for the status of this software

copy: see Copyright for the status of this software.

Copyright (C) 2000 Bjorn Reese and Daniel Veillard.

Copy: See Copyright for the status of this software.

See COPYRIGHT for the status of this software

Copyright (C) 2000 Gary Pennington and Daniel Veillard.

Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005, 2006,

2007 Free Software Foundation, Inc.

Copyright (C) 1998 Bjorn Reese and Daniel Stenberg.

Copyright (C) 2001 Bjorn Reese <breese@users.sourceforge.net>

Copyright (C) 2000 Bjorn Reese and Daniel Stenberg.

Copyright (C) 2001 Bjorn Reese and Daniel Stenberg.

See Copyright for the status of this software

"

License: MIT License

Please see above

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 302

11 Using JDBC or ODBC for
GaussDB(DWS) Secondary Development

11.1 Prerequisites
If the connection pool mechanism is used during application development, comply
with the following specifications:

● If GUC parameters are set in the connection, before you return the connection
to the connection pool, run SET SESSION AUTHORIZATION DEFAULT;RESET
ALL; to clear the connection status.

● If a temporary table is used, delete it before you return the connection to the
connection pool.

If you do not do so, the status of connections in the connection pool will remain,
which affects subsequent operations using the connection pool.

Downloading Drivers
For details, see Downloading the JDBC or ODBC Driver.

11.2 JDBC-Based Development

11.2.1 JDBC Development Process
Java Database Connectivity (JDBC) is a Java API for executing SQL statements. It
provides a unified access interface for multiple relational databases, enabling
applications to work with data based on it. GaussDB(DWS) supports JDBC 4.0 and
requires JDK 1.6 or later for code compiling. It does not support JDBC-ODBC
Bridge. The following figure shows the JDBC application development process.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 303

https://support.huaweicloud.com/intl/en-us/mgtg-dws/dws_01_0032.html

Figure 11-1 JDBC-based application development process

Table 11-1 JDBC development process

Procedure Description

Load the
driver.

Download the JDBC driver and edit and load it in the program.

Connect to a
database.

Connect to the database through the JDBC driver.

Execute SQL
statements.

Applications operate database data by executing SQL
statements.

Process the
result set.

Different types of result sets have different application
scenarios. Applications need to select the appropriate result set
type as needed.

Close the
connection.

Make sure to close the database connection after completing
the required data operations.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 304

11.2.2 JDBC Package and Driver Class

JDBC Package

Download the dws_8.x.x_jdbc_driver.zip software package from the console.

For details, see Downloading the JDBC or ODBC Driver.

After the decompression, you will obtain the following JDBC packages in .jar
format:
● gsjdbc4.jar: Driver package compatible with PostgreSQL. The class name and

class structure in the driver are the same as those in the PostgreSQL driver. All
the applications running on PostgreSQL can be smoothly transferred to the
current system.

● gsjdbc200.jar: This driver package is used when both PostgreSQL and
GaussDB(DWS) are accessed in a JVM process. The main class name is
com.huawei.gauss200.jdbc.Driver and the prefix of the URL for database
connection is jdbc:gaussdb. Other information of this driver package is the
same as that of gsjdbc4.jar.

Driver Class

Before creating a database connection, you need to load the database driver class
org.postgresql.Driver (decompressed from gsjdbc4.jar) or
com.huawei.gauss200.jdbc.Driver (decompressed from gsjdbc200.jar).

NO TE

GaussDB(DWS) is compatible with PostgreSQL in the use of JDBC. If two JDBC drivers are
used in the same process, class names may conflict.

11.2.3 Loading a Driver
Load the database driver before creating a database connection.

You can load the driver in the following ways:

● Implicitly loading the driver before creating a connection in the code:
Class.forName ("org.postgresql.Driver")

● Transferring a parameter during the JVM startup: java -
Djdbc.drivers=org.postgresql.Driver jdbctest

NO TE

● jdbctest is the name of a test application.

● If gsjdbc200.jar is used, change the driver class name to
"com.huawei.gauss200.jdbc.Driver".

11.2.4 Connecting to a Database
After a database is connected, you can run SQL statements the database to
perform operations on data.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 305

https://support.huaweicloud.com/intl/en-us/mgtg-dws/dws_01_0032.html

NO TE

If you use an open-source Java Database Connectivity (JDBC) driver, ensure that the
database parameter password_encryption_type is set to 1. If the value is not 1, the
connection may fail. A typical error message is "none of the server's SASL authentication
mechanisms are supported." To avoid such problems, perform the following operations:
1. Create a new database user for connection or reset the password of the existing

database user.
● If you use an administrator account, reset the password. For details, see Resetting

a Password.
● If you are a common user, use another client tool (such as Data Studio) to connect

to the database and run the ALTER USER statement to change your password.
2. Connect to the database.

Here are the reasons why you need to perform these operations:
● MD5 algorithms may by vulnerable to collision attacks and cannot be used for password

verification. Currently, GaussDB(DWS) uses the default security design. By default, MD5
password verification is disabled, but MD5 is required by the open-source libpq
communication protocol of PostgreSQL. For connectivity purposes, you need to adjust
the cryptographic algorithm parameter password_encryption_type and enable the
MD5 algorithm.

● The database stores the hash digest of passwords instead of password text. During
password verification, the system compares the hash digest with the password digest
sent from the client (salt operations are involved). If you change your cryptographic
algorithm policy, the database cannot generate a new MD5 hash digest for your existing
password. For connectivity purposes, you must manually change your password or
create a new user. The new password will be encrypted using the hash algorithm and
stored for authentication in the next connection.

Function Prototype
JDBC provides the following three database connection methods:

● DriverManager.getConnection(String url);
● DriverManager.getConnection(String url, Properties info);
● DriverManager.getConnection(String url, String user, String password);

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 306

https://support.huaweicloud.com/intl/en-us/mgtg-dws/dws_01_0026.html
https://support.huaweicloud.com/intl/en-us/mgtg-dws/dws_01_0026.html

Parameter

Table 11-2 Database connection parameters

Parame
ter

Description

url gsjdbc4.jar database connection descriptor. The descriptor format
can be:
● jdbc:postgresql:database
● jdbc:postgresql://host/database
● jdbc:postgresql://host:port/database
● jdbc:postgresql://host:port[,host:port][...]/database
NOTE

If gsjdbc200.jar is used, replace jdbc:postgresql with jdbc:gaussdb.
● database: indicates the name of the database to be connected.
● host indicates the name or IP address of the database server. If an ELB is

bound to the cluster, set host to the IP address of the ELB.
For security purposes, the CN forbids access from other nodes in the cluster
without authentication. To access the CN from inside the cluster, deploy the
JDBC program on the host where the CN is located and set host to
127.0.0.1. If you do not do so, the error message "FATAL: Forbid remote
connection with trust method!" may be displayed.
It is recommended that the service system be deployed outside the cluster.
If it is deployed inside, the database performance may be affected.

● port: indicates the port number of a database server. By default, the
database on port 8000 of the local host is connected.

● Multiple IP addresses and ports can be configured. JDBC balances load by
random access and failover, and will automatically ignore unreachable IP
addresses.
IP addresses are separated using commas. Example: jdbc:postgresql://
10.10.0.13:8000,10.10.0.14:8000/database

● If JDBC is used to connect to a cluster, only JDBC connection parameters
can be configured in a cluster address. Variables cannot be added.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 307

Parame
ter

Description

info Database connection properties. Common properties include:
● user: string type. It indicates the database user establishing a

connection.
● password: string type. It indicates the password of a database

user.
● ssl: Boolean type. It indicates whether the Secure Socket Layer

(SSL) is used.
● loggerLevel: string type. It indicates the amount of information

that the driver logs and prints to the LogStream or LogWriter
specified in the DriverManager. Currently, OFF, DEBUG, and
TRACE are supported. DEBUG indicates that only logs of the
DEBUG or higher level are printed, generating a few log
information. TRACE indicates that logs of the DEBUG and TRACE
levels are printed, generating detailed log information. The default
value is OFF, indicating that no information will be logged.

● prepareThreshold: integer type. It indicates the number of
PreparedStatement executions required before SQL statements
are switched over to servers as prepared statements. The default
value is 5.

● batchMode: boolean type. It indicates whether to connect the
database in batch mode.

● fetchsize: integer type. It indicates the default fetchsize for
statements in the created connection.

● ApplicationName: string type. It indicates an application name.
The default value is PostgreSQL JDBC Driver.

● allowReadOnly: boolean type. It indicates whether to enable the
read-only mode for connection. The default value is false. If the
value is not changed to true, the execution of
connection.setReadOnly does not take effect.

● blobMode: string type. It is used to set the setBinaryStream
method to assign values to different data types. The value on
indicates that values are assigned to the BLOB data type and off
indicates that values are assigned to the bytea data type. The
default value is on.

● connectionExtraInfo: boolean type. It indicates whether the JDBC
driver reports the driver deployment path and process owner to
the database.
NOTE

The value can be true or false. The default value is true. If
connectionExtraInfo is set to true, the JDBC driver reports the driver
deployment path and process owner to the database and displays the
information in the connection_info parameter (see connection_info). In
this case, you can query the information from PG_STAT_ACTIVITY or
PGXC_STAT_ACTIVITY.

user Indicates a database user.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 308

Parame
ter

Description

passwor
d

Indicates the password of a database user.

Closing the Connection
Make sure to close the database connection after completing the required data
operations.

To close the database connection, you can directly invoke the close method, for
example, conn.close().

Examples

//gsjdbc4.jar is used as an example. If gsjdbc200.jar is used, replace the driver class name org.postgresql
with com.huawei.gauss200.jdbc and replace the URL prefix jdbc:postgresql with jdbc:gaussdb.
//The following code encapsulates database connection operations into an interface. The database can then
be connected using an authorized username and password.

public static Connection GetConnection(String username, String passwd) {
 //Set the driver class.
 String driver = "org.postgresql.Driver";
 //Database connection descriptor.
 String sourceURL = "jdbc:postgresql://10.10.0.13:8000/postgres?currentSchema=test";
 Connection conn = null;

 try {
 //Load the driver.
 Class.forName(driver);
 } catch (ClassNotFoundException e){
 e.printStackTrace();
 return null;
 }

 try {
 //Establish a connection.
 conn = DriverManager.getConnection(sourceURL, username, passwd);
 System.out.println("Connection succeed!");
 } catch (SQLException e) {
 e.printStackTrace();
 return null;
 }

 return conn;
 }

11.2.5 Executing SQL Statements

Executing an Ordinary SQL Statement
The application performs data (parameter statements do not need to be
transferred) in the database by running SQL statements, and you need to perform
the following steps:

Step 1 Create a statement object by triggering the createStatement method in
Connection.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 309

Statement stmt = con.createStatement();

Step 2 Execute the SQL statement by triggering the executeUpdate method in Statement.
int rc = stmt.executeUpdate("CREATE TABLE customer_t1(c_customer_sk INTEGER, c_customer_name
VARCHAR(32));");

NO TE

If an execution request (not in a transaction block) received in the database contains
multiple statements, the request is packed into a transaction. VACUUM is not supported in
a transaction block. If one of the statements fails, the entire request will be rolled back.

Step 3 Close the statement object.
stmt.close();

----End

Executing a Prepared SQL Statement
Pre-compiled statements were once complied and optimized and can have
additional parameters for different usage. For the statements have been pre-
compiled, the execution efficiency is greatly improved. If you want to execute a
statement for several times, use a precompiled statement. Perform the following
procedure:

Step 1 Create a prepared statement object by calling the prepareStatement method in
Connection.
PreparedStatement pstmt = con.prepareStatement("UPDATE customer_t1 SET c_customer_name = ?
WHERE c_customer_sk = 1");

Step 2 Set parameters by triggering the setShort method in PreparedStatement.
pstmt.setShort(1, (short)2);

Step 3 Execute the precompiled SQL statement by triggering the executeUpdate method
in PreparedStatement.
int rowcount = pstmt.executeUpdate();

Step 4 Close the precompiled statement object by calling the close method in
PreparedStatement.
pstmt.close();

----End

Calling a Stored Procedure
Perform the following steps to call existing stored procedures through the JDBC
interface in GaussDB(DWS):

Step 1 Create a call statement object by calling the prepareCall method in Connection.
CallableStatement cstmt = myConn.prepareCall("{? = CALL TESTPROC(?,?,?)}");

Step 2 Set parameters by calling the setInt method in CallableStatement.
cstmt.setInt(2, 50);
cstmt.setInt(1, 20);
cstmt.setInt(3, 90);

Step 3 Register with an output parameter by calling the registerOutParameter method in
CallableStatement.
cstmt.registerOutParameter(4, Types.INTEGER); //Register an OUT parameter as an integer.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 310

Step 4 Call the stored procedure by calling the execute method in CallableStatement.
cstmt.execute();

Step 5 Obtain the output parameter by calling the getInt method in CallableStatement.
int out = cstmt.getInt(4); //Obtain the OUT parameter.

For example:

//The following stored procedure has been created with the OUT parameter:
create or replace procedure testproc
(
 psv_in1 in integer,
 psv_in2 in integer,
 psv_inout in out integer
)
as
begin
 psv_inout := psv_in1 + psv_in2 + psv_inout;
end;
/

Step 6 Close the call statement by calling the close method in CallableStatement.
cstmt.close();

NO TE

● Many database classes such as Connection, Statement, and ResultSet have a close()
method. Close these classes after using their objects. Close these actions after using
their objects. Closing Connection will close all the related Statements, and closing a
Statement will close its ResultSet.

● Some JDBC drivers support named parameters, which can be used to set parameters by
name rather than sequence. If a parameter has a default value, you do not need to
specify any parameter value but can use the default value directly. Even though the
parameter sequence changes during a stored procedure, the application does not need
to be modified. Currently, the GaussDB(DWS) JDBC driver does not support this method.

● GaussDB(DWS) does not support functions containing OUT parameters, or default
values of stored procedures and function parameters.

----End

NO TICE

● If JDBC is used to call a stored procedure whose returned value is a cursor, the
returned cursor cannot be used.

● A stored procedure and an SQL statement must be executed separately.

Batch Processing
When a prepared statement batch processes multiple pieces of similar data, the
database creates only one execution plan. This improves the compilation and
optimization efficiency. Perform the following procedure:

Step 1 Create a prepared statement object by calling the prepareStatement method in
Connection.
PreparedStatement pstmt = con.prepareStatement("INSERT INTO customer_t1 VALUES (?)");

Step 2 Call the setShort parameter for each piece of data, and call addBatch to confirm
that the setting is complete.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 311

pstmt.setShort(1, (short)2);
pstmt.addBatch();

Step 3 Execute batch processing by calling the executeBatch method in
PreparedStatement.
int[] rowcount = pstmt.executeBatch();

Step 4 Close the precompiled statement object by calling the close method in
PreparedStatement.
pstmt.close();

NO TE

Do not terminate a batch processing action when it is ongoing; otherwise, the database
performance will deteriorate. Therefore, disable the automatic submission function during
batch processing, and manually submit every several lines. The statement for disabling
automatic submission is conn.setAutoCommit(false).

----End

11.2.6 Processing Data in a Result Set

Setting a Result Set Type
Different types of result sets are applicable to different application scenarios.
Applications select proper types of result sets based on requirements. Before
executing an SQL statement, you must create a statement object. Some methods
of creating statement objects can set the type of a result set. Table 11-3 lists
result set parameters. The related Connection methods are as follows:

//Create a Statement object. This object will generate a ResultSet object with a specified type and
concurrency.
createStatement(int resultSetType, int resultSetConcurrency);

//Create a PreparedStatement object. This object will generate a ResultSet object with a specified type and
concurrency.
prepareStatement(String sql, int resultSetType, int resultSetConcurrency);

//Create a CallableStatement object. This object will generate a ResultSet object with a specified type and
concurrency.
prepareCall(String sql, int resultSetType, int resultSetConcurrency);

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 312

Table 11-3 Result set types

Parameter Description

resultSetType Indicates the type of a result set. There are three types of
result sets:
● ResultSet.TYPE_FORWARD_ONLY: The ResultSet

object can only be navigated forward. It is the default
value.

● ResultSet.TYPE_SCROLL_SENSITIVE: You can view the
modified result by scrolling to the modified row.

● ResultSet.TYPE_SCROLL_INSENSITIVE: The ResultSet
object is insensitive to changes in the underlying data
source.

NOTE
After a result set has obtained data from the database, the result
set is insensitive to data changes made by other transactions,
even if the result set type is
ResultSet.TYPE_SCROLL_SENSITIVE. To obtain up-to-date data
of the record pointed by the cursor from the database, call the
refreshRow() method in a ResultSet object.

resultSetConcurren-
cy

Indicates the concurrency type of a result set. There are
two types of concurrency.
● ResultSet.CONCUR_READ_ONLY: The data in a result

set cannot be updated except that an updated
statement has been created in the result set data.

● ResultSet.CONCUR_UPDATEABLE: changeable result
set. The concurrency type for a result set object can be
updated if the result set is scrollable.

Positioning a Cursor in a Result Set
ResultSet objects include a cursor pointing to the current data row. The cursor is
initially positioned before the first row. The next method moves the cursor to the
next row from its current position. When a ResultSet object does not have a next
row, a call to the next method returns false. Therefore, this method is used in the
while loop for result set iteration. However, the JDBC driver provides more cursor
positioning methods for scrollable result sets, which allows positioning cursor in
the specified row. Table 11-4 lists these methods.

Table 11-4 Methods for positioning a cursor in a result set

Method Description

next() Moves cursor to the next row from its
current position.

previous() Moves cursor to the previous row from
its current position.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 313

Method Description

beforeFirst() Places cursor before the first row.

afterLast() Places cursor after the last row.

first() Places cursor to the first row.

last() Places cursor to the last row.

absolute(int) Places cursor to a specified row.

relative(int) Moves cursor forward or backward a
specified number of rows.

Obtaining the cursor position from a result set
This cursor positioning method will be used to change the cursor position for a
scrollable result set. JDBC driver provides a method to obtain the cursor position in
a result set. Table 11-5 lists the method.

Table 11-5 Method for obtaining the cursor position in a result set

Method Description

isFirst() Checks whether the cursor is in the
first row.

isLast() Checks whether the cursor is in the
last row.

isBeforeFirst() Checks whether the cursor is before
the first row.

isAfterLast() Checks whether the cursor is after the
last row.

getRow() Gets the current row number of the
cursor.

Obtaining data from a result set
ResultSet objects provide a variety of methods to obtain data from a result set.
Table 11-6 lists the common methods for obtaining data. If you want to know
more about other methods, see JDK official documents.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 314

Table 11-6 Common methods for obtaining data from a result set

Method Description

int getInt(int columnIndex) Retrieves the value of the column
designated by a column index in the
current row as an int.

int getInt(String columnLabel) Retrieves the value of the column
designated by a column label in the
current row as an int.

String getString(int columnIndex) Retrieves the value of the column
designated by a column index in the
current row as a String.

String getString(String columnLabel) Retrieves the value of the column
designated by a column label in the
current row as a String.

Date getDate(int columnIndex) Retrieves the value of the column
designated by a column index in the
current row as a Date.

Date getDate(String columnLabel) Retrieves the value of the column
designated by a column name in the
current row as a Date.

11.2.7 Common JDBC Development Examples

Example 1
Before completing the following example, you need to create a stored procedure.

create or replace procedure testproc
(
 psv_in1 in integer,
 psv_in2 in integer,
 psv_inout in out integer
)
as
begin
 psv_inout := psv_in1 + psv_in2 + psv_inout;
end;
/

This example illustrates how to develop applications based on the GaussDB(DWS)
JDBC interface.

//DBtest.java
//gsjdbc4.jar is used as an example. If gsjdbc200.jar is used, replace the driver class name org.postgresql
with com.huawei.gauss200.jdbc and replace the URL prefix jdbc:postgresql with jdbc:gaussdb.
// This example illustrates the main processes of JDBC-based development, covering database connection
creation, table creation, and data insertion.

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.SQLException;

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 315

import java.sql.Statement;
import java.sql.CallableStatement;

public class DBTest {

 //Establish a connection to the database.
 public static Connection GetConnection(String username, String passwd) {
 String driver = "org.postgresql.Driver";
 String sourceURL = "jdbc:postgresql://localhost:/gaussdb";
 Connection conn = null;
 try {
 //Load the database driver.
 Class.forName(driver).newInstance();
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }

 try {
 //Establish a connection to the database.
 conn = DriverManager.getConnection(sourceURL, username, passwd);
 System.out.println("Connection succeed!");
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }

 return conn;
 };

 //Run an ordinary SQL statement. Create a customer_t1 table.
 public static void CreateTable(Connection conn) {
 Statement stmt = null;
 try {
 stmt = conn.createStatement();

 //Run an ordinary SQL statement.
 int rc = stmt
 .executeUpdate("CREATE TABLE customer_t1(c_customer_sk INTEGER, c_customer_name
VARCHAR(32));");

 stmt.close();
 } catch (SQLException e) {
 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException e1) {
 e1.printStackTrace();
 }
 }
 e.printStackTrace();
 }
 }

 //Run the preprocessing statement to insert data in batches.
 public static void BatchInsertData(Connection conn) {
 PreparedStatement pst = null;

 try {
 //Generate a prepared statement.
 pst = conn.prepareStatement("INSERT INTO customer_t1 VALUES (?,?)");
 for (int i = 0; i < 3; i++) {
 //Add parameters.
 pst.setInt(1, i);
 pst.setString(2, "data " + i);
 pst.addBatch();
 }
 //Run batch processing.
 pst.executeBatch();

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 316

 pst.close();
 } catch (SQLException e) {
 if (pst != null) {
 try {
 pst.close();
 } catch (SQLException e1) {
 e1.printStackTrace();
 }
 }
 e.printStackTrace();
 }
 }

 //Run the precompilation statement to update data.
 public static void ExecPreparedSQL(Connection conn) {
 PreparedStatement pstmt = null;
 try {
 pstmt = conn
 .prepareStatement("UPDATE customer_t1 SET c_customer_name = ? WHERE c_customer_sk = 1");
 pstmt.setString(1, "new Data");
 int rowcount = pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {
 if (pstmt != null) {
 try {
 pstmt.close();
 } catch (SQLException e1) {
 e1.printStackTrace();
 }
 }
 e.printStackTrace();
 }
 }

//Run a stored procedure.
 public static void ExecCallableSQL(Connection conn) {
 CallableStatement cstmt = null;
 try {

 cstmt=conn.prepareCall("{? = CALL TESTPROC(?,?,?)}");
 cstmt.setInt(2, 50);
 cstmt.setInt(1, 20);
 cstmt.setInt(3, 90);
 cstmt.registerOutParameter(4, Types.INTEGER); //Register an OUT parameter as an integer.
 cstmt.execute();
 int out = cstmt.getInt(4); //Obtain the out parameter value.
 System.out.println("The CallableStatment TESTPROC returns:"+out);
 cstmt.close();
 } catch (SQLException e) {
 if (cstmt != null) {
 try {
 cstmt.close();
 } catch (SQLException e1) {
 e1.printStackTrace();
 }
 }
 e.printStackTrace();
 }
 }

 /**
 * Main process. Call static methods one by one.
 * @param args
 */
 public static void main(String[] args) {
 //Establish a connection to the database.
 Connection conn = GetConnection("tester", "password");

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 317

 //Create a table.
 CreateTable(conn);

 //Insert data in batches.
 BatchInsertData(conn);

 //Run the precompilation statement to update data.
 ExecPreparedSQL(conn);

 //Run a stored procedure.
 ExecCallableSQL(conn);

 //Close the connection to the database.
 try {
 conn.close();
 } catch (SQLException e) {
 e.printStackTrace();
 }

 }

}

Example 2: High Client Memory Usage
In this example, setFetchSize adjusts the memory usage of the client by using the
database cursor to obtain server data in batches. It may increase network
interaction and damage some performance.

The cursor is valid within a transaction. Therefore, you need to disable the
autocommit function.
// Disable the autocommit function.
conn.setAutoCommit(false);
Statement st = conn.createStatement();

// Open the cursor and obtain 50 lines of data each time.
st.setFetchSize(50);
ResultSet rs = st.executeQuery("SELECT * FROM mytable");
while (rs.next()){
 System.out.print("a row was returned.");
}
rs.close();

// Disable the server cursor.
st.setFetchSize(0);
rs = st.executeQuery("SELECT * FROM mytable");
while (rs.next()){
 System.out.print("many rows were returned.");
}
rs.close();

// Close the statement.
st.close();

Retrying SQL Queries for Applications
If the primary DN is faulty and cannot be restored within 40 seconds, its standby is
automatically promoted to primary to ensure that the cluster runs properly. Jobs
running during the switchover will fail and those started after the switchover will
not be affected. To protect upper-layer services from being affected by the failover,
refer to the following example to construct a SQL retry mechanism at the service
layer.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 318

gsjdbc4.jar is used as an example. If gsjdbc200.jar is used, replace the driver class
name org.postgresql with com.huawei.gauss200.jdbc and replace the URL prefix
jdbc:postgresql with jdbc:gaussdb.
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

/**
 *
 *
 */

class ExitHandler extends Thread {
 private Statement cancel_stmt = null;

 public ExitHandler(Statement stmt) {
 super("Exit Handler");
 this.cancel_stmt = stmt;
 }
 public void run() {
 System.out.println("exit handle");
 try {
 this.cancel_stmt.cancel();
 } catch (SQLException e) {
 System.out.println("cancel query failed.");
 e.printStackTrace();
 }
 }
}

public class SQLRetry {
 //Establish a connection to the database.
 public static Connection GetConnection(String username, String passwd) {
 String driver = "org.postgresql.Driver";
 String sourceURL = "jdbc:postgresql://10.131.72.136:8000/gaussdb";
 Connection conn = null;
 try {
 //Load the database driver.
 Class.forName(driver).newInstance();
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }

 try {
 //Establish a connection to the database.
 conn = DriverManager.getConnection(sourceURL, username, passwd);
 System.out.println("Connection succeed!");
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }

 return conn;
}

Run an ordinary SQL statement. Create the jdbc_test1 table.
public static void CreateTable(Connection conn) {
 Statement stmt = null;
 try {
 stmt = conn.createStatement();

 // add ctrl+c handler
 Runtime.getRuntime().addShutdownHook(new ExitHandler(stmt));

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 319

 //Run an ordinary SQL statement.
 int rc2 = stmt
 .executeUpdate("DROP TABLE if exists jdbc_test1;");

 int rc1 = stmt
 .executeUpdate("CREATE TABLE jdbc_test1(col1 INTEGER, col2 VARCHAR(10));");

 stmt.close();
 } catch (SQLException e) {
 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException e1) {
 e1.printStackTrace();
 }
 }
 e.printStackTrace();
 }
 }

Run the preprocessing statement to insert data in batches.

public static void BatchInsertData(Connection conn) {
 PreparedStatement pst = null;

 try {
 //Generate a prepared statement.
 pst = conn.prepareStatement("INSERT INTO jdbc_test1 VALUES (?,?)");
 for (int i = 0; i < 100; i++) {
 //Add parameters.
 pst.setInt(1, i);
 pst.setString(2, "data " + i);
 pst.addBatch();
 }
 //Run batch processing.
 pst.executeBatch();
 pst.close();
 } catch (SQLException e) {
 if (pst != null) {
 try {
 pst.close();
 } catch (SQLException e1) {
 e1.printStackTrace();
 }
 }
 e.printStackTrace();
 }
 }

Run the precompilation statement to update data.
 private static boolean QueryRedo(Connection conn){
 PreparedStatement pstmt = null;
 boolean retValue = false;
 try {
 pstmt = conn
 .prepareStatement("SELECT col1 FROM jdbc_test1 WHERE col2 = ?");

 pstmt.setString(1, "data 10");
 ResultSet rs = pstmt.executeQuery();

 while (rs.next()) {
 System.out.println("col1 = " + rs.getString("col1"));
 }
 rs.close();

 pstmt.close();
 retValue = true;
 } catch (SQLException e) {
 System.out.println("catch...... retValue " + retValue);

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 320

 if (pstmt != null) {
 try {
 pstmt.close();
 } catch (SQLException e1) {
 e1.printStackTrace();
 }
 }
 e.printStackTrace();
 }

 System.out.println("finesh......");
 return retValue;
 }

Run a query statement and retry upon a failure. The number of retry times can be
configured.
 public static void ExecPreparedSQL(Connection conn) throws InterruptedException {
 int maxRetryTime = 50;
 int time = 0;
 String result = null;
 do {
 time++;
 try {
 System.out.println("time:" + time);
 boolean ret = QueryRedo(conn);
 if(ret == false){
 System.out.println("retry, time:" + time);
 Thread.sleep(10000);
 QueryRedo(conn);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 } while (null == result && time < maxRetryTime);

 }

 /**
 * Main process. Call static methods one by one.
 * @param args
 * @throws InterruptedException
 */
 public static void main(String[] args) throws InterruptedException {
 //Establish a connection to the database.
 Connection conn = GetConnection("testuser", "test@123");

 //Create a table.
 CreateTable(conn);

 //Insert data in batches.
 BatchInsertData(conn);

 //Run the precompilation statement to update data.
 ExecPreparedSQL(conn);

 //Close the connection to the database.
 try {
 conn.close();
 } catch (SQLException e) {
 e.printStackTrace();
 }

 }

 }

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 321

Importing and Exporting Data Through Local Files
When the JAVA language is used for secondary development based on
GaussDB(DWS), you can use the CopyManager interface to export data from the
database to a local file or import a local file to the database by streaming. The file
can be in CSV or TEXT format.

The sample program is as follows. Load the GaussDB(DWS) JDBC driver before
running it.

gsjdbc4.jar is used as an example. If gsjdbc200.jar is used, replace the driver class
name org.postgresql with com.huawei.gauss200.jdbc and replace the URL prefix
jdbc:postgresql with jdbc:gaussdb.
import java.sql.Connection;
import java.sql.DriverManager;
import java.io.IOException;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.sql.SQLException;
import org.postgresql.copy.CopyManager;
import org.postgresql.core.BaseConnection;

public class Copy{

 public static void main(String[] args)
 {
 String urls = new String("jdbc:postgresql://10.180.155.74:8000/gaussdb"); //URL of the database
 String username = new String("jack"); //Username
 String password = new String("********"); //Password
 String tablename = new String("migration_table"); //Define table information.
 String tablename1 = new String("migration_table_1"); //Define table information.
 String driver = "org.postgresql.Driver";
 Connection conn = null;

 try {
 Class.forName(driver);
 conn = DriverManager.getConnection(urls, username, password);
 } catch (ClassNotFoundException e) {
 e.printStackTrace(System.out);
 } catch (SQLException e) {
 e.printStackTrace(System.out);
 }

Import and export data.
 //Export the query result of migration_table to the local file d:/data.txt.
 try {
 copyToFile(conn, "d:/data.txt", "(SELECT * FROM migration_table)");
 } catch (SQLException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 //Import data from the d:/data.txt file to the migration_table_1 table.
 try {
 copyFromFile(conn, "d:/data.txt", migration_table_1);
 } catch (SQLException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 322

 //Export the data from the migration_table_1 table to the d:/data1.txt file.
 try {
 copyToFile(conn, "d:/data1.txt", migration_table_1);
 } catch (SQLException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }

 public static void copyFromFile(Connection connection, String filePath, String tableName)
 throws SQLException, IOException {

 FileInputStream fileInputStream = null;

 try {
 CopyManager copyManager = new CopyManager((BaseConnection)connection);
 fileInputStream = new FileInputStream(filePath);
 copyManager.copyIn("COPY " + tableName + " FROM STDIN", fileInputStream);
 } finally {
 if (fileInputStream != null) {
 try {
 fileInputStream.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 }

 public static void copyToFile(Connection connection, String filePath, String tableOrQuery)
 throws SQLException, IOException {

 FileOutputStream fileOutputStream = null;

 try {
 CopyManager copyManager = new CopyManager((BaseConnection)connection);
 fileOutputStream = new FileOutputStream(filePath);
 copyManager.copyOut("COPY " + tableOrQuery + " TO STDOUT", fileOutputStream);
 } finally {
 if (fileOutputStream != null) {
 try {
 fileOutputStream.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 }
}

Migrating Data from MySQL to GaussDB(DWS)
The following example shows how to use CopyManager to migrate data from
MySQL to GaussDB(DWS).

gsjdbc4.jar is used as an example. If gsjdbc200.jar is used, replace the driver class
name org.postgresql with com.huawei.gauss200.jdbc and replace the URL prefix
jdbc:postgresql with jdbc:gaussdb.
import java.io.StringReader;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 323

import java.sql.Statement;

import org.postgresql.copy.CopyManager;
import org.postgresql.core.BaseConnection;

public class Migration{

 public static void main(String[] args) {
 String url = new String("jdbc:postgresql://10.180.155.74:8000/gaussdb"); //URL of the database
 String user = new String("jack"); //GaussDB(DWS) username
 String pass = new String("********"); //GaussDB(DWS) password
 String tablename = new String("migration_table"); //Define table information.
 String delimiter = new String("|"); //Define a delimiter.
 String encoding = new String("UTF8"); //Define a character set.
 String driver = "org.postgresql.Driver";
 StringBuffer buffer = new StringBuffer(); //Define the buffer to store formatted data.

 try {
 //Obtain the query result set of the source database.
 ResultSet rs = getDataSet();

 //Traverse the result set and obtain records row by row.
 //The values of columns in each record are separated by the specified delimiter and end with a
newline character to form strings.
 ////Add the strings to the buffer.
 while (rs.next()) {
 buffer.append(rs.getString(1) + delimiter
 + rs.getString(2) + delimiter
 + rs.getString(3) + delimiter
 + rs.getString(4)
 + "\n");
 }
 rs.close();

 try {
 //Connect to the target database.
 Class.forName(driver);
 Connection conn = DriverManager.getConnection(url, user, pass);
 BaseConnection baseConn = (BaseConnection) conn;
 baseConn.setAutoCommit(false);

 //Initialize table information.
 String sql = "Copy " + tablename + " from STDIN DELIMITER " + "'" + delimiter + "'" + "
ENCODING " + "'" + encoding + "'";

 //Submit data in the buffer.
 CopyManager cp = new CopyManager(baseConn);
 StringReader reader = new StringReader(buffer.toString());
 cp.copyIn(sql, reader);
 baseConn.commit();
 reader.close();
 baseConn.close();
 } catch (ClassNotFoundException e) {
 e.printStackTrace(System.out);
 } catch (SQLException e) {
 e.printStackTrace(System.out);
 }

 } catch (Exception e) {
 e.printStackTrace();
 }
 }

Return the query result from the source database.
 private static ResultSet getDataSet() {
 ResultSet rs = null;
 try {
 Class.forName("com.mysql.jdbc.Driver").newInstance();

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 324

 Connection conn = DriverManager.getConnection("jdbc:mysql://10.119.179.227:3306/jack?
useSSL=false&allowPublicKeyRetrieval=true", "jack", "********");
 Statement stmt = conn.createStatement();
 rs = stmt.executeQuery("select * from migration_table");
 } catch (SQLException e) {
 e.printStackTrace();
 } catch (Exception e) {
 e.printStackTrace();
 }
 return rs;
 }
}

11.2.8 Processing RoaringBitmap Result Sets and Importing It
to GaussDB (DWS)

GaussDB(DWS) 8.1.3 and later versions support the RoaringBitmap function.
When using the Java language to perform secondary development based on
GaussDB(DWS), you can use the CopyManager interface to import a small
amount of RoaringBitmap data to GaussDB(DWS).

NO TE

To import a large amount of RoaringBitmap data, computing power of the application side
needs to be increased. Otherwise, the import performance will be affected.

Processing RoaringBitmap Data

Step 1 Visit Maven to download the open-source RoaringBitmap JAR package. Version
0.9.15 is recommended.

The dependency items of the POM file are configured as follows:
<dependencies>
 <dependency>
 <groupId>org.roaringbitmap</groupId>
 <artifactId>RoaringBitmap</artifactId>
 <version>0.9.15</version>
 </dependency>
 </dependencies>

Step 2 Invoke the JAR package to convert data to the RoaringBitmap type.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 325

https://mvnrepository.com/artifact/org.roaringbitmap/RoaringBitmap

The general process is to declare a Roaring bitmap, call the add() method to
convert data of the int type into the Roaringbitmap type, and then serialize the
converted data. The sample code is as follows:

RoaringBitmap rr2 = new RoaringBitmap ();
for (int i = 1; i < 10000000; i++) {
 rr2.add(i);
}
ByteArrayOutputStream a = new ByteArrayOutputStream();
DataOutputStream b = new DataOutputStream(a);
rr2.serialize(b);

----End

Data Import
Invoke CopyManager to import data to the database. In this way, a small amount
of RoaringBitmap data can be imported to the database without having to be
stored locally.

//gsjdbc4.jar is used as an example. If gsjdbc200.jar is used, replace the driver class name org.postgresql
with com.huawei.gauss200.jdbc and replace the URL prefix jdbc:postgresql with jdbc:gaussdb.

package rb_demo;

import org.postgresql.copy.CopyManager;
import org.postgresql.core.BaseConnection;
import org.roaringbitmap.RoaringBitmap;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.StringReader;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

public class rb_demo {

 private static String hexStr = "0123456789ABCDEF";

 public static String bytesToHex(byte[] bytes) {
 StringBuffer sb = new StringBuffer();
 for (int i = 0; i < bytes.length; i++) {
 String hex = Integer.toHexString(bytes[i] & 0xFF);
 if (hex.length() < 2) {
 sb.append(0);
 }
 sb.append(hex);
 }
 return sb.toString();
 }

 public static Connection GetConnection(String username, String passwd) {
 String driver = "org.postgresql.Driver";
String sourceURL = "jdbc:postgresql://10.185.180.161: 8000/gaussdb"; //Database URL
 Connection conn = null;
 try {
 //Load the database driver.
 Class.forName(driver).newInstance();
 } catch (Exception e) {

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 326

 e.printStackTrace();
 return null;
 }

 try {
 //Establish a connection to the database.
 conn = DriverManager.getConnection(sourceURL, username, passwd);
 System.out.println("Connection succeed!");
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }

 return conn;
 }

 public static void main(String[] args) throws IOException {

 RoaringBitmap rr2 = new RoaringBitmap();

 for (int i = 1; i < 10000000; i++) {
 rr2.add(i);
 }

 ByteArrayOutputStream a = new ByteArrayOutputStream();

 DataOutputStream b = new DataOutputStream(a);
 rr2.serialize(b);

Connection conn = GetConnection("test", "Gauss_234"); //User name and password.
 Statement pstmt = null;
 try {
 conn.setAutoCommit(true);
 pstmt = conn.createStatement();

 pstmt.execute("drop table if exists t_rb");
 pstmt.execute("create table t_rb(c1 int, c2 roaringbitmap) distribute by hash (c1);");

 StringReader sr = null;
 CopyManager cm = null;
 cm = new CopyManager((BaseConnection) conn);

 String delimiter = "|";
 StringBuffer tuples = new StringBuffer();
 tuples.append("1" + delimiter + "\\x" + bytesToHex(a.toByteArray()));

 StringBuffer sb = new StringBuffer();
 sb.append(tuples.toString());

 sr = new StringReader(tuples.toString());
 String sql = "copy t_rb from STDIN with (delimiter '|', NOESCAPING)";

long rows = cm.copyIn(sql, sr);//Execute the COPY command to save data to the database.

 pstmt.close();
 } catch (SQLException e) {
 if (pstmt != null) {
 try {
 pstmt.close();
 } catch (SQLException e1) {
 e1.printStackTrace();
 }
 }
 e.printStackTrace();
 }
 }
}

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 327

11.2.9 JDBC Interfaces
JDBC interface is a set of API methods for users. This section describes some
common interfaces. For other interfaces, see information in JDK1.6 (software
package) and JDBC 4.0.

java.sql.Connection

This section describes java.sql.Connection, the interface for connecting to a
database.

Table 11-7 java.sql.Connection methods

Method Return Type Support JDBC 4 or
Not

close() void Yes

commit() void Yes

createStatement() Statement Yes

getAutoCommit() boolean Yes

getClientInfo() Properties Yes

getClientInfo(String name) String Yes

getTransactionIsolation() int Yes

isClosed() boolean Yes

isReadOnly() boolean Yes

prepareStatement(String sql) PreparedStatement Yes

rollback() void Yes

setAutoCommit(boolean
autoCommit)

void Yes

setClientInfo(Properties
properties)

void Yes

setClientInfo(String
name,String value)

void Yes

NO TICE

The interface uses the AutoCommit mode by default, but you can disable it by
setting setAutoCommit to false. This will package all subsequent statements in
explicit transactions. Note that you will not be able to execute statements that
cannot be executed within transactions.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 328

java.sql.CallableStatement
This section describes java.sql.CallableStatement, the stored procedure execution
interface.

Table 11-8 java.sql.CallableStatement methods

Method Return Type Support JDBC 4 or Not

registerOutParameter(int
parameterIndex, int type)

void Yes

wasNull() boolean Yes

getString(int
parameterIndex)

String Yes

getBoolean(int
parameterIndex)

boolean Yes

getByte(int parameterIndex) byte Yes

getShort(int parameterIndex) short Yes

getInt(int parameterIndex) int Yes

getLong(int parameterIndex) long Yes

getFloat(int parameterIndex) float Yes

getDouble(int
parameterIndex)

double Yes

getBigDecimal(int
parameterIndex)

BigDecimal Yes

getBytes(int parameterIndex) byte[] Yes

getDate(int parameterIndex) Date Yes

getTime(int parameterIndex) Time Yes

getTimestamp(int
parameterIndex)

Timestamp Yes

getObject(int
parameterIndex)

Object Yes

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 329

NO TE

● Do not perform batch operations on statements containing OUT parameters.

● The following methods are inherited from java.sql.Statement: close, execute,
executeQuery, executeUpdate, getConnection, getResultSet, getUpdateCount,
isClosed, setMaxRows, and setFetchSize.

● The following methods are inherited from java.sql.PreparedStatement: addBatch,
clearParameters, execute, executeQuery, executeUpdate, getMetaData,
setBigDecimal, setBoolean, setByte, setBytes, setDate, setDouble, setFloat, setInt,
setLong, setNull, setObject, setString, setTime, and setTimestamp.

java.sql.DatabaseMetaData

This section describes java.sql.DatabaseMetaData, the interface for defining
database objects.

Table 11-9 java.sql.DatabaseMetaData methods

Method Return Type Support JDBC 4 or Not

getTables(String catalog,
String schemaPattern, String
tableNamePattern, String[]
types)

ResultSet Yes

getColumns(String catalog,
String schemaPattern, String
tableNamePattern, String
columnNamePattern)

ResultSet Yes

getTableTypes() ResultSet Yes

getUserName() String Yes

isReadOnly() boolean Yes

nullsAreSortedHigh() boolean Yes

nullsAreSortedLow() boolean Yes

nullsAreSortedAtStart() boolean Yes

nullsAreSortedAtEnd() boolean Yes

getDatabaseProductName() String Yes

getDatabaseProductVer-
sion()

String Yes

getDriverName() String Yes

getDriverVersion() String Yes

getDriverMajorVersion() int Yes

getDriverMinorVersion() int Yes

usesLocalFiles() boolean Yes

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 330

Method Return Type Support JDBC 4 or Not

usesLocalFilePerTable() boolean Yes

supportsMixedCaseIdentifi-
ers()

boolean Yes

storesUpperCaseIdentifiers() boolean Yes

storesLowerCaseIdentifiers() boolean Yes

supportsMixedCaseQuotedI-
dentifiers()

boolean Yes

storesUpperCaseQuotedI-
dentifiers()

boolean Yes

storesLowerCaseQuotedI-
dentifiers()

boolean Yes

storesMixedCaseQuotedI-
dentifiers()

boolean Yes

supportsAlterTableWithAdd-
Column()

boolean Yes

supportsAlterTableWith-
DropColumn()

boolean Yes

supportsColumnAliasing() boolean Yes

nullPlusNonNullIsNull() boolean Yes

supportsConvert() boolean Yes

supportsConvert(int
fromType, int toType)

boolean Yes

supportsTableCorrelation-
Names()

boolean Yes

supportsDifferentTableCorre-
lationNames()

boolean Yes

supportsExpressionsInOrder-
By()

boolean Yes

supportsOrderByUnrelated() boolean Yes

supportsGroupBy() boolean Yes

supportsGroupByUnrelated() boolean Yes

supportsGroupByBeyondSe-
lect()

boolean Yes

supportsLikeEscapeClause() boolean Yes

supportsMultipleResultSets() boolean Yes

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 331

Method Return Type Support JDBC 4 or Not

supportsMultipleTransac-
tions()

boolean Yes

supportsNonNullableCol-
umns()

boolean Yes

supportsMinimumSQLGram-
mar()

boolean Yes

supportsCoreSQLGrammar() boolean Yes

supportsExtendedSQLGram-
mar()

boolean Yes

supportsANSI92EntryLevelS
QL()

boolean Yes

supportsANSI92Intermediate
SQL()

boolean Yes

supportsANSI92FullSQL() boolean Yes

supportsIntegrityEnhance-
mentFacility()

boolean Yes

supportsOuterJoins() boolean Yes

supportsFullOuterJoins() boolean Yes

supportsLimitedOuterJoins() boolean Yes

isCatalogAtStart() boolean Yes

supportsSchemasInDataMa-
nipulation()

boolean Yes

supportsSavepoints() boolean Yes

supportsResultSetHoldabili-
ty(int holdability)

boolean Yes

getResultSetHoldability() int Yes

getDatabaseMajorVersion() int Yes

getDatabaseMinorVersion() int Yes

getJDBCMajorVersion() int Yes

getJDBCMinorVersion() int Yes

java.sql.Driver
This section describes java.sql.Driver, the database driver interface.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 332

Table 11-10 java.sql.Driver methods

Method Return Type Support JDBC 4
or Not

acceptsURL(String url) boolean Yes

connect(String url, Properties info) Connection Yes

jdbcCompliant() boolean Yes

getMajorVersion() int Yes

getMinorVersion() int Yes

java.sql.PreparedStatement

This section describes java.sql.PreparedStatement, the interface for preparing
statements.

Table 11-11 java.sql.PreparedStatement methods

Method Return Type Support JDBC 4 or Not

clearParameters() void Yes

execute() boolean Yes

executeQuery() ResultSet Yes

executeUpdate() int Yes

getMetaData() ResultSetMetaData Yes

setBoolean(int
parameterIndex, boolean
x)

void Yes

setBigDecimal(int
parameterIndex,
BigDecimal x)

void Yes

setByte(int
parameterIndex, byte x)

void Yes

setBytes(int
parameterIndex, byte[]
x)

void Yes

setDate(int
parameterIndex, Date x)

void Yes

setDouble(int
parameterIndex, double
x)

void Yes

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 333

Method Return Type Support JDBC 4 or Not

setFloat(int
parameterIndex, float x)

void Yes

setInt(int
parameterIndex, int x)

void Yes

setLong(int
parameterIndex, long x)

void Yes

setNString(int
parameterIndex, String
value)

void Yes

setShort(int
parameterIndex, short x)

void Yes

setString(int
parameterIndex, String
x)

void Yes

addBatch() void Yes

executeBatch() int[] Yes

clearBatch() void Yes

NO TE

● addBatch() and execute() can be executed only after clearBatch().

● Calling the executeBatch() method does not clear the batch. Clear batch by explicitly
calling clearBatch().

● You do not need to use set*() to reuse the values of bounded variables in a batch after
they have been added.

● The following methods are inherited from java.sql.Statement: close, execute,
executeQuery, executeUpdate, getConnection, getResultSet, getUpdateCount,
isClosed, setMaxRows, and setFetchSize.

java.sql.ResultSet

This section describes java.sql.ResultSet, the interface for execution result sets.

Table 11-12 java.sql.ResultSet methods

Method Return Type Support JDBC 4 or Not

findColumn(String
columnLabel)

int Yes

getBigDecimal(int
columnIndex)

BigDecimal Yes

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 334

Method Return Type Support JDBC 4 or Not

getBigDecimal(String
columnLabel)

BigDecimal Yes

getBoolean(int
columnIndex)

boolean Yes

getBoolean(String
columnLabel)

boolean Yes

getByte(int columnIndex) byte Yes

getBytes(int
columnIndex)

byte[] Yes

getByte(String
columnLabel)

byte Yes

getBytes(String
columnLabel)

byte[] Yes

getDate(int columnIndex) Date Yes

getDate(String
columnLabel)

Date Yes

getDouble(int
columnIndex)

double Yes

getDouble(String
columnLabel)

double Yes

getFloat(int columnIndex) float Yes

getFloat(String
columnLabel)

float Yes

getInt(int columnIndex) int Yes

getInt(String
columnLabel)

int Yes

getLong(int columnIndex) long Yes

getLong(String
columnLabel)

long Yes

getShort(int
columnIndex)

short Yes

getShort(String
columnLabel)

short Yes

getString(int
columnIndex)

String Yes

getString(String
columnLabel)

String Yes

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 335

Method Return Type Support JDBC 4 or Not

getTime(int columnIndex) Time Yes

getTime(String
columnLabel)

Time Yes

getTimestamp(int
columnIndex)

Timestamp Yes

getTimestamp(String
columnLabel)

Timestamp Yes

isAfterLast() boolean Yes

isBeforeFirst() boolean Yes

isFirst() boolean Yes

next() boolean Yes

NO TE

● A statement cannot have multiple open result sets.

● The cursor used to traverse the result set cannot remain in the open state after being
committed.

java.sql.ResultSetMetaData

This section describes java.sql.ResultSetMetaData, which provides details about
ResultSet object information.

Table 11-13 java.sql.ResultSetMetaData methods

Method Return Type Support JDBC 4 or
Not

getColumnCount() int Yes

getColumnName(int
column)

String Yes

getColumnType(int column) int Yes

getColumnTypeName(int
column)

String Yes

java.sql.Statement

This section describes java.sql.Statement, the interface for executing SQL
statements.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 336

Table 11-14 java.sql.Statement methods

Method Return Type Support JDBC 4 or Not

close() void Yes

execute(String sql) boolean Yes

executeQuery(String
sql)

ResultSet Yes

executeUpdate(String
sql)

int Yes

getConnection() Connection Yes

getResultSet() ResultSet Yes

getQueryTimeout() int Yes

getUpdateCount() int Yes

isClosed() boolean Yes

setQueryTimeout(int
seconds)

void Yes

setFetchSize(int rows) void Yes

cancel() void Yes

NO TE

setFetchSize can reduce the memory occupied by the result set on the client. Result sets
are packaged into cursors and segmented for processing, which will increase the
communication traffic between the database and the client, affecting performance.

Database cursors are valid only within their transactions. Therefore, when setting
setFetchSize, set setAutoCommit to false and commit transactions on the connection to
flush service data to a database.

javax.sql.ConnectionPoolDataSource

This section describes javax.sql.ConnectionPoolDataSource, the interface for
data source connection pools.

Table 11-15 javax.sql.ConnectionPoolDataSource methods

Method Return Type Support JDBC 4 or
Not

getLoginTimeout() int Yes

getLogWriter() PrintWriter Yes

getPooledConnection() PooledConnection Yes

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 337

Method Return Type Support JDBC 4 or
Not

getPooledConnec-
tion(String user,String
password)

PooledConnection Yes

setLoginTimeout(int
seconds)

void Yes

setLogWriter(PrintWrit
er out)

void Yes

javax.sql.DataSource
This section describes javax.sql.DataSource, the interface for data sources.

Table 11-16 javax.sql.DataSource methods

Method Return Type Support
JDBC 4 or
Not

getConnection() Connection Yes

getConnection(String username,String
password)

Connection Yes

getLoginTimeout() int Yes

getLogWriter() PrintWriter Yes

setLoginTimeout(int seconds) void Yes

setLogWriter(PrintWriter out) void Yes

javax.sql.PooledConnection
This section describes javax.sql.PooledConnection, the connection interface
created by a connection pool.

Table 11-17 javax.sql.PooledConnection methods

Method Return Type Support JDBC 4 or
Not

addConnectionEventListener
(ConnectionEventListener listener)

void Yes

close() void Yes

getConnection() Connection Yes

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 338

Method Return Type Support JDBC 4 or
Not

removeConnectionEventListener
(ConnectionEventListener listener)

void Yes

addStatementEventListener
(StatementEventListener listener)

void Yes

removeStatementEventListener
(StatementEventListener listener)

void Yes

javax.naming.Context
This section describes javax.naming.Context, the context interface for connection
configuration.

Table 11-18 javax.naming.Context methods

Method Return Type Support JDBC 4 or Not

bind(Name name, Object
obj)

void Yes

bind(String name, Object
obj)

void Yes

lookup(Name name) Object Yes

lookup(String name) Object Yes

rebind(Name name,
Object obj)

void Yes

rebind(String name,
Object obj)

void Yes

rename(Name oldName,
Name newName)

void Yes

rename(String oldName,
String newName)

void Yes

unbind(Name name) void Yes

unbind(String name) void Yes

javax.naming.spi.InitialContextFactory
This section describes javax.naming.spi.InitialContextFactory, the initial context
factory interface.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 339

Table 11-19 javax.naming.spi.InitialContextFactory methods

Method Return Type Support JDBC 4 or
Not

getInitialContext(Hashtable<?,?>
environment)

Context Yes

CopyManager
CopyManager is an API interface class provided by the JDBC driver in
GaussDB(DWS). It is used to import data to GaussDB(DWS) in batches.

Inheritance relationship of CopyManager

The CopyManager class is in the org.postgresql.copy package class and inherits
the java.lang.Object class. The declaration of the class is as follows:

public class CopyManager
extends Object

Construction method

public CopyManager(BaseConnection connection)
throws SQLException

Common methods

Table 11-20 Common methods of CopyManager

Return
ed
Value

Method Description throws

CopyIn copyIn(String sql) - SQLException

long copyIn(String sql,
InputStream from)

Uses COPY FROM
STDIN to quickly
load data to
tables in the
database from
InputStream.

SQLException,IOE
xception

long copyIn(String sql,
InputStream from, int
bufferSize)

Uses COPY FROM
STDIN to quickly
load data to
tables in the
database from
InputStream.

SQLException,IOE
xception

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 340

Return
ed
Value

Method Description throws

long copyIn(String sql, Reader
from)

Uses COPY FROM
STDIN to quickly
load data to
tables in the
database from
Reader.

SQLException,IOE
xception

long copyIn(String sql, Reader
from, int bufferSize)

Uses COPY FROM
STDIN to quickly
load data to
tables in the
database from
Reader.

SQLException,IOE
xception

CopyOu
t

copyOut(String sql) - SQLException

long copyOut(String sql,
OutputStream to)

Sends the result
set of COPY TO
STDOUT from the
database to the
OutputStream
class.

SQLException,IOE
xception

long copyOut(String sql, Writer
to)

Sends the result
set of COPY TO
STDOUT from the
database to the
Writer class.

SQLException,IOE
xception

11.3 ODBC-Based Development
Open Database Connectivity (ODBC) is a Microsoft API for accessing databases
based on the X/OPEN CLI. The ODBC API alleviates applications from directly
operating in databases, and enhances the database portability, extensibility, and
maintainability.

Figure 11-2 shows the system structure of ODBC.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 341

Figure 11-2 ODBC system structure

GaussDB(DWS) supports ODBC 3.5 in the following environments.

Table 11-21 OSs Supported by ODBC

OS Platform

SUSE Linux Enterprise Server 11 SP1/SP2/SP3/SP4
SUSE Linux Enterprise Server 12 and SP1/SP2/SP3/SP5

x86_64

Red Hat Enterprise Linux
6.4/6.5/6.6/6.7/6.8/6.9/7.0/7.1/7.2/7.3/7.4/7.5

x86_64

Red Hat Enterprise Linux 7.5 ARM64

CentOS 6.4/6.5/6.6/6.7/6.8/6.9/7.0/7.1/7.2/7.3/7.4 x86_64

CentOS 7.6 ARM64

EulerOS 2.0 SP2/SP3 x86_64

EulerOS 2.0 SP8 ARM64

NeoKylin 7.5/7.6 ARM64

Oracle Linux R7U4 x86_64

Windows 7 32-bit

Windows 7 64-bit

Windows Server 2008 32-bit

Windows Server 2008 64-bit

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 342

The operating systems listed above refer to the operating systems on which the
ODBC program runs. They can be different from the operating systems where
databases are deployed.

The ODBC Driver Manager running on UNIX or Linux can be unixODBC or iODBC.
Select unixODBC-2.3.0 here as the component for connecting the database.

Windows has a native ODBC Driver Manager. You can locate Data Sources
(ODBC) by choosing Control Panel > Administrative Tools.

NO TE

The current database ODBC driver is based on an open source version and may be
incompatible with GaussDB(DWS) data types, such as tinyint, smalldatetime, and
nvarchar2.

11.3.1 ODBC Package and Its Dependent Libraries and Header
Files

Download the ODBC software package from the console.

For details, see Downloading the JDBC or ODBC Driver.

ODBC Package for the Linux OS
Obtain the dws_8.x.x_odbc_driver_for_xxx_xxx.zip package from the software
package. In the Linux OS, header files (including sql.h and sqlext.h) and library
(libodbc.so) are required in application development. These header files and
libraries can be obtained from the unixODBC-2.3.0 installation package.

ODBC Package for the Windows OS
Obtain the dws_8.x.x_odbc_driver_for_windows.zip package from the software
package. In the Windows OS, the required header files and library files are system-
resident.

11.3.2 Configuring a Data Source in the Linux OS
The ODBC DRIVER (psqlodbcw.so) provided by GaussDB(DWS) can be used after it
has been configured in the data source. To set up a data source, configure the
odbc.ini and odbcinst.ini files on the server. The two files are generated during
the unixODBC compilation and installation, and are saved in the etc directory by
default.

Procedure
Step 1 Obtain the source code package of unixODBC at:

https://sourceforge.net/projects/unixodbc/files/unixODBC/2.3.0/
unixODBC-2.3.0.tar.gz/download

Step 2 Currently, unixODBC-2.2.1 is not supported. Assume you are to install
unixODBC-2.3.0. Run the following commands. When installing, you can use --
prefix=[your_path] to specify the installation directory. The data source file will
be created in [your_path]/etc, and the library file will be generated in
[your_path]/lib.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 343

https://support.huaweicloud.com/intl/en-us/mgtg-dws/dws_01_0032.html
https://sourceforge.net/projects/unixodbc/files/unixODBC/2.3.0/unixODBC-2.3.0.tar.gz/download
https://sourceforge.net/projects/unixodbc/files/unixODBC/2.3.0/unixODBC-2.3.0.tar.gz/download

tar zxvf unixODBC-2.3.0.tar.gz
cd unixODBC-2.3.0
Open the configure file. If it does not exist, open the configure.ac file. Find LIB_VERSION.
Change the value of LIB_VERSION to 1:0:0 to compile a *.so.1 dynamic library with the same dependency
on psqlodbcw.so.
vim configure

./configure --enable-gui=no --prefix=[your_path] # To perform the compilation on a TaiShan server, add the
configure parameter --build=aarch64-unknown-linux-gnu.
make
make install

Install unixODBC. If another version of unixODBC has been installed, it will be
overwritten after installation.

Step 3 Replace the GaussDB(DWS) client driver.

Decompress dws_8.x.x_odbc_driver_for_xxx_xxx.zip to obtain the psqlodbcw.la
and psqlodbcw.so files in the /dws_8.x.x_odbc_driver_for_xxx_xxx/odbc/lib
directory.

Step 4 Configure the data source.

1. Configure the ODBC driver file.

Add the following content to the [your_path]/etc/odbcinst.ini file:
[GaussMPP]
Driver64=[your_path]/lib/odbc/psqlodbcw.so
setup=[your_path]/lib/odbc/psqlodbcw.so

For descriptions of the parameters in the odbcinst.ini file, see Table 11-22.

Table 11-22 odbcinst.ini configuration parameters

Parameter Description Examples

[DriverName] Driver name, corresponding
to Driver in DSN.

[DRIVER_N]

Driver64 Path of the dynamic driver
library

Driver64=/xxx/odbc/lib/
odbc/psqlodbcw.so

setup Driver installation path,
which is the same as the
dynamic library path in
Driver64.

setup=/xxx/odbc/lib/
odbc/psqlodbcw.so

2. Configure the data source file.

Add the following content to the [your_path]/etc/odbc.ini file:
[MPPODBC]
Driver=GaussMPP
Servername=10.10.0.13 (database server IP address)
Database=gaussdb (database name)
Username=dbadmin (database username)
Password= (database user password)
Port=8000 (database listening port)
Sslmode=allow

For descriptions of the parameters in the odbc.ini file, see Table 11-23.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 344

Table 11-23 odbc.ini configuration parameters

Parameter Description Examples

[DSN] Data source name [MPPODBC]

Driver Driver name, corresponding
to DriverName in
odbcinst.ini

Driver=DRIVER_N

Servername IP address of the server Servername=10.145.130.
26

Database Name of the database to
connect to

Database=gaussdb

Username Name of the database user Username=dbadmin

Password Password of the database
user

Password=
NOTE

After a user established a
connection, the ODBC
driver automatically clears
their password stored in
memory.
However, if this parameter
is configured, UnixODBC
will cache data source
files, which may cause the
password to be stored in
the memory for a long
time.
When you connect to an
application, you are
advised to send your
password through an API
instead of writing it in a
data source configuration
file. After the connection
has been established,
immediately clear the
memory segment where
your password is stored.

Port Port ID of the server Port=8000

Sslmode Whether to enable the SSL Sslmode=allow

UseServerSidePre-
pare

Whether to enable the
extended query protocol for
the database.
The value can be 0 or 1. The
default value is 1, indicating
that the extended query
protocol is enabled.

UseServerSidePrepare=1

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 345

Parameter Description Examples

UseBatchProtocol Whether to enable the
batch query protocol. If it is
enabled, the DML
performance can be
improved. The value can be
0 or 1. The default value is
1.
If this parameter is set to 0,
the batch query protocol is
disabled (mainly for
communication with earlier
database versions).
If this parameter is set to 1
and the
support_batch_bind
parameter is set to on, the
batch query protocol is
enabled.

UseBatchProtocol=1

ConnectionExtraI
nfo

Whether to display the
driver deployment path and
process owner in the
connection_info parameter
mentioned in
connection_info

ConnectionExtraInfo=1
NOTE

The default value is 1. If
this parameter is set to 0,
the ODBC driver reports
the name and version of
the current driver to the
database. If this
parameter is set to 1, the
ODBC driver reports the
name, deployment path,
and process owner of the
current driver to the
database and records
them in the
connection_info
parameter (see
connection_info). You can
query this parameter in
PG_STAT_ACTIVITY and
PGXC_STAT_ACTIVITY.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 346

Parameter Description Examples

ForExtensionCon-
nector

ETL tool performance
optimization parameter. It
can be used to optimize the
memory and reduce the
memory usage by the peer
CN, to avoid system
instability caused by
excessive CN memory
usage.
The value can be 0 or 1. The
default value is 0, indicating
that the optimization item is
disabled.
Do not set this parameter
for other services outside
the database system.
Otherwise, the service
correctness may be affected.

ForExtensionConnec-
tor=1

KeepDisallowPre-
mature

Specifies whether the cursor
in the SQL statement has
the with hold attribute
when the following
conditions are met:
UseDeclareFetch is set to 1,
and the application invokes
SQLNumResultCols,
SQLDescribeCol, or
SQLColAttribute after
invoking SQLPrepare to
obtain the column
information of the result
set.
The value can be 0 or 1. 0
indicates that the with hold
attribute is supported, and 1
indicates that the with hold
attribute is not supported.
The default value is 0.

KeepDisallowPrema-
ture=1
NOTE

When UseServerSidePre-
pare is set to 1, the
KeepDisallowPremature
parameter does not take
effect. To use this
parameter, set
UseServerSidePrepare to
0. For example, set
UseDeclareFetch to 1.
KeepDisallowPremature=1
UseServerSidePrepare=0

The valid values of sslmode are as follows.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 347

Table 11-24 sslmode options

sslmode Whether
SSL
Encryption
Is Enabled

Description

disable No The SSL secure connection is not used.

allow Probably The SSL secure encrypted connection is used if
required by the database server, but does not
check the authenticity of the server.

prefer Probably The SSL secure encrypted connection is used as a
preferred mode if supported by the database, but
does not check the authenticity of the server.

require Yes The SSL secure connection must be used, but it
only encrypts data and does not check the
authenticity of the server.

verify-ca Yes The SSL secure connection must be used, and it
checks whether the database has certificates
issued by a trusted CA.

verify-
full

Yes The SSL secure connection must be used. In
addition to the check scope specified by verify-
ca, it checks whether the name of the host where
the database resides is the same as that on the
certificate. This mode is not supported.

Step 5 Enable the SSL mode.

To use SSL certificates for connection, decompress the certificate package
contained in the GaussDB(DWS) installation package, and run source
sslcert_env.sh in a shell environment to deploy certificates in the default location
of the current session.

Or manually declare the following environment variables and ensure that the
permission for the client.key* series files is set to 600.

export PGSSLCERT= "/YOUR/PATH/OF/client.crt" # Change the path to the absolute path of client.crt.
export PGSSLKEY= "/YOUR/PATH/OF/client.key" # Change the path to the absolute path of client.key.

In addition, change the value of Sslmode in the data source to verify-ca.

Step 6 Add the IP address segment of the host where the client is located to the security
group rules of GaussDB(DWS) to ensure that the host can communicate with
GaussDB(DWS).

Step 7 Configure environment variables.
vim ~/.bashrc

Add the following content to the end of the configuration file:

export LD_LIBRARY_PATH=[your_path]/lib/:$LD_LIBRARY_PATH
export ODBCSYSINI=[your_path]/etc
export ODBCINI=[your_path]/etc/odbc.ini

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 348

NO TE

It is not recommended to add LD_LIBRARY_PATH in the Kylin OS, as it may cause conflicts
with the libssl.so dynamic library. In the latest version of cluster 9.1.0, the rpath mechanism
has been added, so the dependency can be located without LD_LIBRARY_PATH.

Step 8 Run the following commands to validate the settings:
source ~/.bashrc

----End

Testing Data Source Configuration

Run the isql-v GaussODBC command (GaussODBC is the data source name).

● If the following information is displayed, the configuration is correct and the
connection succeeds.
+---------------------------------------+
| Connected! |
| |
| sql-statement |
| help [tablename] |
| quit |
| |
+---------------------------------------+
SQL>

● If error information is displayed, the configuration is incorrect. Check the
configuration.

Troubleshooting
● [UnixODBC][Driver Manager]Can't open lib 'xxx/xxx/psqlodbcw.so' : file not

found.
Possible causes:
– The path configured in the odbcinst.ini file is incorrect.

Run ls to check the path in the error information, ensuring that the
psqlodbcw.so file exists and you have execution permissions on it.

– The dependent library of psqlodbcw.so does not exist or is not in system
environment variables.
Run ldd to check the path in the error information. If libodbc.so.1 or
other UnixODBC libraries are lacking, configure UnixODBC again
following the procedure provided in this section, and add the lib directory
under its installation directory to LD_LIBRARY_PATH. If other libraries are
lacking, add the lib directory under the ODBC driver package to
LD_LIBRARY_PATH. Alternatively, you can place the dependency library
of psqlodbcw.so in the path corresponding to rpath of psqlodbcw.so. To
view rpath, you can use the readelf -d command.

● [UnixODBC]connect to server failed: no such file or directory
Possible causes:
– An incorrect or unreachable database IP address or port was configured.

Check the Servername and Port configuration items in data sources.
– Server monitoring is improper.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 349

If Servername and Port are correctly configured, ensure the proper
network adapter and port are monitored based on database server
configurations in the procedure in this section.

– Firewall and network gatekeeper settings are improper.

Check firewall settings, ensuring that the database communication port is
trusted.

Check to ensure network gatekeeper settings are proper (if any).

● [unixODBC]The password-stored method is not supported.

Possible causes:

The sslmode configuration item is not configured in the data sources.

Solution:

Set it to allow or a higher level. For more details, see Table 11-24.

● Server common name "xxxx" does not match host name "xxxxx"

Possible causes:

When verify-full is used for SSL encryption, the driver checks whether the
host name in certificates is the same as the actual one.

Solution:

To solve this problem, use verify-ca to stop checking host names, or generate
a set of CA certificates containing the actual host names.

● Driver's SQLAllocHandle on SQL_HANDLE_DBC failed

Possible causes:

The executable file (such as the isql tool of unixODBC) and the database
driver (psqlodbcw.so) depend on different library versions of ODBC, such as
libodbc.so.1 and libodbc.so.2. You can verify this problem by using the
following method:
ldd `which isql` | grep odbc
ldd psqlodbcw.so | grep odbc

If the suffix digits of the outputs libodbc.so are different or indicate different
physical disk files, this problem exists. Both isql and psqlodbcw.so load
libodbc.so. If different physical files are loaded, different ODBC libraries with
the same function list conflict with each other in a visible domain. As a result,
the database driver cannot be loaded.

Solution:

Uninstall the unnecessary unixODBC, such as libodbc.so.2, and create a soft
link with the same name and the .so.2 suffix for the remaining libodbc.so.1
library.

● FATAL: Forbid remote connection with trust method!

For security purposes, the CN forbids access from other nodes in the cluster
without authentication.

To access the CN from inside the cluster, deploy the ODBC program on the
machine where the CN is located and use 127.0.0.1 as the server address. It is
recommended that the service system be deployed outside the cluster. If it is
deployed inside, the database performance may be affected.

● [unixODBC][Driver Manager]Invalid attribute value

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 350

This problem occurs when you use SQL on other GaussDB. The possible cause
is that the unixODBC version is not the recommended one. You are advised to
run the odbcinst --version command to check the unixODBC version.

● authentication method 10 not supported.
If this error occurs on an open source client, the cause may be:
The database stores only the SHA-256 hash of the password, but the open
source client supports only MD5 hashes.

NO TE

● The database stores the hashes of user passwords instead of actual passwords.
● In versions earlier than V100R002C80SPC300, the database stores only SHA-256

hashes and no MD5 hashes. Therefore, MD5 cannot be used for user password
authentication.

● In V100R002C80SPC300 and later, if a password is updated or a user is created,
both types of hashes will be stored, compatible with open-source authentication
protocols.

● An MD5 hash can only be generated using the original password, but the password
cannot be obtained by reversing its SHA-256 hash. If your database is upgraded
from a version earlier than V100R002C80SPC300, passwords in the old version will
only have SHA-256 hashes and not support MD5 authentication.

To solve this problem, you can update the user password. Alternatively, create
a user, assign the same permissions to the user, and use the new user to
connect to the database.

● unsupported frontend protocol 3.51: server supports 1.0 to 3.0
The database version is too early or the database is an open-source database.
Use the driver of the required version to connect to the database.

11.3.3 Configuring a Data Source in the Windows OS
Configure the ODBC data source using the ODBC data source manager
preinstalled in the Windows OS.

Procedure

Step 1 Replace the GaussDB(DWS) client driver.

Decompress GaussDB-9.1.0-Windows-Odbc.tar.gz. Double-click install
psqlodbc.msi (for 32-bit OS) or psqlodbc_x64.msi (for 64-bit OS).

Step 2 Open Driver Manager.

Use the Driver Manager suitable for your OS to configure the data source.
(Assume the Windows system drive is drive C.)

● If you develop 32-bit programs in the 64-bit Windows OS, open the 32-bit
Driver Manager at C:\Windows\SysWOW64\odbcad32.exe after you install
the 32-bit driver.
Do not open Driver Manager by choosing Control Panel, clicking
Administrative Tools, and clicking Data Sources (ODBC).

NO TE

WoW64 is the acronym for "Windows 32-bit on Windows 64-bit". C:\Windows
\SysWOW64\ stores the 32-bit environment on a 64-bit system.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 351

● If you develop 64-bit programs in the 64-bit Windows OS, open the 64-bit
Driver Manager at C:\Windows\System32\odbcad32.exe after you install the
64-bit driver.

Do not open Driver Manager by choosing Control Panel, clicking
Administrative Tools, and clicking Data Sources (ODBC).

NO TE

C:\Windows\System32\ stores the environment consistent with the current OS. For
technical details, see Windows technical documents.

● In a 32-bit Windows OS, open C:\Windows\System32\odbcad32.exe.

In the Windows OS, click Computer, and choose Control Panel. Click
Administrative Tools and click Data Sources (ODBC).

Step 3 Configure the data source.

On the User DSN tab, click Add, and choose PostgreSQL Unicode for setup. (An
identifier will be displayed for the 64-bit OS.)

NO TICE

The entered username and password will be recorded in the Windows registry and
you do not need to enter them again when connecting to the database next time.
For security purposes, you are advised to delete sensitive information before
clicking Save and enter the required username and password again when using
ODBC APIs to connect to the database.

Step 4 Enable the SSL mode.

To use SSL certificates for connection, decompress the certificate package
contained in the GaussDB(DWS) installation package, and double-click the
sslcert_env.bat file to deploy certificates in the default location.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 352

NO TICE

The sslcert_env.bat file ensures the purity of the certificate environment. When
the %APPDATA%\postgresql directory exists, a message will be prompted asking
you whether you want to remove related directories. If you want to remove
related directories, back up files in the directory.

Alternatively, you can copy the client.crt, client.key, client.key.cipher, and
client.key.rand files in the certificate file folder to the manually created
%APPDATA%\postgresql directory. Change client in the file names to postgres,
for example, change client.key to postgres.key. Copy the cacert.pem file to the
%APPDATA%\postgresql directory and change its name to root.crt.

Change the value of SSL Mode in step 2 to verify-ca.

Table 11-25 sslmode options

sslmode Whether
SSL
Encryption
Is Enabled

Description

disable No The SSL secure connection is not used.

allow Probably The SSL secure encrypted connection is used if
required by the database server, but does not check
the authenticity of the server.

prefer Probably The SSL secure encrypted connection is used as a
preferred mode if supported by the database, but
does not check the authenticity of the server.

require Yes The SSL secure connection must be used, but it only
encrypts data and does not check the authenticity
of the server.

verify-ca Yes The SSL secure connection must be used, and it
checks whether the database has certificates issued
by a trusted CA.

verify-full Yes The SSL secure connection must be used. In addition
to the check scope specified by verify-ca, it checks
whether the name of the host where the database
resides is the same as that on the certificate.
NOTE

This mode cannot be used.

Step 5 Add the IP address segment of the host where the client is located to the security
group rules of GaussDB(DWS) to ensure that the host can communicate with
GaussDB(DWS).

----End

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 353

Testing Data Source Configuration
Click Test.

● If the following information is displayed, the configuration is correct and the
connection succeeds.

● If error information is displayed, the configuration is incorrect. Check the
configuration.

Troubleshooting
● Server common name "xxxx" does not match host name "xxxxx"

This problem occurs because when verify-full is used for SSL encryption, the
driver checks whether the host name in certificates is the same as the actual
one. To solve this problem, use verify-ca to stop checking host names, or
generate a set of CA certificates containing the actual host names.

● connect to server failed: no such file or directory
Possible causes:
– An incorrect or unreachable database IP address or port was configured.

Check the Servername and Port configuration items in data sources.
– Server monitoring is improper.

If Servername and Port are correctly configured, ensure the proper
network adapter and port are monitored based on database server
configurations in the procedure in this section.

– Firewall and network gatekeeper settings are improper.
Check firewall settings, ensuring that the database communication port is
trusted.
Check to ensure network gatekeeper settings are proper (if any).

● In the specified DSN, the system structures of the drive do not match those of
the application.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 354

Possible cause: The bit versions of the drive and program are different.
C:\Windows\SysWOW64\odbcad32.exe is a 32-bit ODBC Drive Manager.
C:\Windows\System32\odbcad32.exe is a 64-bit ODBC Drive Manager.

● The password-stored method is not supported.
Possible causes:
sslmode is not configured for the data source. Set this configuration item to
allow or a higher level to enable SSL connections. For details about sslmode,
see Table 11-25.

● authentication method 10 not supported.
If this error occurs on an open source client, the cause may be:
The database stores only the SHA-256 hash of the password, but the open
source client supports only MD5 hashes.

NO TE

● The database stores the hashes of user passwords instead of actual passwords.

● In versions earlier than V100R002C80SPC300, the database stores only SHA-256
hashes and no MD5 hashes. Therefore, MD5 cannot be used for user password
authentication.

● In V100R002C80SPC300 and later, if a password is updated or a user is created,
both types of hashes will be stored, compatible with open-source authentication
protocols.

● An MD5 hash can only be generated using the original password, but the password
cannot be obtained by reversing its SHA-256 hash. If your database is upgraded
from a version earlier than V100R002C80SPC300, passwords in the old version will
only have SHA-256 hashes and not support MD5 authentication.

To solve this problem, perform the following operations:

a. Create a new database user for connection or reset the password of the
existing database user.

▪ If you use an administrator account, reset the password. For details,
see Resetting a Password.

▪ If you are a common user, use another client tool (such as Data
Studio) to connect to the database and run the ALTER USER
statement to change your password.

b. Connect to the database.
● unsupported frontend protocol 3.51: server supports 1.0 to 3.0

The database version is too early or the database is an open-source database.
Use the driver of the required version to connect to the database.

● FATAL: GSS authentication method is not allowed because XXXX user
password is not disabled.
In some cases, the error is: GSSAPI authentication not supported.
In pg_hba.conf of the target CN, the authentication mode is set to gss for
authenticating the IP address of the current client. However, this
authentication algorithm cannot authenticate clients. Change the
authentication algorithm to sha256 and try again.
Note that cross-node connection to the database in the cluster is not
supported. If the error is caused by cross-node connection to the CN in the

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 355

https://support.huaweicloud.com/intl/en-us/mgtg-dws/dws_01_0026.html

cluster, connect the service program to the database from a node outside the
cluster and try again.

11.3.4 ODBC Development Example

Code for Common Functions
The following example shows how to obtain data from GaussDB(DWS) through
ODBC.

// DBtest.c (compile with: libodbc.so)
#include <stdlib.h>
#include <stdio.h>
#include <sqlext.h>
#ifdef WIN32
#include <windows.h>
#endif
SQLHENV V_OD_Env; // Handle ODBC environment
SQLHSTMT V_OD_hstmt; // Handle statement
SQLHDBC V_OD_hdbc; // Handle connection
char typename[100];
SQLINTEGER value = 100;
SQLINTEGER V_OD_erg,V_OD_buffer,V_OD_err,V_OD_id;
SQLLEN V_StrLen_or_IndPtr;
int main(int argc,char *argv[])
{
 // 1. Apply for an environment handle.
 V_OD_erg = SQLAllocHandle(SQL_HANDLE_ENV,SQL_NULL_HANDLE,&V_OD_Env);
 if ((V_OD_erg != SQL_SUCCESS) && (V_OD_erg != SQL_SUCCESS_WITH_INFO))
 {
 printf("Error AllocHandle\n");
 exit(0);
 }
 // 2. Set environment attributes (version information)
 SQLSetEnvAttr(V_OD_Env, SQL_ATTR_ODBC_VERSION, (void*)SQL_OV_ODBC3, 0);
 // 3. Apply for a connection handle.
 V_OD_erg = SQLAllocHandle(SQL_HANDLE_DBC, V_OD_Env, &V_OD_hdbc);
 if ((V_OD_erg != SQL_SUCCESS) && (V_OD_erg != SQL_SUCCESS_WITH_INFO))
 {
 SQLFreeHandle(SQL_HANDLE_ENV, V_OD_Env);
 exit(0);
 }
 // 4. Set connection attributes.
 SQLSetConnectAttr(V_OD_hdbc, SQL_ATTR_AUTOCOMMIT, SQL_AUTOCOMMIT_ON, 0);
// 5. Connect to the data source. userName and password indicate the username and password for
connecting to the database. Set them as needed.
// If the username and password have been set in the odbc.ini file, you do not need to set userName or
password here, retaining "" for them. However, you are not advised to do so because the username and
password will be disclosed if the permission for odbc.ini is abused.
 V_OD_erg = SQLConnect(V_OD_hdbc, (SQLCHAR*) "gaussdb", SQL_NTS,
 (SQLCHAR*) "userName", SQL_NTS, (SQLCHAR*) "password", SQL_NTS);
 if ((V_OD_erg != SQL_SUCCESS) && (V_OD_erg != SQL_SUCCESS_WITH_INFO))
 {
 printf("Error SQLConnect %d\n",V_OD_erg);
 SQLFreeHandle(SQL_HANDLE_ENV, V_OD_Env);
 exit(0);
 }
 printf("Connected !\n");
 // 6. Set statement attributes
 SQLSetStmtAttr(V_OD_hstmt,SQL_ATTR_QUERY_TIMEOUT,(SQLPOINTER *)3,0);
 // 7. Apply for a statement handle
 SQLAllocHandle(SQL_HANDLE_STMT, V_OD_hdbc, &V_OD_hstmt);
 // 8. Executes an SQL statement directly
 SQLExecDirect(V_OD_hstmt,"drop table IF EXISTS customer_t1",SQL_NTS);
 SQLExecDirect(V_OD_hstmt,"CREATE TABLE customer_t1(c_customer_sk INTEGER, c_customer_name
VARCHAR(32));",SQL_NTS);
 SQLExecDirect(V_OD_hstmt,"insert into customer_t1 values(25,'li')",SQL_NTS);

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 356

 // 9. Prepare for execution
 SQLPrepare(V_OD_hstmt,"insert into customer_t1 values(?)",SQL_NTS);
 // 10. Bind parameters
 SQLBindParameter(V_OD_hstmt,1,SQL_PARAM_INPUT,SQL_C_SLONG,SQL_INTEGER,0,0,
 &value,0,NULL);
 // 11. Execute the ready statement
 SQLExecute(V_OD_hstmt);
 SQLExecDirect(V_OD_hstmt,"select id from testtable",SQL_NTS);
 // 12. Obtain the attributes of a certain column in the result set

SQLColAttribute(V_OD_hstmt,1,SQL_DESC_TYPE_NAME,typename,sizeof(typename),NULL,NULL);

 printf("SQLColAtrribute %s\n",typename);
 // 13. Bind the result set
 SQLBindCol(V_OD_hstmt,1,SQL_C_SLONG, (SQLPOINTER)&V_OD_buffer,150,
 (SQLLEN *)&V_StrLen_or_IndPtr);
 // 14. Collect data using SQLFetch
 V_OD_erg=SQLFetch(V_OD_hstmt);
 // 15. Obtain and return data using SQLGetData
 while(V_OD_erg != SQL_NO_DATA)
 {
 SQLGetData(V_OD_hstmt,1,SQL_C_SLONG,(SQLPOINTER)&V_OD_id,0,NULL);
 printf("SQLGetData ----ID = %d\n",V_OD_id);
 V_OD_erg=SQLFetch(V_OD_hstmt);
 };
 printf("Done !\n");
 // 16. Disconnect from the data source and release handles
 SQLFreeHandle(SQL_HANDLE_STMT,V_OD_hstmt);
 SQLDisconnect(V_OD_hdbc);
 SQLFreeHandle(SQL_HANDLE_DBC,V_OD_hdbc);
 SQLFreeHandle(SQL_HANDLE_ENV, V_OD_Env);
 return(0);
 }

Code for Batch Processing
● Enable UseBatchProtocol in the data source and set support_batch_bind to

on.
● Use CHECK_ERROR to check and print error information.
● This example is used to interactively obtain the DSN, data volume to be

processed, and volume of ignored data from users, and insert required data
into the test_odbc_batch_insert table.

#include <stdio.h>
#include <stdlib.h>
#include <sql.h>
#include <sqlext.h>
#include <string.h>

#include "util.c"

void Exec(SQLHDBC hdbc, SQLCHAR* sql)
{
 SQLRETURN retcode; // Return status
 SQLHSTMT hstmt = SQL_NULL_HSTMT; // Statement handle
 SQLCHAR loginfo[2048];

 // Allocate Statement Handle
 retcode = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
 CHECK_ERROR(retcode, "SQLAllocHandle(SQL_HANDLE_STMT)",
 hstmt, SQL_HANDLE_STMT);

 // Prepare Statement
 retcode = SQLPrepare(hstmt, (SQLCHAR*) sql, SQL_NTS);
 sprintf((char*)loginfo, "SQLPrepare log: %s", (char*)sql);
 CHECK_ERROR(retcode, loginfo, hstmt, SQL_HANDLE_STMT);

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 357

 retcode = SQLExecute(hstmt);
 sprintf((char*)loginfo, "SQLExecute stmt log: %s", (char*)sql);
 CHECK_ERROR(retcode, loginfo, hstmt, SQL_HANDLE_STMT);

 retcode = SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
 sprintf((char*)loginfo, "SQLFreeHandle stmt log: %s", (char*)sql);
 CHECK_ERROR(retcode, loginfo, hstmt, SQL_HANDLE_STMT);
}

int main ()
{
 SQLHENV henv = SQL_NULL_HENV;
 SQLHDBC hdbc = SQL_NULL_HDBC;
 int batchCount = 1000;
 SQLLEN rowsCount = 0;
 int ignoreCount = 0;

 SQLRETURN retcode;
 SQLCHAR dsn[1024] = {'\0'};
 SQLCHAR loginfo[2048];

// Interactively obtain data source names.
 getStr("Please input your DSN", (char*)dsn, sizeof(dsn), 'N');
// Interactively obtain the amount of data to be batch processed.
 getInt("batchCount", &batchCount, 'N', 1);
 do
 {
// Interactively obtain the amount of batch processing data that is not inserted into the database.
 getInt("ignoreCount", &ignoreCount, 'N', 1);
 if (ignoreCount > batchCount)
 {
 printf("ignoreCount(%d) should be less than batchCount(%d)\n", ignoreCount, batchCount);
 }
 }while(ignoreCount > batchCount);

 retcode = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 CHECK_ERROR(retcode, "SQLAllocHandle(SQL_HANDLE_ENV)",
 henv, SQL_HANDLE_ENV);

 // Set ODBC Version
 retcode = SQLSetEnvAttr(henv, SQL_ATTR_ODBC_VERSION,
 (SQLPOINTER*)SQL_OV_ODBC3, 0);
 CHECK_ERROR(retcode, "SQLSetEnvAttr(SQL_ATTR_ODBC_VERSION)",
 henv, SQL_HANDLE_ENV);

 // Allocate Connection
 retcode = SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);
 CHECK_ERROR(retcode, "SQLAllocHandle(SQL_HANDLE_DBC)",
 henv, SQL_HANDLE_DBC);

 // Set Login Timeout
 retcode = SQLSetConnectAttr(hdbc, SQL_LOGIN_TIMEOUT, (SQLPOINTER)5, 0);
 CHECK_ERROR(retcode, "SQLSetConnectAttr(SQL_LOGIN_TIMEOUT)",
 hdbc, SQL_HANDLE_DBC);

 // Set Auto Commit
 retcode = SQLSetConnectAttr(hdbc, SQL_ATTR_AUTOCOMMIT,
 (SQLPOINTER)(1), 0);
 CHECK_ERROR(retcode, "SQLSetConnectAttr(SQL_ATTR_AUTOCOMMIT)",
 hdbc, SQL_HANDLE_DBC);

 // Connect to DSN
 sprintf(loginfo, "SQLConnect(DSN:%s)", dsn);
 retcode = SQLConnect(hdbc, (SQLCHAR*) dsn, SQL_NTS,
 (SQLCHAR*) NULL, 0, NULL, 0);
 CHECK_ERROR(retcode, loginfo, hdbc, SQL_HANDLE_DBC);

 // init table info.
 Exec(hdbc, "drop table if exists test_odbc_batch_insert");

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 358

 Exec(hdbc, "create table test_odbc_batch_insert(id int primary key, col varchar2(50))");

// The following code constructs the data to be inserted based on the data volume entered by users:
 {
 SQLRETURN retcode;
 SQLHSTMT hstmtinesrt = SQL_NULL_HSTMT;
 int i;
 SQLCHAR *sql = NULL;
 SQLINTEGER *ids = NULL;
 SQLCHAR *cols = NULL;
 SQLLEN *bufLenIds = NULL;
 SQLLEN *bufLenCols = NULL;
 SQLUSMALLINT *operptr = NULL;
 SQLUSMALLINT *statusptr = NULL;
 SQLULEN process = 0;

// Data is constructed by column. Each column is stored continuously.
 ids = (SQLINTEGER*)malloc(sizeof(ids[0]) * batchCount);
 cols = (SQLCHAR*)malloc(sizeof(cols[0]) * batchCount * 50);
// Data size in each row for a column
 bufLenIds = (SQLLEN*)malloc(sizeof(bufLenIds[0]) * batchCount);
 bufLenCols = (SQLLEN*)malloc(sizeof(bufLenCols[0]) * batchCount);
// Whether this row needs to be processed. The value is SQL_PARAM_IGNORE or SQL_PARAM_PROCEED.
 operptr = (SQLUSMALLINT*)malloc(sizeof(operptr[0]) * batchCount);
 memset(operptr, 0, sizeof(operptr[0]) * batchCount);
// Processing result of the row
// Note: In the database, a statement belongs to one transaction. Therefore, data is processed as a unit.
That is, either all data is inserted successfully or all data fails to be inserted.
 statusptr = (SQLUSMALLINT*)malloc(sizeof(statusptr[0]) * batchCount);
 memset(statusptr, 88, sizeof(statusptr[0]) * batchCount);

 if (NULL == ids || NULL == cols || NULL == bufLenCols || NULL == bufLenIds)
 {
 fprintf(stderr, "FAILED:\tmalloc data memory failed\n");
 goto exit;
 }

 for (int i = 0; i < batchCount; i++)
 {
 ids[i] = i;
 sprintf(cols + 50 * i, "column test value %d", i);
 bufLenIds[i] = sizeof(ids[i]);
 bufLenCols[i] = strlen(cols + 50 * i);
 operptr[i] = (i < ignoreCount) ? SQL_PARAM_IGNORE : SQL_PARAM_PROCEED;
 }

 // Allocate Statement Handle
 retcode = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmtinesrt);
 CHECK_ERROR(retcode, "SQLAllocHandle(SQL_HANDLE_STMT)",
 hstmtinesrt, SQL_HANDLE_STMT);

 // Prepare Statement
 sql = (SQLCHAR*)"insert into test_odbc_batch_insert values(?, ?)";
 retcode = SQLPrepare(hstmtinesrt, (SQLCHAR*) sql, SQL_NTS);
 sprintf((char*)loginfo, "SQLPrepare log: %s", (char*)sql);
 CHECK_ERROR(retcode, loginfo, hstmtinesrt, SQL_HANDLE_STMT);

 retcode = SQLSetStmtAttr(hstmtinesrt, SQL_ATTR_PARAMSET_SIZE, (SQLPOINTER)batchCount,
sizeof(batchCount));
 CHECK_ERROR(retcode, "SQLSetStmtAttr", hstmtinesrt, SQL_HANDLE_STMT);

 retcode = SQLBindParameter(hstmtinesrt, 1, SQL_PARAM_INPUT, SQL_C_SLONG, SQL_INTEGER,
sizeof(ids[0]), 0,&(ids[0]), 0, bufLenIds);
 CHECK_ERROR(retcode, "SQLBindParameter for id", hstmtinesrt, SQL_HANDLE_STMT);

 retcode = SQLBindParameter(hstmtinesrt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, 50, 50,
cols, 50, bufLenCols);
 CHECK_ERROR(retcode, "SQLBindParameter for cols", hstmtinesrt, SQL_HANDLE_STMT);

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 359

 retcode = SQLSetStmtAttr(hstmtinesrt, SQL_ATTR_PARAMS_PROCESSED_PTR, (SQLPOINTER)&process,
sizeof(process));
 CHECK_ERROR(retcode, "SQLSetStmtAttr for SQL_ATTR_PARAMS_PROCESSED_PTR", hstmtinesrt,
SQL_HANDLE_STMT);

 retcode = SQLSetStmtAttr(hstmtinesrt, SQL_ATTR_PARAM_STATUS_PTR, (SQLPOINTER)statusptr,
sizeof(statusptr[0]) * batchCount);
 CHECK_ERROR(retcode, "SQLSetStmtAttr for SQL_ATTR_PARAM_STATUS_PTR", hstmtinesrt,
SQL_HANDLE_STMT);

 retcode = SQLSetStmtAttr(hstmtinesrt, SQL_ATTR_PARAM_OPERATION_PTR, (SQLPOINTER)operptr,
sizeof(operptr[0]) * batchCount);
 CHECK_ERROR(retcode, "SQLSetStmtAttr for SQL_ATTR_PARAM_OPERATION_PTR", hstmtinesrt,
SQL_HANDLE_STMT);

 retcode = SQLExecute(hstmtinesrt);
 sprintf((char*)loginfo, "SQLExecute stmt log: %s", (char*)sql);
 CHECK_ERROR(retcode, loginfo, hstmtinesrt, SQL_HANDLE_STMT);

 retcode = SQLRowCount(hstmtinesrt, &rowsCount);
 CHECK_ERROR(retcode, "SQLRowCount execution", hstmtinesrt, SQL_HANDLE_STMT);

 if (rowsCount != (batchCount - ignoreCount))
 {
 sprintf(loginfo, "(batchCount - ignoreCount)(%d) != rowsCount(%d)", (batchCount - ignoreCount),
rowsCount);
 CHECK_ERROR(SQL_ERROR, loginfo, NULL, SQL_HANDLE_STMT);
 }
 else
 {
 sprintf(loginfo, "(batchCount - ignoreCount)(%d) == rowsCount(%d)", (batchCount - ignoreCount),
rowsCount);
 CHECK_ERROR(SQL_SUCCESS, loginfo, NULL, SQL_HANDLE_STMT);
 }

 if (rowsCount != process)
 {
 sprintf(loginfo, "process(%d) != rowsCount(%d)", process, rowsCount);
 CHECK_ERROR(SQL_ERROR, loginfo, NULL, SQL_HANDLE_STMT);
 }
 else
 {
 sprintf(loginfo, "process(%d) == rowsCount(%d)", process, rowsCount);
 CHECK_ERROR(SQL_SUCCESS, loginfo, NULL, SQL_HANDLE_STMT);
 }

 for (int i = 0; i < batchCount; i++)
 {
 if (i < ignoreCount)
 {
 if (statusptr[i] != SQL_PARAM_UNUSED)
 {
 sprintf(loginfo, "statusptr%d != SQL_PARAM_UNUSED", i, statusptr[i]);
 CHECK_ERROR(SQL_ERROR, loginfo, NULL, SQL_HANDLE_STMT);
 }
 }
 else if (statusptr[i] != SQL_PARAM_SUCCESS)
 {
 sprintf(loginfo, "statusptr%d != SQL_PARAM_SUCCESS", i, statusptr[i]);
 CHECK_ERROR(SQL_ERROR, loginfo, NULL, SQL_HANDLE_STMT);
 }
 }

 retcode = SQLFreeHandle(SQL_HANDLE_STMT, hstmtinesrt);
 sprintf((char*)loginfo, "SQLFreeHandle hstmtinesrt");
 CHECK_ERROR(retcode, loginfo, hstmtinesrt, SQL_HANDLE_STMT);
 }

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 360

exit:
 printf ("\nComplete.\n");

 // Connection
 if (hdbc != SQL_NULL_HDBC) {
 SQLDisconnect(hdbc);
 SQLFreeHandle(SQL_HANDLE_DBC, hdbc);
 }

 // Environment
 if (henv != SQL_NULL_HENV)
 SQLFreeHandle(SQL_HANDLE_ENV, henv);

 return 0;
}

11.3.5 ODBC Interfaces
The ODBC interface is a set of API functions provided to users. This chapter
describes its common interfaces. For details on other interfaces, see "ODBC
Programmer's Reference" at MSDN (https://msdn.microsoft.com/en-us/library/
windows/desktop/ms714177(v=vs.85).aspx).

SQLAllocEnv
In ODBC 3.x, SQLAllocEnv (a function in ODBC 2.x) was deprecated and replaced
by SQLAllocHandle. For details, see SQLAllocHandle.

SQLAllocConnect
In ODBC 3.x, SQLAllocConnect (a function in ODBC 2.x) was deprecated and
replaced by SQLAllocHandle. For details, see SQLAllocHandle.

SQLAllocHandle
Function

SQLAllocHandle allocates environment, connection, or statement handles. It
replaces the ODBC 2.x functions SQLAllocEnv, SQLAllocConnect, and
SQLAllocStmt.

Prototype

SQLRETURN SQLAllocHandle(SQLSMALLINT HandleType,
 SQLHANDLE InputHandle,
 SQLHANDLE *OutputHandlePtr);

Parameters

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 361

Table 11-26 SQLAllocHandle parameters

Parameter Description

HandleType Handle type allocated by SQLAllocHandle. The value must
be one of the following:
● SQL_HANDLE_ENV (environment handle)
● SQL_HANDLE_DBC (connection handle)
● SQL_HANDLE_STMT (statement handle)
● SQL_HANDLE_DESC (description handle)
The handle application sequence is: SQL_HANDLE_ENV >
SQL_HANDLE_DBC > SQL_HANDLE_STMT. The handle
applied later depends on the handle applied prior to it.

InputHandle Type of the new handle to be allocated.
● If HandleType is SQL_HANDLE_ENV, the value is

SQL_NULL_HANDLE.
● If HandleType is SQL_HANDLE_DBC, this must be an

environment handle.
● If HandleType is SQL_HANDLE_STMT or

SQL_HANDLE_DESC, it must be a connection handle.

OutputHandlePt
r

Output parameter: Pointer to a buffer in which the handle
returned for the newly allocated data structure is stored.

Return values

● SQL_SUCCESS indicates that the call is successful.
● SQL_SUCCESS_WITH_INFO indicates warning information.
● SQL_ERROR indicates major errors, such as memory allocation and

connection setup failures.
● SQL_INVALID_HANDLE indicates that invalid handles were called. Values

returned by other APIs are similar to the values returned by the API you have
used.

Precautions

If SQLAllocHandle returns SQL_ERROR when it is used to allocate a non-
environment handle, it sets OutputHandlePtr to SQL_NULL_HDBC,
SQL_NULL_HSTMT, or SQL_NULL_HDESC. The application can then call
SQLGetDiagRec, set HandleType and Handle to IntputHandle, and obtain the
SQLSTATE value. This value can be used to get more information about the
function call.

Examples

See ODBC Development Example.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 362

SQLAllocStmt

In ODBC 3.x, SQLAllocStmt (a function in ODBC 2.x) was deprecated and replaced
by SQLAllocHandle. For details, see SQLAllocHandle.

SQLBindCol

Function

SQLBindCol is used to associate (bind) columns in a result set to an application
data buffer.

Prototype

SQLRETURN SQLBindCol(SQLHSTMT StatementHandle,
 SQLUSMALLINT ColumnNumber,
 SQLSMALLINT TargetType,
 SQLPOINTER TargetValuePtr,
 SQLLEN BufferLength,
 SQLLEN *StrLen_or_IndPtr);

Parameters

Table 11-27 SQLBindCol parameters

Parameter Description

StatementHandl
e

Statement handle.

ColumnNumber Number of the column to be bound. Column numbering
begins at 0 and increases in ascending order. Column 0
functions as the bookmark. If no bookmark column is set,
column numbering begins at 1 instead.

TargetType The C data type in the buffer.

TargetValuePtr Output parameter: pointer to the buffer bound with the
column. The SQLFetch function returns data in the buffer. If
TargetValuePtr is null, StrLen_or_IndPtr is a valid value.

BufferLength Length of the buffer to which TargetValuePtr points, in
bytes.

StrLen_or_IndPtr Output parameter: pointer to the length or indicator of the
buffer. If StrLen_or_IndPtr is null, no length or indicator is
used.

Return values

● SQL_SUCCESS indicates that the call is successful.

● SQL_SUCCESS_WITH_INFO indicates warning information.

● SQL_ERROR indicates major errors, such as memory allocation and
connection setup failures.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 363

● SQL_INVALID_HANDLE indicates that invalid handles were called. Values
returned by other APIs are similar to the values returned by the API you have
used.

Note

If SQLBindCol returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, the application
can then call SQLGetDiagRec, set HandleType and Handle to
SQL_HANDLE_STMT and StatementHandle, and obtain the SQLSTATE value.
This value can be used to get more information about the function call.

Examples

See ODBC Development Example.

SQLBindParameter

Function

SQLBindParameter binds a parameter flag in an SQL statement to a buffer.

Prototype

SQLRETURN SQLBindParameter(SQLHSTMT StatementHandle,
 SQLUSMALLINT ParameterNumber,
 SQLSMALLINT InputOutputType,
 SQLSMALLINT ValuetType,
 SQLSMALLINT ParameterType,
 SQLULEN ColumnSize,
 SQLSMALLINT DecimalDigits,
 SQLPOINTER ParameterValuePtr,
 SQLLEN BufferLength,
 SQLLEN *StrLen_or_IndPtr);

Parameters

Table 11-28 SQLBindParameter

Keyword Description

StatementHandle Statement handle.

ParameterNumbe
r

Parameter marker number, starting at 1 and increasing in
an ascending order.

InputOutputType Input and output parameter types.

ValueType C data type of the parameter.

ParameterType SQL data type of the parameter.

ColumnSize Column size or the expression of the corresponding
parameter marker.

DecimalDigits Decimal number of the column or the expression of the
corresponding parameter marker.

ParameterValuePt
r

Pointer to the buffer for storing parameter data.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 364

Keyword Description

BufferLength Length of the buffer to which the ParameterValuePtr
points, in bytes.

StrLen_or_IndPtr Pointer to the length or indicator of the buffer. If
StrLen_or_IndPtr is null, no length or indicator is used.

Return values

● SQL_SUCCESS indicates that the call is successful.
● SQL_SUCCESS_WITH_INFO indicates warning information.
● SQL_ERROR indicates major errors, such as memory allocation and

connection setup failures.
● SQL_INVALID_HANDLE indicates that invalid handles were called. Values

returned by other APIs are similar to the values returned by the API you have
used.

Precautions

If SQLBindCol returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, the application
can then call SQLGetDiagRec, set HandleType and Handle to
SQL_HANDLE_STMT and StatementHandle, and obtain the SQLSTATE value.
This value can be used to get more information about the function call.

Examples

See ODBC Development Example.

SQLColAttribute

Function

SQLColAttribute returns the descriptor information about a column in the result
set.

Prototype

SQLRETURN SQLColAttribute(SQLHSTMT StatementHandle,
 SQLUSMALLINT ColumnNumber,
 SQLUSMALLINT FieldIdentifier,
 SQLPOINTER CharacterAtrriburePtr,
 SQLSMALLINT BufferLength,
 SQLSMALLINT *StringLengthPtr,
 SQLPOINTER NumericAttributePtr);

Parameters

Table 11-29 SQLColAttribute parameters

Parameter Description

StatementHandle Statement handle.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 365

Parameter Description

ColumnNumber Column number of the field to be queried, starting at 1
and increasing in an ascending order.

FieldIdentifier Field identifier of ColumnNumber in IRD.

CharacterAttribu-
tePtr

Output parameter: pointer to the buffer that returns
FieldIdentifier field value.

BufferLength ● FieldIdentifier indicates the buffer length when it
refers to an ODBC-defined field and CharacterAttribu-
tePtr points to a string or binary buffer.

● Ignore this parameter if FieldIdentifier is an ODBC-
defined field and CharacterAttributePtr points to an
integer.

StringLengthPtr Output parameter: pointer to a buffer in which the total
number of valid bytes (for string data) is stored in
*CharacterAttributePtr. Ignore the value of
BufferLength if the data is not a string.

NumericAttributePt
r

Output parameter: pointer to an integer buffer in which
the value of the FieldIdentifier field in the
ColumnNumber row of the IRD is returned.

Return values

● SQL_SUCCESS indicates that the call is successful.
● SQL_SUCCESS_WITH_INFO indicates warning information.
● SQL_ERROR indicates major errors, such as memory allocation and

connection setup failures.
● SQL_INVALID_HANDLE indicates that invalid handles were called. Values

returned by other APIs are similar to the values returned by the API you have
used.

Precautions

If SQLColAttribute returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, the
application can then call SQLGetDiagRec, set HandleType and Handle to
SQL_HANDLE_STMT and StatementHandle, and obtain the SQLSTATE value.
This value can be used to get more information about the function call.

Examples

See ODBC Development Example.

SQLConnect

Function

SQLConnect establishes a connection between a driver and a data source. Using
the connection handle, you can obtain crucial information like the program's

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 366

status, transaction processing status, and error messages after establishing a
connection to the data source.

Prototype

SQLRETURN SQLConnect(SQLHDBC ConnectionHandle,
 SQLCHAR *ServerName,
 SQLSMALLINT NameLength1,
 SQLCHAR *UserName,
 SQLSMALLINT NameLength2,
 SQLCHAR *Authentication,
 SQLSMALLINT NameLength3);

Parameters

Table 11-30 SQLConnect parameters

Parameter Description

ConnectionHandl
e

Connection handle, obtained from SQLAllocHandle.

ServerName Name of the data source to connect to.

NameLength1 Length of ServerName.

UserName Database username in the data source.

NameLength2 Length of UserName.

Authentication Password of the database user in the data source.

NameLength3 Length of Authentication.

Return values

● SQL_SUCCESS indicates that the call is successful.
● SQL_SUCCESS_WITH_INFO indicates warning information.
● SQL_ERROR indicates major errors, such as memory allocation and

connection setup failures.
● SQL_INVALID_HANDLE indicates that invalid handles were called. Values

returned by other APIs are similar to the values returned by the API you have
used.

● SQL_STILL_EXECUTING indicates that the statement is being executed.

Precautions

If SQLConnect returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, the
application can then call SQLGetDiagRec, set HandleType and Handle to
SQL_HANDLE_DBC and ConnectionHandle, and obtain the SQLSTATE value. This
value can be used to get more information about the function call.

Examples

See ODBC Development Example.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 367

SQLDisconnect
Function

SQLDisconnect closes the connection associated with the database connection
handle.

Prototype

SQLRETURN SQLDisconnect(SQLHDBC ConnectionHandle);

Parameters

Table 11-31 SQLDisconnect parameters

Parameter Description

ConnectionHandl
e

Connection handle, obtained from SQLAllocHandle.

Return values

● SQL_SUCCESS indicates that the call is successful.
● SQL_SUCCESS_WITH_INFO indicates warning information.
● SQL_ERROR indicates major errors, such as memory allocation and

connection setup failures.
● SQL_INVALID_HANDLE indicates that invalid handles were called. Values

returned by other APIs are similar to the values returned by the API you have
used.

Precautions

If SQLDisconnect returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, the
application can then call SQLGetDiagRec, set HandleType and Handle to
SQL_HANDLE_DBC and ConnectionHandle, and obtain the SQLSTATE value. This
value can be used to get more information about the function call.

Examples

See ODBC Development Example.

SQLExecDirect
Function

SQLExecDirect executes a prepared SQL statement specified in this parameter.
This is the fastest execution method for executing only one SQL statement at a
time.

Prototype

SQLRETURN SQLExecDirect(SQLHSTMT StatementHandle,
 SQLCHAR *StatementText,
 SQLINTEGER TextLength);

Parameters

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 368

Table 11-32 SQLExecDirect parameters

Parameter Description

StatementHandl
e

Statement handle, obtained from SQLAllocHandle.

StatementText SQL statement to be executed. One SQL statement can be
executed at a time.

TextLength Length of StatementText.

Return values

● SQL_SUCCESS indicates that the call is successful.

● SQL_SUCCESS_WITH_INFO indicates warning information.

● SQL_NEED_DATA indicates that there are not enough parameters provided to
execute the SQL statement.

● SQL_ERROR indicates major errors, such as memory allocation and
connection setup failures.

● SQL_INVALID_HANDLE indicates that invalid handles were called. Values
returned by other APIs are similar to the values returned by the API you have
used.

● SQL_STILL_EXECUTING indicates that the statement is being executed.

● SQL_NO_DATA indicates that no result set is returned for the SQL statement.

Precautions

If SQLExecDirect returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, the
application can then call SQLGetDiagRec, set HandleType and Handle to
SQL_HANDLE_STMT and StatementHandle, and obtain the SQLSTATE value.
This value can be used to get more information about the function call.

Examples

See ODBC Development Example.

SQLExecute

Function

When a statement includes a parameter marker, the SQLExecute function
executes a prepared SQL statement using the current value of the marker.

Prototype

SQLRETURN SQLExecute(SQLHSTMT StatementHandle);

Parameters

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 369

Table 11-33 SQLExecute parameters

Parameter Description

StatementHandl
e

Statement handle to be executed.

Return values

● SQL_SUCCESS indicates that the call is successful.
● SQL_SUCCESS_WITH_INFO indicates warning information.
● SQL_NEED_DATA indicates that there are not enough parameters provided to

execute the SQL statement.
● SQL_ERROR indicates major errors, such as memory allocation and

connection setup failures.
● SQL_NO_DATA indicates that no result set is returned for the SQL statement.
● SQL_INVALID_HANDLE indicates that invalid handles were called. Values

returned by other APIs are similar to the values returned by the API you have
used.

● SQL_STILL_EXECUTING indicates that the statement is being executed.

Precautions

If SQLExecute returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, the application
can then call SQLGetDiagRec, set HandleType and Handle to
SQL_HANDLE_STMT and StatementHandle, and obtain the SQLSTATE value.
This value can be used to get more information about the function call.

Examples

See ODBC Development Example.

SQLFetch
Function

SQLFetch advances the cursor to the next row of the result set and retrieves any
bound columns.

Prototype

SQLRETURN SQLFetch(SQLHSTMT StatementHandle);

Parameters

Table 11-34 SQLFetch parameters

Parameter Description

StatementHandl
e

Statement handle, obtained from SQLAllocHandle.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 370

Return values

● SQL_SUCCESS indicates that the call is successful.
● SQL_SUCCESS_WITH_INFO indicates warning information.
● SQL_ERROR indicates major errors, such as memory allocation and

connection setup failures.
● SQL_NO_DATA indicates that no result set is returned for the SQL statement.
● SQL_INVALID_HANDLE indicates that invalid handles were called. Values

returned by other APIs are similar to the values returned by the API you have
used.

● SQL_STILL_EXECUTING indicates that the statement is being executed.

Precautions

If SQLFetch returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, the application
can then call SQLGetDiagRec, set HandleType and Handle to
SQL_HANDLE_STMT and StatementHandle, and obtain the SQLSTATE value.
This value can be used to get more information about the function call.

Examples

See ODBC Development Example.

SQLFreeStmt
In ODBC 3.x, SQLFreeStmt (a function in ODBC 2.x) was deprecated and replaced
with SQLFreeHandle. For details, see SQLFreeHandle.

SQLFreeConnect
In ODBC 3.x, SQLFreeConnect (a function in ODBC 2.x) was deprecated and
replaced with SQLFreeHandle. For details, see SQLFreeHandle.

SQLFreeHandle
Function

SQLFreeHandle releases resources associated with a specific environment,
connection, or statement handle. It replaces the ODBC 2.x functions: SQLFreeEnv,
SQLFreeConnect, and SQLFreeStmt.

Prototype

SQLRETURN SQLFreeHandle(SQLSMALLINT HandleType,
 SQLHANDLE Handle);

Parameters

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 371

Table 11-35 SQLFreeHandle parameters

Parameter Description

HandleType Type of handle to be freed by SQLFreeHandle. The
value must be one of the following:
● SQL_HANDLE_ENV
● SQL_HANDLE_DBC
● SQL_HANDLE_STMT
● SQL_HANDLE_DESC
If HandleType is not one of these values,
SQLFreeHandle returns SQL_INVALID_HANDLE.

Handle Handle to be released.

Return values

● SQL_SUCCESS indicates that the call is successful.
● SQL_SUCCESS_WITH_INFO indicates warning information.
● SQL_ERROR indicates major errors, such as memory allocation and

connection setup failures.
● SQL_INVALID_HANDLE indicates that invalid handles were called. Values

returned by other APIs are similar to the values returned by the API you have
used.

Precautions

If SQLFreeHandle returns SQL_ERROR, the handle is still valid.

Examples

See ODBC Development Example.

SQLFreeEnv

In ODBC 3.x, SQLFreeEnv (a function in ODBC 2.x) was deprecated and replaced
with SQLFreeHandle. For details, see SQLFreeHandle.

SQLPrepare

Function

SQLPrepare prepares an SQL statement to be executed.

Prototype

SQLRETURN SQLPrepare(SQLHSTMT StatementHandle,
 SQLCHAR *StatementText,
 SQLINTEGER TextLength);

Parameters

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 372

Table 11-36 SQLPrepare parameters

Parameter Description

StatementHandl
e

Statement handle.

StatementText SQL text string.

TextLength Length of StatementText.

Return values

● SQL_SUCCESS indicates that the call is successful.
● SQL_SUCCESS_WITH_INFO indicates warning information.
● SQL_ERROR indicates major errors, such as memory allocation and

connection setup failures.
● SQL_INVALID_HANDLE indicates that invalid handles were called. Values

returned by other APIs are similar to the values returned by the API you have
used.

● SQL_STILL_EXECUTING indicates that the statement is being executed.

Precautions

If SQLPrepare returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, the application
can then call SQLGetDiagRec, set HandleType and Handle to
SQL_HANDLE_STMT and StatementHandle, and obtain the SQLSTATE value.
This value can be used to get more information about the function call.

Examples

See ODBC Development Example.

SQLGetData
Function

SQLGetData retrieves data for a single column in the current row of the result set.
It can be called multiple times to retrieve data of variable lengths.

Prototype

SQLRETURN SQLGetData(SQLHSTMT StatementHandle,
 SQLUSMALLINT Col_or_Param_Num,
 SQLSMALLINT TargetType,
 SQLPOINTER TargetValuePtr,
 SQLLEN BufferLength,
 SQLLEN *StrLen_or_IndPtr);

Parameters

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 373

Table 11-37 SQLGetData parameters

Parameter Description

StatementHandle Statement handle, obtained from SQLAllocHandle.

Col_or_Param_Nu
m

Column number of the data to be returned. The columns
in the result set are numbered from 1 in ascending order.
The number of the bookmark column is 0.

TargetType Type identifier of the C data type in the TargetValuePtr
buffer. If TargetType is SQL_ARD_TYPE, the driver uses
the data type of the SQL_DESC_CONCISE_TYPE field in
ARD. If TargetType is SQL_C_DEFAULT, the driver selects a
default data type according to the source SQL data type.

TargetValuePtr Output parameter: pointer to the pointer that points to
the buffer where the data is located.

BufferLength Size of the buffer pointed to by TargetValuePtr.

StrLen_or_IndPtr Output parameter: pointer to the buffer where the length
or identifier value is returned.

● SQL_SUCCESS indicates that the call is successful.
● SQL_SUCCESS_WITH_INFO indicates warning information.
● SQL_ERROR indicates major errors, such as memory allocation and

connection setup failures.
● SQL_NO_DATA indicates that no result set is returned for the SQL statement.
● SQL_INVALID_HANDLE indicates that invalid handles were called. Values

returned by other APIs are similar to the values returned by the API you have
used.

● SQL_STILL_EXECUTING indicates that the statement is being executed.

Precautions

If SQLFetch returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, the application
can then call SQLGetDiagRec, set HandleType and Handle to
SQL_HANDLE_STMT and StatementHandle, and obtain the SQLSTATE value.
This value can be used to get more information about the function call.

Examples

See ODBC Development Example.

SQLGetDiagRec

Function

SQLGetDiagRec returns the current values of multiple fields of a diagnostic record
that contains error, warning, and status information.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 374

Prototype

SQLRETURN SQLGetDiagRec(SQLSMALLINT HandleType,
 SQLHANDLE Handle,
 SQLSMALLINT RecNumber,
 SQLCHAR *SQLState,
 SQLINTEGER *NativeErrorPtr,
 SQLCHAR *MessageText,
 SQLSMALLINT BufferLength,
 SQLSMALLINT *TextLengthPtr);

Parameters

Table 11-38 SQLGetDiagRec parameters

Parameter Description

HandleType Handle type identifier that describes the handle type required
for diagnosis. The value must be one of the following:
● SQL_HANDLE_ENV
● SQL_HANDLE_DBC
● SQL_HANDLE_STMT
● SQL_HANDLE_DESC

Handle Handle of the diagnosis data structure. Its type is indicated by
HandleType. If HandleType is SQL_HANDLE_ENV, Handle may
be shared or non-shared environment handle.

RecNumber Status record from which the application seeks information.
Status records are numbered from 1.

SQLState Output parameter: pointer to a buffer that saves the 5-
character SQLSTATE code pertaining to RecNumber.

NativeErrorPt
r

Output parameter: pointer to a buffer that saves the native
error code.

MessageText Pointer to a buffer that saves text strings of diagnostic
information.

BufferLength Length of MessageText.

TextLengthPt
r

Output parameter: pointer to the buffer, the total number of
bytes in the returned MessageText. If the number of bytes
available to return is greater than BufferLength, then the
diagnostics information text in MessageText is truncated to
BufferLength minus the length of the null termination
character.

Return values

● SQL_SUCCESS indicates that the call is successful.
● SQL_SUCCESS_WITH_INFO indicates warning information.
● SQL_ERROR indicates major errors, such as memory allocation and

connection setup failures.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 375

● SQL_INVALID_HANDLE indicates that invalid handles were called. Values
returned by other APIs are similar to the values returned by the API you have
used.

Precautions

SQLGetDiagRec does not release diagnostic records for itself. It uses the following
returned values to report execution results:

● SQL_SUCCESS: The function successfully returns diagnostic information.
● SQL_SUCCESS_WITH_INFO: The *MessageText buffer is too small to hold the

requested diagnostic message and no diagnostic records are generated.
● SQL_INVALID_HANDLE: The handle specified by HandType and Handle is

invalid.
● SQL_ERROR: RecNumber is smaller than or equal to zero, or BufferLength is

smaller than zero.

If an ODBC function returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, the
application can then call SQLGetDiagRec and obtain the SQLSTATE value. The
possible SQLSTATE values are listed as follows:

Table 11-39 SQLSTATE values

SQLSATATE Error Description

HY000 General error An error occurred for which there is
no specific SQLSTATE.

HY001 Memory allocation
error

The driver is unable to allocate
memory required to support
execution or completion of the
function.

HY008 Operation canceled SQLCancel is called to terminate the
statement execution, but the
StatementHandle function is still
called.

HY010 Function sequence error The function is called prior to
sending data to data parameters or
columns being executed.

HY013 Memory management
error

The function fails to be called. The
error may be caused by low memory
conditions.

HYT01 Connection timeout The connection times out before the
data source responds to the request.

IM001 Function not supported
by the driver

A function that is not supported by
the StatementHandle driver is
called.

Examples

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 376

See ODBC Development Example.

SQLSetConnectAttr
Function

SQLSetConnectAttr sets connection attributes.

Prototype

SQLRETURN SQLSetConnectAttr(SQLHDBC ConnectionHandle
 SQLINTEGER Attribute,
 SQLPOINTER ValuePtr,
 SQLINTEGER StringLength);

Parameters

Table 11-40 SQLSetConnectAttr parameters

Parameter Description

StatementtHand
le

Connection handle.

Attribute Attribute to set.

ValuePtr Pointer to the value of Attribute. ValuePtr depends on the
value of Attribute and can be a 32-bit unsigned integer
value or a null-terminated string. If ValuePtr parameter is
driver-specific value, it may be signed integer.

StringLength If ValuePtr points to a string or a binary buffer, this
parameter should be the length of *ValuePtr. If ValuePtr
points to an integer, StringLength is ignored.

Return values

● SQL_SUCCESS indicates that the call is successful.
● SQL_SUCCESS_WITH_INFO indicates warning information.
● SQL_ERROR indicates major errors, such as memory allocation and

connection setup failures.
● SQL_INVALID_HANDLE indicates that invalid handles were called. Values

returned by other APIs are similar to the values returned by the API you have
used.

Precautions

If SQLSetConnectAttr returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, the
application can then call SQLGetDiagRec, set HandleType and Handle to
SQL_HANDLE_DBC and ConnectionHandle, and obtain the SQLSTATE value. This
value can be used to get more information about the function call.

Examples

See ODBC Development Example.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 377

SQLSetEnvAttr

Function

SQLSetEnvAttr sets environment attributes.

Prototype

SQLRETURN SQLSetEnvAttr(SQLHENV EnvironmentHandle
 SQLINTEGER Attribute,
 SQLPOINTER ValuePtr,
 SQLINTEGER StringLength);

Parameters

Table 11-41 SQLSetEnvAttr parameters

Parameter Description

EnvironmentHan
dle

Environment handle.

Attribute Environment attribute to be set. Its value must be one of the
following:
● SQL_ATTR_ODBC_VERSION: ODBC version
● SQL_CONNECTION_POOLING: connection pool attribute
● SQL_OUTPUT_NTS: string type returned by the driver

ValuePtr Pointer to the value of Attribute. ValuePtr depends on the
value of Attribute and can be a 32-bit integer value or a
null-terminated string.

StringLength If ValuePtr points to a string or a binary buffer, this
parameter should be the length of *ValuePtr. If ValuePtr
points to an integer, StringLength is ignored.

Return values

● SQL_SUCCESS indicates that the call is successful.
● SQL_SUCCESS_WITH_INFO indicates warning information.
● SQL_ERROR indicates major errors, such as memory allocation and

connection setup failures.
● SQL_INVALID_HANDLE indicates that invalid handles were called. Values

returned by other APIs are similar to the values returned by the API you have
used.

Precautions

If SQLSetEnvAttr returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, the
application can then call SQLGetDiagRec, set HandleType and Handle to
SQL_HANDLE_ENV and EnvironmentHandle, and obtain the SQLSTATE value.
This value can be used to get more information about the function call.

Examples

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 378

See ODBC Development Example.

SQLSetStmtAttr
Function

SQLSetStmtAttr sets attributes related to a statement.

Prototype

SQLRETURN SQLSetStmtAttr(SQLHSTMT StatementHandle
 SQLINTEGER Attribute,
 SQLPOINTER ValuePtr,
 SQLINTEGER StringLength);

Parameters

Table 11-42 SQLSetStmtAttr parameters

Parameter Description

StatementtHand
le

Statement handle.

Attribute Attribute to set.

ValuePtr Pointer to the value of Attribute. ValuePtr depends on the
value of Attribute and can be a 32-bit unsigned integer
value or a pointer to a null-terminated string, a binary
buffer, and a driver-specified value. If ValuePtr parameter is
driver-specific value, it may be signed integer.

StringLength If ValuePtr points to a string or a binary buffer, this
parameter should be the length of *ValuePtr. If ValuePtr
points to an integer, StringLength is ignored.

Return values

● SQL_SUCCESS indicates that the call is successful.
● SQL_SUCCESS_WITH_INFO indicates warning information.
● SQL_ERROR indicates major errors, such as memory allocation and

connection setup failures.
● SQL_INVALID_HANDLE indicates that invalid handles were called. Values

returned by other APIs are similar to the values returned by the API you have
used.

Precautions

If SQLSetStmtAttr returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, the
application can then call SQLGetDiagRec, set HandleType and Handle to
SQL_HANDLE_STMT and StatementHandle, and obtain the SQLSTATE value.
This value can be used to get more information about the function call.

Examples

See ODBC Development Example.

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 379

Data Warehouse Service
Developer Guide

11 Using JDBC or ODBC for GaussDB(DWS)
Secondary Development

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 380

12 GaussDB(DWS) Resource Monitoring

GaussDB(DWS) provides multiple dimensional resource monitoring views to show
the real-time and historical resource usage of tasks.

12.1 User Resource Monitoring
In the multi-tenant management framework, you can query the real-time usage
of all user resources (including the memory, number of CPU cores, storage space,
temporary space, operator spilling space, and I/Os) in real time through the
system views PG_TOTAL_USER_RESOURCE_INFO and
PGXC_TOTAL_USER_RESOURCE_INFO and the function
GS_WLM_USER_RESOURCE_INFO. You can also query the system catalog
GS_WLM_USER_RESOURCE_HISTORY and system view
PGXC_WLM_USER_RESOURCE_HISTORY for the historical usage of user
resources.

Precautions
● The CPU, I/O, and memory usage of all jobs on fast and slow lanes (simple

jobs on fast lanes and complex jobs on slow lanes) can be monitored.
● Currently, the memory and CPU usage of fast track jobs are not controlled.

When the fast lane jobs occupy a large number of resources, the used
resources may exceed the resource limit.

● In the DN monitoring view, I/O, memory, and CPU display the resource usage
and limits of resource pools.

● In the CN monitoring view, I/O, memory, and CPU display the total resource
usage and limit of all DN resource pools in the cluster.

● The DN monitoring information is updated every 5 seconds. CNs collect
monitoring information from DNs every 5 seconds. Because each instance
updates or collects user monitoring information independently, the
monitoring information update time on each instance may be different.

● The auxiliary thread automatically invokes the persistence function every 30
seconds to make user monitoring data persistent. So, normally, you don't have
to do this.

Data Warehouse Service
Developer Guide 12 GaussDB(DWS) Resource Monitoring

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 381

● When there are a large number of users and a large cluster, querying such
real-time views will cause network latency due to the real-time
communication overhead between CNs and DNs.

● Resources are not monitored for an initial administrator.

Procedure
● Query all users' resource quotas and real-time resource usage.

SELECT * FROM PG_TOTAL_USER_RESOURCE_INFO;

The result view is as follows:
username | used_memory | total_memory | used_cpu | total_cpu | used_space | total_space |
used_temp_space | total_temp_space | used_spill_space | total_spill_space | read_kbytes | write_kbytes |
read_counts | write_counts | read_speed | write_speed | send_speed | recv_speed
-----------------------+-------------+--------------+----------+-----------+------------+-------------
+-----------------+------------------+------------------+-------------------+-------------+--------------
+-------------+--------------+------------+-------------+------------+------------
perfadm | 0 | 0 | 0 | 0 | 0 | -1 | 0 | -1
| 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0
| 0
usern | 0 | 17250 | 0 | 48 | 0 | -1 | 0 | -1
| 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0
| 0
(2 rows)

The I/O resource monitoring fields (read_kbytes, write_kbytes, read_counts,
write_counts, read_speed, and write_speed) can be available only when the
GUC parameter described in enable_user_metric_persistent is enabled.

For details about each column, see PG_TOTAL_USER_RESOURCE_INFO.

● Query a user's resource quota and real-time resource usage.
SELECT * FROM GS_WLM_USER_RESOURCE_INFO('username');

The query result is as follows:
userid | used_memory | total_memory | used_cpu | total_cpu | used_space | total_space |
used_temp_space | total_temp_space | used_spill_space | total_spill_space | read_kbytes | write_kbytes |
read_counts | write_counts | read_speed | write_speed | send_speed | recv_speed
--------+-------------+--------------+----------+-----------+------------+-------------+-----------------
+------------------+------------------+-------------------+-------------+--------------+-------------+--------------
+------------+-------------+------------+------------
16407 | 18 | 1655 | 6 | 19 | 13787176 | -1 | 0 | -1
| 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0
| 0
(1 row)

● Query all users' resource quotas and historical resource usage.
SELECT * FROM GS_WLM_USER_RESOURCE_HISTORY;

The query result is as follows:
username | timestamp | used_memory | total_memory | used_cpu | total_cpu |
used_space | total_space | used_temp_space | total_temp_space | used_spill_space | total_spill_space |
read_kbytes | write_kbytes | read_counts | write_counts | read_speed | write_speed | send_speed |
recv_speed
-----------------------+-------------------------------+-------------+--------------+----------+-----------
+------------+-------------+-----------------+------------------+------------------+-------------------
+-------------+--------------+-------------+--------------+-------------+-------------+------------+------------
usern | 2020-01-08 22:56:06.456855+08 | 0 | 17250 | 0 | 48 | 0
| -1 | 0 | -1 | 88349078 | -1 | 45680 | 34 | 5710
| 8 | 320 | 0 | 0 | 0
userg | 2020-01-08 22:56:06.458659+08 | 0 | 15525 | 33.48 | 48 | 0
| -1 | 0 | -1 | 110169581 | -1 | 17648 | 23 |
2206 | 5 | 123 | 0 | 0 | 0
userg1 | 2020-01-08 22:56:06.460252+08 | 0 | 13972 | 33.48 | 48 | 0
| -1 | 0 | -1 | 136106277 | -1 | 17648 | 23 |
2206 | 5 | 123 | 0 | 0 | 0

Data Warehouse Service
Developer Guide 12 GaussDB(DWS) Resource Monitoring

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 382

For the system catalog GS_WLM_USER_RESOURCE_HISTORY, data in the
PG_TOTAL_USER_RESOURCE_INFO view is periodically saved to historical
tables only when the GUC parameter enable_user_metric_persistent is
enabled.
For details about each column, see GS_WLM_USER_RESOURCE_HISTORY.

12.2 Resource Pool Monitoring

Overview
In the multi-tenant management framework, if queries are associated with
resource pools, the resources occupied by the queries are summarized to the
associated resource pools. You can query the real-time resource usage of all
resource pools in the resource pool monitoring view and query the historical
resource usage of resource pools in the resource pool monitoring history table.

The resource pool monitoring data is updated every 5s. However, due to the time
difference between CNs and DNs, the actual monitoring data update time may be
longer than 5s. Generally, the time does not exceed 10s. The resource pool
monitoring data is persisted every 30 seconds. The resource pool monitoring logic
is basically the same as that of the user resource monitoring. Therefore, the
enable_user_metric_persistent and user_metric_retention_time parameters are
used to control the persistence and aging of resource pool monitoring data,
respectively.

Resources monitored by a resource pool include the running and queuing
information of fast and slow lane jobs, and CPU, memory, and logical I/O resource
monitoring information. The monitoring views and history tables are as follows:

● Real-time monitoring view of resource pools (single CN):
GS_RESPOOL_RUNTIME_INFO

● Real-time monitoring view of resource pools (all CNs):
PGXC_RESPOOL_RUNTIME_INFO

● Real-time monitoring view of resource pool resources (single CN):
GS_RESPOOL_RESOURCE_INFO

● Real-time monitoring view of resource pool resources (all CNs):
PGXC_RESPOOL_RESOURCE_INFO

● Historical resource monitoring table of the resource pool (single CN):
GS_RESPOOL_RESOURCE_HISTORY

● Monitoring view of historical resource pool resources (all CNs):
PGXC_RESPOOL_RESOURCE_HISTORY

Data Warehouse Service
Developer Guide 12 GaussDB(DWS) Resource Monitoring

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 383

NO TE

● Resource pool monitoring monitors the CPU, I/O, and memory usage of all jobs on the
fast and slow lanes.

● Currently, the memory and CPU usage of fast track jobs are not controlled. When the
fast lane jobs occupy a large number of resources, the used resources may exceed the
resource limit.

● In the monitoring view of DN resource pools, I/O, memory, and CPU display the resource
usage and limits of resource pools.

● In the monitoring view of CN resource pools, I/O, memory, and CPU display the total
resource usage and limit of all DN resource pools in the cluster.

● Resource pool monitoring information on DNs is updated every 5 seconds. CNs collect
resource pool monitoring information from DNs every 5 seconds. Because each instance
updates or collects resource pool monitoring information independently, the monitoring
information update time on each instance may be different.

● The auxiliary thread automatically invokes the persistence function every 30 seconds to
make the resource pool monitoring data persistent. So, normally, you don't need to do
this.

Procedure
● Querying the real-time running status of jobs in a resource pool.

SELECT * FROM GS_RESPOOL_RUNTIME_INFO;

The result view is as follows:
 nodegroup | rpname | ref_count | fast_run | fast_wait | slow_run | slow_wait
-----------+--------------+-----------+----------+-----------+----------+-----------
 vc1 | p2 | 10 | 0 | 0 | 0 | 0
 vc2 | p3 | 10 | 5 | 5 | 0 | 0
 vc2 | p4 | 0 | 0 | 0 | 0 | 0
 vc1 | default_pool | 0 | 0 | 0 | 0 | 0
 vc2 | default_pool | 0 | 0 | 0 | 0 | 0
 vc1 | p1 | 20 | 5 | 5 | 3 | 7
(6 rows)

Where,

a. ref_count indicates the number of jobs that reference the current
resource pool information. Its value will be retained until the
management ends.

b. fast_run and slow_run are load management accounting information.
Their values are valid only when fast_limit and slow_limit are larger
than 0.

c. This view is valid only on CNs. The persistence information is stored in
GS_RESPOOL_RESOURCE_HISTORY.

d. For details about each field, see GS_RESPOOL_RUNTIME_INFO.
● Querying the resource quota and real-time resource usage of a resource pool.

SELECT * FROM GS_RESPOOL_RESOURCE_INFO;

The result view is as follows:
nodegroup | rpname | cgroup | ref_count | fast_run | fast_wait | fast_limit | slow_run |
slow_wait | slow_limit | used_cpu | cpu_limit | used_mem | estimate_mem | mem_limit |read_kbytes |
write_kbytes | read_counts | write_counts | read_speed | write_speed | send_speed | recv_speed
-----------+--------------+---------------------+-----------+----------+-----------+------------+----------
+-----------+------------+----------+-----------+----------+--------------+-----------+-------------+--------------
+-------------+--------------+------------+-------------+------------+------------
 vc1 | p2 | DefaultClass:Rush | 10 | 0 | 0 | -1 | 0 | 0 | 10
| 9.97 | 48 | 20 | 0 | 11555 | 8 | 2880 | 1 | 360 | 1
| 589 | 0 | 0
 vc2 | p3 | DefaultClass:Rush | 10 | 5 | 5 | 5 | 0 | 0 | 10

Data Warehouse Service
Developer Guide 12 GaussDB(DWS) Resource Monitoring

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 384

| 4.98 | 48 | 11 | 0 | 11555 | 0 | 848 | 0 | 106 | 0
| 173 | 0 | 0
 vc2 | p4 | DefaultClass:Rush | 0 | 0 | 0 | -1 | 0 | 0 | 10
| 0 | 48 | 0 | 0 | 11555 | 0 | 0 | 0 | 0 | 0
| 0 | 0 | 0
 vc1 | default_pool | DefaultClass:Medium | 0 | 0 | 0 | -1 | 0 | 0
| -1 | 0 | 48 | 0 | 0 | 11555 | 0 | 0 | 0 | 0
| 0 | 0 | 0 | 0
 vc2 | default_pool | DefaultClass:Medium | 0 | 0 | 0 | -1 | 0 | 0
| -1 | 0 | 48 | 0 | 0 | 11555 | 0 | 0 | 0 | 0
| 0 | 0 | 0 | 0
 vc1 | p1 | DefaultClass:Rush | 20 | 5 | 5 | 5 | 3 | 7 | 3
| 7.98 | 48 | 16 | 768 | 11555 | 8 | 2656 | 1 | 332 | 1
| 543 | 0 | 0
(6 rows)

a. This view is valid on both CNs and DNs. The CPU, memory, and I/O usage
on a DN indicates the resource consumption of the DN. The CPU,
memory, and I/O usage on a CN is the total resource consumption of all
DNs in the cluster.

b. estimate_mem is valid only on CNs under dynamic load management. It
displays the estimated memory accounting of the resource pool.

c. I/O monitoring information is recorded only when
enable_logical_io_statistics is enabled.

d. For details about each field, see GS_RESPOOL_RESOURCE_INFO.
● Querying the resource quota and historical resource usage of a resource pool.

SELECT * FROM GS_RESPOOL_RESOURCE_HISTORY ORDER BY timestamp DESC;

The result view is as follows:
timestamp | nodegroup | rpname | cgroup | ref_count | fast_run | fast_wait |
fast_limit | slow_run | slow_wait | slow_limit | used_cpu | cpu_limit | used_mem | estimate_mem |
mem_limit | read_kbytes | write_kbytes | read_counts | write_counts | read_speed | write_speed |
send_speed | recv_speed
-------------------------------+--------------+--------------+---------------------+-----------+----------
+-----------+------------+----------+-----------+------------+----------+-----------+----------+--------------
+-----------+-------------+--------------+-------------+--------------+------------+-------------+------------
+------------
 2022-03-04 09:41:57.53739+08 | vc1 | p2 | DefaultClass:Rush | 10 | 0 | 0
| -1 | 0 | 0 | 10 | 9.97 | 48 | 20 | 0 | 11555 | 0 |
2320 | 0 | 290 | 0 | 474 | 0 | 0
 2022-03-04 09:41:57.53739+08 | vc1 | p1 | DefaultClass:Rush | 20 | 5 | 5
| 5 | 3 | 7 | 3 | 7.98 | 48 | 16 | 768 | 11555 | 0 |
1896 | 0 | 237 | 0 | 387 | 0 | 0
 2022-03-04 09:41:57.53739+08 | vc2 | default_pool | DefaultClass:Medium | 0 | 0
| 0 | -1 | 0 | 0 | -1 | 0 | 48 | 0 | 0 | 11555 | 0
| 0 | 0 | 0 | 0 | 0 | 0 | 0
 2022-03-04 09:41:57.53739+08 | vc1 | default_pool | DefaultClass:Medium | 0 | 0
| 0 | -1 | 0 | 0 | -1 | 0 | 48 | 0 | 0 | 11555 | 0
| 0 | 0 | 0 | 0 | 0 | 0 | 0
 2022-03-04 09:41:57.53739+08 | vc2 | p4 | DefaultClass:Rush | 0 | 0 | 0
| -1 | 0 | 0 | 10 | 0 | 48 | 0 | 0 | 11555 | 0 | 0
| 0 | 0 | 0 | 0 | 0 | 0
 2022-03-04 09:41:57.53739+08 | vc2 | p3 | DefaultClass:Rush | 10 | 5 | 5
| 5 | 0 | 0 | 10 | 4.99 | 48 | 11 | 0 | 11555 | 0 | 880
| 0 | 110 | 0 | 180 | 0 | 0
 2022-03-04 09:41:27.335234+08 | vc2 | p3 | DefaultClass:Rush | 10 | 5 | 5
| 5 | 0 | 0 | 10 | 4.98 | 48 | 11 | 0 | 11555 | 0 | 856
| 0 | 107 | 0 | 175 | 0 | 0

a. The monitoring information comes from the resource pool monitoring
history table. When enable_user_metric_persistent is enabled, the
monitoring information is recorded every 30 seconds.

b. The storage duration of the table data is specified by the
user_metric_retention_time parameter.

Data Warehouse Service
Developer Guide 12 GaussDB(DWS) Resource Monitoring

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 385

c. For details about each field, see GS_RESPOOL_RESOURCE_HISTORY.

12.3 Monitoring Memory Resources

Monitoring the Memory

GaussDB(DWS) provides a view for monitoring the memory usage of the entire
cluster.

Query the pgxc_total_memory_detail view as a user with sysadmin permissions.
SELECT * FROM pgxc_total_memory_detail;

If the following error message is returned during the query, enable the memory
management function.
SELECT * FROM pgxc_total_memory_detail;
ERROR: unsupported view for memory protection feature is disabled.
CONTEXT: PL/pgSQL function pgxc_total_memory_detail() line 12 at FOR over EXECUTE statement

You can set enable_memory_limit and max_process_memory on the
GaussDB(DWS) console to enable memory management. The procedure is as
follows:

1. Log in to the GaussDB(DWS) management console.
2. In the navigation pane on the left, click Clusters.
3. In the cluster list, find the target cluster and click its name. The Basic

Information page is displayed.
4. Click the Parameter Modification tab, change the value of

enable_memory_limit to on, and click Save to save the file.
5. Change the value of max_process_memory to a proper one. For details about

the modification suggestions, see max_process_memory. After it is done, click
Save.

6. In the Modification Preview dialog box, confirm the modifications and click
Save. After the modification, restart the cluster for the modification to take
effect.

Monitoring the Shared Memory

You can query the context information about the shared memory on the
pg_shared_memory_detail view.

SELECT * FROM pg_shared_memory_detail;
 contextname | level | parent | totalsize | freesize | usedsize
---------------------------------+-------+---------------------------------+-----------+----------+----------
 ProcessMemory | 0 | | 24576 | 9840 | 14736
 Workload manager memory context | 1 | ProcessMemory | 2105400 | 7304 | 2098096
 wlm collector hash table | 2 | Workload manager memory context | 8192 | 3736 | 4456
 Resource pool hash table | 2 | Workload manager memory context | 24576 | 15968 | 8608
 wlm cgroup hash table | 2 | Workload manager memory context | 24576 | 15968 | 8608
(5 rows)

This view lists the context name of the memory, level, the upper-layer memory
context, and the total size of the shared memory.

In the database, GUC parameter memory_tracking_mode is used to configure the
memory statistics collecting mode, including the following options:

Data Warehouse Service
Developer Guide 12 GaussDB(DWS) Resource Monitoring

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 386

● none: The memory statistics collecting function is not enabled.
● normal: Only memory statistics is collected in real time and no file is

generated.
● executor: The statistics file is generated, containing the context information

about all allocated memory used on the execution layer.
When the parameter is set to executor, cvs files are generated under the
pg_log directory of the DN process. The file names are in the format of
memory_track_<DN name>_query_<queryid>.csv. The information about the
operators executed by the postgres thread of the executor and all stream
threads are input in this file during task execution.
The following is an example of the file content:
0, 0, ExecutorState, 0, PortalHeapMemory, 0, 40K, 602K, 23
1, 3, CStoreScan_29360131_25, 0, ExecutorState, 1, 265K, 554K, 23
2, 128, cstore scan per scan memory context, 1, CStoreScan_29360131_25, 2, 24K, 24K, 23
3, 127, cstore scan memory context, 1, CStoreScan_29360131_25, 2, 264K, 264K, 23
4, 7, InitPartitionMapTmpMemoryContext, 1, CStoreScan_29360131_25, 2, 31K, 31K, 23
5, 2, VecPartIterator_29360131_24, 0, ExecutorState, 1, 16K, 16K, 23
0, 0, ExecutorState, 0, PortalHeapMemory, 0, 24K, 1163K, 20
1, 3, CStoreScan_29360131_22, 0, ExecutorState, 1, 390K, 1122K, 20
2, 20, cstore scan per scan memory context, 1, CStoreScan_29360131_22, 2, 476K, 476K, 20
3, 19, cstore scan memory context, 1, CStoreScan_29360131_22, 2, 264K, 264K, 20
4, 7, InitPartitionMapTmpMemoryContext, 1, CStoreScan_29360131_22, 2, 23K, 23K, 20
5, 2, VecPartIterator_29360131_21, 0, ExecutorState, 1, 16K, 16K, 20

The fields include the output SN, SN of the memory allocation context within
the thread, name of the current memory context, output SN of the parent
memory context, name of the parent memory context, tree layer No. of the
memory context, peak memory used by the current memory context, peak
memory used by the current memory context and all its child memory
contexts, and plan node ID of the query where the thread is executed.
In this example, the record "1, 3, CStoreScan_29360131_22, 0, ExecutorState,
1, 390K, 1122K, 20" represents the following information about Explain
Analyze:
– CstoreScan_29360131_22 indicates the CstoreScan operator.
– 1122K indicates the peak memory used by the CstoreScan operator.

● fullexec: The generated file includes the information about all memory
contexts requested by the execution layer.
If the parameter is set to fullexec, the output information will be similar to
that for executor, except that some memory context allocation information
may be returned because the information about all memory applications (no
matter succeeded or not) is printed. As only the memory application
information is recorded, the peak memory used by the memory context is
recorded as 0.

12.4 Instance Resource Monitoring
GaussDB(DWS) provides system catalogs for monitoring the resource usage of
CNs and DNs (including memory, CPU usage, disk I/O, process physical I/O, and
process logical I/O), and system catalogs for monitoring the resource usage of the
entire cluster.

For details about the system catalog GS_WLM_INSTANCE_HISTORY, see
GS_WLM_INSTANCE_HISTORY.

Data Warehouse Service
Developer Guide 12 GaussDB(DWS) Resource Monitoring

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 387

NO TE

Data in the system catalogGS_WLM_INSTANCE_HISTORY is distributed in corresponding
instances. CN monitoring data is stored in the CN instance, and DN monitoring data is
stored in the DN instance. The DN has a standby node. When the primary DN is abnormal,
the monitoring data of the DN can be restored from the standby node. However, a CN has
no standby node. When a CN is abnormal and then restored, the monitoring data of the CN
will be lost.

Procedure
● Query the latest resource usage of the current instance.

SELECT * FROM GS_WLM_INSTANCE_HISTORY ORDER BY TIMESTAMP DESC;

The query result is as follows:
instancename | timestamp | used_cpu | free_mem | used_mem | io_await | io_util |
disk_read | disk_write | process_read | process_write | logical_read | logical_write | read_counts |
write_counts
--------------+-------------------------------+----------+----------+----------+----------+----------+-----------
+------------+--------------+---------------+--------------+---------------+-------------+--------------
dn_6015_6016 | 2022-01-10 17:29:17.329495+08 | 0 | 14570 | 8982 | 662.923 | 99.9601 |
697666 | 93655.5 | 183104 | 30082 | 285659 | 30079 | 357717 | 37667
dn_6015_6016 | 2022-01-10 17:29:07.312049+08 | 0 | 14578 | 8974 | 883.102 | 99.9801 |
756228 | 81417.4 | 189722 | 30786 | 285681 | 30780 | 358103 | 38584
dn_6015_6016 | 2022-01-10 17:28:57.284472+08 | 0 | 14583 | 8969 | 727.135 | 99.9801 |
648581 | 88799.6 | 177120 | 31176 | 252161 | 31175 | 316085 | 39079
dn_6015_6016 | 2022-01-10 17:28:47.256613+08 | 0 | 14591 | 8961 | 679.534 | 100.08 |
655360 | 169962 | 179404 | 30424 | 242002 | 30422 | 303351 | 38136

● Query the resource usage of the current instance during a specified period.
SELECT * FROM GS_WLM_INSTANCE_HISTORY WHERE TIMESTAMP > '2022-01-10' AND TIMESTAMP
< '2020-01-11' ORDER BY TIMESTAMP DESC;

The query result is as follows:
instancename | timestamp | used_cpu | free_mem | used_mem | io_await | io_util |
disk_read | disk_write | process_read | process_write | logical_read | logical_write | read_counts |
write_counts
--------------+-------------------------------+----------+----------+----------+----------+----------+-----------
+------------+--------------+---------------+--------------+---------------+-------------+--------------
dn_6015_6016 | 2022-01-10 17:29:17.329495+08 | 0 | 14570 | 8982 | 662.923 | 99.9601 |
697666 | 93655.5 | 183104 | 30082 | 285659 | 30079 | 357717 | 37667
dn_6015_6016 | 2022-01-10 17:29:07.312049+08 | 0 | 14578 | 8974 | 883.102 | 99.9801 |
756228 | 81417.4 | 189722 | 30786 | 285681 | 30780 | 358103 | 38584
dn_6015_6016 | 2022-01-10 17:28:57.284472+08 | 0 | 14583 | 8969 | 727.135 | 99.9801 |
648581 | 88799.6 | 177120 | 31176 | 252161 | 31175 | 316085 | 39079
dn_6015_6016 | 2022-01-10 17:28:47.256613+08 | 0 | 14591 | 8961 | 679.534 | 100.08 |
655360 | 169962 | 179404 | 30424 | 242002 | 30422 | 303351 | 38136

● To query the latest resource usage of a cluster, you can invoke the
pgxc_get_wlm_current_instance_info stored procedure on the CN.
SELECT * FROM pgxc_get_wlm_current_instance_info('ALL');

The query result is as follows:
instancename | timestamp | used_cpu | free_mem | used_mem | io_await | io_util |
disk_read | disk_write | process_read | process_write | logical_read | logical_write | read_counts |
write_counts
--------------+-------------------------------+----------+----------+----------+----------+---------+-----------
+------------+--------------+---------------+--------------+---------------+-------------+--------------
coordinator2 | 2020-01-14 21:58:29.290894+08 | 0 | 12010 | 278 | 16.0445 | 7.19561 |
184.431 | 27959.3 | 0 | 10 | 0 | 0 | 0 | 0
coordinator3 | 2020-01-14 21:58:27.567655+08 | 0 | 12000 | 288 | .964557 | 3.40659 |
332.468 | 3375.02 | 26 | 13 | 0 | 0 | 0 | 0
datanode1 | 2020-01-14 21:58:23.900321+08 | 0 | 11899 | 389 | 1.17296 | 3.25 |
329.6 | 2870.4 | 28 | 8 | 13 | 3 | 18 | 6
datanode2 | 2020-01-14 21:58:32.832989+08 | 0 | 11904 | 384 | 17.948 | 8.52148 |
214.186 | 25894.1 | 28 | 10 | 13 | 3 | 18 | 6
datanode3 | 2020-01-14 21:58:24.826694+08 | 0 | 11894 | 394 | 1.16088 | 3.15 | 328

Data Warehouse Service
Developer Guide 12 GaussDB(DWS) Resource Monitoring

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 388

| 2868.8 | 25 | 10 | 13 | 3 | 18 | 6
coordinator1 | 2020-01-14 21:58:33.367649+08 | 0 | 11988 | 300 | 9.53286 | 10.05 |
43.2 | 55232 | 0 | 0 | 0 | 0 | 0 | 0
coordinator1 | 2020-01-14 21:58:23.216645+08 | 0 | 11988 | 300 | 1.17085 | 3.21182 |
324.729 | 2831.13 | 8 | 13 | 0 | 0 | 0 | 0
(7 rows)

● To query historical resource usage of a cluster, you can invoke the
pgxc_get_wlm_current_instance_info stored procedure on the CN.
SELECT * FROM pgxc_get_wlm_history_instance_info('ALL', '2020-01-14 21:00:00', '2020-01-14
22:00:00', 3);

The query result is as follows:
instancename | timestamp | used_cpu | free_mem | used_mem | io_await | io_util |
disk_read | disk_write | process_read | process_write | logical_read | logical_write | read_counts |
write_counts
--------------+-------------------------------+----------+----------+----------+----------+-----------+-----------
+------------+--------------+---------------+--------------+---------------+-------------+--------------
coordinator2 | 2020-01-14 21:50:49.778902+08 | 0 | 12020 | 268 | .127371 | .789211 |
15.984 | 3994.41 | 0 | 0 | 0 | 0 | 0 | 0
coordinator2 | 2020-01-14 21:53:49.043646+08 | 0 | 12018 | 270 | 30.2902 | 8.65404 |
276.77 | 16741.8 | 3 | 1 | 0 | 0 | 0 | 0
coordinator2 | 2020-01-14 21:57:09.202654+08 | 0 | 12018 | 270 | .16051 | .979021 |
59.9401 | 5596 | 0 | 0 | 0 | 0 | 0 | 0
coordinator3 | 2020-01-14 21:38:48.948646+08 | 0 | 12012 | 276 | .0769231 | .00999001
| 0 | 35.1648 | 0 | 1 | 0 | 0 | 0 | 0
coordinator3 | 2020-01-14 21:40:29.061178+08 | 0 | 12012 | 276 | .118421 | .0199601
| 0 | 970.858 | 0 | 0 | 0 | 0 | 0 | 0
coordinator3 | 2020-01-14 21:50:19.612777+08 | 0 | 12010 | 278 | 24.411 | 11.7665 |
8.78244 | 44641.1 | 0 | 0 | 0 | 0 | 0 | 0
datanode1 | 2020-01-14 21:49:42.758649+08 | 0 | 11909 | 379 | .798776 | 8.02 |
51.2 | 20924.8 | 0 | 0 | 0 | 0 | 0 | 0
datanode1 | 2020-01-14 21:49:52.760188+08 | 0 | 11909 | 379 | 23.8972 | 14.1 |
0 | 74760 | 0 | 0 | 0 | 0 | 0 | 0
datanode1 | 2020-01-14 21:50:22.769226+08 | 0 | 11909 | 379 | 39.5868 | 7.4 | 0
| 19760.8 | 0 | 0 | 0 | 0 | 0 | 0
datanode2 | 2020-01-14 21:58:02.826185+08 | 0 | 11905 | 383 | .351648 | .32 |
20.8 | 504.8 | 0 | 0 | 0 | 0 | 0 | 0
datanode2 | 2020-01-14 21:56:42.80793+08 | 0 | 11906 | 382 | .559748 | .04 | 0
| 326.4 | 0 | 0 | 0 | 0 | 0 | 0
datanode2 | 2020-01-14 21:45:21.632407+08 | 0 | 11901 | 387 | 12.1313 | 4.55544 |
3.1968 | 45177.2 | 0 | 0 | 0 | 0 | 0 | 0
datanode3 | 2020-01-14 21:58:14.823317+08 | 0 | 11898 | 390 | .378205 | .99 |
48 | 23353.6 | 0 | 0 | 0 | 0 | 0 | 0
datanode3 | 2020-01-14 21:47:50.665028+08 | 0 | 11901 | 387 | 1.07494 | 1.19 |
0 | 15506.4 | 0 | 0 | 0 | 0 | 0 | 0
datanode3 | 2020-01-14 21:51:21.720117+08 | 0 | 11903 | 385 | 10.2795 | 3.11 |
0 | 11031.2 | 0 | 0 | 0 | 0 | 0 | 0
coordinator1 | 2020-01-14 21:42:59.121945+08 | 0 | 12020 | 268 | .0857143 | .0699301
| 0 | 6579.02 | 0 | 0 | 0 | 0 | 0 | 0
coordinator1 | 2020-01-14 21:41:49.042646+08 | 0 | 12020 | 268 | 20.9039 | 11.3786 |
6042.76 | 57903.7 | 0 | 0 | 0 | 0 | 0 | 0
coordinator1 | 2020-01-14 21:41:09.007652+08 | 0 | 12020 | 268 | .0446429 | .03996 |
0 | 1109.29 | 0 | 0 | 0 | 0 | 0 | 0
(18 rows)

12.5 Real-time Top SQL
You can query real-time Top SQL in real-time resource monitoring views at
different levels. The real-time resource monitoring view records the resource usage
(including memory, data spilled to disks, and CPU time) and performance alarm
information during job running.

The following table describes the external interfaces of the real-time views.

Data Warehouse Service
Developer Guide 12 GaussDB(DWS) Resource Monitoring

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 389

Table 12-1 Real-time resource monitoring views

Level Monitored
Node

View

Query level/perf
level

Current CN GS_WLM_SESSION_STATISTICS

All CNs PGXC_WLM_SESSION_STATISTICS

operator level Current CN GS_WLM_OPERATOR_STATISTICS

All CNs PGXC_WLM_OPERATOR_STATISTICS

Data Warehouse Service
Developer Guide 12 GaussDB(DWS) Resource Monitoring

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 390

NO TE

● The view level is determined by the resource monitoring level, that is, the
resource_track_level configuration.

● The perf and operator levels affect the values of the query_plan and warning columns
in GS_WLM_SESSION_STATISTICS or PGXC_WLM_SESSION_INFO. For details, see SQL
Self-Diagnosis.

● Prefixes gs and pgxc indicate views showing single CN information and those showing
cluster information, respectively. Common users can log in to a CN in the cluster to
query only views with the gs prefix.

● When you query this type of views, there will be network latency, because the views
obtain resource usage in real time.

● If an instance fault occurs, some Top SQL statement information may fail to be recorded
in real-time resource monitoring views.

● Top SQL statements are recorded in real-time resource monitoring views as follows:
● Special DDL statements, such as SET, RESET, SHOW, ALTER SESSION SET, and

SET CONSTRAINTS, are not recorded.
● DDL statements, such as CREATE, ALTER, DROP, GRANT, REVOKE, and VACUUM,

are recorded.
● DML statements are recorded, including:

● the execution of SELECT, INSERT, UPDATE, and DELETE
● the execution of EXPLAIN ANALYZE and EXPLAIN PERFORMANCE
● the use of the query-level or perf-level views

● The entry statements for invoking functions and stored procedures are recorded.
When the GUC parameter enable_track_record_subsql is enabled, some internal
statements (except the DECLARE definition statement) of a stored procedure can
be recorded. Only the internal statements delivered to DNs for execution are
recorded, and the remaining internal statements are filtered out.

● The anonymous block statement is recorded. When the GUC parameter
enable_track_record_subsql is enabled, some internal statements of an
anonymous block can be recorded. Only the internal statements delivered to DNs
for execution are recorded, and the remaining internal statements are filtered out.

● The cursor statements are recorded. If a cursor does not read data from the cache
but triggers the condition for delivering the statement to a DN for execution, the
cursor statement is recorded and the statement and execution plan are enhanced.
However, if the cursor reads data from the cache, the cursor statement is not
recorded. When a cursor statement is used in an anonymous block or function and
the cursor reads a large amount of data from a DN but is not fully used, the
monitoring information about the cursor on the DN cannot be recorded due to the
current architecture limitation. The With Hold cursor syntax has a special
execution logic. It executes queries during transaction committing. If a statement
execution error is reported during this period of time, the aborted status of the job
cannot be recorded in the TopSQL history table.

● Jobs in a redistribution process are not monitored.
● The parameters of a statement with placeholders executed by JDBC are generally

specified. However, if the length of the parameter and the original statement
exceeds 64 KB, the parameter is not recorded. If the statement is a lightweight
statement, it is directly delivered to the DN for execution and the parameter is not
recorded.

● In cluster 8.1.3 and later versions, the TopSQL monitoring at the query and perf
levels does not affect the query performance. The default value of the GUC
parameter resource_track_cost for resource monitoring of statements has been
changed to 0. When you query the TopSQL real-time monitoring view, by default,
all statements that are being executed are displayed.

● In 8.1.3 and later versions, if the GUC parameter enable_track_record_subsql for
querying the TopSQL monitoring view is enabled, regardless of whether the

Data Warehouse Service
Developer Guide 12 GaussDB(DWS) Resource Monitoring

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 391

substatement monitoring function is enabled in the service statements, you can
view the substatement running information in the TopSQL monitoring view.

● You are advised not to fully enable substatement monitoring in stored procedures,
that is, enable_track_record_subsql, in the 8.1.3 cluster version. Because the
substatements cannot be filtered by time, fully enabling substatement monitoring
may record too many substatements. As a result, archived monitoring tables
occupy a large amount of disk space. In the 8.1.3 cluster version, you are advised to
enable only the parameters in the corresponding session when querying real-time
monitoring information or locating and analyzing some stored procedures. Starting
from cluster versions 8.2.1 and later, a new customizable GUC parameter
resource_track_subsql_duration is added. By default, it is set to 180 seconds. This
parameter allows you to filter and archive substatements based on their execution
time.

● Due to specification restrictions, the records of the main statements that are not
written to disks in the TopSQL history table are delayed. The records are displayed
in the TopSQL history table only when the job is delivered next time.

● The spill_size field at the query level (job monitoring) and operator level (operator
monitoring) varies due to the statistical dimension. The spill size at the query level
is the statement files spilled to disks, and the spill size at the operator level is the
read and write I/O volume of a specific operator at the logical layer.

● When the GUC parameter enable_stream_operator is set to off, the displayed
operator execution information may be inaccurate.

Prerequisites
● The GUC parameter enable_resource_track is set to on. The default value is

on.
● The GUC parameter resource_track_level is set to query, perf or operator.

The default value is query.
● Job monitoring rules are as follows:

– Jobs whose execution cost estimated by the optimizer is greater than or
equal to resource_track_cost.

● If the Cgroups function is properly loaded, you can run the gs_cgroup -P
command to view information about Cgroups.

● The GUC parameter enable_track_record_subsql specifies whether to record
internal statements of a stored procedure or anonymous block.

In the preceding prerequisites, enable_resource_track is a system-level parameter
that specifies whether to enable resource monitoring. resource_track_level is a
session-level parameter. You can set the resource monitoring level of a session as
needed. The following table describes the values of the two parameters.

Table 12-2 Setting the resource monitoring level to collect statistics

enable_resource_
track

resource_track_le
vel

Query-Level
Information

Operator-Level
Information

on(default) none Not collected Not collected

query(default) Collected Not collected

perf Collected Not collected

operator Collected Collected

Data Warehouse Service
Developer Guide 12 GaussDB(DWS) Resource Monitoring

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 392

enable_resource_
track

resource_track_le
vel

Query-Level
Information

Operator-Level
Information

off none/query/
operator

Not collected Not collected

Procedure

Step 1 Query for the real-time CPU information in the gs_session_cpu_statistics view.
SELECT * FROM gs_session_cpu_statistics;

Step 2 Query for the real-time memory information in the gs_session_memory_statistics
view.
SELECT * FROM gs_session_memory_statistics;

Step 3 Query for the real-time resource information about the current CN in the
gs_wlm_session_statistics view.
SELECT * FROM gs_wlm_session_statistics;

Step 4 Query for the real-time resource information about all CNs in the
pgxc_wlm_session_statistics view.
SELECT * FROM pgxc_wlm_session_statistics;

Step 5 Query for the real-time resource information about job operators on the current
CN in the gs_wlm_operator_statistics view.
SELECT * FROM gs_wlm_operator_statistics;

Step 6 Query for the real-time resource information about job operators on all CNs in the
pgxc_wlm_operator_statistics view.
SELECT * FROM pgxc_wlm_operator_statistics;

Step 7 Query for the load management information about the jobs executed by the
current user in the PG_SESSION_WLMSTAT view.
SELECT * FROM pg_session_wlmstat;

Step 8 Query the job execution status of the current user on each CN in the
pgxc_wlm_workload_records view (this view is available when the dynamic load
function is enabled, that is, enable_dynamic_workload is set to on).
SELECT * FROM pgxc_wlm_workload_records;

----End

12.6 Historical Top SQL
You can query historical Top SQL in historical resource monitoring views. The
historical resource monitoring view records the resource usage (including memory,
data spilled to disks, and CPU time), running status (including errors, termination,
and exceptions), and performance alarm information when a job is complete. For
queries that abnormally terminate due to FATAL or PANIC errors, their status is
displayed as aborted and no detailed information is recorded. Status information
about query parsing in the optimization phase cannot be monitored.

The following table describes the external interfaces of the historical views.

Data Warehouse Service
Developer Guide 12 GaussDB(DWS) Resource Monitoring

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 393

Level Monitore
d Node

View

Query
level/perf
level
(recomm
ended)

Current
CN

History (Internal dump
interface. Only statements
that have ended in the last
three minutes are
displayed.)

GS_WLM_SESSION_HISTO
RY

History (all statements) GS_WLM_SESSION_INFO

All CNs History (Internal dump
interface. Only statements
that have ended in the last
three minutes are
displayed.)

PGXC_WLM_SESSION_HIS
TORY

History (all statements) PGXC_WLM_SESSION_INF
O

Operator
level

Current
CN

History (Only statements
that have ended in the last
three minutes are
displayed.)

GS_WLM_OPERATOR_HIS
TORY

History (internal dump
interface, all statements)

GS_WLM_OPERAROR_INF
O

All CNs History (Only statements
that have ended in the last
three minutes are
displayed.)

PGXC_WLM_OPERATOR_
HISTORY

History (internal dump
interface, all statements)

PGXC_WLM_OPERATOR_I
NFO

Data Warehouse Service
Developer Guide 12 GaussDB(DWS) Resource Monitoring

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 394

NO TE

● The view level is determined by the resource monitoring level, that is, the
resource_track_level configuration.

● The perf and operator levels affect the values of the query_plan and warning columns
in GS_WLM_SESSION_STATISTICS or PGXC_WLM_SESSION_INFO. For details, see SQL
Self-Diagnosis.

● Prefixes gs and pgxc indicate views showing single CN information and those showing
cluster information, respectively. Common users can log in to a CN in the cluster to
query only views with the gs prefix.

● If instance fault occurs, some SQL statement information may fail to be recorded in
historical resource monitoring views.

● In some abnormal cases, the status information column in the historical Top SQL may
be displayed as unknown. The recorded monitoring information may be inaccurate.

● The SQL statements that can be recorded in historical resource monitoring views are the
same as those recorded in real-time resource monitoring views. For details, see SQL
statements recorded in real-time resource monitoring views.

● Historical top SQL statements are recorded only when the GUC parameter
enable_resource_record is enabled.

● You can query historical Top SQL queries and operator-level data only through the
PostgreSQL database.

● Historical Top SQL focuses on locating and demarcating query performance problems. It
is not used for auditing or recording syntax analysis error statements.

● In 8.2.1 and later cluster versions, the resource_track_subsql_duration parameter
(default value: 180s) is added to filter out substatements in the stored procedure whose
execution time is less than the value of this parameter and archive only substatements
whose execution time is greater than the value of this parameter. In 8.2.1 and later
versions, the default value of enable_track_record_subsql is changed from off to on,
which means substatements in stored procedures are recorded by default. If a
substatement is recorded, it must meet the following conditions:
● In the session where the statement is, the enable_track_record_subsql parameter

is enabled.
● The substatement must be pushed down to DNs for execution. (To prevent TopSQL

from recording too many substatements, substatements that are not pushed down
to DNs will be filtered out.)

● The execution time of the substatement exceeds the value of
resource_track_subsql_duration in the session.

● By default, the History view queries statements that end in the last 3 minutes. It does
this by querying tables. It is actually a temporary view for performance considerations.
Since the 8.1.3 cluster version, the real-time monitoring and archiving functions of the
TopSQL monitoring have been greatly improved are no performance considerations are
needed. Therefore, you are not advised to use the History view.

● In 8.1.3 and later versions, the TopSQL real-time monitoring has no impact on
statement performance. You can set the GUC parameter resource_track_cost to 0 to
monitor the running information of all statements. The statement archiving in the
TopSQL history monitoring also has no impact on statement performance. However,
when the TPS is high, the following factors need to be considered:
● Record the disk overhead of all statements. You can estimate the disk space

required for archiving a statement as 8 KB, calculate the space usage based on the
peak TPS, and adjust the values of resource_track_duration and
resource_track_subsql_duration.

● For memory overhead for caching all statements, you can estimate the memory
size required for archiving a statement as 16 KB, and the interval for archiving
statements in batches as 5 seconds, then calculate the required peak memory size
based on the peak service TPS. The calculation method is as follows: 5 seconds x
TPS x 16 KB. The value of session_history_memory GUC (default value: 100 MB)

Data Warehouse Service
Developer Guide 12 GaussDB(DWS) Resource Monitoring

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 395

must be greater than the calculation result to ensure that all statements can be
recorded.

Prerequisites
● The GUC parameter enable_resource_track is set to on. The default value is

on.
● The GUC parameter resource_track_level is set to query, perf, or operator.

The default value is query. For details, see Table 12-2.
● The GUC parameter enable_resource_record is set to on. The default value is

on.
● The GUC parameter resource_track_duration is less than the sum of the job

execution time and queuing time (60s by default).
● The GUC parameter enable_track_record_subsql specifies whether to record

internal statements of a stored procedure or anonymous block. The default
value is on.

● The value of resource_track_subsql_duration is less than the execution time
of the internal statement in the stored procedure (180s by default).

● Jobs whose sum of the job execution time and queuing time recorded in the
real-time resource monitoring view (see Table 12-1) is no less than the value
of resource_track_duration are monitored.

● If the Cgroups function is properly loaded, you can run the gs_cgroup -P
command to view information about Cgroups.

Procedure

Step 1 Query the load records of the current CN after its latest job is complete in the
gs_wlm_session_history view.
SELECT * FROM gs_wlm_session_history;

Step 2 Query the load records of all the CNs after their latest job are complete in the
pgxc_wlm_session_history view.
 SELECT * FROM pgxc_wlm_session_history;

Step 3 Query the load records of the current CN through the gs_wlm_session_info table
after the task is complete. To query the historical records successfully, set
enable_resource_record to on.
SELECT * FROM gs_wlm_session_info;

● Show the 10 queries that consume the most memory (You can specify a query
period.):

SELECT * FROM gs_wlm_session_info order by max_peak_memory desc limit 10;
SELECT * FROM gs_wlm_session_info WHERE start_time >= '2022-05-15 21:00:00' and finish_time
<='2022-05-15 23:30:00' order by max_peak_memory desc limit 10;

● Show the 10 queries consuming the most CPU resources:
SELECT * FROM gs_wlm_session_info order by total_cpu_time desc limit 10;
SELECT * FROM gs_wlm_session_info WHERE start_time >= '2022-05-15 21:00:00' and finish_time
<='2022-05-15 23:30:00' order by total_cpu_time desc limit 10;

Step 4 Query for the load records of all the CNs after their jobs are complete in the
pgxc_wlm_session_info view. To query the historical records successfully, set
enable_resource_record to on.
SELECT * FROM pgxc_wlm_session_info;

Data Warehouse Service
Developer Guide 12 GaussDB(DWS) Resource Monitoring

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 396

● Showing the 10 queries on which the CN spends the most time:
SELECT * FROM pgxc_wlm_session_info order by duration desc limit 10;

● Query the execution information about a query statement that has been
executed. For example, query the execution information about the statement
whose queryid is 76561193695026478.

SELECT * FROM pgxc_wlm_session_info where queryid = '76561193695026478';

Step 5 Use the pgxc_get_wlm_session_info_bytime function to filter and query the
pgxc_wlm_session_info view. To query the historical records successfully, set
enable_resource_record to on. You are advised to use this function if the view
contains a large number of records.

NO TE

A GaussDB(DWS) cluster uses the UTC time by default, which has an 8-hour time difference
with the system time. Before queries, ensure that the database time is the same as the
system time.

● Return the queries started between 2019-09-10 15:30:00 and 2019-09-10
15:35:00 on all CNs. For each CN, a maximum of 10 queries will be returned.

SELECT * FROM pgxc_get_wlm_session_info_bytime('start_time', '2019-09-10 15:30:00', '2019-09-10
15:35:00', 10);

● Return the queries ended between 2019-09-10 15:30:00 and 2019-09-10
15:35:00 on all CNs. For each CN, a maximum of 10 queries will be returned.

SELECT * FROM pgxc_get_wlm_session_info_bytime('finish_time', '2019-09-10 15:30:00', '2019-09-10
15:35:00', 10);

Step 6 Query the recent resource information of the job operators on the current CN in
the gs_wlm_operator_history view. Ensure that resource_track_level is set to
operator.
SELECT * FROM gs_wlm_operator_history;

Step 7 Query the recent resource information of the job operators on all the CNs in the
pgxc_wlm_operator_history view. Ensure that resource_track_level is set to
operator.
SELECT * FROM pgxc_wlm_operator_history;

Step 8 Query the recent resource information of the job operators on the current CN in
the gs_wlm_operator_info view. Ensure that resource_track_level is set to
operator and enable_resource_record to on.
SELECT * FROM gs_wlm_operator_info;

Step 9 Query for the historical resource information of job operators on all the CNs in the
pgxc_wlm_operator_info view. Ensure that resource_track_level is set to
operator and enable_resource_record to on.
SELECT * FROM pgxc_wlm_operator_info;

----End

Data Warehouse Service
Developer Guide 12 GaussDB(DWS) Resource Monitoring

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 397

NO TE

● The number of data records that can be retained in the memory is limited due to the
preset memory limit. After the real-time query is complete, the data records are
imported to historical views. For a query-level view, when the number of queries to be
recorded exceeds the upper limit allowed by the memory, the current query cannot be
recorded and the next query is performed based on a new rule. On each CN, the
memory usage of the query-level historical view is recorded (100 MB by default). You
can query the data in the PG_TOTAL_MEMORY_DETAIL view.

● For operator-level views, whether a record can be stored depends on the upper limit
allowed by the memory at that time point. If the number of plan nodes plus the
number of records in the memory exceeds the upper limit, the record cannot be stored.
On each CN, the maximum numbers of real-time and historical operator-level records
that can be stored in the memory are max_oper_realt_num (set to 56987 by default)
and max_oper_hist_num (set to 113975 by default), respectively. The average number
of plan nodes of a query is num_plan_node. Maximum number of concurrent tasks
allowed by real-time views on each CN is: num_realt_active = max_oper_realt_num/
num_plan_node. Maximum number of concurrent tasks allowed by historical views on
each CN is: num_hist_active = max_oper_hist_num/(180/run_time)/num_plan_node.

● In high concurrency, ensure that the number of queries to be recorded does not exceed
the maximum values set for query- and operator-level views. You can modify the
memory of the historical query view by configuring the session_history_memory
parameter. The memory size increases in direct proportion to the maximum number of
queries that can be recorded.

12.7 Example for Querying for Top SQLs
In this section, TPC-DS sample data is used as an example to describe how to
query Real-time Top SQL and Historical Top SQL.

Configuring Cluster Parameters
To query for historical or archived resource monitoring information about jobs of
top SQLs, you need to set related GUC parameters first. The procedure is as
follows:

1. Log in to the GaussDB(DWS) management console.
2. On the Cluster Management page, locate the required cluster and click the

cluster name. The cluster details page is displayed.
3. Click the Parameter Modifications tab to view the values of cluster

parameters.
4. Set an appropriate value for parameter resource_track_duration and click

Save.

NO TE

If enable_resource_record is set to on, storage space expansion may occur and
thereby slightly affects the performance. Therefore, set is to off if record archiving is
unnecessary.

5. Go back to the Cluster Management page, click the refresh button in the
upper right corner, and wait until the cluster parameter settings are applied.

Example for Querying for Top SQLs
The TPC-DS sample data is used as an example.

Data Warehouse Service
Developer Guide 12 GaussDB(DWS) Resource Monitoring

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 398

Step 1 Open the SQL client tool and connect to your database.

Step 2 Run the EXPLAIN statement to query for the estimated cost of the SQL statement
to be executed to determine whether resources of the SQL statement will be
monitored.

By default, only resources of a query whose execution cost is greater than the
value of resource_track_cost are monitored and can be queried by users.

For example, run the following statements to query for the estimated execution
cost of the SQL statement:
SET CURRENT_SCHEMA = tpcds;
EXPLAIN WITH customer_total_return AS
(SELECT sr_customer_sk as ctr_customer_sk,
sr_store_sk as ctr_store_sk,
sum(SR_FEE) as ctr_total_return
FROM store_returns, date_dim
WHERE sr_returned_date_sk = d_date_sk AND d_year =2000
GROUP BY sr_customer_sk, sr_store_sk)
SELECT c_customer_id
FROM customer_total_return ctr1, store, customer
WHERE ctr1.ctr_total_return > (select avg(ctr_total_return)*1.2
FROM customer_total_return ctr2
WHERE ctr1.ctr_store_sk = ctr2.ctr_store_sk)
AND s_store_sk = ctr1.ctr_store_sk
AND s_state = 'TN'
AND ctr1.ctr_customer_sk = c_customer_sk
ORDER BY c_customer_id
limit 100;

In the following query result, the value in the first row of the E-costs column is
the estimated cost of the SQL statement.

Figure 12-1 EXPLAIN result

In this example, to demonstrate the resource monitoring function of top SQLs, set
the value of resource_track_cost to 100, which should be lower than the
estimated cost in the EXPLAIN query result. For more details, see
resource_track_cost.

NO TE

After completing this example, you still need to reset resource_track_cost to its default
value 100000 or a proper value. An overly small parameter value will compromise the
database performance.

Data Warehouse Service
Developer Guide 12 GaussDB(DWS) Resource Monitoring

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 399

Step 3 Run SQL statements.
SET CURRENT_SCHEMA = tpcds;
WITH customer_total_return AS
(SELECT sr_customer_sk as ctr_customer_sk,
sr_store_sk as ctr_store_sk,
sum(SR_FEE) as ctr_total_return
FROM store_returns,date_dim
WHERE sr_returned_date_sk = d_date_sk
AND d_year =2000
GROUP BY sr_customer_sk ,sr_store_sk)
SELECT c_customer_id
FROM customer_total_return ctr1, store, customer
WHERE ctr1.ctr_total_return > (select avg(ctr_total_return)*1.2
FROM customer_total_return ctr2
WHERE ctr1.ctr_store_sk = ctr2.ctr_store_sk)
AND s_store_sk = ctr1.ctr_store_sk
AND s_state = 'TN'
AND ctr1.ctr_customer_sk = c_customer_sk
ORDER BY c_customer_id
limit 100;

Step 4 During statement execution, query for the real-time memory peak information
about the SQL statement on the current CN.
SELECT query,max_peak_memory,average_peak_memory,memory_skew_percent FROM
gs_wlm_session_statistics ORDER BY start_time DESC;

The preceding command queries for the real-time peak information at the query-
level. The peak information includes the maximum memory peak among all DNs
per second, average memory peak among all DNs per second, and memory usage
skew across DNs.

For more examples of querying for the real-time resource monitoring information
of top SQLs, see Real-time Top SQL.

Step 5 Wait until the SQL statement execution in Step 3 is complete, and then query for
the historical resource monitoring information of the statement.
SELECT query,start_time,finish_time,duration,status FROM gs_wlm_session_history ORDER BY start_time
desc;

The preceding command queries for the historical information at the query-level.
The peak information includes the execution start time, execution duration (unit:
ms), and execution status. The time unit is ms.

For more examples of querying for the historical resource monitoring information
of top SQLs, see Historical Top SQL.

Step 6 Wait for 3 minutes after the execution of the SQL statement in Step 3 is complete,
query for the historical resource monitoring information of the statement in the
info view.

If enable_resource_record is set to on and the execution time of the SQL
statement in Step 3 is no less than the value of resource_track_duration,
historical information about the SQL statement will be archived to the
gs_wlm_session_info view 3 minutes after the execution of the SQL statement is
complete.

The info view can be queried only when the postgres database is connected.
Therefore, switch to the postgres database before running the following
statement:

Data Warehouse Service
Developer Guide 12 GaussDB(DWS) Resource Monitoring

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 400

SELECT query,start_time,finish_time,duration,status FROM gs_wlm_session_info ORDER BY start_time desc;

----End

Data Warehouse Service
Developer Guide 12 GaussDB(DWS) Resource Monitoring

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 401

13 GaussDB(DWS) Performance Tuning

13.1 Overview
Database performance tuning is the process of optimizing database system
configuration and SQL queries to improve database performance and efficiency.
The purpose includes eliminating performance bottlenecks, reducing response
times, increasing throughput and resource utilization, cutting costs, and improving
system stability.

This section provides comprehensive guidance for DBAs on performance diagnosis,
system tuning, and SQL tuning, as well as practical examples of SQL tuning.

Precautions
● Database performance tuning is a complex and intricate process. To achieve

the optimal performance and efficiency, performance tuning must take into
consideration multiple factors, such as hardware, software, queries,
configuration, and data structures. Engineers performing the performance
tuning must be familiar with how database systems work in great detail,
including a deep understanding of the system software architecture, software
and hardware configurations, database configuration parameters, concurrency
control, query handling, and database applications.

● Performance tuning sometimes requires a cluster restart, which may interrupt
services. To avoid that, you are advised to schedule performance tuning tasks
that require a cluster restart to occur during off-peak hours.

Performance Tuning Process
Figure 13-1 illustrates the performance tuning process.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 402

Figure 13-1 GaussDB(DWS) performance tuning

Table 13-1 gives a brief introduction to each phase of the performance tuning
process.

Table 13-1 Phase-by-phase introduction to GaussDB(DWS) performance tuning

Phase Description

Performance
Diagnosis

Obtain the CPU, memory, I/O, and network resource usage
of each node to check whether these resources are fully
utilized and whether any performance bottlenecks exist.

System
Optimization

Perform OS and database system-level performance
tuning to achieve better utilization of existing CPU,
memory, I/O, and network resources, prevent resource
conflicts, and improve query throughput.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 403

Phase Description

SQL Tuning Analyze the SQL statements used and determine whether
any optimization can be performed. Analysis of SQL
statements comprises:
● Generating table statistics using ANALYZE: The

ANALYZE statement collects statistics about the
database table content. Statistical results are stored in
the system catalog PG_STATISTIC. The execution plan
generator uses these statistics to determine which one
is the most effective execution plan.

● Analyzing the execution plan: The EXPLAIN statement
displays the execution plan of SQL statements, and the
EXPLAIN PERFORMANCE statement displays the
execution time of each operator in SQL statements.

● Identifying the root causes of issues: Identify possible
causes by analyzing the execution plan and perform
specific optimization by modifying database-level SQL
optimization parameters.

● Compiling better SQL statements: Compile better SQL
statements in the scenarios, such as cache of
intermediate and temporary data for complex queries,
result set cache, and result set combination.

13.2 Performance Diagnosis

13.2.1 Cluster Performance Analysis
The node specifications of different GaussDB(DWS) clusters may vary in terms of
the number of CPU cores, memory capacity, and node storage capacity. Different
specifications lead to different service handling capacity and performance. Before
creating a cluster, you need to select the appropriate cluster specifications based
on the actual workloads and application scenario.

If the workloads increase, more resources (such as CPU, memory, and network
bandwidth) will be needed in order to maintain the same level of database
performance. Insufficient cluster resources will lead to performance issues.

GaussDB(DWS) provides abundant monitoring metrics that you can use to
monitor cluster performance and status, including CPU usage, memory usage, disk
usage, disk I/O, and network I/O. For any abnormality, you can check the metrics
to locate the root cause.

If your service requires additional compute or storage resources, expand the
capacity of an existing cluster by adding more nodes to it or changing node
specifications through the management console.

13.2.2 Slow SQL Analysis

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 404

13.2.2.1 Querying SQL Statements That Affect Performance Most

This section describes how to query SQL statements whose execution takes a long
time, leading to poor system performance.

Procedure

Step 1 Query the statements that are run for a long time in the database.
SELECT current_timestamp - query_start AS runtime, datname, usename, query FROM pg_stat_activity
where state != 'idle' ORDER BY 1 desc;

After the query, query statements are returned as a list, ranked by execution time
in descending order. The first result is the query statement that has the longest
execution time in the system. The returned result contains the SQL statement
invoked by the system and the SQL statement run by users. Find the statements
that were run by users and took a long time.

Alternatively, you can set current_timestamp - query_start to be greater than a
threshold to identify query statements that are executed for a duration longer
than this threshold.
SELECT query FROM pg_stat_activity WHERE current_timestamp - query_start > interval '1 days';

Step 2 Set the parameter track_activities to on.
SET track_activities = on;

The database collects the running information about active queries only if the
parameter is set to on.

Step 3 View the running query statements.

Viewing pg_stat_activity is used as an example here.

SELECT datname, usename, state FROM pg_stat_activity;
 datname | usename | state |
----------+---------+--------+
 postgres | omm | idle |
 postgres | omm | active |
(2 rows)

If the state column is idle, the connection is idle and requires a user to enter a
command.

To identify only active query statements, run the following command:

SELECT datname, usename, state FROM pg_stat_activity WHERE state != 'idle';

Step 4 Analyze the status of the query statements that were run for a long time.

● If the query statement is normal, wait until the execution is complete.

● If a query statement is blocked, run the following command to view this
query statement:
SELECT datname, usename, state, query FROM pg_stat_activity WHERE waiting = true;

The command output lists a query statement in the block state. The lock
resource requested by this query statement is occupied by another session, so
this query statement is waiting for the session to release the lock resource.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 405

NO TE

Only when the query is blocked by internal lock resources, the waiting field is true. In
most cases, block happens when query statements are waiting for lock resources to be
released. However, query statements may be blocked because they are waiting to
write in files or for timers. Such blocked queries are not displayed in the
pg_stat_activity view.

----End

13.2.2.2 Checking Blocked Statements
During database running, query statements are blocked in some service scenarios
and run for an excessively long time. In this case, you can forcibly terminate the
faulty session.

Procedure

Step 1 View blocked query statements and information about the tables and schemas
that block the query statements.
SELECT w.query as waiting_query,
w.pid as w_pid,
w.usename as w_user,
l.query as locking_query,
l.pid as l_pid,
l.usename as l_user,
t.schemaname || '.' || t.relname as tablename
from pg_stat_activity w join pg_locks l1 on w.pid = l1.pid
and not l1.granted join pg_locks l2 on l1.relation = l2.relation
and l2.granted join pg_stat_activity l on l2.pid = l.pid join pg_stat_user_tables t on l1.relation = t.relid
where w.waiting;

The thread ID, user information, query status, as well as information about the
tables and schemas that block the query statements are returned.

Step 2 Run the following command to terminate the required session, where
139834762094352 is the thread ID:
SELECT PG_TERMINATE_BACKEND(139834762094352);

If information similar to the following is displayed, the session is successfully
terminated:

 PG_TERMINATE_BACKEND

 t
(1 row)

If a command output similar to the following is displayed, a user is attempting to
terminate the session, and the session will be reconnected rather than being
terminated.

FATAL: terminating connection due to administrator command
FATAL: terminating connection due to administrator command
The connection to the server was lost. Attempting reset: Succeeded.

NO TE

If the PG_TERMINATE_BACKEND function is used to terminate the background threads of
the session, the gsql client will be reconnected rather than be logged out.

----End

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 406

13.2.3 SQL Diagnosis
GaussDB(DWS) clusters support SQL diagnosis, which shows the complete
execution plans of specific SQL queries. You can search for SQL queries (such as
slow queries) using a combination of multiple filter criteria.

To use SQL diagnosis, perform the following steps:

Step 1 Log in to the GaussDB(DWS) console.

Step 2 Choose Dedicated Clusters > Clusters and locate the cluster to be monitored.

Step 3 In the Operation column of the target cluster, click Monitoring Panel.

Step 4 In the navigation pane on the left, choose Utilities > SQL Diagnosis. The metrics
include:

● Query ID

● Database

● Schema Name

● User Name

● Client

● Client IP Address

● Running Time (ms)

● CPU Time (ms)

● Scale-Out Started

● Completed

● Details

Step 5 On the SQL Diagnosis page, you can view the SQL diagnosis information. In the
Details column of a specified query ID, click View to view the detailed SQL
diagnosis result, including:

● Alarm Information

● SQL Statement

● Execution Plan

----End

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 407

13.2.4 Table Diagnosis
GaussDB(DWS) provides statistics and diagnostic tools for you to learn table
status, including:

● Skew Rate: monitors and analyzes uneven data distribution in a cluster, and
displays information about the 50 largest tables whose skew rate is higher
than 5%.

● Dirty Page Rate: monitors and analyzes dirty pages in a cluster, and displays
information about the 50 largest tables whose dirty page rate is higher than
50%.

Skew Rate

Improper distribution columns can cause severe skew during operator computing
or data spill to disk. The workloads will be unevenly distributed on DNs, resulting
in high disk usage on individual DNs and affecting their performance. After
identifying tables with a high skew rate and a relatively large size, you can reselect
distribution columns for these tables to have their data redistributed. For details,
see How Do I Change Distribution Columns?

Procedure

Step 1 Log in to the GaussDB(DWS) console.

Step 2 Choose Dedicated Clusters > Clusters and locate the cluster to be monitored.

Step 3 In the Operation column of the target cluster, click Monitoring Panel.

Step 4 In the navigation tree on the left, choose Utilities > Table Diagnosis and click the
Skew Rate tab. The tables that meet the statistics collection conditions in the
cluster are displayed.

----End

Dirty Page Rate

DML operations on tables may generate dirty data, which unnecessarily occupies
cluster storage. You can identify tables with a high dirty page rate and a relatively
large size, and handle them accordingly. For more information, see Solution to
High Disk Usage and Cluster Read-Only.

Procedure

Step 1 Log in to the GaussDB(DWS) console.

Step 2 Choose Dedicated Clusters > Clusters and locate the cluster to be monitored.

Step 3 In the Operation column of the target cluster, click Monitoring Panel.

Step 4 In the navigation tree on the left, choose Utilities > Table Diagnosis and click the
Dirty Page Rate tab. The tables that meet the statistics collection conditions in
the cluster are displayed.

----End

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 408

https://support.huaweicloud.com/intl/en-us/dws_faq/dws_03_2126.html
https://support.huaweicloud.com/intl/en-us/trouble-dws/dws_09_0031.html
https://support.huaweicloud.com/intl/en-us/trouble-dws/dws_09_0031.html

13.3 System Optimization

13.3.1 Tuning Database Parameters
To ensure high performance of the database, you are advised to configure GUC
parameters based on available resources and the actual workloads. This section
describes some of the common parameters and the recommended configurations
for them. For more details, see Configuring GUC Parameters.

Parameters Related to Database Memory

Table 13-2 Parameters related to database memory

GUC
Parameter

Description Configuration Suggestion

max_process_
memory

Specifies the maximum
physical memory available
to a single CN/DN.

● On DNs, the value of this
parameter is determined based
on the server's physical
memory and the number of
DNs deployed on a single node.
Parameter value = (Physical
memory –
vm.min_free_kbytes) x 0.8/(n
+ Number of primary DNs).
This parameter aims to ensure
system reliability, preventing
node OOM caused by
increasing memory usage.
vm.min_free_kbytes indicates
OS memory reserved for
kernels to receive and send
data. Its value is at least 5% of
the total memory. That is,
max_process_memory =
Physical memory x 0.8/ (n +
Number of primary DNs). If the
cluster scale (number of nodes
in the cluster) is smaller than
256, n=1; if the cluster scale is
larger than 256 and smaller
than 512, n=2; if the cluster
scale is larger than 512, n=3.

● Set this parameter on CNs to
the same value as that on DNs.

● RAM is the maximum memory
allocated to the cluster.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 409

GUC
Parameter

Description Configuration Suggestion

shared_buffer
s

Specifies the size of the
shared memory used by
GaussDB(DWS). If the
value of this parameter is
increased, GaussDB(DWS)
requires more System V
shared memory than the
default system setting.

It is recommended that
shared_buffers be set to a value
less than 40% of the memory. Set
it to a large value for row-store
tables and a small value for
column-store tables. Set this
parameter to a large value for row
storage and a small value for
column storage. For column-store
tables: shared_buffers = (Memory
of a single server/Number of DNs
on the single server) x 0.4 x 0.25
If you want to increase the value
of shared_buffers, you also need
to increase the value of
checkpoint_segments, because a
longer period of time is required
to write a large amount of new or
changed data.

cstore_buffers Specifies the size of the
shared buffer used by
column-store tables and
column-store tables (ORC,
Parquet, and CarbonData)
of OBS and HDFS foreign
tables.

Column-store tables use the
shared buffer specified by
cstore_buffers instead of that
specified by shared_buffers. When
column-store tables are mainly
used, reduce the value of
shared_buffers and increase that
of cstore_buffers.
Use cstore_buffers to specify the
cache of ORC, Parquet, or
CarbonData metadata and data
for OBS or HDFS foreign tables.
The metadata cache size should
be 1/4 of cstore_buffers and not
exceed 2 GB. The remaining cache
is shared by column-store data
and foreign table column-store
data.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 410

GUC
Parameter

Description Configuration Suggestion

work_mem Specifies the size of the
memory used by internal
sequential operations and
the Hash table before
data is written into
temporary disk files.

The default value is 512 MB for
small-scale memory
(max_process_memory is less
than 30 GB) and 2 GB for large-
scale memory
(max_process_memory is greater
than or equal to 30 GB).
When the specified physical
memory is insufficient,
work_mem determines whether
to write additional operator
calculation data into temporary
tables based on query
characteristics and concurrency.
This reduces performance by five
to ten times and increases query
response times from seconds to
minutes.
● In complex serial query

scenarios, each query requires
five to ten associated
operations. Set work_mem
using the following formula:
work_mem = 50% of the
memory/10.

● In simple serial query scenarios,
each query requires two to five
associated operations. Set
work_mem using the following
formula: work_mem = 50% of
the memory/5.

● For concurrent queries, use the
formula: work_mem =
work_mem in serialized
scenario/Number of concurrent
SQL statements.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 411

GUC
Parameter

Description Configuration Suggestion

maintenance_
work_mem

Specifies the maximum
size of memory used for
maintenance operations,
involving VACUUM,
CREATE INDEX, and
ALTER TABLE ADD
FOREIGN KEY.

If you set this parameter to the
value of work_mem, database
dump files can be cleaned up and
restored more efficiently. In a
database session, only one
maintenance operation can be
performed at a time. Maintenance
is usually performed when there
are not much sessions.
When the automatic cleanup
process is running, up to
autovacuum_max_workers times
of the memory will be allocated.
In this case, set
maintenance_work_mem to a
value greater than or equal to that
of work_mem.

Parameters Related to Queue Concurrency in Databases
GUC
Parameter

Description Configuration Suggestion

max_active_st
atements
(global
concurrent
queue)

Controls the maximum
number of concurrent jobs
on a single CN.

All common users' jobs are subject
to this threshold, regardless of
their complexity. When the
number of concurrent jobs reaches
the specified threshold, the excess
jobs have to wait in a queue.
Administrator's jobs are exempt
from this limit.
Set the value of this parameter
based on system resources, such
as CPU, I/O, and memory
resources, to ensure that the
system resources can be fully
utilized and the system will not be
crashed due to excessive
concurrent jobs.

parctl_min_co
st (local
concurrent
queue)

Controls the maximum
number of concurrent jobs
within the same resource
pool on a single CN.

The number of concurrent
complex jobs are controlled based
on their cost.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 412

NO TE

When tuning the max_active_statements parameter (global concurrent queue), pay
attention to the following:
● If max_active_statements is set to -1, which indicates that global concurrency is not

limited, users may be disconnected in a high concurrency scenario.
● In a point query scenario, set max_active_statements to 100.
● In an analytical query scenario, set max_active_statements to the number of CPU cores

divided by the number of DNs. Generally, its value ranges from 5 to 8.

Database Communication Parameters
By default, nodes in a database cluster communicate using the TCP proxy
communication library.

Table 13-3 Database communication parameters

GUC
Parameter

Description Configuration Suggestion

comm_quota_
size

comm_quota_size
controls the size of data
transmitted every time in
each flow channel. Its
default value is 1M.

In a high concurrency scenario,
you can increase its value to
improve communication
performance, but doing so
consumes more memory. Optimize
this parameter as needed. If you
query the
pg_total_memory_detail view of
a DN and find that the memory
used by the communication layer
has reached the threshold of
comm_usable_memory, set
comm_quota_size to a small
value, such as 512K.

comm_usable
_memory

comm_usable_memory
controls the memory on a
DN that can be used for
database communication.

The value of this parameter is only
used for memory flow control. The
default flow control value is 1 MB.
If the memory usage exceeds half
of the parameter value, the flow
control value will be automatically
changed to 0.5 MB. If only 20% of
the memory specified by the
parameter is available, the flow
control value will be changed to
the allowed minimum, 8 KB.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 413

Database Connection Parameters

Table 13-4 Database connection parameters

GUC
Parameter

Description Configuration Suggestion

max_connecti
ons

Specifies the maximum
number of concurrent
connections to the
database. This parameter
affects the concurrent
processing capability of
the cluster.

Retain the default value of this
parameter on CNs. Set this
parameter on DNs to a value
calculated using this formula:
Number of CNs x Value of this
parameter on a CN.
If the value of this parameter is
increased, GaussDB(DWS) may
require more System V shared
memory or semaphore, which may
exceed the default maximum
value of the OS. In this case,
modify the value as needed.

max_prepared
_transactions

Specifies the maximum
number of transactions
that can stay in the
prepared state
simultaneously. If the
value of this parameter is
increased, GaussDB(DWS)
requires more System V
shared memory than the
default system setting.

The value of max_connections is
related to
max_prepared_transactions.
Before configuring
max_connections, ensure that the
value of
max_prepared_transactions is
greater than or equal to that of
max_connections. In this way,
each session has a prepared
transaction in the waiting state.

session_timeo
ut

Specifies the maximum
duration a database
connection can stay idle
before it is automatically
disconnected.

The value can be an integer in the
range 0 to 86400. The minimum
unit is second (s). The value 0
disables this timeout mechanism.
Generally, you are advised not to
set this parameter to 0.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 414

Other Performance-related Parameters

Table 13-5 Other performance-related parameters

GUC
Parameter

Description Configuration Suggestion

enable_dyna
mic_workload

Specifies whether to
enable dynamic load
management.
Dynamic load
management refers to
the automatic queue
control of complex
queries based on user
loads in a database.
This fine-tunes system
parameters without
manual adjustment.

This parameter is enabled by default.
Notes:
● Simple query jobs (which are

estimated to require less than 32
MB memory) and non-DML
statements (statements other than
INSERT, UPDATE, DELETE, and
SELECT) have no adaptive load
restrictions. Control the upper
memory limits for them on a single
CN using max_active_statements.

● In adaptive load scenarios, the
value cannot be increased. If you
increase it, memory cannot be
controlled for certain statements,
such as statements that have not
been analyzed.

● Reduce concurrency in the
following scenarios, because high
concurrency may lead to
uncontrollable memory usage.
– A single tuple occupies excessive

memory, for example, a base
table contains a column more
than 1 MB wide.

– A query is fully pushed down.
– A statement occupies a large

amount of memory on the CN,
for example, a statement that
cannot be pushed down or a
cursor withholding statement.

– An execution plan creates a hash
table based on the hash join
operator, and the table has many
duplicate values and occupies a
large amount of memory.

– UDFs are used, which occupy a
large amount of memory.

● When configuring this parameter,
you can set query_dop to 0
(adaptive). In this case, the system
dynamically selects the optimal
degree of parallelism (DOP) for

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 415

GUC
Parameter

Description Configuration Suggestion

each query based on resource
usage and the execution plan. The
enable_dynamic_workload
parameter supports the dynamic
memory allocation.

bulk_write_rin
g_size

Specifies the size of a
ring buffer used for
parallel data import.

This parameter affects the database
import performance. You are advised
to increase the value of this parameter
on DNs when a large amount of data
is to be imported.
The default value is 2GB.

data_replicate
_buffer_size

Specifies the memory
used by queues when
the sender sends data
pages to the receiver.

The value of this parameter affects the
buffer size for data replication
between the primary and standby
servers.
The default value is 16 MB for a CN
and 128 MB for a DN. If the server
memory is 256 GB, you can increase
the value to 512 MB.

13.3.2 SMP Parallel Execution
Complex queries may take a long time. In a system with low concurrency support,
this can be a problem. SMP is used to implement operator-level parallel execution,
which can effectively speed up queries, improving query performance and resource
utilization.

The SMP feature improves performance through operator parallelism but may
drive more resource usage, including CPU, memory, network, and I/O. In essence,
SMP is a method that trades resources for time, meaning it accelerates queries at
the cost of additional resources. It improves system performance in appropriate
scenarios and when resources are sufficient, but may also deteriorate performance
if used inappropriately. Furthermore, compared with serial processing, SMP
generates more candidate plans, which is more time-consuming and may hurt
performance.

The SMP feature of GaussDB(DWS) is controlled by the GUC parameter
query_dop. Users use this parameter to specify an appropriate degree of query
parallelism.

Application Scenarios and Constraints for SMP

Applicable Scenarios

● Operators supporting parallel processing are used.
The execution plan contains the following operators:

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 416

a. Scan: Row Storage common table and a line memory partition table
sequential scanning, column-oriented storage ordinary table and column-
oriented storage partition table sequential scanning, HDFS internal and
external table sequence scanning. Surface scanning GDS data can be
imported at the same time. All of the above does not support replication
tables.

b. Join: HashJoin, NestLoop
c. Agg: HashAgg, SortAgg, PlainAgg, and WindowAgg, which supports only

partition by, and does not support order by.
d. Stream: Redistribute, Broadcast
e. Other: Result, Subqueryscan, Unique, Material, Setop, Append, VectoRow,

RowToVec
● SMP-unique operators are used.

To execute queries in parallel, Stream operators are added for data exchange
for the SMP feature. These new operators can be considered as the subtypes
of Stream operators.

a. Local Gather aggregates data of parallel threads within a DN
b. Local Redistribute redistributes data based on the distributed key across

threads within a DN
c. Local Broadcast broadcasts data to each thread within a DN.
d. Local RoundRobin distributes data in polling mode across threads within

a DN.
e. Split Redistribute redistributes data across parallel threads on different

DNs.
f. Split Broadcast broadcasts data to all parallel DN threads in the cluster.

Among these operators, Local operators exchange data between parallel
threads within a DN, and non-Local operators exchange data across DNs.

● Example
The TPCH Q1 parallel plan is used as an example.

In this plan, implement the Hdfs Scan and HashAgg operator parallel, and
adds the Local Gather and Split Redistribute data exchange operator.
In this example, the sixth operator is Split Redistribute, and dop: 4/4 next to
the operator indicates that the degree of parallelism of the sender and
receiver is 4. 4 No operator is Local Gather, marked dop: 1/4 above, this
operator sender thread parallel degree is 4, while the receiving end thread
parallelism degree to 1, that is, lower-layer 5 number Hash Aggregate

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 417

operators according to the 4 parallel degree, while the working mode of the
port on the upper-layer 1 to 3 number operator according to the executed
one by one, 4 number operator is used to achieve intra-DN concurrent
threads data aggregation.
You can view the parallelism situation of each operator in the dop
information.

Non-Applicable Scenarios

1. Small queries are performed, where plan generation may account for a
significant portion of the total query time.

2. Operators are processed on CNs.
3. Statements that cannot be pushed down are executed.
4. The subplan of a query and operators containing a subquery are executed.

Impact of Resource Availability on SMP Performance

The SMP architecture accelerates queries at the cost of additional resources. After
the plan parallelism is executed, more resources are consumed, including the CPU,
memory, I/O, and network bandwidth. As the DOP grows, the resource
consumption also increases. If these resources become a bottleneck, SMP cannot
improve performance. On the contrary, it may do exactly the opposite. Adaptive
SMP is provided to dynamically select the optimal parallel degree for each query
based on the resource usage and query requirements. The following information
describes the situations that the SMP affects theses resources:

● CPU resources
In a general customer scenario, the system CPU usage rate is not high. Using
the SMP parallelism architecture will fully use the CPU resource to improve
the system performance. If the number of CPU kernels of the database server
is too small and the CPU usage is already high, enabling the SMP parallelism
may deteriorate the system performance due to resource compete between
multiple threads.

● Memory resources
The query parallel causes memory usage growth, but the memory upper limit
used by each operator is still restricted by work_mem. Assume that
work_mem is 4 GB, and the degree of parallelism is 2, then the memory
upper limit of each concurrent thread is 2 GB. When work_mem is small or
the system memory is sufficient, running SMP parallelism may push data
down to disks. As a result, the query performance deteriorates.

● Network bandwidth resources
To execute queries in parallel, data exchange operators are added. Local
stream operators exchange data between threads within a DN. Data is
exchanged in memory, so it does not impact network performance. Non-local
operators exchange data over the network and increase the network load. If
the capacity of a network resource has already become a bottleneck,
parallelism may hurt performance.

● I/O resources
A parallel scan increases I/O resource consumption. It can improve
performance only when I/O resources are sufficient.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 418

Other Factors Impacting SMP Performance
Besides the resource factor, other factors may also impact SMP performance, such
as uneven data distribution across tables and the degree of system parallelism.

● Impact of data skew on SMP performance
Serious data skew deteriorates parallel execution performance. For example, if
the data volume of a value in the join column is much more than that of
other values, the data volume of a parallel thread will be much more than
that of others after Hash-based data redistribution, resulting in the long-tail
issue and poor parallelism performance.

● Impact of system parallelism degree on SMP performance
The SMP feature uses more resources, and unused resources are decreasing in
a high concurrency scenario. Therefore, enabling the SMP parallelism will
result in serious resource compete among queries. Once resource competes
occur, no matter the CPU, I/O, memory, or network resources, all of them will
result in entire performance deterioration. In the high concurrency scenario,
enabling the SMP will not improve the performance effect and even may
cause performance deterioration.

Suggestions for SMP Parameter Settings
To enable the SMP adaptation function, set query_dop to 0 and adjust the
following parameters to obtain an optimal DOP selection:

● comm_usable_memory
If the system memory is large, the value of max_process_memory is large. In
this case, you are advised to set the value of this parameter to 5% of
max_process_memory, that is, 4 GB by default.

● comm_max_stream
The recommended value for this parameter is calculated as follows:
comm_max_stream = Min(dop_limit x dop_limit x 20 x 2,
max_process_memory (bytes) x 0.025/Number of DNs/260). The value must
be within the value range of comm_max_stream.

● max_connections
The recommended value for this parameter is calculated as follows:
max_connections = dop_limit x 20 x 6 + 24. The value must be within the
value range of max_connections.

CA UTION

In the preceding formulas, dop_limit indicates the number of CPUs
corresponding to each DN in the cluster. It is calculated as follows: dop_limit
= Number of logical CPU cores of a single server/Number of DNs of a single
server.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 419

SMP Configuration Procedure

NO TICE

The CPU, memory, I/O, and network bandwidth resources are sufficient. In
essence, SMP is a method that trades resources for time. After the plan parallelism
is executed, resource consumption increases. When these resources become a
bottleneck, SMP may deteriorate, rather than improve performance. In addition, it
takes a longer time to generate SMP plans than serial plans. Therefore, in TP
services that mainly involve short queries or in case resources are insufficient, you
are advised to disable SMP by setting query_dop to 1.

Procedure:

1. Observe the current system load situation. If the resource is sufficient (the
resource usage ratio is smaller than 50%), perform step 2. Otherwise, exit this
system.

2. Set query_dop to 1 (default value). Use explain to generate an execution
plan and check whether the plan can be used in scenarios described in
Application Scenarios and Constraints for SMP. If the plan can be used, go
to the next step.

3. Set query_dop=–value. The value range of the parallelism degree is [1, value].
4. Set query_dop=value. The parallelism degree is 1 or value.
5. Before the query statement is executed, set query_dop to an appropriate

value. After the statement is executed, set query_dop to off. For example:
SET query_dop = 0;
SELECT COUNT(*) FROM t1 GROUP BY a;
......
SET query_dop = 1;

NO TE

● If resources are sufficient, the higher the degree of parallelism, the better the
performance improvement result.

● The SMP parallelism degree supports a session level setting and you are advised to
enable SMP before executing queries that meet the requirements. After the
execution is complete, disable SMP. Otherwise, SMP may affect services during
peak hours.

● SMP adaptability (query_dop ≤ 0) depends on resource management. If resource
management is disabled (use_workload_manager is turned off), only plans with
parallelism degree of only 1 or 2 will be generated.

13.3.3 Configuring LLVM
LLVM dynamic compilation can be used to generate customized machine code for
each query to replace original common functions. The query performance is
improved by reducing redundant judgment condition and virtual function
invocation, and make local data more accurate during actual queries.

LLVM needs to consume extra time to pre-generate intermediate representation
(IR) and compile it into code. Therefore, if the data volume is small or if a query
itself consumes little time, LLVM actually does more harm than good.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 420

LLVM Application Scenarios and Constraints

Applicable Scenarios

● Expressions supporting LLVM. The query statements that contain the
following expressions support LLVM optimization:

a. CASE...WHEN...
b. IN
c. Bool (AND/OR/NOT)
d. BooleanTest (IS_NOT_KNOWN/IS_UNKNOWN/IS_TRUE/IS_NOT_TRUE/

IS_FALSE/IS_NOT_FALSE)
e. NullTest (IS_NOT_NULL/IS_NULL)
f. Operators
g. Functions (lpad, substring, btrim, rtrim, and length)
h. Nullif

The following data types are supported for expression calculation: bool,
tinyint, smallint, int, bigint, float4, float8, numeric, date, time, timetz,
timestamp, timestamptz, interval, bpchar, varchar, text, and oid.
Consider using LLVM dynamic compilation and optimization only when
expressions are used in the following scenarios:
– filter on the Scan node in the case of a vectorized executor.
– complicate hash condition, hash join filter, and hash join target in the

Hash Join node.
– filter and join filter in the Nested Loop node.
– merge join filter and merge join target in the Merge Join node.
– filter in the Group node.

● Operators that can use LLVM:

a. Join: HashJoin
b. Agg: HashAgg
c. Sort

Among them:
– HashJoin supports only Hash Inner Join, and the corresponding hash cond

supports comparisons between int4, bigint, and bpchar.
– HashAgg supports sum and avg operations of bigint and numeric data

types. Group By statements support int4, bigint, bpchar, text, varchar,
timestamp, and the count(*) aggregation operation.

– Sort supports only comparisons between int4, bigint, numeric, bpchar,
text, and varchar data types.

With the exception of the operations above, LLVM dynamic compilation and
optimization cannot be used. To further confirm, use the explain performance
tool to check.

Non-Applicable Scenarios

● LLVM dynamic compilation and optimization are not supported on CNs.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 421

● Tables that have small amounts of data cannot be dynamically compiled
using LLVM.

● Query jobs with a non-vectorized execution path cannot be generated.

Other Factors Impacting LLVM Performance

The result of LLVM optimization depends not only on operations and computation
in the database, but also on the hardware environment.

● Number of C- functions invoked by query statements

CodeGen cannot be used in all expressions in an entire expression, that is,
some expressions use CodeGen while others invoke original C codes for
computation. In an entire expression, if more expressions invoke original C
codes, LLVM dynamic compilation and optimization may reduce the
computational performance. By setting log_min_messages to DEBUG1, you
can check expressions that directly invoke C codes.

● Memory resources

One of the key LLVM features is to ensure the locality of data, that is, data
should be stored in registers whenever possible. Data loading should be
reduced at the same time. Therefore, when using LLVM optimization, the
value of work_mem must be set as large as required to ensure that the code
is processed in the memory using LLVM. Otherwise, performance may
deteriorate.

● Optimizer cost estimation

The LLVM feature realizes a simple cost estimation model. You can determine
whether to use LLVM dynamic compilation and optimization for the current
node based on the sizes of tables involved in node computation. If the
optimizer understates the actual number of rows involved, the expected
performance gains may not be realized. An overestimation will have the same
effect.

Recommended Usage of LLVM

LLVM is enabled in the database kernel by default, and users can configure it
based on the analysis above. The overall suggestions are as follows:

1. Set an appropriate value for work_mem and set it as large as possible. If
much data is flushed to disks, you are advised to disable LLVM dynamic
compilation and optimization by setting enable_codegen to off.

2. Set an appropriate value for codegen_cost_threshold (The default value is
10,000). Ensure that LLVM dynamic compilation and optimization is not used
when the data volume is small. After the value is set, if the database
performance deteriorates due to the use of LLVM dynamic compilation and
optimization, increase the value.

3. If a large number of C- functions are invoked, you are advised to disable
LLVM dynamic compilation and optimization.

4. The constants following the In expression cannot exceed 10. Otherwise, LLVM
compilation and optimization cannot be performed.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 422

NO TE

If resources are sufficient, the database performance will improve as the data volume
increases.

13.4 SQL Tuning

13.4.1 SQL Query Execution Process
The process from receiving SQL statements to the statement execution by the SQL
engine is shown in Figure 13-2 and Table 13-6. The texts in red are steps where
database administrators can optimize queries.

Figure 13-2 Execution process of query-related SQL statements by the SQL engine

Table 13-6 Execution process of query-related SQL statements by the SQL engine

Step Description

1. Perform syntax
and lexical parsing.

Converts the input SQL statements from the string data
type to the formatted structure stmt based on the
specified SQL statement rules.

2. Perform semantic
parsing.

Converts the formatted structure obtained from the
previous step into objects that can be recognized by the
database.

3. Rewrite the query
statements.

Converts the output of the last step into the structure
that optimizes the query execution.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 423

Step Description

4. Optimize the
query.

Determines the execution mode of SQL statements (the
execution plan) based on the result obtained from the
last step and the internal database statistics. For details
about the impact of statistics and GUC parameters on
query optimization (execution plan), see Optimizing
Queries Using Statistics and Optimizing Queries Using
GUC parameters.

5. Perform the
query.

Executes the SQL statements based on the execution
path specified in the last step. Selecting a proper
underlying storage mode improves the query execution
efficiency. For details, see Optimizing Queries Using the
Underlying Storage.

Optimizing Queries Using Statistics
The GaussDB(DWS) optimizer is a typical Cost-based Optimization (CBO). The
database uses the CBO to calculate the number of tuples and execution cost for
each execution step in every execution plan. This calculation is based on factors
such as the number of table tuples, column width, NULL record ratio, and
characteristic values (such as distinct, MCV, and HB values) using specific cost
calculation methods. The database then selects the execution plan with the lowest
cost for overall execution or for returning the first tuple. These characteristic
values are the statistics, which is the core for optimizing a query. Accurate
statistics helps the optimizer select the most appropriate query plan. Generally,
you can collect statistics of a table or that of some columns in a table using
ANALYZE. You are advised to periodically execute ANALYZE or execute it
immediately after you modified most contents in a table.

Optimizing Queries Using GUC parameters
Optimizing queries aims to select an efficient execution mode.

Take the following statement as an example:
SELECT count(1)
FROM customer inner join store_sales on (ss_customer_sk = c_customer_sk);

During execution of customer inner join store_sales, GaussDB(DWS) supports
nested loop, merge join, and hash join. The optimizer estimates the result set
value and the execution cost under each join mode based on the statistics of the
customer and store_sales tables and selects the execution plan that takes the
lowest execution cost.

As described in the preceding content, the execution cost is calculated based on
certain methods and statistics. If the actual execution cost cannot be accurately
estimated, you need to optimize the execution plan by setting the GUC
parameters.

Optimizing Queries Using the Underlying Storage
GaussDB(DWS) supports both row-store and column-store tables. The choice of
storage mode ultimately depends on your business needs. Column-store tables are

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 424

suitable for computing services that mainly involve associations and aggregations.
Row-store tables are better suited for point queries and large-scale updates or
deletions.

Optimization methods of each storage mode will be described in details in the
performance optimization chapter.

Optimizing Queries by Rewriting SQL Statements
Besides the preceding methods that improve the performance of the execution
plan generated by the SQL engine, database administrators can also enhance SQL
statement performance by rewriting SQL statements while retaining the original
service logic based on the execution mechanism of the database and abundant
practical experience.

This requires that the system administrators know the customer business well and
have professional knowledge of SQL statements.

13.4.2 SQL Execution Plan
An SQL execution plan is a node tree that displays the detailed steps performed
when the GaussDB(DWS) executes an SQL statement.

You can run the EXPLAIN command to view the execution plan generated for
each query by an optimizer. EXPLAIN outputs a row of information for each
execution node, showing the basic node type and the expense estimate that the
optimizer makes for executing the node.

Execution Plan Information
In addition to setting different display formats for an execution plan, you can use
different EXPLAIN syntax to display execution plan information in detail. The
common usages are as follows. For more usages, see EXPLAIN Syntax.

● EXPLAIN statement: only generates an execution plan and does not execute.
The statement indicates SQL statements.

● EXPLAIN ANALYZE statement: generates and executes an execution plan, and
displays the execution summary. Then actual execution time statistics are
added to the display, including the total elapsed time expended within each
plan node (in milliseconds) and the total number of rows it actually returned.

● EXPLAIN PERFORMANCE statement: generates and executes the execution
plan, and displays all execution information.

To measure the run time cost of each node in the execution plan, the current
execution of EXPLAIN ANALYZE or EXPLAIN PERFORMANCE adds profiling
overhead to query execution. Running EXPLAIN ANALYZE or EXPLAIN
PERFORMANCE on a query sometimes takes more time than a normal query. The
amount of overhead depends on the nature of the query, as well as the platform
being used.

Therefore, if an SQL statement is not finished after being running for a long time,
run the EXPLAIN statement to view the execution plan and then locate the fault.
If the SQL statement has been properly executed, run the EXPLAIN ANALYZE or
EXPLAIN PERFORMANCE statement to check the execution plan and information
to locate the fault.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 425

https://support.huaweicloud.com/intl/en-us/sqlreference-dws/dws_06_0232.html

Description of common execution plan keywords:

1. Table access modes
– Seq Scan/CStore Scan

Scans all rows of the table in sequence. These are basic scan operators,
which are used to scan row-store and column-store tables in sequence.

– Index Scan/CStore Index Scan
Scans indexes of row-store and column-store tables. There are indexes in
row-store or column-store tables, and the condition column is the index
column.
The optimizer uses a two-step plan: the child plan node visits an index to
find the locations of rows matching the index condition, and then the
upper plan node actually fetches those rows from the table itself.
Fetching rows separately is much more expensive than reading them
sequentially, but because not all pages of the table have to be visited,
this is still cheaper than a sequential scan. The upper-layer planning node
first sort the location of index identifier rows based on physical locations
before reading them. This minimizes the independent capturing overhead.
If there are separate indexes on multiple columns referenced in WHERE,
the optimizer might choose to use an AND or OR combination of the
indexes. However, this requires the visiting of both indexes, so it is not
necessarily a win compared to using just one index and treating the other
condition as a filter.
The following Index scans featured with different sorting mechanisms are
involved:

▪ Bitmap Index Scan
To use a bitmap index to capture a data page, you need to scan the
index to obtain the bitmap and then scan the base table.

▪ Index Scan using index_name
Fetches table rows in index order, which makes them even more
expensive to read. However, there are so few rows that the extra cost
of sorting the row locations is unnecessary. This plan type is used
mainly for queries fetching just a single row and queries having an
ORDER BY condition that matches the index order, because no extra
sorting step is needed to satisfy ORDER BY.

2. Table connection modes
– Nested Loop

Nested-loop is used for queries that have a smaller data set connected. In
a Nested-loop join, the foreign table drives the internal table and each
row returned from the foreign table should have a matching row in the
internal table. The returned result set of all queries should not exceed
10,000. The table that returns a smaller subset will work as a foreign
table, and indexes are recommended for connection fields of the internal
table.

– (Sonic) Hash Join
A Hash join is used for large tables. The optimizer uses a hash join, in
which rows of one table are entered into an in-memory hash table, after
which the other table is scanned and the hash table is probed for

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 426

matches to each row. Sonic and non-Sonic hash joins differ in their hash
table structures, which do not affect the execution result set.

– Merge Join

In a merge join, data in the two joined tables is sorted by join columns.
Then, data is extracted from the two tables to a sorted table for
matching.

Merge join requires more resources for sorting and its performance is
lower than that of hash join. If the source data has been sorted, it does
not need to be sorted again when merge join is performed. In this case,
the performance of merge join is better than that of hash join.

3. Operators

– sort

Sorts the result set.

– filter

The EXPLAIN output shows the WHERE clause being applied as a Filter
condition attached to the Seq Scan plan node. This means that the plan
node checks the condition for each row it scans, and returns only the
ones that meet the condition. The estimated number of output rows has
been reduced because of the WHERE clause. However, the scan will still
have to visit all 10000 rows. As a result, the cost is not decreased. It
increases a bit (by 10000 x cpu_operator_cost) to reflect the extra CPU
time spent on checking the WHERE condition.

– LIMIT

LIMIT limits the number of output execution results. If a LIMIT condition
is added, not all rows are retrieved.

Execution Plan Display Format

GaussDB(DWS) provides four display formats: normal, pretty, summary, and run.
You can change the display format of execution plans by setting
explain_perf_mode.

● normal indicates that the default printing format is used. Figure 13-3 shows
the display format.

Figure 13-3 Example of an execution plan in normal format

● pretty indicates that the optimized display mode of GaussDB(DWS) is used. A
new format contains a plan node ID, directly and effectively analyzing
performance. Figure 13-4 is an example.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 427

Figure 13-4 Example of an execution plan using the pretty format

● summary indicates that the analysis result based on such information is
printed in addition to the printed information in the format specified by
pretty.

● run indicates that in addition to the printed information specified by
summary, the database exports the information as a CSV file.

Common Types of Plans

GaussDB(DWS) has three types of distributed plans:

● Fast Query Shipping (FQS) plan

The CN directly delivers statements to DNs. Each DN executes the statements
independently and summarizes the execution results on the CN.

● Stream plan

The CN generates a plan for the statements to be executed and delivers the
plan to DNs for execution. During the execution, DNs use the Stream operator
to exchange data.

● Remote-Query plan

After generating a plan, the CN delivers some statements to DNs. Each DN
executes the statements independently and sends the execution result to the
CN. The CN executes the remaining statements in the plan.

The existing tables tt01 and tt02 are defined as follows:

CREATE TABLE tt01(c1 int, c2 int) DISTRIBUTE BY hash(c1);
CREATE TABLE tt02(c1 int, c2 int) DISTRIBUTE BY hash(c2);

Type 1: FQS plan, all statements pushed down

Two tables are joined, and the join condition is the distribution column of each
table. If the stream operator is disabled, the CN directly sends statements to each
DN for execution. The result is summarized on the CN.

SET enable_stream_operator=off;
SET explain_perf_mode=normal;

EXPLAIN (VERBOSE on,COSTS off) SELECT * FROM tt01,tt02 WHERE tt01.c1=tt02.c2;
 QUERY PLAN

 Data Node Scan on "__REMOTE_FQS_QUERY__"
 Output: tt01.c1, tt01.c2, tt02.c1, tt02.c2
 Node/s: All datanodes
 Remote query: SELECT tt01.c1, tt01.c2, tt02.c1, tt02.c2 FROM dbadmin.tt01, dbadmin.tt02 WHERE tt01.c1
= tt02.c2
(4 rows)

Type 2: Non-FQS plan, some statements pushed down

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 428

Two tables are joined and the join condition contains non-distribution columns. If
the stream operator is disabled, the CN delivers the base table scanning
statements to each DN. Then, the JOIN operation is performed on the CN.

SET enable_stream_operator=off;
SET explain_perf_mode=normal;

EXPLAIN (VERBOSE on,COSTS off) SELECT * FROM tt01,tt02 WHERE tt01.c1=tt02.c1;
 QUERY PLAN

 Hash Join
 Output: tt01.c1, tt01.c2, tt02.c1, tt02.c2
 Hash Cond: (tt01.c1 = tt02.c1)
 -> Data Node Scan on tt01 "_REMOTE_TABLE_QUERY_"
 Output: tt01.c1, tt01.c2
 Node/s: All datanodes
 Remote query: SELECT c1, c2 FROM ONLY dbadmin.tt01 WHERE true
 -> Hash
 Output: tt02.c1, tt02.c2
 -> Data Node Scan on tt02 "_REMOTE_TABLE_QUERY_"
 Output: tt02.c1, tt02.c2
 Node/s: All datanodes
 Remote query: SELECT c1, c2 FROM ONLY dbadmin.tt02 WHERE true
(13 rows)

Type 3: Stream plan, no data exchange between DNs

Two tables are joined, and the join condition is the distribution column of each
table. DNs do not need to exchange data. After generating a stream plan, the CN
delivers the plan except the Gather Stream part to DNs for execution. The CN
scans the base table on each DN, performs hash join, and sends the result to the
CN.

SET enable_fast_query_shipping=off;
SET enable_stream_operator=on;

EXPLAIN (VERBOSE on,COSTS off) SELECT * FROM tt01,tt02 WHERE tt01.c1=tt02.c2;
 QUERY PLAN
--
 Streaming (type: GATHER)
 Output: tt01.c1, tt01.c2, tt02.c1, tt02.c2
 Node/s: All datanodes
 -> Hash Join
 Output: tt01.c1, tt01.c2, tt02.c1, tt02.c2
 Hash Cond: (tt01.c1 = tt02.c2)
 -> Seq Scan on dbadmin.tt01
 Output: tt01.c1, tt01.c2
 Distribute Key: tt01.c1
 -> Hash
 Output: tt02.c1, tt02.c2
 -> Seq Scan on dbadmin.tt02
 Output: tt02.c1, tt02.c2
 Distribute Key: tt02.c2
(14 rows)

Type 4: Stream plan, with data exchange between DNs

When two tables are joined and the join condition contains non-distribution
columns, and the stream operator is enabled (SET enable_stream_operator=on), a
stream plan is generated, which allows data exchange between DNs. For table
tt02, the base table is scanned on each DN. After the scanning, the Redistribute
Stream operator performs hash calculation based on tt02.c1 in the JOIN
condition, sends the hash calculation result to each DN, and then performs JOIN
on each DN, finally, the data is summarized to the CN.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 429

Type 5: Remote-Query plan

unship_func cannot be pushed down and does not meet partial pushdown
requirements (subquery pushdown). Therefore, you can only send base table
scanning statements to DNs and collect base table data to the CN for calculation.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 430

EXPLAIN PERFORMANCE Description
You can use EXPLAIN ANALYZE or EXPLAIN PERFORMANCE to check the SQL
statement execution information and compare the actual execution and the
optimizer's estimation to find what to optimize. EXPLAIN PERFORMANCE
provides the execution information on each DN, whereas EXPLAIN ANALYZE does
not.

Tables are defined as follows:

CREATE TABLE tt01(c1 int, c2 int) DISTRIBUTE BY hash(c1);
CREATE TABLE tt02(c1 int, c2 int) DISTRIBUTE BY hash(c2);

The following SQL query statement is used as an example:

SELECT * FROM tt01,tt02 WHERE tt01.c1=tt02.c2;

The output of EXPLAIN PERFORMANCE consists of the following parts:

1. Execution Plan

The plan is displayed as a table, which contains 11 columns: id, operation, A-
time, A-rows, E-rows, E-distinct, Peak Memory, E-memory, A-width, E-
width, and E-costs. Table 13-7 describes the columns.

Table 13-7 Execution column description

Column Description

id ID of an execution operator.

operation Name of an execution operator.
The operator of the Vector prefix refers to a vectorized
execution engine operator, which exists in a query
containing a column-store table.
Streaming is a special operator. It implements the core data
shuffle function of the distributed architecture. Streaming
has three types, which correspond to different data shuffle
functions in the distributed architecture:
● Streaming (type: GATHER): The CN collects data from

DNs.
● Streaming(type: REDISTRIBUTE): Data is redistributed to

all the DNs based on selected columns.
● Streaming(type: BROADCAST): Data on the current DN is

broadcast to all other DNs.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 431

Column Description

A-time Execution time of an operator on each DN. Generally, A-
time of an operator is two values enclosed by square
brackets ([]), indicating the shortest and longest time for
completing the operator on all DNs, including the execution
time of the lower-layer operators.
Note: In the entire plan, the execution time of a leaf node is
the execution time of the operator, while the execution time
of other operators includes the execution time of its
subnodes.

A-rows Actual rows output by an operator.

E-rows Estimated rows output by each operator.

E-distinct Estimated distinct value of the hashjoin operator.

Peak
Memory

Peak memory used when the operator is executed on each
DN. The left value in [] is the minimum value, and the right
value in [] is the maximum value.

E-memory Estimated memory used by each operator on a DN. Only
operators executed on DNs are displayed. In certain
scenarios, the memory upper limit enclosed in parentheses
will be displayed following the estimated memory usage.

A-width The actual width of each line of tuple of the current
operator. This parameter is valid only for the heavy memory
operator is displayed, including: (Vec)HashJoin,
(Vec)HashAgg, (Vec) HashSetOp, (Vec)Sort, and
(Vec)Materialize operator. The (Vec)HashJoin calculation of
width is the width of the right subtree operator, it will be
displayed in the right subtree.

E-width Estimated width of the output tuple of each operator.

E-costs Estimated execution cost of each operator.
● E-costs are defined by the optimizer based on cost

parameters, habitually grasping disk page as a unit.
Other overhead parameters are set by referring to E-
costs.

● The cost of each node (the E-costs value) includes the
cost of all of its child nodes.

● Overhead reflects only what the optimizer is concerned
about, but does not consider the time that the result row
passed to the client. Although the time may play a very
important role in the actual total time, it is ignored by
the optimizer, because it cannot be changed by
modifying the plan.

2. SQL Diagnostic Information

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 432

SQL self-diagnosis information. Performance optimization points identified
during optimization and execution are displayed. When EXPLAIN with the
VERBOSE attribute (built-in VERBOSE of EXPLAIN PERFORMANCE) is
executed on DML statements, SQL self-diagnosis information is also
generated to help locate performance issues.

3. Predicate Information (identified by plan id)

This part displays the filtering conditions of the corresponding execution
operator node, that is, the information that does not change during the entire
plan execution, mainly the join conditions and filter information.

8.3.0 and later cluster versions support the display the information of CU
Predicate Filter and Pushdown Predicate Filter(will be pruned) related to
dictionary plans.

4. Memory Information (identified by plan id)

Memory Usage displays the memory usage of operators in the entire plan,
mainly Hash and Sort operators, including the peak memory of operators
(Peak Memory), memory estimated by the optimizer (Estimate Memory), and
control memory (Control Memory), estimated memory usage (operator
memory), actual width during execution (Width), number of automatic
memory expansion times (Auto Spread Num), whether to spill data to disks in
advance (Early Spilled), and spill information which includes the number of
repeated data spills (Spill Time(s)), number of internal and foreign table
partitions spilled to disks (inner/outer partition spill num), number of files
spilled to disks (temp file num), amount of data spilled to disks, and amount
of data flushed to the minimum and maximum partitions (written disk IO

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 433

[min, max]). The Sort operator does not display the number of files written to
disks, and displays disks only when displaying sorting methods.

5. Targetlist Information (identified by plan id)

This part displays the output target column information of each operator.
In 8.3.0 and later cluster versions, the dictionary parameters Dict Optimized
and Dict Decoded can be displayed, indicating dictionary columns and
dictionary codes, respectively.

6. DataNode Information (identified by plan id)

This part displays the execution time of each operator (including the
execution time of filtering and projection, if any), CPU usage, and buffer
usage.
– Operator execution information

The execution information of each operator consists of three parts:

▪ dn_6001_6002/dn_6003_6004 indicates the information about the
execution node. The information in the brackets is the actual
execution information.

▪ actual time indicates the actual execution time. The first number
indicates the duration from the time when the operator is executed
to the time when the first data record is output. The second number
indicates the total execution time of all data records.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 434

▪ rows indicates the number of output data rows of the operator.

▪ loops indicates the number of execution times of the operator. Note
that for a partitioned table, scan on each partition is counted as a
scan. Scan on a new partition is counted as a new scan.

– CPU information

Each operator execution process has CPU information. cyc indicates the
number of CPU cycles, and ex cyc indicates the number of cycles of the
current operator, excluding its subnodes. inc cyc indicates the number of
cycles, including subnodes, ex row indicates the number of data rows
output by the current operator, and ex c/r indicates the mean of ex cyc
and ex row.

– Buffer information

Buffers indicates the buffer information, including the read and write
operations on shared blocks and temporary blocks.

Shared blocks contain tables and indexes, and temporary blocks are disk
blocks used in sorting and materialization. The number of blocks
displayed on the upper-layer node contains the number of blocks used by
all its subnodes.

– Disk cache information (supported only by V3 tables or foreign tables
with decoupled storage and compute and colversion set to 3.0 in
9.1.0.100 or later)

Disk Cache indicates the hit information and data read information of
the disk cache. (supported by V3 tables or foreign tables with storage and
compute decoupled)

miss indicates the number of disk cache misses. hit indicates the number
of disk cache hits. For details about errorCode, see
disk_cache_error_code in Table 14-156. error indicates the number of
times errorCode is generated. scanBytes indicates the amount of data
queried by scan, remoteReadBytes indicates the amount of data read on
OBS, and loadTime indicates the time for loading data from the disk
cache. To improve OBS efficiency, adjacent request blocks are combined.
Alternatively, the minimum granularity for writing requests to the disk
cache is block (1 MB by default). As a result, the value of scanBytes may
be less than that of remoteReadBytes.

Column 3.0: prefetch parameters and prefetch process information of V3
tables with storage and compute decoupled. (This parameter is supported
only by V3 tables with storage and compute decoupled and is displayed
after prefetch parameters are enabled.)

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 435

preloadStep indicates the prefetch step, preloadSubmitTime indicates
the I/O request submission time in the prefetch process,
preloadWaitTime indicates the I/O request waiting time in the prefetch
process, and preloadWaitCount indicates the number of waiting I/O
requests in the prefetch process.
OBS I/O indicates details about an OBS I/O request. (supported by V3
tables or foreign tables with storage and compute decoupled)
count indicates the total number of OBS I/O requests. averageRTT
indicates the average round trip time (RTT) of OBS I/O requests. The unit
is μs. averageLatency indicates the average latency of OBS I/O requests.
The unit is μs. latencyGt1s indicates the number of OBS I/O requests
whose latency exceeds 1s. latencyGt10s indicates the number of OBS I/O
requests whose latency exceeds 10s. retryCount indicates the total
number of OBS I/O request retries. rateLimitCount indicates the total
number of times that OBS I/O requests are under flow control.

7. User Define Profiling

User-defined information, including the time when CNs and DNs are
connected, the time when DNs are connected, and some execution
information at the storage layer.

8. Query Summary

The total execution time and network traffic, including the maximum and
minimum execution time in the initialization and end phases on each DN,
initialization, execution, and time in the end phase on each CN, and the
system available memory during the current statement execution, and
statement estimation memory information.
– DataNode executor start time: start time of the DN executor. The

format is [min_node_name, max_node_name]: [min_time, max_time].
– DataNode executor run time: running time of the DN executor. The

format is [min_node_name, max_node_name]: [min_time, max_time].

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 436

– DataNode executor end time: end time of the DN executor. The format
is [min_node_name, max_node_name]: [min_time, max_time].

– Remote query poll time: poll waiting time for receiving results
– System available mem: available system memory
– Query Max mem: maximum query memory.
– Enqueue time: enqueuing time
– Coordinator executor start time: start time of the CN executor
– Coordinator executor run time: CN executor running time
– Coordinator executor end time: end time of the CN executor
– Parser runtime: parser running time
– Planner runtime: optimizer execution time
– Network traffic, or, the amount of data sent by the stream operator
– Query Id: query ID.
– Unique SQL ID: constraint SQL ID
– Total runtime: total execution time

NO TICE

● The difference between A-rows and E-rows shows the deviation between the
optimizer estimation and actual execution. Generally, if the deviation is large,
the plan generated by the optimizer cannot be trusted, and you need to modify
the deviation value.

● If the difference of the A-time values is large, it indicates that the operator
computing skew (difference between execution time on DNs) is large and that
manual performance tuning is required. Generally, for two adjacent operators,
the execution time of the upper-layer operator includes that of the lower-layer
operator. However, if the upper-layer operator is a stream operator, its
execution time may be less than that of the lower-layer operator, as there is no
driving relationship between threads.

● Max Query Peak Memory is often used to estimate the consumed memory of
SQL statements, and is also used as an important basis for setting a memory
parameter during SQL statement optimization. Generally, the output from
EXPLAIN ANALYZE or EXPLAIN PERFORMANCE is provided for the input for
further optimization.

13.4.3 Execution Plan Operator

Operator Introduction

In an SQL execution plan, each step indicates a database operator, also called an
execution operator. In GaussDB(DWS), operators are the building blocks of data
processing. By combining them effectively and optimizing their sequence and
execution, you can significantly improve data processing efficiency.

GaussDB(DWS) operators are classified into scan operators, control operators,
materialization operators, join operators, and other operators.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 437

Scan Operators
A scan operator scans data in a table, processing one tuple at a time for the
upper-layer node. It operates at the leaf node of the query plan tree and can scan
tables, result sets, linked lists, and subquery results. The following table lists
common scan operators.

Table 13-8 Scan operators

Operator Description Scenario

SeqScan Sequential
scanning

It is a basic operator used to scan physical
tables in sequence, not an index-assisted scan.

IndexScan Index
scanning

Indexes are created for the attributes involved
in selection conditions.

IndexOnlySca
n

Obtaining a
tuple from an
index

The index column completely overwrites the
result set column.

BitmapScan(B
itmapIndexSc
an,
BitmapHeapS
can)

Obtaining a
tuple using a
bitmap

BitmapIndexScan uses indexes for attributes to
scan data and returns a bitmap.
BitmapHeapScan then uses this bitmap to
retrieve tuples.

TidScan Obtaining a
tuple by tuple
tid

1. WHERE conditions(like CTID = tid or CTID
IN (tid1, tid2, ...)) ;

2. UPDATE/DELETE ... WHERE CURRENT OF
cursor;

SubqueryScan Subquery
scanning

Another query plan tree (subplan) is used as
the scanning object to scan tuples.

FunctionScan Function
scanning

FROM function_name

ValuesScan Values linked
list scanning

It scans the given tuple set in VALUES clauses.

ForeignScan External table
scanning

It queries external tables.

CteScan CTE table
scanning

It scans the subquery defined by the WITH
clause in the SELECT query.

Join Operators
In relational algebra, a join operation is equivalent to a join operator. Take a
simple example: joining two tables, t1 and t2. There are several types of joins,
including inner join, left join, right join, full join, semi join, and anti join. These
joins can be implemented using three methods: Nestloop, HashJoin, and
MergeJoin.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 438

Table 13-9 Join operators

Operator Description Scenario Implementation Feature

NestLoop Nested loop
join, which is
a brute force
approach. It
scans the
inner table for
each row.

Inner Join,
Left Outer
Join, Semi
Join, Anti Join

It is used for queries that have a
smaller subset connected. In a
nested loop, the foreign table
drives the internal table. Each row
returned by the foreign table is
retrieved from the internal table to
find the matched row. Therefore,
the result set returned by the
entire query cannot be greater
than 10,000. The table with a
smaller subset returned is used as
the foreign table. It is
recommended that indexes be
created for the join fields in the
internal table.

MergeJoi
n

A merge join
on ordered
input sorts
both the inner
and outer
tables,
identifies the
first and last
matching
rows, and
then joins
tuples at a
time. Equi-
join.

Inner Join,
Left Outer
Join, Right
Outer Join,
Full Outer
Join, Semi
Join, Anti Join

In a merge join, data in the two
joined tables is sorted by join
columns. Then, data is extracted
from the two tables to a sorted
table for matching.
A merge join requires more
resources for sorting and its
performance is lower than that of
a hash join. However, if the source
data has been pre-sorted and no
more sorting is needed during the
merge join, its performance excels.

(Sonic)
Hash Join

Hash join: The
inner and
outer tables
use the join
column's hash
value to
create a hash
table.
Matching
values are
then stored in
the same
bucket. The
two ends of
an equal join
must be of
the same type
and support
hash.

Inner Join,
Left Outer
Join, Right
Outer Join,
Full Outer
Join, Semi
Join, Anti Join

A hash Join is used for large
tables. The optimizer creates a
hash table in memory using the
join key and the smaller table. It
then scans the larger table and
uses the hash table to quickly
identify matching rows. While
Sonic and non-Sonic hash joins
have different internal structures,
this does not impact the final
result set.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 439

Materialization Operators
Materialization operators are a class of nodes that can cache tuples. During
execution, many extended physical operations can be performed only after all
tuples are obtained, such as aggregation function operations and sorting without
indexes. Materialization operators can cache all the tuples.

Table 13-10 Materialization operators

Operator Description Scenario

Material Materializatio
n

Caches the subnode result.

Sort Sorting ORDER BY clause, which is used for join, group,
and set operations and works with Unique.

Group Grouping GROUP BY clause.

Agg Executes
aggregate
functions.

1. Aggregate functions such as COUNT, SUM,
AVG, MAX, and MIN.

2. DISTINCT clause.
3. UNION deduplication.
4. GROUP BY clause.

WindowAgg Window
functions

WINDOW clause.

Unique Deduplication
(with sorted
lower-layer
data)

1. DISTINCT clause.
2. UNION deduplication.

Hash HashJoin
auxiliary node

Constructs a hash table and use it together
with HashJoin.

SetOp Processing set
operations

INTERSECT/INTERSECT ALL, EXCEPT/EXCEPT
ALL

LockRows Processing
row-level
locks

SELECT ... FOR SHARE/UPDATE

Control Operators
Control operators are a type of node that handles exceptional scenarios and
executes custom workflows.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 440

Table 13-11 Control operators

Operator Description Scenario

Result Performing calculation
directly

1. Table scanning is not included.
2. The INSERT statement contains only
one VALUES clause.

ModifyTable INSERT/UPDATE/
DELETE upper-layer
node

INSERT/UPDATE/DELETE

Append Appending 1. UNION(ALL).
2. Table inheritance.

MergeAppend Appending (ordered
input)

1. UNION(ALL).
2. Table inheritance.

RecursiveUnio
n

Processing the UNION
subquery defined
recursively in the
WITH clause

WITH RECURSIVE... SELECT...
statement.

BitmapAnd Bitmap logical AND
operation

BitmapScan for multi-dimensional
index scanning.

BitmapOr Bitmap logical OR
operation

BitmapScan for multi-dimensional
index scanning.

Limit Processing the LIMIT
clause

OFFSET ... LIMIT ...

Other Operators

Other operators include Stream and RemoteQuery. There are three types of
Stream operators: Gather stream, Broadcast stream, and Redistribute stream.

● Gather stream: Each source node sends its data to the target node for
aggregation.

● Broadcast stream: A source node sends its data to N target nodes for
calculation.

● Redistribute stream: Each source node calculates the hash value of its data
based on the join condition, distributes the data based on the hash value, and
sends the data to the corresponding target node.

Table 13-12 Other Operators

Operator Description Scenario

Stream Multi-node
data
exchange

When a distributed query plan is executed,
data is exchanged between nodes.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 441

Operator Description Scenario

Partition
Iterator

Partition
iterator

Scans partitioned tables and iteratively scans
each partition.

RowToVec Rows-to-
column
conversion

Hybrid row-column.

DfsScan /
DfsIndexScan

HDFS table
(index)
scanning

HDFS table scanning.

13.4.4 SQL Tuning Process
You can analyze slow SQL statements to optimize them.

Procedure

Step 1 Collect all table statistics associated with the SQL statements. In a database,
statistics indicate the source data of a plan generated by a planner. If statistics are
unavailable or out of date, the execution plan may seriously deteriorate, leading
to low performance. According to past experience, about 10% performance
problem occurred because no statistics are collected. For details, see Updating
Statistics.

Step 2 Review and modify the table definition.

Step 3 Generally, some SQL statements can be converted to its equivalent statements in
all or certain scenarios by rewriting queries. SQL statements are simpler after they
are rewritten. Some execution steps can be simplified to improve the performance.
The query rewriting method is universal in all databases. SQL Statement
Rewriting Rules describes several optimization methods by rewriting SQL
statements.

Step 4 View the execution plan to find out the cause. If the SQL statements have been
running for a long period of time and not ended, run the EXPLAIN command to
view the execution plan and then locate the fault. If the SQL statement has been
executed, run the EXPLAIN ANALYZE or EXPLAIN PERFORMANCE command to
check the execution plan and actual running situation and then accurately locate
the fault. For details about the execution plan, see SQL Execution Plan.

Step 5 For details about EXPLAIN or EXPLAIN PERFORMANCE, the reason why SQL
statements are slowly located, and how to solve this problem, see Advanced SQL
Tuning.

Step 6 Specify a join order; join, stream, or scan operations; number of rows in a result; or
redistribution skew information to optimize an execution plan, improving query
performance. For details, see Hint-based Tuning.

Step 7 To maintain high database performance, you are advised to perform Routinely
Maintaining Tables and Routinely Recreating an Index.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 442

Step 8 (Optional) Improve performance by using operators if resources are sufficient in
GaussDB(DWS). For details, see SMP Parallel Execution.

----End

13.4.5 Updating Statistics
In a database, statistics indicate the source data of a plan generated by a planner.
If statistics are unavailable or out of date, the execution plan may seriously
deteriorate, leading to low performance.

Scenario

The ANALYZE statement collects statistics on database table contents. These
statistics will be stored in the PG_STATISTIC system catalog. Then, the query
optimizer uses the statistics to work out the most efficient execution plan.

After executing batch INSERT and DELETE operations, you are advised to run the
ANALYZE statement on the table or the entire database to update statistics. By
default, 30,000 rows of statistics are sampled. That is, the default value of the
GUC parameter default_statistics_target is 100. If the total number of rows in
the table exceeds 1,600,000, you are advised to set default_statistics_target to
-2, indicating that 2% of the statistics are collected.

For an intermediate table generated during the execution of scripts or stored
procedures in batch, you also need to run the ANALYZE statement.

If there are multiple inter-related columns in a table and the conditions or
grouping operations based on these columns are involved in the query, collect
statistics about these columns so that the query optimizer can accurately estimate
the number of rows and generate an effective execution plan.

Generating Statistics
● Update statistics on a single table.

ANALYZE tablename;

● Update the statistics of the entire database.
ANALYZE;

● Collect statistics from multiple columns.

– Collect statistics on the column_1 and column_2 columns of the
tablename table.
ANALYZE tablename ((column_1, column_2));

– --Add declarations for the column_1 and column_2 columns of the
tablename table.
ALTER TABLE tablename ADD STATISTICS ((column_1, column_2));

– Collect the statistics of a single column and statistics of multiple declared
columns.
ANALYZE tablename;

– Delete the statistics of column_1 and column_2 in the tablename table
or their declarations.
ALTER TABLE tablename DELETE STATISTICS ((column_1, column_2));

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 443

NO TICE

● After the statistics are declared for multiple columns by running the ALTER
TABLE Tablename ADD STATISTICS statement, the system collects the
statistics about these columns next time ANALYZE is performed on the table or
the entire database. To collect the statistics, run the ANALYZE statement.

● Use EXPLAIN to show the execution plan of each SQL statement. If rows=10
(the default value, probably indicating the table has not been analyzed) is
displayed in the SEQ SCAN output of a table, run the ANALYZE statement for
this table.

Improving the Quality of Statistics

ANALYZE samples data from a table based on the random sampling algorithm
and calculates table data features based on the samples. The number of samples
can be specified by the default_statistics_target parameter. The value of
default_statistics_target ranges from -100 to 10000 and the default value is 100.

● If the value of default_statistics_target is greater than 0, the number of
samples is 300 x default_statistics_target. This means a larger value of
default_statistics_target indicates a larger number of samples, larger
memory space occupied by samples, and longer time required for calculating
statistics.

● If the value of default_statistics_target is smaller than 0, the number of
samples is default_statistics_target/100 x Total number of rows in the table.
A smaller value of default_statistics_target indicates a larger number of
samples. If the value of default_statistics_target is smaller than 0, the
sampled data is written to the disk. In this case, the samples do not occupy
memory. However, the calculation still takes a long time because the sample
size is too large.

When default_statistics_target is negative, the number of samples is
calculated as default_statistics_target divided by 100, multiplied by the total
number of rows in the table. This sampling mode is also known as percentage
sampling.

Automatic Statistics Collection

When the autoanalyze parameter is turned on, the optimizer will automatically
collect statistics if it finds that there are no statistics in the table or if the data
changes exceed a certain threshold. This ensures that the optimizer has the
information it needs to make precise decisions.

In a cost-based optimizer (CBO) model, statistics play a crucial role in determining
whether a query plan is generated. Therefore, it is crucial to have timely and
effective statistics.

● Table-level statistics are stored in relpages and reltuples of pg_class.

● Column-level statistics, stored in pg_statistics and accessible through the
pg_statistics view, provide information on the percentage of NULL values,
percentage of distinct values, high-frequency MCV values, and histograms.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 444

Collection condition: If there is a substantial change in data volume (default
threshold is 10%), indicating a shift in data characteristics, the system will initiate
the collection of statistics again.

Overall policy: The system enables dynamic sampling to collect statistics promptly
and polling sampling to ensure persistent statistics. To ensure fast query
performance with response times in seconds, it is recommended to use manual
sampling.

Basic Rules

Table 13-13 Typical sampling methods

Functio
n

Description Feature Constrain
t

Auto
samplin
g

After making
significant changes to
the data in a job, you
need to manually run
the ANALYZE
command.

● In normal mode, statistics are
stored in system catalogs and
shared globally. A level-4 lock
is applied, preventing
concurrent operations on a
table.

● In light mode, statistics are
stored in memory and shared
globally. A level-1 lock is
applied, allowing concurrent
operations on a table.

● In force mode, you can
perform forcible sampling
even when statistics are
locked, in addition to the
normal mode functionalities.

Syntax: ANALYZE tablename;
ANALYZE (light|force)
tablename;

N/A

Polling
samplin
g

Background thread
operates according to
a threshold.
Polling maintenance
statistics

Only the normal mode is
supported. Statistics are stored
in system catalogs and shared. A
level-4 lock is applied,
preventing concurrent
operations on a table.
Related GUC parameters:
● autovacuum
● autovacuum_mode
● autovacuum_analyze_threshol

d
● autovacuum_analyze_scale_fa

ctor

Asynchro
nous
polling
triggering

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 445

Functio
n

Description Feature Constrain
t

Dynami
c
samplin
g

Depending on the
threshold, the query
parsing process can
take several dozen
seconds.
Real-time
maintenance statistics

● In normal mode, statistics are
stored in system catalogs and
shared globally. A level-4 lock
is applied, preventing
concurrent operations on a
table.

● In light mode, statistics are
stored in memory and shared
globally. A level-1 lock is
applied, allowing concurrent
operations on a table.

Related GUC parameters:
● autoanalyze
● autoanalyze_mode

Real-time
triggering
upon
query
In
lightweig
ht
scenarios,
persistenc
e relies
on polling
sampling.

Forcible
samplin
g

Uses SQL hints to
forcefully gather
statistics for each
query.

Used in data feature-sensitive
scenarios to ensure real-time
and up-to-date query statistics.
Usage: select /*+ lightanalyze
(t1 1) */ from t1; (1: forcible
sampling; 0: sampling disabled)

The SQL
statement
needs to
be
modified.

Collecti
ng
partitio
n
statistic
s

Collects incremental
information by
partition and
combines it globally.

Used in ultra-large partitioned
tables to ensure accurate query
cost estimation after partition
pruning.

This
method
takes up
more
storage
space but
provides
greater
accuracy.

Collecti
ng
statistic
s from
multipl
e
column
s

Gather statistics from
multiple columns.

Used to filter multiple columns
simultaneously to ensure
accurate query cost estimation.

You need
to select
target
columns
manually
and use
temporar
y tables.

Collecti
ng
expressi
on
statistic
s

Collects statistics on a
column based on
expression functions.

Used in batch expression
filtering scenarios to ensure
accurate query cost estimation.

Manual
identificat
ion is
required.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 446

Functio
n

Description Feature Constrain
t

Collecti
ng
expressi
on
index
statistic
s

Automatically collects
statistics for created
expression indexes.

Used in the point query
expression filtering scenario to
ensure accurate query cost
estimation.

Manual
identificat
ion is
required.

Freezin
g
statistic
s

Freezes table-level
statistics to prevent
changes.

Used in scenarios where data
features are extremely stable to
prevent sampling and query
plan changes.
Used in scenarios where data
features are highly variable to
ensure sampling for each query.
Parameter: table-level attribute
analyze_mode

N/A

Modifyi
ng
statistic
s

Directly modifies
statistics after manual
calculation.

Used to maintain a low
sampling ratio with manual
calibration. Usage:
select
approx_count_distinct(col_nam
e) from table_name;
alter table set (n_distinct=xxx)

N/A

Copyin
g
partitio
n
informa
tion

Copies statistics from
old partitions to new
ones.

Used for partitioned tables with
minimal data feature changes to
reduce statistics collection
overhead.

N/A

Statistic
al
informa
tion
inferenc
e

Automatically
calculates more
accurate statistics
based on existing
data.

Controlled by the GUC
parameter
enable_extrapolation_stats.

N/A

Backing
up and
restorin
g
statistic
s

Backs up statistics to
an SQL statement
using the EXPLAIN
(STAT ON) command.

Used for scenario reproduction
or statistics restoration.

Statistics
are
exported
as SQL
statement
s.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 447

Scenarios and Strategies

The table below outlines typical data processing scenarios and the corresponding
strategies for collecting statistics.

Table 13-14 Statistics collection strategies

Scenario Description Strategy

Incremental
stream
processing

Incremental data flow
changes with no
reasonable time for
ANALYZE.

Enable dynamic sampling to
automatically collect and share
statistics globally.

Online batch
processing
(Data lake)

Data processing and
querying occur
concurrently, requiring
stable queries.

Enable dynamic sampling or complete
data processing and ANALYZE within a
transaction.
begin;
truncate table or partition;
copy/merge/insert overwrite
ANALYZE (light) tablename;
end;

Partition
parallel
processing

Concurrent data
processing in different
partitions

Enable dynamic or manual light
sampling and collect statistics
concurrently for the same table.

Flat-wide
table scenario

Wide table with over
100 columns

1. Enable automatic predicate
management for dynamic sampling.
2. Collect statistics only on the first N
columns.
3. Set column-level participation in
sampling based on common query
predicates.

Large table
scenario

Large data volume
with changes not
reaching the threshold
Variable statistics

Lower the threshold for triggering
dynamic sampling.

Feature-
sensitive
scenario

Changeable data
features causing
unstable query plans,
requiring forcible
collection.

1. Lower the threshold for triggering
dynamic sampling.
2. Use the HINT mode in SQL
statements for light dynamic sampling.
3. Clear and freeze statistics, re-
collecting them for each query without
sharing.

High-
concurrency
scenario

Concurrent queries
(over 10) are
performed on the
same table, triggering
dynamic sampling and
resource usage.

1. Disable concurrency, and other
queries use outdated statistics.
2. Generate the latest statistics before
querying (under development).

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 448

Scenario Description Strategy

Streaming
performance
sensitivity

Stream processing
with queries
responded in seconds
or high resource
usage

Disable dynamic sampling at the table
or SQL level and use background
polling sampling.

Batch
performance
sensitivity

Batch processing with
queries responded in
seconds or high
resource usage

Manually collect statistics during
processing.

Resource Consumption

Table 13-15 Resource consumption

Category Sub-Category Description

CPU Predicate column
management

Automatically manage predicates and
collect statistics only on queried
columns.
Manually mask non-predicate
columns.

Ultra-long column
statistics

Data type that can be truncated,
counting only the first 1,024
characters.

I/O 30,000 samples are
collected by default.

Related to the number of columns,
partitions, and small CUs, not table
size.

Memory Buffer usage At most one slot in the cstore buffer is
occupied.

Memory zero copy Directly calculate statistics from buffer
samples without organizing into
tuples.

Memory adaptation Configure the system to use temporary
tables for sampling when memory is
insufficient. Prevent temporary table
creation triggered by queries using the
analyze_stats_mode parameter.

Memory size Control maximum memory usage
during ANALYZE with the
maintenance_work_mem parameter.
Exceeding memory limits results in
data being written to disks or reduced
samples.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 449

Category Sub-Category Description

Lock Level-4 lock (Normal mode) Applied in distributed
mode, conflicting with DDL, VACUUM,
ANALYZE, and REINDEX but not with
addition, deletion, or modification.

Level-1 lock (Light mode) Only local level-1 lock is
supported, conflicting only with DDL
statements.

Accuracy and Reliability

Table 13-16 Accuracy/Reliability

Accura
cy/
Reliabi
lity

Item Description

Accura
cy

Sampli
ng size

Configurable to adapt to table size with the
default_statistics_target parameter.

Sampli
ng
rando
mness

● Optimize reservoir and range sampling with the
analyze_sample_mode parameter.

● Enhance randomness of random number calculation with
the random_function_version parameter.

Global
sharing

Statistics can be shared across sessions and nodes.

Modifyi
ng
count
broadc
ast

Background thread checks and broadcasts the global
modification count in polling mode.
The job thread can also directly broadcast the modification
count by specifying the tuple_change_sync_threshold
parameter.
Cross-CN modification and query have minimal impact. The
modification count is broadcast and synchronized in
asynchronous mode.

Adjusti
ng the
CU
sampli
ng
ratio

Increase CU sampling ratio if the CU filling rate is low, using
the cstore_cu_sample_ratio parameter.

Stabiliz
ing
distinct
values

Use the n_distinct parameter to stabilize distinct values
after random sampling without increasing the sampling
ratio.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 450

Accura
cy/
Reliabi
lity

Item Description

Statisti
cal
inform
ation
calcula
tion

Use the enable_extrapolation_stats parameter to calculate
more accurate statistics based on old statistics during
distortion estimation.

Reliabil
ity

CN
fault

Dynamic sampling is unaffected by other CN faults, and
statistics are not synchronized. Query quality on the current
CN remains unaffected.

CN
restora
tion

Forcibly perform dynamic sampling and global
synchronization during queries after CN recovery.

DN
fault

Dynamic sampling of the logical cluster is unaffected by
faults in other logical clusters.

O&M Monitoring
GaussDB(DWS) offers a comprehensive view of the ANALYZE running mode and
different execution stages by adding comments after the ANALYZE command. This
information is primarily presented through the following views:

● query column in the pgxc_stat_activity view
● wait_status column in the pgxc_thread_wait_status view

The format of the ANALYZE command is --Action-RunMode-StatsMode-
SyncMode.

● Values and meanings of Action:
 {"begin", "finished", "lock FirstCN", "estimate rows", "statistics", "sample rows", "calc stats"};

begin: indicates the start of the process; finished: indicates the end of the
process; lock FirstCN: applies a lock from the FirstCN; estimate rows:
estimates the number of rows in the first phase; statistics: executes ANALYZE
in the second phase; sample rows: collects samples in the second phase; calc
stats: calculates statistics in the second phase.

● Values and meanings of RunMode:
 {"manual", "backend", "normal runtime", "light runtime", "light runtime inxact", "light estimate
rows", "light manual"};

manual: indicates the manual mode; backend: indicates the background
polling mode; normal runtime: indicates the normal dynamic sampling; light
runtime: indicates the light dynamic samplin; light runtime inxact: indicates
the light dynamic sampling in a transaction; light estimate rows indicates
the light estimation function only; light manual: indicates the manual light
mode.

● Values and meanings of StatsMode:
 {"dynamic", "memory", "smptbl"};

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 451

dynamic: indicates adaptive selection of memory or temporary table
placement samples; memory: uses only internal storage samples; smptbl:
uses only temporary table placement samples.

● Values and meanings of SyncMode:
 {"sync", "nosync"};

sync: Statistics are synchronized to all CNs; nosync: Statistics are not
synchronized.

Example:

SELECT coorname,datid,datname,pid,usename,application_name,query_id,query
FROM pgxc_stat_activity WHERE query like '%analyze%' and query not like '%application_name%';
 coorname | datid | datname | pid | usename | application_name | query_id | query
--------------+-------+----------+-----------------+-----------+------------------+-------------------
+---
coordinator1 | 15676 | postgres | 139919333779200 | test | gsql | 73183493944770822 | analyze t_1;
coordinator2 | 15676 | postgres | 140217336461056 | test | coordinator1 | 73183493944770822 | analyze
public.t_1;--push stats-manual-memory-sync
coordinator3 | 15676 | postgres | 139944245847808 | test | coordinator1 | 73183493944770822 | analyze
public.t_1;--push stats-manual-memory-sync
(3 rows)

Viewing Statistics
● Check the dynamically sampled memory statistics.

– Retrieve table-level memory statistics.
SELECT * FROM pv_runtime_relstats;

– Retrieve column-level memory statistics.
SELECT * FROM pv_runtime_attstats;

● Check the system catalog statistics.
– Check the table-level system catalog statistics.

select relname, relpages, reltuples from pg_class;

– Check the column-level system catalog statistics.
SELECT * FROM pg_stats;

● Check the latest time when statistics are collected.
Dynamic sampling stores statistics in memory without modifying the
timestamp of the system catalog.
SELECT * FROM pg_object;

13.4.6 Reviewing and Modifying a Table Definition
In a distributed framework, data is distributed on DNs. Data on one or more DNs
is stored on a physical storage device. To properly define a table, you must:

1. Evenly distribute data on each DN to avoid the available capacity decrease
of a cluster caused by insufficient storage space of the storage device
associated with a DN. Specifically, select a proper distribution key to avoid
data skew.

2. Evenly assign table scanning tasks on each DN to avoid that a DN is
overloaded by the table scanning tasks. Specifically, do not select columns in
the equivalent filter of a base table as the distribution key.

3. Reduce the data volume scanned by using the partition pruning mechanism.
4. Avoid the use of random I/O by using clustering or partial clustering.
5. Avoid data shuffle to reduce the network pressure by selecting the join-

condition column or group by column as the distribution column.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 452

The distribution column is the core for defining a table. Figure 13-5 shows the
procedure of defining a table. The table definition is created during the database
design and is reviewed and modified during SQL tuning.

Figure 13-5 Defining a table

For details about how to review and modify table definitions, see Table
Optimization Practices.

13.4.7 Advanced SQL Tuning

13.4.7.1 SQL Self-Diagnosis
Performance issues may occur when you run the INSERT/UPDATE/DELETE/
SELECT/MERGE INTO or CREATE TABLE AS statement. The product supports
automatic performance diagnosis and saves related diagnosis information to Real-
time Top SQL. When enable_resource_track is set to on, the diagnosis
information is dumped to Historical Top SQL. You can query the warning column
in the GS_WLM_SESSION_STATISTICS, GS_WLM_SESSION_HISTORY, and
GS_WLM_SESSION_INFO views to obtain reference information for performance
tuning.

● Alarms that can trigger SQL self-diagnosis depend on the settings of
resource_track_level.
When resource_track_level is set to query, you can diagnose alarms such as
uncollected multi-column/single-column statistics, unpruned partitions, and
failure of pushing down SQL statements. When resource_track_level is set to
perf or operator, all alarms can be diagnosed.

● Whether a SQL plan will be diagnosed depends on the settings of
resource_track_cost.
A SQL plan will be diagnosed only if its execution cost is greater than
resource_track_cost. You can use the EXPLAIN keyword to check the plan
execution cost.

● When EXPLAIN PERFORMANCE or EXPLAIN VERBOSE is executed, SQL self-
diagnosis information, except the ones without multi-column statistics, will be
generated. For details, see SQL Execution Plan.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 453

https://support.huaweicloud.com/intl/en-us/bestpractice-dws/dws_05_0006.html
https://support.huaweicloud.com/intl/en-us/bestpractice-dws/dws_05_0006.html

Alarms Related to SQL Execution Performance

Currently, the following alarms on performance issues will be reported:

1. Statistics of a single column or multiple columns are not collected.
If statistics of a single column or multiple columns are not collected, an alarm
is reported. To handle this alarm, you are advised to perform ANALYZE on
related tables. For details, see Updating Statistics and Optimizing Statistics.
If no statistics are collected for the OBS foreign table and HDFS foreign table
in the query statement, an alarm indicating that statistics are not collected
will be reported. Because the ANALYZE performance of the OBS foreign table
and HDFS foreign table is poor, you are not advised to perform ANALYZE on
these tables. Instead, you are advised to use the ALTER FOREIGN TABLE
syntax to modify the totalrows attribute of the foreign table to correct the
estimated number of rows.
Example alarms:
The statistics about a table are not collected.
Statistic Not Collect
 schema_test.t1

The statistics about a single column are not collected.
Statistic Not Collect
 schema_test.t2(c1)

The statistics about multiple columns are not collected.
Statistic Not Collect
 schema_test.t3((c1,c2))

The statistics about a single column and multiple columns are not collected.
Statistic Not Collect
 schema_test.t4(c1)
 schema_test.t5((c1,c2))

2. Partitions are not pruned.
When a partitioned table is queried, the partition is pruned based on the
constraints on the partition key to improve the query performance. However,
the partition table may not be pruned due to improper constraints,
deteriorating the query performance. For details, see Case: Rewriting SQL
Statements and Eliminating Prune Interference.

3. SQL statements are not pushed down.
The cause details are displayed in the alarms. For details, see Optimizing
Statement Pushdown.
The potential causes for the pushdown failure are as follows:
– Caused by functions

The function name is displayed in the diagnosis information. Function
pushdown is determined by the shippable attribute of the function. For
details, see the CREATE FUNCTION syntax.

– Caused by syntax
The diagnosis information displays the syntax that causes the pushdown
failure. For example, if the statement contains the With Recursive,
Distinct On, or row expression and the return value is of the record type,
an alarm is reported, indicating that the syntax does not support
pushdown.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 454

Example alarms:
SQL is not plan-shipping
 "enable_stream_operator" is off

SQL is not plan-shipping
 "Distinct On" can not be shipped

SQL is not plan-shipping
 "v_test_unshipping_log" is VIEW that will be treated as Record type can't be shipped

4. Vectorized plans are not supported.
For SQL statements that cannot use vectorized plans, detailed reasons why
vectorized plans cannot be used are reported.
Common reasons are as follows:
– The target column contains functions whose return type is a set.
– The target column or query condition, the distribution key of the Stream

operator, and the Limit and Offset clauses contain expressions that
cannot be vectorized (such as geospatial types, array expressions, Row
expressions, XML expressions, and functions whose parameters or return
values contain the refcursor type).

– The Group By clause contains an array-equivalent judgment statement.
– GC_FDW and LOG_FDW do not support vectorization.
– The plan contains operators such as Cte Scan, Recursive Union, Merge

Append, and Lock Rows.
Example alarms:
SQL is un-vectorized
 Function regexp_split_to_table that returns set is un-vectorized

SQL is un-vectorized
 Array expression is un-vectorized

SQL is un-vectorized
 Function array_agg is un-vectorized

SQL is un-vectorized
 RecursiveUnion is un-vectorized

5. In a hash join, the larger table is used as the inner table.
An alarm will be reported if the number of rows in the inner table reaches or
exceeds 10 times of that in the foreign table, more than 100,000 inner-table
rows are processed on each DN in average, and data has been flushed to
disks. You can check the query_plan column in GS_WLM_SESSION_HISTORY
to check whether hash joins are used. In this scenario, you need to adjust the
sequence of the HashJoin internal and foreign tables. For details, see Join
Order Hints.
Example alarm:
Execute diagnostic information
PlanNode[7] Large Table is INNER in HashJoin "Vector Hash Aggregate"

In the preceding command, 7 indicates the operator whose ID is 7 in the
query_plan column.

6. nestloop is used in a large-table equivalent join.
An alarm will be reported if nested loop is used in an equivalent join where
more than 100,000 larger-table rows are processed on each DN in average.
You can check the query_plan column of GS_WLM_SESSION_HISTORY to see
if nested loop is used. In this scenario, you need to adjust the table join mode

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 455

and disable the NestLoop join mode between the current internal and foreign
tables. For details, see Join Operation Hints.
Example alarm:
Execute diagnostic information
 PlanNode[5] Large Table with Equal-Condition use Nestloop"Nested Loop"

7. A large table is broadcasted.
An alarm will be reported if more than 100 thousand of rows are broadcasted
on each DN in average. In this scenario, the broadcast operation of the
Broadcast lower-layer operator needs to be disabled. For details, see Stream
Operation Hints.
Example alarm:
Execute diagnostic information
 PlanNode[5] Large Table in Broadcast "Streaming(type: BROADCAST dop: 1/2)"

8. Data skew occurs.
An alarm will be reported if the number of rows processed on any DN exceeds
100 thousand, and the number of rows processed on a DN reaches or exceeds
10 times of that processed on another DN. Generally, this alarm is generated
due to storage layer skew or computing layer skew. For details, see
Optimizing Data Skew.
Example alarm:
Execute diagnostic information
 PlanNode[6] DataSkew:"Seq Scan", min_dn_tuples:0, max_dn_tuples:524288

9. The index is improper.
During base table scanning, an alarm is reported if the following conditions
are met:
– For row-store tables:

▪ When the index scanning is used, the ratio of the number of output
lines to the number of scanned lines is greater than 1/1000 and the
number of output lines is greater than 10,000.

▪ When sequential scanning is used, the number of output lines to the
number of scanned lines is less than 1/1000, the number of output
lines is less than or equal to 10,000, and the number of scanned lines
is greater than 10,000.

– For column-store tables:

▪ When the index scanning is used, the ratio of the number of output
lines to the number of scanned lines is greater than 1/10000 and the
number of output lines is greater than 100.

▪ When sequential scanning is used, the number of output lines to the
number of scanned lines is less than 1/10,000, the number of output
lines is less than or equal to 100, and the number of scanned lines is
greater than 10,000.

For details, see Optimizing Operators. You can also refer to Case: Creating
an Appropriate Index and Case: Setting Partial Cluster Keys.
Example alarms:
Execute diagnostic information
 PlanNode[4] Indexscan is not properly used:"Index Only Scan", output:524288, filtered:0,
rate:1.00000
 PlanNode[5] Indexscan is ought to be used:"Seq Scan", output:1, filtered:524288, rate:0.00000

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 456

The diagnosis result is only a suggestion for the current SQL statement. You
are advised to create an index only for frequently used filter criteria.

10. Estimation is inaccurate.

An alarm will be reported if the maximum number or the estimated maximum
number of rows processed on a DN is over 100,000, and the larger number
reaches or exceeds 10 times of the smaller one. In this scenario, you can refer to
Rows Hints to correct the estimation on the number of rows, so that the
optimizer can re-design the execution plan based on the correct number.

Example alarm:

Execute diagnostic information
 PlanNode[5] Inaccurate Estimation-Rows: "Hash Join" A-Rows:0, E-Rows:52488

Constraints
1. An alarm contains a maximum of 2048 characters. If the length of an alarm

exceeds this value (for example, a large number of long table names and
column names are displayed in the alarm when their statistics are not
collected), a warning instead of an alarm will be reported.
WARNING, "Planner issue report is truncated, the rest of planner issues will be skipped"

2. If a query statement contains the Limit operator, alarms of operators lower
than Limit will not be reported.

3. For alarms about data skew and inaccurate estimation, only alarms on the
lower-layer nodes in a plan tree will be reported. This is because the same
alarms on the upper-level nodes may be triggered by problems on the lower-
layer nodes. For example, if data skew occurs on the Scan node, data skew
may also occur in operators (for example, Hashagg) at the upper layer.

13.4.7.2 Optimizing Statement Pushdown

Statement Pushdown

Currently, the GaussDB(DWS) optimizer can use three methods to develop
statement execution policies in the distributed framework: generating a statement
pushdown plan, a distributed execution plan, or a distributed execution plan for
sending statements.

● A statement pushdown plan pushes query statements from a CN down to
DNs for execution and returns the execution results to the CN.

● In a distributed execution plan, a CN compiles and optimizes query
statements, generates a plan tree, and then sends the plan tree to DNs for
execution. After the statements have been executed, execution results will be
returned to the CN.

● A distributed execution plan for sending statements pushes queries that can
be pushed down (mostly base table scanning statements) to DNs for
execution. Then, the plan obtains the intermediate results and sends them to
the CN, on which the remaining queries are to be executed.

When sending statements through a distributed execution plan, DNs send
numerous intermediate results to CNs. However, certain statements cannot be
pushed down and must be executed on CNs, leading to performance bottlenecks

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 457

in bandwidth, storage, and computing. Therefore, you are not advised to use the
query statements that only the third policy is applicable to.

Statements cannot be pushed down to DNs if they have Functions That Do Not
Support Pushdown or Syntax That Does Not Support Pushdown. Generally, you
can rewrite the execution statements to solve the problem.

Viewing Whether the Execution Plan Has Been Pushed Down to DNs
Perform the following procedure to quickly determine whether the execution plan
can be pushed down to DNs:

Step 1 Set the GUC parameter enable_fast_query_shipping to off to use the distributed
framework policy for the query optimizer.
SET enable_fast_query_shipping = off;

Step 2 View the execution plan.

If the execution plan contains Data Node Scan, the SQL statements cannot be
pushed down to DNs. If the execution plan contains Streaming, the SQL
statements can be pushed down to DNs.

For example:

select
count(ss.ss_sold_date_sk order by ss.ss_sold_date_sk)c1
from store_sales ss, store_returns sr
where
sr.sr_customer_sk = ss.ss_customer_sk;

The execution plan is as follows, which indicates that the SQL statement cannot
be pushed down.

 QUERY PLAN
--
Aggregate
-> Hash Join
Hash Cond: (ss.ss_customer_sk = sr.sr_customer_sk)
-> Data Node Scan on store_sales "_REMOTE_TABLE_QUERY_"
Node/s: All datanodes
-> Hash
-> Data Node Scan on store_returns "_REMOTE_TABLE_QUERY_"
Node/s: All datanodes
(8 rows)

----End

Syntax That Does Not Support Pushdown
SQL syntax that does not support pushdown is described using the following table
definition examples:

postgresCREATE TABLE CUSTOMER1
(
 C_CUSTKEY BIGINT NOT NULL
 , C_NAME VARCHAR(25) NOT NULL
 , C_ADDRESS VARCHAR(40) NOT NULL
 , C_NATIONKEY INT NOT NULL
 , C_PHONE CHAR(15) NOT NULL
 , C_ACCTBAL DECIMAL(15,2) NOT NULL
 , C_MKTSEGMENT CHAR(10) NOT NULL
 , C_COMMENT VARCHAR(117) NOT NULL
)

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 458

DISTRIBUTE BY hash(C_CUSTKEY);
CREATE TABLE test_stream(a int, b float);--float does not support redistribution.
postgresCREATE TABLE sal_emp (c1 integer[]) DISTRIBUTE BY replication;

● The returning statement cannot be pushed down.
postgresexplain update customer1 set C_NAME = 'a' returning c_name;
 QUERY PLAN
--
 Update on customer1 (cost=0.00..0.00 rows=30 width=187)
 Node/s: All datanodes
 Node expr: c_custkey
 -> Data Node Scan on customer1 "_REMOTE_TABLE_QUERY_" (cost=0.00..0.00 rows=30 width=187)
 Node/s: All datanodes
(5 rows)

● If columns in count(distinct expr) do not support redistribution, they do not
support pushdown.
postgresexplain verbose select count(distinct b) from test_stream;
 QUERY PLAN
-- Aggregate (cost=2.50..2.51 rows=1 width=8)
 Output: count(DISTINCT test_stream.b)
 -> Data Node Scan on test_stream "_REMOTE_TABLE_QUERY_" (cost=0.00..0.00 rows=30 width=8)
 Output: test_stream.b
 Node/s: All datanodes
 Remote query: SELECT b FROM ONLY public.test_stream WHERE true
(6 rows)

● Statements using distinct on cannot be pushed down.
postgresexplain verbose select distinct on (c_custkey) c_custkey from customer1 order by c_custkey;
 QUERY PLAN
-- Unique (cost=49.83..54.83 rows=30 width=8)
 Output: customer1.c_custkey
 -> Sort (cost=49.83..52.33 rows=30 width=8)
 Output: customer1.c_custkey
 Sort Key: customer1.c_custkey
 -> Data Node Scan on customer1 "_REMOTE_TABLE_QUERY_" (cost=0.00..0.00 rows=30
width=8)
 Output: customer1.c_custkey
 Node/s: All datanodes
 Remote query: SELECT c_custkey FROM ONLY public.customer1 WHERE true
(9 rows)

● In a statement using FULL JOIN, if the column specified using JOIN does not
support redistribution, the statement does not support pushdown.
postgresexplain select * from test_stream t1 full join test_stream t2 on t1.a=t2.b;
 QUERY PLAN
-- Hash Full Join (cost=0.38..0.82 rows=30
width=24)
 Hash Cond: ((t1.a)::double precision = t2.b)
 -> Data Node Scan on test_stream "_REMOTE_TABLE_QUERY_" (cost=0.00..0.00 rows=30 width=12)
 Node/s: All datanodes
 -> Hash (cost=0.00..0.00 rows=30 width=12)
 -> Data Node Scan on test_stream "_REMOTE_TABLE_QUERY_" (cost=0.00..0.00 rows=30
width=12)
 Node/s: All datanodes
(7 rows)

● A statement containing array expressions cannot be pushed down.
postgresexplain verbose select array[c_custkey,1] from customer1 order by c_custkey;

 QUERY PLAN
-- Sort (cost=49.83..52.33 rows=30 width=8)
 Output: (ARRAY[customer1.c_custkey, 1::bigint]), customer1.c_custkey
 Sort Key: customer1.c_custkey
 -> Data Node Scan on "__REMOTE_SORT_QUERY__" (cost=0.00..0.00 rows=30 width=8)
 Output: (ARRAY[customer1.c_custkey, 1::bigint]), customer1.c_custkey
 Node/s: All datanodes
 Remote query: SELECT ARRAY[c_custkey, 1::bigint], c_custkey FROM ONLY public.customer1
WHERE true ORDER BY 2
(7 rows)

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 459

● Subplans that are shared among multiple threads and cannot be pushed
down.
postgres=# explain verbose select c_custkey in (select c_custkey from customer1) b from customer1;
 QUERY PLAN
--
Data Node Scan on customer1 "_REMOTE_TABLE_QUERY_" (cost=2.50..5.00 rows=1000 width=8)
 Output: (hashed SubPlan 1)
 Node/s: All datanodes
 Remote query: SELECT c_custkey FROM ONLY public.customer1 WHERE true
 SubPlan 1
 -> Data Node Scan on customer "_REMOTE_TABLE_QUERY_" (cost=0.00..0.00 rows=1000
width=8)
 Output: public.customer.c_custkey
 Node/s: All datanodes
 Remote query: SELECT c_custkey FROM ONLY public.customer1 WHERE true
(9 rows)

● The following table describes the scenarios where a statement containing
WITH RECURSIVE cannot be pushed down in the current version, as well as
the causes.

No. Scenario Cause of Not Supporting
Pushdown

1 The query contains foreign
tables or HDFS tables.

LOG: SQL can't be shipped,
reason: RecursiveUnion contains
HDFS Table or ForeignScan is
not shippable (In this table, LOG
describes the cause of not
supporting pushdown.)

In the current version, queries
containing foreign tables or
HDFS tables do not support
pushdown.

2 Multiple Node Groups LOG: SQL can't be shipped,
reason: With-Recursive under
multi-nodegroup scenario is not
shippable

In the current version, pushdown
is supported only when all base
tables are stored and computed
in the same Node Group.

3 WITH recursive t_result AS (
SELECT dm,sj_dm,name,1 as level
FROM test_rec_part
WHERE sj_dm > 10
UNION
SELECT t2.dm,t2.sj_dm,t2.name||' > '||
t1.name,t1.level+1
FROM t_result t1
JOIN test_rec_part t2 ON t2.sj_dm = t1.dm
)
SELECT * FROM t_result t;

LOG: SQL can't be shipped,
reason: With-Recursive does not
contain "ALL" to bind recursive
& none-recursive branches

ALL is not used for UNION. In
this case, the return result is
deduplicated.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 460

No. Scenario Cause of Not Supporting
Pushdown

4 WITH RECURSIVE x(id) AS
(
select count(1) from pg_class where
oid=1247
UNION ALL
SELECT id+1 FROM x WHERE id < 5
), y(id) AS
(
select count(1) from pg_class where
oid=1247
UNION ALL
SELECT id+1 FROM x WHERE id < 10
)
SELECT y.*, x.* FROM y LEFT JOIN x
USING (id) ORDER BY 1;

LOG: SQL can't be shipped,
reason: With-Recursive contains
system table is not shippable

A base table contains the system
catalog.

5 WITH RECURSIVE t(n) AS (
VALUES (1)
UNION ALL
SELECT n+1 FROM t WHERE n < 100
)
SELECT sum(n) FROM t;

LOG: SQL can't be shipped,
reason: With-Recursive contains
only values rte is not shippable

Only VALUES is used for
scanning base tables. In this
case, the statement can be
executed on the CN, and DNs
are unnecessary.

6 select a.ID,a.Name,
(
with recursive cte as (
select ID, PID, NAME from b where b.ID =
1
union all
select parent.ID,parent.PID,parent.NAME
from cte as child join b as parent on
child.pid=parent.id
where child.ID = a.ID
)
select NAME from cte limit 1
) cName
from
(
select id, name, count(*) as cnt
from a group by id,name
) a order by 1,2;

LOG: SQL can't be shipped,
reason: With-Recursive recursive
term correlated only is not
shippable

The correlation conditions of
correlated subqueries are only in
the recursion part, and the non-
recursion part has no correlation
condition.

7 WITH recursive t_result AS (
select * from(
SELECT dm,sj_dm,name,1 as level
FROM test_rec_part
WHERE sj_dm < 10 order by dm limit 6
offset 2)
UNION all
SELECT t2.dm,t2.sj_dm,t2.name||' > '||
t1.name,t1.level+1
FROM t_result t1
JOIN test_rec_part t2 ON t2.sj_dm = t1.dm
)
SELECT * FROM t_result t;

LOG: SQL can't be shipped,
reason: With-Recursive contains
conflict distribution in none-
recursive(Replicate)
recursive(Hash)

The replicate plan is used for
limit in the non-recursion part
but the hash plan is used in the
recursion part, resulting in
conflicts.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 461

No. Scenario Cause of Not Supporting
Pushdown

8 with recursive cte as
(
select * from rec_tb4 where id<4
union all
select h.id,h.parentID,h.name from
(
with recursive cte as
(
select * from rec_tb4 where id<4
union all
select h.id,h.parentID,h.name from
rec_tb4 h inner join cte c on
h.id=c.parentID
)
SELECT id ,parentID,name from cte order
by parentID
) h
inner join cte c on h.id=c.parentID
)
SELECT id ,parentID,name from cte order
by parentID,1,2,3;

LOG: SQL can't be shipped,
reason: Recursive CTE references
recursive CTE "cte"

recursive of multiple-layers are
nested. That is, a recursive is
nested in the recursion part of
another recursive.

Functions That Do Not Support Pushdown
This module describes the variability of functions. The function variability in
GaussDB(DWS) is as follows:

● IMMUTABLE
Indicates that the function always returns the same result if the parameter
values are the same.

● STABLE
Indicates that the function cannot modify the database, and that within a
single table scan it will consistently return the same result for the same
parameter values, but that its result varies by SQL statements.

● VOLATILE
Indicates that the function value can change even within a single table scan,
so no optimizations can be made.

The volatility of a function can be obtained by querying its provolatile column in
pg_proc. The value i indicates immutable, s indicates stable, and v indicates
volatile. The valid values of the proshippable column in pg_proc are t, f, and
NULL. This column and the provolatile column together describe whether a
function is pushed down.

● If the provolatile of a function is i, the function can be pushed down
regardless of the value of proshippable.

● If the provolatile of a function is s or v, the function can be pushed only if
the value of proshippable is t.

● CTEs containing random are not pushed down, because pushdown may lead
to incorrect results.

For a UDF, you can specify the values of provolatile and proshippable during its
creation. For details, see CREATE FUNCTION.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 462

In scenarios where a function does not support pushdown, perform one of the
following as required:

● If it is a system function, replace it with a functionally equivalent one.
● If it is a UDF function, check whether its provolatile and proshippable are

correctly defined.

Example: UDF
Define a user-defined function that generates fixed output for a certain input as
the immutable type.

Use the TPCDS sales information as an example. You need to define a function to
obtain the discount information.

CREATE FUNCTION func_percent_2 (NUMERIC, NUMERIC) RETURNS NUMERIC
AS 'SELECT $1 / $2 WHERE $2 > 0.01'
LANGUAGE SQL
VOLATILE;

Run the following statement:

SELECT func_percent_2(ss_sales_price, ss_list_price)
FROM store_sales;

The execution plan is as follows:

func_percent_2 is not pushed down, and ss_sales_price and ss_list_price are
executed on a CN. In this case, a large amount of resources on the CN is
consumed, and the performance deteriorates as a result.

In this example, the function returns certain output when certain input is entered.
Therefore, we can modify the function to the following one:

CREATE FUNCTION func_percent_1 (NUMERIC, NUMERIC) RETURNS NUMERIC
AS 'SELECT $1 / $2 WHERE $2 > 0.01'
LANGUAGE SQL
IMMUTABLE;

Run the following statement:

SELECT func_percent_1(ss_sales_price, ss_list_price)
FROM store_sales;

The execution plan is as follows:

func_percent_1 is pushed down to DNs for quicker execution. (In TPCDS 1000X,
where three CNs and 18 DNs are used, the query efficiency is improved by over
100 times).

Example 2: Pushing Down the Sorting Operation
Learn more information in Case: Pushing Down Sort Operations to DNs.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 463

13.4.7.3 Optimizing Subqueries

What Is a Subquery
When an application runs a SQL statement to operate the database, a large
number of subqueries are used because they are more clear than table join.
Especially in complicated query statements, subqueries have more complete and
independent semantics, which makes SQL statements clearer and easy to
understand. Therefore, subqueries are widely used.

In GaussDB(DWS), subqueries can also be called sublinks based on the location of
subqueries in SQL statements.

● Subquery: corresponds to a scope table (RangeTblEntry) in the query parse
tree. That is, a subquery is a SELECT statement following immediately after
the FROM keyword.

● Sublink: corresponds to an expression in the query parsing tree. That is, a
sublink is a statement in the WHERE or ON clause or in the target list.
In conclusion, a subquery is a scope table and a sublink is an expression in the
query parsing tree. A sublink can be found in constraint conditions and
expressions. In GaussDB(DWS), sublinks can be classified into the following
types:
– exist_sublink: corresponding to the EXIST and NOT EXIST statements.
– any_sublink: corresponding to the OP ANY(SELECT...) statement. OP can

be the IN, <, >, or = operator.
– all_sublink: corresponding to the OP ALL(SELECT...) statement. OP can

be the IN, <, >, or = operator.
– rowcompare_sublink: corresponding to the RECORD OP (SELECT...)

statement.
– expr_sublink: corresponding to the (SELECT with a single target list item)

statement.
– array_sublink: corresponding to the ARRAY(SELECT...) statement.
– cte_sublink: corresponding to the WITH(...) statement.
The sublinks commonly used in OLAP and HTAP are exist_sublink and
any_sublink. The sublinks are pulled up by the optimization engine of
GaussDB(DWS). Because of the flexible use of subqueries in SQL statements,
complex subqueries may affect query performance. Subqueries are classified
into non-correlated subqueries and correlated subqueries.
– Non-correlated subquery

The execution of a subquery is independent from any attribute of outer
queries. In this way, a subquery can be executed before outer queries.
Example:
select t1.c1,t1.c2
from t1
where t1.c1 in (
 select c2
 from t2
 where t2.c2 IN (2,3,4)
);
 QUERY PLAN

Streaming (type: GATHER)

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 464

 Node/s: All datanodes
 -> Hash Right Semi Join
 Hash Cond: (t2.c2 = t1.c1)
 -> Streaming(type: REDISTRIBUTE)
 Spawn on: All datanodes
 -> Seq Scan on t2
 Filter: (c2 = ANY ('{2,3,4}'::integer[]))
 -> Hash
 -> Seq Scan on t1
(10 rows)

– Correlated subquery
The execution of a subquery depends on some attributes of outer queries
which are used as AND conditions of the subquery. In the following
example, t1.c1 in the t2.c1 = t1.c1 condition is a dependent attribute.
Such a subquery depends on outer queries and needs to be executed
once for each outer query.
Example:
select t1.c1,t1.c2
from t1
where t1.c1 in (
 select c2
 from t2
 where t2.c1 = t1.c1 AND t2.c2 in (2,3,4)
);
 QUERY PLAN

Streaming (type: GATHER)
 Node/s: All datanodes
 -> Seq Scan on t1
 Filter: (SubPlan 1)
 SubPlan 1
 -> Result
 Filter: (t2.c1 = t1.c1)
 -> Materialize
 -> Streaming(type: BROADCAST)
 Spawn on: All datanodes
 -> Seq Scan on t2
 Filter: (c2 = ANY ('{2,3,4}'::integer[]))
(12 rows)

GaussDB(DWS) SubLink Optimization

A subquery is pulled up to join with tables in outer queries, preventing the
subquery from being converted into the combination of a subplan and broadcast.
You can run the EXPLAIN statement to check whether a subquery is converted
into the combination of a subplan and broadcast.

Example:

● Sublink-release supported by GaussDB(DWS)

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 465

– Pulling up the IN sublink

▪ The subquery cannot contain columns in the outer query (columns in
more outer queries are allowed).

▪ The subquery cannot contain volatile functions.

– Pulling up the EXISTS sublink
The WHERE clause must contain a column in the outer query. Other
parts of the subquery cannot contain the column. Other restrictions are
as follows:

▪ The subquery must contain the FROM clause.

▪ The subquery cannot contain the WITH clause.

▪ The subquery cannot contain aggregate functions.

▪ The subquery cannot contain a SET, SORT, LIMIT, WindowAgg, or
HAVING operation.

▪ The subquery cannot contain volatile functions.

– Pulling up an equivalent query containing aggregation functions
The WHERE condition of the subquery must contain a column from the
outer query. Equivalence comparison must be performed between this
column and related columns in tables of the subquery. These conditions
must be connected using AND. Other parts of the subquery cannot
contain the column. Other restrictions are as follows:

▪ The expression in the WHERE condition of the subquery must be
table columns.

▪ After the SELECT keyword of the subquery, there must be only one
output column. The output column must be an aggregate function
(for example, MAX), and the parameter (for example, t2.c2) of the
aggregate function cannot be columns of a table (for example, t1) in
outer queries. The aggregate function cannot be COUNT.
For example, the following subquery can be pulled up:

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 466

select * from t1 where c1 >(
 select max(t2.c1) from t2 where t2.c1=t1.c1
);

The following subquery cannot be pulled up because the subquery
has no aggregation function.
select * from t1 where c1 >(
 select t2.c1 from t2 where t2.c1=t1.c1
);

The following subquery cannot be pulled up because the subquery
has two output columns:
select * from t1 where (c1,c2) >(
 select max(t2.c1),min(t2.c2) from t2 where t2.c1=t1.c1
);

▪ The subquery must be a FROM clause.

▪ The subquery cannot contain a GROUP BY, HAVING, or SET
operation.

▪ The subquery can only be inner join.
For example, the following subquery can be pulled up:
select * from t1 where c1 >(
 select max(t2.c1) from t2 full join t3 on (t2.c2=t3.c2) where t2.c1=t1.c1
);

▪ The target list of the subquery cannot contain the function that
returns a set.

▪ The WHERE condition of the subquery must contain a column from
the outer query. Equivalence comparison must be performed
between this column and related columns in tables of the subquery.
These conditions must be connected using AND. Other parts of the
subquery cannot contain the column. For example, the following
subquery can be pulled up:
select * from t3 where t3.c1=(
 select t1.c1
 from t1 where c1 >(
 select max(t2.c1) from t2 where t2.c1=t1.c1
));

If another condition is added to the subquery in the previous
example, the subquery cannot be pulled up because the subquery
references to the column in the outer query. Example:
select * from t3 where t3.c1=(
 select t1.c1
 from t1 where c1 >(
 select max(t2.c1) from t2 where t2.c1=t1.c1 and t3.c1>t2.c2

));

– Pulling up a sublink in the OR clause
If the WHERE condition contains a EXIST-related sublink connected by
OR,
for example,
select a, c from t1
where t1.a = (select avg(a) from t3 where t1.b = t3.b) or
exists (select * from t4 where t1.c = t4.c);

The procedure for promoting the OR clause of an EXIST-related subquery
in an OR-ed join is as follows:

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 467

i. Extract opExpr from the OR clause in the WHERE condition. The
value is t1.a = (select avg(a) from t3 where t1.b = t3.b).

ii. The opExpr contains a subquery. If the subquery can be pulled up,
the subquery is rewritten as elect avg(a), t3.b from t3 group by
t3.b, generating the NOT NULL condition t3.b is not null. The
opExpr is replaced with this NOT NULL condition. In this case, the
SQL statement changes to:
select a, c
from t1 left join (select avg(a) avg, t3.b from t3 group by t3.b) as t3 on (t1.a = avg
and t1.b = t3.b)
where t3.b is not null or exists (select * from t4 where t1.c = t4.c);

iii. Extract the EXISTS sublink exists (select * from t4 where t1.c =
t4.c) from the OR clause to check whether the sublink can be pulled
up. If it can be pulled up, it is converted into select t4.c from t4
group by t4.c, generating the NOT NULL condition t4.c is not null.
In this case, the SQL statement changes to:
select a, c
from t1 left join (select avg(a) avg, t3.b from t3 group by t3.b) as t3 on (t1.a = avg and
t1.b = t3.b)
left join (select t4.c from t4 group by t4.c) where t3.b is not null or t4.c is not null;

● Sublink-release not supported by GaussDB(DWS)
Except the sublinks described above, all the other sublinks cannot be pulled
up. In this case, a join subquery is planned as the combination of a subplan
and broadcast. As a result, if tables in the subquery have a large amount of
data, query performance may be poor.
If a correlated subquery joins with two tables in outer queries, the subquery
cannot be pulled up. You need to change the parent query into a WITH clause
and then perform the join.
Example:
select distinct t1.a, t2.a
from t1 left join t2 on t1.a=t2.a and not exists (select a,b from test1 where test1.a=t1.a and
test1.b=t2.a);

The parent query is changed into:
with temp as
(
 select * from (select t1.a as a, t2.a as b from t1 left join t2 on t1.a=t2.a)

)
select distinct a,b
from temp
where not exists (select a,b from test1 where temp.a=test1.a and temp.b=test1.b);

– The subquery (without COUNT) in the target list cannot be pulled up.
Example:
explain (costs off)
select (select c2 from t2 where t1.c1 = t2.c1) ssq, t1.c2

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 468

from t1
where t1.c2 > 10;

The execution plan is as follows:
explain (costs off)
select (select c2 from t2 where t1.c1 = t2.c1) ssq, t1.c2
from t1
where t1.c2 > 10;
 QUERY PLAN
--
 Streaming (type: GATHER)
 Node/s: All datanodes
 -> Seq Scan on t1
 Filter: (c2 > 10)
 SubPlan 1
 -> Result
 Filter: (t1.c1 = t2.c1)
 -> Materialize
 -> Streaming(type: BROADCAST)
 Spawn on: All datanodes
 -> Seq Scan on t2
(11 rows)

The correlated subquery is displayed in the target list (query return list).
Values need to be returned even if the condition t1.c1=t2.c1 is not met.
Therefore, use a left outer join to join t1 and t2 so that the SSQ can
return padding values when the condition t1.c1=t2.c1 is not met.

NO TE

ScalarSubQuery (SSQ) and Correlated-ScalarSubQuery (CSSQ) are described as
follows:

● SSQ: a sublink that returns only a single row and column scalar value

● CSSQ: an SSQ containing conditions

The preceding SQL statement can be changed into:
with ssq as
(
 select t2.c1, t2.c2 from t2
)
select ssq.c2, t1.c2
from t1 left join ssq on t1.c1 = ssq.c1
where t1.c2 > 10;

The execution plan after the change is as follows:
 QUERY PLAN

 Streaming (type: GATHER)
 Node/s: All datanodes
 -> Hash Right Join
 Hash Cond: (t2.c1 = t1.c1)
 -> Seq Scan on t2
 -> Hash
 -> Seq Scan on t1
 Filter: (c2 > 10)
(8 rows)

In the preceding example, the SSQ is pulled up to right join, preventing
poor performance caused by the combination of a subplan and broadcast
when the table (T2) in the subquery is too large.

– The subquery (with COUNT) in the target list cannot be pulled up.
Example:
select (select count(*) from t2 where t2.c1=t1.c1) cnt, t1.c1, t3.c1
from t1,t3
where t1.c1=t3.c1 order by cnt, t1.c1;

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 469

The execution plan is as follows:
 QUERY PLAN
--
 Streaming (type: GATHER)
 Node/s: All datanodes
 -> Sort
 Sort Key: ((SubPlan 1)), t1.c1
 -> Hash Join
 Hash Cond: (t1.c1 = t3.c1)
 -> Seq Scan on t1
 -> Hash
 -> Seq Scan on t3
 SubPlan 1
 -> Aggregate
 -> Result
 Filter: (t2.c1 = t1.c1)
 -> Materialize
 -> Streaming(type: BROADCAST)
 Spawn on: All datanodes
 -> Seq Scan on t2
(17 rows)

The correlated subquery is displayed in the target list (query return list).
Values need to be returned even if the condition t1.c1=t2.c1 is not met.
Therefore, use a left outer join to join t1 and t2 so that the SSQ can
return padding values when the condition t1.c1=t2.c1 is not met.
However, COUNT is used, which requires that 0 is returned when the
condition is not met. case-when NULL then 0 else count(*) can be used.
The preceding SQL statement can be changed into:
with ssq as
(
 select count(*) cnt, c1 from t2 group by c1
)
select case when
 ssq.cnt is null then 0
 else ssq.cnt
 end cnt, t1.c1, t3.c1
from t1 left join ssq on ssq.c1 = t1.c1,t3
where t1.c1 = t3.c1
order by ssq.cnt, t1.c1;

The execution plan after the change is as follows:
 QUERY PLAN

 Streaming (type: GATHER)
 Node/s: All datanodes
 -> Sort
 Sort Key: (count(*)), t1.c1
 -> Hash Join
 Hash Cond: (t1.c1 = t3.c1)
 -> Hash Left Join
 Hash Cond: (t1.c1 = t2.c1)
 -> Seq Scan on t1
 -> Hash
 -> HashAggregate
 Group By Key: t2.c1
 -> Seq Scan on t2
 -> Hash
 -> Seq Scan on t3
(15 rows)

– Pulling up nonequivalent subqueries
Example:
select t1.c1, t1.c2
from t1
where t1.c1 = (select agg() from t2.c2 > t1.c2);

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 470

Nonequivalent subqueries cannot be pulled up. You can perform join
twice (one CorrelationKey and one rownum self-join) to rewrite the
statement.
You can rewrite the statement in either of the following ways:

▪ Subquery rewriting
select t1.c1, t1.c2
from t1, (
 select t1.rowid, agg() aggref
 from t1,t2
 where t1.c2 > t2.c2 group by t1.rowid
) dt /* derived table */
where t1.rowid = dt.rowid AND t1.c1 = dt.aggref;

▪ CTE rewriting
WITH dt as
(
 select t1.rowid, agg() aggref
 from t1,t2
 where t1.c2 > t2.c2 group by t1.rowid
)
select t1.c1, t1.c2
from t1, derived_table
where t1.rowid = derived_table.rowid AND
t1.c1 = derived_table.aggref;

NO TICE

● Currently, GaussDB(DWS) does not have an effective way to provide
globally unique row IDs for tables and intermediate result sets. Therefore,
the rewriting is difficult. It is recommended that this issue is avoided at the
service layer or by using t1.xc_node_id + t1.ctid to associate row IDs.
However, the high repetition rate of xc_node_id leads to low association
efficiency, and xc_node_id+ctid cannot be used as the join condition of
hash join.

● If the AGG type is COUNT(*), 0 is used for data padding if CASE-WHEN is
not matched. If the type is not COUNT(*), NULL is used.

● CTE rewriting works better by using share scan.

More Optimization Examples

1. Change the base table to a replication table and create an index on the filter
column.

create table master_table (a int);
create table sub_table(a int, b int);
select a from master_table group by a having a in (select a from sub_table);

In this example, a correlated subquery is contained. To improve the query
performance, you can change sub_table to a replication table and create an index
on the a column.

2. Modify the SELECT statement, change the subquery to a JOIN relationship
between the primary table and the parent query, or modify the subquery to
improve the query performance. Ensure that the subquery to be used is
semantically correct.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 471

explain (costs off)select * from master_table as t1 where t1.a in (select t2.a from sub_table as t2 where t1.a
= t2.b);
 QUERY PLAN
--
Streaming (type: GATHER)
 Node/s: All datanodes
 -> Seq Scan on master_table t1
 Filter: (SubPlan 1)
 SubPlan 1
 -> Result
 Filter: (t1.a = t2.b)
 -> Materialize
 -> Streaming(type: BROADCAST)
 Spawn on: All datanodes
 -> Seq Scan on sub_table t2
(11 rows)

In the preceding example, a subplan is used. To remove the subplan, you can
modify the statement as follows:

explain(costs off) select * from master_table as t1 where exists (select t2.a from sub_table as t2 where t1.a
= t2.b and t1.a = t2.a);
 QUERY PLAN
--
Streaming (type: GATHER)
 Node/s: All datanodes
 -> Hash Semi Join
 Hash Cond: (t1.a = t2.b)
 -> Seq Scan on master_table t1
 -> Hash
 -> Streaming(type: REDISTRIBUTE)
 Spawn on: All datanodes
 -> Seq Scan on sub_table t2
(9 rows)

In this way, the subplan is replaced by the semi-join between the two tables,
greatly improving the execution efficiency.

13.4.7.4 Optimizing Statistics

What Is Statistic Optimization
GaussDB(DWS) generates optimal execution plans based on the cost estimation.
Optimizers need to estimate the number of data rows and the cost based on
statistics collected using ANALYZE. Therefore, the statistics is vital for the
estimation of the number of rows and cost. Global statistics are collected using
ANALYZE: relpages and reltuples in the pg_class table; stadistinct, stanullfrac,
stanumbersN, stavaluesN, and histogram_bounds in the pg_statistic table.

Example 1: Poor Query Performance Due to the Lack of Statistics
The query performance is often significantly impacted by the absence of statistics
for tables or columns involved in the query.

The structure of the example table is as follows:

CREATE TABLE LINEITEM
(
L_ORDERKEY BIGINT NOT NULL
, L_PARTKEY BIGINT NOT NULL
, L_SUPPKEY BIGINT NOT NULL
, L_LINENUMBER BIGINT NOT NULL
, L_QUANTITY DECIMAL(15,2) NOT NULL
, L_EXTENDEDPRICE DECIMAL(15,2) NOT NULL

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 472

, L_DISCOUNT DECIMAL(15,2) NOT NULL
, L_TAX DECIMAL(15,2) NOT NULL
, L_RETURNFLAG CHAR(1) NOT NULL
, L_LINESTATUS CHAR(1) NOT NULL
, L_SHIPDATE DATE NOT NULL
, L_COMMITDATE DATE NOT NULL
, L_RECEIPTDATE DATE NOT NULL
, L_SHIPINSTRUCT CHAR(25) NOT NULL
, L_SHIPMODE CHAR(10) NOT NULL
, L_COMMENT VARCHAR(44) NOT NULL
) with (orientation = column, COMPRESSION = MIDDLE) distribute by hash(L_ORDERKEY);

CREATE TABLE ORDERS
(
O_ORDERKEY BIGINT NOT NULL
, O_CUSTKEY BIGINT NOT NULL
, O_ORDERSTATUS CHAR(1) NOT NULL
, O_TOTALPRICE DECIMAL(15,2) NOT NULL
, O_ORDERDATE DATE NOT NULL
, O_ORDERPRIORITY CHAR(15) NOT NULL
, O_CLERK CHAR(15) NOT NULL
, O_SHIPPRIORITY BIGINT NOT NULL
, O_COMMENT VARCHAR(79) NOT NULL
)with (orientation = column, COMPRESSION = MIDDLE) distribute by hash(O_ORDERKEY);

The query statements are as follows:
explain verbose select
count(*) as numwait
from
lineitem l1,
orders
where
o_orderkey = l1.l_orderkey
and o_orderstatus = 'F'
and l1.l_receiptdate > l1.l_commitdate
and not exists (
select
*
from
lineitem l3
where
l3.l_orderkey = l1.l_orderkey
and l3.l_suppkey <> l1.l_suppkey
and l3.l_receiptdate > l3.l_commitdate
)
order by
numwait desc;

You can perform the following operations to check whether ANALYZE has been
executed on the tables or columns involved in the query to collect statistics.

1. Execute EXPLAIN VERBOSE to analyze the execution plan and check the
warning information.
WARNING:Statistics in some tables or columns(public.lineitem(l_receiptdate,l_commitdate,l_orderkey,
l_suppkey), public.orders(o_orderstatus,o_orderkey)) are not collected.
HINT:Do analyze for them in order to generate optimized plan.

2. To determine if poor query performance was caused by a lack of statistics in
certain tables or columns, check if the following information exists in the log
file located in the pg_log directory.
2017-06-14 17:28:30.336 CST 140644024579856 20971684 [BACKEND] LOG:Statistics in some tables
or columns(public.lineitem(l_receiptdate, l_commitdate,l_orderkey,
.l_suppkey), public.orders(o_orderstatus,o_orderkey)) are not collected.
2017-06-14 17:28:30.336 CST 140644024579856 20971684 [BACKEND] HINT:Do analyze for them in
order to generate optimized plan.

After confirming that ANALYZE has not been executed on the relevant tables or
columns, you can execute ANALYZE on the tables or columns reported in the

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 473

WARNING or logs to resolve the issue of slow query performance due to a lack of
statistics

Example 2: Setting cost_param to Optimize Query Performance

For details, see Case: Configuring cost_param for Better Query Performance.

Example 3: Optimization is Not Accurate When Intermediate Results Exist in
the Query Where JOIN Is Used for Multiple Tables

Symptom: Query the personnel who have checked in an Internet cafe within 15
minutes before and after the check-in of a specified person.

SELECT
C.WBM,
C.DZQH,
C.DZ,
B.ZJHM,
B.SWKSSJ,
B.XWSJ
FROM
b_zyk_wbswxx A,
b_zyk_wbswxx B,
b_zyk_wbcs C
WHERE
A.ZJHM = '522522******3824'
AND A.WBDM = B.WBDM
AND A.WBDM = C.WBDM
AND abs(to_date(A.SWKSSJ,'yyyymmddHH24MISS') - to_date(B.SWKSSJ,'yyyymmddHH24MISS')) <
INTERVAL '15 MINUTES'
ORDER BY
B.SWKSSJ,
B.ZJHM
limit 10 offset 0
;

Figure 13-6 shows the execution plan. This query takes about 12s.

Figure 13-6 Using an unlogged table (1)

Optimization analysis:

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 474

1. In the execution plan, index scan is used for node scanning, the Join Filter
calculation in the external NEST LOOP IN statement consumes most of the
query time, and the calculation uses the string addition and subtraction, and
unequal-value comparison.

2. Use an unlogged table to record the Internet access time of the specified
person. The start time and end time are processed during data insertion, and
this reduces subsequent addition and subtraction operations.
//Create a temporary unlogged table.
CREATE UNLOGGED TABLE temp_tsw
(
ZJHM NVARCHAR2(18),
WBDM NVARCHAR2(14),
SWKSSJ_START NVARCHAR2(14),
SWKSSJ_END NVARCHAR2(14),
WBM NVARCHAR2(70),
DZQH NVARCHAR2(6),
DZ NVARCHAR2(70),
IPDZ NVARCHAR2(39)
)
;
//Insert the Internet access record of the specified person, and process the start time and end time.
INSERT INTO
temp_tsw
SELECT
A.ZJHM,
A.WBDM,
to_char((to_date(A.SWKSSJ,'yyyymmddHH24MISS') - INTERVAL '15
MINUTES'),'yyyymmddHH24MISS'),
to_char((to_date(A.SWKSSJ,'yyyymmddHH24MISS') + INTERVAL '15
MINUTES'),'yyyymmddHH24MISS'),
B.WBM,B.DZQH,B.DZ,B.IPDZ
FROM
b_zyk_wbswxx A,
b_zyk_wbcs B
WHERE
A.ZJHM='522522******3824' AND A.WBDM = B.WBDM
;

//Query the personnel who have check in an Internet cafe before and after 15 minutes of the check-in
of the specified person. Convert their ID card number format to int8 in comparison.
SELECT
A.WBM,
A.DZQH,
A.DZ,
A.IPDZ,
B.ZJHM,
B.XM,
to_date(B.SWKSSJ,'yyyymmddHH24MISS') as SWKSSJ,
to_date(B.XWSJ,'yyyymmddHH24MISS') as XWSJ,
B.SWZDH
FROM temp_tsw A,
b_zyk_wbswxx B
WHERE
A.ZJHM <> B.ZJHM
AND A.WBDM = B.WBDM
AND (B.SWKSSJ)::int8 > (A.swkssj_start)::int8
AND (B.SWKSSJ)::int8 < (A.swkssj_end)::int8
order by
B.SWKSSJ,
B.ZJHM
limit 10 offset 0
;

The query takes about 7s. Figure 13-7 shows the execution plan.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 475

Figure 13-7 Using an unlogged table (2)

3. In the previous plan, Hash Join has been executed, and a Hash table has been
created for the large table b_zyk_wbswxx. The table contains large amounts
of data, so the creation takes long time.
temp_tsw contains only hundreds of records, and an equal-value connection
is created between temp_tsw and b_zyk_wbswxx using wbdm (the Internet
cafe code). Therefore, if JOIN is changed to NEST LOOP JOIN, index scan can
be used for node scanning, and the performance will be boosted.

4. Execute the following statement to change JOIN to NEST LOOP JOIN.
SET enable_hashjoin = off;

Figure 13-8 shows the execution plan. The query takes about 3s.

Figure 13-8 Using an unlogged table (3)

5. Save the query result set in the unlogged table for paging display.
If paging display needs to be achieved on the upper-layer application page,
change the offset value to determine the result set on the target page. In this
way, the previous query statement will be executed every time after a page
turning operation, which causes long response latency.
To resolve this problem, you are advised to use the unlogged table to save the
result set.
//Create an unlogged table to save the result set.
CREATE UNLOGGED TABLE temp_result
(
WBM NVARCHAR2(70),
DZQH NVARCHAR2(6),
DZ NVARCHAR2(70),
IPDZ NVARCHAR2(39),
ZJHM NVARCHAR2(18),
XM NVARCHAR2(30),
SWKSSJ date,
XWSJ date,

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 476

SWZDH NVARCHAR2(32)
);

//Insert the result set to the unlogged table. The insertion takes about 3s.
INSERT INTO
temp_result
SELECT
A.WBM,
A.DZQH,
A.DZ,
A.IPDZ,
B.ZJHM,
B.XM,
to_date(B.SWKSSJ,'yyyymmddHH24MISS') as SWKSSJ,
to_date(B.XWSJ,'yyyymmddHH24MISS') as XWSJ,
B.SWZDH
FROM temp_tsw A,
b_zyk_wbswxx B
WHERE
A.ZJHM <> B.ZJHM
AND A.WBDM = B.WBDM
AND (B.SWKSSJ)::int8 > (A.swkssj_start)::int8
AND (B.SWKSSJ)::int8 < (A.swkssj_end)::int8
;

//Perform paging query on the result set. The paging query takes about 10 ms.
SELECT
*
FROM
temp_result
ORDER BY
SWKSSJ,
ZJHM
LIMIT 10 OFFSET 0;

CA UTION

Collecting global statistics using ANALYZE improves query performance.
If a performance problem occurs, you can use plan hint to adjust the query
plan to the previous one. For details, see Hint-based Tuning.

13.4.7.5 Optimizing Operators

What Is Operator Optimization
A query statement needs to go through multiple operator procedures to generate
the final result. Sometimes, the overall query performance deteriorates due to
long execution time of certain operators, which are regarded as bottleneck
operators. In this case, you need to execute the EXPLAIN ANALYZE/
PERFORMANCE command to view the bottleneck operators, and then perform
optimization.

For example, in the following execution process, the execution time of the
Hashagg operator accounts for about 66% [(51016-13535)/56476 ≈ 66%] of the
total execution time. Therefore, the Hashagg operator is the bottleneck operator
for this query. Optimize this operator first.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 477

Operator Optimization Example
1. Scan the base table. For queries requiring large volume of data filtering, such as
point queries or queries that need range scanning, a full table scan using SeqScan
will take a long time. To facilitate scanning, you can create indexes on the
condition column and select IndexScan for index scanning.
 explain (analyze on, costs off) select * from store_sales where ss_sold_date_sk = 2450944;
 id | operation | A-time | A-rows | Peak Memory | A-width
----+--------------------------------+---------------------+--------+--------------+---------
 1 | -> Streaming (type: GATHER) | 3666.020 | 3360 | 195KB |
 2 | -> Seq Scan on store_sales | [3594.611,3594.611] | 3360 | [34KB, 34KB] |

 Predicate Information (identified by plan id)

 2 --Seq Scan on store_sales
 Filter: (ss_sold_date_sk = 2450944)
 Rows Removed by Filter: 4968936
 create index idx on store_sales_row(ss_sold_date_sk);
CREATE INDEX
 explain (analyze on, costs off) select * from store_sales_row where ss_sold_date_sk = 2450944;
 id | operation | A-time | A-rows | Peak Memory | A-width
----+--+-----------------+--------+--------------+----------
 1 | -> Streaming (type: GATHER) | 81.524 | 3360 | 195KB |
 2 | -> Index Scan using idx on store_sales_row | [13.352,13.352] | 3360 | [34KB, 34KB] |

In this example, the full table scan filters much data and returns 3360 records.
After an index has been created on the ss_sold_date_sk column, the scanning
efficiency is significantly boosted from 3.6s to 13 ms by using IndexScan.

2: If NestLoop is used for joining tables with a large number of rows, the join may
take a long time. In the following example, NestLoop takes 181s. If
enable_mergejoin=off is set to disable merge join and enable_nestloop=off is
set to disable NestLoop so that the optimizer selects hash join, the join takes more
than 200 ms.

3. Generally, query performance can be improved by selecting HashAgg. If Sort
and GroupAgg are used for a large result set, you need to set enable_sort to off.
HashAgg consumes less time than Sort and GroupAgg.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 478

13.4.7.6 Optimizing Data Skew
Data skew breaks the balance among nodes in the distributed MPP architecture. If
the amount of data stored or processed by a node is much greater than that by
other nodes, the following problems may occur:

● Storage skew severely limits the system capacity. The skew on a single node
hinders system storage utilization.

● Computing skew severely affects performance. The data to be processed on
the skew node is much more than that on other nodes, deteriorating overall
system performance.

● Data skew severely affects the scalability of the MPP architecture. During
storage or computing, data with the same values is often placed on the same
node. Therefore, even if you add nodes after a data skew occurs, the skew
data (data with the same values) is still placed on the node and affects the
system capacity or performance bottleneck.

GaussDB(DWS) provides a complete solution for data skew, including storage and
computing skew.

Data Skew in the Storage Layer
In the GaussDB(DWS) database, data is distributed and stored on each DN. You
can improve the query efficiency by using distributed execution. However, if data
skew occurs, bottlenecks exist on some DNs during distribution execution,
affecting the query performance. This is because the distribution column is not
properly selected. This can be solved by adjusting the distribution column.

For example:

explain performance select count(*) from inventory;
5 --CStore Scan on lmz.inventory
 dn_6001_6002 (actual time=0.444..83.127 rows=42000000 loops=1)
 dn_6003_6004 (actual time=0.512..63.554 rows=27000000 loops=1)
 dn_6005_6006 (actual time=0.722..99.033 rows=45000000 loops=1)
 dn_6007_6008 (actual time=0.529..100.379 rows=51000000 loops=1)
 dn_6009_6010 (actual time=0.382..71.341 rows=36000000 loops=1)
 dn_6011_6012 (actual time=0.547..100.274 rows=51000000 loops=1)
 dn_6013_6014 (actual time=0.596..118.289 rows=60000000 loops=1)
 dn_6015_6016 (actual time=1.057..132.346 rows=63000000 loops=1)
 dn_6017_6018 (actual time=0.940..110.310 rows=54000000 loops=1)
 dn_6019_6020 (actual time=0.231..41.198 rows=21000000 loops=1)
 dn_6021_6022 (actual time=0.927..114.538 rows=54000000 loops=1)
 dn_6023_6024 (actual time=0.637..118.385 rows=60000000 loops=1)
 dn_6025_6026 (actual time=0.288..32.240 rows=15000000 loops=1)
 dn_6027_6028 (actual time=0.566..118.096 rows=60000000 loops=1)
 dn_6029_6030 (actual time=0.423..82.913 rows=42000000 loops=1)
 dn_6031_6032 (actual time=0.395..78.103 rows=39000000 loops=1)
 dn_6033_6034 (actual time=0.376..51.052 rows=24000000 loops=1)
 dn_6035_6036 (actual time=0.569..79.463 rows=39000000 loops=1)

In the performance information, you can view the number of scan rows of each
DN in the inventory table. The number of rows of each DN differs a lot, the
biggest is 63000000 and the smallest value is 15000000. This value difference on
the performance of data scan is acceptable, but if the join operator exists in the
upper-layer, the impact on the performance cannot be ignored.

Generally, the data table is hash distributed on each DN; therefore, it is important
to choose a proper distribution column. Run table_skewness() to view data skew
of each DN in the inventory table. The query result is as follows:

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 479

select table_skewness('inventory');
 table_skewness
--
 ("dn_6015_6016 ",63000000,8.046%)
 ("dn_6013_6014 ",60000000,7.663%)
 ("dn_6023_6024 ",60000000,7.663%)
 ("dn_6027_6028 ",60000000,7.663%)
 ("dn_6017_6018 ",54000000,6.897%)
 ("dn_6021_6022 ",54000000,6.897%)
 ("dn_6007_6008 ",51000000,6.513%)
 ("dn_6011_6012 ",51000000,6.513%)
 ("dn_6005_6006 ",45000000,5.747%)
 ("dn_6001_6002 ",42000000,5.364%)
 ("dn_6029_6030 ",42000000,5.364%)
 ("dn_6031_6032 ",39000000,4.981%)
 ("dn_6035_6036 ",39000000,4.981%)
 ("dn_6009_6010 ",36000000,4.598%)
 ("dn_6003_6004 ",27000000,3.448%)
 ("dn_6033_6034 ",24000000,3.065%)
 ("dn_6019_6020 ",21000000,2.682%)
 ("dn_6025_6026 ",15000000,1.916%)
(18 rows)

The table definition indicates that the table uses the inv_date_sk column as the
distribution column, which causes a data skew. Based on the data distribution of
each column, change the distribution column to inv_item_sk. The skew status is
as follows:

select table_skewness('inventory');
 table_skewness
--
 ("dn_6001_6002 ",43934200,5.611%)
 ("dn_6007_6008 ",43829420,5.598%)
 ("dn_6003_6004 ",43781960,5.592%)
 ("dn_6031_6032 ",43773880,5.591%)
 ("dn_6033_6034 ",43763280,5.589%)
 ("dn_6011_6012 ",43683600,5.579%)
 ("dn_6013_6014 ",43551660,5.562%)
 ("dn_6027_6028 ",43546340,5.561%)
 ("dn_6009_6010 ",43508700,5.557%)
 ("dn_6023_6024 ",43484540,5.554%)
 ("dn_6019_6020 ",43466800,5.551%)
 ("dn_6021_6022 ",43458500,5.550%)
 ("dn_6017_6018 ",43448040,5.549%)
 ("dn_6015_6016 ",43247700,5.523%)
 ("dn_6005_6006 ",43200240,5.517%)
 ("dn_6029_6030 ",43181360,5.515%)
 ("dn_6025_6026 ",43179700,5.515%)
 ("dn_6035_6036 ",42960080,5.487%)
(18 rows)

Data skew is solved.

In addition to the table_skewness() view, you can use the table_distribution
function and the PGXC_GET_TABLE_SKEWNESS view to efficiently query the data
skew status of each table.

Data Skew in the Computing Layer

Even if data is balanced across nodes after you change the distribution key of a
table, data skew may still occur during a query. If data skew occurs in the result
set of an operator on a DN, skew will also occur during the computing that
involves the operator. Generally, this is caused by data redistribution during the
execution.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 480

During a query, JOIN keys and GROUP BY keys are not used as distribution
columns. Data is redistributed among DNs based on the hash values of data on
the keys. The redistribution is implemented using the Redistribute operator in an
execution plan. Data skew in redistribution columns can lead to data skew during
system operation. After the redistribution, some nodes will have much more data,
process more data, and will have much lower performance than others.

In the following example, the s and t tables are joined, and s.x and t.x columns in
the join condition are not their distribution keys. Table data is redistributed using
the REDISTRIBUTE operator. Data skew occurs in the s.x column and not in the t.x
column. The result set of the Streaming operator (id being 6) on datanode2 has
data three times that of other DNs and causes a skew.

select * from skew s,test t where s.x = t.x order by s.a limit 1;
 id | operation | A-time
----+---+-----------------------
 1 | -> Limit | 52622.382
 2 | -> Streaming (type: GATHER) | 52622.374
 3 | -> Limit | [30138.494,52598.994]
 4 | -> Sort | [30138.486,52598.986]
 5 | -> Hash Join (6,8) | [30127.013,41483.275]
 6 | -> Streaming(type: REDISTRIBUTE) | [11365.110,22024.845]
 7 | -> Seq Scan on public.skew s | [2019.168,2175.369]
 8 | -> Hash | [2460.108,2499.850]
 9 | -> Streaming(type: REDISTRIBUTE) | [1056.214,1121.887]
 10 | -> Seq Scan on public.test t | [310.848,325.569]

6 --Streaming(type: REDISTRIBUTE)
 datanode1 (rows=5050368)
 datanode2 (rows=15276032)
 datanode3 (rows=5174272)
 datanode4 (rows=5219328)

Computing skew is more difficult to detect than storage skew. To solve computing
skew, GaussDB provides the Runtime Load Balance Technology (RLBT) solution,
controlled by the skew_option parameter. The RLBT solution addresses how to
detect and solve data skew.

1. Detect data skew.
The solution first checks whether skew data exists in redistribution columns
used for computing. RLBT can detect data skew based on statistics, specified
hints, or rules.
– Detection based on statistics

Run the ANALYZE statement to collect statistics on tables. The optimizer
will automatically identify skew data on redistribution keys based on the
statistics and generate optimization plans for queries having potential
skew. When the redistribution key has multiple columns, statistics
information can be used for identification only when all columns belong
to the same base table.
The statistics information can only provide the skew of the base table. If
a column in the base table is skewed, or other columns have filtering
conditions, or after the join of other tables, we cannot determine whether
the skewed data still exists on the skewed column. If skew_option is
normal, it indicates that the skew data still exists, and the base tables
will be optimized to solve skew. If skew_option is lazy, it indicates that
no more skew data exists and the optimization will stop.

– Detection based on specified hints

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 481

The intermediate results of complex queries are difficult to estimate
based on statistics. In this case, you can specify hints to provide the skew
information, based on which the optimizer optimizes queries. For details
about the syntax of hints, see Skew Hints.

– Detection based on rules
In a business intelligence (BI) system, a large number of SQL statements
having outer joins (including left joins, right joins, and full joins) are
generated, and many NULL values will be generated in empty columns
that have no match for outer joins. If JOIN or GROUP BY operations are
performed on the columns, data skew will occur. RLBT can automatically
identify this scenario and generate an optimization plan for NULL value
skew.

2. Solve computing skew.
Join and Aggregate operators are optimized to solve skew.
– Join optimization
Skew and non-skew data is separately processed. Details are as follows:

a. When redistribution is required on both sides of a join:
Use PART_REDISTRIBUTE_PART_ROUNDROBIN on the side with skew.
Specifically, perform round-robin on skew data and redistribution on non-
skew data.
Use PART_REDISTRIBUTE_PART_BROADCAST on the side with no skew.
Specifically, perform broadcast on skew data and redistribution on non-
skew data.

b. When redistribution is required on only one side of a join:
Use PART_REDISTRIBUTE_PART_ROUNDROBIN on the side where
redistribution is required.
Use PART_LOCAL_PART_BROADCAST on the side where redistribution is
not required. Specifically, perform broadcast on skew data and retain
other data locally.

c. When a table has NULL values padded:
Use PART_REDISTRIBUTE_PART_LOCAL on the table. Specifically, retain
the NULL values locally and perform redistribution on other data.

In the example query, the s.x column contains skewed data and its value is 0.
The optimizer identifies the skew data in statistics and generates the
following optimization plan:
 id | operation | A-time
----+---+-----------------------
 1 | -> Limit | 23642.049
 2 | -> Streaming (type: GATHER) | 23642.041
 3 | -> Limit | [23310.768,23618.021]
 4 | -> Sort | [23310.761,23618.012]
 5 | -> Hash Join (6,8) | [20898.341,21115.272]
 6 | -> Streaming(type: PART REDISTRIBUTE PART ROUNDROBIN) |
[7125.834,7472.111]
 7 | -> Seq Scan on public.skew s | [1837.079,1911.025]
 8 | -> Hash | [2612.484,2640.572]
 9 | -> Streaming(type: PART REDISTRIBUTE PART BROADCAST) | [1193.548,1297.894]
 10 | -> Seq Scan on public.test t | [314.343,328.707]

 5 --Vector Hash Join (6,8)
 Hash Cond: s.x = t.x
 Skew Join Optimized by Statistic

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 482

 6 --Streaming(type: PART REDISTRIBUTE PART ROUNDROBIN)
 datanode1 (rows=7635968)
 datanode2 (rows=7517184)
 datanode3 (rows=7748608)
 datanode4 (rows=7818240)

In the preceding execution plan, Skew Join Optimized by Statistic indicates
that this is an optimized plan used for handling data skew. The Statistic
keyword indicates that the plan optimization is based on statistics; Hint
indicates that the optimization is based on hints; Rule indicates that the
optimization is based on rules. In this plan, skew and non-skew data is
separately processed. Non-skew data in the s table is redistributed based on
its hash values, and skew data (whose value is 0) is evenly distributed on all
nodes in round-robin mode. In this way, data skew is solved.
To ensure result correctness, the t table also needs to be processed. In the t
table, the data whose value is 0 (skew value in the s.x table) is broadcast and
other data is redistributed based on its hash values.
In this way, data skew in JOIN operations is solved. The above result shows
that the output of the Streaming operator (id being 6) is balanced and the
end-to-end performance of the query is doubled.
If the stream operator type in the execution plan is HYBRID, the stream mode
varies depending on the skew data. The following plan is an example:
EXPLAIN (nodes OFF, costs OFF) SELECT COUNT(*) FROM skew_scol s, skew_scol1 s1 WHERE s.b =
s1.c;
QUERY PLAN

id | operation

+---

1 | -> Aggregate
2 | -> Streaming (type: GATHER)
3 | -> Aggregate
4 | -> Hash Join (5,7)
5 | -> Streaming(type: HYBRID)
6 | -> Seq Scan on skew_scol s
7 | -> Hash
8 | -> Streaming(type: HYBRID)
9 | -> Seq Scan on skew_scol1 s1

Predicate Information (identified by plan id)

4 --Hash Join (5,7)
Hash Cond: (s.b = s1.c)
Skew Join Optimized by Statistic
5 --Streaming(type: HYBRID)
Skew Filter: (b = 1)
Skew Filter: (b = 0)
8 --Streaming(type: HYBRID)
Skew Filter: (c = 0)
Skew Filter: (c = 1)

Data 1 has skew in the skew_scol table. Perform ROUNDROBIN on skew
data and REDISTRIBUTE on non-skew data.
Data 0 is the side with no skew in the skew_scol table. Perform BROADCAST
on skew data and REDISTRIBUTE on non-skew data.
As shown in the preceding figure, the two stream types are PART
REDISTRIBUTE PART ROUNDROBIN and PART REDISTRIBUTE PART
BROADCAST. In this example, the stream type is HYBRID.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 483

– Aggregate optimization

For aggregation, data on each DN is deduplicated based on the GROUP BY
key and then redistributed. After the deduplication on DNs, the global
occurrences of each value will not be greater than the number of DNs.
Therefore, no serious data skew will occur. Take the following query as an
example:
select c1, c2, c3, c4, c5, c6, c7, c8, c9, count(*) from t group by c1, c2, c3, c4, c5, c6, c7, c8, c9 limit 10;

The command output is as follows:
 id | operation | A-time | A-rows
----+--+------------------------+----------
 1 | -> Streaming (type: GATHER) | 130621.783 | 12
 2 | -> GroupAggregate | [85499.711,130432.341] | 12
 3 | -> Sort | [85499.509,103145.632] | 36679237
 4 | -> Streaming(type: REDISTRIBUTE) | [25668.897,85499.050] | 36679237
 5 | -> Seq Scan on public.t | [9835.069,10416.388] | 36679237

 4 --Streaming(type: REDISTRIBUTE)
 datanode1 (rows=36678837)
 datanode2 (rows=100)
 datanode3 (rows=100)
 datanode4 (rows=200)

A large amount of skew data exists. As a result, after data is redistributed
based on its GROUP BY key, the data volume of datanode1 is hundreds of
thousands of times that of others. After optimization, a GROUP BY operation
is performed on the DN to deduplicate data. After redistribution, no data
skew occurs.
 id | operation | A-time
----+--+-----------------------
 1 | -> Streaming (type: GATHER) | 10961.337
 2 | -> HashAggregate | [10953.014,10953.705]
 3 | -> HashAggregate | [10952.957,10953.632]
 4 | -> Streaming(type: REDISTRIBUTE) | [10952.859,10953.502]
 5 | -> HashAggregate | [10084.280,10947.139]
 6 | -> Seq Scan on public.t | [4757.031,5201.168]

 Predicate Information (identified by plan id)

 3 --HashAggregate
 Skew Agg Optimized by Statistic

 4 --Streaming(type: REDISTRIBUTE)
 datanode1 (rows=17)
 datanode2 (rows=8)
 datanode3 (rows=8)
 datanode4 (rows=14)

Applicable scope

– Join operator

▪ nest loop, merge join, and hash join can be optimized.

▪ If skew data is on the left to the join, inner join, left join, semi join,
and anti join are supported. If skew data is on the right to the join,
inner join, right join, right semi join, and right anti join are
supported.

▪ For an optimization plan generated based on statistics, the optimizer
checks whether it is optimal by estimating its cost. Optimization
plans based on hints or rules are forcibly generated.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 484

– Aggregate operator

▪ array_agg, string_agg, and subplan in agg qual cannot be
optimized.

▪ A plan generated based on statistics is affected by its cost, the
plan_mode_seed parameter, and the best_agg_plan parameter. A
plan generated based on hints or rules are not affected by them.

13.4.7.7 Proactive Preheating and Tuning of Disk Cache

This function is supported only in 9.1.0.200 or later.

Overview

In the storage-compute decoupling architecture, user data is stored in OBS to
reduce storage costs. Each query generates network I/Os to retrieve data from
OBS. To improve query speed, reduce storage costs, and minimize performance
loss, the architecture provides disk cache capability. Pre-queried data is cached
locally, enhancing performance.

The LRU2Q algorithm manages the disk cache with three queues: A1in, A1out,
and Am. Data first enters A1in. If A1in is full (adjustable via a GUC parameter,
default is 0.25 times the total queue size), data moves to A1out. Data enters Am
only when hit in A1out. Am queue holds the hottest data.

For common queries, LRU2Q is sufficient. However, frequent joins of large and
small tables can degrade performance if small tables are frequently evicted from
A1in to A1out.

Tuning Syntax

A new tuning policy allows directly adding small table data to Am, ensuring it
remains hot and reducing network I/Os during joins. The syntax formats are as
follows:

1. Perform the actual query and add data directly to Am.
explain warmup hot select ...;

2. Query data in the sequence A1in > A1out > Am.
explain warmup select ...;

3. No actual query operation is performed, and the explain logic remains
unchanged.
explain select ...;

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 485

13.4.7.8 SQL Statement Rewriting Rules
Based on the database SQL execution mechanism and a large number of practices,
summarize finds that: using rules of a certain SQL statement, on the basis of the
so that the correct test result, which can improve the SQL execution efficiency. You
can comply with these rules to greatly improve service query efficiency.
● Replacing UNION with UNION ALL

UNION eliminates duplicate rows while merging two result sets but UNION
ALL merges the two result sets without deduplication. Therefore, replace
UNION with UNION ALL if you are sure that the two result sets do not
contain duplicate rows based on the service logic.

● Adding NOT NULL to the join column
If there are many NULL values in the JOIN columns, you can add the filter
criterion IS NOT NULL to filter data in advance to improve the JOIN
efficiency.

● Converting NOT IN to NOT EXISTS
nestloop anti join must be used to implement NOT IN, and Hash anti join is
required for NOT EXISTS. If no NULL value exists in the JOIN column, NOT
IN is equivalent to NOT EXISTS. Therefore, if you are sure that no NULL value
exists, you can convert NOT IN to NOT EXISTS to generate hash joins and to
improve the query performance.
As shown in the following figure, the t2.d2 column does not contain null
values (it is set to NOT NULL) and NOT EXISTS is used for the query.
SELECT * FROM t1 WHERE NOT EXISTS (SELECT * FROM t2 WHERE t1.c1=t2.d2);

The generated execution plan is as follows:

Figure 13-9 NOT EXISTS execution plan

● Use hashagg.
If a plan involving groupAgg and SORT operations generated by the GROUP
BY statement is poor in performance, you can set work_mem to a larger
value to generate a hashagg plan, which does not require sorting and
improves the performance.

● Replace functions with CASE statements
The GaussDB(DWS) performance greatly deteriorates if a large number of
functions are called. In this case, you can modify the pushdown functions to
CASE statements.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 486

● Do not use functions or expressions for indexes.
Using functions or expressions for indexes stops indexing. Instead, it enables
scanning on the full table.

● Do not use != or <> operators, NULL, OR, or implicit parameter conversion in
WHERE clauses.

● Split complex SQL statements.
You can split an SQL statement into several ones and save the execution
result to a temporary table if the SQL statement is too complex to be tuned
using the solutions above, including but not limited to the following scenarios:
– The same subquery is involved in multiple SQL statements of a task and

the subquery contains large amounts of data.
– Incorrect Plan cost causes a small hash bucket of subquery. For example,

the actual number of rows is 10 million, but only 1000 rows are in hash
bucket.

– Functions such as substr and to_number cause incorrect measures for
subqueries containing large amounts of data.

– BROADCAST subqueries are performed on large tables in multi-DN
environment.

13.4.8 Configuring Optimizer Parameters
This section introduces key CN parameters that affect optimization of SQL
statements in GaussDB(DWS). For details about the parameter configuration
method, see Configuring GUC Parameters.

Table 13-17 CN parameters

Parameter/
Reference Value

Description

enable_nestloop=o
n

Specifies how the optimizer uses Nest Loop Join. If this
parameter is set to on, the optimizer preferentially uses
Nest Loop Join. If it is set to off, the optimizer
preferentially uses other methods, if any.
NOTE

To temporarily change the value of this parameter in the current
database connection (that is, the current session), run the
following SQL statement:
SET enable_nestloop to off;

By default, this parameter is set to on. Change the value
as required. Generally, nested loop join has the poorest
performance among the three JOIN methods (nested loop
join, merge join, and hash join). You are advised to set this
parameter to off.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 487

Parameter/
Reference Value

Description

enable_bitmapscan
=on

Specifies whether the optimizer uses bitmap scanning. If
the value is on, bitmap scanning is used. If the value is
off, it is not used.
NOTE

If you only want to temporarily change the value of this
parameter during the current database connection (that is, the
current session), run the following SQL statements:
SET enable_bitmapscan to off;

The bitmap scanning applies only in the query condition
where a > 1 and b > 1 and indexes are created on
columns a and b. During performance tuning, if the query
performance is poor and bitmapscan operators are in the
execution plan, set this parameter to off and check
whether the performance is improved.

enable_fast_query_
shipping=on

Specifies whether the optimizer uses a distribution
framework. If the value is on, the execution plan is
generated on both CNs and DNs. If the value is off, the
distribution framework is used, that is, the execution plan
is generated on the CNs and then sent to DNs for
execution.
NOTE

To temporarily change the value of this parameter in the current
database connection (that is, the current session), run the
following SQL statement:
SET enable_fast_query_shipping to off;

enable_hashagg=o
n

Specifies whether to enable the optimizer's use of Hash-
aggregation plan types.

enable_hashjoin=o
n

Specifies whether to enable the optimizer's use of Hash-
join plan types.

enable_mergejoin=
on

Specifies whether to enable the optimizer's use of Hash-
merge plan types.

enable_indexscan=
on

Specifies whether to enable the optimizer's use of index-
scan plan types.

enable_indexonlysc
an=on

Specifies whether to enable the optimizer's use of index-
only-scan plan types.

enable_seqscan=on Specifies whether the optimizer uses bitmap scanning. It is
impossible to suppress sequential scans entirely, but
setting this variable to off allows the optimizer to
preferentially choose other methods if available.

enable_sort=on Specifies the optimizer sorts. It is impossible to fully
suppress explicit sorts, but setting this variable to off
allows the optimizer to preferentially choose other
methods if available.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 488

Parameter/
Reference Value

Description

enable_broadcast=
on

Specifies whether enable the optimizer's use of data
broadcast. In data broadcast, a large amount of data is
transferred on the network. When the number of
transmission nodes (stream) is large and the estimation is
inaccurate, set this parameter to off and check whether
the performance is improved.

enable_redistribute
=on
This parameter is
supported only by
clusters of version
8.2.1.300 or later.

Controls the query optimizer's use of data transmission in
local redistribute and split redistribute redistribution
modes. This parameter corresponds to enable_broadcast.
The optimizer may overestimate the cost of local
broadcast and split broadcast. As a result, the optimizer
selects the local redistribute or split redistribute
redistribution plan. This may cause performance
deterioration. Therefore, when the actual data volume of
the network transmission node (stream) is small, you can
set this parameter to off so that the optimizer
preferentially selects the broadcast mode. Then you can
check whether the performance is improved.

rewrite_rule Specifies whether the optimizer enables a specific
rewriting rule.

13.4.9 Hint-based Tuning

13.4.9.1 Plan Hint Optimization

In plan hints, you can specify a join order, join, stream, and scan operations, the
number of rows in a result, and redistribution skew information to tune an
execution plan, improving query performance.

Function

Plan hints can be specified using the keywords such as SELECT, INSERT, UPDATE,
MERGE, and DELETE, in the following format:

/*+ <plan hint> */

You can specify multiple hints for a query plan and separate them by spaces. A
hint specified for a query plan does not apply to its subquery plans. To specify a
hint for a subquery, add the hint following the keyword of this subquery.

For example:

select /*+ <plan_hint1> <plan_hint2> */ * from t1, (select /*+ <plan_hint3> */ from t2) where 1=1;

In the preceding command, <plan_hint1> and <plan_hint2> are the hints of a
query, and <plan_hint3> is the hint of its subquery.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 489

NO TICE

If a hint is specified in the CREATE VIEW statement, the hint will be applied each
time this view is used.
If the random plan function is enabled (plan_mode_seed is set to a value other
than 0), the specified hint will not be used.

Supported Hints
Currently, the following hints are supported:

● Join order hints (leading)
● Join operation hints, excluding the semi join, anti join, and unique plan hints
● Rows hints
● Stream operation hints
● Scan operation hints, supporting only tablescan, indexscan, and

indexonlyscan
● Sublink name hints
● Skew hints, supporting only the skew in the redistribution involving Join or

HashAgg
● Hint used for Agg distribution columns Only clusters of 8.1.3.100 and later

versions support this function.
● Hint that disables subquery pull-up. Only clusters of 8.2.0 and later versions

support this function.
● Configuration parameter hints. For details about supported parameters, see

Configuration Parameter Hints.

Precautions
● Sort, Setop, and Subplan hints are not supported.
● Hints do not support SMP or Node Groups.
● Hints cannot be used for the target table of the INSERT statement.

Examples
The following is the original plan and is used for comparing with the optimized
ones:

explain
select i_product_name product_name
,i_item_sk item_sk
,s_store_name store_name
,s_zip store_zip
,ad2.ca_street_number c_street_number
,ad2.ca_street_name c_street_name
,ad2.ca_city c_city
,ad2.ca_zip c_zip
,count(*) cnt
,sum(ss_wholesale_cost) s1
,sum(ss_list_price) s2
,sum(ss_coupon_amt) s3
FROM store_sales
,store_returns

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 490

,store
,customer
,promotion
,customer_address ad2
,item
WHERE ss_store_sk = s_store_sk AND
ss_customer_sk = c_customer_sk AND
ss_item_sk = i_item_sk and
ss_item_sk = sr_item_sk and
ss_ticket_number = sr_ticket_number and
c_current_addr_sk = ad2.ca_address_sk and
ss_promo_sk = p_promo_sk and
i_color in ('maroon','burnished','dim','steel','navajo','chocolate') and
i_current_price between 35 and 35 + 10 and
i_current_price between 35 + 1 and 35 + 15
group by i_product_name
,i_item_sk
,s_store_name
,s_zip
,ad2.ca_street_number
,ad2.ca_street_name
,ad2.ca_city
,ad2.ca_zip
;

13.4.9.2 Join Order Hints

Function

Theses hints specify the join order and outer/inner tables.

Syntax
● Single-layer parentheses (), specifying only the join order. The order of

internal and foreign tables is not specified.
leading(join_table_list)
leading(@block_name join_table_list)

● Double parentheses (()), specifying the join order and outer/inner tables. The
outer/inner tables are specified by the outermost parentheses.

leading((join_table_list))
leading(@block_name (join_table_list))

● Single-layer square brackets [], specifying the join order of [] and the
sequence of internal and foreign tables.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 491

leading[join_table_list]
leading[@block_name join_table_list]

● Combination of single-layer parentheses () and single-layer square brackets
[], specifying the join order and the sequence of internal and foreign tables at
any layer. The parentheses () specify only the join order, but not the sequence
of internal and foreign tables. The square brackets [] specify both the join
order and the sequence of internal and foreign tables.

leading(join_table_list1 [join_table_list2])
leading[join_table_list1 [join_table_list2]]
leading[join_table_list1 (join_table_list2)]
leading(@block_name join_table_list1 [join_table_list2])
leading[@block_name join_table_list1 [join_table_list2]]
leading[@block_name join_table_list1 (join_table_list2)]

NO TICE

Single-layer square brackets [] can be used together with single-layer parentheses
() to specify the sequence of internal and foreign tables of any layer. Single-layer
[] and double-layer () cannot be used together.

Parameter Description
● join_table_list

Specifies the tables to be joined. The values can be table names or table
aliases. If a subquery is pulled up, the value can also be the subquery alias.
Separate the values with spaces. You can add parentheses to specify the join
priorities of tables.

To prevent semantic errors, tables in the list must meet the following
requirements:

– The tables must exist in the query or its subquery to be pulled up.

– The table names must be unique in the query or subquery to be pulled
up. If they are not, their aliases must be unique.

– A table appears only once in the list.

– An alias (if any) is used to represent a table.

NO TE

● The syntax format of the table is as follows:

[schema.]table[@block_name]

The table name can contain the schema name or block name before the subquery
statement block is promoted. If the subquery statement block is optimized and
rewritten by the optimizer, the value of block_name is different from that of
block_name in leading.

● If a table has an alias, the alias is preferentially used to represent the table.

● block_name

Specifies the block name of the statement block. It indicates that the hint
takes effect in the subquery statement block corresponding to the block
name.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 492

NO TICE

● By default, a block name is generated for a statement.
● CN lightweight statements do not generate block names.
● Block names can be generated for the CREATE TABLE AS SELECT, SELECT

INTO, SELECT, INSERT, UPDATE, DELETE, and MERGE statements.
● The naming rule of a block name is as follows:

● A block name is automatically generated for the SELECT, INSERT,
UPDATE, DELETE, and MERGE statements. The naming format of a
block name for these statements is seln, insn, updn, deln, and mer
$n, respectively, where n starts from 1. The number of statements of
different types is not accumulated, but the number of statements of
the same type is accumulated.
Example:
INSERT INTO t SELECT * FROM t1 WHERE a1 IN (select * from t2);

--------sel$2-------
-----------------------sel$1----------------------
--------------------------------ins$1---------------------------

● Recursively assigns a block name to each statement block before the
optimizer is used.
First, assign block names to the existing statements block based on
the statement type, then traverse the statement blocks in the
following sequence, and assign block name to the statement blocks in
the statement blocks:
1. Traverse the target column.
2. Traverse the target column in the source table of the MERGE

statement.
3. Traverse actions (update or insert) in the MERGE statement.
4. Traverse the returning clause.
5. Traverse the Join and Where conditions in From. (The join condition

takes precedence over the Where condition.)
6. For a set operation, traverse each branch of the set (UNION,

INTERSECT, and EXCEPT).
7. Traverse the HAVING clause.
8. Traverse the LIMIT OFFSET clause.
9. Traverse the LIMIT COUNT clause.
10.Traverse CTE
11.Traverse the table after From.
12.Traverse the UPSERT clause.

● In the rewriting phase of the optimizer, rewriting optimization is
performed due to FUL LJOIN, cte inline, materialized view rewriting,
INLIST2JOIN, OR conversion, multi count(distinct), Magic Set, lazyagg,
and subquery/sublink promotion, a new subquery is constructed. In
this case, the recursive processing during block name assignment is
also applied to the newly constructed subquery. The number of block
names is accumulated.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 493

● In the optimizer rewriting phase, when a subquery is promoted, the
table in the inner subquery is promoted to the outer query, and the
inner subquery is eliminated. In this case, the promoted table may
have the same name as the table in the outer queries. Therefore, the
block name to which the promoted table belongs is recorded in the
table to distinguish two tables with the same name but are from
different query blocks.

For example:

leading(t1 t2 t3 t4 t5): t1, t2, t3, t4, and t5 are joined. The join order and outer/
inner tables are not specified.

leading(t1 t2 t3 t4 t5): t1, t2, t3, t4, and t5 are joined in sequence. The table on
the right is used as the inner table in each join.

leading(t1 (t2 t3 t4) t5): First, t2, t3, and t4 are joined and the outer/inner
tables are not specified. Then, the result is joined with t1 and t5, and the outer/
inner tables are not specified.

leading(t1 (t2 t3 t4) t5): First, t2, t3, and t4 are joined and the outer/inner
tables are not specified. Then, the result is joined with t1, and (t2 t3 t4) is used as
the inner table. Finally, the result is joined with t5, and t5 is used as the inner
table.

leading((t1 (t2 t3) t4 t5)) leading((t3 t2)): First, t2 and t3 are joined and t2 is
used as the inner table. Then, the result is joined with t1, and (t2 t3) is used as
the inner table. Finally, the result is joined with t4 and then t5, and the table on
the right in each join is used as the inner table.

leading[t1 [t2 t3]] is equivalent to leading((t1 (t2 t3))) leading((t2 t3)).

leading(t1 [t2 t3]) is equivalent to leading(t1 t2 t3) leading((t2 t3)).

leading[@sel$1 t1@sel$1 [t2@sel$2 t3@sel$2]] indicates that t2 and t3 are
located in the subquery. After the subquery is promoted, t2 and t3 are joined, and
then the join table is joined to t1. Where t2 is a foreign table, t3 is an internal
table, t1 is a foreign table. The join table of t2 and t3 is an internal table.

Examples
Hint the query plan in Examples as follows:

explain
select /*+ leading((((((store_sales store) promotion) item) customer) ad2) store_returns) leading((store
store_sales))*/ i_product_name product_name ...

First, store_sales and store are joined and store_sales is the inner table. Then,
The result is joined with promotion, item, customer, ad2, and store_returns in
sequence. The optimized plan is as follows:

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 494

For details about the warning at the top of the plan, see Hint Errors, Conflicts,
and Other Warnings.

13.4.9.3 Join Operation Hints

Function

Specifies the join method. It can be nested loop join, hash join, or merge join.

Syntax
[no] nestloop|hashjoin|mergejoin([@block_name] table_list)

Parameter Description
● no indicates that the specified hint will not be used for a join.
● block_name indicates the block name of the statement block. For details, see

block_name.
● table_list specifies the tables to be joined. The values are the same as those of

join_table_list but contain no parentheses.

For example:

no nestloop(t1 t2 t3): nestloop is not used for joining t1, t2, and t3. The three
tables may be joined in either of the two ways: Join t2 and t3, and then t1; join t1
and t2, and then t3. This hint takes effect only for the last join. If necessary, you
can hint other joins. For example, you can add no nestloop(t2 t3) to join t2 and
t3 first and to forbid the use of nestloop.

Examples

Hint the query plan in Examples as follows:

explain
select /*+ nestloop(store_sales store_returns item) */ i_product_name product_name ...

nestloop is used for the last join between store_sales, store_returns, and item.
The optimized plan is as follows:

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 495

13.4.9.4 Rows Hints

Function

These hints specify the number of rows in an intermediate result set. Both
absolute values and relative values are supported.

Syntax
rows([@block_name] table_list #|+|-|* const)

Parameter Description
● block_name indicates the block name of the statement block. For details, see

block_name.

● #,+,-, and * are operators used for hinting the estimation. # indicates that the
original estimation is used without any calculation. +,-, and * indicate that the
original estimation is calculated using these operators. The minimum
calculation result is 1. table_list indicates the tables to be joined. The values
are the same as those of table_list in Join Operation Hints.

● const can be any non-negative number and supports scientific notation.

For example:

rows(t1 #5): The result set of t1 is five rows.

rows(t1 t2 t3 *1000): Multiply the result set of joined t1, t2, and t3 by 1000.

Suggestion
● The hint using * for two tables is recommended, because this hint will take

effect for a join as long as the two tables appear on both sides of this join.
For example, if the hint is rows(t1 t2 * 3), the join result of (t1 t3 t4) and (t2
t5 t6) will be multiplied by 3 because t1 and t2 appear on both sides of the
join.

● rows hints can be specified for the result sets of a single table, multiple
tables, function tables, and subquery scan tables.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 496

Examples
Hint the query plan in Examples as follows:

explain
select /*+ rows(store_sales store_returns *50) */ i_product_name product_name ...

Multiply the result set of joined store_sales and store_returns by 50. The
optimized plan is as follows:

The estimation value after the hint in row 11 is 360, and the original value is
rounded off to 7.

13.4.9.5 Stream Operation Hints

Function
Specifies the stream method, which can be broadcast, redistribute, or specifying
the distribution key for Agg redistribution.

NO TE

Specifies the hint for the distribution column during the Agg process. This parameter is
supported only by clusters of version 8.1.3.100 or later.

Syntax
[no] broadcast | redistribute([@block_name] table_list) | redistribute ([@block_name] (*) (columns))

Parameter Description
● no indicates that the hinted stream method is not used. When the hint is

specified for the distribution columns in the Agg redistribution, no is invalid.
● block_name indicates the block name of the statement block. For details, see

block_name.
● table_list specifies the tables to be joined. For details, see Parameter

Description.
● When hints are specified for distribution columns, the asterisk (*) is fixed and

the table name cannot be specified.
● columns specifies one or more columns in the GROUP BY clause. When there

are no GROUP BY clauses, it can specify the columns in the DISTINCT clause.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 497

NO TE

● The specified distribution column must be specified using the column sequence
number or column name in group by or distinct. The columns in count(distinct)
can only be specified using column names.

● For a multi-layer query, you can specify the distribution column hint at each layer.
The hint takes effect only at the corresponding layer.

● The column specified in count(distinct) takes effect only for two-level hashagg
plans. Otherwise, the specified distribution column is invalid.

● If the optimizer finds that redistribution is not required after estimation, the
specified distribution column is invalid.

Tips
● Generally, the optimizer selects a group of non-skew distribution keys for data

redistribution based on statistics. If the default distribution keys have data
skew, you can manually specify the distribution columns to avoid data skew.

● When selecting a distribution key, select a group of columns with high distinct
values as the distribution key based on data distribution features. In this way,
data can be evenly distributed to each DN after redistribution.

● After writing hints, you can run explain verbose to print the execution plan
and check whether the specified distribution key is valid. If the specified
distribution key is invalid, a warning is displayed.

Example
● Hint the query plan in Examples as follows:

explain
select /*+ no redistribute(store_sales store_returns item store) leading(((store_sales store_returns item
store) customer)) */ i_product_name product_name ...

In the original plan, the join result of store_sales, store_returns, item, and
store is redistributed before it is joined with customer. After the hinting, the
redistribution is disabled and the join order is retained. The optimized plan is
as follows:

● Specifies the distribution columns for Agg redistribution.
explain (verbose on, costs off, nodes off)
select /*+ redistribute ((*) (2 3)) */ a1, b1, c1, count(c1) from t1 group by a1, b1, c1 having
count(c1) > 10 and sum(d1) > 100

In the following example, the last two columns of the specified GROUP BY
columns are used as distribution keys.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 498

● If the statement does not contain the GROUP BY clause, specify the distinct
column as the distribution columns.
explain (verbose on, costs off, nodes off)
select /*+ redistribute ((*) (3 1)) */ distinct a1, b1, c1 from t1;

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 499

13.4.9.6 Scan Operation Hints

Function
These hints specify a scan operation, which can be tablescan, indexscan, or
indexonlyscan.

Syntax
[no] tablescan|indexscan|indexonlyscan([@block_name] table [index])

Parameter Description
● no indicates that the specified hint will not be used for a join.
● block_name indicates the block name of the statement block. For details, see

block_name.
● table specifies the table to be scanned. You can specify only one table. Use a

table alias (if any) instead of a table name.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 500

NO TE

● The syntax format of the table is as follows:
[schema.]table[@block_name]
The table name can contain the schema name or block name before the subquery
statement block is promoted. If the subquery statement block is optimized and
rewritten by the optimizer, the value of block_name is different from that of
block_name in leading.

● If a table has an alias, the alias is preferentially used to represent the table.

● index indicates the index for indexscan or indexonlyscan. You can specify
only one index.

NO TE

indexscan and indexonlyscan hints can be used only when the specified index
belongs to the table.
Scan operation hints can be used for row-store tables, column-store tables, HDFS
tables, HDFS foreign tables, OBS tables, and subquery tables. HDFS tables include
primary tables and delta tables. The delta tables are invisible to users. Therefore, scan
operation hints are used only for primary tables.
If indexscan is specified, indexscan or indexonlyscan takes effect. indexscan and
indexonlyscan can also take effect at the same time. When indexscan and
indexonlyscan hints appear at the same time, indexonlyscan takes effect first.

Example
To specify an index-based hint for a scan, create an index named i on the
i_item_sk column of the item table.

create index i on item(i_item_sk);

Hint the query plan in Examples as follows:

explain
select /*+ indexscan(item i) */ i_product_name product_name ...

item is scanned based on an index. The optimized plan is as follows:

13.4.9.7 Sublink Name Hints

Function
These hints specify the name of a sublink block.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 501

Syntax
blockname ([@block_name] table)

Precautions
● This block name hint is used by an outer query only when a sublink is pulled

up. Currently, only the Agg equivalent join, IN, and EXISTS sublinks can be
pulled up. This hint is usually used together with the hints described in the
previous sections.

● The subquery after the FROM keyword is hinted by using the subquery alias.
In this case, block_name hint becomes invalid.

● If a sublink contains multiple tables, the tables will be joined with the outer-
query tables in a random sequence after the sublink is pulled up. In this case,
blockname also becomes invalid.

Parameter Description
● block_name indicates the block name of the statement block. For details, see

block_name.
● table indicates the name you have specified for a sublink block.

NO TE

● The syntax format of the table is as follows:
[schema.]table[@block_name]
The table name can contain the schema name or block name before the subquery
statement block is promoted. If the subquery statement block is optimized and
rewritten by the optimizer, the value of block_name is different from that of
block_name in leading.

● If a table has an alias, the alias is preferentially used to represent the table.

Example
explain select /*+nestloop(store_sales tt) */ * from store_sales where ss_item_sk in (select /*
+blockname(tt)*/ i_item_sk from item group by 1);

tt indicates the sublink block name. After being pulled up, the sublink is joined
with the outer-query table store_sales by using nestloop. The optimized plan is as
follows:

13.4.9.8 Skew Hints

Function
Theses hints specify redistribution keys containing skew data and skew values, and
are used to optimize redistribution involving Join or HashAgg.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 502

Precautions
● Skew hints are used only if redistribution is required and the specified skew

information matches the redistribution information.
● Skew hints are controlled by the GUC parameter skew_option. If the

parameter is disabled, skew hints cannot be used for solving skew.
● Currently, skew hints support only the table relationships of the ordinary table

and subquery types. Hints can be specified for base tables, subqueries, and
WITH ... AS clauses. Unlike other hints, a subquery can be used in skew hints
regardless of whether it is pulled up.

● Use an alias (if any) to specify a table where data skew occurs.
● You can use a name or an alias to specify a skew column as long as it is not

ambiguous. The columns in skew hints cannot be expressions. If data skew
occurs in the redistribution that uses an expression as a redistribution key, set
the redistribution key as a new column and specify the column in skew hints.

● The number of skew values must be an integer multiple of the number of
columns. Skew values must be grouped based on the column sequence, with
each group containing a maximum of 10 values. You can specify duplicate
values to group skew columns having different number of skew values. For
example, the c1 and c2 columns of the t1 table contains skew data. The skew
value of the c1 column is a1, and the skew values of the c2 column are b1
and b2. In this case, the skew hint is skew(t1 (c1 c2) ((a1 b1)(a1 b2))). (a1
b1) is a value group, where NULL is allowed as a skew value. Each hint can
contain a maximum of 10 groups and the number of groups should be an
integer multiple of the number of columns.

● In the redistribution optimization of Join, a skew value must be specified for
skew hints. The skew value can be left empty for HashAgg.

● If multiple tables, columns, or values are specified, separate items of the same
type with spaces.

● The type of skew values cannot be forcibly converted in hints. To specify a
string, enclose it with single quotation marks (' ').

Syntax
● Specify single-table skew.

skew([@block_name] table (column) [(value)])

● Specify intermediate result skew.
skew([@block_name] (join_rel) (column) [(value)])

Parameter Description
● block_name indicates the block name of the statement block. For details, see

block_name.
● table specifies the table where skew occurs.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 503

https://support.huaweicloud.com/intl/en-us/devg-dws/dws_04_0909.html

NO TE

● The syntax format of the table is as follows:
[schema.]table[@block_name]
The table name can contain the schema name or block name before the subquery
statement block is promoted. If the subquery statement block is optimized and
rewritten by the optimizer, the value of block_name is different from that of
block_name in leading.

● If a table has an alias, the alias is preferentially used to represent the table.

● join_rel specifies two or more joined tables. For example, (t1 t2) indicates
that the result of joining t1 and t2 tables contains skew data.

● column specifies one or more columns where skew occurs.
● value specifies one or more skew values.

Example:

● Specify single-table skew.
Each skew hint describes the skew information of one table relationship. To
describe the skews of multiple table relationships in a query, specify multiple
skew hints.
Skew hints have the following formats:
– One skew value in one column: skew(t (c1) (v1))

Description: The v1 value in the c1 column of the t table relationship
causes skew in query execution.

– Multiple skew values in one column: skew(t (c1) (v1 v2 v3 ...))
Description: Values including v1, v2, and v3 in the c1 column of the t
table relationship cause skew in query execution.

– Multiple columns, each having one skew value: skew(t (c1 c2) (v1 v2))
Description: The v1 value in the c1 column and the v2 value in the c2
column of the t table relationship cause skew in query execution.

– Multiple columns, each having multiple skew values: skew(t (c1 c2) ((v1
v2) (v3 v4) (v5 v6) ...))
Description: Values including v1, v3, and v5 in the c1 column and values
including v2, v4, and v6 in the c2 column of the t table relationship
cause skew in query execution.

NO TICE

In the last format, parentheses for skew value groups can be omitted, for
example, skew(t (c1 c2) (v1 v2 v3 v4 v5 v6 ...)). In a skew hint, either
use parentheses for all skew value groups or for none of them.
Otherwise, a syntax error will be generated. For example, skew(t (c1 c2)
(v1 v2 v3 v4 (v5 v6) ...)) will generate an error.

● Specify intermediate result skew.
If data skew does not occur in base tables but in an intermediate result
during query execution, specify skew hints of the intermediate result to solve
the skew. The format is skew((t1 t2) (c1) (v1)).

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 504

Description: Data skew occurs after the table relationships t1 and t2 are
joined. The c1 column of the t1 table contains skew data and its skew value is
v1.
c1 can exist only in a table relationship of join_rel. If there is another column
having the same name, use aliases to avoid ambiguity.

Suggestion
● For a multi-level query, write the hint on the layer where data skew occurs.
● For a listed subquery, you can specify the subquery name in a hint. If you

know data skew occurs on which base table, directly specify the table.
● Aliases are preferred when you specify a table or column in a hint.

Examples
Specify single-table skew.

● Specify hints in the original query.
For example, the original query is as follows:
explain
with customer_total_return as
(select sr_customer_sk as ctr_customer_sk
,sr_store_sk as ctr_store_sk
,sum(SR_FEE) as ctr_total_return
from store_returns
,date_dim
where sr_returned_date_sk = d_date_sk
and d_year =2000
group by sr_customer_sk
,sr_store_sk)
 select c_customer_id
from customer_total_return ctr1
,store
,customer
where ctr1.ctr_total_return > (select avg(ctr_total_return)*1.2
from customer_total_return ctr2
where ctr1.ctr_store_sk = ctr2.ctr_store_sk)
and s_store_sk = ctr1.ctr_store_sk
and s_state = 'NM'
and ctr1.ctr_customer_sk = c_customer_sk
order by c_customer_id
limit 100;

Specify the hints of HashAgg in the inner with clause and of the outer Hash
Join. The query containing hints is as follows:

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 505

explain
with customer_total_return as
(select /*+ skew(store_returns(sr_store_sk sr_customer_sk)) */sr_customer_sk as ctr_customer_sk
,sr_store_sk as ctr_store_sk
,sum(SR_FEE) as ctr_total_return
from store_returns
,date_dim
where sr_returned_date_sk = d_date_sk
and d_year =2000
group by sr_customer_sk
,sr_store_sk)
 select /*+ skew(ctr1(ctr_customer_sk)(11))*/ c_customer_id
from customer_total_return ctr1
,store
,customer
where ctr1.ctr_total_return > (select avg(ctr_total_return)*1.2
from customer_total_return ctr2
where ctr1.ctr_store_sk = ctr2.ctr_store_sk)
and s_store_sk = ctr1.ctr_store_sk
and s_state = 'NM'
and ctr1.ctr_customer_sk = c_customer_sk
order by c_customer_id
limit 100;

The hints indicate that the group by in the inner with clause contains skew
data during redistribution by HashAgg, corresponding to the original Hash
Agg operators 10 and 21; and that the ctr_customer_sk column in the outer
ctr1 table contains skew data during redistribution by Hash Join,
corresponding to operator 6 in the original plan. The optimized plan is as
follows:

To solve data skew in the redistribution, Hash Agg is changed to double-level
Agg operators and the redistribution operators used by Hash Join are changed
in the optimized plan.

● Modify the query and then specify hints.
For example, the original query and its plan are as follows:
explain select count(*) from store_sales_1 group by round(ss_list_price);

Columns in hints do not support expressions. To specify hints, rewrite the
query as several subqueries. The rewritten query and its plan are as follows:
explain
select count(*)

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 506

from (select round(ss_list_price),ss_hdemo_sk
from store_sales_1)tmp(a,ss_hdemo_sk)
group by a;

Ensure that the service logic is not changed during the rewriting.

Specify hints in the rewritten query as follows:
explain
select /*+ skew(tmp(a)) */ count(*)
from (select round(ss_list_price),ss_hdemo_sk
from store_sales_1)tmp(a,ss_hdemo_sk)
group by a;

The plan shows that after Hash Agg is changed to double-layer Agg
operators, redistributed data is greatly reduced and redistribution time
shortened.

You can specify hints in columns in a subquery, for example:
explain
select /*+ skew(tmp(b)) */ count(*)
from (select round(ss_list_price) b,ss_hdemo_sk
from store_sales_1)tmp(a,ss_hdemo_sk)
group by a;

13.4.9.9 Hint That Disables Subquery Pull-up

Function

To optimize query logic, the optimizer usually pulls up subqueries for execution.
However, sometimes the pulled up subqueries do not run much faster than others,
and may even be slower due to enlarged search scope. In this case, you can
specify the no merge hint to disable pull-up. This hint is not recommended in
most cases.

Syntax
no merge[@block_name]
no merge ([@block_name1] subquery_name[@block_name2])

Description
● block_name indicates the block name of the statement block. For details, see

block_name.

● subquery_name indicates the name of a subquery. It can also be a view or
CTE name. The specified subquery will not be unnested during logic
optimization. If subquery_name is not specified, the current query will not be
unnested.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 507

Example

Create tables t1, t2, and t3.

create table t1(a1 int,b1 int,c1 int,d1 int);
create table t2(a2 int,b2 int,c2 int,d2 int);
create table t3(a3 int,b3 int,c3 int,d3 int);

The original statement is as follows:

explain select * from t3, (select a1,b2,c1,d2 from t1,t2 where t1.a1=t2.a2) s1 where t3.b3=s1.b2;

In this query, you can use the following methods to disable the pull-up of
subquery s1:

● Method 1:
explain select /*+ no merge(s1) */ * from t3, (select a1,b2,c1,d2 from t1,t2 where t1.a1=t2.a2) s1
where t3.b3=s1.b2;

● Method 2:
explain select * from t3, (select /*+ no merge */ a1,b2,c1,d2 from t1,t2 where t1.a1=t2.a2) s1 where
t3.b3=s1.b2;

Outcome:

13.4.9.10 Dictionary Code Hint

Function

Specifies a column to create a dictionary code and compares the encoded strings
as numbers, which speeds up the query operations such as Group By and Filter.
This hint is supported only by clusters of version 8.3.0 or later.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 508

Precautions
● Currently, only the new version hstore tables are supported (the table-level

parameter enable_hstore_opt is set to on).

Syntax
 /* + (no) dict(table (column)) */

Parameter description
● dict(table (column))

Column with the dictionary encoding table enabled.
● no dict(table (column))

Column with the dictionary encoding table disabled.

Example
SELECT /*+ dict (bitmaptbl_high (server_ip)) */ distinct(server_ip) FROM bitmaptbl_high WHERE
scope_name='saetataetaeta' ORDER BY server_ip;

The generated plan is as follows. server_ip uses the dictionary encoding:

You can use no dict to disable server_ip from using dictionary encoding.

SELECT /*+ no dict (bitmaptbl_high (server_ip)) */ distinct(server_ip) FROM bitmaptbl_high WHERE
scope_name='saetataetaeta' ORDER BY server_ip;

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 509

13.4.9.11 Configuration Parameter Hints

Function
A hint, or a GUC hint, specifies a configuration parameter value when a plan is
generated.

Precautions
● If a parameter set by hint takes effect at the statement level, the hint must be

written to the top-level query instead of the subquery. For UNION,
INTERSECT, EXCEPT, and MINUS statements, you can write the GUC hint at
the statement level to any SELECT clause that participates in the set
operation. The configuration parameters set by the GUC hint take effect on
each SELECT clause that participates in the set operation.

● When a subquery is pulled up, all GUC hints on the subquery are discarded.
● If a parameter is set by both the statement-level GUC hint and the subquery-

level GUC hint, the subquery-level GUC hint takes effect in the corresponding
subquery, and the statement-level GUC hint takes effect in other subqueries
of the statement.

Syntax
set [global]([@block_name] guc_name guc_value)

Parameters
● global indicates that the parameter set by hint takes effect at the statement

level. If global is not specified, the parameter takes effect only in the
subquery where the hint is located.

● block_name indicates the block name of the statement block. For details, see
block_name.

● guc_name indicates the name of the configuration parameter specified by
hint.

● guc_value indicates the value of a configuration parameter specified by hint.

Currently, GUC hints support only some configuration parameters. Some
parameters cannot be configured at the subquery level and can only be configured
at the statement level. The following table lists the supported parameters.

Table 13-18 Configuration parameters supported by GUC hints

Parameter Configured at the Subquery Level
(Yes/No)

agg_max_mem Yes

agg_redistribute_enhancement Yes

best_agg_plan Yes

cost_model_version No

cost_param No

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 510

Parameter Configured at the Subquery Level
(Yes/No)

enable_array_optimization No

enable_bitmapscan Yes

enable_broadcast Yes

enable_csqual_pushdown No

enable_redistribute Yes

enable_extrapolation_stats Yes

enable_fast_query_shipping No

enable_force_vector_engine No

enable_hashagg Yes

enable_hashfilter No

enable_hashjoin Yes

enable_index_nestloop Yes

enable_indexonlyscan Yes

enable_indexscan Yes

enable_join_pseudoconst Yes

enable_mergejoin Yes

enable_mixedagg No

enable_nestloop Yes

enable_nodegroup_debug No

enable_partition_dynamic_pruning Yes

enable_seqscan Yes

enable_sonic_hashagg No

enable_sonic_hashjoin Yes

enable_sort Yes

enable_stream_ctescan No

enable_tidscan Yes

enable_value_redistribute Yes

enable_vector_engine No

expected_computing_nodegroup No

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 511

Parameter Configured at the Subquery Level
(Yes/No)

force_bitmapand Yes

from_collapse_limit Yes

join_collapse_limit Yes

join_num_distinct Yes

outer_join_max_rows_multipler Yes

prefer_hashjoin_path No

qrw_inlist2join_optmode Yes

qual_num_distinct Yes

query_dop No

query_max_mem No

query_mem No

rewrite_rule No

setop_optmode Yes

skew_option Yes

stream_ctescan_max_estimate_mem No

stream_ctescan_pred_threshold No

stream_ctescan_refcount_threshold No

windowagg_pushdown_enhancement No

index_selectivity_cost Yes

index_cost_limit Yes

Examples
Hint the query plan in Examples as follows:

explain
select /*+ set global(query_dop 0) */ i_product_name product_name
...

This hint indicates that the query_dop parameter is set to 0 when the plan for a
statement is generated, which means the SMP adaptation function is enabled. The
generated plan is as follows:

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 512

13.4.9.12 Hint Errors, Conflicts, and Other Warnings

Plan hints change an execution plan. You can run EXPLAIN to view the changes.

Hints containing errors are invalid and do not affect statement execution. The
errors will be displayed in different ways based on statement types. Hint errors in
an EXPLAIN statement are displayed as a warning on the interface. Hint errors in
other statements will be recorded in debug1-level logs containing the PLANHINT
keyword.

Hint Error Types
● Syntax errors.

An error will be reported if the syntax tree fails to be reduced. The No. of the
row generating an error is displayed in the error details.
For example, the hint keyword is incorrect, no table or only one table is
specified in the leading or join hint, or no tables are specified in other hints.
The parsing of a hint is terminated immediately after a syntax error is
detected. Only the hints that have been parsed successfully are valid.
For example:
leading((t1 t2)) nestloop(t1) rows(t1 t2 #10)

The syntax of nestloop(t1) is wrong and its parsing is terminated. Only
leading(t1 t2) that has been successfully parsed before nestloop(t1) is valid.

● Semantic errors.
– An error will be reported if the specified tables do not exist, multiple

tables are found based on the hint setting, or a table is used more than
once in the leading or join hint.

– An error will be reported if the index specified in a scan hint does not
exist.

– If multiple tables with the same name exist after a subquery is pulled up
and some of them need to be hinted, add aliases for them to avoid name
duplication.

● Duplicated or conflicted hints.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 513

If hint duplication or conflicts occur, only the first hint takes effect. A message
will be displayed to describe the situation.
– Hint duplication indicates that a hint is used more than once in the same

query, for example, nestloop(t1 t2) nestloop(t1 t2).
– A hint conflict indicates that the functions of two hints with the same

table list conflict with each other.
For example, if nestloop (t1 t2) hashjoin (t1 t2) is used, hashjoin (t1
t2) becomes invalid. nestloop(t1 t2) does not conflict with no
mergejoin(t1 t2).

NO TICE

The table list in the leading hint is disassembled. For example, leading
(t1 t2 t3) will be disassembled as leading(t1 t2) leading((t1 t2) t3),
which will conflict with leading(t2 t1) (if any). In this case, the latter
leading(t2 t1) becomes invalid. If two hints use duplicated table lists and
only one of them has the specified outer/inner table, the one without a
specified outer/inner table becomes invalid.

● A hint becomes invalid after a sublink is pulled up.
In this case, a message will be displayed. Generally, such invalidation occurs if
a sublink contains multiple tables to be joined, because the table list in the
sublink becomes invalid after the sublink is pulled up.

● Unsupported column types.
– Skew hints are specified to optimize redistribution. They will be invalid if

their corresponding columns do not support redistribution.
● Specified hints are not used.

– If hashjoin or mergejoin is specified for non-equivalent joins, it will not
be used.

– If indexscan or indexonlyscan is specified for a table that does not have
an index, it will not be used.

– If indexscan hint or indexonlyscan is specified for a full-table scan or for
a scan whose filtering conditions are not set on index columns, it will not
be used.

– The specified indexonlyscan hint is used only when the output column
contains only indexes.

– In equivalent joins, only the joins containing equivalence conditions are
valid. Therefore, the leading, join, and rows hints specified for the joins
without an equivalence condition will not be used. For example, t1, t2,
and t3 are to be joined, and the join between t1 and t3 does not contain
an equivalence condition. In this case, leading(t1 t3) will not be used.

– To generate a streaming plan, if the distribution key of a table is the
same as its join key, redistribute specified for this table will not be used.
If the distribution key and join key are different for this table but the
same for the other table in the join, redistribute specified for this table
will be used but broadcast will not.

– If a hint for an Agg distribution column is not used, the possible causes
are as follows:

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 514

▪ The specified distribution key contains data types that do not support
redistribution.

▪ Redistribution is not required in the execution plan.

▪ Wrong distribution key sequence numbers are executed.

▪ For AP functions that use the GROUPING SETS and CUBE clauses,
hints are not supported for distribution keys in window aggregate
functions .

NO TE

Specifies the hint for the distribution column druing the Agg process.. This
parameter is supported only by clusters of version 8.1.3.100 or later.

– If no sublink is pulled up, the specified blockname hint will not be used.
– For unused skew hints, the possible causes are:

▪ The plan does not require redistribution.

▪ The columns specified by hints contain distribution keys.

▪ Skew information specified in hints is incorrect or incomplete, for
example, no value is specified for join optimization.

▪ Skew optimization is disabled by GUC parameters.

– For unused guc hints, the possible causes are:

▪ The configuration parameter does not exist.

▪ The configuration parameter is not supported by GUC hints.

▪ The configuration parameter value is invalid.

▪ The statement-level GUC hint is not written in the top-level query.

▪ The configuration parameter set by the GUC hint at the subquery
level cannot be set at the subquery level.

▪ The subquery where the GUC hint is located is pulled up.

13.4.9.13 Plan Hint Cases
This section takes the statements in TPC-DS (Q24) as an example to describe how
to optimize an execution plan by using hints in 1000X+24DN environments. For
example:

select avg(netpaid) from
(select c_last_name
,c_first_name
,s_store_name
,ca_state
,s_state
,i_color
,i_current_price
,i_manager_id
,i_units
,i_size

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 515

,sum(ss_sales_price) netpaid
from store_sales
,store_returns
,store
,item
,customer
,customer_address
where ss_ticket_number = sr_ticket_number
and ss_item_sk = sr_item_sk
and ss_customer_sk = c_customer_sk
and ss_item_sk = i_item_sk
and ss_store_sk = s_store_sk
and c_birth_country = upper(ca_country)
and s_zip = ca_zip
and s_market_id=7
group by c_last_name
,c_first_name
,s_store_name
,ca_state
,s_state
,i_color
,i_current_price
,i_manager_id
,i_units
,i_size);

1. The original plan of this statement is as follows and the statement execution
takes 110s:

Figure 13-10 Statement initial plan

In this plan, the performance of the layer-10 broadcast is poor because the
estimation result generated at layer 11 is 2140 rows, which is much less than
the actual number of rows. The inaccurate estimation is mainly caused by the
underestimated number of rows in layer-13 hash join. In this layer,
store_sales and store_returns are joined (based on the ss_ticket_number
and ss_item_sk columns in store_sales and the sr_ticket_number and
sr_item_sk columns in store_returns) but the multi-column correlation is not
considered.

2. After the rows hint is used for optimization, the plan is as follows and the
statement execution takes 318s:
select avg(netpaid) from
(select /*+rows(store_sales store_returns * 11270)*/ c_last_name ...

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 516

Figure 13-11 Using rows hints for optimization

The execution takes a longer time because layer-9 redistribute is slow.
Considering that data skew does not occur at layer-9 redistribute, the slow
redistribution is caused by the slow layer-8 hashjoin due to data skew at
layer-18 redistribute.

3. Data skew occurs at layer-18 redistribute because customer_address has a
few different values in its two join keys. Therefore, plan customer_address as
the last one to be joined. After the hint is used for optimization, the plan is as
follows and the statement execution takes 116s:
select avg(netpaid) from
(select /*+rows(store_sales store_returns *11270)
leading((store_sales store_returns store item customer) customer_address)*/
c_last_name ...

Figure 13-12 Hint optimization

Most of the time is spent on layer-6 redistribute. The plan needs to be
further optimized.

4. The last layer redistribute contains skew. Therefore, it takes a long time. To
avoid the data skew, plan the item table as the last one to be joined because
the number of rows is not reduced after item is joined. After the hint is used
for optimization, the plan is as follows and the statement execution takes
120s:
select avg(netpaid) from
(select /*+rows(store_sales store_returns *11270)
leading((customer_address (store_sales store_returns store customer) item))
c_last_name ...

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 517

Figure 13-13 Modifying hints and executing statements

Data skew occurs after the join of item and customer_address because item
is broadcasted at layer-22. As a result, layer-6 redistribute is still slow.

5. Add a hint to disable broadcast for item or add a redistribute hint for the
join result of item and customer_address. After the hint is used for
optimization, the plan is as follows and the statement execution takes 105s:
select avg(netpaid) from
(select /*+rows(store_sales store_returns *11270)
leading((customer_address (store_sales store_returns store customer) item))
no broadcast(item)*/
c_last_name ...

Figure 13-14 Execution plan

6. The last layer uses single-layer Agg and the number of rows is greatly
reduced. Set best_agg_plan to 3 and change the single-layer Agg to a
double-layer Agg. The plan is as follows and the statement execution takes
94s. The optimization ends.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 518

Figure 13-15 Final optimization plan

If the query performance deteriorates due to statistics changes, you can use hints
to optimize the query plan. Take TPCH-Q17 as an example. The query
performance deteriorates after the value of default_statistics_target is changed
from the default one to –2 for statistics collection.

1. If default_statistics_target is set to the default value 100, the plan is as
follows:

Figure 13-16 Default statistics

2. If default_statistics_target is set to –2, the plan is as follows.

Figure 13-17 Changes in statistics

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 519

3. After the analysis, the cause is that the stream type is changed from
BroadCast to Redistribute during the join of the lineitem and part tables.
You can use a hint to change the stream type back to BroadCast. The figure
below shows an example.

Figure 13-18 Statements

13.4.10 Routinely Maintaining Tables
To ensure proper database running, after INSERT and DELETE operations, you
need to routinely do VACUUM FULL and ANALYZE as appropriate for customer
scenarios and update statistics to obtain better performance.

Related Concepts
You need to routinely run VACUUM, VACUUM FULL, and ANALYZE to maintain
tables, because:

● VACUUM FULL reclaims disk space occupied by updated or deleted data and
combines small-size data files.

● VACUUM maintains a visualized mapping to track pages that contain arrays
visible to other active transactions. A common index scan uses the mapping to
obtain the corresponding array and check whether pages are visible to the
current transaction. If the array cannot be obtained, the visibility is checked by
fetching stack arrays. Therefore, updating the visible mapping of a table can
accelerate unique index scans.

● VACUUM can avoid old data loss caused by duplicate transaction IDs when
the number of executed transactions exceeds the database threshold.

● ANALYZE collects statistics on tables in databases. The statistics are stored in
the PG_STATISTIC system catalog. Then, the query optimizer uses the statistics
to work out the most efficient execution plan.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 520

Procedure

Step 1 Run the VACUUM or VACUUM FULL command to reclaim disk space.
● VACUUM:

Do VACUUM to the table:
VACUUM customer;
VACUUM

This command can be concurrently executed with database operation
commands, including SELECT, INSERT, UPDATE, and DELETE; excluding
ALTER TABLE.
Do VACUUM to the partitioned table:
VACUUM customer_par PARTITION (P1);
VACUUM

● VACUUM FULL:
VACUUM FULL customer;
VACUUM

VACUUM FULL needs to add exclusive locks on tables it operates on and
requires that all other database operations be suspended.
When reclaiming disk space, you can query for the session corresponding to
the earliest transactions in the cluster, and then end the earliest long
transactions as needed to make full use of the disk space.

a. Run the following command to query for oldestxmin on the GTM:
select * from pgxc_gtm_snapshot_status();

b. Run the following command to query for the PID of the corresponding
session on the CN. xmin is the oldestxmin obtained in the previous step.
select * from pgxc_running_xacts() where xmin=1400202010;

Step 2 Do ANALYZE to update statistical information.
ANALYZE customer;
ANALYZE

Do ANALYZE VERBOSE to update statistics and display table information.

ANALYZE VERBOSE customer;
ANALYZE

You can use VACUUM ANALYZE at the same time to optimize the query.

VACUUM ANALYZE customer;
VACUUM

NO TE

VACUUM and ANALYZE cause a substantial increase in I/O traffic, which may cause poor
performance of other active sessions. Therefore, you are advised to set by specifying the
vacuum_cost_delay parameter.

Step 3 Delete a table
DROP TABLE customer;
DROP TABLE customer_par;
DROP TABLE part;

If the following output is displayed, the index has been deleted.

DROP TABLE

----End

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 521

Maintenance Suggestion
● Routinely do VACUUM FULL to large tables. If the database performance

deteriorates, do VACUUM FULL to the entire database. If the database
performance is stable, you are advised to monthly do VACUUM FULL.

● Routinely do VACUUM FULL to system catalogs, mainly PG_ATTRIBUTE.
● The automatic vacuum process (AUTOVACUUM) in the system automatically

runs the VACUUM and ANALYZE statements to reclaim the record space
marked as the deleted state and to update statistics related to the table.

13.4.11 Routinely Recreating an Index

Context
When data deletion is repeatedly performed in the database, index keys will be
deleted from the index page, resulting in index distention. Recreating an index
routinely improves query efficiency.

The database supports B-tree, GIN, and psort indexes.

● Recreating a B-tree index helps improve query efficiency.
– If massive data is deleted, index keys on the index page will be deleted.

As a result, the number of index pages reduces and index bloat occurs.
Recreating an index helps reclaim wasted space.

– In the created index, pages adjacent in its logical structure are adjacent in
its physical structure. Therefore, a created index achieves higher access
speed than an index that has been updated for multiple times.

● You are advised not to recreate a non-B-tree index.

Rebuilding an Index
Use either of the following two methods to recreate an index:

● Run the DROP INDEX statement to delete an index and run the CREATE
INDEX statement to create an index.
When you delete an index, a temporary exclusive lock is added in the parent
table to block related read/write operations. When you create an index, the
write operation is locked but the read operation is not. The data is read and
scanned by order.

● Run the REINDEX statement to recreate an index:
– When you run the REINDEX TABLE statement to recreate an index, an

exclusive lock is added to block related read/write operations.
– When you run the REINDEX INTERNAL TABLE statement to recreate an

index for a desc table (), an exclusive lock is added to block read/write
operations on the table.

Procedure
Assume the ordinary index areaS_idx exists in the area_id column of the imported
table areaS. Use either of the following two methods to recreate an index:
● Run the DROP INDEX statement to delete the index and run the CREATE

INDEX statement to create an index.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 522

a. Delete an index.
DROP INDEX areaS_idx;
DROP INDEX

b. Create an index.
CREATE INDEX areaS_idx ON areaS (area_id);
CREATE INDEX

● Run the REINDEX statement to recreate an index.
– Run the REINDEX TABLE statement to recreate an index.

REINDEX TABLE areaS;
REINDEX

– Run the REINDEX INTERNAL TABLE statement to recreate an index for a
desc table ().
REINDEX INTERNAL TABLE areaS;
REINDEX

13.4.12 Automatic Retry upon SQL Statement Execution Errors
With automatic retry (referred to as CN retry), GaussDB(DWS) retries an SQL
statement when the execution of a statement fails. If an SQL statement sent from
the gsql client, JDBC driver, or ODBC driver fails to be executed, the CN can
automatically identify the error reported during execution and re-deliver the task
to retry.

The restrictions of this function are as follows:

● Functionality restrictions:
– CN retry increases execution success rate but does not guarantee success.
– CN retry is enabled by default. In this case, the system records logs about

temporary tables. If it is disabled, the system will not record the logs.
Therefore, do not repeatedly enable and disable CN retry when
temporary tables are used. Otherwise, data inconsistency may occur after
a CN retry following a primary/standby switchover.

– CN retry is enabled by default. In this case, the unlogged keyword is
ignored in the statement for creating unlogged tables and thereby
ordinary tables will be created by using this statement. If CN retry is
disabled, the system records logs about unlogged tables. Therefore, do
not repeatedly enable and disable CN retry when unlogged tables are
used. Otherwise, data inconsistency may occur after a CN retry following
a primary/standby switchover.

– When GDS is used to export data, CN retry is supported. The existing
mechanism checks for duplicate files and deletes duplicate files during
data export. Therefore, you are advised not to repeatedly export data for
the same foreign table unless you are sure that files with the same name
in the data directory need to be deleted.

● Error type restrictions:
Only the error types in Table 13-19 are supported.

● Statement type restrictions:
Support single-statement CN retry, stored procedures, functions, and
anonymous blocks. Statements in transaction blocks are not supported.

● Statement restrictions of a stored procedure:
– If an error occurs during the execution of a stored procedure containing

EXCEPTION (including statement block execution and statement

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 523

execution in EXCEPTION), the stored procedure can be retried. If an
internal error occurs, the stored procedure will retry first, but if the error
is captured by EXCEPTION, the stored procedure cannot be retried.

– Packages that use global variables are not supported.

– DBMS_JOB is not supported.

– UTL_FILE is not supported.

– If the stored procedure has printed information (such as
dbms_output.put_line or raise info), the printed information will be
output repeatedly when retry occurs, and "Notice: Retry triggered, some
message may be duplicated. " will be output before the repeated
information.

● Cluster status restrictions:

– Only DNs or GTMs are faulty.

– The cluster can be recovered before the number of CN retries reaches the
allowed maximum (controlled by max_query_retry_times). Otherwise,
CN retry may fail.

– CN retry is not supported during scale-out.

● Data import restrictions:

– The COPY FROM STDIN statement is not supported.

– The gsql \copy from metacommand is not supported.

– JDBC CopyManager copyIn is not supported.

Table 13-19 lists the error types supported by CN retry and the corresponding
error codes. You can use the GUC parameter retry_ecode_list to set the list of
error types supported by CN retry. You are not advised to modify this parameter.
To modify it, contact the technical support.

Table 13-19 Error types supported by CN retry

Error Type Error
Code

Remarks

CONNECTION_RESET_BY_PEER YY00
1

TCP communication errors:
Connection reset by peer
(communication between the CN
and DNs)

STREAM_CONNECTION_RESET_BY
_PEER

YY00
2

TCP communication errors: Stream
connection reset by peer
(communication between DNs)

LOCK_WAIT_TIMEOUT YY00
3

Lock wait timeout

CONNECTION_TIMED_OUT YY00
4

TCP communication errors:
Connection timed out

SET_QUERY_ERROR YY00
5

Failed to deliver the SET
command: Set query

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 524

Error Type Error
Code

Remarks

OUT_OF_LOGICAL_MEMORY YY00
6

Failed to apply for memory: Out of
logical memory

SCTP_MEMORY_ALLOC YY00
7

SCTP communication errors:
Memory allocate error

SCTP_NO_DATA_IN_BUFFER YY00
8

SCTP communication errors: SCTP
no data in buffer

SCTP_RELEASE_MEMORY_CLOSE YY00
9

SCTP communication errors:
Release memory close

SCTP_TCP_DISCONNECT YY01
0

SCTP communication errors: TCP
disconnect

SCTP_DISCONNECT YY01
1

SCTP communication errors: SCTP
disconnect

SCTP_REMOTE_CLOSE YY01
2

SCTP communication errors:
Stream closed by remote

SCTP_WAIT_POLL_UNKNOW YY01
3

Waiting for an unknown poll: SCTP
wait poll unknown

SNAPSHOT_INVALID YY01
4

Snapshot invalid

ERRCODE_CONNECTION_RECEIVE
_WRONG

YY01
5

Connection receive wrong

OUT_OF_MEMORY 5320
0

Out of memory

CONNECTION_FAILURE 0800
6

GTM errors: Connection failure

CONNECTION_EXCEPTION 0800
0

Failed to communicate with DNs
due to connection errors:
Connection exception

ADMIN_SHUTDOWN 57P0
1

System shutdown by
administrators: Admin shutdown

STREAM_REMOTE_CLOSE_SOCKET XX00
3

Remote socket disabled: Stream
remote close socket

ERRCODE_STREAM_DUPLICATE_Q
UERY_ID

XX00
9

Duplicate query id

ERRCODE_STREAM_CONCURRENT
_UPDATE

YY01
6

Stream concurrent update

ERRCODE_LLVM_BAD_ALLOC_ERR
OR

CG00
3

Memory allocation error: Allocate
error

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 525

Error Type Error
Code

Remarks

ERRCODE_LLVM_FATAL_ERROR CG00
4

Fatal error

HashJoin temporary file reading
error
(ERRCODE_HASHJOIN_TEMP_FILE
_ERROR).

F001
1

File error

Buffer file reading error
(ERRCODE_BUFFER_FILE_ERROR)

F001
2

File reading error

Partition number error
(ERRCODE_PARTITION_NUM_CHA
NGED).

4500
3

During scanning on a list partition
table, it is found that the number
of partitions is different from that
in the optimization phase. This
problem usually occurs when the
queries and ADD/DROP partitions
are concurrently executed. (This
error is supported only by clusters
of version 8.1.3 or later.)

Unmatched schema name
(ERRCODE_UNMATCH_OBJECT_SC
HEMA)

42P3
0

Unmatched schema name

To enable CN retry, set the following GUC parameters:
● Mandatory GUC parameters (required by both CNs and DNs)

max_query_retry_times

CA UTION

If CN retry is enabled, temporary table data is logged. For data consistency, do
not switch the enabled/disabled status for CN retry when the temporary
tables are being used by sessions.

● Optional GUC parameters
cn_send_buffer_size
max_cn_temp_file_size

13.4.13 Query Band Load Identification

Overview
GaussDB(DWS) implements load identification and intra-queue priority control
based on query_band. It provides more flexible load identification methods and
identifies load queues based on job types, application names, and script names.
Users can flexibly configure query_band identification queues based on service

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 526

scenarios. In addition, priority control of job delivery in the queue is implemented.
In the future, priority control of resources in the queue will be gradually
implemented.

Administrators can configure the queue associated with query_band and estimate
the memory limit based on service scenarios and job types to implement more
flexible load control and resource management and control. If query_band is not
configured for the service or the user does not associate query_band with an
action, the queue associated with the user and the priority in the queue is used by
default.

Load Behaviors Supported by query_band
query_band is a session-level GUC parameter. It is a job identifier of the character
data type. Its value can be any string. However, for easier differentiation and
configuration, query_band only identifies key-value pairs. For example:

SET query_band='JobName=abc;AppName=test;UserName=user';

JobName=abc, AppName=test, and UserName=user are independent key-value
pairs. Specifications of the query_band key-value pairs:

● query_band is set in key-value pair mode, that is, 'key=value'. Multiple
query_band key-value pairs can be set in a session. Multiple key-value pairs
are separated by semicolons (;). The maximum length of both the
query_band key-value pair and parameter value is 1024 characters.

● The query_band key-value pair supports the following valid characters: digits
0 to 9, uppercase letters A to Z, lowercase letters a to z, '.', '-', '_', and '#'.

query_band is configured, and identifies load behaviors, using key-value pairs. The
supported load behaviors are described in Table 13-20.

Table 13-20 Load behaviors supported by QUERY_BAND

Type Behavior Behavior Description

Workload
management
(workload)

Resource pool
(respool)

query_band associated with a resource pool

Workload
management
(workload)

Priority Priority in the queue

Order Queue
(respool)
Currently, this
field is invalid
and is used for
future
extension.

query_band query order

The "Type" is used to classify load behaviors. Different load behaviors may belong
to a same type. For example, both "Resource pool" and a "Priority" belong to

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 527

"Workload management". The "Behavior" indicates a load behavior associated
with a query_band key-value pair. The "Behavior description" describes a specific
load behavior. The "Order" in the "Type" is used to indicate the priority of the
query_band load behavior identification. When a session has multiple query_band
key-value pairs, the query_band key-value pair with a smaller order value is
preferentially used to identify a load behavior. Each query_band key-value pair can
have multiple associated load behaviors, while one load behavior can only have
one associated key-value pair. The query_band load behavior is described as
follows:

● Resource pool: query_band can be associated with resource pools. During job
execution, if a resource pool is associated with query_band, the resource pool
is used in preference. Otherwise, the resource pool associated with the user is
used.
– When query_band is associated with a resource pool, an error is reported

if the resource pool does not exist, and the association fails.
– When query_band is associated with a resource pool, the dependency

between query_band and the resource pool is recorded.
– When a resource pool associated with query_band is deleted, a message

is displayed indicating that the resource pool fails to be deleted because
of the dependency between query_band and the resource pool.

● Intra-queue priority: query_band can be associated with job priorities,
including high, medium, and low. Rush is provided as a special priority (green
channel). The default priority is medium. In practice, most jobs use the
medium priority, low-priority jobs use the low priority, and privileged jobs use
the high priority. It is not recommended that a large number of jobs use the
high priority. The rush priority is used only in special scenarios and is not
recommended in normal cases.
The intra-queue priority is used to implement the queuing priority.
– In the static load management scenario, when the CN concurrency is

insufficient, CN global queuing is triggered. The CN global queue is a
priority queue.

– In the dynamic load management scenario, if the DN memory is
insufficient, CCN global queuing is triggered. The CCN global queue is a
priority queue.

– When the resource pool concurrency or memory is insufficient, resource
pool queuing is triggered. The resource pool queue is a priority queue.

The preceding priority queues comply with the following scheduling rules:
– Jobs with a higher priority are scheduled first.
– After all jobs with a high priority are scheduled, jobs with a low priority

are scheduled.
– In dynamic load management scenarios, the CN global queue does not

support the query_band priority.
● Order: The identification order of query_bands can be configured. The default

order value is -1. Except the default order value, there are no two
query_bands with the same order value. The query_band order is verified
when being configured. If there are query_bands with the same order value,
the order values are recursively increased by 1 until there are no query_bands
with the same order value.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 528

– If a session has multiple query_band key-value pairs, the query_band key-
value pair with a smaller order value is used for load identification.

– 0 is the smallest order value, and the default order value -1 is the largest
order value.

– If the query_bands are all of the same order value, the anterior
query_band is used for load identification.

– For example, if in set query_band='b=1;a=3;c=1'; b=1, the order value of
b=1 is -1, a=3 is 4, c=1 is 1, c=1 is used as the query_band for load
identification. This design enables load administrators to adjust load
scheduling.

Application and Configuration of query_band
● The pg_workload_action cross-database system catalog is used to store the

query_band action and order. For details, see PG_WORKLOAD_ACTION.

● The default action and order are not stored in the pg_workload_action
system catalog. If a non-default action is set for query_band, the default
action is also displayed when actions are queried. The message <query_band
information not found> is displayed when the action and order to be queried
are the default query_band action.

● The gs_wlm_set_queryband_action function sets the query_band sequence.
The maximum length of the first parameter, that is, the query_band key value
pair, is 63 characters. For the second parameter, it is case insensitive and
multiple actions are separated by semicolons (;). order is the default
parameter and its default value is -1. For details, see
gs_wlm_set_queryband_action.

● The gs_wlm_set_queryband_order function sets the query_band sequence.
The maximum length of the first parameter, that is, a query_band key value
pair, is 63 characters. The value of query_band must be greater than or equal
to –1. Except the default value –1, the value of query_band order must be
unique. When setting the query_band order, if there are query_bands with the
same order value, the original order value is increased by 1. For details, see
gs_wlm_set_queryband_order.

● You can use the gs_wlm_get_queryband_action function to query the
query_band action. For details, see gs_wlm_set_queryband_action.

● pg_queryband_action provides the system view for querying all query_band
actions. For details, see PG_QUERYBAND_ACTION.

● The query_band priority is displayed as an integer in the load management
view (PG_SESSION_WLMSTAT). The mapping between numbers and
priorities is as follows:

– 0: not controlled by load management

– 1: low

– 2: medium

– 4: high

– 8: rush

● Permission control: Except initial users, other users have the permission to set
and query query_band only when they are authorized.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 529

https://support.huaweicloud.com/intl/en-us/sqlreference-910-dws/dws_06_0063.html
https://support.huaweicloud.com/intl/en-us/sqlreference-910-dws/dws_06_0063.html
https://support.huaweicloud.com/intl/en-us/sqlreference-910-dws/dws_06_0063.html

NO TE

● When all running jobs are canceled in batches or the maximum number of concurrent
jobs in a queue is 1 and only one queue is running jobs, the CN may be triggered to
automatically wake up jobs. As a result, jobs are not delivered by priority.

Examples
Step 1 Set the associated resource pool to p1, priority to rush, and order to 1 for

query_band JobName to abc.
SELECT * FROM gs_wlm_set_queryband_action('JobName=abc','respool=p1;priority=rush',1);
gs_wlm_set_queryband_action

 t
(1 row)

Step 2 Change the associated resource pool to p2 for query_band JobName=abc.
SELECT * FROM gs_wlm_set_queryband_action('JobName=abc','respool=p2');
gs_wlm_set_queryband_action

 t
(1 row)

Step 3 Change the priority to high for query_band JobName=abc.
SELECT * FROM gs_wlm_set_queryband_action('JobName=abc','priority=high');
gs_wlm_set_queryband_action

 t
(1 row)

Step 4 Change the order to 3 for query_band JobName=abc.
SELECT * FROM gs_wlm_set_queryband_order('JobName=abc',3);
gs_wlm_set_queryband_order

 t
(1 row)

Step 5 Query the load behaviors associated with query_band.
SELECT * FROM pg_queryband_action;
 qband | respool_id | respool | priority | qborder
--------------+------------+---------+----------+---------
 JobName=abc | 17119 | p2 | high | 1
(1 row)

Step 6 In query_band, set the priority of AppName=test to Low, associate the user with
the resource pool, and use the default sequence.
SELECT * FROM gs_wlm_set_queryband_action('AppName=test','priority=low');
gs_wlm_set_queryband_action

 t
(1 row)

Step 7 Query the load behaviors associated with query_band.
SELECT * FROM pg_queryband_action;
 qband | respool_id | respool | priority | qborder
--------------+------------+---------+----------+---------
 AppName=test | 0 | NULL | low | -1
 JobName=abc | 16754 | p2 | high | 3
(2 rows)

Step 8 In query_band, cancel all the workload behaviors associated with JobName=abc
and set them to default behaviors.
SELECT * FROM gs_wlm_set_queryband_action('JobName=abc','respool=null;priority=medium',-1);
NOTICE: The respool of query_band(JobName=abc) will be removed.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 530

NOTICE: The priority of query_band(JobName=abc) will be removed.
 gs_wlm_set_queryband_action

 t
(1 row)

Step 9 Query the load behaviors associated with query_band.
SELECT * FROM pg_queryband_action;
 qband | respool_id | respool | priority | qborder
--------------+------------+---------+----------+---------
 AppName=test | 0 | NULL | low | -1
(1 row)

----End

13.5 SQL Tuning Examples

13.5.1 Case: Selecting an Appropriate Distribution Column
Distribution columns are used to distribute data to different nodes. A proper
distribution key can avoid data skew.

When performing join query, you are advised to select the join condition in the
query as the distribution key. When a join condition is used as a distribution key,
related data is distributed locally on DNs, reducing the cost of data flow between
DNs and improving the query speed.

Before optimization
Use a as the distribution column of t1 and t2. The table definition is as follows:

CREATE TABLE t1 (a int, b int) DISTRIBUTE BY HASH (a);
CREATE TABLE t2 (a int, b int) DISTRIBUTE BY HASH (a);

The following query is executed:

SELECT * FROM t1, t2 WHERE t1.a = t2.b;

In this case, the execution plan contains Streaming(type: REDISTRIBUTE), that is,
the DN redistributes data to all DNs based on the selected column. This will cause
a large amount of data to be transmitted between DNs, as shown in Figure
13-19.

Figure 13-19 Selecting an appropriate distribution column (1)

After optimization
Use the join condition in the query as the distribution key and run the following
statement to changethe distribution key of t2 as b:

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 531

ALTER TABLE t2 DISTRIBUTE BY HASH (b);

After the distribution column of table t2 is changed to column b, the execution
plan does not contain Streaming(type: REDISTRIBUTE). This reduces the amount
of communication data between DNs and reduces the execution time from 8.7 ms
to 2.7 ms, improving query performance, as shown in Figure 13-20.

Figure 13-20 Selecting an appropriate distribution column (2)

13.5.2 Case: Creating an Appropriate Index
Creating a proper index can accelerate the retrieval of data rows in a table.
Indexes occupy disk space and reduce the speed of adding, deleting, and updating
rows. If data needs to be updated very frequently or disk space is limited, you
need to limit the number of indexes. Create indexes for large tables. Because the
more data in the table, the more effective the index is. You are advised to create
indexes on:

● Columns that need to be queried frequently
● Joined columns. For a query on joined columns, you are advised to create a

composite index on the joined columns. For example, if the join condition is
select * from t1 join t2 on t1.a=t2.a and t1.b=t2.b. You can create a
composite index on the a and b columns of table t1.

● Columns having filter criteria (especially scope criteria) of a where clause
● Columns that appear after order by, group by, and distinct

Before optimization

The column-store partitioned table orders is defined as follows:

Run the SQL statement to query the execution plan when no index is created. It is
found that the execution time is 48 milliseconds.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 532

EXPLAIN PERFORMANCE SELECT * FROM orders WHERE o_custkey = '1106459';

After optimization
The filtering condition column of the where clause is o_custkey. Add an index to
the o_custkey column.

CREATE INDEX idx_o_custkey ON orders (o_custkey) LOCAL;

Run the SQL statement to query the execution plan after the index is created. It is
found that the execution time is 18 milliseconds.

13.5.3 Case: Adding NOT NULL for JOIN Columns
If there are many NULL values in the JOIN columns, you can add the filter
criterion IS NOT NULL to filter data in advance to improve the JOIN efficiency.

Before optimization
SELECT
 *
FROM
((SELECT
 STARTTIME STTIME,
 SUM(NVL(PAGE_DELAY_MSEL,0)) PAGE_DELAY_MSEL,
 SUM(NVL(PAGE_SUCCEED_TIMES,0)) PAGE_SUCCEED_TIMES,
 SUM(NVL(FST_PAGE_REQ_NUM,0)) FST_PAGE_REQ_NUM,
 SUM(NVL(PAGE_AVG_SIZE,0)) PAGE_AVG_SIZE,
 SUM(NVL(FST_PAGE_ACK_NUM,0)) FST_PAGE_ACK_NUM,
 SUM(NVL(DATATRANS_DW_DURATION,0)) DATATRANS_DW_DURATION,
 SUM(NVL(PAGE_SR_DELAY_MSEL,0)) PAGE_SR_DELAY_MSEL
 FROM
 PS.SDR_WEB_BSCRNC_1DAY SDR
 INNER JOIN (SELECT
 BSCRNC_ID,
 BSCRNC_NAME,
 ACCESS_TYPE,
 ACCESS_TYPE_ID
 FROM
 nethouse.DIM_LOC_BSCRNC
 GROUP BY
 BSCRNC_ID,
 BSCRNC_NAME,
 ACCESS_TYPE,
 ACCESS_TYPE_ID) DIM
 ON SDR.BSCRNC_ID = DIM.BSCRNC_ID
 AND DIM.ACCESS_TYPE_ID IN (0,1,2)
 INNER JOIN nethouse.DIM_RAT_MAPPING RAT
 ON (RAT.RAT = SDR.RAT)
 WHERE
 ((STARTTIME >= 1461340800

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 533

 AND STARTTIME < 1461427200))
 AND RAT.ACCESS_TYPE_ID IN (0,1,2)
 GROUP BY STTIME)) ;

Figure 13-21 shows the execution plan.

Figure 13-21 Adding NOT NULL for JOIN columns (1)

After optimization
1. As shown in Figure 13-21, the sequential scan phase is time consuming.
2. The JOIN performance is poor because a large number of null values exist in

the JOIN column BSCRNC_ID of the PS.SDR_WEB_BSCRNC_1DAY table.
Therefore, you are advised to manually add NOT NULL for JOIN columns in
the statement, as shown below:
SELECT
 *
FROM
((SELECT
 STARTTIME STTIME,
 SUM(NVL(PAGE_DELAY_MSEL,0)) PAGE_DELAY_MSEL,
 SUM(NVL(PAGE_SUCCEED_TIMES,0)) PAGE_SUCCEED_TIMES,
 SUM(NVL(FST_PAGE_REQ_NUM,0)) FST_PAGE_REQ_NUM,
 SUM(NVL(PAGE_AVG_SIZE,0)) PAGE_AVG_SIZE,
 SUM(NVL(FST_PAGE_ACK_NUM,0)) FST_PAGE_ACK_NUM,
 SUM(NVL(DATATRANS_DW_DURATION,0)) DATATRANS_DW_DURATION,
 SUM(NVL(PAGE_SR_DELAY_MSEL,0)) PAGE_SR_DELAY_MSEL
 FROM
 PS.SDR_WEB_BSCRNC_1DAY SDR
 INNER JOIN (SELECT
 BSCRNC_ID,
 BSCRNC_NAME,
 ACCESS_TYPE,
 ACCESS_TYPE_ID
 FROM
 nethouse.DIM_LOC_BSCRNC
 GROUP BY
 BSCRNC_ID,
 BSCRNC_NAME,
 ACCESS_TYPE,
 ACCESS_TYPE_ID) DIM
 ON SDR.BSCRNC_ID = DIM.BSCRNC_ID
 AND DIM.ACCESS_TYPE_ID IN (0,1,2)
 INNER JOIN nethouse.DIM_RAT_MAPPING RAT
 ON (RAT.RAT = SDR.RAT)
 WHERE
 ((STARTTIME >= 1461340800
 AND STARTTIME < 1461427200))
 AND RAT.ACCESS_TYPE_ID IN (0,1,2)
 and SDR.BSCRNC_ID is not null
 GROUP BY
 STTIME)) A;

Figure 13-22 shows the execution plan.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 534

Figure 13-22 Adding NOT NULL for JOIN columns (2)

13.5.4 Case: Pushing Down Sort Operations to DNs
In an execution plan, more than 95% of the execution time is spent on window
agg performed on the CN. In this case, sum is performed for the two columns
separately, and then another sum is performed for the separate sum results of the
two columns. After this, trunc and sorting are performed in sequence. You can try
to rewrite the statement into a subquery to push down the sorting operations.

Before optimization
The table structure is as follows:

CREATE TABLE public.test(imsi int,L4_DW_THROUGHPUT int,L4_UL_THROUGHPUT int)
with (orientation = column) DISTRIBUTE BY hash(imsi);

The query statements are as follows:

SELECT COUNT(1) over() AS DATACNT,
IMSI AS IMSI_IMSI,
CAST(TRUNC(((SUM(L4_UL_THROUGHPUT) + SUM(L4_DW_THROUGHPUT))), 0) AS
DECIMAL(20)) AS TOTAL_VOLOME_KPIID
FROM public.test AS test
GROUP BY IMSI
ORDER BY TOTAL_VOLOME_KPIID DESC LIMIT 10;

The execution plan is as follows:
QUERY PLAN
--
--
 id | operation | A-time | A-rows | E-rows | E-distinct | Peak Memory | E-
memory | A-width | E-width | E-costs
 ----+--+------------------+---------+---------+------------+--------------
+--------------+---------+---------+----------
 1 | -> Row Adapter | 2862.008 | 10 | 10 | | 31KB |
| | 28 | 48360.42
 2 | -> Vector Limit | 2861.969 | 10 | 10 | | 8KB |
| | 28 | 48360.42
 3 | -> Vector Sort | 2861.946 | 10 | 1000000 | | 479KB
| | | 28 | 50860.39
 4 | -> Vector WindowAgg | 2166.759 | 1000000 | 1000000 | | 69987KB
| | | 28 | 26750.75
 5 | -> Vector Streaming (type: GATHER) | 136.813 | 1000000 | 1000000 | |
208KB | | | 28 | 15500.75
 6 | -> Vector Sonic Hash Aggregate | [71.374, 73.640] | 1000000 | 1000000 | | [14MB,
14MB] | 96MB(2919MB) | [31,31] | 28 | 15032.00
 7 | -> CStore Scan on public.test | [2.957, 2.994] | 1000000 | 1000000 | | [1MB,
1MB] | 1MB | | 12 | 1282.00

As we can see, both window agg and sort are performed on the CN, which is
time consuming.

After optimization
Modify the statement to a subquery statement, as shown below:

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 535

SELECT COUNT(1) over() AS DATACNT, IMSI_IMSI, TOTAL_VOLOME_KPIID
FROM (SELECT IMSI AS IMSI_IMSI,
CAST(TRUNC(((SUM(L4_UL_THROUGHPUT) + SUM(L4_DW_THROUGHPUT))),
0) AS DECIMAL(20)) AS TOTAL_VOLOME_KPIID
FROM public.test AS test
GROUP BY IMSI
ORDER BY TOTAL_VOLOME_KPIID DESC LIMIT 10);

Perform sum on the trunc results of the two columns, take it as a subquery, and
then perform window agg for the subquery to push down the sorting operation
to DNs, as shown below:

 QUERY PLAN
--
--
 id | operation | A-time | A-rows | E-rows | E-distinct | Peak
Memory | E-memory | A-width | E-width | E-costs
 ----+--+--------------------+---------+---------+------------
+----------------+--------------+---------+---------+----------
 1 | -> Row Adapter | 955.277 | 10 | 5 | | 31KB
| | | 24 | 25843.13
 2 | -> Vector WindowAgg | 955.261 | 10 | 5 | | 1572KB
| | | 24 | 25843.13
 3 | -> Vector Streaming (type: GATHER) | 955.015 | 10 | 10 | |
127KB | | | 24 | 25843.07
 4 | -> Vector Limit | [0.018, 0.018] | 10 | 10 | | [8KB, 8KB] |
1MB | | 28 | 25836.97
 5 | -> Vector Streaming(type: BROADCAST) | [0.014, 0.014] | 20 | 20 | |
[719KB, 719KB] | 2MB | | 28 | 25837.12
 6 | -> Vector Limit | [927.730, 934.283] | 20 | 20 | | [8KB, 8KB]
| 1MB | | 28 | 25836.85
 7 | -> Vector Sort | [927.720, 934.269] | 20 | 1000000 | | [463KB,
463KB] | 16MB | [32,32] | 28 | 27086.82
 8 | -> Vector Sonic Hash Aggregate | [456.841, 461.077] | 1000000 | 1000000 | |
[15MB, 15MB] | 96MB(2916MB) | [31,31] | 28 | 15032.00
 9 | -> CStore Scan on public.test | [2.959, 3.014] | 1000000 | 1000000 | | [1MB,
1MB] | 1MB | | 12 | 1282.00

The optimized SQL statement greatly improves the performance by reducing the
execution time from 2.862s to 0.955s. Note that the optimization result in this
example is for reference only. Due to the uncertainty of WindowAgg, the
optimized result set is related to the actual service.

13.5.5 Case: Configuring cost_param for Better Query
Performance

The cost_param parameter is used to control use of different estimation methods
in specific customer scenarios, allowing estimated values to be close to onsite
values. This parameter can control various methods simultaneously by performing
AND (&) operations on the bit for each method. A method is selected if its value is
not 0.

Scenario 1: Before Optimization

If bit0 of cost_param is set to 1, an improved mechanism is used for estimating
the selection rate of non-equi-joins. This method is more accurate for estimating
the selection rate of joins between two identical tables. The following example
describes the optimization scenario when bit0 of cost_param is set to 1. In
V300R002C00 and later, cost_param & 1=0 is not used. That is, an optimized
formula is selected for calculation.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 536

NO TE

The selection rate indicates the percentage for which the number of rows meeting the join
conditions account of the JOIN results when the JOIN relationship is established between
two tables.

The table structure is as follows:

CREATE TABLE LINEITEM
(
L_ORDERKEY BIGINT NOT NULL
, L_PARTKEY BIGINT NOT NULL
, L_SUPPKEY BIGINT NOT NULL
, L_LINENUMBER BIGINT NOT NULL
, L_QUANTITY DECIMAL(15,2) NOT NULL
, L_EXTENDEDPRICE DECIMAL(15,2) NOT NULL
, L_DISCOUNT DECIMAL(15,2) NOT NULL
, L_TAX DECIMAL(15,2) NOT NULL
, L_RETURNFLAG CHAR(1) NOT NULL
, L_LINESTATUS CHAR(1) NOT NULL
, L_SHIPDATE DATE NOT NULL
, L_COMMITDATE DATE NOT NULL
, L_RECEIPTDATE DATE NOT NULL
, L_SHIPINSTRUCT CHAR(25) NOT NULL
, L_SHIPMODE CHAR(10) NOT NULL
, L_COMMENT VARCHAR(44) NOT NULL
) with (orientation = column, COMPRESSION = MIDDLE) distribute by hash(L_ORDERKEY);

CREATE TABLE ORDERS
(
O_ORDERKEY BIGINT NOT NULL
, O_CUSTKEY BIGINT NOT NULL
, O_ORDERSTATUS CHAR(1) NOT NULL
, O_TOTALPRICE DECIMAL(15,2) NOT NULL
, O_ORDERDATE DATE NOT NULL
, O_ORDERPRIORITY CHAR(15) NOT NULL
, O_CLERK CHAR(15) NOT NULL
, O_SHIPPRIORITY BIGINT NOT NULL
, O_COMMENT VARCHAR(79) NOT NULL
)with (orientation = column, COMPRESSION = MIDDLE) distribute by hash(O_ORDERKEY);

The query statements are as follows:

explain verbose select
count(*) as numwait
from
lineitem l1,
orders
where
o_orderkey = l1.l_orderkey
and o_orderstatus = 'F'
and l1.l_receiptdate > l1.l_commitdate
and not exists (
select
*
from
lineitem l3
where
l3.l_orderkey = l1.l_orderkey
and l3.l_suppkey <> l1.l_suppkey
and l3.l_receiptdate > l3.l_commitdate
)
order by
numwait desc;

The following figure shows the execution plan. (When verbose is used, distinct is
added for column selection which is controlled by cost off/on. The hash join rows
show the estimated number of distinct values and the other rows do not.)

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 537

Scenario 1: After Optimization
These queries are from Anti Join connected in the lineitem table. When
cost_param & bit0 is 0, the estimated number of Anti Join rows greatly differs
from that of the actual number of rows, compromising the query performance.
You can estimate the number of Anti Join rows more accurately by setting
cost_param & bit0 to 1 to improve the query performance. The optimized
execution plan is as follows:

Scenario 2: Before Optimization
If bit1 is set to 1 (set cost_param=2), the selection rate is estimated based on
multiple filter criteria. The lowest selection rate among all filter criteria, but not
the product of the selection rates for two tables under a specific filter criterion, is
used as the total selection rate. This method is more accurate when a close
correlation exists between the columns to be filtered. The following example
describes the optimization scenario when bit1 of cost_param is set to 1.

The table structure is as follows:

CREATE TABLE NATION
(
N_NATIONKEYINT NOT NULL
, N_NAMECHAR(25) NOT NULL
, N_REGIONKEYINT NOT NULL
, N_COMMENTVARCHAR(152)
) distribute by replication;
CREATE TABLE SUPPLIER
(
S_SUPPKEYBIGINT NOT NULL
, S_NAMECHAR(25) NOT NULL
, S_ADDRESSVARCHAR(40) NOT NULL
, S_NATIONKEYINT NOT NULL
, S_PHONECHAR(15) NOT NULL
, S_ACCTBALDECIMAL(15,2) NOT NULL
, S_COMMENTVARCHAR(101) NOT NULL

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 538

) distribute by hash(S_SUPPKEY);
CREATE TABLE PARTSUPP
(
PS_PARTKEYBIGINT NOT NULL
, PS_SUPPKEYBIGINT NOT NULL
, PS_AVAILQTYBIGINT NOT NULL
, PS_SUPPLYCOSTDECIMAL(15,2)NOT NULL
, PS_COMMENTVARCHAR(199) NOT NULL
)distribute by hash(PS_PARTKEY);

The query statements are as follows:

set cost_param=2;
explain verbose select
nation,
sum(amount) as sum_profit
from
(
select
n_name as nation,
l_extendedprice * (1 - l_discount) - ps_supplycost * l_quantity as amount
from
supplier,
lineitem,
partsupp,
nation
where
s_suppkey = l_suppkey
and ps_suppkey = l_suppkey
and ps_partkey = l_partkey
and s_nationkey = n_nationkey
) as profit
group by nation
order by nation;

When bit1 of cost_param is 0, the execution plan is shown as follows:

Scenario 2: After Optimization

In the preceding queries, the hash join criteria of the supplier, lineitem, and
partsupp tables are setting lineitem.l_suppkey to supplier.s_suppkey and
lineitem.l_partkey to partsupp.ps_partkey. Two filter criteria exist in the hash
join conditions. lineitem.l_suppkey in the first filter criteria and
lineitem.l_partkey in the second filter criteria are two columns with strong
relationship of the lineitem table. In this situation, when you estimate the rate of
the hash join conditions, if cost_param & bit1 is 0, the selection rate is estimated
based on multiple filter criteria. The lowest selection rate among all filter criteria,
but not the product of the selection rates for two tables under a specific filter
criterion, is used as the total selection rate. This method is more accurate when a

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 539

close correlation exists between the columns to be filtered. The plan after
optimization is shown as follows:

13.5.6 Case: Adjusting the Partial Clustering Key
Partial Cluster Key (PCK) is an index technology that uses min/max indexes to
quickly scan base tables in column storage. Partial cluster key can specify multiple
columns, but you are advised to specify no more than two columns. It can be used
to accelerated queries on large column-store tables.

Before Optimization
Create a column-store table orders_no_pck without partial clustering (PCK). The
table is defined as follows:

Run the following SQL statement to query the execution plan of a point query:
EXPLAIN PERFORMANCE
SELECT * FROM orders_no_pck
WHERE o_orderkey = '13095143'
ORDER BY o_orderdate;

As shown in the following figure, the execution time is 48 ms. Check Datanode
Information. It is found that the filter time is 19 ms and the CUNone ratio is 0.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 540

After Optimization

The created column-store table orders_pck is defined as follows:

Use ALTER TABLE to set the o_orderkey field to PCK:

Run the following SQL statement to query the execution plan of the same point
query SQL statement again:

EXPLAIN PERFORMANCE
SELECT * FROM orders_pck
WHERE o_orderkey = '13095143'
ORDER BY o_orderdate;

As shown in the following figure, the execution time is 5 ms. Check Datanode
Information. It is found that the filter time is 0.5 ms and the CUNone ratio is 82.
The higher the CUNone ratio, the higher performance that the PCK will bring.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 541

13.5.7 Case: Adjusting the Table Storage Mode in a Medium
Table

In GaussDB(DWS), row-store tables use the row execution engine, and column-
store tables use the column execution engine. If both row-store table and column-
store tables exist in a SQL statement, the system will automatically select the row
execution engine. The performance of a column execution engine (except for the
indexscan related operators) is much better than that of a row execution engine.
Therefore, a column-store table is recommended. This is important for some
medium result set dumping tables, and you need to select a proper table storage
type.

Before Optimization
During the test at a site, if the following execution plan is performed, the
customer expects that the performance can be improved and the result can be
returned within 3s.

After Optimization
It is found that the row engine is used after analysis, because both the temporary
plan table input_acct_id_tbl and the medium result dumping table
row_unlogged_table use a row-store table.

After the two tables are changed into column-store tables, the system
performance is improved and the result is returned by 1.6s.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 542

13.5.8 Case: Reconstructing Partition Tables
Partitioning refers to splitting what is logically one large table into smaller
physical pieces based on specific schemes. The table based on the logic is called a
partitioned table, and a physical piece is called a partition. Generally, partitioning
is applied to tables that have obvious ranges. Partitions on such tables allow
scanning on a small part of data, improving the query performance.

During query, partition pruning is used to minimize bottom-layer data scanning to
narrow down the overall scope of scanning in a table. Partition pruning means
that the optimizer can automatically extract partitions to be scanned based on the
partition key specified in the FROM and WHERE statements. This avoids full table
scanning, reduces the number of data blocks to be scanned, and improves
performance.

Before Optimization

Create a non-partition table orders_no_part. The table definition is as follows:

Run the following SQL statement to query the execution plan of the non-partition
table:

EXPLAIN PERFORMANCE
SELECT count(*) FROM orders_no_part WHERE
o_orderdate >= '1996-01-01 00:00:00'::timestamp(0);

As shown in the following figure, the execution time is 73 milliseconds, and the
full table scanning time is 44 to 45 milliseconds.

After Optimization

Create a partitioned table orders. The table is defined as follows:

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 543

Run the SQL statement again to query the execution plan of the partitioned table.
The execution time is 40 ms, in which the table scanning time is only 13 ms. The
smaller the value of Iterations, the better the partition pruning effect.

EXPLAIN PERFORMANCE
SELECT count(*) FROM orders_no_part WHERE
o_orderdate >= '1996-01-01 00:00:00'::timestamp(0);

As shown in the following figure, the execution time is 40 milliseconds, and the
table scanning time is only 13 milliseconds. A smaller Iterations value indicates a
better partition pruning effect.

13.5.9 Case: Adjusting the GUC Parameter best_agg_plan

Symptom
The t1 table is defined as follows:

create table t1(a int, b int, c int) distribute by hash(a);

Assume that the distribution column of the result set provided by the agg lower-
layer operator is setA, and the group by column of the agg operation is setB, the
agg operations can be performed in two scenarios in the stream framework.

Scenario 1: setA is a subset of setB.

In this scenario, the aggregation result of the lower-layer result set is the correct
result, which can be directly used by the upper-layer operator. For details, see the
following figure:

explain select a, count(1) from t1 group by a;
 id | operation | E-rows | E-width | E-costs
----+------------------------------+--------+---------+---------
 1 | -> Streaming (type: GATHER) | 30 | 4 | 15.56
 2 | -> HashAggregate | 30 | 4 | 14.31
 3 | -> Seq Scan on t1 | 30 | 4 | 14.14
(3 rows)

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 544

Scenario 2: setA is not a subset of setB.

In this scenario, the Stream execution framework is classified into the following
three plans:

hashagg+gather(redistribute)+hashagg

redistribute+hashagg(+gather)

hashagg+redistribute+hashagg(+gather)

GaussDB(DWS) provides the guc parameter best_agg_plan to intervene the
execution plan, and forces the plan to generate the corresponding execution plan.
This parameter can be set to 0, 1, 2, and 3.

● When the value is set to 1, the first plan is forcibly generated.
● When the value is set to 2 and if the group by column can be redistributed,

the second plan is forcibly generated. Otherwise, the first plan is generated.
● When the value is set to 3 and if the group by column can be redistributed,

the third plan is generated. Otherwise, the first plan is generated.
● When the value is set to 0, the query optimizer chooses the most optimal

plan by the three preceding plans' evaluation cost.

Possible impacts are as follows:

set best_agg_plan to 1;
SET
explain select b,count(1) from t1 group by b;
 id | operation | E-rows | E-width | E-costs
----+---------------------------------+--------+---------+---------
 1 | -> HashAggregate | 8 | 4 | 15.83
 2 | -> Streaming (type: GATHER) | 25 | 4 | 15.83
 3 | -> HashAggregate | 25 | 4 | 14.33
 4 | -> Seq Scan on t1 | 30 | 4 | 14.14
(4 rows)
set best_agg_plan to 2;
SET
explain select b,count(1) from t1 group by b;
 id | operation | E-rows | E-width | E-costs
----+---+--------+---------+---------
 1 | -> Streaming (type: GATHER) | 30 | 4 | 15.85
 2 | -> HashAggregate | 30 | 4 | 14.60
 3 | -> Streaming(type: REDISTRIBUTE) | 30 | 4 | 14.45
 4 | -> Seq Scan on t1 | 30 | 4 | 14.14
(4 rows)
set best_agg_plan to 3;
SET
explain select b,count(1) from t1 group by b;
 id | operation | E-rows | E-width | E-costs
----+---+--------+---------+---------
 1 | -> Streaming (type: GATHER) | 30 | 4 | 15.84
 2 | -> HashAggregate | 30 | 4 | 14.59
 3 | -> Streaming(type: REDISTRIBUTE) | 25 | 4 | 14.59
 4 | -> HashAggregate | 25 | 4 | 14.33
 5 | -> Seq Scan on t1 | 30 | 4 | 14.14
(5 rows)

Summary
Generally, the optimizer chooses an optimal execution plan, but the cost
estimation, especially that of the intermediate result set, has large deviations,
which may result in large deviations in agg calculation. In this case, you need to
use best_agg_plan to adjust the agg calculation model.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 545

When the aggregation convergence ratio is very small, that is, the number of
result sets does not become small obviously after the agg operation (5 times is a
critical point), you can select the redistribute+hashagg or hashagg+redistribute
+hashagg execution mode.

13.5.10 Case: Rewriting SQL Statements and Eliminating
Prune Interference

A filter criterion that contains the expression of partition key cannot be used for
pruning. As a result, the query statement scans almost all data in the partitioned
table.

Before Optimization
t_ddw_f10_op_cust_asset_mon indicates the partitioned table. year_mth
indicates the partition key. This field is an integer consisting of the year and mth
values.

The following figure shows the tested SQL statements.

SELECT
 count(1)
FROM t_ddw_f10_op_cust_asset_mon b1
WHERE b1.year_mth < substr('20200722',1 ,6)
AND b1.year_mth + 1 >= substr('20200722',1 ,6);

The test result shows that the table scan of the SQL statement takes 10 seconds.
The execution plan of the SQL statement is as follows.

EXPLAIN (ANALYZE ON, VERBOSE ON)
SELECT
 count(1)
FROM t_ddw_f10_op_cust_asset_mon b1
WHERE b1.year_mth < substr('20200722',1 ,6)
AND b1.year_mth + 1 >= cast(substr('20200722',1 ,6) AS int);
 QUERY PLAN
--

 id | operation | A-time | A-rows | E-rows | E-
distinct | Peak Memory | E-memory | A-width | E-width | E-costs
 ----+---+-----------------------+----------
+----------+------------+--------------+----------+---------+---------+-----------
 1 | -> Aggregate | 10662.260 | 1 | 1 |
| 32KB | | | 8 | 593656.42
 2 | -> Streaming (type: GATHER) | 10662.172 | 4 | 4
| | 136KB | | | 8 | 593656.42
 3 | -> Aggregate | [9692.785, 10656.068] | 4 | 4
| | [24KB, 24KB] | 1MB | | 8 | 593646.42
 4 | -> Partition Iterator | [8787.198, 9629.138] | 16384000 |
32752850 | | [16KB, 16KB] | 1MB | | 0 | 573175.88
 5 | -> Partitioned Seq Scan on public.t_ddw_f10_op_cust_asset_mon b1 | [8365.655, 9152.115] |
16384000 | 32752850 | | [32KB, 32KB] | 1MB | | 0 | 573175.88

 SQL Diagnostic Information

 Partitioned table unprunable Qual
 table public.t_ddw_f10_op_cust_asset_mon b1:
 left side of expression "((year_mth + 1) > 202008)" invokes function-call/type-conversion

 Predicate Information (identified by plan id)
 --
 4 --Partition Iterator
 Iterations: 6
 5 --Partitioned Seq Scan on public.t_ddw_f10_op_cust_asset_mon b1

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 546

 Filter: ((b1.year_mth < 202007::bigint) AND ((b1.year_mth + 1) >= 202007))
 Rows Removed by Filter: 81920000
 Partitions Selected by Static Prune: 1..6

After Optimization

After analyzing the execution plan of the statement and checking the SQL self-
diagnosis information in the execution plan, the following diagnosis information is
found:

 SQL Diagnostic Information
 --
 Partitioned table unprunable Qual
 table public.t_ddw_f10_op_cust_asset_mon b1:
 left side of expression "((year_mth + 1) > 202008)" invokes function-call/type-conversion

The filter criterion contains the expression (year_mth + 1) > 202008. A filter
criterion that contains the expression of partition key cannot be used for pruning.
As a result, the query statement scans almost all data in the partitioned table.

Compared with the original SQL statement, the expression (year_mth + 1) >
202008 is derived from the expression b1.year_mth + 1 >
substr('20200822',1 ,6). Based on the diagnosis information, the SQL statement
is modified as follows.

SELECT
 count(1)
FROM t_ddw_f10_op_cust_asset_mon b1
WHERE b1.year_mth <= substr('20200822',1 ,6)
AND b1.year_mth > cast(substr('20200822',1 ,6) AS int) - 1;

After the modification, the SQL statement execution information is as follows. The
alarm indicating that the pruning is not performed is cleared. After the pruning,
the score of the partition to be scanned is 1, and the execution time is shortened
from 10 seconds to 3 seconds.

EXPLAIN (analyze ON, verbose ON)
SELECT
 count(1)
FROM t_ddw_f10_op_cust_asset_mon b1
WHERE b1.year_mth < substr('20200722',1 ,6)
AND b1.year_mth >= cast(substr('20200722',1 ,6) AS int) - 1;
 QUERY PLAN
--
--
 id | operation | A-time | A-rows | E-rows | E-
distinct | Peak Memory | E-memory | A-width | E-width | E-costs
 ----+---+----------------------+----------
+----------+------------+--------------+----------+---------+---------+-----------
 1 | -> Aggregate | 3009.796 | 1 | 1 | |
32KB | | | 8 | 501541.70
 2 | -> Streaming (type: GATHER) | 3009.718 | 4 | 4
| | 136KB | | | 8 | 501541.70
 3 | -> Aggregate | [2675.509, 3003.298] | 4 | 4
| | [24KB, 24KB] | 1MB | | 8 | 501531.70
 4 | -> Partition Iterator | [1820.725, 2053.836] | 16384000 |
16380697 | | [16KB, 16KB] | 1MB | | 0 | 491293.75
 5 | -> Partitioned Seq Scan on public.t_ddw_f10_op_cust_asset_mon b1 | [1420.972, 1590.083] |
16384000 | 16380697 | | [16KB, 16KB] | 1MB | | 0 | 491293.75

 Predicate Information (identified by plan id)
 --
 4 --Partition Iterator
 Iterations: 1
 5 --Partitioned Seq Scan on public.t_ddw_f10_op_cust_asset_mon b1

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 547

 Filter: ((b1.year_mth < 202007::bigint) AND (b1.year_mth >= 202006))
 Partitions Selected by Static Prune: 6

13.5.11 Case: Rewriting SQL Statements and Deleting in-
clause

Before Optimization
in-clause/any-clause is a common SQL statement constraint. Sometimes, the
clause following in or any is a constant. For example:

select
count(1)
from calc_empfyc_c1_result_tmp_t1
where ls_pid_cusr1 in ('20120405', '20130405');

or

select
count(1)
from calc_empfyc_c1_result_tmp_t1
where ls_pid_cusr1 in any('20120405', '20130405');

Some special usages are as follows:

SELECT
ls_pid_cusr1,COALESCE(max(round((current_date-bthdate)/365)),0)
FROM calc_empfyc_c1_result_tmp_t1 t1,p10_md_tmp_t2 t2
WHERE t1.ls_pid_cusr1 = any(values(id),(id15))
GROUP BY ls_pid_cusr1;

Where id and id15 are columns of p10_md_tmp_t2. ls_pid_cusr1 = any(values(id),
(id15)) equals t1. ls_pid_cusr1 = id or t1. ls_pid_cusr1 = id15.

Therefore, join-condition is essentially an inequality, and nestloop must be used
for this join operation. The execution plan is as follows:

After Optimization
The test result shows that both result sets are too large. As a result, nestloop is
time-consuming with more than one hour to return results. Therefore, the key to
performance optimization is to eliminate nestloop, using more efficient hashjoin.
From the perspective of semantic equivalence, the SQL statements can be written
as follows:

select
ls_pid_cusr1,COALESCE(max(round(ym/365)),0)
from

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 548

(
 (
 SELECT
 ls_pid_cusr1,(current_date-bthdate) as ym
 FROM calc_empfyc_c1_result_tmp_t1 t1,p10_md_tmp_t2 t2
 WHERE t1.ls_pid_cusr1 = t2.id and t1.ls_pid_cusr1 != t2.id15
)
 union all
 (
 SELECT
 ls_pid_cusr1,(current_date-bthdate) as ym
 FROM calc_empfyc_c1_result_tmp_t1 t1,p10_md_tmp_t2 t2
 WHERE t1.ls_pid_cusr1 = id15
)
)
GROUP BY ls_pid_cusr1;

Note: Use UNION ALL instead of UNION if possible. UNION eliminates duplicate
rows while merging two result sets but UNION ALL merges the two result sets
without deduplication. Therefore, replace UNION with UNION ALL if you are sure
that the two result sets do not contain duplicate rows based on the service logic.

The optimized SQL queries consist of two equivalent join subqueries, and each
subquery can be used for hashjoin in this scenario. The optimized execution plan is
as follows:

Before the optimization, no result is returned for more than 1 hour. After the
optimization, the result is returned within 7s.

13.5.12 Case: Setting Partial Cluster Keys
You can add PARTIAL CLUSTER KEY(column_name[,...]) to the definition of a
column-store table to set one or more columns of this table as partial cluster keys.
In this way, each 70 CUs (4.2 million rows) will be sorted based on the cluster keys
by default during data import and the value range is narrowed down for each of
the new 70 CUs. If the where condition in the query statement contains these
columns, the filtering performance will be improved.

Before Optimization
The partial cluster key is not used. The table is defined as follows:
CREATE TABLE lineitem
(
L_ORDERKEY BIGINT NOT NULL
, L_PARTKEY BIGINT NOT NULL
, L_SUPPKEY BIGINT NOT NULL
, L_LINENUMBER BIGINT NOT NULL
, L_QUANTITY DECIMAL(15,2) NOT NULL
, L_EXTENDEDPRICE DECIMAL(15,2) NOT NULL
, L_DISCOUNT DECIMAL(15,2) NOT NULL
, L_TAX DECIMAL(15,2) NOT NULL
, L_RETURNFLAG CHAR(1) NOT NULL
, L_LINESTATUS CHAR(1) NOT NULL

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 549

, L_SHIPDATE DATE NOT NULL
, L_COMMITDATE DATE NOT NULL
, L_RECEIPTDATE DATE NOT NULL
, L_SHIPINSTRUCT CHAR(25) NOT NULL
, L_SHIPMODE CHAR(10) NOT NULL
, L_COMMENT VARCHAR(44) NOT NULL
)
with (orientation = column)
distribute by hash(L_ORDERKEY);

select
sum(l_extendedprice * l_discount) as revenue
from
lineitem
where
l_shipdate >= '1994-01-01'::date
and l_shipdate < '1994-01-01'::date + interval '1 year'
and l_discount between 0.06 - 0.01 and 0.06 + 0.01
and l_quantity < 24;

After the data is imported, perform the query and check the execution time.

Figure 13-23 Partial cluster keys not used

Figure 13-24 CU loading without partial cluster keys

After Optimization
In the where condition, both the l_shipdate and l_quantity columns have a few
distinct values, and their values can be used for min/max filtering. Therefore,
modify the table definition as follows:

CREATE TABLE lineitem
(
L_ORDERKEY BIGINT NOT NULL
, L_PARTKEY BIGINT NOT NULL
, L_SUPPKEY BIGINT NOT NULL
, L_LINENUMBER BIGINT NOT NULL
, L_QUANTITY DECIMAL(15,2) NOT NULL
, L_EXTENDEDPRICE DECIMAL(15,2) NOT NULL
, L_DISCOUNT DECIMAL(15,2) NOT NULL
, L_TAX DECIMAL(15,2) NOT NULL
, L_RETURNFLAG CHAR(1) NOT NULL
, L_LINESTATUS CHAR(1) NOT NULL
, L_SHIPDATE DATE NOT NULL
, L_COMMITDATE DATE NOT NULL
, L_RECEIPTDATE DATE NOT NULL
, L_SHIPINSTRUCT CHAR(25) NOT NULL
, L_SHIPMODE CHAR(10) NOT NULL
, L_COMMENT VARCHAR(44) NOT NULL
, partial cluster key(l_shipdate, l_quantity)
)
with (orientation = column)
distribute by hash(L_ORDERKEY);

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 550

Import the data again, perform the query, and check the execution time.

Figure 13-25 Partial cluster keys used

Figure 13-26 CU loading with partial cluster keys

After partial cluster keys are used, the execution time of 5-- CStore Scan on
public.lineitem decreases by 1.2s because 84 CUs are filtered out.

Optimization
● Select partial cluster keys.

– The following data types support cluster keys: character varying(n),
varchar(n), character(n), char(n), text, nvarchar2, timestamp with time
zone, timestamp without time zone, date, time without time zone, and
time with time zone.

– Smaller number of distinct values in a partial cluster key generates higher
filtering performance.

– Columns that can filter out larger amount of data is preferentially
selected as partial cluster keys.

– If multiple columns are selected as partial cluster keys, the columns are
used in sequence to sort data. You are advised to select a maximum of
three columns.

● Modify parameters to reduce the impact of partial cluster keys on the import
performance.
After partial cluster keys are used, data will be sorted when they are
imported, affecting the import performance. If all the data can be sorted in
the memory, the keys have little impact on import. If some data cannot be
sorted in the memory and is written into a temporary file for sorting, the
import performance will be greatly affected.
The memory used for sorting is specified by the psort_work_mem parameter.
You can set it to a larger value so that the sorting has less impact on the
import performance.
The volume of data to be sorted is specified by the PARTIAL_CLUSTER_ROWS
parameter of the table. Decreasing the value of this parameter reduces the
amount of data to be sorted at a time. PARTIAL_CLUSTER_ROWS is usually
used along with the MAX_BATCHROW parameter. The value of
PARTIAL_CLUSTER_ROWS must be an integer multiple of the
MAX_BATCHROW value. MAX_BATCHROW specifies the maximum number
of rows in a CU.

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 551

13.5.13 Case: Converting from NOT IN to NOT EXISTS
nestloop anti join must be used to implement NOT IN, while you can use Hash
anti join to implement NOT EXISTS. If no NULL value exists in the JOIN column,
NOT IN is equivalent to NOT EXISTS. Therefore, if you are sure that no NULL
value exists, you can convert NOT IN to NOT EXISTS to generate hash joins and
to improve the query performance.

Before Optimization
Create two base tables t1 and t2.

CREATE TABLE t1(a int, b int, c int not null) WITH(orientation=row);
CREATE TABLE t2(a int, b int, c int not null) WITH(orientation=row);

Run the following SQL statement to query the NOT IN execution plan:

EXPLAIN VERBOSE SELECT * FROM t1 WHERE t1.c NOT IN (SELECT t2.c FROM t2);

The following figure shows the statement output.

According to the returned result, nest loops are used. As the OR operation result
of NULL and any value is NULL,

t1.c NOT IN (SELECT t2.c FROM t2)

the preceding condition expression is equivalent to:

t1.c <> ANY(t2.c) AND t1.c IS NOT NULL AND ANY(t2.c) IS NOT NULL

After Optimization
The query can be modified as follows:

SELECT * FROM t1 WHERE NOT EXISTS (SELECT * FROM t2 WHERE t2.c = t1.c);

Run the following statement to query the execution plan of NOT EXISTS:

EXPLAIN VERBOSE SELECT * FROM t1 WHERE NOT EXISTS (SELECT 1 FROM t2 WHERE t2.c = t1.c);

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 552

Data Warehouse Service
Developer Guide 13 GaussDB(DWS) Performance Tuning

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 553

14 GaussDB(DWS) System Catalogs and
Views

14.1 Overview of System Catalogs and System Views
System catalogs are used by GaussDB(DWS) to store structure metadata. They are
a core component the GaussDB(DWS) database system and provide control
information for the database system. These system catalogs contain cluster
installation information and information about various queries and processes in
GaussDB(DWS). You can collect information about the database by querying the
system catalog.

System views provide ways to query system catalogs and internal database status.
If some columns in one or more tables in a database are frequently searched for,
an administrator can define a view for these columns, and then users can directly
access these columns in the view without entering search criteria. A view is
different from a basic table. It is only a virtual object rather than a physical one. A
database only stores the definition of a view and does not store its data. The data
is still stored in the original base table. If data in the base table changes, the data
in the view changes accordingly. In this sense, a view is like a window through
which users can know their interested data and data changes in the database. A
view is triggered every time it is referenced.

In separation of duty, non-administrators have no permission to view system
catalogs and views. In other scenarios, system catalogs and views are either visible
only to administrators or visible to all users. Some of the following system
catalogs and views have marked the need of administrator permissions. They are
accessible only to administrators.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 554

NO TICE

● Do not add, delete, or modify system catalogs or system views. Manual
modification or damage to system catalogs or system views may cause system
information inconsistency, system control exceptions, or even cluster
unavailability.

● System catalogs do not support toast and cannot be stored across pages. The
size of a page is 8 KB, and the length of each field in the system catalog must
be less than 8 KB.

14.2 System Catalogs

14.2.1 GS_BLOCKLIST_QUERY
GS_BLOCKLIST_QUERY records job blocklist and exception information. This table
uses unique_sql_id as the unique index to collect statistics on job exception
information and record blocklist information. You can associate
GS_BLOCKLIST_QUERY with GS_WLM_SESSION_INFO to obtain the query
column and execution information of a job.

GaussDB(DWS) also provides the GS_BLOCKLIST_QUERY view for querying job
blocklist and exception information. This view can directly display the query
column. This view depends on GS_WLM_SESSION_INFO. If the
GS_WLM_SESSION_INFO table is large, the query may take a long time.

Table 14-1 GS_BLOCKLIST_QUERY columns

Name Type Referenc
e

Description

unique_sql_id bigint N/A Query ID generated based on the
query parsing tree.

block_list boolean N/A Check whether a job is in the
blocklist.

except_num integer N/A Query the number of job
exceptions.

except_time timestamp N/A Query the time when the last job
exception occurred.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 555

NO TE

● The schema of this system catalog is dbms_om.
● This system catalog contains unique indexes, which are distributed on DNs in hash

mode. The distributed column is unique_sql_id.
● This system catalog can be queried only in the gaussdb database. If it is queried in other

databases, an error will be reported.
● The GS_BLOCKLIST_QUERY view is stored in pg_catalog.
● Generally, constant values are ignored during unique SQL ID calculation in DML

statements. However, constant values cannot be ignored in DDL, DCL, and parameter
setting statements. A unique_sql_id may correspond to one or more queries.

14.2.2 GS_BLOCKLIST_SQL
GS_BLOCKLIST_SQL records job blocklist and exception information. This table
uses sql_hash as the unique index to collect statistics on job exception
information and record blocklist information. You can associate
GS_BLOCKLIST_SQL with GS_WLM_SESSION_INFO to obtain the query column
and execution information of a job.

GaussDB(DWS) also provides the GS_BLOCKLIST_SQL view for querying job
blocklist and exception information. This view can directly display the query
column. This view depends on GS_WLM_SESSION_INFO. If the
GS_WLM_SESSION_INFO table is large, the query may take a long time.

This system catalog is supported only by clusters of version 9.1.0.200 or later.

Table 14-2 GS_BLOCKLIST_SQL columns

Name Type Referenc
e

Description

sql_hash text N/A sql_hash generated based on the
query parsing tree.

block_list boolean N/A Check whether a job is in the
blocklist.

except_num integer N/A Query the number of job
exceptions.

except_time timestamp N/A Query the time when the last job
exception occurred.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 556

NO TE

● The schema of this system catalog is dbms_om.
● This system catalog contains unique indexes, which are distributed on DNs in hash

mode. The distributed column is sql_hash.
● This system catalog can be queried only in the gaussdb database. If it is queried in

other databases, an error will be reported.
● The GS_BLOCKLIST_SQL view is stored in pg_catalog.
● Generally, constant values are ignored during sql_hash calculation in DML statements.

However, constant values cannot be ignored in DDL, DCL, and parameter setting
statements. A sql_hash may correspond to one or more queries.

14.2.3 GS_OBSSCANINFO
GS_OBSSCANINFO defines the OBS runtime information scanned in cluster
acceleration scenarios. Each record corresponds to a piece of runtime information
of a foreign table on OBS in a query.

Table 14-3 GS_OBSSCANINFO columns

Name Type Reference Description

query_id bigint - Specifies a query ID.

user_id text - Specifies a database user who
performs queries.

table_name text - Specifies the name of a foreign
table on OBS.

file_type text - Specifies the format of files
storing the underlying data.

time_stamp time_st
am

- Specifies the scanning start
time.

actual_time double - Specifies the scanning execution
time in seconds.

file_scanned bigint - Specifies the number of files
scanned.

data_size double - Specifies the size of data
scanned in bytes.

billing_info text - Specifies the reserved fields.

14.2.4 GS_RESPOOL_RESOURCE_HISTORY
The GS_RESPOOL_RESOURCE_HISTORY table records the historical monitoring
information about a resource pool on both CNs and DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 557

Table 14-4 GS_RESPOOL_RESOURCE_HISTORY columns

Name Type Description

timestamp timestamp Time when resource pool monitoring
information is persistently stored

nodegroup name Name of the logical cluster of the resource
pool. The default value is installation.

rpname name Resource pool name

cgroup name Name of the Cgroup associated with the
resource pool

ref_count int Number of jobs referenced by the resource
pool. The number is counted regardless of
whether the jobs are controlled by the resource
pool. This parameter is valid only on CNs.

fast_run int Number of running jobs in the fast lane of the
resource pool. This parameter is valid only on
CNs.

fast_wait int Number of jobs queued in the fast lane of the
resource pool. This parameter is valid only on
CNs.

fast_limit int Limit on the number of concurrent jobs in the
fast lane in a resource pool. This parameter is
valid only on CNs.

slow_run int Number of running jobs in the slow lane of the
resource pool. This parameter is valid only on
CNs.

slow_wait int Number of jobs queued in the slow lane of the
resource pool. This parameter is valid only on
CNs.

slow_limit int Limit on the number of concurrent jobs in the
slow lane in a resource pool. This parameter is
valid only on CNs.

used_cpu double Average number of CPUs used by the resource
pool in a 5s monitoring period. The value is
accurate to two decimal places.
● On a DN, it indicates the number of CPUs

used by the resource pool on the current
DN.

● On a CN, it indicates the total CPU usage of
resource pools on all DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 558

Name Type Description

cpu_limit int It indicates the upper limit of available CPUs
for resource pools. If the CPU share is limited,
this parameter indicates the available CPUs for
GaussDB(DWS). If the CPU limit is specified,
this parameter indicates the available CPUs for
associated Cgroups.
● On a DN, it indicates the upper limit of

available CPUs for the resource pool on the
current DN.

● On a CN, it indicates the total upper limit of
available CPUs for resource pools on all
DNs.

used_mem int Memory used by the resource pool, in MB.
● On a DN, it indicates the memory usage of

the resource pool on the current DN.
● On a CN, it indicates the total memory

usage of resource pools on all DNs.

estimate_me
m

int Estimated memory used by the jobs running in
the resource pools on the current CN. This
parameter is valid only on CNs.

mem_limit int Upper limit of available memory for the
resource pool (unit: MB).
● On a DN, it indicates the upper limit of

available memory for the resource pool on
the current DN.

● On a CN, it indicates the total upper limit of
available memory for resource pools on all
DNs.

read_kbytes bigint Number of logical read bytes in the resource
pool within a 5s monitoring period (unit: KB).
● On a DN, it indicates the number of logical

read bytes in the resource pool on the
current DN.

● On a CN, it indicates the total logical read
bytes of resource pools on all DNs.

write_kbytes bigint Number of logical write bytes in the resource
pool within a 5s monitoring period (unit: KB).
● On a DN, it indicates the number of logical

write bytes in the resource pool on the
current DN.

● On a CN, it indicates the total logical write
bytes of resource pools on all DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 559

Name Type Description

read_counts bigint Number of logical reads in the resource pool
within a 5s monitoring period.
● On a DN, it indicates the number of logical

reads in the resource pool on the current
DN.

● On a CN, it indicates the total number of
logical reads in resource pools on all DNs.

write_counts bigint Number of logical writes in the resource pool
within a 5s monitoring period.
● On a DN, it indicates the number of logical

writes in the resource pool on the current
DN.

● On a CN, it indicates the total number of
logical writes in resource pools on all DNs.

read_speed double Average rate of logical reads of the resource
pool in a 5s monitoring period, in KB/s.
● On a DN, it indicates the logical read rate of

the resource pool on the current DN.
● On a CN, it indicates the overall logical read

rate of resource pools on all DNs.

write_speed double Average rate of logical writes of resource pools
in a 5s monitoring period, in KB/s.
● On a DN, it indicates the logical write rate

of the resource pool on the current DN.
● On a CN, it indicates the overall logical

write rate of resource pools on all DNs.

send_speed double Average network sending rate of the resource
pool in a 5-second monitoring period, in KB/s.
● On a DN, it indicates the network sending

rate of the resource pool on the current DN.
● On a CN, it indicates that the cumulative

sum of the network sending rates of the
resource pool on all DNs.

recv_speed double Average network receiving rate of the resource
pool in a 5-second monitoring period, in KB/s.
● On a DN, it indicates the network receiving

rate of the resource pool on the current DN.
● On a CN, it indicates that the cumulative

sum of the network receiving rates of the
resource pool on all DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 560

14.2.5 GS_WLM_INSTANCE_HISTORY
The GS_WLM_INSTANCE_HISTORY system catalog stores information about
resource usage related to CN or DN instances. Each record in the system table
indicates the resource usage of an instance at a specific time point, including the
memory, number of CPU cores, disk I/O, physical I/O of the process, and logical
I/O of the process.

Table 14-5 GS_WLM_INSTANCE_HISTORY column

Name Type Description

instancena
me

text Instance name

timestamp timestamp with
time zone

Timestamp

used_cpu int CPU usage of an instance

free_mem int Unused memory of an instance (unit: MB)

used_mem int Used memory of an instance (unit: MB)

io_await real Specifies the io_wait value (average value
within 10 seconds) of the disk used by an
instance.

io_util real Specifies the io_util value (average value
within 10 seconds) of the disk used by an
instance.

disk_read real Specifies the disk read rate (average value
within 10 seconds) of an instance (unit: KB/s).

disk_write real The disk write rate (average value within 10
seconds) of an instance (unit: KB/s).

process_rea
d

bigint Specifies the read rate (excluding the number
of bytes read from the disk pagecache) of the
corresponding instance process that reads data
from a disk. (Unit: KB/s)

process_wri
te

bigint Specifies the write rate (excluding the number
of bytes written to the disk pagecache) of the
corresponding instance process that writes
data to a disk within 10 seconds. (Unit: KB/s)

logical_read bigint CN instance: N/A
DN instance: Specifies the logical read byte
rate of the instance in the statistical interval
(10 seconds). (Unit: KB/s)

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 561

Name Type Description

logical_writ
e

bigint CN instance: N/A
DN instance: Specifies the logical write byte
rate of the instance within the statistical
interval (10 seconds). (Unit: KB/s)

read_counts bigint CN instance: N/A
DN instance: Specifies the total number of
logical read operations of the instance in the
statistical interval (10 seconds).

write_count
s

bigint CN instance: N/A
DN instance: Specifies the total number of
logical write operations of the instance in the
statistical interval (10 seconds).

14.2.6 GS_WLM_OPERATOR_INFO
GS_WLM_OPERATOR_INFO records operators of completed jobs. The data is
dumped from the kernel to a system catalog. If the GUC parameter
enable_resource_record is set to on, the system imports records from
GS_WLM_OPERATOR_HISTORY to this system catalog every three minutes. You
are not advised to enable this function because it occupies storage space and
affects performance.

NO TE

● This system catalog's schema is dbms_om.

● The pg_catalog has the GS_WLM_OPERATOR_INFO view.

Table 14-6 GS_WLM_OPERATOR_INFO columns

Name Type Description

nodename text Name of the CN where the statement is
executed

queryid bigint Internal query_id used for statement
execution

pid bigint Backend thread ID

plan_node_id integer plan_node_id of the execution plan of a query

plan_node_nam
e

text Name of the operator corresponding to
plan_node_id

start_time timestamp
with time
zone

Time when an operator starts to process the
first data record

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 562

Name Type Description

duration bigint Total execution time of an operator. The unit
is ms.

query_dop integer Degree of parallelism (DOP) of the current
operator

estimated_rows bigint Number of rows estimated by the optimizer

tuple_processed bigint Number of elements returned by the current
operator

min_peak_mem
ory

integer Minimum peak memory used by the current
operator on all DNs. The unit is MB.

max_peak_me
mory

integer Maximum peak memory used by the current
operator on all DNs. The unit is MB.

average_peak_
memory

integer Average peak memory used by the current
operator on all DNs. The unit is MB.

memory_skew_
percent

integer Memory usage skew of the current operator
among DNs

min_spill_size integer Minimum spilled data among all DNs when a
spill occurs. The unit is MB. The default value
is 0.

max_spill_size integer Maximum spilled data among all DNs when a
spill occurs. The unit is MB. The default value
is 0.

average_spill_si
ze

integer Average spilled data among all DNs when a
spill occurs. The unit is MB. The default value
is 0.

spill_skew_perc
ent

integer DN spill skew when a spill occurs

min_cpu_time bigint Minimum execution time of the operator on
all DNs. The unit is ms.

max_cpu_time bigint Maximum execution time of the operator on
all DNs. The unit is ms.

total_cpu_time bigint Total execution time of the operator on all
DNs. The unit is ms.

cpu_skew_perce
nt

integer Skew of the execution time among DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 563

Name Type Description

warning text Warning. The following warnings are
displayed:
1. Sort/SetOp/HashAgg/HashJoin spill
2. Spill file size large than 256MB
3. Broadcast size large than 100MB
4. Early spill
5. Spill times is greater than 3
6. Spill on memory adaptive
7. Hash table conflict

14.2.7 GS_WLM_SESSION_INFO
GS_WLM_SESSION_INFO records load management information about a
completed job executed on all CNs. The data is dumped from the kernel to a
system catalog. If the GUC parameter enable_resource_record is set to on, the
system imports records from GS_WLM_SESSION_HISTORY to this system catalog
every three minutes. You are not advised to enable this function because it
occupies storage space and affects performance. For details about the columns,
see Table 14-156.

NO TE

● This system catalog's schema is dbms_om.

● This system catalog has a distribution column, the gaussdb column, in PostgreSQL
databases only, not other databases.

● The pg_catalog has the GS_WLM_SESSION_INFO view.

14.2.8 GS_WLM_USER_RESOURCE_HISTORY
The GS_WLM_USER_RESOURCE_HISTORY system catalog stores information
about resources used by users. The data of this table is stored on both CNs and
DNs. Each record in the system table indicates the resource usage of a user at a
time point, including the memory, number of CPU cores, storage space, temporary
space, operator spill space, logical I/O traffic, number of logical I/O times, and
logical I/O rate. The memory, CPU, and I/O monitoring items record only the
resource usage of complex jobs.

Data in the GS_WLM_USER_RESOURCE_HISTORY system table comes from the
PG_TOTAL_USER_RESOURCE_INFO view.

Table 14-7 GS_WLM_USER_RESOURCE_HISTORY column

Name Type Description

username text Username

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 564

Name Type Description

timestam
p

timestamp
with time
zone

Timestamp

used_me
mory

int Memory size used by a user, in MB.
● DN: The memory used by users on the current

DN is displayed.
● CN: The total memory usage of users on all DNs

is displayed.

total_me
mory

int Memory used by the resource pool, in MB. 0
indicates that the available memory is not limited
and depends on the maximum memory available
in the database (max_dynamic_memory). A
calculation formula is as follows:
total_memory = max_dynamic_memory *
parent_percent * user_percent
CN: The sum of maximum available memory on all
DNs is displayed.

used_cpu real Number of CPU cores in use

total_cpu int Total number of CPU cores of the Cgroup
associated with a user on the node

used_spac
e

bigint Used storage space (unit: KB)

total_spac
e

bigint Available storage space (unit: KB). -1 indicates that
the storage space is not limited.

used_tem
p_space

bigint Used temporary storage space (unit: KB)

total_tem
p_space

bigint Available temporary storage space (unit: KB). -1
indicates that the maximum temporary storage
space is not limited.

used_spill
_space

bigint Space occupied by operators spilled to disk (unit:
KB)

total_spill
_space

bigint Available storage space for operator spill to disk
(unit: KB). The value -1 indicates that the space is
not limited.

read_kbyt
es

bigint Byte traffic of read operations in a monitoring
period (unit: KB)

write_kby
tes

bigint Byte traffic of write operations in a monitoring
period (unit: KB)

read_cou
nts

bigint Number of read operations in a monitoring period.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 565

Name Type Description

write_cou
nts

bigint Number of write operations in a monitoring period.

read_spee
d

real Byte rate of read operations in a monitoring period
(unit: KB)

write_spe
ed

real Byte rate of write operations in a monitoring
period (unit: KB)

send_spee
d

double Network sending rate in a monitoring period, in
KB/s.

recv_spee
d

double Network receiving rate in a monitoring period, in
KB/s.

14.2.9 PG_AGGREGATE
pg_aggregate records information about aggregation functions. Each entry in
pg_aggregate is an extension of an entry in pg_proc. The pg_proc entry carries
the aggregate's name, input and output data types, and other information that is
similar to ordinary functions.

Table 14-8 PG_AGGREGATE columns

Name Type Reference Description

aggfnoid regproc PG_PROC.oid PG_PROC OID of the
aggregate function

aggtransfn regproc PG_PROC.oid Transition function

aggcollectfn regproc PG_PROC.oid Aggregate function

aggfinalfn regproc PG_PROC.oid Final function (zero if none)

aggsortop oid PG_OPERATOR.oid Associated sort operator (zero
if none)

aggtranstype oid PG_TYPE.oid Data type of the aggregate
function's internal transition
(state) data

agginitval text - Initial value of the transition
state. This is a text column
containing the initial value in
its external string
representation. If this column
is null, the transition state
value starts out null.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 566

Name Type Reference Description

agginitcollect text - Initial value of the collection
state. This is a text column
containing the initial value in
its external string
representation. If this column
is null, the collection state
value starts out null.

14.2.10 PG_AM
PG_AM records information about index access methods. There is one row for
each index access method supported by the system.

Table 14-9 PG_AM columns

Name Type Reference Description

oid oid - Row identifier (hidden attribute;
must be explicitly selected)

amname name - Name of the access method

amstrategies smallint - Number of operator strategies for
this access method, or zero if
access method does not have a
fixed set of operator strategies

amsupport smallint - Number of support routines for
this access method

amcanorder boolean - Whether the access method
supports ordered scans sorted by
the indexed column's value

amcanorderbyo
p

boolean - Whether the access method
supports ordered scans sorted by
the result of an operator on the
indexed column

amcanbackward boolean - Whether the access method
supports backward scanning

amcanunique boolean - Whether the access method
supports unique indexes

amcanmulticol boolean - Whether the access method
supports multi-column indexes

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 567

Name Type Reference Description

amoptionalkey boolean - Whether the access method
supports a scan without any
constraint for the first index
column

amsearcharray boolean - Whether the access method
supports ScalarArrayOpExpr
searches

amsearchnulls boolean - Whether the access method
supports IS NULL/NOT NULL
searches

amstorage boolean - Whether an index storage data
type can differ from a column
data type

amclusterable boolean - Whether an index of this type
can be clustered on

ampredlocks boolean - Whether an index of this type
manages fine-grained predicate
locks

amkeytype oid PG_TYPE.oid Type of data stored in index, or
zero if not a fixed type

aminsert regproc PG_PROC.oid "Insert this tuple" function

ambeginscan regproc PG_PROC.oid "Prepare for index scan" function

amgettuple regproc PG_PROC.oid "Next valid tuple" function, or
zero if none

amgetbitmap regproc PG_PROC.oid "Fetch all valid tuples" function,
or zero if none

amrescan regproc PG_PROC.oid "(Re)start index scan" function

amendscan regproc PG_PROC.oid "Clean up after index scan"
function

ammarkpos regproc PG_PROC.oid "Mark current scan position"
function

amrestrpos regproc PG_PROC.oid "Restore marked scan position"
function

ammerge regproc PG_PROC.oid "Merge multiple indexes"
function

ambuild regproc PG_PROC.oid "Build new index" function

ambuildempty regproc PG_PROC.oid "Build empty index" function

ambulkdelete regproc PG_PROC.oid Bulk-delete function

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 568

Name Type Reference Description

amvacuumclean
up

regproc PG_PROC.oid Post-VACUUM cleanup function

amcanreturn regproc PG_PROC.oid Function to check whether index
supports index-only scans, or zero
if none

amcostestimate regproc PG_PROC.oid Function to estimate cost of an
index scan

amoptions regproc PG_PROC.oid Function to parse and validate
reloptions for an index

14.2.11 PG_AMOP
PG_AMOP records information about operators associated with access method
operator families. There is one row for each operator that is a member of an
operator family. A family member can be either a search operator or an ordering
operator. An operator can appear in more than one family, but cannot appear in
more than one search position nor more than one ordering position within a
family.

Table 14-10 PG_AMOP columns

Name Type Reference Description

oid oid - Row identifier (hidden
attribute; must be
explicitly selected)

amopfamily oid PG_OPFAMILY.oid Operator family this
entry is for

amoplefttype oid PG_TYPE.oid Left-hand input data
type of operator

amoprighttype oid PG_TYPE.oid Right-hand input data
type of operator

amopstrategy smallint - Number of operator
strategies

amoppurpose "char" - Operator purpose, either
s for search or o for
ordering

amopopr oid PG_OPERATOR.oid OID of the operator

amopmethod oid PG_AM.oid Index access method the
operator family is for

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 569

Name Type Reference Description

amopsortfamily oid PG_OPFAMILY.oid The btree operator family
this entry sorts according
to, if an ordering
operator; zero if a search
operator

A "search" operator entry indicates that an index of this operator family can be
searched to find all rows satisfying WHERE indexed_column operator constant.
Obviously, such an operator must return a Boolean value, and its left-hand input
type must match the index's column data type.

An "ordering" operator entry indicates that an index of this operator family can be
scanned to return rows in the order represented by ORDER BY indexed_column
operator constant. Such an operator could return any sortable data type, though
again its left-hand input type must match the index's column data type. The exact
semantics of the ORDER BY are specified by the amopsortfamily column, which
must reference a btree operator family for the operator's result type.

14.2.12 PG_AMPROC
PG_AMPROC records information about the support procedures associated with
the access method operator families. There is one row for each support procedure
belonging to an operator family.

Table 14-11 PG_AMPROC columns

Name Type Reference Description

oid oid N/A Row identifier (hidden
attribute; displayed only when
explicitly selected)

amprocfamily oid PG_OPFAMILY.oid Operator family this entry is for

amproclefttype oid PG_TYPE.oid Left-hand input data type of
associated operator

amprocrightty
pe

oid PG_TYPE.oid Right-hand input data type of
associated operator

amprocnum smallin
t

N/A Support procedure number

amproc regproc PG_PROC.oid OID of the procedure

The usual interpretation of the amproclefttype and amprocrighttype columns is
that they identify the left and right input types of the operator(s) that a particular
support procedure supports. For some access methods these match the input data
type(s) of the support procedure itself, for others not. There is a notion of

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 570

"default" support procedures for an index, which are those with amproclefttype
and amprocrighttype both equal to the index opclass's opcintype.

14.2.13 PG_ATTRDEF
PG_ATTRDEF stores default values of columns.

Table 14-12 PG_ATTRDEF columns

Name Type Description

adrelid oid Table to which the column belongs

adnum smallint Column No.

adbin pg_node_tree Internal representation of the column's
default value

adsrc text Internal representation of the human-
readable default value

adbin_on_updat
e

pg_node_tree Internal representation of the value of
on_update_expr

adsrc_on_updat
e

text Internal representation of the human-
readable value of on_update_expr

14.2.14 PG_ATTRIBUTE
PG_ATTRIBUTE records information about table columns.

Table 14-13 PG_ATTRIBUTE columns

Name Type Description

attrelid oid Table to which the column belongs

attname name Column name

atttypid oid Column type

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 571

Name Type Description

attstattarget integer Controls the level of details of statistics
collected for this column by ANALYZE.
● A zero value indicates that no statistics

should be collected.
● A negative value says to use the system

default statistics target.
● The exact meaning of positive values is

data type-dependent.
For scalar data types, attstattarget is both
the target number of "most common values"
to collect, and the target number of
histogram bins to create.

attlen smallint Copy of pg_type.typlen of the column's type

attnum smallint Number of a column.

attndims integer Number of dimensions if the column is an
array; otherwise, the value is 0.

attcacheoff integer This column is always -1 on disk. When it is
loaded into a row descriptor in the memory,
it may be updated to cache the offset of the
columns in the row.

atttypmod integer Type-specific data supplied at table creation
time (for example, the maximum length of a
varchar column). This column is used as the
third parameter when passing to type-
specific input functions and length coercion
functions. The value will generally be -1 for
types that do not need ATTTYPMOD.

attbyval boolean Copy of pg_type.typbyval of the column's
type

attstorage "char" Copy of pg_type.typstorage of this column's
type

attalign "char" Copy of pg_type.typalign of the column's
type

attnotnull boolean A not-null constraint. It is possible to change
this column to enable or disable the
constraint.

atthasdef boolean Indicates that this column has a default
value, in which case there will be a
corresponding entry in the pg_attrdef table
that actually defines the value.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 572

Name Type Description

attisdropped boolean Whether the column has been dropped and
is no longer valid. A dropped column is still
physically present in the table but is ignored
by the analyzer, so it cannot be accessed
through SQL.

attislocal boolean Whether the column is defined locally in the
relation. Note that a column can be locally
defined and inherited simultaneously.

attcmprmode tinyint Compressed modes for a specific column The
compressed mode includes:
● ATT_CMPR_NOCOMPRESS
● ATT_CMPR_DELTA
● ATT_CMPR_DICTIONARY
● ATT_CMPR_PREFIX
● ATT_CMPR_NUMSTR

attinhcount integer Number of direct ancestors this column has.
A column with an ancestor cannot be
dropped nor renamed.

attcollation oid Defined collation of a column

attacl aclitem[] Permissions for column-level access

attoptions text[] Property-level options

attfdwoptions text[] Property-level external data options

attinitdefval bytea attinitdefval stores the default value
expression. ADD COLUMN in a row-store
table must use this column.

attkvtype tinyint kv_type attribute of a column. Values:
● 0 indicates the default value, which is

used for non-time series tables.
● 1 indicates TSTAG, a dimension attribute,

which is used only for time series tables.
● 2 indicates TSFIELD, a metric attribute,

which is used only for time series tables.
● 3 indicates TSTIME, a time attribute,

which is used only for time series tables.

Example
Query the field names and field IDs of a specified table. Replace t1 and public
with the actual table name and schema name, respectively.
SELECT attname,attnum FROM pg_attribute WHERE attrelid=(SELECT pg_class.oid FROM pg_class JOIN
pg_namespace ON relnamespace=pg_namespace.oid WHERE relname='t1' and nspname='public') and

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 573

attnum>0;
 attname | attnum
------------------+--------
 product_id | 1
 product_name | 2
 product_quantity | 3
(3 rows)

14.2.15 PG_AUTHID
PG_AUTHID records information about the database authentication identifiers
(roles). The concept of users is contained in that of roles. A user is actually a role
whose rolcanlogin has been set. Any role, whether the rolcanlogin is set or not,
can use other roles as members.

For a cluster, only one pg_authid exists which is not available for every database.
It is accessible only to users with system administrator rights.

Table 14-14 PG_AUTHID columns

Column Type Description

oid oid Row identifier (hidden attribute; must be
explicitly selected)

rolname name Role name

rolsuper boolean Whether the role is the initial system
administrator with the highest permission

rolinherit boolean Whether the role automatically inherits
permissions of roles it is a member of

rolcreaterole boolean Whether the role can create more roles

rolcreatedb boolean Whether the role can create databases

rolcatupdate boolean Whether the role can directly update system
catalogs. Only the initial system administrator
whose usesysid is 10 has this permission. It is
not available for other users.

rolcanlogin boolean Whether a role can log in, that is, whether a
role can be given as the initial session
authorization identifier.

rolreplication boolean Indicates that the role is a replicated one (an
adaptation syntax and no actual meaning).

rolauditadmin boolean Indicates that the role is an audit user.

rolsystemadmin boolean Indicates that the role is an administrator.

rolconnlimit integer Limits the maximum number of concurrent
connections of a user on a CN. -1 means no
limit.

rolpassword text Password (possibly encrypted); NULL if no
password.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 574

Column Type Description

rolvalidbegin timestamp
with time
zone

Account validity start time; NULL if no start
time

rolvaliduntil timestamp
with time
zone

Password expiry time; NULL if no expiration

rolrespool name Resource pool that a user can use

roluseft boolean Whether the role can perform operations on
foreign tables

rolparentid oid OID of a group user to which the user
belongs

roltabspace Text Storage space of the user permanent table

rolkind char Special type of user, including private users,
logical cluster administrators, and common
users.

rolnodegroup oid OID of a node group associated with a user.
The node group must be a logical cluster.

roltempspace Text Storage space of the user temporary table

rolspillspace Text Operator disk spill space of the user

rolexcpdata text Reserved column

rolauthinfo text Additional information when LDAP
authentication is used. If other authentication
modes are used, the value is NULL.

rolpwdexpire integer Password expiration time. Users can change
their password before it expires. After the
password expires, only the administrator can
change the password. The value -1 indicates
that the password never expires.

rolpwdtime timestamp
with time
zone

Time when a password is created

roluuid bigint Role identifier. This column is available only
in clusters of version 9.1.0 or later.

14.2.16 PG_AUTH_HISTORY
PG_AUTH_HISTORY records the authentication history of the role. It is accessible
only to users with system administrator rights.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 575

Table 14-15 PG_AUTH_HISTORY columns

Name Type Description

roloid oid Role identifier

passwordtime timestamp with time
zone

Time of password creation and
change

rolpassword text Role password that is encrypted
using MD5 or SHA256, or that is not
encrypted

14.2.17 PG_AUTH_MEMBERS
PG_AUTH_MEMBERS records the membership relations between roles.

Table 14-16 PG_AUTH_MEMBERS columns

Name Type Description

roleid oid ID of a role that has a member

member oid ID of a role that is a member of ROLEID

grantor oid ID of a role that grants this membership

admin_option boolean Whether a member can grant membership in
ROLEID to others

14.2.18 PG_BLOCKLISTS
PG_BLOCKLISTS records query filtering rules. This system catalog is supported
only by clusters of version 9.1.0.100 or later.

Table 14-17 PG_BLOCKLISTS columns

Name Type Description

block_name name Name of a query filtering rule

role oid User OID bound to the query filtering rule

client_addr inet IP address of the client bound to the query
filtering rule

application_na
me

name Name of the client bound to the query
filtering rule

unique_sql_id int8 unique_sql_id that matches the query
filtering rule

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 576

Name Type Description

sql_hash name sql_hash that matches the query filtering
rule

block_type int4 Type of the statement bound to the query
filtering rule. The type can be SELECT,
UPDATE, INSERT, DELETE, or MERGE.

partition_num int4 Estimated maximum number of partitions
to be scanned

table_num int4 Estimated maximum number of tables to
be scanned

estimate_row int4 Estimated maximum number of rows to be
scanned

query_band text Type of the job that is actively identified

sql text SQL statement that matches the query
filtering rule

created_time timestamp with
time zone

Timestamp when a query filtering rule is
created or modified

resource_pool name Name of the resource pool to which the
statement intercepted by the query filtering
rule is switched. This column is available
only in clusters of version 9.1.0.200 or later.

max_active_nu
m

integer Maximum number of concurrent
statements intercepted by the query
filtering rule. If the value is lower than the
specified limit, execution proceeds
normally. However, if the value is equal to
or exceeds the limit, an error is reported
and the statements are intercepted.
This column is available only in clusters of
version 9.1.0.200 or later.

is_warning boolean Whether an error or alarm is reported
when a statement is intercepted by the
query filtering rule.
● false indicates that an error is reported

when a statement is intercepted. The
default value is false.

● true indicates that an alarm is
generated when a statement is
intercepted.

This column is available only in clusters of
version 9.1.0.200 or later.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 577

14.2.19 PG_CAST
PG_CAST records conversion relationships between data types.

Table 14-18 PG_CAST columns

Name Type Description

castsource oid OID of the source data type

casttarget oid OID of the target data type

castfunc oid OID of the conversion function. If the value is 0,
no conversion function is required.

castcontext "char" Conversion mode between the source and target
data types
● e indicates that only explicit conversion can be

performed (using the CAST or :: syntax).
● i indicates that only implicit conversion can be

performed.
● a indicates that both explicit and implicit

conversion can be performed between data
types.

castmethod "char" Conversion method
● f indicates that conversion is performed using

the specified function in the castfunc column.
● b indicates that binary forcible conversion

rather than the specified function in the
castfunc column is performed between data
types.

14.2.20 PG_CLASS
PG_CLASS records database objects and their relations.

Table 14-19 PG_CLASS columns

Name Type Description

oid oid Row identifier (hidden attribute; must be explicitly
selected)

relname name Name of an object, such as a table, index, or view

relnamespace oid OID of the namespace that contains the
relationship

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 578

Name Type Description

reltype oid Data type that corresponds to this table's row type
(the index is 0 because the index does not have
pg_type record)

reloftype oid OID is of composite type. 0 indicates other types.

relowner oid Owner of the relationship

relam oid Specifies the access method used, such as B-tree
and hash, if this is an index

relfilenode oid Name of the on-disk file of this relationship. If such
file does not exist, the value is 0.

reltablespace oid Tablespace in which this relationship is stored. If its
value is 0, the default tablespace in this database is
used. This column is meaningless if the relationship
has no on-disk file.

relpages double
precisio
n

Size of the on-disk representation of this table in
pages (of size BLCKSZ). This is only an estimate
used by the optimizer.

reltuples double
precisio
n

Number of rows in the table. This is only an
estimate used by the optimizer.

relallvisible integer Number of pages marked as all visible in the table.
This column is used by the optimizer for optimizing
SQL execution. It is updated by VACUUM,
ANALYZE, and a few DDL statements such as
CREATE INDEX.

reltoastrelid oid OID of the TOAST table associated with this table.
The OID is 0 if no TOAST table exists.
The TOAST table stores large columns "offline" in a
secondary table.

reltoastidxid oid OID of the index for a TOAST table. The OID is 0
for a table other than a TOAST table.

reldeltarelid oid OID of a Delta table
Delta tables belong to column-store tables. They
store long tail data generated during data import.

reldeltaidx oid OID of the index for a Delta table

relcudescrelid oid OID of a CU description table
CU description tables (Desc tables) belong to
column-store tables. They control whether storage
data in the HDFS table directory is visible.

relcudescidx oid OID of the index for a CU description table

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 579

Name Type Description

relhasindex boolean Its value is true if this column is a table and has (or
recently had) at least one index.
It is set by CREATE INDEX but is not immediately
cleared by DROP INDEX. If the VACUUM process
detects that a table has no index, it clears the
relhasindex column and sets the value to false.

relisshared boolean Its value is true if the table is shared across all
databases in the cluster. Only certain system
catalogs (such as pg_database) are shared.

relpersistence "char" ● p indicates a permanent table.
● u indicates a non-log table.
● t indicates a temporary table.

relkind "char" ● r indicates an ordinary table.
● i indicates an index.
● S indicates a sequence.
● v indicates a view.
● c indicates the composite type.
● t indicates a TOAST table.
● f indicates a foreign table.
● m indicates a materialized view.

relnatts smallint Number of user columns in the relationship
(excluding system columns) pg_attribute has the
same number of rows corresponding to the user
columns.

relchecks smallint Number of constraints on a table. For details, see
PG_CONSTRAINT.

relhasoids boolean Its value is true if an OID is generated for each row
of the relationship.

relhaspkey boolean Its value is true if the table has (or once had) a
primary key.

relhasrules boolean Its value is true if the table has rules. See table
PG_REWRITE to check whether it has rules.

relhastriggers boolean Its value is true if the table has (or once had)
triggers. For details, see PG_TRIGGER.

relhassubclass boolean Its value is true if the table has (or once had) any
inheritance child table.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 580

Name Type Description

relcmprs tinyint Whether the compression feature is enabled for the
table. Note that only batch insertion triggers
compression so ordinary CRUD does not trigger
compression.
● 0 indicates other tables that do not support

compression (primarily system tables, on which
the compression attribute cannot be modified).

● 1 indicates that the compression feature of the
table data is NOCOMPRESS or has no specified
keyword.

● 2 indicates that the compression feature of the
table data is COMPRESS.

relhasclusterkey boolean Whether the local cluster storage is used

relrowmoveme
nt

boolean Whether the row migration is allowed when the
partitioned table is updated
● true indicates that the row migration is allowed.
● false indicates that the row migration is not

allowed.

parttype "char" Whether the table or index has the property of a
partitioned table
● p indicates that the table or index has the

property of a partitioned table.
● n indicates that the table or index does not have

the property of a partitioned table.
● v indicates that the table is the value partitioned

table in the HDFS.

relfrozenxid xid32 All transaction IDs before this one have been
replaced with a permanent ("frozen") transaction
ID in this table. This column is used to track
whether the table needs to be vacuumed in order
to prevent transaction ID wraparound (or to allow
pg_clog to be shrunk). The value is 0
(InvalidTransactionId) if the relationship is not a
table.
To ensure forward compatibility, this column is
reserved. The relfrozenxid64 column is added to
record the information.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 581

Name Type Description

relacl aclite
m[]

Access permissions
The command output of the query is as follows:
rolename=xxxx/yyyy --Assigning privileges to a role
=xxxx/yyyy --Assigning the permission to public

xxxx indicates the assigned privileges, and yyyy
indicates the roles that are assigned to the
privileges. For details about permission descriptions,
see Table 14-20.

reloptions text[] Access-method-specific options, as
"keyword=value" strings

relfrozenxid64 xid All transaction IDs before this one have been
replaced with a permanent ("frozen") transaction
ID in this table. This column is used to track
whether the table needs to be vacuumed in order
to prevent transaction ID wraparound (or to allow
pg_clog to be shrunk). The value is 0
(InvalidTransactionId) if the relationship is not a
table.

Table 14-20 Description of privileges

Parameter Description

r SELECT (read)

w UPDATE (write)

a INSERT (insert)

d DELETE

D TRUNCATE

x REFERENCES

t TRIGGER

X EXECUTE

U USAGE

C CREATE

c CONNECT

T TEMPORARY

A ANALYZE|ANALYSE

L ALTER

P DROP

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 582

Parameter Description

v VACUUM

arwdDxtA, vLP ALL PRIVILEGES (used for tables)

* Authorization options for preceding permissions

Examples

View the OID and relfilenode of a table.

SELECT oid,relname,relfilenode FROM pg_class WHERE relname = 'table_name';

Count row-store tables.

SELECT 'row count:'||count(1) as point FROM pg_class WHERE relkind = 'r' and oid > 16384 and
reloptions::text not like '%column%' and reloptions::text not like '%internal_mask%';

Count column-store tables.

SELECT 'column count:'||count(1) as point FROM pg_class WHERE relkind = 'r' and oid > 16384 and
reloptions::text like '%column%';

Query the comments of all tables in the database:

SELECT relname as tabname,obj_description(relfilenode,'pg_class') as comment FROM pg_class;

14.2.21 PG_COLLATION
PG_COLLATION records the available collations, which are essentially mappings
from an SQL name to operating system locale categories.

Table 14-21 PG_COLLATION columns

Name Type Reference Description

oid oid N/A Row identifier (hidden
attribute; displayed only
when explicitly selected)

collname name N/A Collation name (unique per
namespace and encoding)

collnamespace oid PG_NAMESPACE.oi
d

OID of the namespace that
contains this collation

collowner oid PG_AUTHID.oid Owner of the collation

collencoding integer N/A Encoding in which the
collation is applicable, or -1 if
it works for any encoding

collcollate name N/A LC_COLLATE for this
collation object

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 583

Name Type Reference Description

collctype name N/A LC_CTYPE for this collation
object

14.2.22 PG_CONSTRAINT
PG_CONSTRAINT records check, primary key, unique, and foreign key constraints
on the tables.

Table 14-22 PG_CONSTRAINT columns

Name Type Description

conname name Constraint name (not necessarily unique)

connamespace oid OID of the namespace that contains the
constraint

contype "char" ● c indicates check constraints.
● f indicates foreign key constraints.
● p indicates primary key constraints.
● u indicates unique constraints.
● t indicates trigger constraints.

condeferrable boolean Whether the constraint can be deferrable

condeferred boolean Whether the constraint can be deferrable by
default

convalidated boolean Whether the constraint is valid Currently,
only foreign key and check constraints can
be set to false.

conrelid oid Table containing this constraint. The value is
0 if it is not a table constraint.

contypid oid Domain containing this constraint. The value
is 0 if it is not a domain constraint.

conindid oid ID of the index associated with the constraint

confrelid oid Referenced table if this constraint is a foreign
key; otherwise, the value is 0.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 584

Name Type Description

confupdtype "char" Foreign key update action code
● a indicates no action.
● r indicates restriction.
● c indicates cascading.
● n indicates that the parameter is set to

null.
● d indicates that the default value is used.

confdeltype "char" Foreign key deletion action code
● a indicates no action.
● r indicates restriction.
● c indicates cascading.
● n indicates that the parameter is set to

null.
● d indicates that the default value is used.

confmatchtype "char" Foreign key match type
● f indicates full match.
● p indicates partial match.
● u indicates simple match (not specified).

conislocal boolean Whether the local constraint is defined for
the relationship

coninhcount integer Number of direct inheritance parent tables
this constraint has. When the number is not
0, the constraint cannot be deleted or
renamed.

connoinherit boolean Whether the constraint can be inherited

consoft boolean Whether the column indicates an
informational constraint.

conopt boolean Whether you can use Informational
Constraint to optimize the execution plan.

conkey smallint[] Column list of the constrained control if this
column is a table constraint

confkey smallint[] List of referenced columns if this column is a
foreign key

conpfeqop oid[] ID list of the equality operators for PK = FK
comparisons if this column is a foreign key

conppeqop oid[] ID list of the equality operators for PK = PK
comparisons if this column is a foreign key

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 585

Name Type Description

conffeqop oid[] ID list of the equality operators for FK = FK
comparisons if this column is a foreign key

conexclop oid[] ID list of the per-column exclusion operators
if this column is an exclusion constraint

conbin pg_node_tr
ee

Internal representation of the expression if
this column is a check constraint

consrc text Human-readable representation of the
expression if this column is a check
constraint

NO TICE

● consrc is not updated when referenced objects change; for example, it will not
track renaming of columns. Rather than relying on this field, it's best to use
pg_get_constraintdef() to extract the definition of a check constraint.

● pg_class.relchecks must be consistent with the number of check-constraint
entries in this table for each relationship.

Example
Query whether a specified table has a primary key.

CREATE TABLE t1
(
 C_CUSTKEY BIGINT ,
 C_NAME VARCHAR(25) ,
 C_ADDRESS VARCHAR(40) ,
 C_NATIONKEY INT ,
 C_PHONE CHAR(15) ,
 C_ACCTBAL DECIMAL(15,2),
 CONSTRAINT C_CUSTKEY_KEY PRIMARY KEY(C_CUSTKEY,C_NAME)
)
DISTRIBUTE BY HASH(C_CUSTKEY,C_NAME);

SELECT conname FROM pg_constraint WHERE conrelid = 't1'::regclass AND contype = 'p';
 conname

 c_custkey_key
(1 row)

14.2.23 PG_CONVERSION
PG_CONVERSION records encoding conversion information.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 586

Table 14-23 PG_CONVERSION columns

Name Type Reference Description

oid oid N/A Row identifier (hidden
attribute; displayed only
when explicitly selected)

conname name N/A Conversion name (unique in
a namespace)

connamespace oid PG_NAMESPACE.
oid

OID of the namespace that
contains this conversion

conowner oid PG_AUTHID.oid Owner of the conversion

conforencoding integer N/A Source encoding ID

contoencoding integer N/A Destination encoding ID

conproc regproc PG_PROC.oid Conversion procedure

condefault boolean N/A Whether the default
conversion is used

14.2.24 PG_DATABASE
PG_DATABASE records information about the available databases.

Table 14-24 PG_DATABASE columns

Name Type Description

datname name Database name

datdba oid Owner of the database, usually the user who
created it

encoding integer Character encoding for this database
You can use pg_encoding_to_char() to
convert this number to the encoding name.

datcollate name Sequence used by the database

datctype name Character type used by the database

datistemplate boolean Whether this column can serve as a template
database

datallowconn boolean If false then no one can connect to this
database. This column is used to protect the
template0 database from being altered.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 587

Name Type Description

datconnlimit integer Maximum number of concurrent connections
allowed on this database. -1 indicates no
limit.

datlastsysoid oid Last system OID in the database

datfrozenxid xid32 Tracks whether the database needs to be
vacuumed in order to prevent transaction ID
wraparound.
To ensure forward compatibility, this column
is reserved. The datfrozenxid64 column is
added to record the information.

dattablespace oid Default tablespace of the database

datcompatibility name Database compatibility mode
● ORA: compatible with the Oracle

database
● TD: compatible with the Teradata

database
● MySQL: compatible with the MySQL

database

datacl aclitem[] Access permissions

datfrozenxid64 xid Tracks whether the database needs to be
vacuumed in order to prevent transaction ID
wraparound.

14.2.25 PG_DB_ROLE_SETTING
PG_DB_ROLE_SETTING records the default values of configuration items bonded
to each role and database when the database is running.

Table 14-25 PG_DB_ROLE_SETTING columns

Name Type Description

setdatabase oid Database corresponding to the configuration items;
the value is 0 if the database is not specified

setrole oid Role corresponding to the configuration items; the
value is 0 if the role is not specified

setconfig text[] Default value of configuration items when the
database is running

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 588

14.2.26 PG_DEFAULT_ACL
PG_DEFAULT_ACL records the initial privileges assigned to the newly created
objects.

Table 14-26 PG_DEFAULT_ACL columns

Name Type Description

defaclrole oid ID of the role associated with the
permission

defaclnamespace oid Namespace associated with the
permission; the value is 0 if no ID

defaclobjtype "char" Object type of the permission:
● r indicates a table or view.
● S indicates a sequence.
● f indicates a function.
● T indicates a type.

defaclacl aclitem[] Access permissions that this type of
object should have on creation

Examples
Run the following command to view the initial permissions of the new user role1:

select * from PG_DEFAULT_ACL;
 defaclrole | defaclnamespace | defaclobjtype | defaclacl
------------+-----------------+---------------+-----------------
 16820 | 16822 | r | {role1=r/user1}

You can also run the following statement to convert the format:

SELECT pg_catalog.pg_get_userbyid(d.defaclrole) AS "Granter", n.nspname AS "Schema", CASE
d.defaclobjtype WHEN 'r' THEN 'table' WHEN 'S' THEN 'sequence' WHEN 'f' THEN 'function' WHEN 'T'
THEN 'type' END AS "Type", pg_catalog.array_to_string(d.defaclacl, E', ') AS "Access privileges" FROM
pg_catalog.pg_default_acl d LEFT JOIN pg_catalog.pg_namespace n ON n.oid = d.defaclnamespace ORDER
BY 1, 2, 3;

If the following information is displayed, user1 grants role1 the read permission
on schema user1.

 Granter | Schema | Type | Access privileges
---------+--------+-------+-------------------
 user1 | user1 | table | role1=r/user1
(1 row)

14.2.27 PG_DEPEND
PG_DEPEND records the dependency relationships between database objects. This
information allows DROP commands to find which other objects must be dropped
by DROP CASCADE or prevent dropping in the DROP RESTRICT case.

See also PG_SHDEPEND, which provides similar functionality for recording
dependencies between objects that are shared between database clusters.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 589

Table 14-27 PG_DEPEND columns

Name Type Reference Description

classid oid PG_CLASS.oid OID of the system catalog the
dependent object is in

objid oid Any OID
column

OID of the specific dependent object

objsubid integer N/A For a table column, this is the column
number (the objid and classid refer to
the table itself). For all other object
types, this column is 0.

refclassid oid PG_CLASS.oid OID of the system catalog the
referenced object is in

refobjid oid Any OID
column

OID of the specific referenced object

refobjsubid integer N/A For a table column, this is the column
number (the refobjid and refclassid
refer to the table itself). For all other
object types, this column is 0.

deptype "char" N/A A code defining the specific semantics
of this dependency relationship

In all cases, a pg_depend entry indicates that the referenced object cannot be
dropped without also dropping the dependent object. However, there are several
subflavors defined by deptype:

● DEPENDENCY_NORMAL (n): A normal relationship between separately-
created objects. The dependent object can be dropped without affecting the
referenced object. The referenced object can only be dropped by specifying
CASCADE, in which case the dependent object is dropped, too. Example: a
table column has a normal dependency on its data type.

● DEPENDENCY_AUTO (a): The dependent object can be dropped separately
from the referenced object, and should be automatically dropped (regardless
of RESTRICT or CASCADE mode) if the referenced object is dropped. Example:
a named constraint on a table is made autodependent on the table, so that it
will go away if the table is dropped.

● DEPENDENCY_INTERNAL (i): The dependent object was created as part of
creation of the referenced object, and is only a part of its internal
implementation. A DROP of the dependent object will be disallowed outright
(We'll tell the user to issue a DROP against the referenced object, instead). A
DROP of the referenced object will be propagated through to drop the
dependent object whether CASCADE is specified or not. For example, a trigger
used to enforce a foreign key constraint is set to an item internally dependent
on its constraint in PG_CONSTRAINT.

● DEPENDENCY_EXTENSION (e): The dependent object is a member of the
extension that is the referenced object. (For details, see PG_EXTENSION). The

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 590

dependent object can be dropped via DROP EXTENSION on the referenced
object. Functionally this dependency type acts the same as an internal
dependency, but it is kept separate for clarity and to simplify gs_dump.

● DEPENDENCY_PIN (p): There is no dependent object. This indicates that the
system itself depends on the referenced object, and therefore the object
cannot be deleted. Entries of this type are created only by initdb. The
columns with dependent object are all zeroes.

Examples
Query the table that depends on the database object sequence serial1:

1. Query the OID of the sequence serial1 in the system catalog PG_CLASS.
SELECT oid FROM pg_class WHERE relname ='serial1';
 oid

 17815
(1 row)

2. Use the system catalog PG_DEPEND and the OID of serial1 to obtain the
objects that depend on serial1.
SELECT * FROM pg_depend WHERE objid ='17815';
 classid | objid | objsubid | refclassid | refobjid | refobjsubid | deptype
---------+-------+----------+------------+----------+-------------+---------
 1259 | 17815 | 0 | 2615 | 2200 | 0 | n
 1259 | 17815 | 0 | 1259 | 17812 | 1 | a
(2 rows)

3. Obtain the OID of the table that depends on the serial1 sequence based on
the refobjid field and query the table name. The result indicates that the table
customer_address depends on serial1.
SELECT relname FROM pg_class where oid='17812';
 relname

 customer_address
(1 row)

14.2.28 PG_DESCRIPTION
PG_DESCRIPTION records optional descriptions (comments) for each database
object. Descriptions of many built-in system objects are provided in the initial
contents of PG_DESCRIPTION.

See also PG_SHDESCRIPTION, which performs a similar function for descriptions
involving objects that are shared across a database cluster.

Table 14-28 PG_DESCRIPTION columns

Name Type Reference Description

objoid oid Any OID
column

OID of the object this description
pertains to

classoid oid PG_CLASS.oid OID of the system catalog this object
appears in

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 591

Name Type Reference Description

objsubid integer - For a comment on a table column, this
is the column number (the objoid and
classoid refer to the table itself). For all
other object types, this column is 0.

description text - Arbitrary text that serves as the
description of this object

14.2.29 PG_ENUM
PG_ENUM records entries showing the values and labels for each enum type. The
internal representation of a given enum value is actually the OID of its associated
row in pg_enum.

Table 14-29 PG_ENUM columns

Name Type Reference Description

oid oid N/A Row identifier (hidden attribute;
displayed only when explicitly
selected)

enumtypid oid PG_TYPE.oid OID of pg_type that contains this
enum value

enumsortorde
r

real N/A Sort position of this enum value
within its enum type

enumlabel name N/A Textual label for this enum value

The OIDs for PG_ENUM rows follow a special rule: even-numbered OIDs are
guaranteed to be ordered in the same way as the sort ordering of their enum type.
That is, if two even OIDs belong to the same enum type, the smaller OID must
have the smaller enumsortorder value. Odd-numbered OID values need bear no
relationship to the sort order. This rule allows the enum comparison routines to
avoid catalog lookups in many common cases. The routines that create and alter
enum types attempt to assign even OIDs to enum values whenever possible.

When an enum type is created, its members are assigned sort-order positions from
1 to n. But members added later might be given negative or fractional values of
enumsortorder. The only requirement on these values is that they be correctly
ordered and unique within each enum type.

14.2.30 PG_EXCEPT_RULE
The PG_EXCEPT_RULE system catalog stores information about exception rules.
An exception rule set consists of multiple exception rules with the same name.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 592

Table 14-30 PG_EXCEPT_RULE

Name Type Description

name name Name of an exception rule set.

rule name Type of a rule in the exception rule set, or
action taken when the current exception rule
set is triggered. (For example, it can be
blocktime, elapsedtime, spillsize, or an action
taken after an exception rule is triggered.)

value name Rule threshold corresponding to the exception
rule. If it specifies the action taken after an
exception rule is triggered, its value is abort.

14.2.31 PG_EXTENSION
PG_EXTENSION records information about the installed extensions. By default,
GaussDB(DWS) has 34 extensions: aio_scheduler, btree_gin, cudesckv, dimsearch,
dist_fdw, functional_clog, functional_extension, functional_file, functional_hudi,
functional_job, functional_largeobject, functional_memory, functional_other,
functional_signal, functional_vacuum, gc_fdw, hdfs_fdw, hstore, log_fdw,
operational_backup, operational_cgroup, operational_cudesc, operational_other,
operational_replication, operational_restoration, operational_stats,
operational_xlog, packages, pgcrypto, pldbgapi, plpgsql, roach_api, tsdb, and uuid-
ossp.

Table 14-31 PG_EXTENSION

Name Type Description

extname name Extension name

extowner oid Owner of the extension

extnamespace oid Namespace containing the extension's
exported objects

extrelocatable boolean Whether the extension can be
relocated to another schema

extversion text Version number of the extension

extconfig oid[] Configuration information about the
extension

extcondition text[] Filter conditions for the extension's
configuration information

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 593

14.2.32 PG_EXTENSION_DATA_SOURCE
PG_EXTENSION_DATA_SOURCE records information about external data source.
An external data source contains information about an external database, such as
its password encoding. It is mainly used with Extension Connector.

Table 14-32 PG_EXTENSION_DATA_SOURCE columns

Name Type Referenc
e

Description

oid oid - Row identifier (hidden attribute; must be
explicitly selected)

srcname name - Name of an external data source

srcowner oid PG_AUTH
ID.oid

Owner of an external data source

srctype text - Type of an external data source. It is NULL
by default.

srcversion text - Type of an external data source. It is NULL
by default.

srcacl aclitem[] - Access permissions

srcoptions text[] - Option used for foreign data sources. It is a
keyword=value string.

14.2.33 PG_FINE_DR_INFO
The PG_FINE_DR_INFO system catalog records the replay status of the fine-
grained DR standby table. This system catalog is supported only by clusters of
version 8.2.0.100 or later.

Table 14-33 PG_FINE_DR_INFO columns

Name Type Description

oid oid Row identifier (hidden attribute; displayed
only when explicitly selected)

relid oid OID of the standby fine-grained DR table

lastcsn xid CSN of the last successful playback

lastxmin xid xmin of the last successful playback

lastxmax xid xmax of the last successful playback

laststarttime timestamp with
time zone

Start time of the last successful playback

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 594

Name Type Description

lastendtime timestamp with
time zone

End time of the last successful playback

Examples
Check the playback status of the standby table in the DR cluster.

SELECT * FROM pg_fine_dr_info;
 relid | lastcsn | lastxmin | lastxmax | laststarttime | lastendtime
-------+---------+----------+----------+-------------------------------+-------------------------------
 21132 | 1251610 | 1251609 | 1251611 | 2023-01-04 20:51:58.375136+08 | 2023-01-04 20:51:58.393986+08
(1 row)

14.2.34 PG_FOREIGN_DATA_WRAPPER
PG_FOREIGN_DATA_WRAPPER records foreign-data wrapper definitions. A
foreign-data wrapper is the mechanism by which external data, residing on foreign
servers, is accessed.

Table 14-34 PG_FOREIGN_DATA_WRAPPER columns

Name Type Reference Description

oid oid N/A Row identifier (hidden attribute;
displayed only when explicitly
selected)

fdwname name N/A Name of the foreign-data wrapper

fdwowner oid PG_AUTHID.oid Owner of the foreign-data wrapper

fdwhandler oid PG_PROC.oid References a handler function that is
responsible for supplying execution
routines for the foreign-data
wrapper. Its value is 0 if no handler is
provided.

fdwvalidat
or

oid PG_PROC.oid References a validator function that
is responsible for checking the
validity of the options given to the
foreign-data wrapper, as well as
options for foreign servers and user
mappings using the foreign-data
wrapper. Its value is 0 if no validator
is provided.

fdwacl aclite
m[]

N/A Access permissions

fdwoptions text[] N/A Option used for foreign data
wrappers. It is a keyword=value
string.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 595

14.2.35 PG_FOREIGN_SERVER
PG_FOREIGN_SERVER records the foreign server definitions. A foreign server
describes a source of external data, such as a remote server. Foreign servers are
accessed via foreign-data wrappers.

Table 14-35 PG_FOREIGN_SERVER columns

Name Type Reference Description

oid oid N/A Row identifier (hidden
attribute; displayed only when
explicitly selected)

srvname name N/A Name of the foreign server

srvowner oid PG_AUTHID.oid Owner of the foreign server

srvfdw oid PG_FOREIGN_DATA_
WRAPPER.oid

OID of the foreign-data
wrapper of this foreign server

srvtype text N/A Type of the server (optional)

srvversion text N/A Version of the server
(optional)

srvacl aclitem[] N/A Access permissions

srvoptions text[] N/A Option used for foreign
servers. It is a keyword=value
string.

14.2.36 PG_FOREIGN_TABLE
PG_FOREIGN_TABLE records auxiliary information about foreign tables.

Table 14-36 PG_FOREIGN_TABLE columns

Name Type Description

ftrelid oid OID of the foreign table

ftserver oid OID of the server where the foreign table is
located

ftwriteonly boolean Whether data can be written in the foreign
table

ftoptions text[] Foreign table options

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 596

14.2.37 PG_INDEX
PG_INDEX records part of the information about indexes. The rest is mostly in
PG_CLASS.

Table 14-37 PG_INDEX columns

Name Type Description

indexrelid oid OID of the pg_class entry for this index

indrelid oid OID of the pg_class entry for the table this
index is for

indnatts smallint Number of columns in an index

indisunique boolean This index is a unique index if the value is
true.

indisprimary boolean This index represents the primary key of the
table if the value is true. If this value is true,
the value of indisunique is true.

indisexclusion boolean This index supports exclusion constraints if
the value is true.

indimmediate boolean A uniqueness check is performed upon data
insertion if the value is true.

indisclustered boolean The table was last clustered on this index if
the value is true.

indisusable boolean This index supports insert/select if the value
is true.

indisvalid boolean This index is valid for queries if the value is
true. If this column is false, this index is
possibly incomplete and must still be
modified by INSERT/UPDATE operations, but
it cannot safely be used for queries. If it is a
unique index, the uniqueness property is also
not true.

indcheckxmin boolean If the value is true, queries must not use the
index until the xmin of this row in pg_index
is below their TransactionXmin event
horizon, because the table may contain
broken HOT chains with incompatible rows
that they can see.

indisready boolean If the value is true, this index is ready for
inserts. If the value is false, this index is
ignored when data is inserted or modified.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 597

Name Type Description

indkey int2vector This is an array of indnatts values that
indicate which table columns this index
creates. For example, a value of 1 3 means
that the first and the third columns make up
the index key. 0 in this array indicates that
the corresponding index attribute is an
expression over the table columns, rather
than a simple column reference.

indcollation oidvector ID of each column used by the index

indclass oidvector For each column in the index key, this
column contains the OID of the operator
class to use. For details, see PG_OPCLASS.

indoption int2vector Array of values that store per-column flag
bits. The meaning of the bits is defined by
the index's access method.

indexprs pg_node_tr
ee

Expression trees (in nodeToString()
representation) for index attributes that are
not simple column references. It is a list with
one element for each zero entry in INDKEY.
NULL if all index attributes are simple
references.

indpred pg_node_tr
ee

Expression tree (in nodeToString()
representation) for partial index predicate. If
the index is not a partial index, the value is
null.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 598

Name Type Description

indnullstreatment tinyint Processing mode of the NULL value in the
unique index. This field is valid only if
indisunique is set to true.
Options:
● 0: NULLS DISTINCT. NULL values are not

equivalent and can be inserted repeatedly.
● 1: NULLS NOT DISTINCT. NULL values

are equivalent and cannot be inserted
repeatedly.

● 2: NULLS IGNORE. NULL columns are
ignored during equivalent comparison. If
all index columns are NULL, NULL values
can be inserted repeatedly. If part of the
index columns are NULL, data can be
inserted only if non-null values are
different.

Default value: 0
NOTE

● If the current cluster was upgraded from an
earlier version to 8.2.0.100, the value of this
field is NULL for existing indexes. For newly
created indexes, the value of this field is
determined by the [NULLS [NOT] DISTINCT |
NULLS IGNORE] field. The default value is 0.

● If the current cluster is newly installed and its
version is 8.2.0.100, for newly created indexes,
the value of this field is determined by the
[NULLS [NOT] DISTINCT | NULLS IGNORE]
field. The default value is 0.

14.2.38 PG_INHERITS
PG_INHERITS records information about table inheritance hierarchies. There is
one entry for each direct child table in the database. Indirect inheritance can be
determined by following chains of entries.

Table 14-38 PG_INHERITS columns

Name Type Reference Description

inhrelid oid PG_CLASS.oid OID of the child table

inhparent oid PG_CLASS.oid OID of the parent table

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 599

Name Type Reference Description

inhseqno integer - If there is more than one direct
parent for a child table (multiple
inheritances), this number tells the
order in which the inherited columns
are to be arranged. The count starts
at 1.

14.2.39 PG_JOB_INFO
PG_JOB_INFO records the execution results of scheduled tasks. The schema of the
system catalog is dbms_om.

Table 14-39 dbms_om.pg_job_info columns

Name Type Description

job_id integer Job ID

job_db oid OID of the database where the task is

start_time timestamp with
zone

Task execution start time

status character(8) Task execution status

end_time timestamp with
zone

Task execution end time

err_msg text Task execution error information

14.2.40 PG_JOBS
PG_JOBS records detailed information about jobs created by users. Dedicated
threads poll the pg_jobs table and trigger jobs based on scheduled job execution
time. This table belongs to the Shared Relation category. All job records are visible
to all databases.

Table 14-40 PG_JOBS columns

Name Type Description

job_id integer Job ID, primary key, unique (with a
unique index)

what text Job content

log_user oid Username of the job creator

priv_user oid User ID of the job executor

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 600

Name Type Description

job_db oid OID of the database where the job is
executed

job_nsp oid OID of the namespace where a job is
running

job_node oid CN node on which the job will be
created and executed

is_broken boolean Whether the current job is invalid

start_date timestamp
without time
zone

Start time of the first job execution,
accurate to millisecond

next_run_date timestamp
without time
zone

Scheduled time of the next job
execution, accurate to millisecond

failure_count smallint Number of consecutive failures

interval text Job execution interval

last_start_date timestamp
without time
zone

Start time of the last job execution,
accurate to millisecond

last_end_date timestamp
without time
zone

End time of the last job execution,
accurate to millisecond

last_suc_date timestamp
without time
zone

Start time of the last successful job
execution, accurate to millisecond

this_run_date timestamp
without time
zone

Start time of the ongoing job
execution, accurate to millisecond

14.2.41 PG_LANGUAGE
PG_LANGUAGE records languages that can be used to write functions or stored
procedures.

Table 14-41 PG_LANGUAGE columns

Name Type Reference Description

oid oid N/A Row identifier (hidden attribute;
must be explicitly selected)

lanname name N/A Name of the language

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 601

Name Type Reference Description

lanowner oid PG_AUTHID.oi
d

Owner of the language

lanispl boolean N/A The value is false for internal
languages (such as SQL) and true
for user-defined languages. Currently,
gs_dump still uses this to determine
which languages need to be
dumped, but this might be replaced
by a different mechanism in the
future.

lanpltrusted boolean N/A Its value is true if this is a trusted
language, which means that it is
believed not to grant access to
anything outside the normal SQL
execution environment. Only the
initial user can create functions in
untrusted languages.

lanplcallfoid oid PG_AUTHID.oi
d

For external languages, this
references the language handler,
which is a special function that is
responsible for executing all
functions that are written in the
particular language.

laninline oid PG_AUTHID.oi
d

This references a function that is
responsible for executing "inline"
anonymous code blocks (DO blocks).
The value is 0 if inline blocks are not
supported.

lanvalidator oid PG_AUTHID.oi
d

This references a language validator
function that is responsible for
checking the syntax and validity of
new functions when they are
created. The value is 0 if no validator
is provided.

lanacl aclitem[] N/A Access permissions

14.2.42 PG_LARGEOBJECT
PG_LARGEOBJECT records the data making up large objects A large object is
identified by an OID assigned when it is created. Each large object is broken into
segments or "pages" small enough to be conveniently stored as rows in
pg_largeobject. The amount of data per page is defined to be LOBLKSIZE (which
is currently BLCKSZ/4, or typically 2 kB).

It is accessible only to users with system administrator rights.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 602

Table 14-42 PG_LARGEOBJECT columns

Name Type Reference Description

loid oid PG_LARGEOBJECT_ME
TADATA.oid

Identifier of the large object that
includes this page

pageno integer - Page number of this page within
its large object (counting from
zero)

data bytea - Actual data stored in the large
object. This will never be more
than LOBLKSIZE bytes and
might be less.

Each row of pg_largeobject holds data for one page of a large object, beginning
at byte offset (pageno * LOBLKSIZE) within the object. The implementation
allows sparse storage: pages might be missing, and might be shorter than
LOBLKSIZE bytes even if they are not the last page of the object. Missing regions
within a large object are read as zeroes.

14.2.43 PG_LARGEOBJECT_METADATA
PG_LARGEOBJECT_METADATA records metadata associated with large objects.
The actual large object data is stored in PG_LARGEOBJECT.

Table 14-43 PG_LARGEOBJECT_METADATA columns

Name Type Reference Description

oid oid N/A Row identifier (hidden attribute;
displayed only when explicitly
selected)

lomowner oid PG_AUTHID.oid Owner of the large object

lomacl aclitem[] N/A Access permissions

14.2.44 PG_MATVIEW
PG_MATVIEW records materialized view information about the current node.

Table 14-44 PG_MATVIEW columns

Column Type Description

mvid oid OID of the materialized view.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 603

Column Type Description

build_mode char Build mode of the materialized view.
● 'd': indicates "deferred", which

means that data is contained in the
materialized view only when the
view is refreshed for the first time.

● 'i': indicates "immediate", which
means that the latest data is
included when the materialized
view is created.

refresh_method char 'c' indicates that the data is
completely refreshed.

refresh_mode char Refresh mode of the materialized view.
● 'd': indicates manual refresh.
● 'a': indicates that the materialized

view is always active and is
automatically refreshed in the
background.

rewrite_enable boolean Indicates whether query rewriting of
the materialized view is supported.

active boolean Indicates whether the materialized
view needs to be refreshed.

relnum Int Number of materialized view base
tables.

start_time timestamptz Time when the materialized view is
refreshed for the first time. If this
parameter is left blank, the first
refresh time is the current time plus
the interval.

interval interval Interval for refreshing the materialized
view.

refresh_time timestamptz Last refresh time of the materialized
view.

refresh_finish_tim
e

timestamptz End time of the last refresh of a
materialized view.

14.2.45 PG_NAMESPACE
PG_NAMESPACE records the namespaces, that is, schema-related information.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 604

Table 14-45 PG_NAMESPACE columns

Name Type Description

nspname name Name of the namespace

nspowner oid Owner of the namespace

nsptimeline bigint Timeline when the namespace is created on the
DN This column is for internal use and valid only
on the DN.

nspacl aclitem[] Access permissions For details, see GRANT and
REVOKE.

permspace bigint Quota of a schema's permanent tablespace

usedspace bigint Used size of a schema's permanent tablespace

14.2.46 PG_OBJECT
PG_OBJECT records the user creation, creation time, last modification time, and
last analyzing time of objects of specified types (types existing in object_type).

Table 14-46 PG_OBJECT columns

Name Type Description

object_oid oid Object identifier.

object_type "char" Object type:
● r indicates a table, which can be an ordinary

table or a temporary table.
● i indicates an index.
● s indicates a sequence.
● v indicates a view.
● p indicates a stored procedure and function.
● f indicates a foreign table.

creator oid ID of the creator.

ctime timestamp
with time
zone

Object creation time.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 605

Name Type Description

mtime timestamp
with time
zone

Time when the object was last modified. By
default, the ALTER, COMMENT, GRANT/
REVOKE, and TRUNCATE operations are
recorded.
object_mtime_record_mode can be used to
control whether ALTER, COMMENT, GRANT/
REVOKE, and TRUNCATE operations are
recorded.

last_analyze_t
ime

timestamp
with time
zone

Time when an object is analyzed for the last
time.

NO TICE

● Only normal user operations are recorded. Operations before the object
upgrade and during the initdb process cannot be recorded.

● ctime and mtime are the start time of the transaction.
● The time of object modification due to capacity expansion is also recorded.

14.2.47 PG_OBSSCANINFO
PG_OBSSCANINFO defines the OBS runtime information scanned in cluster
acceleration scenarios. Each record corresponds to a piece of runtime information
of a foreign table on OBS in a query.

Table 14-47 PG_OBSSCANINFO columns

Name Type Referen
ce

Description

query_id bigint N/A Query ID

user_id text N/A Database user who performs queries

table_name text N/A Name of a foreign table on OBS

file_type text N/A Format of files storing the underlying
data

time_stamp time_stam N/A Scanning start time

actual_time double N/A Scanning execution time, in seconds

file_scanned bigint N/A Number of files scanned

data_size double N/A Size of data scanned, in bytes

billing_info text N/A Reserved column

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 606

14.2.48 PG_OPCLASS
PG_OPCLASS defines index access method operator classes.

Each operator class defines semantics for index columns of a particular data type
and a particular index access method. An operator class essentially specifies that a
particular operator family is applicable to a particular indexable column data type.
The set of operators from the family that are actually usable with the indexed
column are whichever ones accept the column's data type as their lefthand input.

Table 14-48 PG_OPCLASS columns

Name Type Reference Description

oid oid - Row identifier (hidden attribute;
must be explicitly selected)

opcmethod oid PG_AM.oid Index access method the
operator class is for

opcname name - Name of the operator class

opcnamespa
ce

oid PG_NAMESPACE.oid Namespace to which the
operator class belongs

opcowner oid PG_AUTHID.oid Owner of the operator class

opcfamily oid PG_OPFAMILY.oid Operator family containing the
operator class

opcintype oid PG_TYPE.oid Data type that the operator
class indexes

opcdefault boolea
n

- Whether the operator class is
the default for opcintype. If it
is, its value is true.

opckeytype oid PG_TYPE.oid Type of data stored in index, or
zero if same as opcintype

An operator class's opcmethod must match the opfmethod of its containing
operator family. Also, there must be no more than one pg_opclass row having
opcdefault true for any given combination of opcmethod and opcintype.

14.2.49 PG_OPERATOR
PG_OPERATOR records information about operators.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 607

Table 14-49 PG_OPERATOR columns

Name Type Reference Description

oid oid N/A Row identifier (hidden
attribute; displayed only
when explicitly selected)

oprname name N/A Name of the operator

oprnamespace oid PG_NAMESPACE.oid OID of the namespace that
contains this operator

oprowner oid PG_AUTHID.oid Owner of the operator

oprkind "char" N/A ● b: infix ("both")
● l: prefix ("left")
● r: postfix ("right")

oprcanmerge boolean N/A Whether the operator
supports merge joins

oprcanhash boolean N/A Whether the operator
supports hash joins

oprleft oid PG_TYPE.oid Type of the left operand

oprright oid PG_TYPE.oid Type of the right operand

oprresult oid PG_TYPE.oid Type of the result

oprcom oid PG_OPERATOR.oid Commutator of this
operator, if any

oprnegate oid PG_OPERATOR.oid Negator of this operator, if
any

oprcode regproc PG_PROC.oid Function that implements
this operator

oprrest regproc PG_PROC.oid Restriction selectivity
estimation function for this
operator

oprjoin regproc PG_PROC.oid Join selectivity estimation
function for this operator

14.2.50 PG_OPFAMILY
PG_OPFAMILY defines operator families.

Each operator family is a collection of operators and associated support routines
that implement the semantics specified for a particular index access method.
Furthermore, the operators in a family are all "compatible", in a way that is
specified by the access method. The operator family concept allows cross-data-

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 608

type operators to be used with indexes and to be reasoned about using knowledge
of access method semantics.

Table 14-50 PG_OPFAMILY columns

Name Type Reference Description

oid oid N/A Row identifier (hidden
attribute; displayed only
when explicitly selected)

opfmethod oid PG_AM.oid Index method used by the
operator family

opfname name N/A Name of the operator family

opfnamespac
e

oid PG_NAMESPACE.oid Namespace of the operator
family

opfowner oid PG_AUTHID.oid Owner of the operator
family

The majority of the information defining an operator family is not in
PG_OPFAMILY, but in the associated PG_AMOP, PG_AMPROC, and PG_OPCLASS.

14.2.51 PG_PARTITION
PG_PARTITION records all partitioned tables, table partitions, toast tables on
table partitions, and index partitions in the database. Partitioned index
information is not stored in the PG_PARTITION system catalog.

Table 14-51 PG_PARTITION columns

Name Type Description

relname name Names of the partitioned tables, table
partitions, TOAST tables on table partitions,
and index partitions

parttype "char" Object type
● r indicates a partitioned table.
● p indicates a table partition.
● x indicates an index partition.
● t indicates a TOAST table.

parentid oid OID of the partitioned table in PG_CLASS
when the object is a partitioned table or table
partition
OID of the partitioned index when the object
is an index partition

rangenum integer Reserved field.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 609

Name Type Description

intervalnum integer Reserved field.

partstrategy "char" Partition policy of the partitioned table. Only
the following policies are supported:
r indicates the range partition.
v indicates the numeric partition.
l: indicates the list partition.

relfilenode oid Physical storage locations of the table
partition, index partition, and TOAST table on
the table partition.

reltablespace oid OID of the tablespace containing the table
partition, index partition, TOAST table on the
table partition

relpages double
precision

Statistics: numbers of data pages of the table
partition and index partition

reltuples double
precision

Statistics: numbers of tuples of the table
partition and index partition

relallvisible integer Statistics: number of visible data pages of the
table partition and index partition

reltoastrelid oid OID of the TOAST table corresponding to the
table partition

reltoastidxid oid OID of the TOAST table index corresponding
to the table partition

indextblid oid OID of the table partition corresponding to
the index partition

indisusable boolean Whether the index partition is available

reldeltarelid oid OID of a Delta table

reldeltaidx oid OID of the index for a Delta table

relcudescrelid oid OID of a CU description table

relcudescidx oid OID of the index for a CU description table

relfrozenxid xid32 Frozen transaction ID
To ensure forward compatibility, this column
is reserved. The relfrozenxid64 column is
added to record the information.

intspnum integer Number of tablespaces that the interval
partition belongs to

partkey int2vector Column number of the partition key

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 610

Name Type Description

intervaltablespace oidvector Tablespace that the interval partition belongs
to. Interval partitions fall in the tablespaces in
the round-robin manner.

interval text[] Interval value of the interval partition

boundaries text[] Upper boundary of the range partition and
interval partition

transit text[] Transit of the interval partition

reloptions text[] Storage property of a partition used for
collecting online scale-out information. Same
as pg_class.reloptions, it is a keyword=value
string.

relfrozenxid64 xid Frozen transaction ID

boundexprs pg_node_t
ree

Partition boundary expression.
● For range partitioning, it is the upper

boundary expression of a partition.
● For list partitioning, it is a collection of

partition boundary enumeration values.
The pg_node_tree data is not readable. You
can use the expression pg_get_expr to
translate the current column into readable
information.
SELECT pg_get_expr(boundexprs, 0) FROM pg_partition
WHERE relname = 'country_202201';
pg_get_expr

ROW(202201, 'city1'::text), ROW(202201, 'city2'::text)
(1 row)

relmetaversion xid Metadata version information. This column is
supported only by clusters of version 9.1.0 or
later.

Example
Query the partition information of the partitioned table web_returns_p2.

CREATE TABLE web_returns_p2
(
 wr_returned_date_sk integer,
 wr_returned_time_sk integer,
 wr_item_sk integer NOT NULL,
 wr_refunded_customer_sk integer
)
WITH (orientation = column)
DISTRIBUTE BY HASH (wr_item_sk)
PARTITION BY RANGE(wr_returned_date_sk)
(
 PARTITION p2016 START(20161231) END(20191231) EVERY(10000),
 PARTITION p0 END(maxvalue)
);

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 611

SELECT oid FROM pg_class WHERE relname ='web_returns_p2';
 oid

 97628

SELECT relname,parttype,parentid,boundaries FROM pg_partition WHERE parentid = '97628';
 relname | parttype | parentid | boundaries
----------------+----------+----------+------------
 web_returns_p2 | r | 97628 |
 p2016_0 | p | 97628 | {20161231}
 p2016_1 | p | 97628 | {20171231}
 p2016_2 | p | 97628 | {20181231}
 p2016_3 | p | 97628 | {20191231}
 p0 | p | 97628 | {NULL}
(6 rows)

14.2.52 PG_PLTEMPLATE
PG_PLTEMPLATE records template information for procedural languages.

Table 14-52 PG_PLTEMPLATE columns

Name Type Description

tmplname name Name of the language for which this
template is used

tmpltrusted boolean The value is true if the language is
considered trusted.

tmpldbacreate boolean The value is true if the language is created
by the owner of the database.

tmplhandler text Name of the call handler function

tmplinline text Name of the anonymous block handler. If no
name of the block handler exists, the value is
null.

tmplvalidator text Name of the verification function. If no
verification function is available, the value is
null.

tmpllibrary text Path of the shared library that implements
languages

tmplacl aclitem[] Access permissions for template (not yet
used)

14.2.53 PG_PROC
PG_PROC records information about functions or procedures.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 612

Table 14-53 PG_PROC columns

Name Type Description

proname name Name of the function

pronamespace oid OID of the namespace that contains the
function

proowner oid Owner of the function

prolang oid Implementation language or call interface of
the function

procost real Estimated execution cost

prorows real Estimate number of result rows

provariadic oid Data type of parameter element

protransform regproc Simplified call method for this function

proisagg boolean Whether this function is an aggregate function

proiswindow boolean Whether this function is a window function

prosecdef boolean Whether this function is a security definer (such
as a "setuid" function)

proleakproof boolean Whether this function has side effects. If no
leakproof treatment is provided for parameters,
the function throws errors.

proisstrict boolean The function returns null if any call parameter
is null. In that case the function does not
actually be called at all. Functions that are not
"strict" must be prepared to process null inputs.

proretset boolean The function returns a set, that is, multiple
values of the specified data type.

provolatile "char" Whether the function's result depends only on
its input parameters, or is affected by outside
factors
● It is i for "immutable" functions, which

always deliver the same result for the same
inputs.

● It is s for "stable" functions, whose results
(for fixed inputs) do not change within a
scan.

● It is v for "volatile" functions, whose results
may change at any time.

pronargs smallint Number of parameters

pronargdefaults smallint Number of parameters that have default values

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 613

Name Type Description

prorettype oid OID of the returned parameter type

proargtypes oidvecto
r

Array with the data types of the function
parameters. This array includes only input
parameters (including INOUT parameters) and
thus represents the call signature of the
function.

proallargtypes oid[] Array with the data types of the function
parameters. This array includes all parameter
types (including OUT and INOUT parameters);
however, if all the parameters are IN
parameters, this column is null. Note that array
subscripting is 1-based, whereas for historical
reasons, and proargtypes is subscripted from 0.

proargmodes "char"[] Array with the modes of the function
parameters.
● i indicates IN parameters.
● o indicates OUT parameters.
● b indicates INOUT parameters.
● v indicates VARIADIC parameters.
● t indicates table-valued parameters.
If all the parameters are IN parameters, this
column is null. Note that subscripts of this array
correspond to positions of proallargtypes not
proargtypes.

proargnames text[] Array that stores the names of the function
parameters. Parameters without a name are set
to empty strings in the array. If none of the
parameters have a name, this column is null.
Note that subscripts correspond to positions of
proallargtypes not proargtypes.

proargdefaults pg_node
_tree

Expression tree of the default value. This is the
list of PRONARGDEFAULTS elements.

prosrc text A definition that describes a function or stored
procedure. In an interpreting language, it is the
function source code, a link symbol, a file
name, or any body content specified when a
function or stored procedure is created,
depending on how a language or calling is
used.

probin text Additional information about how to call the
function. Again, the interpretation is language-
specific.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 614

Name Type Description

proconfig text[] Function's local settings for run-time
configuration variables.

proacl aclitem[
]

Access permissions For details, see GRANT and
REVOKE.

prodefaultargpos int2vect
or

Locations of the function default values. Not
only the last few parameters have default
values.

fencedmode boolean Execution mode of a function, indicating
whether a function is executed in fence or not
fence mode. If the execution mode is fence, the
function is executed in the fork process that is
reworked. The default value is fence.

proshippable boolean Whether a function can be pushed down to
DNs. The default value is false.
● Functions of the IMMUTABLE type can

always be pushed down to the DNs.
● Functions of the STABLE or VOLATILE type

can be pushed down to DNs only if their
attribute is SHIPPABLE.

propackage boolean Indicates whether the function supports
overloading, which is mainly used for the
Oracle style function. The default value is false.

Examples

Query the OID of a specified function. For example, obtain the OID 1295 of the
justify_days function.

SELECT oid FROM pg_proc where proname ='justify_days';
 oid

 1295
(1 row)

Query whether a function is an aggregate function. For example, the justify_days
function is a non-aggregate function.

SELECT proisagg FROM pg_proc where proname ='justify_days';
 proisagg

 f
(1 row)

14.2.54 PG_PUBLICATION
PG_PUBLICATION records all the publications created in the current database.
This system catalog is supported only by clusters of version 8.2.0.100 or later.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 615

Table 14-54 PG_PUBLICATION columns

Name Type Reference Description

oid oid - Row identifier (hidden
attribute; displayed only when
explicitly selected)

pubname name - Publication name

pubowner oid PG_AUTHID.oid Publication owner

puballtable
s

boole
an

- If its value is true, the
publication includes all the
tables in the database,
including any tables that will be
created in the future.

pubinsert boole
an

- If its value is true, the INSERT
operation is copied for the
tables in the publication.

pubupdate boole
an

- If its value is true, the UPDATE
operation is copied for the
tables in the publication.

pubdelete boole
an

- If its value is true, the DELETE
operation is copied for the
tables in the publication.

pubtruncat
e

boole
an

- If its value is true, the
TRUNCATE operation is copied
for the tables in the publication.

Examples
View all releases.

SELECT * FROM pg_publication;
 pubname | pubowner | puballtables | pubinsert | pubupdate | pubdelete | pubtruncate
---------+----------+--------------+-----------+-----------+-----------+-------------
 mypub | 10 | t | t | t | t | t
(1 row)

14.2.55 PG_PUBLICATION_NAMESPACE
PG_PUBLICATION_NAMESPACE records the mapping between publications and
schemas in the current database, which is a many-to-many mapping. This system
catalog is supported only by clusters of version 8.2.0.100 or later.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 616

Table 14-55 PG_PUBLICATION_NAMESPACE columns

Name Type Reference Description

oid oid - Row identifier (hidden
attribute; displayed only when
explicitly selected)

prpubid oid PG_PUBLICATION.oid Publication OID in the mapping

pnnspid oid PG_NAMESPACE.oid Schema OID in the mapping

Examples

View all mappings between publications and schemas.

SELECT * FROM pg_publication_namespace;
 pnpubid | pnnspid
---------+---------
 16797 | 16796
(1 row)

14.2.56 PG_PUBLICATION_REL
PG_PUBLICATION_REL records the mapping between publications and tables in
the current database, which is a many-to-many mapping. This system catalog is
supported only by clusters of version 8.2.0.100 or later.

NO TE

To check detailed information, you are advised to use the PG_PUBLICATION_TABLES view.

Table 14-56 PG_PUBLICATION_REL columns

Name Type Reference Description

oid oid - Row identifier (hidden
attribute; displayed only when
explicitly selected)

prpubid oid PG_PUBLICATION.oid Publication OID in the mapping

prrelid oid PG_CLASS.oid OID of the mapped table

Examples

View all mappings between publications and tables.

postgres=# SELECT * FROM pg_publication_rel;
 prpubid | prrelid
---------+---------
 16797 | 16757
 16797 | 16776
(2 rows)

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 617

14.2.57 PG_RANGE
PG_RANGE records information about range types.

This is in addition to the types' entries in PG_TYPE.

Table 14-57 PG_RANGE columns

Name Type Reference Description

rngtypid oid PG_TYPE.oid OID of the range type

rngsubtype oid PG_TYPE.oid OID of the element type
(subtype) of this range type

rngcollation oid PG_COLLATION.oid OID of the collation used for
range comparisons, or 0 if
none

rngsubopc oid PG_OPCLASS.oid OID of the subtype's operator
class used for range
comparisons

rngcanonica
l

regproc PG_PROC.oid OID of the function to convert
a range value into canonical
form, or 0 if none

rngsubdiff regproc PG_PROC.oid OID of the function to return
the difference between two
element values as double
precision, or 0 if none

rngsubopc (plus rngcollation, if the element type is collatable) determines the
sort ordering used by the range type. rngcanonical is used when the element type
is discrete.

14.2.58 PG_REDACTION_COLUMN
PG_REDACTION_COLUMN records the information about the redacted columns.

Table 14-58 PG_REDACTION_COLUMN columns

Name Type Description

object_oid oid OID of the object to be
redacted.

column_attrno smallint attrno of the redacted
column.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 618

Name Type Description

function_type integer Redaction type.
NOTE

This column is reserved. It
is used only for forward
compatibility of redacted
column information in
earlier versions. The value
can be 0 (NONE) or 1
(FULL).

function_parameters text Parameters used when
the redaction type is
partial (reserved).

regexp_pattern text Pattern string when the
redaction type is regexp
(reserved).

regexp_replace_string text Replacement string
when the redaction type
is regexp (reserved).

regexp_position integer Start and end
replacement positions
when the redaction type
is regexp (reserved).

regexp_occurrence integer Replacement times when
the redaction type is
regexp (reserved).

regexp_match_parameter text Regular control
parameter used when
the redaction type is
regexp (reserved).

column_description text Description of the
redacted column.

function_expr pg_node_tree Internal representation
of the redaction
function.

inherited bool Whether a redacted
column is inherited from
another redacted
column.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 619

Name Type Description

policy_oid oid OID of the masking
policy.
Supported by clusters of
8.2.1.100 and later
versions. It is used to
search for masked
column information from
the metadata in the
system catalog.

14.2.59 PG_REDACTION_POLICY
PG_REDACTION_POLICY records information about the object to be redacted.

Table 14-59 PG_REDACTION_POLICY columns

Name Type Description

object_oid oid OID of the object to be
redacted.

policy_name name Name of the redaction
policy.

enable boolean Policy status (enabled or
disabled).
NOTE

The value can be:
● true: enabled
● false: disabled

expression pg_node_tree Policy effective
expression (for users).

policy_description text Description of a policy.

inherited bool Whether a redaction
policy is inherited from
another redaction policy.

policy_order float4 Masking policy sequence.
This field is supported by
8.2.1.100 and later
cluster versions.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 620

14.2.60 PG_RELFILENODE_SIZE
The PG_RELFILENODE_SIZE system catalog provides file-level space statistics.
Each record in the table corresponds to a physical file on the disk and the size of
the file.

Table 14-60 PG_RELFILENODE_SIZE columns

Name Type Description

databasei
d

oid OID of the database that the physical file belongs to If a
system catalog is shared across databases, its value is 0.

tablespac
eid

oid Tablespace OID of the physical file

relfilenod
e

oid Serial number of the physical file

backendi
d

integer ID of the background thread that creates the physical
file. Generally, the value is -1.

type integer Type of the physical file.
● The value 0 indicates a data file.
● The value 1 indicates an FSM file.
● The value 2 indicates a VM file.
● The value 3 indicates a BCM file.
● If the value greater than 4 indicates the total size of

the data file and BCM file of the column in a column-
store table.

filesize bigint Size of the physical file, in bytes.

14.2.61 PG_RLSPOLICY
PG_RLSPOLICY displays the information about row-level access control policies.

Table 14-61 PG_RLSPOLICY columns

Name Type Description

polname name Name of a row-level access control policy

polrelid oid Table OID of a row-level access control policy

polcmd char SQL operations affected by a row-level access control
policy. The options are *(ALL), r(SELECT), w(UPDATE),
and d(DELETE).

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 621

Name Type Description

polpermi
ssive

boolean Type of a row-level access control policy
NOTE

Values of polpermissive:
● true: The row-level access control policy is a permissive

policy.
● false: The row-level access control policy is a restrictive

policy.

polroles oid[] OID of database user affected by a row-level access
control policy

polqual pg_node
_tree

SQL condition expression of a row-level access control
policy

14.2.62 PG_RESOURCE_POOL
PG_RESOURCE_POOL records the information about database resource pool.

Table 14-62 PG_RESOURCE_POOL columns

Name Type Description

respool_name name Name of the resource pool

mem_percent integer Configured memory percentage. 0 indicates
that the memory of the resource pool is not
controlled.

cpu_affinity bigint Reserved column without an actual meaning

control_group name Name of the Cgroup where the resource pool
is located

active_statements integer Maximum number of concurrent statements in
the resource pool

max_dop integer Maximum number of concurrent simple jobs
allowed by the resource pool. -1 and 0 indicate
that there are no limitations.

memory_limit name Estimated memory upper limit for a query.

parentid oid OID of the parent resource pool

io_limits integer Reserved column without an actual meaning

io_priority text Reserved column without an actual meaning

nodegroup name Name of the logical cluster associated with the
resource pool. The value is installation for a
non-logical cluster.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 622

Name Type Description

is_foreign boolean Whether the resource pool can be used for
users outside the logical cluster. If it is set to
true, the resource pool controls the resources
of common users who do not belong to the
current resource pool.

short_acc boolean Whether to enable short query acceleration for
a resource pool. This function is enabled by
default.
● If short query acceleration is enabled,

simple queries are controlled on the fast
lane.

● If short query acceleration is disabled, and
simple queries are controlled on the slow
lane.

except_rule text Exception rule associated with a resource pool.
There can be multiple associated rules, which
are separated by commas (,).

weight integer Resource scheduling weight. Currently, this
parameter is used only for network scheduling.

14.2.63 PG_REWRITE
PG_REWRITE records rewrite rules defined for tables and views.

Table 14-63 PG_REWRITE columns

Name Type Description

rulename name Name of the rule

ev_class oid Name of the table that uses the rule

ev_attr smallint Column this rule is for (always 0 to indicate
the entire table)

ev_type "char" Event type for this rule:
● 1 = SELECT
● 2 = UPDATE
● 3 = INSERT
● 4 = DELETE

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 623

Name Type Description

ev_enabled "char" Controls in which mode the rule fires
● O: The rule fires in "origin" and "local"

modes.
● D: The rule is disabled.
● R: The rule fires in "replica" mode.
● A: The rule always fires.

is_instead boolean Its value is true if the rule is an INSTEAD
rule.

ev_qual pg_node_tr
ee

Expression tree (in the form of a
nodeToString() representation) for the rule's
qualifying condition

ev_action pg_node_tr
ee

Query tree (in the form of a nodeToString()
representation) for the rule's action

state_change timestamp
with time
zone

Time when the ev_enabled field is updated.
This column is available only in clusters of
version 9.1.0.200 or later.

14.2.64 PG_SECLABEL
PG_SECLABEL records security labels on database objects.

See also PG_SHSECLABEL, which performs a similar function for security labels of
database objects that are shared across a database cluster.

Table 14-64 PG_SECLABEL columns

Name Type Reference Description

objoid oid Any OID column OID of the object this security label
pertains to

classoid oid PG_CLASS.oid OID of the system catalog that
contains the object

objsubid integer N/A For a security label on a table
column, this is the column number.

provider text N/A Label provider associated with this
label

label text N/A Security label applied to this object

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 624

14.2.65 PG_SHDEPEND
PG_SHDEPEND records the dependency relationships between database objects
and shared objects, such as roles. This information allows GaussDB(DWS) to
ensure that those objects are unreferenced before attempting to delete them.

See also PG_DEPEND, which performs a similar function for dependencies
involving objects within a single database.

Unlike most system catalogs, PG_SHDEPEND is shared across all databases of a
cluster: there is only one copy of PG_SHDEPEND per cluster, not one per database.

Table 14-65 PG_SHDEPEND columns

Name Type Reference Description

dbid oid PG_DATABASE.oid OID of the database the
dependent object is in. The value
is 0 for a shared object.

classid oid PG_CLASS.oid OID of the system catalog the
dependent object is in.

objid oid Any OID column OID of the specific dependent
object

objsubid integer - For a table column, this is the
column number (the objid and
classid refer to the table itself).
For all other object types, this
column is 0.

refclassid oid PG_CLASS.oid OID of the system catalog the
referenced object is in (must be a
shared catalog)

refobjid oid Any OID column OID of the specific referenced
object

deptype "char" - Code segment defining the
specific semantics of this
dependency relationship. See the
following text for details.

objfile text - Path of the user-defined C
function library file.

In all cases, a pg_shdepend entry indicates that the referenced object cannot be
dropped without also dropping the dependent object. However, there are several
subflavors defined by deptype:

● SHARED_DEPENDENCY_OWNER (o)
The referenced object (which must be a role) is the owner of the dependent
object.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 625

● SHARED_DEPENDENCY_ACL (a)

The referenced object (which must be a role) is mentioned in the ACL (access
control list, i.e., privileges list) of the dependent object. (A
SHARED_DEPENDENCY_ACL entry is not made for the owner of the object,
since the owner will have a SHARED_DEPENDENCY_OWNER entry anyway.)

● SHARED_DEPENDENCY_PIN (p)

There is no dependent object. This type of entry is a signal that the system
itself depends on the referenced object, and so that object must never be
deleted. Entries of this type are created only by initdb. The columns for the
dependent object contain zeroes.

14.2.66 PG_SHDESCRIPTION
PG_SHDESCRIPTION records optional comments for shared database objects.
Descriptions can be manipulated with the COMMENT command and viewed with
gsql's \d commands.

See also PG_DESCRIPTION, which performs a similar function for descriptions
involving objects within a single database.

Unlike most system catalogs, PG_SHDESCRIPTION is shared across all databases
of a cluster. There is only one copy of PG_SHDESCRIPTION per cluster, not one
per database.

Table 14-66 PG_SHDESCRIPTION columns

Name Type Reference Description

objoid oid Any OID column OID of the object this description
pertains to

classoid oid PG_CLASS.oid OID of the system catalog where
the object resides

description text N/A Arbitrary text that serves as the
description of this object

14.2.67 PG_SHSECLABEL
PG_SHSECLABEL records security labels on shared database objects. Security
labels can be manipulated with the SECURITY LABEL command.

For an easier way to view security labels, see PG_SECLABELS.

See also PG_SECLABEL, which performs a similar function for security labels
involving objects within a single database.

Unlike most system catalogs, PG_SHSECLABEL is shared across all databases of a
cluster. There is only one copy of PG_SHSECLABEL per cluster, not one per
database.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 626

Table 14-67 PG_SHSECLABEL columns

Name Type Reference Description

objoid oid Any OID column OID of the object this security label
pertains to

classoid oid PG_CLASS.oid OID of the system catalog where
the object resides

provider text N/A Label provider associated with this
label

label text N/A Security label applied to this object

14.2.68 PG_STATISTIC
PG_STATISTIC records statistics about tables and index columns in a database. It
is accessible only to users with system administrator rights.

Table 14-68 PG_STATISTIC columns

Name Type Description

starelid oid Table or index which the described column belongs
to

starelkind "char" Type of an object

staattnum smallint Number of the described column in the table,
starting from 1

stainherit boolean Whether to collect statistics for objects that have
inheritance relationship

stanullfrac real Percentage of column entries that are null

stawidth integer Average stored width, in bytes, of non-null entries

stadistinct real Number of distinct, not-null data values in the
column for all DNs
● A value greater than zero is the actual number of

distinct values.
● A value less than zero is the negative of a

multiplier for the number of rows in the table.
(For example, stadistinct=-0.5 indicates that
values in a column appear twice on average.)

● 0 indicates that the number of distinct values is
unknown.

stakindN smallint Code number stating that the type of statistics is
stored in Slot N of the pg_statistic row.
Value range: 1 to 5

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 627

Name Type Description

staopN oid Operator used to generate the statistics stored in
Slot N. For example, a histogram slot shows the <
operator that defines the sort order of the data.
Value range: 1 to 5

stanumbers
N

real[] Numerical statistics of the appropriate type for Slot
N. The value is null if the slot kind does not involve
numerical values.
Value range: 1 to 5

stavaluesN anyarray Column data values of the appropriate type for Slot
N. The value is null if the slot type does not store
any data values. Each array's element values are
actually of the specific column's data type so there is
no way to define these columns' type more
specifically than anyarray.
Value range: 1 to 5

stadndistinct real Number of unique non-null data values in the dn1
column
● A value greater than zero is the actual number of

distinct values.
● A value less than zero is the negative of a

multiplier for the number of rows in the table.
(For example, stadistinct=-0.5 indicates that
values in a column appear twice on average.)

● 0 indicates that the number of distinct values is
unknown.

staextinfo text Information about extension statistics (reserved)

14.2.69 PG_STATISTIC_EXT
PG_STATISTIC_EXT records extended statistics about tables in a database. The
range of extended statistics to be collected is specified by users. Only system
administrators can access this system catalog.

Table 14-69 PG_STATISTIC_EXT columns

Parameter Type Description

starelid oid Table or index which the described column belongs
to

starelkind "char" Type of an object

stainherit boolean Whether to collect statistics for objects that have
inheritance relationship

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 628

Parameter Type Description

stanullfrac real Percentage of column entries that are null

stawidth integer Average stored width, in bytes, of non-null entries

stadistinct real Number of distinct, not-null data values in the
column for all DNs
● A value greater than zero is the actual number of

distinct values.
● A value less than zero is the negative of a

multiplier for the number of rows in the table.
(For example, stadistinct=-0.5 indicates that
values in a column appear twice on average.)

● 0 indicates that the number of distinct values is
unknown.

stadndistinct real Number of unique non-null data values in the dn1
column
● A value greater than zero is the actual number of

distinct values.
● A value less than zero is the negative of a

multiplier for the number of rows in the table.
(For example, stadistinct=-0.5 indicates that
values in a column appear twice on average.)

● 0 indicates that the number of distinct values is
unknown.

stakindN smallint Code number stating that the type of statistics is
stored in Slot N of the pg_statistic row.
Value range: 1 to 5

staopN oid Operator used to generate the statistics stored in
Slot N. For example, a histogram slot shows the <
operator that defines the sort order of the data.
Value range: 1 to 5

stakey int2vector Array of a column ID

stanumbers
N

real[] Numerical statistics of the appropriate type for Slot
N. The value is null if the slot kind does not involve
numerical values.
Value range: 1 to 5

stavaluesN anyarray Column data values of the appropriate type for Slot
N. The value is null if the slot type does not store
any data values. Each array's element values are
actually of the specific column's data type so there is
no way to define these columns' type more
specifically than anyarray.
Value range: 1 to 5

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 629

Parameter Type Description

staexprs pg_node_
tree

Expression corresponding to the extended statistics
information.

14.2.70 PG_STAT_OBJECT
Records table statistics and autovacuum efficiency information of the current DB
instance, and creates indexes for the databaseid, relid, and partid columns.
Update of this system catalog is controlled by the enable_pg_stat_object
parameter. This system catalog is supported only by clusters of version 8.2.1 or
later.

Table 14-70 PG_STAT_OBJECT columns

Column Type Reference Description

databaseid oid PG_DATABAS
E.oid

Database OID.

relid oid PG_CLASS.oi
d

Table OID. It is the OID of the
primary table for a partitioned
table.

partid oid PG_PARTITIO
N
.oid

Partition OID. If the table is not
partitioned, the value is 0.

numscans bigint N/A Number of times that sequential
scans are started.

tuples_returne
d

bigint N/A Number of visible tuples fetched
by sequential scans.

tuples_fetche
d

bigint N/A Number of visible tuples fetched.

tuples_inserte
d

bigint N/A Number of inserted records.

tuples_update
d

bigint N/A Number of updated records.

tuples_delete
d

bigint N/A Number of deleted records.

tuples_hot_up
dated

bigint N/A Number of HOT updates.

n_live_tuples bigint N/A Number of visible tuples.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 630

Column Type Reference Description

last_autovacu
um_begin_n_
dead_tuple

bigint N/A Number of tuples deleted before
Autovacuum is executed.

n_dead_tuples bigint N/A Number of tuples deleted after
Autovacuum is successful.

changes_since
_analyze

bigint N/A Last data modification time after
Analyze.

blocks_fetche
d

bigint N/A Number of selected pages.

blocks_hit bigint N/A Number of scanned pages.

cu_mem_hit bigint N/A Number of CU memory hits.

cu_hdd_sync bigint N/A Times that CUs are synchronously
read from disks.

cu_hdd_asyn bigint N/A Times that CUs are asynchronously
read from disks.

data_changed
_timestamp

timestam
p with
time zone

N/A Last data modification time.

data_access_ti
mestamp

timestam
p with
time zone

N/A Last access time of a table.

analyze_times
tamp

timestam
p with
time zone

N/A Last Analyze time.

analyze_count bigint N/A Total number of Analyze times.

autovac_analy
ze_timestamp

timestam
p with
time zone

N/A Last Autoanalyze time.

autovac_analy
ze_count

bigint N/A Total number of Autoanalyze
times.

vacuum_times
tamp

timestam
p with
time zone

N/A Time of the latest Vacuum.

vacuum_coun
t

bigint N/A Total number of Vacuum times.

autovac_vacu
um_timestam
p

timestam
p with
time zone

N/A Last Autovacuum time.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 631

Column Type Reference Description

autovac_vacu
um_count

bigint N/A Total number of Autovacuum
times.

autovacuum_s
uccess_count

bigint N/A Total number of successful
Autovacuum operations.

last_autovacu
um_time_cost

bigint N/A Time spent on the latest successful
Autovacuum, in microseconds.

avg_autovacu
um_time_cost

bigint N/A Average execution time of
successful Autovacuum operations.
Unit: μs.

last_autovacu
um_failed_co
unt

bigint N/A Total number of autovacuum
failures since the last successful
Autovacuum.

last_autovacu
um_trigger

smallint N/A Triggering mode of the latest
autovacuum, which helps
maintenance personnel determine
the Vacuum status.

last_autovacu
um_oldestxmi
n

bigint N/A oldestxmin after the latest
successful Autovacuum execution.
If the table-level oldestxmin
feature is enabled, this field
records the value of oldestxmin
used by the latest
(AUTO)VACUUM of the table.

last_autovacu
um_scan_pag
es

bigint N/A Number of pages last scanned by
autovacuum (only for row-store
tables).

last_autovacu
um_dirty_pag
es

bigint N/A Number of pages last modified by
Autovacuum (only for row-store
tables).

last_autovacu
um_clear_dea
dtuples

bigint N/A Number of dead tuples last
cleared by Autovacuum (only for
row-store tables)

sum_autovacu
um_scan_pag
es

bigint N/A Total number of pages scanned by
Autovacuum since database
initialization (only for row-store
tables).

sum_autovacu
um_dirty_pag
es

bigint N/A Number of pages modified by
Autovacuum since database
initialization (only for row-store
tables).

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 632

Column Type Reference Description

sum_autovacu
um_clear_dea
dtuples

bigint N/A Total number of dead tuples
cleared by Autovacuum since
database initialization (only for
row-store tables).

last_autovacu
um_begin_cu_
size

bigint N/A Size of the CU file before the latest
Autovacuum operation (only for
column-store tables)

last_autovacu
um_cu_size

bigint N/A Size of the CU file after the latest
Autovacuum (only for column-
store tables)

last_autovacu
um_rewrite_si
ze

bigint N/A Size of the column-store file last
rewritten by autovacuum (only for
column-store tables).

last_autovacu
um_clear_size

bigint N/A Size of the column-store file last
cleared by Autovacuum (only for
column-store tables).

last_autovacu
um_clear_cbtr
ee_tuples

bigint N/A Number of cbtree tuples last
cleared by Autovacuum (only for
column-store tables)

sum_autovacu
um_rewrite_si
ze

bigint N/A Total size of column-store files
rewritten by Autovacuum since
database initialization (only for
column-store tables).

sum_autovacu
um_clear_size

bigint N/A Total size of column-store files
cleared by Autovacuum since
database initialization (only for
column-store tables).

sum_autovacu
um_clear_cbtr
ee_tuples

bigint N/A Total number of cbtree tuples
cleared by Autovacuum since
database initialization (only for
column-store tables).

last_autovacu
um_csn

bigint N/A If the table-level oldestxmin
feature is enabled, this field
records the CSN value
corresponding to the latest
oldestxmin value used by the
table (AUTO)VACUUM.

last_automerg
e_timestamp

timestam
p with
time zone

N/A Last automerge time (only for
HStore_opt tables). This column is
supported only by 9.1.0.100 and
later versions.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 633

Column Type Reference Description

last_automerg
e_time_cost

bigint N/A Time consumed by the last
automerge (only for HStore_opt
tables). This column is supported
only by 9.1.0.100 and later
versions.

last_automerg
e_count

bigint N/A Number of records in the last
automerge (only for HStore_opt
tables). This column is supported
only by 9.1.0.100 and later
versions.

extra1 bigint N/A Reserved column 1.

14.2.71 PG_SUBSCRIPTION
PG_SUBSCRIPTION records all existing subscriptions.

Table 14-71 PG_SUBSCRIPTION columns

Name Type Reference Description

oid oid - Row identifier (hidden
attribute; displayed only when
explicitly selected)

subdbid oid PG_DATABASE.oid OID of the database that the
subscription belongs to

subname name - Name of a subscription

subowner oid PG_AUTHID.oid Owner of a subscription

subenabled boole
an

- If it is true, the subscription is
enabled and should be
replicated.

subconninf
o

text - Information about the
connection to the database at
the publisher end

subslotnam
e

text - Name of the replication slot in
the publisher database If this
parameter is left blank, the
value is NONE.

subpublicati
ons

text[] - Array of subscribed publication
names. These are the references
to the publications on the
publisher server.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 634

Examples
View all subscriptions.

SELECT * FROM pg_subscription;
 subdbid | subname | subowner | subenabled |
subconninfo | subslotname | subpublications
---------+---------+----------+------------
+--+-------------+-----------------
 15992 | mysub | 10 | t | host=1.1.1.1,2.2.2.2 port=10000,20000 dbname=postgres user=repusr1
password=password_123 | mysub | {mypub}
(1 row)

14.2.72 PG_SYNONYM
PG_SYNONYM records the mapping between synonym object names and other
database object names.

Table 14-72 PG_SYNONYM columns

Name Type Description

synname name Synonym name.

synnamespace oid OID of the namespace where the synonym is
located.

synowner oid Owner of a synonym, usually the OID of the
user who created it.

synobjschema name Schema name specified by the associated
object.

synobjname name Name of the associated object.

14.2.73 PG_TABLESPACE
PG_TABLESPACE records tablespace information.

Table 14-73 PG_TABLESPACE columns

Name Type Description

spcname name Name of the tablespace

spcowner oid Owner of the tablespace, usually the user who
created it

spcacl aclitem[] Access permissions For details, see GRANT and
REVOKE.

spcoptions text[] Specifies options of the tablespace.

spcmaxsize text Maximum size of the available disk space, in
bytes

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 635

14.2.74 PG_TRIGGER
PG_TRIGGER records the trigger information.

Name Type Description

tgrelid oid OID of the table where the trigger is located.

tgname name Trigger name.

tgfoid oid Trigger OID.

tgtype smallint Trigger type

tgenabled "char" O: The trigger fires in "origin" or "local" mode.
D: The trigger is disabled.
R: The trigger fires in "replica" mode.
A: The trigger always fires.

tgisinternal boolean Internal trigger ID. If the value is true, it
indicates an internal trigger.

tgconstrrelid oid The table referenced by the integrity constraint

tgconstrindid oid Index of the integrity constraint

tgconstraint oid OID of the constraint trigger in the
pg_constraint

tgdeferrable boolean The constraint trigger is of the DEFERRABLE
type.

tginitdeferred boolean whether the trigger is of the INITIALLY
DEFERRED type

tgnargs smallint Input parameters number of the trigger
function

tgattr int2vector Column ID specified by the trigger. If no
column is specified, an empty array is used.

tgargs bytea Parameter transferred to the trigger

tgqual pg_node_tree Indicates the WHEN condition of the trigger. If
the WHEN condition does not exist, the value
is null.

14.2.75 PG_TS_CONFIG
PG_TS_CONFIG records entries representing text search configurations. A
configuration specifies a particular text search parser and a list of dictionaries to
use for each of the parser's output token types.

The parser is shown in the PG_TS_CONFIG entry, but the token-to-dictionary
mapping is defined by subsidiary entries in PG_TS_CONFIG_MAP.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 636

Table 14-74 PG_TS_CONFIG columns

Name Type Reference Description

oid oid N/A Row identifier (hidden
attribute; displayed only when
explicitly selected)

cfgname name N/A Text search configuration
name

cfgnames
pace

oid PG_NAMESPACE.oid OID of the namespace where
the configuration resides

cfgowner oid PG_AUTHID.oid Owner of the configuration

cfgparser oid PG_TS_PARSER.oid OID of the text search parser
for this configuration

cfoptions text[] N/A Configuration options

14.2.76 PG_TS_CONFIG_MAP
PG_TS_CONFIG_MAP records entries showing which text search dictionaries
should be consulted, and in what order, for each output token type of each text
search configuration's parser.

Table 14-75 PG_TS_CONFIG_MAP columns

Name Type Reference Description

mapcfg oid PG_TS_CONFIG.oi
d

OID of the PG_TS_CONFIG entry
owning this map entry

maptokentype intege
r

N/A A token type emitted by the
configuration's parser

mapseqno intege
r

N/A Order in which to consult this
entry

mapdict oid PG_TS_DICT.oid OID of the text search dictionary
to consult

14.2.77 PG_TS_DICT
PG_TS_DICT records entries that define text search dictionaries. A dictionary
depends on a text search template, which specifies all the implementation
functions needed. The dictionary itself provides values for the user-settable
parameters supported by the template.

This division of labor allows dictionaries to be created by unprivileged users. The
parameters are specified by a text string dictinitoption, whose format and
meaning vary depending on the template.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 637

Table 14-76 PG_TS_DICT columns

Name Type Reference Description

oid oid N/A Row identifier (hidden
attribute; displayed only
when explicitly selected)

dictname name N/A Text search dictionary
name

dictnamespace oid PG_NAMESPACE.oid OID of the namespace
that contains the
dictionary

dictowner oid PG_AUTHID.oid Owner of the dictionary

dicttemplate oid PG_TS_TEMPLATE.oid OID of the text search
template for this
dictionary

dictinitoption text N/A Initialization option string
for the template

14.2.78 PG_TS_PARSER
PG_TS_PARSER records entries defining text search parsers. A parser splits input
text into lexemes and assigns a token type to each lexeme. Since a parser must be
implemented by C functions, parsers can be created only by database
administrators.

Table 14-77 PG_TS_PARSER columns

Name Type Reference Description

oid oid N/A Row identifier (hidden attribute;
displayed only when explicitly
selected)

prsname name N/A Text search parser name

prsnamespac
e

oid PG_NAMESPACE.oi
d

OID of the namespace that
contains the parser

prsstart regpro
c

PG_PROC.oid OID of the parser's startup
function

prstoken regpro
c

PG_PROC.oid OID of the parser's next-token
function

prsend regpro
c

PG_PROC.oid OID of the parser's shutdown
function

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 638

Name Type Reference Description

prsheadline regpro
c

PG_PROC.oid OID of the parser's headline
function

prslextype regpro
c

PG_PROC.oid OID of the parser's lextype
function

14.2.79 PG_TS_TEMPLATE
PG_TS_TEMPLATE records entries defining text search templates. A template
provides a framework for text search dictionaries. Since a template must be
implemented by C functions, templates can be created only by database
administrators.

Table 14-78 PG_TS_TEMPLATE columns

Name Type Reference Description

oid oid - Row identifier (hidden
attribute; must be explicitly
selected)

tmplname name - Text search template name

tmplnamespac
e

oid PG_NAMESPACE.oid OID of the namespace that
contains the template

tmplinit regpro
c

PG_PROC.oid OID of the template's
initialization function

tmpllexize regpro
c

PG_PROC.oid OID of the template's lexize
function

14.2.80 PG_TYPE
PG_TYPE records the information about data types.

Table 14-79 PG_TYPE columns

Name Type Description

typname name Data type name

typnamesp
ace

oid OID of the namespace that contains this type

typowner oid Owner of this type

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 639

Name Type Description

typlen smallint Number of bytes in the internal representation of
the type for a fixed-size type. But for a variable-
length type, typlen is negative.
● -1 indicates a "varlena" type (one that has a

length word).
● -2 indicates a null-terminated C string.

typbyval boolean Whether the value of this type is passed by
parameter or reference of this column. TYPBYVAL is
false if the type of TYPLEN is not 1, 2, 4, or 8,
because values of this type are always passed by
reference of this column. TYPBYVAL can be false
even the TYPLEN is passed by parameter of this
column.

typtype char ● b indicates a basic type.
● c indicates a composite type, for example, a

table's row type.
● e indicates an enumeration type.
● p indicates a pseudo type.
For details, see typrelid and typbasetype.

typcategory char typcategory is an arbitrary classification of data
types that is used by the parser to determine which
implicit casts should be "preferred".

typispreferr
ed

boolean Whether data is converted. It is true if conversion is
performed when data meets the conversion rules
specified by TYPCATEGORY.

typisdefined boolean The value is true if the type is defined. The value is
false if this is a placeholder entry for a not-yet-
defined type. When it is false, type name,
namespace, and OID are the only dependable
objects.

typdelim "char" Character that separates two values of this type
when parsing array input. Note that the delimiter is
associated with the array element data type, not the
array data type.

typrelid oid If this is a composite type (see typtype), then this
column points to the pg_class entry that defines the
corresponding table. For a free-standing composite
type, the pg_class entry does not represent a table,
but it is required for the type's pg_attribute entries
to link to. The value is 0 for non-composite types.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 640

Name Type Description

typelem oid If typelem is not 0 then it identifies another row in
pg_type. The current type can be subscripted like an
array yielding values of type typelem. The current
type can then be subscripted like an array yielding
values of type typelem. A "true" array type is
variable length (typlen = -1), but some fixed-length
(typlen > 0) types also have nonzero typelem, for
example name and point. If a fixed-length type has
a typelem, its internal representation must be some
number of values of the typelem data type with no
other data. Variable-length array types have a
header defined by the array subroutines.

typarray oid Indicates that the corresponding type record is
available in pg_type if the value is not 0.

typinput regproc Input conversion function (text format)

typoutput regproc Output conversion function (text format)

typreceive regproc Input conversion function (binary format). If no
input conversion function, the value is 0.

typsend regproc output conversion function (binary format). If no
output conversion function, the value is 0.

typmodin regproc Type modifier input function. The value is 0 if the
type does not support modifiers.

typmodout regproc Type modifier output function. The value is 0 if the
type does not support modifiers.

typanalyze regproc Custom ANALYZE function. The value is 0 if the
standard function is used.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 641

Name Type Description

typalign char Alignment required when storing a value of this
type. It applies to storage on disk as well as most
representations of the value inside PostgreSQL.
When multiple values are stored consecutively, such
as in the representation of a complete row on disk,
padding is inserted before a data of this type so that
it begins on the specified boundary. The alignment
reference is the beginning of the first datum in the
sequence. Possible values are:
● c: char alignment, that is, no alignment needed
● s: short alignment (2 bytes on most machines)
● i: int alignment (4 bytes on most machines).
● d: double alignment (8 bytes on many machines,

but by no means all)
NOTICE

For types used in system tables, the size and alignment
defined in pg_type must agree with the way that the
compiler lays out the column in a structure representing a
table row.

typstorage char typstorage tells for varlena types (those with
typlen = -1) if the type is prepared for toasting and
what the default strategy for attributes of this type
should be. Possible values are:
● p indicates that values are always stored plain.
● e: Value can be stored in a "secondary"

relationship (if the relation has one, see
pg_class.reltoastrelid).

● m: Values can be stored compressed inline.
● x: Values can be stored compressed inline or

stored in secondary storage.
NOTICE

m domains can also be moved out to secondary storage,
but only as a last resort (e and x domains are moved first).

typenotnull boolean Represents a NOTNULL constraint on a type.
Currently, it is used for domains only.

typbasetype oid If this is a domain (see typtype), then typbasetype
identifies the type that this one is based on. The
value is 0 if this type is not a derived type.

typtypmod integer Records the typtypmod to be applied to domains'
base types by domains (the value is -1 if the base
type does not use typmod). The value is -1 if this
type is not a domain.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 642

Name Type Description

typndims integer Number of array dimensions for a domain that is an
array (that is, typbasetype is an array type; the
domain's typelem matches the base type's
typelem). The value is 0 for types other than
domains over array types.

typcollation oid Sequence rule for specified types. Sequencing is not
supported if the value is 0.

typdefaultbi
n

pg_node_tr
ee

nodeToString() representation of a default
expression for the type if the value is non-null.
Currently, this column is only used for domains.

typdefault text The value is null if a type has no associated default
value. If typdefaultbin is not null, typdefault must
contain a human-readable version of the default
expression represented by typdefaultbin. If
typdefaultbin is null and typdefault is not, then
typdefault is the external representation of the
type's default value, which can be fed to the type's
input converter to produce a constant.

typacl aclitem[] Access permissions

14.2.81 PG_USER_MAPPING
PG_USER_MAPPING records the mappings from local users to remote.

It is accessible only to users with system administrator rights. You can use view
PG_USER_MAPPINGS to query common users.

Table 14-80 PG_USER_MAPPING columns

Name Type Reference Description

oid oid - Row identifier (hidden
attribute; must be explicitly
selected)

umuser oid PG_AUTHID.oid OID of the local role being
mapped, 0 if the user mapping
is public

umserver oid PG_FOREIGN_SERVER.
oid

OID of the foreign server that
contains this mapping

umoptions text[] - Option used for user mapping.
It is a keyword=value string.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 643

14.2.82 PG_USER_STATUS
PG_USER_STATUS records the states of users that access to the database. It is
accessible only to users with system administrator rights.

Table 14-81 PG_USER_STATUS columns

Name Type Description

roloid oid ID of the role

failcount integer Specifies the number of failed
attempts.

locktime timestamp with time zone Time at which the role is locked

rolstatus smallint Role state
● 0: normal
● 1 indicates that the role is locked

for some time because the failed
login attempts exceed the threshold

● 2 indicates that the role is locked
by the administrator.

permspac
e

bigint Size of the permanent table storage
space used by a role in the current
instance.

tempspac
e

bigint Size of the temporary table storage
space used by a role in the current
instance.

14.2.83 PG_WORKLOAD_ACTION
PG_WORKLOAD_ACTION records information about query_band.

Table 14-82 PG_WORKLOAD_ACTION columns

Name Type Description

qband name query_band key-value pairs

class name Class of the object associated with
query_band

object name Object associated with query_band

action name Action of the object associated with
query_band

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 644

14.2.84 PGXC_CLASS
PGXC_CLASS records the replicated or distributed information for each table.

Table 14-83 PGXC_CLASS columns

Name Type Description

pcrelid oid Table OID

pclocatortype "char" Locator type
● H: hash
● M: Modulo
● N: Round Robin
● R: Replicate

pchashalgorithm smallint Distributed tuple using the hash algorithm

pchashbuckets smallint Value of a harsh container

pgroup name Node group name

redistributed "char" Whether a table has been redistributed

redis_order integer Redistribution sequence

pcattnum int2vector Column number used as a distribution key

nodeoids oidvector_ex
tend

List of distributed table node OIDs

options text Extension status information, which is a
reserved column in the system

14.2.85 PGXC_GROUP
PGXC_GROUP records node group information. In storage-compute decoupling 3.0
version, each node group in a logical cluster is called a Virtual Warehouse (VW).
At the storage KV layer, each VW corresponds to a vgroup.

Table 14-84 PGXC_GROUP columns

Name Type Description

group_name name Node group name

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 645

Name Type Description

in_redistribution "char" Whether redistribution is required
● n indicates that the NodeGroup is

not redistributed.
● y indicates the source NodeGroup

in redistribution.
● t indicates the destination

NodeGroup in redistribution.
● s indicates that the NodeGroup

will skip redistribution.

group_members oidvector_ex
tend

Node OID list of the node group

group_buckets text Distributed data bucket group

is_installation boolean Whether to install a sub-cluster

group_acl aclitem[] Access permissions

group_kind "char" Node group type.
● i indicates the installation node

group, which contains all DNs.
● n indicates a common non-logical

cluster node group.
● v indicates a logical cluster node

group.
● e indicates the elastic cluster node

group.
● r indicates a replication table node

group, which can only be used to
create replication tables and can
contain one or more logical cluster
node groups.

group_ckpt_csn xid CSN of the last incremental extraction
performed on a node group

vgroup_id xid ID of the vgroup corresponding to the
node group

vgroup_bucket_count oid Number of buckets in the vgroup
corresponding to the node group

group_ckpt_time timestamp
with time
zone

Physical time when the last
incremental extraction is performed
on a node group

apply_kv_duration integer Duration of incremental scanning in
the last incremental extraction of a
node group, in seconds

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 646

Name Type Description

ckpt_duration integer Checkpoint duration in the last
incremental extraction of a node
group, in seconds

14.2.86 PGXC_NODE
PGXC_NODE records information about cluster nodes.

Table 14-85 PGXC_NODE columns

Name Type Description

node_name name Node name

node_type "char" Node type
C: CN
D: DN

node_port integer Port ID of the node

node_host name Host name or IP address of a node. (If a virtual
IP address is configured, its value is a virtual IP
address.)

node_port1 integer Port number of a replication node

node_host1 name Host name or IP address of a replication node.
(If a virtual IP address is configured, its value is
a virtual IP address.)

hostis_primary boolean Whether a switchover occurs between the
primary and the standby server on the current
node

nodeis_primary boolean Whether the current node is preferred to
execute non-query operations in the replication
table

nodeis_preferre
d

boolean Whether the current node is preferred to
execute queries in the replication table

node_id integer Node identifier

sctp_port integer Specifies the port used by the TCP proxy
communication library or SCTP communication
library of the primary node to listen to the data
channel.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 647

Name Type Description

control_port integer Specifies the port used by the TCP proxy
communication library or SCTP communication
library of the primary node to listen to the
control channel.

sctp_port1 integer Specifies the port used by the TCP proxy
communication library or SCTP communication
library of the standby node to listen to the data
channel.

control_port1 integer Specifies the port used by the TCP proxy
communication library or SCTP communication
library of the standby node to listen to the
control channel.

nodeis_central boolean Indicates that the current node is the central
node.

Examples
Query the CN and DN information of the cluster.

SELECT * FROM pgxc_node;
 node_name | node_type | node_port | node_host | node_port1 | node_host1 | hostis_primary |
nodeis_primary | nodeis_preferred | node_id
 | sctp_port | control_port | sctp_port1 | control_port1 | nodeis_central | read_only
--------------+-----------+-----------+-----------+------------+------------+----------------+----------------
+------------------+------------
-+-----------+--------------+------------+---------------+----------------+-----------
 datanode1 | D | 55504 | localhost | 55504 | localhost | t | f | f |
888802358
 | 55505 | 55507 | 0 | 0 | f | f
 datanode2 | D | 55508 | localhost | 55508 | localhost | t | f | f |
-905831925
 | 55509 | 55511 | 0 | 0 | f | f
 coordinator1 | C | 55500 | localhost | 55500 | localhost | t | f | f |
1938253334
 | 0 | 0 | 0 | 0 | t | f
 datanode3 | D | 55542 | localhost | 55542 | localhost | t | f | f |
-1894792127
 | 57552 | 55544 | 0 | 0 | f | t
 datanode4 | D | 55546 | localhost | 55546 | localhost | t | f | f |
-1307323892
 | 57808 | 55548 | 0 | 0 | f | t
 datanode5 | D | 55550 | localhost | 55550 | localhost | t | f | f |
1797586929
 | 58064 | 55552 | 0 | 0 | f | t
 datanode6 | D | 55554 | localhost | 55554 | localhost | t | f | f |
587455710
 | 58320 | 55556 | 0 | 0 | f | t
 datanode7 | D | 55558 | localhost | 55558 | localhost | t | f | f |
-1685037427
 | 58576 | 55560 | 0 | 0 | f | t
 datanode8 | D | 55562 | localhost | 55562 | localhost | t | f | f |
-993847320
 | 58832 | 55564 | 0 | 0 | f | t
(9 rows)

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 648

14.2.87 PLAN_TABLE_DATA
PLAN_TABLE_DATA stores the plan information collected by EXPLAIN PLAN.
Different from the PLAN_TABLE view, the system catalog PLAN_TABLE_DATA
stores the plan information collected by all sessions and users.

Table 14-86 PLAN_TABLE columns

Name Type Description

session_id text Session that inserts the data. Its value consists
of a service thread start timestamp and a
service thread ID. Values are constrained by
NOT NULL.

user_id oid User who inserts the data. Values are
constrained by NOT NULL.

statement_id varchar2(30) Query tag specified by a user

plan_id bigint ID of a plan to be queried

id int Node ID in a plan

operation varchar2(30) Operation description

options varchar2(255) Operation parameters

object_name name Name of an operated object. It is defined by
users.

object_type varchar2(30) Object type

object_owner name User-defined schema to which an object
belongs

projection varchar2(400
0)

Returned column information

NO TE

● PLAN_TABLE_DATA records data of all users and sessions on the current node. Only
administrators can access all the data. Common users can view only their own data in
the PLAN_TABLE view.

● Data of inactive (exited) sessions is cleaned from PLAN_TABLE_DATA by gs_clean after
being stored in this system catalog for a certain period of time (5 minutes by default).
You can also manually run gs_clean -C to delete inactive session data from the table..

● Data is automatically inserted into PLAN_TABLE_DATA after EXPLAIN PLAN is
executed. Therefore, do not manually insert data into or update data in
PLAN_TABLE_DATA. Otherwise, data in PLAN_TABLE_DATA may be disordered. To
delete data from PLAN_TABLE_DATA, you are advised to use the PLAN_TABLE view.

● Information in the statement_id, object_name, object_owner, and projection columns
is stored in letter cases specified by users and information in other columns is stored in
uppercase.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 649

14.2.88 SNAPSHOT
SNAPSHOT records the start and end time of each performance view snapshot
creation. After enable_wdr_snapshot is set to on, this catalog is created and
maintained by the background snapshot thread. It is accessible only to users with
system administrator rights.

NO TICE

● This system catalog's schema is dbms_om.
● Do not modify or delete this catalog externally. Otherwise, functions related to

view snapshots may not work properly.

Table 14-87 dbms_om.snapshot columns

Name Type Description

snapshot_id name Snapshot ID. This column is the
primary key and distribution key.

start_ts timestamp with
time zone

Snapshot start time.

end_ts timestamp with
time zone

Snapshot end time.

14.2.89 TABLES_SNAP_TIMESTAMP
TABLES_SNAP_TIMESTAMP records the start and end time of the snapshots
created for each performance view. After enable_wdr_snapshot is set to on, this
catalog is created and maintained by the background snapshot thread. It is
accessible only to users with system administrator rights.

Table 14-88 dbms_om.tables_snap_timestamp columns

Name Type Description

snapshot_id name Snapshot ID. This column is the
primary key and distribution key.

db_name text Name of the database to which the
view belongs.

tablename text View name.

start_ts timestamp with
time zone

Snapshot start time.

end_ts timestamp with
time zone

Snapshot end time.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 650

NO TICE

● This system catalog's schema is dbms_om.
● Do not modify or delete this catalog externally. Otherwise, functions related to

view snapshots may not work properly.

14.2.90 System Catalogs for Performance View Snapshot
After enable_wdr_snapshot is set to on, the background snapshot thread creates
and maintains a system catalog named in the format of SNAP_View name to
record the snapshot result of each performance view. The following system
catalogs are accessible only to users with system administrator rights:

● SNAP_PGXC_OS_RUN_INFO
● SNAP_PGXC_WAIT_EVENTS
● SNAP_PGXC_INSTR_UNIQUE_SQL
● SNAP_PGXC_STAT_BAD_BLOCK
● SNAP_PGXC_STAT_BGWRITER
● SNAP_PGXC_STAT_REPLICATION
● SNAP_PGXC_REPLICATION_SLOTS
● SNAP_PGXC_SETTINGS
● SNAP_PGXC_INSTANCE_TIME
● SNAP_GLOBAL_WORKLOAD_TRANSACTION
● SNAP_PGXC_WORKLOAD_SQL_COUNT
● SNAP_PGXC_STAT_DATABASE
● SNAP_GLOBAL_STAT_DATABASE
● SNAP_PGXC_REDO_STAT
● SNAP_GLOBAL_REDO_STAT
● SNAP_PGXC_REL_IOSTAT
● SNAP_GLOBAL_REL_IOSTAT
● SNAP_PGXC_TOTAL_MEMORY_DETAIL
● SNAP_PGXC_NODE_STAT_RESET_TIME
● SNAP_PGXC_SQL_COUNT
● SNAP_GLOBAL_TABLE_STAT
● SNAP_GLOBAL_TABLE_CHANGE_STAT
● SNAP_GLOBAL_COLUMN_TABLE_IO_STAT
● SNAP_GLOBAL_ROW_TABLE_IO_STAT

Except the new snapshot_id column (of the bigint type), the definitions of the
other columns in these system catalogs are the same as those of the
corresponding views, and the distribution key of each system catalog is
snapshot_id.

For example, SNAP_PGXC_OS_RUN_INFO is used to record snapshots of the
PGXC_OS_RUN_INFO view. The snapshot_id column is new, and other columns
are the same as those of the PGXC_OS_RUN_INFO view.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 651

NO TICE

● The schema of all above system catalogs is dbms_om.

● Do not modify or delete these catalogs externally. Otherwise, functions related
to view snapshots may not work properly.

14.3 System Views

14.3.1 ALL_ALL_TABLES
ALL_ALL_TABLES displays the tables or views accessible to the current user.

Table 14-89 ALL_ALL_TABLES columns

Name Type Description

owner name Owner of the table or view

table_name name Name of the table or view

tablespace_name name Tablespace where the table or view is located

14.3.2 ALL_CONSTRAINTS
ALL_CONSTRAINTS displays information about constraints accessible to the
current user.

Table 14-90 ALL_CONSTRAINTS columns

Name Type Description

constraint_name vcharacter
varying(64)

Constraint name

constraint_type text Constraint type
● C: Check constraint
● F: Foreign key constraint
● P: Primary key constraint
● U: Unique constraint.

table_name character
varying(64)

Name of constraint-related table

index_owner character
varying(64)

Owner of constraint-related index (only
for the unique constraint and primary key
constraint)

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 652

Name Type Description

index_name character
varying(64)

Name of constraint-related index (only for
the unique constraint and primary key
constraint)

14.3.3 ALL_CONS_COLUMNS
ALL_CONS_COLUMNS displays information about constraint columns accessible
to the current user.

Table 14-91 ALL_CONS_COLUMNS columns

Name Type Description

table_name character
varying(64)

Name of constraint-related table

column_name character
varying(64)

Name of constraint-related column

constraint_name character
varying(64)

Constraint name

position smallint Position of the column in the table

14.3.4 ALL_COL_COMMENTS
ALL_COL_COMMENTS displays column comments of tables and views that the
current user can access.

Table 14-92 ALL_COL_COMMENTS columns

Name Type Description

column_name character varying(64) Column name

table_name character varying(64) Table or view name

owner character varying(64) Owner of the table or view

comments text Comments

14.3.5 ALL_DEPENDENCIES
ALL_DEPENDENCIES displays dependencies between functions and advanced
packages accessible to the current user.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 653

NO TICE

Currently in GaussDB(DWS), this table is empty without any record due to
information constraints.

Table 14-93 ALL_DEPENDENCIES columns

Name Type Description

owner character varying(30) Owner of the object

name character varying(30) Object name

type character varying(17) Object type

referenced_owner character varying(30) Owner of the referenced
object

referenced_name character varying(64) Name of the referenced
object

referenced_type character varying(17) Type of the referenced
object

referenced_link_name character varying(128) Name of the link to the
referenced object

schemaid numeric ID of the current schema

dependency_type character varying(4) Dependency type (REF or
HARD)

14.3.6 ALL_IND_COLUMNS
ALL_IND_COLUMNS displays all index columns accessible to the current user.

Table 14-94 ALL_IND_COLUMNS columns

Name Type Description

index_owner character varying(64) Index owner

index_name character varying(64) Index name

table_owner character varying(64) Table owner

table_name character varying(64) Table name

column_name name Column name

column_position smallint Position of a column in
the index

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 654

14.3.7 ALL_IND_EXPRESSIONS
ALL_IND_EXPRESSIONS displays information about the expression indexes
accessible to the current user.

Table 14-95 ALL_IND_EXPRESSIONS columns

Name Type Description

index_owner character varying(64) Index owner

index_name character varying(64) Index name

table_owner character varying(64) Table owner

table_name character varying(64) Table name

column_expression text Function-based index
expression of a specified
column

column_position smallint Position of a column in
the index

14.3.8 ALL_INDEXES
ALL_INDEXES displays information about indexes accessible to the current user.

Table 14-96 ALL_INDEXES columns

Name Type Description

owner character varying(64) Index owner

index_name character varying(64) Index name

table_name character varying(64) Name of the table
corresponding to the
index

uniqueness text Whether the index is
unique

generated character varying(1) Whether the index name
is generated by the
system

partitioned character(3) Whether the index has
the property of the
partition table

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 655

14.3.9 ALL_OBJECTS
ALL_OBJECTS displays all database objects accessible to the current user.

Table 14-97 ALL_OBJECTS columns

Name Type Description

owner name Owner of the object

object_name name Object name

object_id oid OID of the object

object_type name Type of the object

namespace oid Namespace containing the object

created timestamp with time
zone

Object creation time

last_ddl_time timestamp with time
zone

Last time when the object was
modified

NO TICE

For details about the value ranges of last_ddl_time and last_ddl_time, see
PG_OBJECT.

14.3.10 ALL_PROCEDURES
ALL_PROCEDURES displays information about all stored procedures or functions
accessible to the current user.

Table 14-98 ALL_PROCEDURES columns

Name Type Description

owner name Owner of the object

object_name name Object name

14.3.11 ALL_SEQUENCES
ALL_SEQUENCES displays all sequences accessible to the current user.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 656

Table 14-99 ALL_SEQUENCES columns

Name Type Description

sequence_owner name Owner of the sequence

sequence_name name Name of the sequence

min_value bigint Minimum value of the sequence

max_value bigint Maximum value of the sequence

increment_by bigint Value by which the sequence is
incremented

cycle_flag character(1) Whether the sequence is a cycle
sequence. The value can be Y or N.
● Y: It is a cycle sequence.
● N: It is not a cycle sequence.

14.3.12 ALL_SOURCE
ALL_SOURCE displays information about stored procedures or functions accessible
to the current user, and provides the columns defined by the stored procedures
and functions.

Table 14-100 ALL_SOURCE columns

Name Type Description

owner name Owner of the object

name name Name of the object

type name Type of the object

text text Definition of the object

14.3.13 ALL_SYNONYMS
ALL_SYNONYMS displays all synonyms accessible to the current user.

Table 14-101 ALL_SYNONYMS columns

Name Type Description

owner text Owner of a synonym

schema_name text Name of the schema to which the
synonym belongs

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 657

Name Type Description

synonym_name text Synonym name

table_owner text Owner of the associated object

table_schema_nam
e

text Name of the schema the associated object
belongs to

table_name text Name of the associated object

14.3.14 ALL_TAB_COLUMNS
ALL_TAB_COLUMNS displays description of columns of the tables and views that
the current user can access.

Table 14-102 ALL_TAB_COLUMNS columns

Name Type Description

owner character
varying(64)

Owner of a table/view

table_name character
varying(64)

Table/View name

column_name character
varying(64)

Column name

data_type character
varying(128)

Data type of a column

column_id integer Column ID generated when an object is
created or a column is added

data_length integer Length of the column, in bytes

avg_col_len numeric Average length of a column, in bytes

nullable bpchar Whether the column can be empty. For the
primary key constraint and non-null constraint,
the value is n.

data_precision integer Precision of the data type. This parameter is
valid for the numeric data type and NULL for
other types.

data_scale integer Number of decimal places. This parameter is
valid for the numeric data type and 0 for other
data types.

char_length numeric Length of a column, in characters. This
parameter is valid only for the varchar,
nvarchar2, bpchar, and char types.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 658

Name Type Description

schema character
varying(64)

Namespace that contains the table or view.

kind text Type of the current record. If the column
belongs to a table, the value of this column is
table. If the column belongs to a view, the
value of this column is view.

14.3.15 ALL_TAB_COMMENTS
ALL_TAB_COMMENTS displays comments about all tables and views accessible to
the current user.

Table 14-103 ALL_TAB_COMMENTS columns

Name Type Description

owner character varying(64) Owner of the table or view

table_name character varying(64) Name of the table or view

comments text Comments

14.3.16 ALL_TABLES
ALL_TABLES displays all the tables accessible to the current user.

Table 14-104 ALL_TABLES columns

Name Type Description

owner character varying(64) Owner of the table

table_name character varying(64) Name of the table

tablespace_name character varying(64) Name of the tablespace that
contains the table

status character varying(8) Whether the current record is
valid

temporary character(1) Whether the table is a
temporary table
● Y indicates that it is a

temporary table.
● N indicates that it is not a

temporary table.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 659

Name Type Description

dropped character varying Whether the current record is
deleted
● YES indicates that it is

deleted.
● NO indicates that it is not

deleted.

num_rows numeric Estimated number of rows in
the table

14.3.17 ALL_USERS
ALL_USERS displays all users of the database visible to the current user, however,
it does not describe the users.

Table 14-105 ALL_USERS columns

Name Type Description

username name Username

user_id oid OID of the user

14.3.18 ALL_VIEWS
ALL_VIEWS displays the description about all views accessible to the current user.

Table 14-106 ALL_VIEWS columns

Name Type Description

owner name Owner of the view

view_name name View name

text_length integer Text length of the view

text text Text in the view

14.3.19 DBA_DATA_FILES
DBA_DATA_FILES displays the description of database files. It is accessible only to
users with system administrator rights.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 660

Table 14-107 DBA_DATA_FILES columns

Name Type Description

tablespace_name name Name of the tablespace to
which the file belongs

bytes double precision Length of the file in bytes

14.3.20 DBA_USERS
DBA_USERS displays all user names in the database. It is accessible only to users
with system administrator rights.

Table 14-108 DBA_USERS columns

Name Type Description

username character varying(64) Username

14.3.21 DBA_COL_COMMENTS
DBA_COL_COMMENTS displays column comments in the tables and views of a
database. Only users with system administrator permissions can access this view.

Name Type Description

column_name character varying(64) Column name

table_name character varying(64) Table or view name

owner character varying(64) Owner of the table or view

comments text Comments

14.3.22 DBA_CONSTRAINTS
DBA_CONSTRAINTS displays information about table constraints in database. It is
accessible only to users with system administrator rights.

Name Type Description

constraint_name vcharacter
varying(64)

Constraint name

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 661

Name Type Description

constraint_type text Constraint type
● C: Check constraint
● F: Foreign key constraint
● P: Primary key constraint
● U: Unique constraint.

table_name character
varying(64)

Name of constraint-related table

index_owner character
varying(64)

Owner of constraint-related index (only
for the unique constraint and primary key
constraint)

index_name character
varying(64)

Name of constraint-related index (only for
the unique constraint and primary key
constraint)

14.3.23 DBA_CONS_COLUMNS
DBA_CONS_COLUMNS displays information about constraint columns in database
tables. It is accessible only to users with system administrator rights.

Name Type Description

table_name character
varying(64)

Name of constraint-related table

column_name character
varying(64)

Name of constraint-related column

constraint_name character
varying(64)

Constraint name

position smallint Position of the column in the table

14.3.24 DBA_IND_COLUMNS
DBA_IND_COLUMNS displays column information about all indexes in the
database. It is accessible only to users with system administrator rights.

Name Type Description

index_owner character varying(64) Index owner

index_name character varying(64) Index name

table_owner character varying(64) Table owner

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 662

Name Type Description

table_name character varying(64) Table name

column_name name Column name

column_position smallint Position of a column in
the index

14.3.25 DBA_IND_EXPRESSIONS
DBA_IND_EXPRESSIONS displays the information about expression indexes in the
database. It is accessible only to users with system administrator rights.

Name Type Description

index_owner character varying(64) Index owner

index_name character varying(64) Index name

table_owner character varying(64) Table owner

table_name character varying(64) Table name

column_expression text Function-based index
expression of a specified
column

column_position smallint Position of a column in
the index

14.3.26 DBA_IND_PARTITIONS
DBA_IND_PARTITIONS displays information about all index partitions in the
database. Each index partition of a partitioned table in the database, if present,
has a row of records in DBA_IND_PARTITIONS. This view is accessible only to
users with system administrator rights.

Name Type Description

index_owner character
varying(64)

Name of the owner of the partitioned table
index to which the index partition belongs

schema character
varying(64)

Schema of the partitioned index to which the
index partition belongs

index_name character
varying(64)

Index name of the partitioned table to which
the index partition belongs

partition_nam
e

character
varying(64)

Name of the index partition

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 663

Name Type Description

index_partitio
n_usable

boolean Whether the index partition is available

high_value text Boundary of the table partition corresponding
to the index partition. For a range partition,
the boundary is the upper boundary. For a list
partition, the boundary is the boundary value
set.
Reserved field for forward compatibility. The
parameter pretty_high_value is added in
version 8.1.3 to record the information.

pretty_high_v
alue

text Boundary of the table partition corresponding
to the index partition. For a range partition,
the boundary is the upper boundary. For a list
partition, the boundary is the boundary value
set.
The query result is the instant decompilation
output of the partition boundary expression.
The output of this column is more detailed
than that of high_value. The output
information can be collation and column data
type.

def_tablespac
e_name

name Tablespace name of the index partition

14.3.27 DBA_INDEXES
DBA_INDEXES displays all indexes in the database. This view is accessible only to
users with system administrator rights.

Name Type Description

owner character varying(64) Index owner

index_name character varying(64) Index name

table_name character varying(64) Name of the table
corresponding to the
index

uniqueness text Whether the index is
unique

generated character varying(1) Whether the index name
is generated by the
system

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 664

Name Type Description

partitioned character(3) Whether the index has
the property of the
partition table

14.3.28 DBA_OBJECTS
DBA_OBJECTS displays all database objects in the database. This view is accessible
only to users with system administrator rights.

Name Type Description

owner name Owner of the object

object_name name Object name

object_id oid OID of the object

object_type name Type of the object

namespace oid Namespace containing the object

created timestamp with time
zone

Object creation time

last_ddl_time timestamp with time
zone

Last time when the object was
modified

NO TICE

For details about the value ranges of last_ddl_time and last_ddl_time, see
PG_OBJECT.

14.3.29 DBA_PART_INDEXES
DBA_PART_INDEXES displays information about all partitioned table indexes in
the database. It is accessible only to users with system administrator rights.

Name Type Description

index_owner character
varying(64)

Name of the owner of the
partitioned table index

schema character
varying(64)

Schema of the partitioned table
index

index_name character
varying(64)

Name of the partitioned table
index

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 665

Name Type Description

table_name character
varying(64)

Name of the partitioned table to
which the partitioned table index
belongs

partitioning_type text Partition policy of the partitioned
table
NOTE

Currently, only range partitioning
and list partitioning are supported.

partition_count bigint Number of index partitions of the
partitioned table index

def_tablespace_name name Tablespace name of the
partitioned table index

partitioning_key_coun
t

integer Number of partition keys of the
partitioned table

14.3.30 DBA_PART_TABLES
DBA_PART_TABLES displays information about all partitioned tables in the
database. It is accessible only to users with system administrator rights.

Name Type Description

table_owner character
varying(64)

Name of the owner of the
partitioned table

schema character
varying(64)

Schema of the partitioned
table

table_name character
varying(64)

Name of the partitioned table

partitioning_type text Partition policy of the
partitioned table
NOTE

Currently, only range partitioning
and list partitioning are
supported.

partition_count bigint Number of partitions of the
partitioned table

def_tablespace_name name Tablespace name of the
partitioned table

partitioning_key_count integer Number of partition keys of
the partitioned table

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 666

14.3.31 DBA_PROCEDURES
DBA_PROCEDURES displays information about all stored procedures and
functions in the database. This view is accessible only to users with system
administrator rights.

Name Type Description

owner character varying(64) Owner of the stored
procedure or the function

object_name character varying(64) Name of the stored
procedure or the function

argument_number smallint Number of the input
parameters in the stored
procedure

14.3.32 DBA_SEQUENCES
DBA_SEQUENCES displays information about all sequences in the database. This
view is accessible only to users with system administrator rights.

Name Type Description

sequence_owner character varying(64) Owner of the sequence

sequence_name character varying(64) Name of the sequence

14.3.33 DBA_SOURCE
DBA_SOURCE displays all stored procedures or functions in the database, and it
provides the columns defined by the stored procedures or functions. It is accessible
only to users with system administrator rights.

Name Type Description

owner character varying(64) Owner of the stored procedure
or the function

name character varying(64) Name of the stored procedure
or the function

text text Definition of the stored
procedure or the function

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 667

14.3.34 DBA_SYNONYMS
DBA_SYNONYMS displays all synonyms in the database. It is accessible only to
users with system administrator rights.

Table 14-109 DBA_SYNONYMS columns

Name Type Description

owner text Owner of a synonym

schema_name text Name of the schema to which
the synonym belongs

synonym_name text Synonym name

table_owner text Owner of the associated object

table_schema_nam
e

text Name of the schema the
associated object belongs to

table_name text Name of the associated object

14.3.35 DBA_TAB_COLUMNS
DBA_TAB_COLUMNS stores the columns of tables and views. Each column of a
table in the database has a row in DBA_TAB_COLUMNS. Only users with system
administrator permissions can access this view.

Name Type Description

owner character
varying(64)

Owner of a table/view

table_name character
varying(64)

Table/View name

column_name character
varying(64)

Column name

data_type character
varying(128)

Data type of the column

column_id integer Sequence number of the column when
a table/view is created

data_length integer Length of the column, in bytes

comments text Comments

avg_col_len numeric Average length of a column, in bytes

nullable bpchar Whether the column can be empty. For
the primary key constraint and non-
null constraint, the value is n.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 668

Name Type Description

data_precision integer Precision of the data type. This
parameter is valid for the numeric
data type and NULL for other data
types.

data_scale integer Number of decimal places. This
parameter is valid for the numeric
data type and 0 for other data types.

char_length numeric Length of a column, in characters. This
parameter is valid only for the varchar,
nvarchar2, bpchar, and char types.

schema character
varying(64)

Namespace that contains the table or
view.

kind text Type of the current record. If the
column belongs to a table, the value
of this column is table. If the column
belongs to a view, the value of this
column is view.

14.3.36 DBA_TAB_COMMENTS
DBA_TAB_COMMENTS displays comments about all tables and views in the
database. It is accessible only to users with system administrator rights.

Name Type Description

owner character varying(64) Owner of the table or view

table_name character varying(64) Name of the table or view

comments text Comments

14.3.37 DBA_TAB_PARTITIONS
DBA_TAB_PARTITIONS displays information about all partitions in the database.

Name Type Description

table_owner character varying(64) Owner of the table that contains
the partition

schema character varying(64) Schema of the partitioned table

table_name character varying(64) Table name

partition_name character varying(64) Name of the partition

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 669

Name Type Description

high_value text Upper boundary of a range
partition or boundary value set
of a list partition
Reserved field for forward
compatibility. The parameter
pretty_high_value is added in
version 8.1.3 to record the
information.

pretty_high_valu
e

text Upper boundary of a range
partition or boundary value set
of a list partition
The query result is the instant
decompilation output of the
partition boundary expression.
The output of this column is
more detailed than that of
high_value. The output
information can be collation and
column data type.

tablespace_name name Name of the tablespace that
contains the partition

Example

View the partition information of a partitioned table:

CREATE TABLE web_returns_p1
(
 wr_returned_date_sk integer,
 wr_returned_time_sk integer,
 wr_item_sk integer NOT NULL,
 wr_refunded_customer_sk integer
)
WITH (orientation = column)
DISTRIBUTE BY HASH (wr_item_sk)
PARTITION BY RANGE (wr_returned_date_sk)
(
 PARTITION p2016 VALUES LESS THAN(20161231),
 PARTITION p2017 VALUES LESS THAN(20171231),
 PARTITION p2018 VALUES LESS THAN(20181231),
 PARTITION p2019 VALUES LESS THAN(20191231),
 PARTITION p2020 VALUES LESS THAN(maxvalue)
);

SELECT * FROM dba_tab_partitions where table_name='web_returns_p1';
 table_owner | schema | table_name | partition_name | high_value | pretty_high_value | tablespace_name
-------------+--------+----------------+----------------+------------+-------------------+--------------------
 dbadmin | public | web_returns_p1 | p2016 | 20161231 | 20161231 | DEFAULT TABLESPACE
 dbadmin | public | web_returns_p1 | p2017 | 20171231 | 20171231 | DEFAULT TABLESPACE
 dbadmin | public | web_returns_p1 | p2018 | 20181231 | 20181231 | DEFAULT TABLESPACE
 dbadmin | public | web_returns_p1 | p2019 | 20191231 | 20191231 | DEFAULT TABLESPACE
 dbadmin | public | web_returns_p1 | p2020 | MAXVALUE | MAXVALUE | DEFAULT
TABLESPACE
(5 rows)

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 670

14.3.38 DBA_TABLES
DBA_TABLES displays all tables in the database. This view is accessible only to
users with system administrator rights.

Name Type Description

owner character varying(64) Table owner

table_name character varying(64) Table name

tablespace_name character varying(64) Name of the tablespace
that contains the table

status character varying(8) Whether the current
record is valid

temporary character(1) Whether the table is a
temporary table
● Y indicates that it is a

temporary table.
● N indicates that it is

not a temporary table.

dropped character varying Whether the current
record is deleted
● YES indicates that it is

deleted.
● NO indicates that it is

not deleted.

num_rows numeric Estimated number of
rows in the table

14.3.39 DBA_TABLESPACES
DBA_TABLESPACES displays information about available tablespaces. It is
accessible only to users with system administrator rights.

Table 14-110 DBA_TABLESPACES columns

Name Type Description

tablespace_name character varying(64) Name of the tablespace

14.3.40 DBA_TRIGGERS
DBA_TRIGGERS displays information about triggers in the database. This view is
accessible only to users with system administrator rights.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 671

Name Type Description

trigger_name character varying(64) Trigger name

table_name character varying(64) Name of the table that
defines the trigger

table_owner character varying(64) Owner of the table that
defines the trigger

14.3.41 DBA_VIEWS
DBA_VIEWS displays views in the database. This view is accessible only to users
with system administrator rights.

Name Type Description

owner character varying(64) Owner of the view

view_name character varying(64) View name

14.3.42 DUAL
DUAL is automatically created by the database based on the data dictionary. It
has only one text column in only one row for storing expression calculation results.
It is accessible to all users.

Table 14-111 DUAL columns

Name Type Description

dummy text Expression calculation
result

14.3.43 GET_ALL_TSC_INFO
Obtains the TSC information of all nodes again. This view is supported only by
clusters of version 8.2.1 or later.

Table 14-112 show_tsc_info() return columns

Column Type Description

node_name text Node name

tsc_mult bigint TSC conversion multiplier

tsc_shift bigint TSC conversion shifts

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 672

Column Type Description

tsc_frequency float8 TSC frequency

tsc_use_freqen
cy

boolean Indicates whether to use the TSC frequency for time
conversion.

tsc_ready boolean Indicates whether the TSC frequency can be used for
time conversion

tsc_scalar_erro
r_info

text Error information about obtaining TSC conversion
information

tsc_freq_error_
info

text Error information about obtaining TSC frequency
information

14.3.44 GET_TSC_INFO
Obtains the TSC information of the current node again. This view is supported
only by clusters of version 8.2.1 or later.

Table 14-113 show_tsc_info() return columns

Column Type Description

node_name text Node name

tsc_mult bigint TSC conversion multiplier

tsc_shift bigint TSC conversion shifts

tsc_frequency float8 TSC frequency

tsc_use_freqen
cy

boolean Indicates whether to use the TSC frequency for time
conversion.

tsc_ready boolean Indicates whether the TSC frequency can be used for
time conversion

tsc_scalar_erro
r_info

text Error information about obtaining TSC conversion
information

tsc_freq_error_
info

text Error information about obtaining TSC frequency
information

14.3.45 GLOBAL_COLUMN_TABLE_IO_STAT
GLOBAL_COLUMN_TABLE_IO_STAT provides I/O statistics of all column-store
tables in the current database. The names, types, and sequences of the columns in
the view are the same as those in the GS_COLUMN_TABLE_IO_STAT view. For
details about the columns, see Table 14-114. The value of each statistical column
is the sum of the values of the corresponding columns of all nodes.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 673

Table 14-114 GS_COLUMN_TABLE_IO_STAT columns

Name Type Description

schemaname name Namespace of a table

relname name Table name

heap_read bigint Number of blocks logically read in the heap

heap_hit bigint Number of block hits in the heap

idx_read bigint Number of blocks logically read in the index

idx_hit bigint Number of block hits in the index

cu_read bigint Number of logical reads in the Compression
Unit

cu_hit bigint Number of hits in the Compression Unit

cidx_read bigint Number of indexes logically read in the
Compression Unit

cidx_hit bigint Number of index hits in the Compression
Unit

14.3.46 GLOBAL_REDO_STAT
GLOBAL_REDO_STAT displays the total statistics of XLOG redo operations on all
nodes in a cluster. Except the avgiotim column (indicating the average redo write
time of all nodes), the names of the other columns in this view are the same as
those in the PV_REDO_STAT view. The respective meanings of the other columns
are the sum of the values of the same columns in the PV_REDO_STAT view on
each node.

Table 14-115 GLOBAL_REDO_STAT columns

Name Type Description

phywrts bigint Total number of physical writes on all nodes

phyblkwrt bigint Total number of physical write blocks on all
nodes

writetim bigint Total physical write time of all nodes

avgiotim bigint Average redo write time of all nodes

lstiotim bigint Sum of the last write time of all nodes

miniotim bigint Sum of the minimum write time of all nodes

maxiowtm bigint Sum of the maximum write time of all nodes

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 674

NO TE

This view is accessible only to users with system administrator rights.

14.3.47 GLOBAL_REL_IOSTAT
GLOBAL_REL_IOSTAT displays the total disk I/O statistics of all nodes in a cluster.
The name of each column in this view is the same as that in the GS_REL_IOSTAT
view, but the column meaning is the sum of the value of the same column in the
GS_REL_IOSTAT view on each node.

Table 14-116 GLOBAL_REL_IOSTAT columns

Name Type Description

phyrds bigint Total number of disk read times of all nodes

phywrts bigint Total number of disk write times of all nodes

phyblkrd bigint Total number of disk pages read by all nodes

phyblkwrt bigint Total number of disk pages written by all
nodes

NO TE

This view is accessible only to users with system administrator rights.

14.3.48 GLOBAL_ROW_TABLE_IO_STAT
GLOBAL_ROW_TABLE_IO_STAT provides I/O statistics of all row-store tables in
the current database. The names, types, and sequences of the columns in the view
are the same as those in the GS_ROW_TABLE_IO_STAT view. For details about the
columns, see Table 14-117. The value of each statistical column is the sum of the
values of the corresponding columns of all nodes.

Table 14-117 GS_ROW_TABLE_IO_STAT columns

Name Type Description

schemaname name Namespace of a table

relname name Name of a table

heap_read bigint Number of blocks logically read in the heap

heap_hit bigint Number of block hits in the heap

idx_read bigint Number of blocks logically read in the index

idx_hit bigint Number of block hits in the index

toast_read bigint Number of blocks logically read in the
TOAST table

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 675

Name Type Description

toast_hit bigint Number of block hits in the TOAST table

tidx_read bigint Number of indexes logically read in the
TOAST table

tidx_hit bigint Number of index hits in the TOAST table

14.3.49 GLOBAL_STAT_DATABASE
GLOBAL_STAT_DATABASE displays the status and statistics of databases on all
nodes in a cluster.

● When you query the GLOBAL_STAT_DATABASE view on a CN, the respective
values of all columns returned, except stats_reset (indicating the status reset
time on the current CN), are the sum of values on related nodes in the cluster.
Note that the sum range varies depending on the logical meaning of each
column in the GLOBAL_STAT_DATABASE view.

● When you query the GLOBAL_STAT_DATABASE view on a DN, the query
result is the same as that in Table 14-118.

Table 14-118 GLOBAL_STAT_DATABASE columns

Name Type Description Sum
Range

datid oid Database OID -

datname name Database name -

numbackends integer Number of backends currently
connected to this database on the
current node. This is the only
column in this view that reflects
the current state value. All
columns return the accumulated
value since the last reset.

CN

xact_commit bigint Number of transactions in this
database that have been
committed on the current node

CN

xact_rollback bigint Number of transactions in this
database that have been rolled
back on the current node

CN

blks_read bigint Number of disk blocks read in this
database on the current node

DN

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 676

Name Type Description Sum
Range

blks_hit bigint Number of disk blocks found in
the buffer cache on the current
node, that is, the number of blocks
hit in the cache. (This only
includes hits in the GaussDB(DWS)
buffer cache, not in the file system
cache.)

DN

tup_returned bigint Number of rows returned by
queries in this database on the
current node

DN

tup_fetched bigint Number of rows fetched by
queries in this database on the
current node

DN

tup_inserted bigint Number of rows inserted in this
database on the current node

DN

tup_updated bigint Number of rows updated in this
database on the current node

DN

tup_deleted bigint Number of rows deleted from this
database on the current node

DN

conflicts bigint Number of queries canceled due
to database recovery conflicts on
the current node (conflicts
occurring only on the standby
server). For details, see
PG_STAT_DATABASE_CONFLICTS.

CN and
DN

temp_files bigint Number of temporary files created
by this database on the current
node. All temporary files are
counted, regardless of why the
temporary file was created (for
example, sorting or hashing), and
regardless of the log_temp_files
setting.

DN

temp_bytes bigint Size of temporary files written to
this database on the current node.
All temporary files are counted,
regardless of why the temporary
file was created, and regardless of
the log_temp_files setting.

DN

deadlocks bigint Number of deadlocks in this
database on the current node

CN and
DN

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 677

Name Type Description Sum
Range

blk_read_time double
precision

Time spent reading data file
blocks by backends in this
database on the current node, in
milliseconds

DN

blk_write_tim
e

double
precision

Time spent writing into data file
blocks by backends in this
database on the current node, in
milliseconds

DN

stats_reset timestamp
with time
zone

Time when the database statistics
are reset on the current node

-

14.3.50 GLOBAL_TABLE_CHANGE_STAT
GLOBAL_TABLE_CHANGE_STAT displays the changes of all tables (excluding
foreign tables) in the current database. The value of each column that indicates
the number of times is the accumulated value since the instance was started.

Table 14-119 GLOBAL_TABLE_CHANGE_STAT columns

Name Type Description

schemaname name Namespace of a table

relname name Table name

last_vacuum timestamp
with time
zone

Time when the last VACUUM operation is
performed manually

vacuum_count bigint Number of times of manually performing the
VACUUM operation. The value is the sum of
the number of times on each CN.

last_autovacuum timestamp
with time
zone

Time when the last VACUUM operation is
performed automatically

autovacuum_cou
nt

bigint Number of times of automatically
performing the VACUUM operation. The
value is the sum of the number of times on
each CN.

last_analyze timestamp
with time
zone

Time when the ANALYZE operation is
performed (both manually and
automatically)

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 678

Name Type Description

analyze_count bigint Number of times of performing the
ANALYZE operation (both manually and
automatically). The ANALYZE operation is
performed on all CNs at the same time.
Therefore, the value of this column is the
maximum value on all CNs.

last_autoanalyze timestamp
with time
zone

Time when the last ANALYZE operation is
performed automatically

autoanalyze_cou
nt

bigint Number of times of automatically
performing the ANALYZE operation. The
value is the sum of the number of times on
each CN.

last_change bigint Time when the last modification (INSERT,
UPDATE, or DELETE) is performed

14.3.51 GLOBAL_TABLE_STAT
GLOBAL_TABLE_STAT displays statistics about all tables (excluding foreign tables)
in the current database. The values of live_tuples and dead_tuples are real-time
values, and the values of other statistical columns are accumulated values since
the instance was started.

Table 14-120 GLOBAL_TABLE_STAT columns

Name Type Description

schemaname name Namespace of a table

relname name Table name

distribute_mode char Distribution mode of a table. The meaning of
this column is the same as that of the
pclocatortype column in the pgxc_class system
catalog.

seq_scan bigint Number of sequential scans. For a partitioned
table, the sum of the number of scans of each
partition is displayed.

seq_tuple_read bigint Number of rows scanned in sequence.

index_scan bigint Number of index scans.

index_tuple_read bigint Number of rows scanned by the index.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 679

Name Type Description

tuple_inserted bigint Number of rows inserted. For a replication table,
the maximum value of each node is displayed.
For a distribution table, the sum of all nodes is
displayed.

tuple_updated bigint Number of rows updated. For a replication table,
the maximum value of each node is displayed.
For a distribution table, the sum of all nodes is
displayed.

tuple_deleted bigint Number of rows deleted. For a replication table,
the maximum value of each node is displayed.
For a distribution table, the sum of all nodes is
displayed.

tuple_hot_update
d

bigint Number of rows with HOT updates. For a
replication table, the maximum value of each
node is displayed. For a distribution table, the
sum of all nodes is displayed.

live_tuples bigint Number of live tuples. The maximum value of
each node is displayed. For a distribution table,
the sum of all nodes is displayed.
This indicator applies only to row-store tables.

dead_tuples bigint Number of dead tuples. The maximum value of
each node is displayed. For a distribution table,
the sum of all nodes is displayed.
This indicator applies only to row-store tables.

14.3.52 GLOBAL_WORKLOAD_SQL_COUNT
GLOBAL_WORKLOAD_SQL_COUNT displays statistics on the number of SQL
statements executed in all workload Cgroups in a cluster, including the number of
SELECT, UPDATE, INSERT, and DELETE statements and the number of DDL, DML,
and DCL statements.

Table 14-121 GLOBAL_WORKLOAD_SQL_COUNT columns

Name Type Description

workload name Workload Cgroup name

select_count bigint Number of SELECT
statements

update_count bigint Number of UPDATE
statements

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 680

Name Type Description

insert_count bigint Number of INSERT
statements

delete_count bigint Number of DELETE
statements

ddl_count bigint Number of DDL
statements

dml_count bigint Number of DML
statements

dcl_count bigint Number of DCL
statements

14.3.53 GLOBAL_WORKLOAD_SQL_ELAPSE_TIME
GLOBAL_WORKLOAD_SQL_ELAPSE_TIME displays statistics on the response time
of SQL statements in all workload Cgroups in a cluster, including the maximum,
minimum, average, and total response time of SELECT, UPDATE, INSERT, and
DELETE statements. The unit is microsecond.

Table 14-122 GLOBAL_WORKLOAD_SQL_ELAPSE_TIME columns

Name Type Description

workload name Workload Cgroup name

total_select_elapse bigint Total response time of
SELECT statements

max_select_elapse bigint Maximum response time
of SELECT statements

min_select_elapse bigint Minimum response time
of SELECT statements

avg_select_elapse bigint Average response time
of SELECT statements

total_update_elapse bigint Total response time of
UPDATE statements

max_update_elapse bigint Maximum response time
of UPDATE statements

min_update_elapse bigint Minimum response time
of UPDATE statements

avg_update_elapse bigint Average response time
of UPDATE statements

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 681

Name Type Description

total_insert_elapse bigint Total response time of
INSERT statements

max_insert_elapse bigint Maximum response time
of INSERT statements

min_insert_elapse bigint Minimum response time
of INSERT statements

avg_insert_elapse bigint Average response time
of INSERT statements

total_delete_elapse bigint Total response time of
DELETE statements

max_delete_elapse bigint Maximum response time
of DELETE statements

min_delete_elapse bigint Minimum response time
of DELETE statements

avg_delete_elapse bigint Average response time
of DELETE statements

14.3.54 GLOBAL_WORKLOAD_TRANSACTION
GLOBAL_WORKLOAD_TRANSACTION provides the total transaction information
about workload Cgroups on all CNs in the cluster. This view is accessible only to
users with system administrator rights. It is valid only when the real-time resource
monitoring function is enabled, that is, enable_resource_track is on.

Table 14-123 GLOBAL_WORKLOAD_TRANSACTION columns

Name Type Description

workload name Workload Cgroup name

commit_counter bigint Total number of submission times on each CN

rollback_counter bigint Total number of rollback times on each CN

resp_min bigint Minimum response time of the cluster

resp_max bigint Maximum response time of the cluster

resp_avg bigint Average response time on each CN

resp_total bigint Total response time on each CN

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 682

14.3.55 GS_ALL_CONTROL_GROUP_INFO
GS_ALL_CONTROL_GROUP_INFO displays all Cgroup information in a database.

Table 14-124 GS_ALL_CONTROL_GROUP_INFO columns

Name Type Description

name text Name of the Cgroup

type text Type of the Cgroup

gid bigint Cgroup ID

classgid bigint ID of the Class Cgroup to which a Workload
belongs

class text Class Cgroup

workload text Workload Cgroup

shares bigint CPU quota allocated to a Cgroup

limits bigint Limit of CPUs allocated to a Cgroup

wdlevel bigint Workload Cgroup level

cpucores text Usage of CPU cores in a Cgroup

14.3.56 GS_BLOCKLIST_QUERY
GS_BLOCKLIST_QUERY is used to query job blocklist and exception information.
This view is obtained by associating system catalogs GS_BLOCKLIST_QUERY and
GS_WLM_SESSION_INFO, and deduplicating query results. If the
GS_WLM_SESSION_INFO table is large, the query may take a long time.

Table 14-125 GS_BLOCKLIST_QUERY columns

Name Type Referenc
e

Description

unique_sql_id bigint N/A Query ID generated based on the
query parsing tree.

block_list boolean N/A Check whether a job is in the
blocklist.

except_num integer N/A Query the number of job
exceptions.

except_time timestamp N/A Query the time when the last job
exception occurred.

query text N/A Statement to be executed.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 683

NO TE

● This view can be queried only in the gaussdb database. If it is queried in other
databases, an error will be reported.

● Generally, constant values are ignored during unique SQL ID calculation in DML
statements. However, constant values cannot be ignored in DDL, DCL, and parameter
setting statements. A unique_sql_id may correspond to one or more queries.

14.3.57 GS_BLOCKLIST_SQL
GS_BLOCKLIST_SQL is used to query job blocklist and exception information. This
view is obtained by associating system catalogs GS_BLOCKLIST_SQL and
GS_WLM_SESSION_INFO, and deduplicating query results. If the
GS_WLM_SESSION_INFO table is large, the query may take a long time.

This view is supported only by 9.1.0.200 and later cluster versions.

Table 14-126 GS_BLOCKLIST_QUERY columns

Name Type Referenc
e

Description

sql_hash text N/A sql_hash generated based on the
query parsing tree.

block_list boolean N/A Whether a job is in the blocklist.

except_num integer N/A Number of job exceptions.

except_time timestamp N/A Time when the last job exception
occurred.

query text N/A Statement to be executed.

NO TE

● This view can be queried only in the gaussdb database. If it is queried in other
databases, an error will be reported.

● Generally, constant values are ignored during sql_hash calculation in DML statements.
However, constant values cannot be ignored in DDL, DCL, and parameter setting
statements. A sql_hash may correspond to one or more queries.

14.3.58 GS_CLUSTER_RESOURCE_INFO
GS_CLUSTER_RESOURCE_INFO displays a DN resource summary.

Table 14-127 GS_CLUSTER_RESOURCE_INFO columns

Name Type Description

min_mem_util integer Minimum memory usage of a DN

max_mem_util integer Maximum memory usage of a DN

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 684

Name Type Description

min_cpu_util integer Minimum CPU usage of a DN

max_cpu_util integer Maximum CPU usage of a DN

min_io_util integer Minimum I/O usage of a DN

max_io_util integer Maximum I/O usage of a DN

used_mem_rate integer Maximum physical memory usage

14.3.59 GS_COLUMN_TABLE_IO_STAT
GS_COLUMN_TABLE_IO_STAT displays the I/O of all column-store tables of the
database on the current node. The value of each statistical column is the
accumulated value since the instance was started.

Table 14-128 GS_COLUMN_TABLE_IO_STAT columns

Name Type Description

schemaname name Namespace of a table

relname name Table name

heap_read bigint Number of blocks logically read in the heap

heap_hit bigint Number of block hits in the heap

idx_read bigint Number of blocks logically read in the index

idx_hit bigint Number of block hits in the index

cu_read bigint Number of logical reads in the Compression
Unit

cu_hit bigint Number of hits in the Compression Unit

cidx_read bigint Number of indexes logically read in the
Compression Unit

cidx_hit bigint Number of index hits in the Compression
Unit

14.3.60 GS_OBS_READ_TRAFFIC
Collects statistics on the OBS read traffic and average read bandwidth. The
statistical results are aggregated every 10 minutes. This view is supported only by
clusters of version 8.2.0 or later.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 685

Name Type Description

nodename TEXT Cluster node

hostname TEXT Server node

traffic_mb float8 OBS read traffic statistics during the
10 minutes before logtime

bandwidth_m
b_per_s

float8 Average bandwidth, in MB/s

reqcount bigint Number of OBS reads during the 10
minutes before logtime

logtime timestamp with time
zone

Time when statistics are recorded

Examples
Query statistics on the OBS read traffic and average read bandwidth. The
statistical results are aggregated every 10 minutes.

select * from gs_obs_read_traffic;
 nodename | hostname | traffic_mb | bandwidth_mb_per_s | reqcount | logtime
----------+------------------+------------------+--------------------+----------+------------------------
 dn_1 | rhel_10_90_45_56 | 101.959338188171 | 5.14830159670447 | 23 | 2022-11-26 09:50:00+08
(1 row)

14.3.61 GS_OBS_WRITE_TRAFFIC
Collects statistics on the OBS write traffic and average write bandwidth. The
statistical results are aggregated every 10 minutes. This view is supported only by
clusters of version 8.2.0 or later.

Name Type Description

nodename TEXT Cluster node

hostname TEXT Server node

traffic_mb float8 OBS write traffic statistics during the
10 minutes before logtime

bandwidth_m
b_per_s

float8 Average bandwidth, in MB/s

reqcount bigint Number of OBS writes during the 10
minutes before logtime

logtime timestamp with time
zone

Time when statistics are recorded

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 686

Examples
Query statistics on the OBS write traffic and average write bandwidth. The
statistical results are aggregated every 10 minutes.

select * from gs_obs_write_traffic;
 nodename | hostname | traffic_mb | bandwidth_mb_per_s | reqcount | logtime
--------------+------------------+----------------------+---------------------+----------+------------------------
 dn_1 | rhel_10_90_45_56 | .000738143920898438 | .000289970820362525 | 12 | 2022-10-24
16:10:00+08
 dn_1 | rhel_10_90_45_56 | .000354766845703125 | .000386063466694153 | 7 | 2022-10-24
18:50:00+08
 dn_1 | rhel_10_90_45_56 | 9.34600830078125e-05 | .000143659648687162 | 2 | 2022-11-07
09:20:00+08
 dn_1 | rhel_10_90_45_56 | 4.10079956054688e-05 | .000186667253592502 | 1 | 2022-11-07
09:30:00+08
 dn_1 | rhel_10_90_45_56 | 2048.17834663391 | 27.2766632219637 | 2 | 2022-11-22
16:10:00+08
 dn_1 | rhel_10_90_45_56 | 3747.23722648621 | 28.0842938534546 | 4 | 2022-11-22
16:20:00+08
(6 row)

14.3.62 GS_INSTR_UNIQUE_SQL

Unique SQL Definition
The database parses each received SQL text string and generates an internal
parsing tree. The database traverses the parsing tree and ignores constant values
in the parsing tree. In this case, an integer value is calculated using a certain
algorithm. This integer is used as the Unique SQL ID to uniquely identify this type
of SQL. SQL statements with the same Unique SQL ID are called Unique SQL
statements.

Examples
Assume that the user enters the following SQL statements in sequence:

select * from t1 where id = 1;
select * from t1 where id = 2;

The statistics of the two SQL statements are aggregated to the same Unique SQL
statement.

select * from t1 where id = ?;

GS_INSTR_UNIQUE_SQL View
The GS_INSTR_UNIQUE_SQL view displays the execution information about the
Unique SQL statements collected by the current node, including:

● Unique SQL ID and normalized SQL text string. The normalized SQL text is
described in Examples. Generally, constant values are ignored during Unique
SQL ID calculation in DML statements. However, constant values cannot be
ignored in DDL, DCL, and parameter setting statements.

● Number of execution times (number of successful execution times) and
response time (SQL execution time in the database, including the maximum,
minimum, and total time)

● Cache/IO information, including the number of physical reads and logical
reads of a block. Only information about successfully executed SQL

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 687

statements on each DN is collected. The statistical value is related to factors
such as the amount of data processed during query execution, used memory,
whether the query is executed for multiple times, memory management
policy, and whether there are other concurrent queries. The statistical value
reflects the number of physical reads and logical reads of the buffer block in
the entire query execution process. The statistical value may vary according to
the execution time.

● Row activities, such as the number of returned rows, updated rows, inserted
rows, deleted rows, sequentially scanned rows, and randomly scanned rows in
the result set of the SELECT statement. Except that the number of rows
returned by the result set is the same as the number of rows in the result set
of the SELECT statement and is recorded only on the CN, the activity
information of other rows is recorded on the DN. The statistical value reflects
the row activities during the entire query execution process, including
scanning and modifying related system tables, metadata tables, and data
tables. The value of this parameter is related to the data volume and related
parameter settings. That is, the statistical value is greater than or equal to the
scanning and modification times of actual data tables.

● Time distribution, including DB_TIME/CPU_TIME/EXECUTION_TIME/
PARSE_TIME/PLAN_TIME/REWRITE_TIME/PL_EXECUTION_TIME/
PL_COMPILATION_TIME/NET_SEND_TIME/DATA_IO_TIME. For details, see
Table 14-129. The information is collected on both CNs and DNs and is
displayed during view query.

● Number of soft and hard parsing times, such as the number of soft parsing
times (cache plan) and hard parsing times (generation plan). If the cache
plan is executed this time, the number of soft parsing times increases by 1. If
the generation plan is regenerated this time, the number of hard parsing
times increases by 1. This number is counted on both CNs and DNs and is
displayed during view query.

The Unique SQL statistics function has the following restrictions:

● Detailed statistics are displayed only for successfully executed SQL
statements. Otherwise, only query, node, and user information are recorded.

● If the Unique SQL statistics collection function is enabled, the CN collects
statistics on all received queries, including tool and user queries.

● If an SQL statement contains multiple SQL statements or similar stored
procedures, a Unique SQL statement is generated for the outermost SQL
statement. The statistics of all sub-SQL statements are summarized to the
Unique SQL record.

● The response time statistics of Unique SQL does not include the time of the
NET_SEND_TIME phase. Therefore, there is no comparison between
EXECUTION_TIME and elapse_time.

● parse_time of clauses cannot be calculated for begin;...;commit and similar
transaction blocks.

When a common user accesses the GS_INSTR_UNIQUE_SQL view, only the
Unique SQL information about the user is displayed. When an administrator
accesses the GS_INSTR_UNIQUE_SQL view, all Unique SQL information about the
current node is displayed. The GS_INSTR_UNIQUE_SQL view can be queried on
both CNs and DNs. The DN displays the Unique SQL statistics of the local node,
and the CN displays the complete Unique SQL statistics of the local node. That is,

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 688

the CN collects the Unique SQL execution information of the CN from other CNs
and DNs and displays the information. You can query the
GS_INSTR_UNIQUE_SQL view to locate the Top SQL statements that consume
different resources, providing a basis for cluster tuning and maintenance.

The GUC parameter instr_unique_sql_timeout specifies the timeout interval of
the Unique SQL statement (in hours). The background thread checks all Unique
SQL statements every hour and deletes the Unique SQL statements whose
last_time is instr_unique_sql_timeout hours ago.

Table 14-129 GS_INSTR_UNIQUE_SQL columns

Name Type Description

node_name name Name of the CN that
receives SQL statements

node_id integer Node ID, which is the
same as the value of
node_id in the
pgxc_node table

user_name name Username

user_id oid User ID

unique_sql_id bigint Normalized Unique SQL
ID

query text Normalized SQL text

n_calls bigint Number of successful
execution times

min_elapse_time bigint Minimum running time
of the SQL statement in
the database (unit: μs)

max_elapse_time bigint Maximum running time
of SQL statements in the
database (unit: μs)

total_elapse_time bigint Total running time of
SQL statements in the
database (unit: μs)

n_returned_rows bigint Row activity - Number of
rows in the result set
returned by the SELECT
statement

n_tuples_fetched bigint Row activity - Randomly
scan rows (column-store
tables/foreign tables are
not counted.)

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 689

Name Type Description

n_tuples_returned bigint Row activity - Sequential
scan rows (Column-store
tables/foreign tables are
not counted.)

n_tuples_inserted bigint Row activity - Inserted
rows

n_tuples_updated bigint Row activity - Updated
rows

n_tuples_deleted bigint Row activity - Deleted
rows

n_blocks_fetched bigint Block access times of the
buffer, that is, physical
read/I/O

n_blocks_hit bigint Block hits of the buffer,
that is, logical read/
cache

n_soft_parse bigint Number of soft parsing
times (cache plan)

n_hard_parse bigint Number of hard parsing
times (generation plan)

db_time bigint Valid DB execution time,
including the waiting
time and network
sending time. If multiple
threads are involved in
query execution, the
value of DB_TIME is the
sum of DB_TIME of
multiple threads (unit:
μs).

cpu_time bigint CPU execution time,
excluding the sleep time
(unit: μs)

execution_time bigint SQL execution time in
the query executor, DDL
statements, and
statements (such as
Copy statements) that
are not executed by the
executor are not counted
(unit: μs).

parse_time bigint SQL parsing time (unit:
μs)

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 690

Name Type Description

plan_time bigint SQL generation plan
time (unit: μs)

rewrite_time bigint SQL rewriting time (unit:
μs)

pl_execution_time bigint Execution time of the
plpgsql procedural
language function (unit:
μs)

pl_compilation_time bigint Compilation time of the
plpgsql procedural
language function (unit:
μs)

net_send_time bigint Network time, including
the time spent by the CN
in sending data to the
client and the time spent
by the DN in sending
data to the CN (unit: μs)

data_io_time bigint File I/O time (unit: μs)

first_time timestamp with time
zone

Time of the first SQL
statement execution

last_time timestamp with time
zone

Time of the last SQL
statement execution

14.3.63 GS_NODE_STAT_RESET_TIME
GS_NODE_STAT_RESET_TIME provides the statistics reset time of the current
node and returns a timestamp with the time zone.

For details, see the get_node_stat_reset_time() function.

NO TE

When an instance is running, its statistics keep rising. In the following cases, the statistical
values in the memory will be reset to 0:
● The instance is restarted or a cluster switchover occurs.
● The database is dropped.
● A reset operation is performed. For example, the statistics counter in the database is

reset using the pgstat_recv_resetcounter function or the Unique SQL statements are
cleared using the reset_instr_unique_sql function.

If any of the preceding events occurs, GaussDB(DWS) will record the time when the
statistics are reset. You can query the time using the get_node_stat_reset_time function.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 691

https://support.huaweicloud.com/intl/en-us/sqlreference-910-dws/dws_06_0062.html

14.3.64 GS_OBS_LATENCY
GS_OBS_LATENCY records the average latency of OBS during the 10 minutes
before logtime. The latency is estimated based on OBS operations. This view is
supported only by clusters of version 8.2.0 or later.

Table 14-130 GS_OBS_LATENCY columns

Name Type Description

nodename text Node

hostname text Server node.

latency_ms double
precision

Average delay of OBS during the 10 minutes
before logtime. The unit is ms.

reqcount bigint Number of OBS requests during the 10
minutes before logtime.

logtime timestamp
with time
zone

Time when the delay information is recorded.

14.3.65 GS_QUERY_MONITOR
Displays the running/queuing information and resource usage of ongoing queries.
Only queuing and running jobs are displayed. This view can be queried only on
CNs and displays only the monitoring information about the main statement. This
view is supported only by clusters of 8.2.1.100 and later versions.

Table 14-131 GS_QUERY_MONITOR columns

Column Type Description

usename name Name of the user who performs the query.

nodename name Name of the CN that executes the query.

nodegroup name Name of the cluster where the query is
performed. The default cluster name is
installation.

rpname name Name of the resource pool associated with the
query.

priority name Priority of the query, which can be Rush, High,
Medium, and Low.

xact_start timestamp Start time of the transaction to which the
query belongs.

query_start timestamp Start time of query execution.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 692

Column Type Description

block_time bigint Accumulated queuing time of jobs. Stored
procedures and multi-statement task may be
queued for multiple times. Unit: second.

duration bigint Running time of a job, excluding the queuing
time. Unit: second.

query_band text Job ID, which can be set using the GUC
parameter query_band. By default, this
parameter is left blank.

attribute text Job attributes:
● Simple: simple job.
● Complicated: complex job.
This column is invalid before a job is under
resource pool management and control. This
column is valid only when the job is under or
has been under resource pool management
and control.

lane text Resource pool lane where a job is queued or
executed:
● fast: fast lane.
● slow: slow lane.
This column is invalid before a job is under
resource pool management and control. This
column is valid only when the job is under or
has been under resource pool management
and control.

status text Current status of a job. The value can be
pending or running.

queue text Job queuing information:
● None: The job is running.
● Global: The job is queued in the global

queue of the CN.
● Respool: The job is queued in the resource

pool.
● CCN: The job is queued in the CCN.

used_mem integer Maximum peak memory usage of a job across
all DNs. The unit is MB.

estimate_me
m

integer Estimated memory of a job. The unit is MB.

used_cpu double
precision

Average number of CPU cores occupied by a
job since the job starts to run.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 693

Column Type Description

read_speed integer Average logical I/O read rate of a job on all
DNs. The unit is KB/s.

write_speed integer Average logical I/O write rate of a job on all
DNs. The unit is KB/s.

send_speed integer Average transmit rate on all DNs since a job
starts to run. The unit is KB/s.

recv_speed integer Average receive rate on all DNs since a job
starts to run. The unit is KB/s.

dn_count bigint Number of DNs that execute the job.

stream_count bigint Total number of stream threads of a job on all
DNs.

pid bigint ID of the backend thread

lwtid integer Lightweight thread ID of a background thread.

query_id bigint Query ID.

unique_sql_id bigint ID of the normalized unique SQL.

query text Query that is being executed.

14.3.66 GS_QUERY_RESOURCE_INFO
The GS_QUERY_RESOURCE_INFO view displays the resource information about all
running jobs on the current DN. This parameter is supported only by clusters of
version 9.1.0 or later.

NO TE

This view can be queried only on DNs. It is used only for O&M operations to locate faults.
You are advised not to use this function.

Table 14-132 GS_QUERY_RESOURCE_INFO

Name Type Description

node_name text Instance name, which contains only DNs

user_id oid User ID.

queryid bigint Internal query ID used for statement execution.

used_mem int Memory used by the statement on the current
DN. The unit is MB.

cpu_time bigint CPU time of a statement on the current DN.
The unit is ms.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 694

Name Type Description

used_cpu double Number of CPUs used by the statement on the
current DN.

spill_size bigint Amount of data spilled to disks on the current
DN. The default value is 0. The unit is MB.

read_bytes bigint Number of logical read bytes used by the
statement on the current DN. The unit is KB.

write_bytes bigint Number of logical write bytes used by the
statement on the current DN. The unit is KB.

read_count bigint Number of logical reads used by the statement
on the current DN.

write_count bigint Number of logical writes used by the
statement on the current DN.

read_speed int Logical read rate used by the statement on the
current DN. The unit is KB/s.

write_speed int Logical write rate used by the statement on
the current DN. The unit is KB/s.

curr_iops int I/O operations per second of the statement on
the current DN. It is recorded as a count in a
column-store table and as a count of 10,000 in
a row-store table.

send_pkg bigint Total number of communication packages sent
by a statement across all DNs.

recv_pkg bigint Total number of communication packages
received by a statement across all DNs.

send_bytes bigint Total sent data of the statement stream, in
byte.

recv_bytes bigint Total received data of the statement stream, in
byte.

send_speed int Network sending rate of the statement on the
current DN. The unit is KB/s.

recv_speed int Network receiving rate of the statement on the
current DN. The unit is KB/s.

14.3.67 GS_REL_IOSTAT
GS_REL_IOSTAT displays disk I/O statistics on the current node. In the current
version, only one page is read or written in each read or write operation.
Therefore, the number of read/write times is the same as the number of pages.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 695

Table 14-133 GS_REL_IOSTAT columns

Name Type Description

phyrds bigint Number of disk reads

phywrts bigint Number of disk writes

phyblkrd bigint Number of read pages

phyblkwrt bigint Number of written pages

14.3.68 GS_RESPOOL_RUNTIME_INFO
GS_RESPOOL_RUNTIME_INFO displays information about the running of jobs in
all resource pools on the current CN.

Table 14-134 GS_RESPOOL_RUNTIME_INFO columns

Name Type Description

nodegroup name Name of the logical cluster the resource pool
belongs to. The default cluster is installation.

rpname name Resource pool name.

ref_count int Number of jobs that reference the resource
pool. This count includes both controlled and
uncontrolled jobs.

fast_run int Number of jobs currently running in the
resource pool's fast lane.

fast_wait int Number of jobs currently queued in the
resource pool's fast lane.

slow_run int Number of jobs currently running in the
resource pool's slow lane.

slow_wait int Number of jobs currently queued in the
resource pool's slow lane.

14.3.69 GS_RESPOOL_RESOURCE_INFO
GS_RESPOOL_RESOURCE_INFO displays job running information about all
resource pools on a CN and the information about resource pool usage of an
instance (CN/DN).

NO TE

On a DN, it only displays the monitoring information of the logical cluster that the DN
belongs to.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 696

Table 14-135 GS_RESPOOL_RESOURCE_INFO columns

Name Type Description

nodegroup name Name of the logical cluster of the resource
pool. The default value is installation.

rpname name Resource pool name

cgroup name Name of the Cgroup associated with the
resource pool

ref_count int Number of jobs referenced by the resource
pool. The number is counted regardless of
whether the job is controlled by the resource
pool. This parameter is valid only on CNs.

fast_run int Number of running jobs in the fast lane of the
resource pool. This parameter is valid only on
CNs.

fast_wait int Number of jobs queued in the fast lane of the
resource pool. This parameter is valid only on
CNs.

fast_limit int Limit on the number of concurrent jobs in the
fast lane in a resource pool. This parameter is
valid only on CNs.

slow_run int Number of running jobs in the slow lane of the
resource pool. This parameter is valid only on
CNs.

slow_wait int Number of jobs queued in the slow lane of the
resource pool. This parameter is valid only on
CNs.

slow_limit int Limit on the number of concurrent jobs in the
slow lane in a resource pool. This parameter is
valid only on CNs.

used_cpu double Average number of CPUs used by the resource
pool in a 5s monitoring period. The value is
accurate to two decimal places.
● On a DN, it indicates the number of CPUs

used by the resource pool on the current
DN.

● On a CN, it indicates the total CPU usage of
resource pools on all DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 697

Name Type Description

cpu_limit int It indicates the upper limit of available CPUs
for resource pools. If the CPU share is limited,
this parameter indicates the available CPUs for
GaussDB(DWS). If the CPU limit is specified,
this parameter indicates the available CPUs for
associated Cgroups.
● On a DN, it indicates the upper limit of

available CPUs for the resource pool on the
current DN.

● On a CN, it indicates the total upper limit of
available CPUs for resource pools on all
DNs.

used_mem int Memory size used by the resource pool (unit:
MB)
● On a DN, it indicates the memory usage of

the resource pool on the current DN.
● On a CN, it indicates the total memory

usage of resource pools on all DNs.

estimate_me
m

int Estimated memory used by the jobs running in
the resource pools on the current CN. This
parameter is valid only on CNs.

mem_limit int Upper limit of available memory for the
resource pool (unit: MB).
● On a DN, it indicates the upper limit of

available memory for the resource pool on
the current DN.

● On a CN, it indicates the total upper limit of
available memory for resource pools on all
DNs.

read_kbytes bigint Number of logical read bytes in the resource
pool within a 5s monitoring period (unit: KB).
● On a DN, it indicates the number of logical

read bytes in the resource pool on the
current DN.

● On a CN, it indicates the total logical read
bytes of resource pools on all DNs.

write_kbytes bigint Number of logical write bytes in the resource
pool within a 5s monitoring period (unit: KB).
● On a DN, it indicates the number of logical

write bytes in the resource pool on the
current DN.

● On a CN, it indicates the total logical write
bytes of resource pools on all DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 698

Name Type Description

read_counts bigint Number of logical reads in the resource pool
within a 5s monitoring period.
● On a DN, it indicates the number of logical

reads in the resource pool on the current
DN.

● On a CN, it indicates the total number of
logical reads in resource pools on all DNs.

write_counts bigint Number of logical writes in the resource pool
within a 5s monitoring period.
● On a DN, it indicates the number of logical

writes in the resource pool on the current
DN.

● On a CN, it indicates the total number of
logical writes in resource pools on all DNs.

read_speed double Average rate of logical reads of the resource
pool in a 5s monitoring period.
● On a DN, it indicates the logical read rate of

the resource pool on the current DN.
● On a CN, it indicates the overall logical read

rate of resource pools on all DNs.

write_speed double Average rate of logical writes of resource pools
in a 5s monitoring period, in KB/s.
● On a DN, it indicates the logical write rate

of the resource pool on the current DN.
● On a CN, it indicates the overall logical

write rate of resource pools on all DNs.

send_speed double Average network sending rate of a resource
pool in a 5-second monitoring period. The unit
is KB/s.
● On a DN, it indicates the network sending

rate of the resource pool on the current DN.
● On a CN, it indicates that the cumulative

sum of the network sending rates of the
resource pool on all DNs.

recv_speed double Average network receiving rate of a resource
pool in a 5-second monitoring period. The unit
is KB/s.
● On a DN, it indicates the network receiving

rate of the resource pool on the current DN.
● On a CN, it indicates that the cumulative

sum of the network receiving rates of the
resource pool on all DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 699

14.3.70 GS_RESPOOL_MONITOR
Displays the job running information and resource usage information of all
resource pools. This view can be queried only on CNs. This view is supported only
by clusters of 8.2.1.100 and later versions.

Table 14-136 GS_RESPOOL_MONITOR columns

Column Type Description

rpname name Resource pool name.

nodegroup name Name of the logical cluster the resource pool belongs
to. The default value is installation.

cn_count bigint Number of CNs in the cluster. This parameter is used
to determine whether the management and control
result of a single CN is proper in a multi-CN
environment.

short_acc boolea
n

Whether to enable short query acceleration for a
resource pool.

session_count bigint Number of sessions associated with the resource pool,
that is, the number of sessions initiated by users
associated with the resource pool, including idle and
active sessions.

active_count bigint Number of active sessions associated with the
resource pool, that is, the number of sessions that are
performing queries.

global_wait bigint Number of jobs associated with the resource pool that
are queued because the number of concurrent jobs on
a single CN exceeds the value of
max_active_statements.

fast_run bigint Number of jobs associated with the resource pool that
are running on the fast lane.

fast_wait bigint Number of jobs associated with the resource pool that
are queued on the fast lane.

fast_limit bigint Maximum number of concurrent jobs on the fast lane
in a resource pool.

slow_run bigint Number of jobs associated with the resource pool that
are running on the slow lane.

slow_wait bigint Number of jobs associated with the resource pool that
are queued on the slow lane.

slow_limit bigint Maximum number of concurrent jobs on the slow lane
in a resource pool.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 700

Column Type Description

used_mem text Average memory usage of the resource pool on all
DNs. The result has been formatted using
pg_size_pretty.

estimate_me
m

text Total estimated memory of jobs running in the
resource pool. The result has been formatted using
pg_size_pretty.

mem_limit text Upper limit of the available memory in the resource
pool. The result has been formatted using
pg_size_pretty.

query_mem_li
mit

name Maximum memory that can be used by a single query
in a resource pool. This parameter is used to limit the
estimated query memory to prevent abnormal
queuing caused by overestimation. The estimated
memory is used to limit the actually used query
memory. The displayed result has been formatted
using pg_size_pretty.

used_cpu double
precisi
on

Average number of CPU cores occupied by a resource
pool on all DNs. CPU isolation is performed by node
and resource pool. If a single node contains multiple
DNs, the number of CPU cores occupied by a resource
pool on a single node must be multiplied by the
number of DNs.

cpu_limit double
precisi
on

Average upper limit of available CPUs for a resource
pool on all nodes. If CPU Time Limit is enabled, the
value is the total number of available CPU cores of
GaussDB(DWS). If CPU Usage Limit is enabled, the
value is the number of available CPU cores of the
associated Cgroup.

read_speed text Average logical I/O read rate of the resource pool on
all DNs. The result has been formatted using
pg_size_pretty.

write_speed text Average logical I/O write rate of the resource pool on
all DNs. The result has been formatted using
pg_size_pretty.

send_speed text Average network sending rate of the resource pool on
all DNs. The result has been formatted using
pg_size_pretty.

recv_speed text Average receiving rate of the resource pool on all DNs.
The result has been formatted using pg_size_pretty.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 701

14.3.71 GS_ROW_TABLE_IO_STAT
GS_ROW_TABLE_IO_STAT displays the I/O of all row-store tables of the database
on the current node. The value of each statistical column is the accumulated value
since the instance was started.

Table 14-137 GS_ROW_TABLE_IO_STAT columns

Name Type Description

schemaname name Namespace of a table

relname name Name of a table

heap_read bigint Number of blocks logically read in the heap

heap_hit bigint Number of block hits in the heap

idx_read bigint Number of blocks logically read in the index

idx_hit bigint Number of block hits in the index

toast_read bigint Number of blocks logically read in the
TOAST table

toast_hit bigint Number of block hits in the TOAST table

tidx_read bigint Number of indexes logically read in the
TOAST table

tidx_hit bigint Number of index hits in the TOAST table

14.3.72 GS_SESSION_CPU_STATISTICS
GS_SESSION_CPU_STATISTICS displays load management information about CPU
usage of ongoing complex jobs executed by the current user.

Table 14-138 GS_SESSION_CPU_STATISTICS columns

Name Type Description

datid oid OID of the database the backend is connected
to.

usename name Username logged in to the backend.

pid bigint Backend thread ID.

start_time timestamp
with time
zone

Start time of statement execution.

min_cpu_time bigint Minimum CPU time of a statement across all
DNs. The unit is ms.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 702

Name Type Description

max_cpu_time bigint Maximum CPU time of a statement across all
DNs. The unit is ms.

total_cpu_tim
e

bigint Total CPU time of a statement across all DNs.
The unit is ms.

query text Statement currently being executed.

node_group text Logical cluster of the user running the
statement.

14.3.73 GS_SESSION_MEMORY_STATISTICS
GS_SESSION_MEMORY_STATISTICS displays load management information
about memory usage of ongoing complex jobs executed by the current user.

Table 14-139 GS_SESSION_MEMORY_STATISTICS columns

Name Type Description

datid oid OID of the database the backend is connected
to.

usename name Username logged in to the backend.

pid bigint Backend thread ID.

start_time timestamp
with time
zone

Start time of statement execution.

min_peak_me
mory

integer Minimum memory peak of a statement across
all DNs, in MB

max_peak_me
mory

integer Maximum memory peak of a statement across
all DNs, in MB

spill_info text Spill information for the statement on all DNs.
The options are:
None: The statement has not been spilled to
disks on any DNs.
All: The statement has been spilled to disks on
all DNs.
[a:b]: The statement has been spilled to disks
on a of b DNs.

query text Statement currently being executed.

node_group text Logical cluster of the user running the
statement.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 703

14.3.74 GS_SQL_COUNT
GS_SQL_COUNT displays statistics about the five types of statements (SELECT,
INSERT, UPDATE, DELETE, and MERGE INTO) executed on the current node of
the database, including the number of execution times, response time (the
maximum, minimum, average, and total response time of the other four types of
statements except the MERGE INTO statement, in microseconds), and the number
of execution times of DDL, DML, and DCL statements.

The classification of DDL, DML, and DCL statements in the GS_SQL_COUNT view
is slightly different from that of the SQL syntax. The details are as follows:

● User-related statements, such as CREATE/ALTER/DROP USER and CREATE/
ALTER/DROP ROLE, are of the DCL type.

● Transaction-related statements such as BEGIN/COMMIT/SET CONSTRAINTS/
ROLLBACK/SAVEPOINT/START are of the DCL type.

● ALTER SYSTEM KILL SESSION is equivalent to the SELECT
pg_terminate_backend() statement and is of the DML type.

The classification of other statements is similar to the definition in the SQL syntax.

When a common user queries the GS_SQL_COUNT view, only the statistics of this
user in the current node can be viewed. When a user with the administrator
permissions queries the GS_SQL_COUNT view, the statistics of all users in the
current node can be viewed. When the cluster or the node is restarted, the
statistics are cleared and the counting restarts. The counting is based on the
number of queries received by the node, including the queries performed inside
the cluster. Statistics about the GS_SQL_COUNT view are collected only on CNs,
and SQL statements sent from other CNs are not collected. No result is returned
when you query the view on a DN.

Table 14-140 GS_SQL_COUNT columns

Name Type Description

node_name name Node name

user_name name Username

select_count bigint Number of SELECT statements.

update_count bigint Number of UPDATE statements

insert_count bigint Number of INSERT statements

delete_count bigint Number of DELETE statements

mergeinto_count bigint Number of MERGE INTO statements

ddl_count bigint Number of DDL statements

dml_count bigint Number of DML statements

dcl_count bigint Number of DCL statements

total_select_elaps
e

bigint Total response time of SELECT statements

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 704

Name Type Description

avg_select_elapse bigint Average response time of SELECT statements

max_select_elaps
e

bigint Maximum response time of SELECT statements

min_select_elaps
e

bigint Minimum response time of SELECT statements

total_update_ela
pse

bigint Total response time of UPDATE statements

avg_update_elap
se

bigint Average response time of UPDATE statements

max_update_elap
se

bigint Maximum response time of UPDATE statements

min_update_elap
se

bigint Minimum response time of UPDATE statements

total_delete_elap
se

bigint Total response time of DELETE statements

avg_delete_elaps
e

bigint Average response time of DELETE statements

max_delete_elaps
e

bigint Maximum response time of DELETE statements

min_delete_elaps
e

bigint Minimum response time of DELETE statements

total_insert_elaps
e

bigint Total response time of INSERT statements

avg_insert_elapse bigint Average response time of INSERT statements

max_insert_elaps
e

bigint Maximum response time of INSERT statements

min_insert_elaps
e

bigint Minimum response time of INSERT statements

14.3.75 GS_STAT_DB_CU
GS_STAT_DB_CU displays CU hits of each database in each node of a cluster. You
can clear it using gs_stat_reset().

Table 14-141 GS_STAT_DB_CU columns

Name Type Description

node_name1 text Node name

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 705

Name Type Description

db_name text Database name

mem_hit bigint Number of memory hits

hdd_sync_rea
d

bigint Number of disk synchronous reads

hdd_asyn_rea
d

bigint Number of disk asynchronous reads

14.3.76 GS_STAT_SESSION_CU
GS_STAT_SESSION_CU displays the CU hit rate of running sessions on each node
in a cluster. This data about a session is cleared when you exit this session or
restart the cluster.

Table 14-142 GS_STAT_SESSION_CU columns

Name Type Description

node_name1 text Node name

mem_hit integer Number of memory hits

hdd_sync_rea
d

integer Number of disk synchronous reads

hdd_asyn_rea
d

integer Number of disk asynchronous reads

14.3.77 GS_TABLE_CHANGE_STAT
GS_TABLE_CHANGE_STAT displays the changes of all tables (excluding foreign
tables) of the database on the current node. The value of each column that
indicates the number of times is the accumulated value since the instance was
started.

Table 14-143 GS_TABLE_CHANGE_STAT columns

Name Type Description

schemaname name Namespace of a table

relname name Table name

last_vacuum timestamp
with time
zone

Time when the last VACUUM operation is
performed manually

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 706

Name Type Description

vacuum_count bigint Number of times of manually performing the
VACUUM operation

last_autovacuum timestamp
with time
zone

Time when the last VACUUM operation is
performed automatically

autovacuum_cou
nt

bigint Number of times of automatically
performing the VACUUM operation

last_analyze timestamp
with time
zone

Time when the ANALYZE operation is
performed (both manually and
automatically)

analyze_count bigint Number of times of performing the
ANALYZE operation (both manually and
automatically)

last_autoanalyze timestamp
with time
zone

Time when the last ANALYZE operation is
performed automatically

autoanalyze_cou
nt

bigint Number of times of automatically
performing the ANALYZE operation

last_change bigint Time when the last modification (INSERT,
UPDATE, or DELETE) is performed

14.3.78 GS_TABLE_STAT
GS_TABLE_STAT displays statistics about all tables (excluding foreign tables) of
the database on the current node. The values of live_tuples and dead_tuples are
real-time values, and the values of other statistical columns are accumulated
values since the instance was started.

Table 14-144 GS_TABLE_STAT columns

Name Type Description

schemaname name Namespace of a table

relname name Table name

seq_scan bigint Number of sequential scans. For a partitioned
table, the sum of the number of scans of each
partition is displayed.

seq_tuple_read bigint Number of rows scanned in sequence.

index_scan bigint Number of index scans.

index_tuple_read bigint Number of rows scanned by the index.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 707

Name Type Description

tuple_inserted bigint Number of rows inserted.

tuple_updated bigint Number of rows updated.

tuple_deleted bigint Number of rows deleted.

tuple_hot_update
d

bigint Number of rows with HOT updates.

live_tuples bigint Number of live tuples. Query the view on the CN.
If ANALYZE is executed, the total number of live
tuples in the table is displayed. Otherwise, 0 is
displayed. This indicator applies only to row-store
tables.

dead_tuples bigint Number of dead tuples. Query the view on the
CN. If ANALYZE is executed, the total number of
dead tuples in the table is displayed. Otherwise,
0 is displayed. This indicator applies only to row-
store tables.

14.3.79 GS_TOTAL_NODEGROUP_MEMORY_DETAIL
GS_TOTAL_NODEGROUP_MEMORY_DETAIL displays statistics about memory
usage of the logical cluster that the current database belongs to in the unit of MB.

Table 14-145 GS_TOTAL_NODEGROUP_MEMORY_DETAIL columns

Name Type Description

ngname text Logical cluster name

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 708

Name Type Description

memorytype text Memory type. The value can be:
● ng_total_memory: total memory of the logical

cluster
● ng_used_memory: memory usage of the logical

cluster
● ng_estimate_memory: estimated memory usage

of the logical cluster
● ng_foreignrp_memsize: total memory of the

external resource pool of the logical cluster
● ng_foreignrp_usedsize: memory usage of the

external resource pool of the logical instance
● ng_foreignrp_peaksize: peak memory usage of

the external resource pool of the logical cluster
● ng_foreignrp_mempct: percentage of the

external resource pool of the logical cluster to
the total memory of the logical cluster

● ng_foreignrp_estmsize: estimated memory
usage of the external resource pool of the logical
cluster

memorymbytes integer Size of allocated memory-typed memory

14.3.80 GS_USER_MONITOR
GS_USER_MONITOR displays all users' job running and resource usage
information. This view can be queried only on CNs. This view is supported only by
clusters of 8.2.1.100 and later versions.

Table 14-146 GS_USER_MONITOR columns

Column Type Description

usename name Username

rpname name Name of the resource pool associated with the user

nodegroup name Name of the logical cluster the resource pool belongs
to. The default value is installation.

session_count bigint Number of sessions initiated by the user, including idle
and active sessions

active_count bigint Number of active sessions initiated by the user, that is,
the number of sessions that are performing queries.

global_wait bigint Number of jobs that are queued because the number
of concurrent jobs on a single CN exceeds the value of
max_active_statements.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 709

Column Type Description

fast_run bigint Number of jobs that are running on the fast lane of
the resource pool among all jobs executed by the user.

fast_wait bigint Number of jobs queued in the fast lane of the
resource pool among all jobs executed by the user.

slow_run bigint Number of jobs that are running on the slow lane of
the resource pool among all jobs executed by the user.

slow_wait bigint Number of jobs queued in the slow lane of the
resource pool among all jobs executed by the user.

used_mem bigint Average memory used by a user on all DNs, in MB.

estimate_me
m

bigint Total estimated memory used by running jobs, in MB.

used_cpu double
precisi
on

Average number of CPU cores used by a user on all
DNs. If a single node contains multiple DNs, the
number of CPU cores used by a user on the node must
be multiplied by the number of DNs.

read_speed bigint Average logical I/O read rate of a user on all DNs, in
KB/s.

write_speed bigint Average logical I/O write rate of a user on all DNs, in
KB/s.

send_speed bigint Average data sending rate of a user on all DNs, in
KB/s.

recv_speed bigint Average data receiving rate of a user on all DNs, in
KB/s.

used_space bigint Used space of user permanent tables, in KB.

space_limit bigint Maximum space that can be used by user permanent
tables, in KB. The value -1 indicates that the space size
is not limited.

used_temp_sp
ace

bigint Used space of user temporary tables, in KB.

temp_space_li
mit

bigint Maximum space that can be used by user temporary
tables, in KB. The value -1 indicates that the space size
is not limited.

used_spill_spa
ce

bigint Used space for flushing intermediate result sets, in KB.

spill_space_li
mit

bigint Maximum space that can be used for flushing
intermediate result sets, in KB. The value -1 indicates
that the space size is not limited.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 710

14.3.81 GS_USER_TRANSACTION
GS_USER_TRANSACTION provides transaction information about users on a
single CN. The database records the number of times that each user commits and
rolls back transactions and the response time of transaction commitment and
rollback, in microseconds.

Table 14-147 GS_USER_TRANSACTION columns

Name Type Description

usename name Username

commit_counter bigint Number of the commits

rollback_counter bigint Number of rollbacks

resp_min bigint Minimum response time

resp_max bigint Maximum response time

resp_avg bigint Average response time

resp_total bigint Total response time

14.3.82 GS_VIEW_DEPENDENCY
GS_VIEW_DEPENDENCY allows you to query the direct dependencies of all views
visible to the current user.

Table 14-148 GS_VIEW_DEPENDENCY columns

Column Type Description

objschema name View space name

objname name View name

refobjschema name Name of the space
where the dependent
object resides

refobjname name Name of a dependent
object

relobjkind char Type of a dependent
object
● r: table
● v: view

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 711

14.3.83 GS_VIEW_DEPENDENCY_PATH
GS_VIEW_DEPENDENCY_PATH allows you to query the direct dependencies of all
views visible to the current user. If the base table on which the view depends exists
and the dependency between views at different levels is normal, you can use this
view to query the dependency between views at different levels starting from the
base table.

Table 14-149 GS_VIEW_DEPENDENCY_PATH columns

Column Type Description

objschema name View space name

objname name View name

refobjschema name Name of the space
where the dependent
object resides

refobjname name Name of a dependent
object

path text Dependency path

14.3.84 GS_VIEW_INVALID
GS_VIEW_INVALID queries all unavailable views visible to the current user.

If the basic table, function, or synonym on which the view depends is abnormal,
the validtype column of the view is displayed as invalid. If the system object on
which the view depends changes during an upgrade, the validtype column of the
view is displayed as invalidInUpgrade.

Table 14-150 GS_VIEW_INVALID columns

Column Type Description

oid oid OID of the view

schemaname name View space name

viewname name Name of the view

viewowner name Owner of the view

definition text Definition of the view

validtype text View validity flag

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 712

Column Type Description

last_invalid_time timestamp with time
zone

Time when a view is
invalid. This column is
available only in clusters
of version 9.1.0.200 or
later.

14.3.85 GS_WAIT_EVENTS
GS_WAIT_EVENTS displays statistics about waiting status and events on the
current node.

The values of statistical columns in this view are accumulated only when the
enable_track_wait_event GUC parameter is set to on. If
enable_track_wait_event is set to off during statistics measurement, the statistics
will no longer be accumulated, but the existing values are not affected. If
enable_track_wait_event is off, 0 row is returned when this view is queried.

Table 14-151 GS_WAIT_EVENTS columns

Name Type Description

nodename name Node name

type text Event type, which can be STATUS,
LOCK_EVENT, LWLOCK_EVENT, or
IO_EVENT

event text Event name. For details, see
PG_THREAD_WAIT_STATUS.

wait bigint Number of times an event occurs. This
column and all the columns below are
values accumulated during process
running.

failed_wait bigint Number of waiting failures. In the
current version, this column is used
only for counting timeout errors and
waiting failures of locks such as LOCK
and LWLOCK.

total_wait_time bigint Total duration of the event

avg_wait_time bigint Average duration of the event

max_wait_time bigint Maximum wait time of the event

min_wait_time bigint Minimum wait time of the event

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 713

In the current version, for events whose type is LOCK_EVENT, LWLOCK_EVENT,
or IO_EVENT, the display scope of GS_WAIT_EVENTS is the same as that of the
corresponding events in the PG_THREAD_WAIT_STATUS view.

For events whose type is STATUS, GS_WAIT_EVENTS displays the following
waiting status columns. For details, see the PG_THREAD_WAIT_STATUS view.

● acquire lwlock
● acquire lock
● wait io
● wait pooler get conn
● wait pooler abort conn
● wait pooler clean conn
● wait transaction sync
● wait wal sync
● wait data sync
● wait producer ready
● create index
● analyze
● vacuum
● vacuum full
● gtm connect
● gtm begin trans
● gtm commit trans
● gtm rollback trans
● gtm create sequence
● gtm alter sequence
● gtm get sequence val
● gtm set sequence val
● gtm drop sequence
● gtm rename sequence

14.3.86 GS_WLM_OPERAROR_INFO
This view displays the execution information about operators in the query
statements that have been executed on the current CN. The information comes
from the system catalog dbms_om. gs_wlm_operator_info.

Table 14-152 GS_WLM_OPERATOR_INFO columns

Name Type Description

nodename text Name of the CN where the statement is
executed

queryid bigint Internal query_id used for statement
execution

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 714

Name Type Description

pid bigint Backend thread ID

plan_node_id integer plan_node_id of the execution plan of a query

plan_node_nam
e

text Name of the operator corresponding to
plan_node_id

start_time timestamp
with time
zone

Time when an operator starts to process the
first data record

duration bigint Total execution time of an operator. The unit
is ms.

query_dop integer Degree of parallelism (DOP) of the current
operator

estimated_rows bigint Number of rows estimated by the optimizer

tuple_processed bigint Number of elements returned by the current
operator

min_peak_mem
ory

integer Minimum peak memory used by the current
operator on all DNs. The unit is MB.

max_peak_me
mory

integer Maximum peak memory used by the current
operator on all DNs. The unit is MB.

average_peak_
memory

integer Average peak memory used by the current
operator on all DNs. The unit is MB.

memory_skew_
percent

integer Memory usage skew of the current operator
among DNs

min_spill_size integer Minimum spilled data among all DNs when a
spill occurs. The unit is MB. The default value
is 0.

max_spill_size integer Maximum spilled data among all DNs when a
spill occurs. The unit is MB. The default value
is 0.

average_spill_si
ze

integer Average spilled data among all DNs when a
spill occurs. The unit is MB. The default value
is 0.

spill_skew_perc
ent

integer DN spill skew when a spill occurs

min_cpu_time bigint Minimum execution time of the operator on
all DNs. The unit is ms.

max_cpu_time bigint Maximum execution time of the operator on
all DNs. The unit is ms.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 715

Name Type Description

total_cpu_time bigint Total execution time of the operator on all
DNs. The unit is ms.

cpu_skew_perce
nt

integer Skew of the execution time among DNs.

warning text Warning. The following warnings are
displayed:
1. Sort/SetOp/HashAgg/HashJoin spill
2. Spill file size large than 256MB
3. Broadcast size large than 100MB
4. Early spill
5. Spill times is greater than 3
6. Spill on memory adaptive
7. Hash table conflict

14.3.87 GS_WLM_OPERATOR_HISTORY
GS_WLM_OPERATOR_HISTORY displays the records of operators in jobs that
have been executed by the current user on the current CN.

This view is used to query data from GaussDB(DWS). Data in the database is
cleared periodically. If the GUC parameter enable_resource_record is set to on,
records in the view will be dumped to the system catalog
GS_WLM_OPERATOR_INFO every 3 minutes and deleted from the view. If
enable_resource_record is set to off, the records will be deleted from the view
after the retention period expires. The recorded data is the same as that described
in Table 14-153.

Table 14-153 GS_WLM_OPERATOR_INFO columns

Name Type Description

nodename text Name of the CN where the statement is
executed

queryid bigint Internal query_id used for statement
execution

pid bigint Backend thread ID

plan_node_id integer plan_node_id of the execution plan of a query

plan_node_nam
e

text Name of the operator corresponding to
plan_node_id

start_time timestamp
with time
zone

Time when an operator starts to process the
first data record

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 716

Name Type Description

duration bigint Total execution time of an operator. The unit
is ms.

query_dop integer Degree of parallelism (DOP) of the current
operator

estimated_rows bigint Number of rows estimated by the optimizer

tuple_processed bigint Number of elements returned by the current
operator

min_peak_mem
ory

integer Minimum peak memory used by the current
operator on all DNs. The unit is MB.

max_peak_me
mory

integer Maximum peak memory used by the current
operator on all DNs. The unit is MB.

average_peak_
memory

integer Average peak memory used by the current
operator on all DNs. The unit is MB.

memory_skew_
percent

integer Memory usage skew of the current operator
among DNs

min_spill_size integer Minimum spilled data among all DNs when a
spill occurs. The unit is MB. The default value
is 0.

max_spill_size integer Maximum spilled data among all DNs when a
spill occurs. The unit is MB. The default value
is 0.

average_spill_si
ze

integer Average spilled data among all DNs when a
spill occurs. The unit is MB. The default value
is 0.

spill_skew_perc
ent

integer DN spill skew when a spill occurs

min_cpu_time bigint Minimum execution time of the operator on
all DNs. The unit is ms.

max_cpu_time bigint Maximum execution time of the operator on
all DNs. The unit is ms.

total_cpu_time bigint Total execution time of the operator on all
DNs. The unit is ms.

cpu_skew_perce
nt

integer Skew of the execution time among DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 717

Name Type Description

warning text Warning. The following warnings are
displayed:
1. Sort/SetOp/HashAgg/HashJoin spill
2. Spill file size large than 256MB
3. Broadcast size large than 100MB
4. Early spill
5. Spill times is greater than 3
6. Spill on memory adaptive
7. Hash table conflict

14.3.88 GS_WLM_OPERATOR_STATISTICS
GS_WLM_OPERATOR_STATISTICS displays the operators of the jobs that are
being executed by the current user.

Table 14-154 GS_WLM_OPERATOR_STATISTICS columns

Name Type Description

queryid bigint Internal query_id used for statement execution

pid bigint ID of the backend thread

plan_node_id integer plan_node_id of the execution plan of a query

plan_node_na
me

text Name of the operator corresponding to
plan_node_id. The maximum length of the
operator name is 127 characters (excluding
format characters such as spaces).

start_time timestamp
with time
zone

Time when the operator starts to be executed
for the first time.

duration bigint Total execution time of the operator from the
start to the end, in milliseconds.

status text Execution status of the current operator. The
value can be waiting, running, or finished.

query_dop integer DOP of the current operator

estimated_rows bigint Number of rows estimated by the optimizer. If
the number of returned estimated rows
exceeds int64_max, int64_max is displayed.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 718

Name Type Description

tuple_processe
d

bigint Total number of elements returned by the
current operator on all DNs. If the estimated
number of returned rows exceeds int64_max,
int64_max is displayed.

min_peak_mem
ory

integer Minimum peak memory used by the current
operator on all DNs. The unit is MB.

max_peak_me
mory

integer Maximum peak memory used by the current
operator on all DNs. The unit is MB.

average_peak_
memory

integer Average peak memory used by the current
operator on all DNs. The unit is MB.

memory_skew_
percent

integer Memory usage skew of the current operator
among DNs

min_spill_size integer Minimum logical spilled data among all DNs
when a spill occurs, in MB. The default value is
0.

max_spill_size integer Maximum logical spilled data among all DNs
when a spill occurs, in MB. The default value is
0.

average_spill_si
ze

integer Average logical spilled data among all DNs
when a spill occurs, in MB. The default value is
0.

spill_skew_perc
ent

integer DN spill skew when a spill occurs

min_cpu_time bigint Minimum execution time of the operator on
all DNs. The unit is ms.

max_cpu_time bigint Maximum execution time of the operator on
all DNs. The unit is ms.

total_cpu_time bigint Total execution time of the operator on all
DNs. The unit is ms.

cpu_skew_perc
ent

integer Skew of the execution time among DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 719

Name Type Description

warning text Warning. The following warnings are
displayed:
1. Sort/SetOp/HashAgg/HashJoin spill
2. Spill file size large than 256MB
3. Broadcast size large than 100MB
4. Early spill
5. Spill times is greater than 3
6. Spill on memory adaptive
7. Hash table conflict

parent_id integer Parent node ID of the operator node.

exec_count integer Maximum number of times that the operator
node can be executed on all DNs.

progress text Progress information of the operator. For the
first operator, it is the overall progress of the
job. For other operators, it is the progress of
the current operator.

min_net_size bigint Minimum network communication data
volume (KB) of the operator on all DNs. It
mainly applies to network operators.

max_net_size bigint Maximum network communication data
volume (KB) of the operator on all DNs. It
mainly applies to network operators.

total_net_size bigint Total network communication data volume
(KB) of the operator on all DNs. It mainly
applies to network operators.

min_read_bytes bigint Minimum amount of data read by the
operator from disks on all DNs. The unit is KB.

max_read_byte
s

bigint Maximum amount of data read by the
operator from disks on all DNs. The unit is KB.

total_read_byte
s

bigint Total amount of data read by the operator
from disks on all DNs, in KB.

min_write_byte
s

bigint Minimum amount of data written by the
operator to disks on all DNs. The unit is KB.

max_write_byte
s

bigint Maximum amount of data written by the
operator to disks on all DNs. The unit is KB.

total_write_byt
es

bigint Total amount of data written by the operator
to disks on all DNs, in KB.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 720

14.3.89 GS_WLM_SESSION_INFO
This view displays the execution information about the query statements that
have been executed on the current CN. The information comes from the system
catalog dbms_om. gs_wlm_session_info.

For details about columns in the view, see Table 14-155.

Table 14-155 GS_WLM_SESSION_HISTORY columns

Name Type Description

datid oid OID of the database this backend is connected
to

dbname text Name of the database the backend is
connected to

schemaname text Schema name

nodename text Name of the CN where the statement is run

username text User name used for connecting to the backend

application_na
me

text Name of the application that is connected to
the backend

client_addr inet IP address of the client connected to this
backend. If this column is null, it indicates
either that the client is connected via a Unix
socket on the server machine or that this is an
internal process such as autovacuum.

client_hostnam
e

text Host name of the connected client, as reported
by a reverse DNS lookup of client_addr. This
column will only be non-null for IP
connections, and only when log_hostname is
enabled.

client_port integer TCP port number that the client uses for
communication with this backend, or -1 if a
Unix socket is used

query_band text Job type, which is specified by the query_band
parameter. The default value is a null string.

block_time bigint Duration that a statement is blocked before
being executed, including the statement
parsing and optimization duration. The unit is
ms.

start_time timestamp
with time
zone

Time when the statement starts to be run

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 721

Name Type Description

finish_time timestamp
with time
zone

Time when the statement execution ends

duration bigint Execution time of a statement. The unit is ms.

estimate_total_
time

bigint Estimated execution time of a statement. The
unit is ms.

status text Final statement execution status. Its value can
be finished (normal) or aborted (abnormal).
The statement status here is the execution
status of the database server. If the statement
is successfully executed on the database server
but an error is reported in the result set, the
statement status is finished.

abort_info text Exception information displayed if the final
statement execution status is aborted.

resource_pool text Resource pool used by the user

control_group text Cgroup used by the statement

estimate_mem
ory

integer Estimated memory used by a statement on a
single instance. The unit is MB. This column
takes effect only when the GUC parameter
enable_dynamic_workload is set to on.

min_peak_mem
ory

integer Minimum memory peak of a statement across
all DNs. The unit is MB.

max_peak_me
mory

integer Maximum memory peak of a statement across
all DNs. The unit is MB.

average_peak_
memory

integer Average memory usage during statement
execution. The unit is MB.

memory_skew_
percent

integer Memory usage skew of a statement among
DNs.

spill_info text Statement spill information on all DNs.
None indicates that the statement has not
been spilled to disks on any DNs.
All: The statement has been spilled to disks on
all DNs.
[a:b]: The statement has been spilled to disks
on a of b DNs.

min_spill_size integer Minimum spilled data among all DNs when a
spill occurs. The unit is MB. The default value is
0.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 722

Name Type Description

max_spill_size integer Maximum spilled data among all DNs when a
spill occurs. The unit is MB. The default value is
0.

average_spill_si
ze

integer Average spilled data among all DNs when a
spill occurs. The unit is MB. The default value is
0.

spill_skew_perc
ent

integer DN spill skew when a spill occurs

min_dn_time bigint Minimum execution time of a statement across
all DNs. The unit is ms.

max_dn_time bigint Maximum execution time of a statement
across all DNs. The unit is ms.

average_dn_tim
e

bigint Average execution time of a statement across
all DNs. The unit is ms.

dntime_skew_p
ercent

integer Execution time skew of a statement among
DNs.

min_cpu_time bigint Minimum CPU time of a statement across all
DNs. The unit is ms.

max_cpu_time bigint Maximum CPU time of a statement across all
DNs. The unit is ms.

total_cpu_time bigint Total CPU time of a statement across all DNs.
The unit is ms.

cpu_skew_perce
nt

integer CPU time skew of a statement among DNs.

min_peak_iops integer Minimum IOPS peak of a statement across all
DNs. It is counted by ones in a column-store
table and by ten thousands in a row-store
table.

max_peak_iops integer Maximum IOPS peak of a statement across all
DNs. It is counted by ones in a column-store
table and by ten thousands in a row-store
table.

average_peak_i
ops

integer Average IOPS peak of a statement across all
DNs. It is counted by ones in a column-store
table and by ten thousands in a row-store
table.

iops_skew_perc
ent

integer I/O skew across DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 723

Name Type Description

warning text Warning. The following warnings and warnings
related to SQL self-diagnosis tuning are
displayed:
1. Spill file size large than 256MB
2. Broadcast size large than 100MB
3. Early spill
4. Spill times is greater than 3
5. Spill on memory adaptive
6. Hash table conflict

queryid bigint Internal query ID used for statement execution

query text Statement to be executed. A maximum of 64
KB of strings can be retained.

query_plan text Execution plan of a statement.
Specification restrictions:
1. Execution plans are displayed only for DML

statements.
2. In 8.2.1.100 and later versions, the number

of data binding times is added to the
execution plans of Parse Bind Execute (PBE)
statements to facilitate statement analysis.
The number of data binding times is
displayed in the format of PBE bind times:
Times.

node_group text Logical cluster of the user running the
statement

pid bigint PID of the backend thread of the statement

lane text Fast/Slow lane where the statement is
executed

unique_sql_id bigint ID of the normalized unique SQL.

session_id text Unique identifier of a session in the database
system. Its format is
session_start_time.tid.node_name.

min_read_bytes bigint Minimum I/O read bytes of a statement across
all DNs. The unit is byte.

max_read_byte
s

bigint Maximum I/O read bytes of a statement across
all DNs. The unit is byte.

average_read_b
ytes

bigint Average I/O read bytes of a statement across
all DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 724

Name Type Description

min_write_byte
s

bigint Minimum I/O write bytes of a statement across
all DNs.

max_write_byte
s

bigint Maximum I/O write bytes of a statement
across all DNs.

average_write_
bytes

bigint Average I/O write bytes of a statement across
all DNs.

recv_pkg bigint Total number of communication packages
received by a statement across all DNs.

send_pkg bigint Total number of communication packages sent
by a statement across all DNs.

recv_bytes bigint Total received data of the statement stream, in
byte.

send_bytes bigint Total sent data of the statement stream, in
byte.

stmt_type text Query type corresponding to the statement.

except_info text Information about the exception rule triggered
by the statement.

unique_plan_id bigint ID of the normalized unique plan.

sql_hash text Normalized SQL hash.

plan_hash text Normalized plan hash.

use_plan_baseli
ne

text Indicates whether the bound plan is used for
executing the current statement. If is used, the
name of the plan_baseline column in
pg_plan_baseline is displayed.

outline_name text Name of the outline used for the statement
plan.

loader_status text The JSON string for storing import and export
service information is as follows.
1. address: indicates the IP address of the peer

cluster. The port number is displayed for the
source cluster.

2. direction: indicates the import and export
service type. The value can be gds to file,
gds from file, gds to pipe, gds from pipe,
copy from or copy to.

3. min/max/total_lines/bytes: indicates the
minimum value, maximum value, total lines,
and bytes of the import and export
statements on all DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 725

Name Type Description

parse_time bigint Total parsing time before the statement is
queued (including lexical and syntax parsing,
optimization rewriting, and plan generation
time), in milliseconds. This column is available
only in clusters of version 8.3.0.100 or later.

disk_cache_hit_
ratio

numeric(5,2
)

Disk cache hit rate. This column only applies to
OBS 3.0 tables and foreign tables with storage
and compute decoupled.

disk_cache_disk
_read_size

bigint Total size of data read from disk cache, in MB.
This column only applies to OBS 3.0 tables and
foreign tables with storage and compute
decoupled.

disk_cache_disk
_write_size

bigint Total size of data written to disk cache, in MB.
This column only applies to OBS 3.0 tables and
foreign tables with storage and compute
decoupled.

disk_cache_rem
ote_read_size

bigint Total size of data read remotely from OBS due
to disk cache read failure, in MB. This column
only applies to OBS 3.0 tables and foreign
tables with storage and compute decoupled.

disk_cache_rem
ote_read_time

bigint Total number of times data is read remotely
from OBS due to disk cache read failure. This
column only applies to OBS 3.0 tables and
foreign tables with storage and compute
decoupled.

vfs_scan_bytes bigint Total number of bytes scanned by the OBS
virtual file system in response to upper-layer
requests, in bytes. This column only applies to
OBS 3.0 tables and foreign tables with storage
and compute decoupled.

vfs_remote_rea
d_bytes

bigint Total number of bytes actually read from OBS
by the OBS virtual file system, in bytes. This
column only applies to OBS 3.0 tables and
foreign tables with storage and compute
decoupled.

preload_submit
_time

bigint Total time for submitting I/O requests in the
prefetching process, in microseconds. This
column only applies to OBS 3.0 tables with
storage and compute decoupled.

preload_wait_ti
me

bigint Total time for waiting for I/O requests in the
prefetching process, in microseconds. This
column only applies to OBS 3.0 tables with
storage and compute decoupled.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 726

Name Type Description

preload_wait_c
ount

bigint Total number of times that the prefetching
process waits for I/O requests. This column
only applies to OBS 3.0 tables with storage and
compute decoupled.

disk_cache_loa
d_time

bigint Total time for reading from disk cache, in
microseconds. This column only applies to OBS
3.0 tables and foreign tables with storage and
compute decoupled.

disk_cache_conf
lict_count

bigint Number of times a block in the disk cache
produces a hash conflict. This column only
applies to OBS 3.0 tables and foreign tables
with storage and compute decoupled.

disk_cache_erro
r_count

bigint Number of disk cache read failures. This
column only applies to OBS 3.0 tables and
foreign tables with storage and compute
decoupled.

disk_cache_erro
r_code

bigint Error code for disk cache read failures. Multiple
error codes may be generated. If the disk cache
fails to be read, OBS remote read is initiated
and cache blocks are rewritten. The error code
types are as follows: This column only applies
to OBS 3.0 tables and foreign tables.
● 1: A hash conflict occurs in the disk cache

block.
● 2: The generation time of the disk cache

block is later than that of the OldestXmin
transaction.

● 4: Invoking the pread system when reading
cache files from the disk cache failed.

● 8: The data version of the disk cache block
does not match.

● 16: The version of the data written to the
write cache does not match the latest
version.

● 32: Opening the cache file corresponding to
the cache block failed.

● 64: The size of the data read from the disk
cache does not match.

● 128: The CSN recorded in the disk cache
block does not match.

obs_io_req_avg
_rtt

bigint Average Round Trip Time (RTT) for OBS I/O
requests, in microseconds. This column only
applies to OBS 3.0 tables and foreign tables
with storage and compute decoupled.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 727

Name Type Description

obs_io_req_avg
_latency

bigint Average delay for OBS I/O requests, in
microseconds. This column only applies to OBS
3.0 tables and foreign tables with storage and
compute decoupled.

obs_io_req_late
ncy_gt_1s

bigint Number of OBS I/O requests with a latency
exceeding 1 second. This column only applies
to OBS 3.0 tables and foreign tables with
storage and compute decoupled.

obs_io_req_late
ncy_gt_10s

bigint Number of OBS I/O requests with a latency
exceeding 10 seconds. This column only applies
to OBS 3.0 tables and foreign tables with
storage and compute decoupled.

obs_io_req_cou
nt

bigint Total number of OBS I/O requests. This column
only applies to OBS 3.0 tables and foreign
tables with storage and compute decoupled.

obs_io_req_retr
y_count

bigint Total number of retries for OBS I/O requests.
This column only applies to OBS 3.0 tables and
foreign tables with storage and compute
decoupled.

obs_io_req_rate
_limit_count

bigint Total number of times OBS I/O requests are
flow-controlled. This column only applies to
OBS 3.0 tables and foreign tables with storage
and compute decoupled.

14.3.90 GS_WLM_SESSION_HISTORY
GS_WLM_SESSION_HISTORY displays load management information about a
completed job executed by the current user on the current CN. The view is used to
query data from GaussDB(DWS). The view returns the data queried from the
GS_WLM_SESSION_INFO table within 3 minutes only if the GUC parameter
enable_resource_track is set to on.

Table 14-156 GS_WLM_SESSION_HISTORY columns

Name Type Description

datid oid OID of the database this backend is connected
to

dbname text Name of the database the backend is
connected to

schemaname text Schema name

nodename text Name of the CN where the statement is run

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 728

Name Type Description

username text User name used for connecting to the backend

application_na
me

text Name of the application that is connected to
the backend

client_addr inet IP address of the client connected to this
backend. If this column is null, it indicates
either that the client is connected via a Unix
socket on the server machine or that this is an
internal process such as autovacuum.

client_hostnam
e

text Host name of the connected client, as reported
by a reverse DNS lookup of client_addr. This
column will only be non-null for IP
connections, and only when log_hostname is
enabled.

client_port integer TCP port number that the client uses for
communication with this backend, or -1 if a
Unix socket is used

query_band text Job type, which is specified by the query_band
parameter. The default value is a null string.

block_time bigint Duration that a statement is blocked before
being executed, including the statement
parsing and optimization duration. The unit is
ms.

start_time timestamp
with time
zone

Time when the statement starts to be run

finish_time timestamp
with time
zone

Time when the statement execution ends

duration bigint Execution time of a statement. The unit is ms.

estimate_total_
time

bigint Estimated execution time of a statement. The
unit is ms.

status text Final statement execution status. Its value can
be finished (normal) or aborted (abnormal).
The statement status here is the execution
status of the database server. If the statement
is successfully executed on the database server
but an error is reported in the result set, the
statement status is finished.

abort_info text Exception information displayed if the final
statement execution status is aborted.

resource_pool text Resource pool used by the user

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 729

Name Type Description

control_group text Cgroup used by the statement

estimate_mem
ory

integer Estimated memory used by a statement on a
single instance. The unit is MB. This column
takes effect only when the GUC parameter
enable_dynamic_workload is set to on.

min_peak_mem
ory

integer Minimum memory peak of a statement across
all DNs. The unit is MB.

max_peak_me
mory

integer Maximum memory peak of a statement across
all DNs. The unit is MB.

average_peak_
memory

integer Average memory usage during statement
execution. The unit is MB.

memory_skew_
percent

integer Memory usage skew of a statement among
DNs.

spill_info text Statement spill information on all DNs.
None indicates that the statement has not
been spilled to disks on any DNs.
All: The statement has been spilled to disks on
all DNs.
[a:b]: The statement has been spilled to disks
on a of b DNs.

min_spill_size integer Minimum spilled data among all DNs when a
spill occurs. The unit is MB. The default value is
0.

max_spill_size integer Maximum spilled data among all DNs when a
spill occurs. The unit is MB. The default value is
0.

average_spill_si
ze

integer Average spilled data among all DNs when a
spill occurs. The unit is MB. The default value is
0.

spill_skew_perc
ent

integer DN spill skew when a spill occurs

min_dn_time bigint Minimum execution time of a statement across
all DNs. The unit is ms.

max_dn_time bigint Maximum execution time of a statement
across all DNs. The unit is ms.

average_dn_tim
e

bigint Average execution time of a statement across
all DNs. The unit is ms.

dntime_skew_p
ercent

integer Execution time skew of a statement among
DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 730

Name Type Description

min_cpu_time bigint Minimum CPU time of a statement across all
DNs. The unit is ms.

max_cpu_time bigint Maximum CPU time of a statement across all
DNs. The unit is ms.

total_cpu_time bigint Total CPU time of a statement across all DNs.
The unit is ms.

cpu_skew_perce
nt

integer CPU time skew of a statement among DNs.

min_peak_iops integer Minimum IOPS peak of a statement across all
DNs. It is counted by ones in a column-store
table and by ten thousands in a row-store
table.

max_peak_iops integer Maximum IOPS peak of a statement across all
DNs. It is counted by ones in a column-store
table and by ten thousands in a row-store
table.

average_peak_i
ops

integer Average IOPS peak of a statement across all
DNs. It is counted by ones in a column-store
table and by ten thousands in a row-store
table.

iops_skew_perc
ent

integer I/O skew across DNs.

warning text Warning. The following warnings and warnings
related to SQL self-diagnosis tuning are
displayed:
1. Spill file size large than 256MB
2. Broadcast size large than 100MB
3. Early spill
4. Spill times is greater than 3
5. Spill on memory adaptive
6. Hash table conflict

queryid bigint Internal query ID used for statement execution

query text Statement to be executed. A maximum of 64
KB of strings can be retained.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 731

Name Type Description

query_plan text Execution plan of a statement.
Specification restrictions:
1. Execution plans are displayed only for DML

statements.
2. In 8.2.1.100 and later versions, the number

of data binding times is added to the
execution plans of Parse Bind Execute (PBE)
statements to facilitate statement analysis.
The number of data binding times is
displayed in the format of PBE bind times:
Times.

node_group text Logical cluster of the user running the
statement

pid bigint PID of the backend thread of the statement

lane text Fast/Slow lane where the statement is
executed

unique_sql_id bigint ID of the normalized unique SQL.

session_id text Unique identifier of a session in the database
system. Its format is
session_start_time.tid.node_name.

min_read_bytes bigint Minimum I/O read bytes of a statement across
all DNs. The unit is byte.

max_read_byte
s

bigint Maximum I/O read bytes of a statement across
all DNs. The unit is byte.

average_read_b
ytes

bigint Average I/O read bytes of a statement across
all DNs.

min_write_byte
s

bigint Minimum I/O write bytes of a statement across
all DNs.

max_write_byte
s

bigint Maximum I/O write bytes of a statement
across all DNs.

average_write_
bytes

bigint Average I/O write bytes of a statement across
all DNs.

recv_pkg bigint Total number of communication packages
received by a statement across all DNs.

send_pkg bigint Total number of communication packages sent
by a statement across all DNs.

recv_bytes bigint Total received data of the statement stream, in
byte.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 732

Name Type Description

send_bytes bigint Total sent data of the statement stream, in
byte.

stmt_type text Query type corresponding to the statement.

except_info text Information about the exception rule triggered
by the statement.

unique_plan_id bigint ID of the normalized unique plan.

sql_hash text Normalized SQL hash.

plan_hash text Normalized plan hash.

use_plan_baseli
ne

text Indicates whether the bound plan is used for
executing the current statement. If is used, the
name of the plan_baseline column in
pg_plan_baseline is displayed.

outline_name text Name of the outline used for the statement
plan.

loader_status text The JSON string for storing import and export
service information is as follows.
1. address: indicates the IP address of the peer

cluster. The port number is displayed for the
source cluster.

2. direction: indicates the import and export
service type. The value can be gds to file,
gds from file, gds to pipe, gds from pipe,
copy from or copy to.

3. min/max/total_lines/bytes: indicates the
minimum value, maximum value, total lines,
and bytes of the import and export
statements on all DNs.

parse_time bigint Total parsing time before the statement is
queued (including lexical and syntax parsing,
optimization rewriting, and plan generation
time), in milliseconds. This column is available
only in clusters of version 8.3.0.100 or later.

disk_cache_hit_
ratio

numeric(5,2
)

Disk cache hit rate. This column only applies to
OBS 3.0 tables and foreign tables with storage
and compute decoupled.

disk_cache_disk
_read_size

bigint Total size of data read from disk cache, in MB.
This column only applies to OBS 3.0 tables and
foreign tables with storage and compute
decoupled.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 733

Name Type Description

disk_cache_disk
_write_size

bigint Total size of data written to disk cache, in MB.
This column only applies to OBS 3.0 tables and
foreign tables with storage and compute
decoupled.

disk_cache_rem
ote_read_size

bigint Total size of data read remotely from OBS due
to disk cache read failure, in MB. This column
only applies to OBS 3.0 tables and foreign
tables with storage and compute decoupled.

disk_cache_rem
ote_read_time

bigint Total number of times data is read remotely
from OBS due to disk cache read failure. This
column only applies to OBS 3.0 tables and
foreign tables with storage and compute
decoupled.

vfs_scan_bytes bigint Total number of bytes scanned by the OBS
virtual file system in response to upper-layer
requests, in bytes. This column only applies to
OBS 3.0 tables and foreign tables with storage
and compute decoupled.

vfs_remote_rea
d_bytes

bigint Total number of bytes actually read from OBS
by the OBS virtual file system, in bytes. This
column only applies to OBS 3.0 tables and
foreign tables with storage and compute
decoupled.

preload_submit
_time

bigint Total time for submitting I/O requests in the
prefetching process, in microseconds. This
column only applies to OBS 3.0 tables with
storage and compute decoupled.

preload_wait_ti
me

bigint Total time for waiting for I/O requests in the
prefetching process, in microseconds. This
column only applies to OBS 3.0 tables with
storage and compute decoupled.

preload_wait_c
ount

bigint Total number of times that the prefetching
process waits for I/O requests. This column
only applies to OBS 3.0 tables with storage and
compute decoupled.

disk_cache_loa
d_time

bigint Total time for reading from disk cache, in
microseconds. This column only applies to OBS
3.0 tables and foreign tables with storage and
compute decoupled.

disk_cache_conf
lict_count

bigint Number of times a block in the disk cache
produces a hash conflict. This column only
applies to OBS 3.0 tables and foreign tables
with storage and compute decoupled.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 734

Name Type Description

disk_cache_erro
r_count

bigint Number of disk cache read failures. This
column only applies to OBS 3.0 tables and
foreign tables with storage and compute
decoupled.

disk_cache_erro
r_code

bigint Error code for disk cache read failures. Multiple
error codes may be generated. If the disk cache
fails to be read, OBS remote read is initiated
and cache blocks are rewritten. The error code
types are as follows: This column only applies
to OBS 3.0 tables and foreign tables.
● 1: A hash conflict occurs in the disk cache

block.
● 2: The generation time of the disk cache

block is later than that of the OldestXmin
transaction.

● 4: Invoking the pread system when reading
cache files from the disk cache failed.

● 8: The data version of the disk cache block
does not match.

● 16: The version of the data written to the
write cache does not match the latest
version.

● 32: Opening the cache file corresponding to
the cache block failed.

● 64: The size of the data read from the disk
cache does not match.

● 128: The CSN recorded in the disk cache
block does not match.

obs_io_req_avg
_rtt

bigint Average Round Trip Time (RTT) for OBS I/O
requests, in microseconds. This column only
applies to OBS 3.0 tables and foreign tables
with storage and compute decoupled.

obs_io_req_avg
_latency

bigint Average delay for OBS I/O requests, in
microseconds. This column only applies to OBS
3.0 tables and foreign tables with storage and
compute decoupled.

obs_io_req_late
ncy_gt_1s

bigint Number of OBS I/O requests with a latency
exceeding 1 second. This column only applies
to OBS 3.0 tables and foreign tables with
storage and compute decoupled.

obs_io_req_late
ncy_gt_10s

bigint Number of OBS I/O requests with a latency
exceeding 10 seconds. This column only applies
to OBS 3.0 tables and foreign tables with
storage and compute decoupled.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 735

Name Type Description

obs_io_req_cou
nt

bigint Total number of OBS I/O requests. This column
only applies to OBS 3.0 tables and foreign
tables with storage and compute decoupled.

obs_io_req_retr
y_count

bigint Total number of retries for OBS I/O requests.
This column only applies to OBS 3.0 tables and
foreign tables with storage and compute
decoupled.

obs_io_req_rate
_limit_count

bigint Total number of times OBS I/O requests are
flow-controlled. This column only applies to
OBS 3.0 tables and foreign tables with storage
and compute decoupled.

14.3.91 GS_WLM_SESSION_STATISTICS
GS_WLM_SESSION_STATISTICS displays load management information about
jobs being executed by the current user on the current CN.

Table 14-157 GS_WLM_SESSION_STATISTICS columns

Name Type Description

datid oid OID of the database this backend is connected
to

dbname name Name of the database the backend is
connected to

schemaname text Schema name

nodename text Name of the CN where the statement is
executed

username name User name used for connecting to the backend

application_nam
e

text Name of the application that is connected to
the backend

client_addr inet IP address of the client connected to this
backend. If this column is null, it indicates
either that the client is connected via a Unix
socket on the server machine or that this is an
internal process such as autovacuum.

client_hostname text Host name of the connected client, as reported
by a reverse DNS lookup of client_addr. This
column will only be non-null for IP
connections, and only when log_hostname is
enabled.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 736

Name Type Description

client_port integer TCP port number that the client uses for
communication with this backend, or -1 if a
Unix socket is used

query_band text Job type, which is specified by the GUC
parameter query_band parameter. The default
value is a null string.

pid bigint Process ID of the backend

block_time bigint Block time before the statement is executed.
The unit is ms.

start_time timestamp
with time
zone

Time when the statement starts to be executed

duration bigint For how long a statement has been executing.
The unit is ms.

estimate_total_ti
me

bigint Estimated execution time of a statement. The
unit is ms.

estimate_left_ti
me

bigint Estimated remaining time of statement
execution. The unit is ms.

enqueue text Workload management resource status

resource_pool name Resource pool used by the user

control_group text Cgroup used by the statement

estimate_memor
y

integer Estimated memory used by a statement on a
single instance. The unit is MB. This column
takes effect only when the GUC parameter
enable_dynamic_workload is set to on.

min_peak_mem
ory

integer Minimum memory peak of a statement across
all DNs. The unit is MB.

max_peak_mem
ory

integer Maximum memory peak of a statement across
all DNs. The unit is MB.

average_peak_m
emory

integer Average memory usage during statement
execution. The unit is MB.

memory_skew_p
ercent

integer Memory usage skew of a statement among
DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 737

Name Type Description

spill_info text Statement spill information on all DNs.
None: The statement has not been spilled to
disks on any DNs.
All: The statement has been spilled to disks on
all DNs.
[a:b]: The statement has been spilled to disks
on a of b DNs.

min_spill_size integer Minimum spilled data among all DNs when a
spill occurs. The unit is MB. The default value is
0.

max_spill_size integer Maximum spilled data among all DNs when a
spill occurs. The unit is MB. The default value is
0.

average_spill_siz
e

integer Average spilled data among all DNs when a
spill occurs. The unit is MB. The default value is
0.

spill_skew_perce
nt

integer DN spill skew when a spill occurs

min_dn_time bigint Minimum execution time of a statement across
all DNs. The unit is ms.

max_dn_time bigint Maximum execution time of a statement
across all DNs. The unit is ms.

average_dn_tim
e

bigint Average execution time of a statement across
all DNs. The unit is ms.

dntime_skew_pe
rcent

integer Execution time skew of a statement among
DNs.

min_cpu_time bigint Minimum CPU time of a statement across all
DNs. The unit is ms.

max_cpu_time bigint Maximum CPU time of a statement across all
DNs. The unit is ms.

total_cpu_time bigint Total CPU time of a statement across all DNs.
The unit is ms.

cpu_skew_perce
nt

integer CPU time skew of a statement among DNs.

min_peak_iops integer Minimum IOPS peak of a statement across all
DNs. It is counted by ones in a column-store
table and by ten thousands in a row-store
table.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 738

Name Type Description

max_peak_iops integer Maximum IOPS peak of a statement across all
DNs. It is counted by ones in a column-store
table and by ten thousands in a row-store
table.

average_peak_io
ps

integer Average IOPS peak of a statement across all
DNs. It is counted by ones in a column-store
table and by ten thousands in a row-store
table.

iops_skew_perce
nt

integer I/O skew across DNs.

min_read_speed integer Minimum I/O read rate of a statement across
all DNs within a monitoring period (5s). The
unit is KB/s.

max_read_speed integer Maximum I/O read rate of a statement across
all DNs within a monitoring period (5s). The
unit is KB/s.

average_read_sp
eed

integer Average I/O read rate of a statement across all
DNs within a monitoring period (5s). The unit
is KB/s.

min_write_speed integer Minimum I/O write rate of a statement across
all DNs within a monitoring period (5s). The
unit is KB/s.

max_write_spee
d

integer Maximum I/O write rate of a statement across
all DNs within a monitoring period (5s). The
unit is KB/s.

average_write_s
peed

integer Average I/O write rate of a statement across
all DNs within a monitoring period (5s). The
unit is KB/s.

recv_pkg bigint Total number of communication packages
received by a statement across all DNs.

send_pkg bigint Total number of communication packages sent
by a statement across all DNs.

recv_bytes bigint Total received data of the statement stream, in
byte.

send_bytes bigint Total sent data of the statement stream, in
byte.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 739

Name Type Description

warning text Warning. The following warnings and warnings
related to SQL self-diagnosis tuning are
displayed:
1. Spill file size large than 256MB
2. Broadcast size large than 100MB
3. Early spill
4. Spill times is greater than 3
5. Spill on memory adaptive
6. Hash table conflict

unique_sql_id bigint ID of the normalized unique SQL.

queryid bigint Internal query ID used for statement execution

query text Statement that is being executed

query_plan text Execution plan of a statement
Specification restrictions:
1. Execution plans are displayed only for DML

statements.
2. In 8.2.1.100 and later versions, the number

of data binding times is added to the
execution plans of Parse Bind Execute (PBE)
statements to facilitate statement analysis.
The number of data binding times is
displayed in the format of PBE bind times:
Times.

node_group text Logical cluster of the user running the
statement

stmt_type text Query type corresponding to the statement.

except_info text Information about the exception rule triggered
by the statement.

parse_time bigint Total parsing time before the statement is
queued (including lexical and syntax parsing,
optimization rewriting, and plan generation
time), in milliseconds.
This column is only supported in version
8.3.0.100 or later.

unique_plan_id bigint ID of the normalized unique plan.

sql_hash text Normalized SQL hash.

plan_hash text Normalized plan hash.

disk_cache_hit_r
atio

numeric(5,
2)

Disk cache hit rate. This column only applies to
OBS 3.0 tables and foreign tables.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 740

Name Type Description

disk_cache_disk_
read_size

bigint Total size of data read from disk cache, in MB.
This column only applies to OBS 3.0 tables and
foreign tables.

disk_cache_disk_
write_size

bigint Total size of data written to disk cache, in MB.
This column only applies to OBS 3.0 tables and
foreign tables.

disk_cache_remo
te_read_size

bigint Total size of data read remotely from OBS due
to disk cache read failure, in MB. This column
only applies to OBS 3.0 tables and foreign
tables.

disk_cache_remo
te_read_time

bigint Total number of times data is read remotely
from OBS due to disk cache read failure. This
column only applies to OBS 3.0 tables and
foreign tables.

block_name text Name of the interception rule that matches
the statement. This column is available only in
clusters of version 9.1.0.200 or later.

14.3.92 GS_WLM_SQL_ALLOW
The GS_WLM_SQL_ALLOW view displays the configured resource management
SQL whitelist.

The whitelist contains:

● Default SQL whitelist of the system.

● SQL whitelist specified by the GUC parameter wlm_sql_allow_list.

14.3.93 GS_WORKLOAD_SQL_COUNT
GS_WORKLOAD_SQL_COUNT displays statistics on the number of SQL
statements executed in workload Cgroups on the current node, including the
number of SELECT, UPDATE, INSERT, and DELETE statements and the number of
DDL, DML, and DCL statements.

Table 14-158 GS_WORKLOAD_SQL_COUNT columns

Name Type Description

workload name Workload Cgroup name

select_count bigint Number of SELECT
statements

update_count bigint Number of UPDATE
statements

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 741

Name Type Description

insert_count bigint Number of INSERT
statements

delete_count bigint Number of DELETE
statements

ddl_count bigint Number of DDL
statements

dml_count bigint Number of DML
statements

dcl_count bigint Number of DCL
statements

14.3.94 GS_WORKLOAD_SQL_ELAPSE_TIME
GS_WORKLOAD_SQL_ELAPSE_TIME displays statistics on the response time of
SQL statements in workload Cgroups on the current node, including the
maximum, minimum, average, and total response time of SELECT, UPDATE,
INSERT, and DELETE statements. The unit is microsecond.

Table 14-159 GS_WORKLOAD_SQL_ELAPSE_TIME columns

Name Type Description

workload name Workload Cgroup name

total_select_elapse bigint Total response time of
SELECT statements

max_select_elapse bigint Maximum response time
of SELECT statements

min_select_elapse bigint Minimum response time
of SELECT statements

avg_select_elapse bigint Average response time
of SELECT statements

total_update_elapse bigint Total response time of
UPDATE statements

max_update_elapse bigint Maximum response time
of UPDATE statements

min_update_elapse bigint Minimum response time
of UPDATE statements

avg_update_elapse bigint Average response time
of UPDATE statements

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 742

Name Type Description

total_insert_elapse bigint Total response time of
INSERT statements

max_insert_elapse bigint Maximum response time
of INSERT statements

min_insert_elapse bigint Minimum response time
of INSERT statements

avg_insert_elapse bigint Average response time
of INSERT statements

total_delete_elapse bigint Total response time of
DELETE statements

max_delete_elapse bigint Maximum response time
of DELETE statements

min_delete_elapse bigint Minimum response time
of DELETE statements

avg_delete_elapse bigint Average response time
of DELETE statements

14.3.95 GS_WORKLOAD_TRANSACTION
GS_WORKLOAD_TRANSACTION provides transaction information about workload
cgroups on a single CN. The database records the number of times that each
workload Cgroup commits and rolls back transactions and the response time of
transaction commitment and rollback, in microseconds.

Table 14-160 GS_WORKLOAD_TRANSACTION columns

Name Type Description

workload name Workload Cgroup name

commit_counter bigint Number of the commits

rollback_counter bigint Number of rollbacks

resp_min bigint Minimum response time

resp_max bigint Maximum response time

resp_avg bigint Average response time

resp_total bigint Total response time

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 743

14.3.96 MPP_TABLES
MPP_TABLES displays information about tables in PGXC_CLASS.

Table 14-161 MPP_TABLES columns

Name Type Description

schemaname name Name of the schema that contains the
table

tablename name Name of a table

tableowner name Owner of the table

tablespace name Tablespace where the table is located.

pgroup name Name of a node cluster.

nodeoids oidvector_extend List of distributed table node OIDs

14.3.97 PG_AVAILABLE_EXTENSION_VERSIONS
PG_AVAILABLE_EXTENSION_VERSIONS displays the extension versions of certain
database features.

Table 14-162 PG_AVAILABLE_EXTENSION_VERSIONS columns

Name Type Description

name name Extension name

version text Version name

installed boolean The value is true if the version of this
extension is currently installed.

superuser boolean The value is true if only system
administrators are allowed to install this
extension.

relocatable boolean The value is true if an extension can be
relocated to another schema.

schema name Name of the schema that the extension
must be installed into. The value is NULL if
the extension is partially or fully relocatable.

requires name[] Names of prerequisite extensions. The value
is NULL if there are no prerequisite
extensions.

comment text Comment string from the extension's control
file

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 744

14.3.98 PG_AVAILABLE_EXTENSIONS
PG_AVAILABLE_EXTENSIONS displays the extended information about certain
database features.

Table 14-163 PG_AVAILABLE_EXTENSIONS columns

Name Type Description

name name Extension name.

default_version text Name of default version. The value is NULL
if none is specified.

installed_version text Currently installed version of the extension.
The value is NULL if no version is installed.

comment text Comment string from the extension's control
file.

14.3.99 PG_BULKLOAD_STATISTICS
On any normal node in a cluster, PG_BULKLOAD_STATISTICS displays the
execution status of the import and export services. Each import or export service
corresponds to a record. This view is accessible only to users with system
administrators rights.

Table 14-164 PG_BULKLOAD_STATISTICS columns

Name Type Description

node_name text Node name

db_name text Database name

query_id bigint Query ID. It is equivalent to
debug_query_id.

tid bigint ID of the current thread

lwtid integer Lightweight thread ID

session_id bigint GDS session ID

direction text Service type. The options are gds to
file, gds from file, gds to pipe, gds
from pipe, copy from, and copy to.

query text Query statement

address text Location of the foreign table used for
data import and export

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 745

Name Type Description

query_start timestamp with
time zone

Start time of data import or export

total_bytes bigint Total size of data to be processed
This parameter is specified only when a
GDS common file is to be imported and
the record in the row comes from a CN.
Otherwise, left this parameter
unspecified.

phase text Execution phase of the current service
import and export. The options are
INITIALIZING, TRANSFER_DATA, and
RELEASE_RESOURCE.

done_lines bigint Number of lines that have been
transferred

done_bytes bigint Number of bytes that have been
transferred

14.3.100 PG_COMM_CLIENT_INFO
PG_COMM_CLIENT_INFO stores the client connection information of a single
node. (You can query this view on a DN to view the information about the
connection between the CN and DN.)

Table 14-165 PG_COMM_CLIENT_INFO columns

Name Type Description

node_name text Current node name.

app text Client application name

tid bigint Thread ID of the current thread.

lwtid integer Lightweight thread ID of the current thread.

query_id bigint Query ID. It is equivalent to debug_query_id.

socket integer It is displayed if the connection is a physical
connection.

remote_ip text Peer node IP address.

remote_port text Peer node port.

logic_id integer If the connection is a logical connection, sid is
displayed. If -1 is displayed, the current
connection is a physical connection.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 746

14.3.101 PG_COMM_DELAY
PG_COMM_DELAY displays the communication library delay status for a single
DN.

Table 14-166 PG_COMM_DELAY columns

Name Type Description

node_name text Node name

remote_name text Name of the node with the maximum
latency in connecting to the peer end.

remote_host text IP address of the peer.

stream_num integer Number of logical stream connections used
by the current physical connection.

min_delay integer Minimum delay of the current physical
connection. The unit is microsecond.

average integer Average delay of the current physical
connection. The unit is microsecond.

max_delay integer Maximum delay of the current physical
connection. The unit is microsecond.
NOTE

If its value is -1, the latency detection has timed
out. In this case, re-establish the connection
between nodes and then perform the query.

14.3.102 PG_COMM_STATUS
PG_COMM_STATUS displays the communication library status for a single DN.

Table 14-167 PG_COMM_STATUS columns

Name Type Description

node_name text Specifies the node name.

rxpck/s integer Receiving rate of the communication library
on a node. The unit is byte/s.

txpck/s integer Sending rate of the communication library
on a node. The unit is byte/s.

rxkB/s bigint Receiving rate of the communication library
on a node. The unit is KB/s.

txkB/s bigint Sending rate of the communication library
on a node. The unit is KB/s.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 747

Name Type Description

buffer bigint Size of the buffer of the Cmailbox.

memKB(libcomm) bigint Communication memory size of the
libcomm process, in KB.

memKB(libpq) bigint Communication memory size of the libpq
process, in KB.

%USED(PM) integer Real-time usage of the postmaster thread.

%USED (sflow) integer Real-time usage of the
gs_sender_flow_controller thread.

%USED (rflow) integer Real-time usage of the
gs_receiver_flow_controller thread.

%USED (rloop) integer Highest real-time usage among multiple
gs_receivers_loop threads.

stream integer Total number of used logical connections.

14.3.103 PG_COMM_RECV_STREAM
PG_COMM_RECV_STREAM displays the receiving stream status of all the
communication libraries for a single DN.

Table 14-168 PG_COMM_RECV_STREAM columns

Name Type Description

node_name text Node name

local_tid bigint ID of the thread using this stream

remote_name text Name of the peer node

remote_tid bigint Peer thread ID

idx integer Peer DN ID in the local DN

sid integer Stream ID in the physical connection

tcp_sock integer TCP socket used in the stream

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 748

Name Type Description

state text Current status of the stream
● UNKNOWN: The logical connection is

unknown.
● READY: The logical connection is ready.
● RUN: The logical connection receives

packets normally.
● HOLD: The logical connection is waiting to

receive packets.
● CLOSED: The logical connection is closed.
● TO_CLOSED: The logical connection is to be

closed.
● WRITING: Data is being written.

query_id bigint debug_query_id corresponding to the stream

pn_id integer plan_node_id of the query executed by the
stream

send_smp integer smpid of the sender of the query executed by
the stream

recv_smp integer smpid of the receiver of the query executed by
the stream

recv_bytes bigint Total data volume received from the stream.
The unit is byte.

time bigint Current life cycle service duration of the
stream. The unit is ms.

speed bigint Average receiving rate of the stream. The unit
is byte/s.

quota bigint Current communication quota value of the
stream. The unit is Byte.

buff_usize bigint Current size of the data cache of the stream.
The unit is byte.

14.3.104 PG_COMM_SEND_STREAM
PG_COMM_SEND_STREAM displays the sending stream status of all the
communication libraries for a single DN.

Table 14-169 PG_COMM_SEND_STREAM columns

Name Type Description

node_name text Node name

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 749

Name Type Description

local_tid bigint ID of the thread using this stream

remote_name text Name of the peer node

remote_tid bigint Peer thread ID

idx integer Peer DN ID in the local DN

sid integer Stream ID in the physical connection

tcp_sock integer TCP socket used in the stream

state text Current status of the stream
● UNKNOWN: The logical connection is

unknown.
● READY: The logical connection is ready.
● RUN: The logical connection sends

packets normally.
● HOLD: The logical connection is waiting

to send packets.
● CLOSED: The logical connection is closed.
● TO_CLOSED: The logical connection is to

be closed.
● WRITING: Data is being written.

query_id bigint debug_query_id corresponding to the
stream

pn_id integer plan_node_id of the query executed by the
stream

send_smp integer smpid of the sender of the query executed
by the stream

recv_smp integer smpid of the receiver of the query executed
by the stream

send_bytes bigint Total data volume sent by the stream. The
unit is Byte.

time bigint Current life cycle service duration of the
stream. The unit is ms.

speed bigint Average sending rate of the stream. The unit
is Byte/s.

quota bigint Current communication quota value of the
stream. The unit is Byte.

wait_quota bigint Extra time generated when the stream waits
the quota value. The unit is ms.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 750

14.3.105 PG_COMM_QUERY_SPEED
PG_COMM_QUERY_SPEED displays traffic information about all queries on a
single node.

Table 14-170 PG_COMM_QUERY_SPEED columns

Name Type Description

node_name text Node name

query_id bigint debug_query_id corresponding to the
stream

rxkB/s bigint Receiving rate of the query stream (unit:
byte/s)

txkB/s bigint Sending rate of the query stream (unit:
byte/s)

rxkB bigint Total received data of the query stream
(unit: byte)

txkB bigint Total sent data of the query stream (unit:
byte)

rxpck/s bigint Packet receiving rate of the query (unit:
packets/s)

txpck/s bigint Packet sending rate of the query (unit:
packets/s)

rxpck bigint Total number of received packets of the
query

txpck bigint Total number of sent packets of the query

14.3.106 PG_CONTROL_GROUP_CONFIG
PG_CONTROL_GROUP_CONFIG displays the Cgroup configuration information in
the system.

Table 14-171 PG_CONTROL_GROUP_CONFIG columns

Name Type Description

pg_control_group_config text Configuration information of the Cgroup

14.3.107 PG_CURSORS
PG_CURSORS displays the cursors that are currently available.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 751

Table 14-172 PG_CURSORS columns

Name Type Description

name text Cursor name

statement text Query statement when the cursor is declared to
change

is_holdable boolean Whether the cursor is holdable (that is, it can be
accessed after the transaction that declared the
cursor has committed). If it is, its value is true.

is_binary boolean Whether the cursor was declared BINARY. If it
was, its value is true.

is_scrollable boolean Whether the cursor is scrollable (that is, it allows
rows to be retrieved in a nonsequential manner).
If it is, its value is true.

creation_tim
e

timestamp
with time
zone

Timestamp at which the cursor is declared

14.3.108 PG_EXT_STATS
PG_EXT_STATS displays extension statistics stored in the PG_STATISTIC_EXT table.
The extension statistics means multiple columns of statistics.

Table 14-173 PG_EXT_STATS columns

Name Type Reference Description

schemaname name PG_NAMESP
ACE.nspname

Name of the schema that contains
a table

tablename name PG_CLASS.rel
name

Name of a table

attname int2vector PG_STATISTI
C_EXT.stakey

Indicates the columns to be
combined for collecting statistics.

inherited boolean - Includes inherited sub-columns if
the value is true; otherwise,
indicates the column in a specified
table.

null_frac real - Percentage of column
combinations that are null to all
records

avg_width integer - Average width of column
combinations. The unit is byte.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 752

Name Type Reference Description

n_distinct real - ● Estimated number of distinct
values in a column combination
if the value is greater than 0

● Negative of the number of
distinct values divided by the
number of rows if the value is
less than 0

● The number of distinct values is
unknown if the value is 0.
NOTE

The negated form is used when
ANALYZE believes that the number
of distinct values is likely to
increase as the table grows.
The positive form is used when the
column seems to have a fixed
number of possible values. For
example, -1 indicates that the
number of distinct values is the
same as the number of rows for a
column combination.

n_dndistinct real - Number of unique not-null data
values in the dn1 column
combination
● Exact number of distinct values

if the value is greater than 0
● Negative of the number of

distinct values divided by the
number of rows if the value is
less than 0 For example, if a
value in a column combination
appears twice in average,
n_dndistinct equals -0.5.

● The number of distinct values is
unknown if the value is 0.

most_commo
n_vals

anyarray - List of the most common values in
a column combination. If this
combination does not have the
most common values,
most_common_vals_null will be
NULL. None of the most common
values in most_common_vals is
NULL.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 753

Name Type Reference Description

most_commo
n_freqs

real[] - List of the frequencies of the most
common values, that is, the
number of occurrences of each
value divided by the total number
of rows. (NULL if
most_common_vals is NULL)

most_commo
n_vals_null

anyarray - List of the most common values in
a column combination. If this
combination does not have the
most common values,
most_common_vals_null will be
NULL. At least one of the common
values in
most_common_vals_null is NULL.

most_commo
n_freqs_null

real[] - List of the frequencies of the most
common values, that is, the
number of occurrences of each
value divided by the total number
of rows. (NULL if
most_common_vals_null is
NULL)

14.3.109 PG_GET_INVALID_BACKENDS
PG_GET_INVALID_BACKENDS displays the information about backend threads on
the CN that are connected to the current standby DN.

Table 14-174 PG_GET_INVALID_BACKENDS columns

Name Type Description

pid bigint Thread ID

node_name text Node information connected to the backend
thread

dbname name Name of the connected database

backend_start timestamp
with time
zone

Backend thread startup time

query text Query statement performed by the backend
thread

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 754

14.3.110 PG_GET_SENDERS_CATCHUP_TIME
PG_GET_SENDERS_CATCHUP_TIME displays the catchup information of the
currently active primary/standby instance sending thread on a single DN.

Table 14-175 PG_GET_SENDERS_CATCHUP_TIME columns

Name Type Description

pid bigint Current sender thread ID

lwpid integer Current sender lwpid

local_role text Local role

peer_role text Peer role

state text Current sender's replication status

type text Current sender type

catchup_start timestamp with
time zone

Startup time of a catchup task

catchup_end timestamp with
time zone

End time of a catchup task

catchup_type text Catchup task type, full or incremental

catchup_bcm_filen
ame

text BCM file executed by the current
catchup task

catchup_bcm_finis
hed

integer Number of BCM files completed by a
catchup task

catchup_bcm_total integer Total number of BCM files to be
operated by a catchup task

catchup_percent text Completion percentage of a catchup
task

catchup_remaining
_time

text Estimated remaining time of a catchup
task

14.3.111 PG_GROUP
PG_GROUP displays the database role authentication and the relationship
between roles.

Table 14-176 PG_GROUP columns

Name Type Description

groname name Group name

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 755

Name Type Description

grosysid oid Group ID

grolist oid[] An array, including all the role IDs in this group

14.3.112 PG_INDEXES
PG_INDEXES displays access to useful information about each index in the
database.

Table 14-177 PG_INDEXES columns

Name Type Reference Description

schemana
me

name PG_NAMESP
ACE.nspname

Name of the schema that contains
tables and indexes

tablenam
e

name PG_CLASS.rel
name

Name of the table for which the index
serves

indexnam
e

name PG_CLASS.rel
name

Index name

tablespac
e

name PG_TABLESPA
CE.spcname

Name of the tablespace that contains
the index

indexdef text N/A Index definition (a reconstructed
CREATE INDEX command)

Example
Query the index information about a specified table.

SELECT * FROM pg_indexes WHERE tablename = 'mytable';
 schemaname | tablename | indexname | tablespace | indexdef
------------+-----------+----------------+------------
+---
 public | mytable | idx_mytable_id | | CREATE INDEX idx_mytable_id ON mytable USING btree
(id) TABLESPACE pg_default
(1 row)

Query information about indexes of all tables in a specified schema in the current
database.

SELECT tablename, indexname, indexdef FROM pg_indexes WHERE schemaname = 'public' ORDER BY
tablename,indexname;
 tablename | indexname | indexdef
-----------+--------------------
+---
 books | books_pkey | CREATE UNIQUE INDEX books_pkey ON books USING btree (id) TABLESPACE
pg_default
 books | idx_books_tags_gin | CREATE INDEX idx_books_tags_gin ON books USING gin (tags)
TABLESPACE pg_default
 customer | c_custkey_key | CREATE UNIQUE INDEX c_custkey_key ON customer USING btree
(c_custkey, c_name) TABLESPACE pg_default

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 756

 mytable | idx_mytable_id | CREATE INDEX idx_mytable_id ON mytable USING btree (id) TABLESPACE
pg_default
 test1 | idx_test_id | CREATE INDEX idx_test_id ON test1 USING btree (id) TABLESPACE pg_default
 v0 | v0_pkey | CREATE UNIQUE INDEX v0_pkey ON v0 USING btree (c) TABLESPACE pg_default
(6 rows)

14.3.113 PG_JOB
PG_JOB displays detailed information about scheduled tasks created by users.

The PG_JOB view replaces the PG_JOB system catalog in earlier versions and
provides forward compatibility with earlier versions. The original PG_JOB system
catalog is changed to the PG_JOBS system catalog. For details about PG_JOBS,
see PG_JOBS.

Table 14-178 PG_JOB columns

Name Type Description

job_id bigint Job ID

current_postg
res_pid

bigint If the current job has been executed, the
PostgreSQL thread ID of this job is recorded.
The default value is -1, indicating that the task
is not executed or has been executed.

log_user name User name of the job creator

priv_user name User name of the job executor

dbname name Name of the database where the job is
executed

node_name name CN node on which the job will be created and
executed

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 757

Name Type Description

job_status text Status of the current job. The value range is r,
s, f, d, p, w, or l. The default value is s. The
indications are as follows:
● r=running
● s=successfully finished
● f=job failed
● d=disable
● p=pending
● w=waiting
● l=launching
NOTE

● Note: When you disable a scheduled task (by
setting job_queue_processes to 0), the thread
monitor the job execution is not started, and the
job_status will not be updated. You can ignore
the job_status.

● Only when the scheduled task function is
enabled (that is, when job_queue_processes is
not 0), the system updates the value of
job_status based on the real-time job status.

start_date timestamp
without time
zone

Start time of the first job execution, precise to
millisecond

next_run_date timestamp
without time
zone

Scheduled time of the next job execution,
accurate to millisecond

failure_count smallint Number of consecutive failures

interval text Job execution interval

last_start_dat
e

timestamp
without time
zone

Start time of the last job execution, accurate to
millisecond

last_end_date timestamp
without time
zone

End time of the last job execution, accurate to
millisecond

last_suc_date timestamp
without time
zone

Start time of the last successful job execution,
accurate to millisecond

this_run_date timestamp
without time
zone

Start time of the ongoing job execution,
accurate to millisecond

nspname name Name of the namespace where a job is
running

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 758

Name Type Description

what text Job content

14.3.114 PG_JOB_PROC
The PG_JOB_PROC view replaces the PG_JOB_PROC system catalog in earlier
versions and provides forward compatibility with earlier versions. The original
PG_JOB_PROC and PG_JOB system catalogs are merged into the PG_JOBS system
catalog in the current version. For details about the PG_JOBS system catalog, see
PG_JOBS.

Table 14-179 PG_JOB_PROC columns

Name Type Description

job_id bigint Job ID

what text Job content

14.3.115 PG_JOB_SINGLE
PG_JOB_SINGLE displays job information about the current node.

Table 14-180 PG_JOB_SINGLE columns

Name Type Description

job_id bigint Job ID

current_postg
res_pid

bigint If the current job has been executed, the
PostgreSQL thread ID of this job is recorded.
The default value is -1, indicating that the task
is not executed or has been executed.

log_user name User name of the job creator

priv_user name User name of the job executor

dbname name Name of the database where the job is
executed

node_name name CN node on which the job will be created and
executed

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 759

Name Type Description

job_status text Status of the current job. The value range is r,
s, f, d, p, w, or l. The default value is s. The
indications are as follows:
● r=running
● s=successfully finished
● f=job failed
● d=disable
● p=pending
● w=waiting
● l=launching
NOTE

● Note: When you disable a scheduled task (by
setting job_queue_processes to 0), the thread
monitor the job execution is not started, and the
job_status will not be updated. You can ignore
the job_status.

● Only when the scheduled task function is
enabled (that is, when job_queue_processes is
not 0), the system updates the value of
job_status based on the real-time job status.

start_date timestamp
without time
zone

Start time of the first job execution, precise to
millisecond

next_run_date timestamp
without time
zone

Scheduled time of the next job execution,
accurate to millisecond

failure_count smallint Number of consecutive failures.

interval text Job execution interval

last_start_dat
e

timestamp
without time
zone

Start time of the last job execution, accurate to
millisecond

last_end_date timestamp
without time
zone

End time of the last job execution, accurate to
millisecond

last_suc_date timestamp
without time
zone

Start time of the last successful job execution,
accurate to millisecond

this_run_date timestamp
without time
zone

Start time of the ongoing job execution,
accurate to millisecond

nspname name Name of the namespace where a job is
running

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 760

Name Type Description

what text Job content

14.3.116 PG_LIFECYCLE_DATA_DISTRIBUTE
PG_LIFECYCLE_DATA_DISTRIBUTE displays the distribution of cold and hot data
in a multi-temperature table of OBS.

Table 14-181 PG_LIFECYCLE_DATA_DISTRIBUTE columns

Name Type Description

schemaname name Schema name

tablename name Current table name

nodename name Node name

hotpartition text Hot partition on the DN

coldpartition text Cold partition on the DN

switchablepar
tition

text Switchable partition on the DN

hotdatasize text Data size of the hot partition on the DN

colddatasize text Data size of the cold partition on the DN

switchabledat
asize

text Data size of the switchable partition on the DN

14.3.117 PG_LOCKS
PG_LOCKS displays information about the locks held by open transactions.

Table 14-182 PG_LOCKS columns

Name Type Reference Description

locktype text N/A Type of the locked object: relation,
extend, page, tuple, transactionid,
virtualxid, object, userlock, and
advisory

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 761

Name Type Reference Description

database oid PG_DATABAS
E.oid

OID of the database in which the
locked target exists
● The OID is 0 if the target is a

shared object.
● The OID is NULL if the locked

target is a transaction.

relation oid PG_CLASS.oid OID of the relationship targeted
by the lock. The value is NULL if
the object is neither a relationship
nor part of a relationship.

page integer N/A Page number targeted by the lock
within the relationship. If the
object is neither a relation page
nor row page, the value is NULL.

tuple smallint N/A Row number targeted by the lock
within the page. If the object is
not a row, the value is NULL.

virtualxid text N/A Virtual ID of the transaction
targeted by the lock. If the object
is not a virtual transaction ID, the
value is NULL.

transactionid xid N/A ID of the transaction targeted by
the lock. If the object is not a
transaction ID, the value is NULL.

classid oid PG_CLASS.oid OID of the system table that
contains the object. If the object is
not a general database object, the
value is NULL.

objid oid N/A OID of the lock target within its
system table. If the target is not a
general database object, the value
is NULL.

objsubid smallint N/A Column number for a column in
the table. The value is 0 if the
target is some other object type. If
the object is not a general
database object, the value is
NULL.

virtualtransac
tion

text N/A Virtual ID of the transaction
holding or awaiting this lock

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 762

Name Type Reference Description

pid bigint N/A Logical ID of the server thread
holding or awaiting this lock. This
is NULL if the lock is held by a
prepared transaction.

mode text N/A Lock mode held or desired by this
thread For more information
about lock modes, see LOCK.

granted boolean N/A ● The value is true if the lock is a
held lock.

● The value is false if the lock is
an awaited lock.

fastpath boolean N/A Whether the lock is obtained
through fast-path (true) or main
lock table (false)

waittime timestam
p with
time zone

N/A Timestamp when the lock wait
starts.
This column is available only in
clusters of version 9.1.0.200 or
later.

holdtime timestam
p with
time zone

N/A Timestamp when the lock starts to
be held. This column is available
only in clusters of version 9.1.0.200
or later.

14.3.118 PG_LWLOCKS
PG_LWLOCKS provides information on lightweight locks currently held or being
waited for by the current instance. This view is supported only by 9.1.0.200 and
later cluster versions.

Table 14-183 PG_LWLOCKS columns

Name Type Description

pid bigint ID of the backend thread.

query_id bigint ID of a query.

lwtid integer Lightweight thread ID of the backend thread.

reqlockid integer ID of the lightweight lock that is being
requested by the current thread.

reqlock text Name of the lightweight lock corresponding
to reqlockid.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 763

https://support.huaweicloud.com/intl/en-us/sqlreference-910-dws/dws_06_0234.html

Name Type Description

heldlocknums integer Number of lightweight locks obtained by the
current thread.

heldlockid integer Lightweight lock ID obtained by the current
thread.

heldlock text Name of the lightweight lock corresponding
to heldlockid.

heldlockmode text Lightweight lock mode corresponding to
heldlockid.

Example
Use the PG_LWLOCKS view to query information about lightweight locks that are
being held or waiting for the current instance.
SELECT * FROM pg_lwlocks;
 pid | query_id | lwtid | reqlockid | reqlock | heldlocknums | heldlockid | heldlock |
heldlockmode
-----------------+-------------------+-------+-----------+---------+--------------+------------+--------------------
+--------------
 139810224192480 | 0 | 54842 | | | 1 | 7 | WALWriteLock | Exclusive
 139810224199520 | 78250043526306022 | 54963 | | | 1 | 193860 |
BUFFER_POOL_LWLOCK | Exclusive
(2 rows)

14.3.119 PG_NODE_ENV
PG_NODE_ENVO displays the environmental variable information about the
current node.

Table 14-184 PG_NODE_ENV columns

Name Type Description

node_name text Name of the node

host text Host name of the node

process integer Number of the node process

port integer Port ID of the node

installpath text Installation directory of current node

datapath text Data directory of the node

log_directory text Log directory of the node

14.3.120 PG_OS_THREADS
PG_OS_THREADS displays the status information about all the threads under the
current node.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 764

Table 14-185 PG_OS_THREADS columns

Name Type Description

node_name text Name of the node

pid bigint Thread number running under the current
node process

lwpid integer Lightweight thread IDs corresponding to the
PIDs

thread_name text Thread names corresponding to the PIDs

creation_time timestamp
with time
zone

Creation time of the threads corresponding to
the PIDs

14.3.121 PG_POOLER_STATUS
PG_POOLER_STATUS displays the cache connection status in the pooler.
PG_POOLER_STATUS can only query on the CN, and displays the connection
cache information about the pooler module.

Table 14-186 PG_POOLER_STATUS columns

Name Type Description

database text Database name

user_name text Username

tid bigint ID of the thread used for the connection to
the CN

node_oid bigint OID of the node connected

node_name name Name of the node connected

in_use boolean Whether the connection is in use. The
options are:
● t (true): The connection is in use.
● f (false): The connection is not in use.

fdsock bigint Peer socket

remote_pid bigint Peer thread ID

session_params text GUC session parameter delivered by the
connection

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 765

Example

View information about the connection pool pooler:

select database,user_name,node_name,in_use,count(*) from pg_pooler_status group by 1, 2, 3 ,4 order by 5
desc limit 50;
 database | user_name | node_name | in_use | count
----------+-----------+--------------+--------+-------
 mydbdemo | user3 | cn_5001 | f | 2
 mydbdemo | user3 | dn_6005_6006 | t | 2
 mydbdemo | user3 | dn_6001_6002 | t | 2
 mydbdemo | user3 | dn_6003_6004 | f | 2
 mydbdemo | user3 | dn_6003_6004 | t | 2
 mydbdemo | user3 | dn_6005_6006 | f | 2
 mydbdemo | user3 | dn_6001_6002 | f | 2
 mydbdemo | user3 | cn_5002 | f | 2
 gaussdb | user3 | dn_6003_6004 | f | 1
 mydbdemo | user3 | cn_5001 | t | 1
 music | user2 | dn_6003_6004 | f | 1
 music | user2 | dn_6005_6006 | f | 1
 gaussdb | user1 | dn_6005_6006 | f | 1
(13 rows)

14.3.122 PG_PREPARED_STATEMENTS
PG_PREPARED_STATEMENTS displays all prepared statements that are available
in the current session.

Table 14-187 PG_PREPARED_STATEMENTS columns

Name Type Description

name text Identifier of the prepared statement

statement text Query string for creating this prepared
statement For prepared statements created
through SQL, this is the PREPARE statement
submitted by the client. For prepared
statements created through the frontend/
backend protocol, this is the text of the
prepared statement itself.

prepare_time timestamp
with time
zone

Timestamp when the prepared statement is
created

parameter_ty
pes

regtype[] Expected parameter types for the prepared
statement in the form of an array of regtype.
The OID corresponding to an element of this
array can be obtained by casting the regtype
value to oid.

from_sql boolean How a prepared statement was created
● true: The prepared statement was created

through the PREPARE statement.
● false The statement was prepared through

the frontend/backend protocol.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 766

14.3.123 PG_PREPARED_XACTS
PG_PREPARED_XACTS displays information about transactions that are currently
prepared for two-phase commit.

Table 14-188 PG_PREPARED_XACTS columns

Name Type Reference Description

transaction xid N/A Numeric transaction
identifier of the prepared
transaction

gid text N/A Global transaction
identifier that was
assigned to the
transaction

prepared timestamp
with time
zone

N/A Time at which the
transaction is prepared for
commit

owner name PG_AUTHID.rolna
me

Name of the user that
executes the transaction

database name PG_DATABASE.da
tname

Name of the database in
which the transaction is
executed

14.3.124 PG_PUBLICATION_TABLES
PG_PUBLICATION_TABLES displays the mapping between a publication and its
published tables. Unlike the underlying system catalog PG_PUBLICATION_REL,
this view expands the publications defined as FOR ALL TABLES and FOR ALL
TABLES IN SCHEMA, in which each publishable table has a row. This view is
supported only by clusters of version 8.2.0.100 or later.

Table 14-189 PG_PUBLICATION_TABLES columns

Name Type Description

pubname name Publication name

schemaname name Name of the schema of a table

tablename name Table name

Examples
Query all published tables.

SELECT * FROM PG_PUBLICATION_TABLES;
 pubname | schemaname | tablename

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 767

---------+------------+-----------
 mypub | public | t1
 mypub | public | t2
(2 rows)

14.3.125 PG_QUERYBAND_ACTION
PG_QUERYBAND_ACTION displays information about the object associated with
query_band and the query_band query order.

Table 14-190 PG_QUERYBAND_ACTION columns

Name Type Description

qband text query_band key-value pairs

respool_id oid OID of the resource pool associated with
query_band

respool text Name of the resource pool associated with
query_band

priority text Intra-queue priority associated with
query_band

qborder integer query_band query order

14.3.126 PG_REPLICATION_SLOTS
PG_REPLICATION_SLOTS displays the replication node information.

Table 14-191 PG_REPLICATION_SLOTS columns

Name Type Description

slot_name text Name of a replication node

plugin name Name of the output plug-in of the logical
replication slot

slot_type text Type of a replication node

datoid oid OID of the database on the replication node

database name Name of the database on the replication node

active boolean Whether the replication node is active

xmin xid Transaction ID of the replication node

catalog_xmin text ID of the earliest-decoded transaction
corresponding to the logical replication slot

restart_lsn text Xlog file information on the replication node

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 768

Name Type Description

dummy_stand
by

boolean Whether the replication node is the dummy
standby node

14.3.127 PG_ROLES
PG_ROLES displays information about database roles.

Table 14-192 PG_ROLES columns

Name Type Reference Description

rolname name N/A Role name

rolsuper boolean N/A Whether the role is the initial
system administrator with the
highest permission

rolinherit boolean N/A Whether the role inherits
permissions for this type of roles

rolcreaterole boolean N/A Whether the role can create other
roles

rolcreatedb boolean N/A Whether the role can create
databases

rolcatupdate boolean N/A Whether the role can update
system tables directly. Only the
initial system administrator whose
usesysid is 10 has this permission.
It is not available for other users.

rolcanlogin boolean N/A Whether the role can log in to the
database

rolreplication boolean N/A Whether the role can be replicated

rolauditadmi
n

boolean N/A Whether the role is an audit system
administrator

rolsystemad
min

boolean N/A Whether the role is a system
administrator

rolconnlimit integer N/A Limits the maximum number of
concurrent connections of a user
on a CN. -1 indicates no limit.

rolpassword text N/A Not the password (always reads as
********)

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 769

Name Type Reference Description

rolvalidbegin timestamp
with time
zone

N/A Account validity start time; null if
no start time

rolvaliduntil timestamp
with time
zone

N/A Password expiry time; null if no
expiration

rolrespool name N/A Resource pool that a user can use

rolparentid oid PG_AUTHI
D.rolparenti
d

OID of a group user to which the
user belongs

roltabspace text N/A The storage space of the user
permanent table.

roltempspace text N/A The storage space of the user
temporary table.

rolspillspace text N/A The operator disk flushing space of
the user.

rolconfig text[] N/A Session defaults for runtime
configuration variables

oid oid PG_AUTHI
D.oid

ID of the role

roluseft boolean PG_AUTHI
D.roluseft

Whether the role can perform
operations on foreign tables

nodegroup name N/A Name of the logical cluster
associated with the role. If no
logical cluster is associated, this
column is left empty.

14.3.128 PG_RULES
PG_RULES displays information about rewrite rules.

Table 14-193 PG_RULES columns

Name Type Description

schemaname name Name of the schema that contains the
table

tablename name Name of the table the rule is for

rulename name Rule name

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 770

Name Type Description

definition text Rule definition (a reconstructed creation
command)

14.3.129 PG_RUNNING_XACTS
PG_RUNNING_XACTS displays information about running transactions on the
current node.

Table 14-194 PG_RUNNING_XACTS columns

Name Type Description

handle integer Handle corresponding to the transaction in
GTM

gxid xid Transaction ID

state tinyint Transaction status (3: prepared or 0: starting)

node text Node name

xmin xid Minimum transaction ID xmin on the node

vacuum boolean Whether the current transaction is lazy vacuum

timeline bigint Number of database restarts

prepare_xid xid Transaction ID in the prepared status. If the
status is not prepared, the value is 0.

pid bigint Thread ID corresponding to the transaction

next_xid xid Transaction ID sent from a CN to a DN

14.3.130 PG_SECLABELS
PG_SECLABELS displays information about security labels.

Table 14-195 PG_SECLABELS columns

Name Type Reference Description

objoid oid Any OID column OID of the object this
security label pertains to

classoid oid PG_CLASS.oid OID of the system table that
contains the object

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 771

Name Type Reference Description

objsubid intege
r

N/A For a security label on a
table column, this is the
column number (the objoid
and classoid refer to the
table itself). For all other
object types, this column is 0.

objtype text N/A Type of the object to which
this label applies

objnamespac
e

oid PG_NAMESPACE.oid OID of the namespace for
this object, if applicable;
otherwise NULL.

objname text N/A Name of the object to which
the label applies

provider text PG_SECLABEL.provider Label provider associated
with this label

label text PG_SECLABEL.label Security label applied to this
object

14.3.131 PG_SEQUENCES
PG_SEQUENCES displays the sequence attributes on which the current user has
permissions. This view is supported only by clusters of version 9.1.0 or later.

Table 14-196 PG_SEQUENCES columns

Column Type Description

schemaname name Name of the namespace.

sequencename name Name of the sequence

sequenceowner name Owner of the sequence

start_value bigint Start value of the sequence.

min_value bigint Minimum value generated by the sequence.

max_value bigint Maximum value generated by the
sequence.

increment_by bigint Amount by which the generated value
increases each time in a sequence.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 772

Column Type Description

cycle boolean If set to true, the sequence value restarts
from the minimum value after reaching the
maximum value. If set to false, the
sequence value stops generating after
reaching the maximum value.

cache_size bigint Size of the sequence cache value.

last_value bigint Most recently generated value of the
sequence.

14.3.132 PG_SESSION_WLMSTAT
PG_SESSION_WLMSTAT displays the corresponding load management
information about the task currently executed by the user.

Table 14-197 PG_SESSION_WLMSTAT columns

Column Type Description

datid oid OID of the database this backend is connected to

datname name Name of the database the backend is connected
to

threadid bigint ID of the backend thread

processid integer Thread PID of the backend

usesysid oid OID of the user who logged into the backend

appname text Name of the application that is connected to the
backend

usename name Name of the user logged in to the backend

priority bigint Priority of Cgroup where the statement is located

attribute text Statement attributes
● Ordinary: default attribute of a statement

before it is parsed by the database
● Simple: simple statements
● Complicated: complicated statements
● Internal: internal statement of the database

block_time bigint Pending duration of the statements by now (unit:
s)

elapsed_time bigint Actual execution duration of the statements by
now (unit: s)

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 773

Column Type Description

total_cpu_time bigint Total CPU usage duration of the statement on
the DN in the last period (unit: s)

cpu_skew_perce
nt

integer CPU usage inclination ratio of the statement on
the DN in the last period

statement_mem integer Estimated memory required for statement
execution. This column is reserved.

active_points integer Number of concurrently active points occupied by
the statement in the resource pool

dop_value integer DOP value obtained by the statement from the
resource pool

control_group text Cgroup currently used by the statement

status text Status of a statement, including:
● pending
● running
● finished (If enqueue is set to StoredProc or

Transaction, this state indicates that only
some of the jobs in the statement have been
executed. This state persists until the finish of
this statement.)

● aborted: terminated unexpectedly
● active: normal status except for those above
● unknown: unknown status

enqueue text Current queuing status of the statements,
including:
● Global: global queuing.
● Respool: resource pool queuing.
● CentralQueue: queuing on the CCN
● Transaction: being in a transaction block
● StoredProc: being in a stored procedure
● None: not in a queue
● Forced None: being forcibly executed

(transaction block statement or stored
procedure statement are) because the
statement waiting time exceeds the specified
value

resource_pool name Current resource pool where the statements are
located.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 774

Column Type Description

query text Text of this backend's most recent query If state
is active, this column shows the executing query.
In all other states, it shows the last query that
was executed.

isplana bool In logical cluster mode, indicates whether a
statement occupies the resources of other logical
clusters. The default value is f, indicating that
resources of other logical clusters are not
occupied.

node_group text Logical cluster of the user running the statement

lane text Fast or slow lane for statement queries.
● fast: fast lane
● slow: slow lane
● none: not controlled

14.3.133 PG_SESSION_IOSTAT
PG_SESSION_IOSTAT has been discarded in version 8.1.2 and is reserved for
compatibility with earlier versions. This view is invalid in the current version. You
can use PGXC_WLM_SESSION_STATISTICS to view load management information
about jobs being executed on all CNs.

Table 14-198 PG_SESSION_IOSTAT columns

Name Type Description

query_id bigint Job ID

mincurriops integer Minimum I/O of the current job across DNs

maxcurriops integer Maximum I/O of the current job across DNs

minpeakiops integer Minimum peak I/O of the current job across DNs

maxpeakiops integer Maximum peak I/O of the current job across
DNs

io_limits integer io_limits set for the job

io_priority text io_priority set for the job

query text Job

node_group text Logical cluster of the user running the job

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 775

14.3.134 PG_SETTINGS
PG_SETTINGS displays information about parameters of the running database.

Table 14-199 PG_SETTINGS columns

Name Type Description

name text Parameter name

setting text Current value of the parameter

unit text Implicit unit of the parameter

category text Logical group of the parameter

short_desc text Brief description of the parameter

extra_desc text Detailed description of the parameter

context text Context of parameter values including
internal, postmaster, sighup, backend,
superuser, and user

vartype text Parameter type. It can be bool, enum,
integer, real, or string.

source text Method of assigning the parameter value

min_val text Minimum value of the parameter. If the
parameter type is not numeric data, the
value of this column is null.

max_val text Maximum value of the parameter. If the
parameter type is not numeric data, the
value of this column is null.

enumvals text[] Valid values of an enum-typed parameter. If
the parameter type is not enum, the value
of this column is null.

boot_val text Default parameter value used upon the
database startup

reset_val text Default parameter value used upon the
database reset

sourcefile text Configuration file used to set parameter
values. If parameter values are not
configured using the configuration file, the
value of this column is null.

sourceline integer Row number of the configuration file for
setting parameter values. If parameter
values are not configured using the
configuration file, the value of this column
is null.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 776

14.3.135 PG_SHADOW
PG_SHADOW displays properties of all roles that are marked as rolcanlogin in
PG_AUTHID.

This view is not readable to all users because it contains passwords. PG_USER is a
publicly readable view on PG_SHADOW that blanks out the password column.

Table 14-200 PG_SHADOW columns

Name Type Reference Description

usename name PG_AUTHID.rolnam
e

User name

usesysid oid PG_AUTHID.oid ID of a user

usecreated
b

boolea
n

- Indicates that the user can
create databases.

usesuper boolea
n

- Indicates that the user is an
administrator.

usecatupd boolea
n

- Indicates that the user can
update system catalogs. Even
the system administrator cannot
do this unless this column is
true.

userepl boolea
n

- User can initiate streaming
replication and put the system in
and out of backup mode.

passwd text - Password (possibly encrypted);
null if none. See PG_AUTHID for
details about how encrypted
passwords are stored.

valbegin timesta
mp
with
time
zone

- Account validity start time; null
if no start time

valuntil timesta
mp
with
time
zone

- Password expiry time; null if no
expiration

respool name - Resource pool used by the user

parent oid - Parent resource pool

spacelimit text - The storage space of the
permanent table.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 777

Name Type Reference Description

tempspaceli
mit

text - The storage space of the
temporary table.

spillspaceli
mit

text - The operator disk flushing space.

useconfig text[] - Session defaults for runtime
configuration variables

14.3.136 PG_SHARED_MEMORY_DETAIL
PG_SHARED_MEMORY_DETAIL displays usage information about all the shared
memory contexts.

Table 14-201 PG_SHARED_MEMORY_DETAIL columns

Name Type Description

contextname text Name of the memory context.

level smallint Hierarchy of the memory context.

parent text Parent memory context.

totalsize bigint Total size of the shared memory, in bytes.

freesize bigint Remaining size of the shared memory, in bytes.

usedsize bigint Used size of the shared memory, in bytes.

14.3.137 PG_STATS
PG_STATS displays the single-column statistics stored in the pg_statistic table.

Table 14-202 PG_STATS columns

Name Type Reference Description

schemaname name PG_NAMESP
ACE.nspname

Name of the schema that contains
the table

tablename name PG_CLASS.rel
name

Name of the table

attname name PG_ATTRIBU
TE.attname

Column name

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 778

Name Type Reference Description

inherited boolean - Includes inherited sub-columns if
the value is true; otherwise,
indicates the column in a specified
table.

null_frac real - Percentage of column entries that
are null

avg_width integer - Average width in bytes of column's
entries

n_distinct real - ● Estimated number of distinct
values in the column if the
value is greater than 0

● Negative of the number of
distinct values divided by the
number of rows if the value is
less than 0

The negated form is used when
ANALYZE believes that the number
of distinct values is likely to
increase as the table grows.
The positive form is used when the
column seems to have a fixed
number of possible values. For
example, -1 indicates a unique
column in which the number of
distinct values is the same as the
number of rows.

n_dndistinct real - Number of unique non-null data
values in the dn1 column
● Exact number of distinct values

if the value is greater than 0
● Negative of the number of

distinct values divided by the
number of rows if the value is
less than 0 (For example, if the
value of a column appears
twice in average, set
n_dndistinct=-0.5.)

● The number of distinct values is
unknown if the value is 0.

most_commo
n_vals

anyarray - List of the most common values in
a column. If this combination does
not have the most common
values, it will be NULL.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 779

Name Type Reference Description

most_commo
n_freqs

real[] - List of the frequencies of the most
common values, that is, the
number of occurrences of each
value divided by the total number
of rows. (NULL if
most_common_vals is NULL)

histogram_bo
unds

anyarray - List of values that divide the
column's values into groups of
equal proportion. The values in
most_common_vals, if present,
are omitted from this histogram
calculation. This field is null if the
field data type does not have a <
operator or if the
most_common_vals list accounts
for the entire population.

correlation real - Statistical correlation between
physical row ordering and logical
ordering of the column values. It
ranges from -1 to +1. When the
value is near to -1 or +1, an index
scan on the column is estimated
to be cheaper than when it is near
to zero, due to reduction of
random access to the disk. This
column is null if the column data
type does not have a < operator.

most_commo
n_elems

anyarray - Specifies a list of non-null element
values most often appearing.

most_commo
n_elem_freqs

real[] - Specifies a list of the frequencies
of the most common element
values.

elem_count_h
istogram

real[] - Histogram of the counts of distinct
non-null element values.

14.3.138 PG_STAT_ACTIVITY
PG_STAT_ACTIVITY displays information about the current user's queries. If you
have the rights of an administrator or the preset role, you can view all information
about user queries.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 780

Table 14-203 PG_STAT_ACTIVITY columns

Name Type Description

datid oid OID of the database that the user
session connects to in the backend

datname name Name of the database that the user
session connects to in the backend

pid bigint Backend thread ID

lwtid integer Lightweight thread ID

usesysid oid OID of the user logging in to the
backend

usename name OID of the user logging in to the
backend

application_name text Name of the application connected
to the backend

client_addr inet IP address of the client connected to
the backend If this column is null, it
indicates either that the client is
connected via a Unix socket on the
server machine or that this is an
internal process such as autovacuum.

client_hostname text Host name of the connected client,
as reported by a reverse DNS lookup
of client_addr. This column will only
be non-null for IP connections, and
only when log_hostname is enabled.

client_port integer TCP port number that the client uses
for communication with this backend,
or -1 if a Unix socket is used

backend_start timestamp
with time
zone

Startup time of the backend process,
that is, the time when the client
connects to the server.

xact_start timestamp
with time
zone

Time when the current transaction
was started, or NULL if no
transaction is active. If the current
query is the first of its transaction,
this column is equal to the
query_start column.

query_start timestamp
with time
zone

Time when the currently active query
was started, or if state is not active,
when the last query was started

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 781

Name Type Description

state_change timestamp
with time
zone

Time for the last status change

waiting boolean The value is t if the backend is
waiting for a lock or node. Otherwise,
the value is f.

enqueue text Queuing status of a statement. Its
value can be:
● waiting in global queue: The

statement is queuing in the global
concurrent queue. The number of
concurrent statements exceeds the
value of max_active_statements
configured for a single CN.

● waiting in respool queue: The
statement is queuing in the
resource pool and the concurrency
of simple jobs is limited. The main
reason is that the concurrency of
simple jobs exceeds the upper
limit max_dop of the fast track.

● waiting in ccn queue: The job is
in the CCN queue, which may be
global memory queuing, slow lane
memory queuing, or concurrent
queuing. The scenarios are:
1. The available global memory

exceeds the upper limit, the job
is queuing in the global
memory queue.

2. Concurrent requests on the
slow lane in the resource pool
exceed the upper limit, which is
specified by active_statements.

3. The slow lane memory of the
resource pool exceeds the
upper limit, that is, the
estimated memory of
concurrent jobs in the resource
pool exceeds the upper limit
specified by mem_percent.

● Empty or no waiting queue: The
statement is running.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 782

Name Type Description

state text Current overall state of this backend.
Its value can be:
● active: The backend is executing

queries.
● idle: The backend is waiting for

new client commands.
● idle in transaction: The backend

is in a transaction, but there is no
statement being executed in the
transaction.

● idle in transaction (aborted): The
backend is in a transaction, but
there are statements failed in the
transaction.

● fastpath function call: The
backend is executing a fast-path
function.

● disabled: This state is reported if
track_activities is disabled in this
backend.

NOTE
Common users can view only their own
session status. The state information of
other accounts is empty.

resource_pool name Resource pool used by the user

stmt_type text Statement type

query_id bigint ID of a query

query text Text of the most recent query in this
backend If state is active, this
column shows the running query. In
all other states, it shows the last
query that was executed.

connection_info text A string in JSON format recording the
driver type, driver version, driver
deployment path, and process owner
of the connected database (for
details, see connection_info)

14.3.139 PG_STAT_ALL_INDEXES
PG_STAT_ALL_INDEXES displays statistics about all accesses to a specific index in
the current database.

Indexes can be used via either simple index scans or "bitmap" index scans. Bitmap
scans can combine the output of multiple indexes using AND or OR rules, but

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 783

combining independent row fetching with specific indexes is challenging.
Consequently, a bitmap scan increases the index count in
pg_stat_all_indexes.idx_tup_read and the table count in
pg_stat_all_tables.idx_tup_fetch, while having no effect on
pg_stat_all_indexes.idx_tup_fetch.

Table 14-204 PG_STAT_ALL_INDEXES columns

Name Type Description

relid oid OID of the table for this index.

indexrelid oid OID of this index.

schemaname name Name of the schema this index is in.

relname name Name of the table for this index.

indexrelname name Name of this index.

idx_scan bigint Number of index scans initiated on this index.

idx_tup_read bigint Number of index entries returned by scans on
this index.

idx_tup_fetch bigint Number of live table rows fetched by simple
index scans using this index.

14.3.140 PG_STAT_ALL_TABLES
PG_STAT_ALL_TABLES displays statistics about accesses to tables in the current
database, including TOAST tables.

Table 14-205 PG_STAT_ALL_TABLES columns

Name Type Description

relid oid Table OID

schemaname name Schema name of the table

relname name Name of the table

seq_scan bigint Number of sequential scans started on the
table

seq_tup_read bigint Number of rows that have live data fetched by
sequential scans

idx_scan bigint Number of index scans

idx_tup_fetch bigint Number of rows that have live data fetched by
index scans

n_tup_ins bigint Number of rows inserted

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 784

Name Type Description

n_tup_upd bigint Number of rows updated

n_tup_del bigint Number of rows deleted

n_tup_hot_up
d

bigint Number of rows updated by HOT (no separate
index update is required)

n_live_tup bigint Estimated number of live rows

n_dead_tup bigint Estimated number of dead rows

last_vacuum timestamp
with time
zone

Last time at which this table was manually
vacuumed (excluding VACUUM FULL)

last_autovacu
um

timestamp
with time
zone

Last time at which this table was automatically
vacuumed

last_analyze timestamp
with time
zone

Last time at which this table was analyzed

last_autoanal
yze

timestamp
with time
zone

Last time at which this table was automatically
vacuumed

vacuum_coun
t

bigint Number of vacuum operations (excluding
VACUUM FULL)

autovacuum_
count

bigint Number of autovacuum operations

analyze_count bigint Number of analyze operations

autoanalyze_c
ount

bigint Number of autoanalyze operations

last_data_cha
nged

timestamp
with time
zone

Last time at which this table was updated (by
INSERT/UPDATE/DELETE or EXCHANGE/
TRUNCATE/DROP partition). This column is
recorded only on the local CN.

Example
Query the last data change time in the table_test table:

SELECT last_data_changed FROM PG_STAT_ALL_TABLES WHERE relname ='table_test';
 last_data_changed

 2024-03-27 10:28:16.277136+08
(1 row)

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 785

14.3.141 PG_STAT_BAD_BLOCK
PG_STAT_BAD_BLOCK displays statistics about page or CU verification failures
after a node is started.

Table 14-206 PG_STAT_BAD_BLOCK columns

Name Type Description

nodename text Node name.

databaseid integer Database OID.

tablespaceid integer Tablespace OID.

relfilenode integer File object ID.

forknum integer File type.

error_count integer Number of verification failures.

first_time timestamp
with time
zone

Time of the first occurrence.

last_time timestamp
with time
zone

Time of the latest occurrence.

14.3.142 PG_STAT_BGWRITER
PG_STAT_BGWRITER displays statistics about the background writer process's
activity.

Table 14-207 PG_STAT_BGWRITER columns

Name Type Description

checkpoints_ti
med

bigint Number of scheduled checkpoints that have
been performed

checkpoints_r
eq

bigint Number of requested checkpoints that have
been performed

checkpoint_wr
ite_time

double
precision

Total amount of time that has been spent in
the portion of checkpoint processing where
files are written to disk, in milliseconds

checkpoint_sy
nc_time

double
precision

Total amount of time that has been spent in
the portion of checkpoint processing where
files are synchronized to disk, in milliseconds

buffers_check
point

bigint Number of buffers written during checkpoints

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 786

Name Type Description

buffers_clean bigint Number of buffers written by the background
writer

maxwritten_cl
ean

bigint Number of times the background writer
stopped a cleaning scan because it had written
too many buffers

buffers_backe
nd

bigint Number of buffers written directly by a
backend

buffers_backe
nd_fsync

bigint Number of times that a backend has to
execute fsync

buffers_alloc bigint Number of buffers allocated

stats_reset timestamp
with time
zone

Time at which these statistics were reset

14.3.143 PG_STAT_DATABASE
PG_STAT_DATABASE displays the status and statistics of each database on the
current node.

Table 14-208 PG_STAT_DATABASE columns

Name Type Description

datid oid Database OID

datname name Database name

numbackends integer Number of backends currently connected to
this database on the current node. This is the
only column in this view that reflects the
current state value. All columns return the
accumulated value since the last reset.

xact_commit bigint Number of transactions in this database that
have been committed on the current node

xact_rollback bigint Number of transactions in this database that
have been rolled back on the current node

blks_read bigint Number of disk blocks read in this database on
the current node

blks_hit bigint Number of disk blocks found in the buffer
cache on the current node, that is, the number
of blocks hit in the cache. (This only includes
hits in the GaussDB(DWS) buffer cache, not in
the file system cache.)

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 787

Name Type Description

tup_returned bigint Number of rows returned by queries in this
database on the current node

tup_fetched bigint Number of rows fetched by queries in this
database on the current node

tup_inserted bigint Number of rows inserted in this database on
the current node

tup_updated bigint Number of rows updated in this database on
the current node

tup_deleted bigint Number of rows deleted from this database on
the current node

conflicts bigint Number of queries canceled due to database
recovery conflicts on the current node
(conflicts occurring only on the standby
server). For details, see
PG_STAT_DATABASE_CONFLICTS.

temp_files bigint Number of temporary files created by this
database on the current node. All temporary
files are counted, regardless of why the
temporary file was created (for example,
sorting or hashing), and regardless of the
log_temp_files setting.

temp_bytes bigint Size of temporary files written to this database
on the current node. All temporary files are
counted, regardless of why the temporary file
was created, and regardless of the
log_temp_files setting.

deadlocks bigint Number of deadlocks in this database on the
current node

blk_read_time double
precision

Time spent reading data file blocks by
backends in this database on the current node,
in milliseconds

blk_write_tim
e

double
precision

Time spent writing into data file blocks by
backends in this database on the current node,
in milliseconds

stats_reset timestamp
with time
zone

Time when the database statistics are reset on
the current node

14.3.144 PG_STAT_DATABASE_CONFLICTS
PG_STAT_DATABASE_CONFLICTS displays statistics about database conflicts.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 788

Table 14-209 PG_STAT_DATABASE_CONFLICTS columns

Name Type Description

datid oid Database OID.

datname name Database name.

confl_tablesp
ace

bigint Number of conflicting tablespaces.

confl_lock bigint Number of conflicting locks.

confl_snapsho
t

bigint Number of conflicting snapshots.

confl_bufferpi
n

bigint Number of conflicting buffers.

confl_deadloc
k

bigint Number of conflicting deadlocks.

14.3.145 PG_STAT_GET_MEM_MBYTES_RESERVED
PG_STAT_GET_MEM_MBYTES_RESERVED displays the current activity information
of a thread stored in memory. You need to specify the thread ID (pid in
PG_STAT_ACTIVITY) for query. If the thread ID is set to 0, the current thread ID is
used. For example:

SELECT pg_stat_get_mem_mbytes_reserved(0);

Table 14-210 PG_STAT_GET_MEM_MBYTES_RESERVED columns

Column Description

ConnectInfo Connection information.

ParctlManager Concurrency management
information.

GeneralParams Basic parameter information.

GeneralParams RPDATA Basic resource pool information.

ExceptionManager Exception management information.

CollectInfo Collection information.

GeneralInfo Basic information.

ParctlState Concurrency status information.

CPU INFO CPU information.

ControlGroup Cgroup information.

IOSTATE I/O status information.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 789

14.3.146 PG_STAT_USER_FUNCTIONS
PG_STAT_USER_FUNCTIONS displays user-defined function status information in
the namespace. (The language of the function is non-internal language.)

Table 14-211 PG_STAT_USER_FUNCTIONS columns

Name Type Description

funcid oid Function OID

schemaname name Schema name

funcname name Name of the function

calls bigint Number of times this function has
been called

total_time double precision Total time spent in this function and
all other functions called by it

self_time double precision Total time spent in this function
itself, excluding other functions
called by it

14.3.147 PG_STAT_USER_INDEXES
PG_STAT_USER_INDEXES displays information about the index status of user-
defined ordinary tables and TOAST tables.

Table 14-212 PG_STAT_USER_INDEXES columns

Name Type Description

relid oid Table OID for the index

indexrelid oid OID of this index

schemaname name Name of the schema this index is in

relname name Name of the table for this index

indexrelname name Name of this index

idx_scan bigint Number of index scans

idx_tup_read bigint Number of index entries returned by scans
on this index

idx_tup_fetch bigint Number of rows that have live data fetched
by index scans

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 790

14.3.148 PG_STAT_USER_TABLES
PG_STAT_USER_TABLES displays status information about user-defined ordinary
tables and TOAST tables in all namespaces.

Table 14-213 PG_STAT_USER_TABLES columns

Name Type Description

relid oid Table OID

schemaname name Schema name of the table

relname name Name of a table

seq_scan bigint Number of sequential scans started on the
table

seq_tup_read bigint Number of rows that have live data fetched by
sequential scans

idx_scan bigint Number of index scans

idx_tup_fetch bigint Number of rows that have live data fetched by
index scans

n_tup_ins bigint Number of rows inserted

n_tup_upd bigint Number of rows updated

n_tup_del bigint Number of rows deleted

n_tup_hot_up
d

bigint Number of rows updated by HOT (no separate
index update is required)

n_live_tup bigint Estimated number of live rows

n_dead_tup bigint Estimated number of dead rows

last_vacuum timestamp
with time
zone

Last time at which this table was manually
vacuumed (excluding VACUUM FULL)

last_autovacu
um

timestamp
with time
zone

Time of the last AUTOVACUUM

last_analyze timestamp
with time
zone

Last time at which this table was analyzed

last_autoanal
yze

timestamp
with time
zone

Time of the last AUTOANALYZE

vacuum_coun
t

bigint Number of vacuum operations (excluding
VACUUM FULL)

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 791

Name Type Description

autovacuum_
count

bigint Number of autovacuum operations

analyze_count bigint Number of analyze operations

autoanalyze_c
ount

bigint Number of autoanalyze operations

14.3.149 PG_STAT_REPLICATION
PG_STAT_REPLICATION displays information about log synchronization status,
such as the locations of the sender sending logs and the receiver receiving logs.

Table 14-214 PG_STAT_REPLICATION columns

Name Type Description

pid bigint PID of the thread.

usesysid oid User system ID.

usename name Username.

application_n
ame

text Program name.

client_addr inet Client address.

client_hostna
me

text Client name.

client_port integer Client port number.

backend_start timestamp
with time
zone

Program start time.

state text Log replication state (catch-up or consistent
streaming).

sender_sent_l
ocation

text Location where the sender sends logs.

receiver_write
_location

text Location where the receiver writes logs.

receiver_flush
_location

text Location where the receiver flushes logs.

receiver_repla
y_location

text Location where the receiver replays logs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 792

Name Type Description

sync_priority integer Priority of synchronous duplication (0 indicates
asynchronization).

sync_state text Synchronization state (asynchronous
duplication, synchronous duplication, or
potential synchronization).

14.3.150 PG_STAT_SYS_INDEXES
PG_STAT_SYS_INDEXES displays the index status information about all the system
catalogs in the pg_catalog and information_schema schemas.

Table 14-215 PG_STAT_SYS_INDEXES columns

Name Type Description

relid oid Table OID for the index.

indexrelid oid OID of this index.

schemaname name Name of the schema this index is in.

relname name Name of the table for this index.

indexrelname name Name of this index.

idx_scan bigint Number of index scans.

idx_tup_read bigint Number of index entries returned by scans on
this index.

idx_tup_fetch bigint Number of rows that have live data fetched by
index scans.

14.3.151 PG_STAT_SYS_TABLES
PG_STAT_SYS_TABLES displays the statistics about the system catalogs of all the
namespaces in pg_catalog and information_schema schemas.

Table 14-216 PG_STAT_SYS_TABLES columns

Name Type Description

relid oid Table OID

schemaname name Schema name of the table

relname name Name of a table

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 793

Name Type Description

seq_scan bigint Number of sequential scans started on the
table

seq_tup_read bigint Number of rows that have live data fetched by
sequential scans

idx_scan bigint Number of index scans

idx_tup_fetch bigint Number of rows that have live data fetched by
index scans

n_tup_ins bigint Number of rows inserted

n_tup_upd bigint Number of rows updated

n_tup_del bigint Number of rows deleted

n_tup_hot_up
d

bigint Number of rows updated by HOT (no separate
index update is required)

n_live_tup bigint Estimated number of live rows

n_dead_tup bigint Estimated number of dead rows

last_vacuum timestamp
with time
zone

Last time at which this table was manually
vacuumed (excluding VACUUM FULL)

last_autovacu
um

timestamp
with time
zone

Last time at which this table was automatically
vacuumed

last_analyze timestamp
with time
zone

Last time at which this table was analyzed

last_autoanal
yze

timestamp
with time
zone

Last time at which this table was automatically
analyzed

vacuum_coun
t

bigint Number of vacuum operations (excluding
VACUUM FULL)

autovacuum_
count

bigint Number of autovacuum operations

analyze_count bigint Number of analyze operations

autoanalyze_c
ount

bigint Number of autoanalyze operations

14.3.152 PG_STAT_XACT_ALL_TABLES
PG_STAT_XACT_ALL_TABLES displays the transaction status information about all
ordinary tables and TOAST tables in the namespaces.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 794

Table 14-217 PG_STAT_XACT_ALL_TABLES columns

Name Type Description

relid oid Table OID

schemaname name Schema name of the table

relname name Name of a table

seq_scan bigint Number of sequential scans started on the
table

seq_tup_read bigint Number of live rows fetched by sequential
scans

idx_scan bigint Number of index scans started on the table

idx_tup_fetch bigint Number of live rows fetched by index scans

n_tup_ins bigint Number of rows inserted

n_tup_upd bigint Number of rows updated

n_tup_del bigint Number of rows deleted

n_tup_hot_up
d

bigint Number of rows with HOT updates (no
separate index update is required).

14.3.153 PG_STAT_XACT_SYS_TABLES
PG_STAT_XACT_SYS_TABLES displays the transaction status information of the
system catalog in the namespace.

Table 14-218 PG_STAT_XACT_SYS_TABLES columns

Name Type Description

relid oid Table OID

schemaname name Schema name of the table

relname name Table name

seq_scan bigint Number of sequential scans started on the
table

seq_tup_read bigint Number of live rows fetched by sequential
scans

idx_scan bigint Number of index scans started on the table

idx_tup_fetch bigint Number of live rows fetched by index scans

n_tup_ins bigint Number of rows inserted

n_tup_upd bigint Number of rows updated

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 795

Name Type Description

n_tup_del bigint Number of rows deleted

n_tup_hot_up
d

bigint Number of rows with HOT updates (no
separate index update is required).

14.3.154 PG_STAT_XACT_USER_FUNCTIONS
PG_STAT_XACT_USER_FUNCTIONS displays statistics about function execution.

Table 14-219 PG_STAT_XACT_USER_FUNCTIONS columns

Name Type Description

funcid oid Function OID

schemaname name Schema name

funcname name Name of the function

calls bigint Number of times this function has been called

total_time double
precision

Total time spent in this function and all other
functions called by it

self_time double
precision

Total time spent in this function itself,
excluding other functions called by it

14.3.155 PG_STAT_XACT_USER_TABLES
PG_STAT_XACT_USER_TABLES displays the transaction status information of the
user table in the namespace.

Table 14-220 PG_STAT_XACT_USER_TABLES columns

Name Type Description

relid oid Table OID

schemaname name Schema name of the table

relname name Name of a table

seq_scan bigint Number of sequential scans started on the
table

seq_tup_read bigint Number of live rows fetched by sequential
scans

idx_scan bigint Number of index scans started on the table

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 796

Name Type Description

idx_tup_fetch bigint Number of live rows fetched by index scans

n_tup_ins bigint Number of rows inserted

n_tup_upd bigint Number of rows updated

n_tup_del bigint Number of rows deleted

n_tup_hot_up
d

bigint Number of rows with HOT updates (no
separate index update is required).

14.3.156 PG_STATIO_ALL_INDEXES
PG_STATIO_ALL_INDEXES displays I/O statistics of all indexes in the current
database.

Table 14-221 PG_STATIO_ALL_INDEXES columns

Name Type Description

relid oid OID of the index table

indexrelid oid OID of this index

schemaname name Name of the schema this index is in

relname name Name of the table for this index

indexrelname name Name of this index

idx_blks_read bigint Number of disk blocks read from the index

idx_blks_hit bigint Number of buffer hits in this index

14.3.157 PG_STATIO_ALL_SEQUENCES
PG_STATIO_ALL_SEQUENCES displays the sequence information in the current
database and the I/O statistics of a specified sequence.

Table 14-222 PG_STATIO_ALL_SEQUENCES columns

Name Type Description

relid oid OID of this sequence

schemaname name Name of the schema this sequence is in

relname name Name of this sequence

blks_read bigint Number of disk blocks read from the sequence

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 797

Name Type Description

blks_hit bigint Number of buffer hits in this sequence

14.3.158 PG_STATIO_ALL_TABLES
PG_STATIO_ALL_TABLES displays I/O statistics about all tables (including TOAST
tables) in the current database.

Table 14-223 PG_STATIO_ALL_TABLES columns

Name Type Description

relid oid Table OID

schemaname name Schema name of the table

relname name Name of a table

heap_blks_rea
d

bigint Number of disks read from this table

heap_blks_hit bigint Number of buffer hits in this table

idx_blks_read bigint Number of disk blocks read from the index in
this table

idx_blks_hit bigint Number of buffer hits in all indexes on this
table

toast_blks_rea
d

bigint Number of disk blocks read from the TOAST
table (if any) in this table

toast_blks_hit bigint Number of buffer hits in the TOAST table (if
any) in this table

tidx_blks_read bigint Number of disk blocks read from the TOAST
table index (if any) in this table

tidx_blks_hit bigint Number of buffer hits in the TOAST table index
(if any) in this table

14.3.159 PG_STATIO_SYS_INDEXES
PG_STATIO_SYS_INDEXES displays the I/O status information about all system
catalog indexes in the namespace.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 798

Table 14-224 PG_STATIO_SYS_INDEXES columns

Name Type Description

relid oid Table OID for the index.

indexrelid oid OID of this index.

schemaname name Name of the schema of the index.

relname name Name of the table for this index.

indexrelname name Name of this index.

idx_blks_read bigint Number of disk blocks read from the index.

idx_blks_hit bigint Number of buffer hits in this index.

14.3.160 PG_STATIO_SYS_SEQUENCES
PG_STATIO_SYS_SEQUENCES displays the I/O status information about all the
system sequences in the namespace.

Table 14-225 PG_STATIO_SYS_SEQUENCES columns

Name Type Description

relid oid OID of this sequence

schemaname name Name of the schema this sequence is in

relname name Name of this sequence

blks_read bigint Number of disk blocks read from the
sequence

blks_hit bigint Number of buffer hits in this sequence

14.3.161 PG_STATIO_SYS_TABLES
PG_STATIO_SYS_TABLES displays the I/O status information about all the system
catalogs in the namespace.

Table 14-226 PG_STATIO_SYS_TABLES columns

Name Type Description

relid oid Table OID

schemaname name Schema name of the table

relname name Name of a table

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 799

Name Type Description

heap_blks_read bigint Number of disk blocks read from this
table

heap_blks_hit bigint Number of buffer hits in this table

idx_blks_read bigint Number of disk blocks read from the
index in this table

idx_blks_hit bigint Number of buffer hits in all indexes on
this table

toast_blks_read bigint Number of disk blocks read from the
TOAST table (if any) in this table

toast_blks_hit bigint Number of buffer hits in the TOAST
table (if any) in this table

tidx_blks_read bigint Number of disk blocks read from the
TOAST table index (if any) in this table

tidx_blks_hit bigint Number of buffer hits in the TOAST
table index (if any) in this table

14.3.162 PG_STATIO_USER_INDEXES
PG_STATIO_USER_INDEXES displays the I/O status information about all the user
relationship table indexes in the namespace.

Table 14-227 PG_STATIO_USER_INDEXES columns

Name Type Description

relid oid OID of the table for this index

indexrelid oid OID of this index

schemaname name Name of the schema this index is in

relname name Name of the table for this index

indexrelname name Name of this index

idx_blks_read bigint Number of disk blocks read from the
index

idx_blks_hit bigint Number of buffer hits in this index

14.3.163 PG_STATIO_USER_SEQUENCES
PG_STATIO_USER_SEQUENCES displays the I/O status information about all the
user relation table sequences in the namespace.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 800

Table 14-228 PG_STATIO_USER_SEQUENCES columns

Name Type Description

relid oid OID of this sequence

schemaname name Name of the schema this sequence is
in

relname name Name of this sequence

blks_read bigint Number of disk blocks read from the
sequence

blks_hit bigint Cache hits in the sequence

14.3.164 PG_STATIO_USER_TABLES
PG_STATIO_USER_TABLES displays the I/O status information about all the user
relation tables in the namespace.

Table 14-229 PG_STATIO_USER_TABLES columns

Name Type Description

relid oid Table OID

schemaname name Schema name of the table

relname name Name of a table

heap_blks_read bigint Number of disk blocks read from this table

heap_blks_hit bigint Number of buffer hits in this table

idx_blks_read bigint Number of disk blocks read from the index in
this table

idx_blks_hit bigint Number of buffer hits in all indexes on this
table

toast_blks_read bigint Number of disk blocks read from the TOAST
table (if any) in this table

toast_blks_hit bigint Number of buffer hits in the TOAST table (if
any) in this table

tidx_blks_read bigint Number of disk blocks read from the TOAST
table index (if any) in this table

tidx_blks_hit bigint Number of buffer hits in the TOAST table
index (if any) in this table

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 801

14.3.165 PG_THREAD_WAIT_STATUS
PG_THREAD_WAIT_STATUS allows you to test the block waiting status about the
backend thread and auxiliary thread of the current instance.

Table 14-230 PG_THREAD_WAIT_STATUS columns

Name Type Description

node_name text Current node name

db_name text Database name

thread_name text Thread name

query_id bigint Query ID. It is equivalent to debug_query_id.

tid bigint Thread ID of the current thread

lwtid integer Lightweight thread ID of the current thread

ptid integer Parent thread of the streaming thread

tlevel integer Level of the streaming thread

smpid integer Concurrent thread ID

wait_status text Waiting status of the current thread. For details about
the waiting status, see Table 14-231.

wait_event text If wait_status is acquire lock, acquire lwlock, or
wait io, this column describes the lock, lightweight
lock, and I/O information, respectively. If wait_status
is not any of the three values, this column is empty.

The waiting statuses in the wait_status column are as follows:

Table 14-231 Waiting status list

Value Description

none Waiting for no event

acquire lock Waiting for locking until the locking
succeeds or times out

acquire lwlock Waiting for a lightweight lock

wait io Waiting for I/O completion

wait cmd Waiting for network communication packet
read to complete

wait pooler get conn Waiting for pooler to obtain the connection

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 802

Value Description

wait pooler abort conn Waiting for pooler to terminate the
connection

wait pooler clean conn Waiting for pooler to clear connections

pooler create conn: [nodename],
total N

Waiting for the pooler to set up a
connection. The connection is being
established with the node specified by
nodename, and there are N connections
waiting to be set up.

get conn Obtaining the connection to other nodes

set cmd: [nodename] Waiting for running the SET, RESET,
TRANSACTION BLOCK LEVEL PARA SET, or
SESSION LEVEL PARA SET statement on
the connection. The statement is being
executed on the node specified by
nodename.

cancel query Canceling the SQL statement that is being
executed through the connection

stop query Stopping the query that is being executed
through the connection

wait node: [nodename](plevel),
total N, [phase]

Waiting for receiving the data from a
connected node. The thread is waiting for
the data from the plevel thread of the node
specified by nodename. The data of N
connections is waiting to be returned. If
phase is included, the possible phases are as
follows:
● begin: The transaction is being started.
● commit: The transaction is being

committed.
● rollback: The transaction is being rolled

back.

wait transaction sync: xid Waiting for synchronizing the transaction
specified by xid

wait wal sync Waiting for the completion of wal log of
synchronization from the specified LSN to
the standby instance

wait data sync Waiting for the completion of data page
synchronization to the standby instance

wait data sync queue Waiting for putting the data pages that are
in the row storage or the CU in the column
storage into the synchronization queue

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 803

Value Description

flush data: [nodename](plevel),
[phase]

Waiting for sending data to the plevel
thread of the node specified by nodename.
If phase is included, the possible phase is
wait quota, indicating that the current
communication flow is waiting for the
quota value.

stream get conn: [nodename],
total N

Waiting for connecting to the consumer
object of the node specified by nodename
when the stream flow is initialized. There
are N consumers waiting to be connected.

wait producer ready: [nodename]
(plevel), total N

Waiting for each producer to be ready when
the stream flow is initialized. The thread is
waiting for the procedure of the plevel
thread on the nodename node to be ready.
There are N producers waiting to be ready.

synchronize quit Waiting for the threads in the stream thread
group to quit when the steam plan ends

nodegroup destroy Waiting for destroying the stream node
group when the steam plan ends

wait active statement Waiting for job execution under resource
and load control.

wait global queue Waiting for job execution. The job is
queuing in the global queue.

wait respool queue Waiting for job execution. The job is
queuing in the resource pool.

wait ccn queue Waiting for job execution. The job is
queuing on the central coordinator node
(CCN).

gtm connect Waiting for connecting to GTM.

gtm get gxid Wait for obtaining xids from GTM.

gtm get snapshot Wait for obtaining transaction snapshots
from GTM.

gtm begin trans Waiting for GTM to start a transaction.

gtm commit trans Waiting for GTM to commit a transaction.

gtm rollback trans Waiting for GTM to roll back a transaction.

gtm create sequence Waiting for GTM to create a sequence.

gtm alter sequence Waiting for GTM to modify a sequence.

gtm get sequence val Waiting for obtaining the next value of a
sequence from GTM.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 804

Value Description

gtm set sequence val Waiting for GTM to set a sequence value.

gtm drop sequence Waiting for GTM to delete a sequence.

gtm rename sequece Waiting for GTM to rename a sequence.

analyze: [relname], [phase] The thread is doing ANALYZE to the
relname table. If phase is included, the
possible phase is autovacuum, indicating
that the database automatically enables the
AutoVacuum thread to execute ANALYZE.

vacuum: [relname], [phase] The thread is doing VACUUM to the
relname table. If phase is included, the
possible phase is autovacuum, indicating
that the database automatically enables the
AutoVacuum thread to execute VACUUM.

vacuum full: [relname] The thread is doing VACUUM FULL to the
relname table.

create index An index is being created.

HashJoin - [build hash | write
file]

The HashJoin operator is being executed. In
this phase, you need to pay attention to the
execution time-consuming.
● build hash: The HashJoin operator is

creating a hash table.
● write file: The HashJoin operator is

writing data to disks.

HashAgg - [build hash | write
file]

The HashAgg operator is being executed. In
this phase, you need to pay attention to the
execution time-consuming.
● build hash: The HashAgg operator is

creating a hash table.
● write file: The HashAgg operator is

writing data to disks.

HashSetop - [build hash | write
file]

The HashSetop operator is being executed.
In this phase, you need to pay attention to
the execution time-consuming.
● build hash: The HashSetop operator is

creating a hash table.
● write file: The HashSetop operator is

writing data to disks.

Sort | Sort - write file The Sort operator is being executed. write
file indicates that the Sort operator is
writing data to disks.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 805

Value Description

Material | Material - write file The Material operator is being executed.
write file indicates that the Material
operator is writing data to disks.

wait sync consumer next step The consumer (receive end) synchronously
waits for the next iteration.

wait sync producer next step The producer (transmit end) synchronously
waits for the next iteration.

wait agent release The current agent is being released
(supported by 8.1.2 and later versions).

wait stream task The stream thread is waiting for being
reused (supported by 8.1.2 and later
versions).

If wait_status is acquire lwlock, acquire lock, or wait io, there is an event
performing I/O operations or waiting for obtaining the corresponding lightweight
lock or transaction lock.

The following table describes the corresponding wait events when wait_status is
acquire lwlock. (If wait_event is extension, the lightweight lock is dynamically
allocated and is not monitored.)

Table 14-232 List of wait events corresponding to lightweight locks

wait_event Description

ShmemIndexLock Used to protect the primary index table, a hash
table, in shared memory

OidGenLock Used to prevent different threads from generating
the same OID

XidGenLock Used to prevent two transactions from obtaining
the same XID

ProcArrayLock Used to prevent concurrent access to or concurrent
modification on the ProcArray shared array

SInvalReadLock Used to prevent concurrent execution with invalid
message deletion

SInvalWriteLock Used to prevent concurrent execution with invalid
message write and deletion

WALInsertLock Used to prevent concurrent execution with WAL
insertion

WALWriteLock Used to prevent concurrent write from a WAL
buffer to a disk

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 806

wait_event Description

ControlFileLock Used to prevent concurrent read/write or
concurrent write/write on the pg_control file

CheckpointLock Used to prevent multi-checkpoint concurrent
execution

CLogControlLock Used to prevent concurrent access to or concurrent
modification on the Clog control data structure

MultiXactGenLock Used to allocate a unique MultiXact ID in serial
mode

MultiXactOffsetControl-
Lock

Used to prevent concurrent read/write or
concurrent write/write on pg_multixact/offset

MultiXactMemberControl-
Lock

Used to prevent concurrent read/write or
concurrent write/write on pg_multixact/members

RelCacheInitLock Used to add a lock before any operations are
performed on the init file when messages are
invalid

CheckpointerCommLock Used to send file flush requests to a checkpointer.
The request structure needs to be inserted to a
request queue in serial mode.

TwoPhaseStateLock Used to prevent concurrent access to or
modification on two-phase information sharing
arrays

TablespaceCreateLock Used to check whether a tablespace already exists

BtreeVacuumLock Used to prevent VACUUM from clearing pages that
are being used by B-tree indexes

AutovacuumLock Used to access the autovacuum worker array in
serial mode

AutovacuumScheduleLock Used to distribute tables requiring VACUUM in
serial mode

SyncScanLock Used to determine the start position of a
relfilenode during heap scanning

NodeTableLock Used to protect a shared structure that stores CN
and DN information

PoolerLock Used to prevent two threads from simultaneously
obtaining the same connection from a connection
pool

RelationMappingLock Used to wait for the mapping file between system
catalogs and storage locations to be updated

AsyncCtlLock Used to prevent concurrent access to or concurrent
modification on the sharing notification status

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 807

wait_event Description

AsyncQueueLock Used to prevent concurrent access to or concurrent
modification on the sharing notification queue

SerializableXactHashLock Used to prevent concurrent read/write or
concurrent write/write on a sharing structure for
serializable transactions

SerializableFinishedList-
Lock

Used to prevent concurrent read/write or
concurrent write/write on a shared linked list for
completed serial transactions

SerializablePredicateLock-
ListLock

Used to protect a linked list of serializable
transactions that have locks

OldSerXidLock Used to protect a structure that records serializable
transactions that have conflicts

FileStatLock Used to protect a data structure that stores
statistics file information

SyncRepLock Used to protect Xlog synchronization information
during primary-standby replication

DataSyncRepLock Used to protect data page synchronization
information during primary-standby replication

CStoreColspaceCacheLock Used to add a lock when CU space is allocated for a
column-store table

CStoreCUCacheSweep-
Lock

Used to add a lock when CU caches used by a
column-store table are cyclically washed out

MetaCacheSweepLock Used to add a lock when metadata is cyclically
washed out

DfsConnectorCacheLock Used to protect a global hash table where HDFS
connection handles are cached

dummyServerInfoCache-
Lock

Used to protect a global hash table where the
information about computing Node Group
connections is cached

ExtensionConnectorLi-
bLock

Used to add a lock when a specific dynamic library
is loaded or uninstalled in ODBC connection
initialization scenarios

SearchServerLibLock Used to add a lock on the file read operation when
a specific dynamic library is initially loaded in GPU-
accelerated scenarios

DfsUserLoginLock Used to protect a global linked table where HDFS
user information is stored

DfsSpaceCacheLock Used to ensure that the IDs of files to be imported
to an HDFS table increase monotonically

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 808

wait_event Description

LsnXlogChkFileLock Used to serially update the Xlog flush points for
primary and standby servers recorded in a specific
structure

GTMHostInfoLock Used to prevent concurrent access to or concurrent
modification on GTM host information

ReplicationSlotAllocation-
Lock

Used to add a lock when a primary server allocates
stream replication slots during primary-standby
replication

ReplicationSlotControl-
Lock

Used to prevent concurrent update of replication
slot status during primary-standby replication

ResourcePoolHashLock Used to prevent concurrent access to or concurrent
modification on a resource pool table, a hash table

WorkloadStatHashLock Used to prevent concurrent access to or concurrent
modification on a hash table that contains SQL
requests from the CN side

WorkloadIoStatHashLock Used to prevent concurrent access to or concurrent
modification on a hash table that contains the I/O
information of the current DN

WorkloadCGroupHash-
Lock

Used to prevent concurrent access to or concurrent
modification on a hash table that contains Cgroup
information

OBSGetPathLock Used to prevent concurrent read/write or
concurrent write/write on an OBS path

WorkloadUserInfoLock Used to prevent concurrent access to or concurrent
modification on a hash table that contains user
information about load management

WorkloadRecordLock Used to prevent concurrent access to or concurrent
modification on a hash table that contains requests
received by CNs during adaptive memory
management

WorkloadIOUtilLock Used to protect a structure that records iostat and
CPU load information

WorkloadNodeGroupLock Used to prevent concurrent access to or concurrent
modification on a hash table that contains Node
Group information in memory

JobShmemLock Used to protect global variables in the shared
memory that is periodically read during a scheduled
task where MPP is compatible with Oracle

OBSRuntimeLock Used to obtain environment variables, for example,
GAUSSHOME.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 809

wait_event Description

LLVMDumpIRLock Used to export the assembly language for
dynamically generating functions

LLVMParseIRLock Used to compile and parse a finished IR function
from the IR file at the start position of a query

RPNumberLock Used by a DN on a computing Node Group to
count the number of threads for a task where plans
are being executed

ClusterRPLock Used to control concurrent access on cluster load
data maintained in a CCN of the cluster

CriticalCacheBuildLock Used to load caches from a shared or local cache
initialization file

WaitCountHashLock Used to protect a shared structure in user
statement counting scenarios

BufMappingLock Used to protect operations on a table mapped to
shared buffer

LockMgrLock It is used to protect a common lock structure.

PredicateLockMgrLock Used to protect a lock structure that has
serializable transactions

OperatorRealTLock Used to prevent concurrent access to or concurrent
modification on a global structure that contains
real-time data at the operator level

OperatorHistLock Used to prevent concurrent access to or concurrent
modification on a global structure that contains
historical data at the operator level

SessionRealTLock Used to prevent concurrent access to or concurrent
modification on a global structure that contains
real-time data at the query level

SessionHistLock Used to prevent concurrent access to or concurrent
modification on a global structure that contains
historical data at the query level

CacheSlotMappingLock Used to protect global CU cache information

BarrierLock Used to ensure that only one thread is creating a
barrier at a time

The following table describes the corresponding wait events when wait_status is
wait io.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 810

Table 14-233 List of wait events corresponding to I/Os

wait_event Description

BufFileRead Reads data from a temporary file to a specified
buffer.

BufFileWrite Writes the content of a specified buffer to a
temporary file.

ControlFileRead Reads the pg_control file, mainly during database
startup, checkpoint execution, and primary/standby
verification.

ControlFileSync Flushes the pg_control file to a disk, mainly during
database initialization.

ControlFileSyncUpdate Flushes the pg_control file to a disk, mainly during
database startup, checkpoint execution, and
primary/standby verification.

ControlFileWrite Writes to the pg_control file, mainly during
database initialization.

ControlFileWriteUpdate Updates the pg_control file, mainly during database
startup, checkpoint execution, and primary/standby
verification.

CopyFileRead Reads a file during file copying.

CopyFileWrite Writes a file during file copying.

DataFileExtend Writes a file during file extension.

DataFileFlush Flushes a table data file to a disk.

DataFileImmediateSync Flushes a table data file to a disk immediately.

DataFilePrefetch Reads a table data file asynchronously.

DataFileRead Reads a table data file synchronously.

DataFileSync Flushes table data file modifications to a disk.

DataFileTruncate Truncates a table data file.

DataFileWrite Writes a table data file.

LockFileAddToDataDir-
Read

Reads the postmaster.pid file.

LockFileAddToDataDir-
Sync

Flushes the postmaster.pid file to a disk.

LockFileAddToDataDir-
Write

Writes the PID information into the postmaster.pid
file.

LockFileCreateRead Read the LockFile file %s.lock.

LockFileCreateSync Flushes the LockFile file %s.lock to a disk.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 811

wait_event Description

LockFileCreateWRITE Writes the PID information into the LockFile file
%s.lock.

RelationMapRead Reads the mapping file between system catalogs
and storage locations.

RelationMapSync Flushes the mapping file between system catalogs
and storage locations to a disk.

RelationMapWrite Writes the mapping file between system catalogs
and storage locations.

ReplicationSlotRead Reads a stream replication slot file during a restart.

ReplicationSlotRestore-
Sync

Flushes a stream replication slot file to a disk during
a restart.

ReplicationSlotSync Flushes a temporary stream replication slot file to a
disk during checkpoint execution.

ReplicationSlotWrite Writes a temporary stream replication slot file
during checkpoint execution.

SLRUFlushSync Flushes the pg_clog, pg_subtrans, and
pg_multixact files to a disk, mainly during
checkpoint execution and database shutdown.

SLRURead Reads the pg_clog, pg_subtrans, and pg_multixact
files.

SLRUSync Writes dirty pages into the pg_clog, pg_subtrans,
and pg_multixact files, and flushes the files to a
disk, mainly during checkpoint execution and
database shutdown.

SLRUWrite Writes the pg_clog, pg_subtrans, and pg_multixact
files.

TimelineHistoryRead Reads the timeline history file during database
startup.

TimelineHistorySync Flushes the timeline history file to a disk during
database startup.

TimelineHistoryWrite Writes to the timeline history file during database
startup.

TwophaseFileRead Reads the pg_twophase file, mainly during two-
phase transaction submission and restoration.

TwophaseFileSync Flushes the pg_twophase file to a disk, mainly
during two-phase transaction submission and
restoration.

TwophaseFileWrite Writes the pg_twophase file, mainly during two-
phase transaction submission and restoration.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 812

wait_event Description

WALBootstrapSync Flushes an initialized WAL file to a disk during
database initialization.

WALBootstrapWrite Writes an initialized WAL file during database
initialization.

WALCopyRead Read operation generated when an existing WAL file
is read for replication after archiving and
restoration.

WALCopySync Flushes a replicated WAL file to a disk after
archiving and restoration.

WALCopyWrite Write operation generated when an existing WAL
file is read for replication after archiving and
restoration.

WALInitSync Flushes a newly initialized WAL file to a disk during
log reclaiming or writing.

WALInitWrite Initializes a newly created WAL file to 0 during log
reclaiming or writing.

WALRead Reads data from Xlogs during redo operations on
two-phase files.

WALSyncMethodAssign Flushes all open WAL files to a disk.

WALWrite Writes a WAL file.

The following table describes the corresponding wait events when wait_status is
acquire lock.

Table 14-234 List of wait events corresponding to transaction locks

wait_event Description

relation Adds a lock to a table.

extend Adds a lock to a table being scaled out.

partition Adds a lock to a partitioned table.

partition_seq Adds a lock to a partition of a partitioned table.

page Adds a lock to a table page.

tuple Adds a lock to a tuple on a page.

transactionid Adds a lock to a transaction ID.

virtualxid Adds a lock to a virtual transaction ID.

object Adds a lock to an object.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 813

wait_event Description

cstore_freespace Adds a lock to idle column-store space.

userlock Adds a lock to a user.

advisory Adds an advisory lock.

14.3.166 PG_TABLES
PG_TABLES displays access to each table in the database.

Table 14-235 PG_TABLES columns

Name Type Reference Description

schemana
me

name PG_NAMESPACE.nspname Name of the schema that
contains the table

tablenam
e

name PG_CLASS.relname Name of the table

tableown
er

name pg_get_userbyid(PG_CLAS
S.relowner)

Owner of the table

tablespac
e

name PG_TABLESPACE.spcname Tablespace that contains
the table. The default
value is null

hasindexe
s

boolean PG_CLASS.relhasindex Whether the table has (or
recently had) an index. If
it does, its value is true.
Otherwise, its value is
false.

hasrules boolean PG_CLASS.relhasrules Whether the table has
rules. If it does, its value is
true. Otherwise, its value
is false.

hastrigger
s

boolean PG_CLASS.RELHASTRIGGE
RS

Whether the table has
triggers. If it does, its
value is true. Otherwise,
its value is false.

tablecreat
or

name pg_get_userbyid(PG_OBJE
CT.creator)

Table creator. If the
creator has been deleted,
no value is returned.

created timestam
p with
time zone

PG_OBJECT.ctime Time when the table was
created.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 814

Name Type Reference Description

last_ddl_ti
me

timestam
p with
time zone

PG_OBJECT.mtime Last time when the cluster
was modified.

Example

Query all tables in a specified schema.

SELECT tablename FROM PG_TABLES WHERE schemaname = 'myschema';
 tablename

 inventory
 product
 sales_info
 test1
 mytable
 product_info
 customer_info
 newproducts
 customer_t1
(9 rows)

14.3.167 PG_TDE_INFO
PG_TDE_INFO displays the encryption information about the current cluster.

Table 14-236 PG_TDE_INFO columns

Name Type Description

is_encrypt text Whether the cluster is an encryption cluster
● f: Non-encryption cluster
● t: Encryption cluster

g_tde_algo text Encryption algorithm
● SM4-CTR-128
● AES-CTR-128

remain text Reserved columns

Examples

Check whether the current cluster is encrypted, and check the encryption
algorithm (if any) used by the current cluster.

SELECT * FROM PG_TDE_INFO;
 is_encrypt | g_tde_algo | remain
------------+-------------+--------
 f | AES-CTR-128 | remain
(1 row)

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 815

14.3.168 PG_TIMEZONE_ABBREVS
PG_TIMEZONE_ABBREVS displays all time zone abbreviations that can be
recognized by the input routines.

Table 14-237 PG_TIMEZONE_ABBREVS columns

Name Type Description

abbrev text Time zone abbreviation

utc_offset interval Offset from UTC

is_dst boolean Whether the abbreviation indicates a
daylight saving time (DST) zone. If it does,
its value is true. Otherwise, its value is
false.

14.3.169 PG_TIMEZONE_NAMES
PG_TIMEZONE_NAMES displays all time zone names that can be recognized by
SET TIMEZONE, along with their associated abbreviations, UTC offsets, and
daylight saving time statuses.

Table 14-238 PG_TIMEZONE_NAMES columns

Name Type Description

name text Name of the time zone

abbrev text Time zone name abbreviation

utc_offset interval Offset from UTC

is_dst boolean Whether DST is used. If it is, its value is
true. Otherwise, its value is false.

14.3.170 PG_TOTAL_MEMORY_DETAIL
PG_TOTAL_MEMORY_DETAIL displays the memory usage of a certain node in the
database.

Table 14-239 PG_TOTAL_MEMORY_DETAIL columns

Name Type Description

nodename text Node name

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 816

Name Type Description

memorytype text It can be set to any of the following values:
● max_process_memory: memory used by a

GaussDB(DWS) cluster instance
● process_used_memory: memory used by a

GaussDB(DWS) process
● max_dynamic_memory: maximum

dynamic memory
● dynamic_used_memory: used dynamic

memory
● dynamic_peak_memory: dynamic peak

value of the memory
● dynamic_used_shrctx: maximum dynamic

shared memory context
● dynamic_peak_shrctx: dynamic peak

value of the shared memory context
● max_shared_memory: maximum shared

memory
● shared_used_memory: used shared

memory
● max_cstore_memory: maximum memory

allowed for column store
● cstore_used_memory: memory used for

column store
● max_sctpcomm_memory: maximum

memory allowed for the communication
library

● sctpcomm_used_memory: memory used
for the communication library

● sctpcomm_peak_memory: memory peak
of the communication library

● max_topsql_memory: maximum memory
that can be used by Top SQL to record
historical job monitoring information

● topsql_used_memory: memory used by
Top SQL to record historical job monitoring
information

● topsql_peak_memory: memory peak of
Top SQL to record historical job monitoring
information

● other_used_memory: other used memory
● gpu_max_dynamic_memory: maximum

GPU memory

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 817

Name Type Description

● gpu_dynamic_used_memory: sum of the
available GPU memory and temporary
GPU memory

● gpu_dynamic_peak_memory: maximum
memory used for GPU

● pooler_conn_memory: memory used for
pooler connections

● pooler_freeconn_memory: memory used
for idle pooler connections

● storage_compress_memory: memory used
for column-store compression and
decompression

● udf_reserved_memory: memory reserved
for the UDF Worker process

● mmap_used_memory: memory used for
mmap

memorymbyte
s

integer Size of the used memory (MB)

14.3.171 PG_TOTAL_SCHEMA_INFO
PG_TOTAL_SCHEMA_INFO displays the storage usage of all schemas in each
database. This view is valid only if use_workload_manager is set to on.

Column Type Description

schemaid oid Schema OID

schemanam
e

text Schema name

databaseid oid Database OID

databasena
me

name Database name

usedspace bigint Size of the permanent table storage space used
by the schema, in bytes.

permspace bigint Upper limit of the permanent table storage space
of the schema, in bytes.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 818

14.3.172 PG_TOTAL_USER_RESOURCE_INFO
PG_TOTAL_USER_RESOURCE_INFO displays the resource usage of all users. Only
administrators can query this view. This view is valid only if
use_workload_manager is set to on.

Table 14-240 PG_TOTAL_USER_RESOURCE_INFO columns

Name Type Description

username name Username

used_memory integer Memory used by a user, in MB.
● On a DN, it indicates the memory used by

users on the current DN.
● On a CN, it indicates the total memory

used by users on all DNs.

total_memory integer Memory used by the resource pool, in MB. 0
indicates that the maximum available
memory is not limited and depends on the
maximum available memory of the database
(max_dynamic_memory). The calculation
formula is as follows:
total_memory = max_dynamic_memory *
parent_percent * user_percent
On a CN, it indicates the total maximum
available memory on all DNs.

used_cpu double
precision

Number of CPU cores in use. Only the CPU
usage of complex jobs in the non-default
resource pool is collected, and the value is the
CPU usage of the related cgroup.

total_cpu integer Total number of CPU cores of the Cgroup
associated with a user on the node

used_space bigint Used permanent table storage space (unit:
KB)

total_space bigint Available storage space (unit: KB). -1
indicates that the storage space is not limited.

used_temp_sp
ace

bigint Used temporary table storage space (unit:
KB)

total_temp_sp
ace

bigint Available temporary table storage space (unit:
KB). -1 indicates that the storage space is not
limited.

used_spill_spa
ce

bigint Size of the used operator flushing space, in
KB

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 819

Name Type Description

total_spill_spa
ce

bigint Size of the available operator flushing space,
in KB. The value -1 indicates that the operator
flushing space is not limited.

read_kbytes bigint On a CN, it indicates the total number of
bytes logically read by a user on all DNs in
the last 5 seconds, in KB.
On a DN, it indicates the total number of
bytes logically read by a user from the
instance startup time to the current time, in
KB.

write_kbytes bigint On a CN, it indicates the total number of
bytes logically written by a user on all DNs in
the last 5 seconds, in KB.
On a DN, it indicates the total number of
bytes logically written by a user from the
instance startup time to the current time, in
KB.

read_counts bigint On a CN, it indicates the total number of
logical reads performed by a user on all DNs
in the last 5 seconds.
On a DN, it indicates the total number of
logical reads performed by a user from the
instance startup time to the current time.

write_counts bigint On a CN, it indicates the total number of
logical writes performed by a user on all DNs
in the last 5 seconds.
On a DN, it indicates the total number of
logical writes performed by a user from the
instance startup time to the current time.

read_speed double
precision

On a CN, it indicates the sum of average
logical read rates of a user on all DNs in the
last 5 seconds, in KB/s.
On a DN, it indicates the average logical read
rate of a user on the DN in the last 5 seconds,
in KB/s.

write_speed double
precision

On a CN, it indicates the sum of average
logical write rates of a user on all DNs in the
last 5 seconds, in KB/s.
On a DN, it indicates the average logical write
rate of a user on the DN in the last 5 seconds,
in KB/s.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 820

Name Type Description

send_speed double
precision

On a CN, it indicates the sum of the average
network sending rates of a user on all DNs in
the last 5 seconds, in KB/s.
On a DN, it indicates the average network
sending rate of a user on the DN in the last 5
seconds, in KB/s.

recv_speed double
precision

On a CN, it indicates the sum of the average
network receiving rates of a user on all DNs
in the last 5 seconds, in KB/s.
On a DN, it indicates the average network
receiving rate of a user on the DN in the last
5 seconds, in KB/s.

14.3.173 PG_USER
PG_USER displays information about users who can access the database.

Table 14-241 PG_USER columns

Name Type Description

usename name User name

usesysid oid ID of this user

usecreatedb boolean Whether the user has the permission to create
databases

usesuper boolean whether the user is the initial system administrator
with the highest rights.

usecatupd boolean whether the user can directly update system tables.
Only the initial system administrator whose
usesysid is 10 has this permission. It is not
available for other users.

userepl boolean Whether the user has the permission to duplicate
data streams

passwd text Encrypted user password. The value is displayed as
********.

valbegin timestamp
with time
zone

Account validity start time; null if no start time

valuntil timestamp
with time
zone

Password expiry time; null if no expiration

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 821

Name Type Description

respool name Resource pool where the user is in

parent oid Parent user OID

spacelimit text The storage space of the permanent table.

tempspaceli
mit

text The storage space of the temporary table.

spillspacelimi
t

text The operator disk flushing space.

useconfig text[] Session defaults for run-time configuration
variables

nodegroup name Name of the logical cluster associated with the
user. If no logical cluster is associated, this column
is left blank.

Example

Query the current database user list.

SELECT usename FROM pg_user;
 usename

 dbadmin
 u1
 u2
 u3
(4 rows)

14.3.174 PG_USER_MAPPINGS
PG_USER_MAPPINGS displays information about user mappings.

This is essentially a publicly readable view of PG_USER_MAPPING that leaves out
the options column if the user has no rights to use it.

Table 14-242 PG_USER_MAPPINGS columns

Name Type Reference Description

umid oid PG_USER_MAPPING.oid OID of the user mapping

srvid oid PG_FOREIGN_SERVER.o
id

OID of the foreign server that
contains this mapping

srvname name PG_FOREIGN_SERVER.s
rvname

Name of the foreign server

umuser oid PG_AUTHID.oid OID of the local role being
mapped, 0 if the user mapping is
public

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 822

Name Type Reference Description

usename name - Name of the local user to be
mapped

umoption
s

text[
]

- User mapping specific options. If
the current user is the owner of
the foreign server, its value is
keyword=value strings.
Otherwise, its value is null.

14.3.175 PG_VIEWS
PG_VIEWS displays basic information about each view in the database.

Table 14-243 PG_VIEWS columns

Name Type Reference Description

schemana
me

name PG_NAMESPACE.nspn
ame

Name of the schema that
contains the view

viewname name PG_CLASS.relname View name

viewowne
r

name PG_AUTHID.Erolname Owner of the view

definition text - Definition of the view

Example
Query all the views in a specified schema.

SELECT * FROM pg_views WHERE schemaname = 'myschema';
 schemaname | viewname | viewowner | definition
------------+----------+-----------+--
 myschema | myview | dbadmin | SELECT * FROM pg_tablespace WHERE (pg_tablespace.spcname =
'pg_default'::name);
 myschema | v1 | dbadmin | SELECT * FROM t1 WHERE (t1.c1 > 200);
(2 rows)

14.3.176 PG_WLM_STATISTICS
PG_WLM_STATISTICS displays information about workload management after
the task is complete or the exception has been handled. This view has been
discarded in 8.1.2. You can use PGXC_WLM_SESSION_INFO to view load
management records of completed jobs executed on all CNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 823

Table 14-244 PG_WLM_STATISTICS columns

Name Type Description

statement text Statement executed for exception handling

block_time bigint Block time before the statement is executed

elapsed_time bigint Elapsed time when the statement is executed

total_cpu_time bigint Total time used by the CPU on the DN when the
statement is executed for exception handling

qualification_time bigint Period when the statement checks the
inclination ratio

cpu_skew_percent integer CPU usage skew on the DN when the statement
is executed for exception handling

control_group text Cgroup used when the statement is executed for
exception handling

status text Statement status after it is executed for
exception handling
● pending: The statement is waiting to be

executed.
● running: The statement is being executed.
● finished: The execution is finished normally.
● abort: The execution is unexpectedly

terminated.

action text Actions when statements are executed for
exception handling
● abort indicates terminating the operation.
● adjust indicates executing the Cgroup

adjustment operations. Currently, you can
only perform the demotion operation.

● finish indicates that the operation is normally
finished.

queryid bigint Internal query ID used for statement execution

threadid bigint ID of the backend thread

14.3.177 PGXC_AIO_RESOURCE_POOL_STATS
PGXC_AIO_RESOURCE_POOL_STATS queries the status of the asynchronous I/O
resource pool usage for all nodes in the cluster. This includes the node name, the
name of the asynchronous I/O resource type, the number of asynchronous I/O
resources in use, and the number of idle asynchronous I/O resources. This view is
supported only by 9.1.0.100 and later cluster versions.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 824

Table 14-245 PGXC_AIO_RESOURCE_POOL_STATS columns

Column Type Description

node_na
me

Text Node name.

resource_
name

Text Asynchronous I/O resource type. The options are:
● ASYNC_CONTEXT_TYPE: Asynchronous context

resource in the FPT (Future-Promise-Then)
framework, at the thread level.

● DISK_CACHE_CACHE_BLOCK_TYPE: Instance of
disk cache granularity block.

● DISK_CACHE_PATH_MANAGER_TYPE: Cache path
manager in the disk cache, at the thread level.

● FUTURE_STATE_TYPE: Shared state FutureState of
Future and Promise in the FPT framework.

● FUTURE_TYPE: Future in the FPT framework,
which provides a non-blocking way to get the
result of an asynchronous task.

● OBS_GET_IO_SCHEDULER_PERIODIC_STATS_SYST
EM_MESSAGE_TYPE: System message of type
pgxc_obs_io_scheduler_periodic_stats in the
asynchronous scheduling module statistics view.

● OBS_IO_REQUEST_TYPE: I/O request in the
asynchronous scheduling module.

● OBS_IO_STATS_SYSTEM_MESSAGE_TYPE: System
message of the pgxc_obs_io_scheduler_stats view
in the asynchronous scheduling statistics module.

● OBS_MANAGE_PRIORITY_SYSTEM_MESSAGE_TY
PE: System message used to adjust priority in the
asynchronous scheduling module.

● OBS_SYSTEM_MESSAGE_TYPE: System message in
the asynchronous scheduling module.

● OBS_VFILE_TYPE: Virtual file in OBS, OBS read/
write handle.

● READ_SEGMENT_TYPE: Entity that merges
multiple OBS read requests.

● SHARED_OBS_HANDLE_TYPE: OBS Handler
resource used to connect to the OBS service.

● SHARED_VAR_AUTO_GUARD_TYPE: Thread-level
resource that manages OBS Handler and cached
OBS file streams.

busy_num bigint Number of asynchronous I/O resources in use.

idle_num bigint Number of idle asynchronous I/O resources.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 825

Example
postgres=# select * from PGXC_AIO_RESOURCE_POOL_STATS;
 node_name | resource_name | busy_num | idle_num
--------------+---+----------+----------
 cn_5001 | ASYNC_CONTEXT_TYPE | 0 | 1
 cn_5001 | DISK_CACHE_CACHE_BLOCK_TYPE | 0 | 0
 cn_5001 | DISK_CACHE_PATH_MANAGER_TYPE | 24 | 0
 cn_5001 | FUTURE_STATE_TYPE | 0 | 2
 cn_5001 | FUTURE_TYPE | 0 | 1
 cn_5001 | OBS_GET_IO_SCHEDULER_PERIODIC_STATS_SYSTEM_MESSAGE_TYPE | 0 | 0
 cn_5001 | OBS_IO_REQUEST_TYPE | 0 | 1
 cn_5001 | OBS_IO_STATS_SYSTEM_MESSAGE_TYPE | 0 | 0
 cn_5001 | OBS_MANAGE_PRIORITY_SYSTEM_MESSAGE_TYPE | 0 | 0
 cn_5001 | OBS_SYSTEM_MESSAGE_TYPE | 0 | 0
 cn_5001 | OBS_VFILE_TYPE | 0 | 0
 cn_5001 | READ_SEGMENT_TYPE | 0 | 0
 cn_5001 | SHARED_OBS_HANDLE_TYPE | 0 | 0
 cn_5001 | SHARED_VAR_AUTO_GUARD_TYPE | 0 | 0
 dn_6001_6002 | ASYNC_CONTEXT_TYPE | 0 | 1
 dn_6001_6002 | DISK_CACHE_CACHE_BLOCK_TYPE | 719 | 0
 dn_6001_6002 | DISK_CACHE_PATH_MANAGER_TYPE | 25 | 1
 dn_6001_6002 | FUTURE_STATE_TYPE | 719 | 2
 dn_6001_6002 | FUTURE_TYPE | 0 | 39
 dn_6001_6002 | OBS_GET_IO_SCHEDULER_PERIODIC_STATS_SYSTEM_MESSAGE_TYPE | 0 | 0
 dn_6001_6002 | OBS_IO_REQUEST_TYPE | 0 | 3
 dn_6001_6002 | OBS_IO_STATS_SYSTEM_MESSAGE_TYPE | 0 | 0
 dn_6001_6002 | OBS_MANAGE_PRIORITY_SYSTEM_MESSAGE_TYPE | 0 | 0
 dn_6001_6002 | OBS_SYSTEM_MESSAGE_TYPE | 0 | 0
 dn_6001_6002 | OBS_VFILE_TYPE | 0 | 16
 dn_6001_6002 | READ_SEGMENT_TYPE | 0 | 2
 dn_6001_6002 | SHARED_OBS_HANDLE_TYPE | 0 | 1
 dn_6001_6002 | SHARED_VAR_AUTO_GUARD_TYPE | 0 | 1
 dn_6003_6004 | ASYNC_CONTEXT_TYPE | 0 | 1
 dn_6003_6004 | DISK_CACHE_CACHE_BLOCK_TYPE | 715 | 0
 dn_6003_6004 | DISK_CACHE_PATH_MANAGER_TYPE | 25 | 1
 dn_6003_6004 | FUTURE_STATE_TYPE | 715 | 2
 dn_6003_6004 | FUTURE_TYPE | 0 | 39
 dn_6003_6004 | OBS_GET_IO_SCHEDULER_PERIODIC_STATS_SYSTEM_MESSAGE_TYPE | 0 | 0
 dn_6003_6004 | OBS_IO_REQUEST_TYPE | 0 | 3
 dn_6003_6004 | OBS_IO_STATS_SYSTEM_MESSAGE_TYPE | 0 | 0
 dn_6003_6004 | OBS_MANAGE_PRIORITY_SYSTEM_MESSAGE_TYPE | 0 | 0
 dn_6003_6004 | OBS_SYSTEM_MESSAGE_TYPE | 0 | 0
 dn_6003_6004 | OBS_VFILE_TYPE | 0 | 16
 dn_6003_6004 | READ_SEGMENT_TYPE | 0 | 2
 dn_6003_6004 | SHARED_OBS_HANDLE_TYPE | 0 | 1
 dn_6003_6004 | SHARED_VAR_AUTO_GUARD_TYPE | 0 | 1
(42 rows)

14.3.178 PGXC_BULKLOAD_PROGRESS
PGXC_BULKLOAD_PROGRESS displays the progress of the service import. Only
GDS common files can be imported. This view is accessible only to users with
system administrators rights.

Table 14-246 PGXC_BULKLOAD_PROGRESS columns

Name Type Description

session_id bigint GDS session ID

query_id bigint Query ID. It is equivalent to
debug_query_id.

query text Query statement

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 826

Name Type Description

progress text Progress percentage

14.3.179 PGXC_BULKLOAD_INFO
By querying the PGXC_BULKLOAD_INFO view on CNs, you can obtain historical
statistics information for interconnection, GDS, COPY, and \COPY business
executions after they have completed. This view summarizes the historical
execution information of import and export business that have already completed
on each node of the current cluster (including the interconnection cluster address,
import and export business type, maximum, minimum, and total number of rows
and bytes written to disk on DNs, etc.), to obtain historical information on import
and export business execution and assist in performance troubleshooting.

This view does not record abnormal interruptions of import and export jobs. The
data is directly obtained from the system catalog GS_WLM_SESSION_INFO, and
the loader_status field is parsed to obtain import and export service information.

System administrator rights are required to access this view.

Table 14-247 PGXC_BULKLOAD_INFO columns

Column Type Description

datid oid OID of the database the backend is
connected to.

dbname text Name of the database the backend is
connected to.

schemaname text Schema name.

nodename text Name of the CN where the statement is
run.

username text Username for connecting to the backend.

application_na
me

text Name of the application that is
connected to the backend.

client_addr inet IP address of the client connected to the
backend. If this column is null, it
indicates that the client is connected via
a Unix socket on the server machine or
that it is an internal process, such as
autovacuum.

client_hostnam
e

text Host name of the client, which is
obtained by reverse DNS lookup of
client_addr. This column is only non-null
when log_hostname is enabled and IP
connection is used.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 827

Column Type Description

client_port integer TCP port number used by the client to
communicate with the backend. If a Unix
socket is used, it is –1.

query_band text Job type, which can be set through the
GUC parameter query_band and is null
string by default.

block_time bigint Blocking time before statement
execution, including statement parsing
and optimization time, in milliseconds.

start_time timestamp with
time zone

Start time of statement execution.

finish_time timestamp with
time zone

End time of statement execution.

status text End status of statement execution:
finished for normal and aborted for
abnormal. The statement status recorded
here should be the database server
execution status. When the server-side
execution is successful and an error
occurs when the result set is returned,
the statement should be finished.

queryid bigint Internal query ID used for statement
execution.

query text Executed statement.

session_id text A session uniquely identified in the
database system, in the format of
session_start_time.tid.node_name.

address text Server address of the interconnection
peer cluster. When not empty, it indicates
an interconnection service, and the
source cluster will additionally obtain the
remote cluster port number.

direction text Type of import and export service,
including gds to file, gds from file, gds
to pipe, gds from pipe, copy from, and
copy to.

min_done_lines json Minimum number of rows of a
statement across all DNs.

max_done_line
s

json Maximum number of rows of a
statement across all DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 828

Column Type Description

total_done_line
s

json Total number of rows of a statement
across all DNs.

min_done_byte
s

json Minimum number of bytes of a
statement across all DNs.

max_done_byte
s

json Maximum number of bytes of a
statement across all DNs.

total_done_byt
es

json Total number of bytes of a statement
across all DNs.

NO TE

● Abnormal interruptions of import and export jobs are not recorded in the view.
● The implementation mechanism of GDS foreign tables and interconnection foreign

tables is different. When querying, GDS records the full amount, while interconnection
records the actual amount.

● For non-full import and export foreign tables with a limit, due to the special execution
plan of limit, the data displayed is collected from one DN, which appears as a maximum
value of all and a minimum value of 0.

● If the import and export table is a non-partitioned table:
● When the GDS partitioned table is small, if one DN has finished collecting data

and the other DNs have not started collecting data, they will not collect data.
Therefore, when the data volume of GDS from non-partitioned tables is small, the
minimum value may be 0, but it is not 0 when the table data volume is large.

● When exporting non-partitioned tables from the interconnection source cluster, all
DNs will be recorded, and only one DN's data will be collected, so the minimum
value is 0.

● When exporting replication tables from the interconnection remote cluster, only
one DN will be recorded, so it is equivalent to having only one DN, and the
minimum and maximum values are the same.

● Historical monitoring of import and export is implemented by reusing the historical
TopSQL function, which follows the precautions, prerequisites, and operation steps of
TopSQL. For details, refer to Historical Top SQL.

● Due to the large amount of data recorded by TopSQL, you are advised to query and use
it as needed by combining fields such as start_time and finish_time to improve query
performance, or to reduce query frequency.

Example
Use the PGXC_BULKLOAD_INFO view to query interconnection import service.

SELECT * FROM PGXC_BULKLOAD_INFO;
 datid | dbname | schemaname | nodename | username | application_name | client_addr |
client_hostname | client_port | query_band | block_time | start_time | finish_time |
statu
s | queryid
|
query
 | session_id | address
| direction | min_done_lines | max_done_lines | total_done_lines | min_done_by
tes | max_done_bytes | total_done_bytes
-------+----------+----------------+--------------+----------------+------------------+-------------+-----------------

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 829

+-------------+------------+------------+-------------------------------+-------------------------------+-------
---+-------------------
+--
--
--
+---+-------------------+---------------+----------------+----------------
+------------------+------------
----+----------------+------------------
 16134 | postgres | "$user",public | coordinator1 | interconn_user | gsql | | |
-1 | | 0 | 2023-09-25 10:27:47.184696+08 | 2023-09-25 10:27:48.709665+08 | finish
ed | 72339069014639035 | INSERT INTO interconn_user.lineitem_dest SELECT * FROM
interconn_user.ft_lineitem_local;

 | 1695608841.140482657154648.coordinator1 |
10.90.45.56:63755 | gds from pipe | 19479 | 20971 | 60175 | 3251258
 | 3500876 | 10038234
 16134 | postgres | "$user",public | coordinator1 | interconn_user | interconnection | 10.90.45.56 |
| 47668 | | 0 | 2023-09-25 10:27:47.256095+08 | 2023-09-25 10:27:48.582366+08 | finish
ed | 72339069014639046 | INSERT INTO pg_temp.ft_lineitem_local_72339069014639035_wo SELECT
l_orderkey, l_partkey, l_suppkey, l_linenumber, l_quantity, l_extendedprice, l_discount, l_tax, l_returnflag,
l_linestatus, l_shipdate, l_c
ommitdate, l_receiptdate, l_shipinstruct, l_shipmode, l_comment FROM public.lineitem; |
1695608867.140482657156768.coordinator1 | 10.90.45.56 | gds to pipe | 19476 | 20934 |
60175 | 3249308
 | 3489789 | 10038234
(2 rows)

14.3.180 PGXC_BULKLOAD_STATISTICS
PGXC_BULKLOAD_STATISTICS displays real-time statistics about service
execution, such as GDS, COPY, and \COPY, on a CN. This view summarizes the
real-time execution status of import and export services that are being executed
on each node in the current cluster. In this way, you can monitor the real-time
progress of import and export services and locate performance problems.

Columns in PGXC_BULKLOAD_STATISTICS are the same as those in
PG_BULKLOAD_STATISTICS. This is because PGXC_BULKLOAD_STATISTICS is
essentially the summary result of querying PG_BULKLOAD_STATISTICS on each
node in the cluster.

This view is accessible only to users with system administrators rights.

Table 14-248 PGXC_BULKLOAD_STATISTICS columns

Name Type Description

node_name text Node name

db_name text Database name

query_id bigint Query ID. It is equivalent to
debug_query_id.

tid bigint ID of the current thread

lwtid integer Lightweight thread ID

session_id bigint GDS session ID

direction text Service type. The options are gds to
file, gds from file, gds to pipe, gds
from pipe, copy from, and copy to.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 830

query text Query statement

address text Location of the foreign table used for
data import and export

query_start timestamp with
time zone

Start time of data import or export

total_bytes bigint Total size of data to be processed
This parameter is specified only when a
GDS common file is to be imported and
the record in the row comes from a CN.
Otherwise, left this parameter
unspecified.

phase text Current phase. The options are
INITIALIZING, TRANSFER_DATA, and
RELEASE_RESOURCE.

done_lines bigint Number of lines that have been
transferred

done_bytes bigint Number of bytes that have been
transferred

14.3.181 PGXC_COLUMN_TABLE_IO_STAT
PGXC_COLUMN_TABLE_IO_STAT provides I/O statistics of all column-store tables
of the database on all CNs and DNs in the cluster. Except the nodename column
of the name type added in front of each row, the names, types, and sequences of
other columns are the same as those in the GS_COLUMN_TABLE_IO_STAT view.
For details about the columns, see Table 14-249.

Table 14-249 GS_COLUMN_TABLE_IO_STAT columns

Name Type Description

schemaname name Namespace of a table

relname name Table name

heap_read bigint Number of blocks logically read in the heap

heap_hit bigint Number of block hits in the heap

idx_read bigint Number of blocks logically read in the index

idx_hit bigint Number of block hits in the index

cu_read bigint Number of logical reads in the Compression
Unit

cu_hit bigint Number of hits in the Compression Unit

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 831

Name Type Description

cidx_read bigint Number of indexes logically read in the
Compression Unit

cidx_hit bigint Number of index hits in the Compression
Unit

14.3.182 PGXC_COMM_CLIENT_INFO
PGXC_COMM_CLIENT_INFO stores the client connection information of all nodes.
(You can query this view on a DN to view the information about the connection
between the CN and DN.)

Table 14-250 PGXC_COMM_CLIENT_INFO columns

Name Type Description

node_name text Current node name.

app text Client application name

tid bigint Thread ID of the current thread.

lwtid integer Lightweight thread ID of the current thread.

query_id bigint Query ID. It is equivalent to debug_query_id.

socket integer It is displayed if the connection is a physical
connection.

remote_ip text Peer node IP address.

remote_port text Peer node port.

logic_id integer If the connection is a logical connection, sid is
displayed. If -1 is displayed, the current
connection is a physical connection.

14.3.183 PGXC_COMM_DELAY
PGXC_COMM_STATUS displays the communication library delay status for all the
DNs.

Table 14-251 PGXC_COMM_DELAY columns

Name Type Description

node_name text Node name

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 832

Name Type Description

remote_name text Name of the peer node with the maximum
connection latency.

remote_host text IP address of the peer

stream_num integer Number of logical stream connections used
by the current physical connection

min_delay integer Minimum delay of the current physical
connection. The unit is microsecond.

average integer Average delay of the current physical
connection. The unit is microsecond.

max_delay integer Maximum delay of the current physical
connection. The unit is microsecond.
NOTE

If its value is -1, the latency detection has timed
out. In this case, re-establish the connection
between nodes and then perform the query.

14.3.184 PGXC_COMM_RECV_STREAM
PG_COMM_RECV_STREAM displays the receiving stream status of the
communication libraries for all the DNs.

Table 14-252 PGXC_COMM_RECV_STREAM columns

Name Type Description

node_name text Node name

local_tid bigint ID of the thread using this stream

remote_name text Name of the peer node

remote_tid bigint Peer thread ID

idx integer Peer DN ID in the local DN

sid integer Stream ID in the physical connection

tcp_sock integer TCP socket used in the stream

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 833

Name Type Description

state text Current status of the stream
● UNKNOWN: The logical connection is

unknown.
● READY: The logical connection is ready.
● RUN: The logical connection receives

packets normally.
● HOLD: The logical connection is waiting to

receive packets.
● CLOSED: The logical connection is closed.
● TO_CLOSED: The logical connection is to be

closed.
● WRITING: Data is being written.

query_id bigint debug_query_id corresponding to the stream

pn_id integer plan_node_id of the query executed by the
stream

send_smp integer smpid of the sender of the query executed by
the stream

recv_smp integer smpid of the receiver of the query executed by
the stream

recv_bytes bigint Total data volume received from the stream.
The unit is byte.

time bigint Current life cycle service duration of the
stream. The unit is ms.

speed bigint Average receiving rate of the stream. The unit
is byte/s.

quota bigint Current communication quota value of the
stream. The unit is Byte.

buff_usize bigint Current size of the data cache of the stream.
The unit is byte.

14.3.185 PGXC_COMM_SEND_STREAM
PGXC_COMM_SEND_STREAM displays the sending stream status of the
communication libraries for all the DNs.

Table 14-253 PGXC_COMM_SEND_STREAM columns

Name Type Description

node_name text Node name

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 834

Name Type Description

local_tid bigint ID of the thread using this stream

remote_name text Name of the peer node

remote_tid bigint Peer thread ID

idx integer Peer DN ID in the local DN

sid integer Stream ID in the physical connection

tcp_sock integer TCP socket used in the stream

state text Current status of the stream.
● UNKNOWN: The logical connection is

unknown.
● READY: The logical connection is ready.
● RUN: The logical connection sends packets

normally.
● HOLD: The logical connection is waiting to send

packets.
● CLOSED: The logical connection is closed.
● TO_CLOSED: The logical connection is to be

closed.
● WRITING: Data is being written.

query_id bigint debug_query_id corresponding to the stream

pn_id integer plan_node_id of the query executed by the stream

send_smp integer smpid of the sender of the query executed by the
stream

recv_smp integer smpid of the receiver of the query executed by the
stream

send_bytes bigint Total data volume sent by the stream. The unit is
Byte.

time bigint Current life cycle service duration of the stream.
The unit is ms.

speed bigint Average sending rate of the stream. The unit is
Byte/s.

quota bigint Current communication quota value of the stream.
The unit is Byte.

wait_quota bigint Extra time generated when the stream waits the
quota value. The unit is ms.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 835

14.3.186 PGXC_COMM_STATUS
PGXC_COMM_STATUS displays the communication library status for all the DNs.

Table 14-254 PGXC_COMM_STATUS columns

Name Type Description

node_name text Node name

rxpck/s integer Receiving rate of the communication library on
a node. The unit is byte/s.

txpck/s integer Sending rate of the communication library on
a node. The unit is byte/s.

rxkB/s bigint Receiving rate of the communication library on
a node. The unit is KB/s.

txkB/s bigint Sending rate of the communication library on
a node. The unit is KB/s.

buffer bigint Size of the buffer of the Cmailbox.

memKB(libcomm) bigint Communication memory size of the libcomm
process, in KB.

memKB(libpq) bigint Communication memory size of the libpq
process, in KB.

%USED(PM) integer Real-time usage of the postmaster thread.

%USED (sflow) integer Real-time usage of the
gs_sender_flow_controller thread.

%USED (rflow) integer Real-time usage of the
gs_receiver_flow_controller thread.

%USED (rloop) integer Highest real-time usage among multiple
gs_receivers_loop threads.

stream integer Total number of used logical connections.

14.3.187 PGXC_COMM_QUERY_SPEED
PGXC_COMM_QUERY_SPEED displays traffic information about all queries on all
nodes.

Table 14-255 PGXC_COMM_QUERY_SPEED columns

Name Type Description

node_name text Node name

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 836

Name Type Description

query_id bigint debug_query_id corresponding to the
stream

rxkB/s bigint Receiving rate of the query stream (unit:
byte/s)

txkB/s bigint Sending rate of the query stream (unit:
byte/s)

rxkB bigint Total received data of the query stream
(unit: byte)

txkB bigint Total sent data of the query stream (unit:
byte)

rxpck/s bigint Packet receiving rate of the query (unit:
packets/s)

txpck/s bigint Packet sending rate of the query (Unit:
packets/s)

rxpck bigint Total number of received packets of the
query

txpck bigint Total number of sent packets of the query

14.3.188 PGXC_DEADLOCK
PGXC_DEADLOCK displays lock wait information generated due to distributed
deadlocks.

Currently, PGXC_DEADLOCK collects only lock wait information about locks whose
locktype is relation, partition, page, tuple, or transactionid.

Table 14-256 PGXC_DEADLOCK columns

Name Type Description

locktype text Type of the locked object

nodename name Name of the node where the locked object
resides

dbname name Name of the database where the locked object
resides. The value is NULL if the locked object
is a transaction.

nspname name Name of the namespace of the locked object

relname name Name of the relation targeted by the lock. The
value is NULL if the object is not a relation or
part of a relation.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 837

Name Type Description

partname name Name of the partition targeted by the lock. The
value is NULL if the locked object is not a
partition.

page integer Number of the page targeted by the lock. The
value is NULL if the locked object is neither a
page nor a tuple.

tuple smallint Number of the tuple targeted by the lock. The
value is NULL if the locked object is not a
tuple.

transactioni
d

xid ID of the transaction targeted by the lock. The
value is NULL if the locked object is not a
transaction.

waituserna
me

name Name of the user who waits for the lock

waitgxid xid ID of the transaction that waits for the lock

waitxactstar
t

timestamp with
time zone

Start time of the transaction that waits for the
lock

waitqueryid bigint Latest query ID of the thread that waits for the
lock

waitquery text Latest query statement of the thread that waits
for the lock

waitpid bigint ID of the thread that waits for the lock

waitmode text Mode of the waited lock

holduserna
me

name Name of the user who holds the lock

holdgxid xid ID of the transaction that holds the lock

holdxactstar
t

timestamp with
time zone

Start time of the transaction that holds the
lock

holdqueryid bigint Latest query ID of the thread that holds the
lock

holdquery text Latest query statement of the thread that holds
the lock

holdpid bigint ID of the thread that holds the lock

holdmode text Mode of the held lock

waittime timestamp with
time zone

Timestamp when the lock wait starts.
This column is available only in clusters of
version 9.1.0.200 or later.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 838

Name Type Description

holdtime timestamp with
time zone

Timestamp when the lock starts to be held.
This column is available only in clusters of
version 9.1.0.200 or later.

14.3.189 PGXC_DISK_CACHE_STATS
PGXC_DISK_CACHE_STATS records the usage of file cache. This system view is
supported only by clusters of version 9.1.0 or later.

Table 14-257 PGXC_DISK_CACHE_STATS columns

Column Type Description

node_name text Node name.

total_read bigint Total number of accesses
to disk cache.

local_read bigint Total number of times
disk cache reads from
local disk.

remote_read bigint Total number of times
disk cache reads from
remote storage.

hit_rate numeric(5,2) Hit rate of disk cache.

cache_size bigint Total size of data saved
in disk cache, in KB.

fill_rate numeric(5,2) Fill rate of disk cache.

Example
Query the hit rate of disk cache on each node.

SELECT hit_rate FROM pgxc_disk_cache_stats;
 hit_rate

 56.91
 56.85
 NaN
 NaN
 NaN
 NaN
(6 rows)

14.3.190 PGXC_DISK_CACHE_ALL_STATS
PGXC_DISK_CACHE_ALL_STATS records all usage of file cache. This system view is
supported only by clusters of version 9.1.0 or later.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 839

Table 14-258 PGXC_DISK_CACHE_ALL_STATS columns

Column Type Description

node_name text Node name.

total_read bigint Total number of accesses to disk
cache.

local_read bigint Total number of times disk cache
accesses local disk.

remote_read bigint Total number of times disk cache
accesses remote storage.

hit_rate numeric(5,2) Hit rate of disk cache.

cache_size bigint Total size of data saved in disk
cache, in KB.

fill_rate numeric(5,2) Fill rate of disk cache.

temp_file_size bigint Total size of temporary/cold
cache files, in KB.

a1in_size bigint Total size of data saved in the
a1in queue of disk cache, in KB.

a1out_size bigint Total size of data saved in the
a1out queue of disk cache, in
KB.

am_size bigint Total size of data saved in the
am queue of disk cache, in KB.

a1in_fill_rate numeric(5,2) Fill rate of the a1in queue in
disk cache.

a1out_fill_rate numeric(5,2) Fill rate of the a1out queue in
disk cache.

am_fill_rate numeric(5,2) Fill rate of the am queue in disk
cache.

fd integer Number of file descriptors
currently in use by disk cache.

pin_block_count bigint Number of pinned blocks in disk
cache. This field is supported
only by 9.1.0.100 and later
cluster versions.

Example
Query the number of file descriptors used by disk cache on each node.
SELECT fd FROM pgxc_disk_cache_all_stats;
 fd

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 840

 1000
 1000
 0
 0
 0
 0
(6 rows)

14.3.191 PGXC_DISK_CACHE_PATH_INFO
PGXC_DISK_CACHE_PATH_INFO records information about the hard disk where
the file cache is stored. This system view is supported only by clusters of version
9.1.0 or later.

Table 14-259 PGXC_DISK_CACHE_PATH_INFO columns

Column Type Description

path_name text Path name.

node_name text Name of the node the hard disk belongs
to.

cache_size bigint Total size of cache files in the hard disk, in
bytes.

disk_available bigint Available space in the hard disk, in bytes.

disk_size bigint Total capacity of the hard drive, in bytes.

disk_use_ratio double
precision

Disk space usage.

Example
Query information about the hard disk used by the file cache.

SELECT * FROM pgxc_disk_cache_path_info order by 1;
 path_name | node_name | cache_size | disk_available | disk_size | disk_use_ratio
----------------+--------------+------------+----------------+--------------+------------------
 dn_6001_6002_0 | dn_6001_6002 | 19619 | 137401716736 | 160982630400 | .146481105479564
 dn_6001_6002_1 | dn_6001_6002 | 35968 | 137401716736 | 160982630400 | .146481105479564
 dn_6003_6004_0 | dn_6003_6004 | 27794 | 121600655360 | 160982630400 | .244634933235629
 dn_6003_6004_1 | dn_6003_6004 | 26158 | 121600655360 | 160982630400 | .244634933235629
 dn_6005_6006_0 | dn_6005_6006 | 24533 | 134394839040 | 160982630400 | .165159379579873
 dn_6005_6006_1 | dn_6005_6006 | 31065 | 134394839040 | 160982630400 | .165159379579873

14.3.192 PGXC_GET_STAT_ALL_TABLES
PGXC_GET_STAT_ALL_TABLES displays information about insertion, update, and
deletion operations on tables and the dirty page rate of tables.

Before running VACUUM FULL on a system catalog with a high dirty page rate,
ensure that no user is performing operations on it.

You are advised to run VACUUM FULL to tables (excluding system catalogs)
whose dirty page rate exceeds 80% or run it based on service scenarios.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 841

NO TE

For clusters of 8.2.0.100 or later, PGXC_STAT_TABLE_DIRTY is recommended for querying
the dirty page rate.

Table 14-260 PGXC_GET_STAT_ALL_TABLES columns

Name Type Description

relid oid Table OID

relname name Table name

schemaname name Schema name of the table

n_tup_ins numeric Number of inserted tuples

n_tup_upd numeric Number of updated tuples

n_tup_del numeric Number of deleted tuples

n_live_tup numeric Number of live tuples

n_dead_tup numeric Number of dead tuples

dirty_page_rate numeric(5,2
)

Dirty page rate (%) of a table

Examples

Use the view PGXC_GET_STAT_ALL_TABLES to query the tables whose dirty page
rate is greater than 30%.

SELECT * FROM PGXC_GET_STAT_ALL_TABLES WHERE dirty_page_rate>30;
 relid | relname | schemaname | n_tup_ins | n_tup_upd | n_tup_del | n_live_tup | n_dead_tup |
dirty_page_rate
-------+-------------------------+------------+-----------+-----------+-----------+------------+------------
+-----------------
 2840 | pg_toast_2619 | pg_toast | 7415 | 0 | 7415 | 0 | 291 | 88.00
 9001 | pgxc_class | pg_catalog | 56331 | 3 | 56285 | 54 | 143 | 72.59
 53860 | reason | dbadmin | 9 | 19 | 0 | 9 | 19 | 67.86
 9025 | pg_object | pg_catalog | 112858 | 1179707 | 112619 | 246 | 429 |
63.56
 9015 | pgxc_node | pg_catalog | 15 | 24 | 0 | 15 | 24 | 61.54
 2606 | pg_constraint | pg_catalog | 78 | 0 | 42 | 36 | 42 | 53.85
 1260 | pg_authid | pg_catalog | 6 | 6 | 0 | 6 | 6 | 50.00
(7 rows)

14.3.193 PGXC_GET_STAT_ALL_PARTITIONS
PGXC_GET_STAT_ALL_PARTITIONS displays information about insertion, update,
and deletion operations on partitions of partitioned tables and the dirty page rate
of tables.

The statistics of this view depend on the ANALYZE operation. To obtain the most
accurate information, perform the ANALYZE operation on the partitioned table
first.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 842

NO TE

For clusters of 8.2.0.100 or later, PGXC_STAT_TABLE_DIRTY is recommended for querying
the dirty page rate.

Table 14-261 PGXC_GET_STAT_ALL_PARTITIONS columns

Name Type Description

relid oid Table OID

partid oid Partition OID

schemaname name Schema name of the table

relname name Table name

partname name Partition name

n_tup_ins numeric Number of inserted tuples

n_tup_upd numeric Number of updated tuples

n_tup_del numeric Number of deleted tuples

n_live_tup numeric Number of live tuples

n_dead_tup numeric Number of dead tuples

page_dirty_rate numeric(5,2
)

Dirty page rate (%) of a table

Example
Query partition tables whose dirty page rate is greater than 30%.

SELECT * FROM PGXC_GET_STAT_ALL_PARTITIONS WHERE dirty_page_rate>30;
 relid | partid | schemaname | relname | partname | n_tup_ins | n_tup_upd | n_tup_del | n_live_tup
| n_dead_tup | dirty_page_rate
-------+--------+-----------------+--------------------+----------+-----------+-----------+-----------+------------
+------------+-----------------
 58320 | 58626 | schema_subquery | store_hash_par | p1 | 2 | 0 | 2 | 0 | 2
| 100.00
 58430 | 58706 | schema_subquery | store_hash_par_mor | p4 | 1 | 1 | 1 | 0 |
2 | 100.00
 58320 | 58644 | schema_subquery | store_hash_par | p1 | 3 | 0 | 3 | 0 | 3
| 100.00
 58430 | 58770 | schema_subquery | store_hash_par_mor | p4 | 1 | 1 | 1 | 0 |
2 | 100.00
 58320 | 58643 | schema_subquery | store_hash_par | p1 | 2 | 0 | 2 | 0 | 2
| 100.00
 58320 | 58625 | schema_subquery | store_hash_par | p1 | 2 | 0 | 2 | 0 | 2
| 100.00
 58320 | 58579 | schema_subquery | store_hash_par | p1 | 2 | 0 | 2 | 0 | 2
| 100.00
 58320 | 58619 | schema_subquery | store_hash_par | p1 | 3 | 0 | 3 | 0 | 3
| 100.00
 58320 | 58627 | schema_subquery | store_hash_par | p1 | 4 | 0 | 4 | 0 | 4
| 100.00
 58320 | 58657 | schema_subquery | store_hash_par | p1 | 3 | 0 | 3 | 0 | 3
| 100.00
(10 rows)

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 843

14.3.194 PGXC_GET_TABLE_SKEWNESS
PGXC_GET_TABLE_SKEWNESS displays the data skew on tables in the current
database. Only the system administrator or the preset role gs_role_read_all_stats
can access this view.

Table 14-262 PGXC_GET_TABLE_SKEWNESS columns

Name Type Description

schemaname name Schema name of a table

tablename name Name of a table

totalsize numeric Total size of a table, in bytes

avgsize numeric(1000,
0)

Average table size (total table size
divided by the number of DNs),
which is the ideal size of tables
distributed on each DN

maxratio numeric(10,3) Ratio of the maximum table size
on a single DN to to avgsize

minratio numeric(10,3) Ratio of the minimum table size on
a single DN to avgsize

skewsize bigint Table skew rate (the maximum
table size on a single DN minus the
minimum table size on a single
DN)

skewratio numeric(10,3) Table skew rate (skewsize/avgsize)

skewstddev numeric(1000,
0)

Standard deviation of table
distribution (For two tables of the
same size, a larger deviation
indicates a more severe skew.)

14.3.195 PGXC_GTM_SNAPSHOT_STATUS
PGXC_GTM_SNAPSHOT_STATUS displays transaction information on the current
GTM.

Table 14-263 PGXC_GTM_SNAPSHOT_STATUS columns

Name Type Description

xmin xid Minimum ID of the running transactions

xmax xid ID of the transaction next to the executed
transaction with the maximum ID

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 844

Name Type Description

csn integer Sequence number of the transaction to
be committed

oldestxmin xid Minimum ID of the executed transactions

xcnt integer Number of the running transactions

running_xids text IDs of the running transactions

14.3.196 PGXC_INSTANCE_TIME
PGXC_INSTANCE_TIME displays the running time of processes on each node in
the cluster and the time consumed in each execution phase. Except the
node_name column, the other columns are the same as those in the
PV_INSTANCE_TIME view. Only the system administrator or the preset role
gs_role_read_all_stats can access this view.

Table 14-264 PGXC_INSTANCE_TIME columns

Name Type Description

node_name text Node name

stat_id integer Type ID

stat_name text Name of the runtime type

value bigint Runtime value

14.3.197 PGXC_LOCKWAIT_DETAIL
PGXC_LOCKWAIT_DETAIL displays detailed information about the lock wait
hierarchy on each node in a cluster. If a node has multiple lock wait levels, the
entire lock waiting hierarchy is displayed in sequence.

This view is supported only by clusters of version 8.1.3.200 or later.

Table 14-265 PGXC_LOCKWAIT_DETAIL columns

Name Type Description

level integer Level in the lock wait hierarchy. The value starts
with 1 and increases by 1 when there is a wait
relationship.

node_name name Node name, corresponding to the node_name
column in the pgxc_node table.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 845

Name Type Description

lock_wait_hi
erarchy

text Lock wait hierarchy , in the format of Node
name: Process ID->Waiting process ID->Waiting
process ID->...

lock_type text Type of the locked object

database oid OID of the database where the locked object is.

relation oid OID of the relationship of the locked object.

page integer Page index in a relationship

tuple smallint Row number of a page.

virtual_xid text Virtual ID of a transaction.

transaction_i
d

xid Transaction ID.

class_id oid OID of the system catalog that contains the
object.

obj_id oid OID of the object within its system catalog.

obj_subid smallint Column number of a table

virtual_trans
action

text Virtual ID of the transaction holding or waiting
for the lock.

pid bigint ID of the thread holding or awaiting this lock

mode text Lock level

granted boolean Indicates whether a lock is held.

fastpath boolean Indicates whether to obtain a lock using
FASTPATH.

wait_for_pid bigint ID of the thread where a lock conflict occurs.

conflict_mod
e

text Level of the conflicted lock held by the thread
where it is

query_id bigint ID of a query statement.

query text Query statement

application_
name

text Name of the application connected to the
backend

backend_star
t

timestamp
with time
zone

Startup time of the backend process, that is, the
time when the client connects to the server

xact_start timestamp
with time
zone

Start time of the current transaction

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 846

Name Type Description

query_start timestamp
with time
zone

Start time of the active query

state text Overall state of the backend

waittime timestamp
with time
zone

Timestamp when the lock wait starts.
This column is available only in clusters of
version 9.1.0.200 or later.

holdtime timestamp
with time
zone

Timestamp when the lock starts to be obtained.
This column is available only in clusters of
version 9.1.0.200 or later.

Example

Step 1 Connect to the DN, start a transaction, and run the following command:
begin;select * from t1;

Step 2 Connect to the CN in another window and truncate table t1.
truncate t1;

In this case, truncation is blocked.

Step 3 Open another window to connect to the CN and run the select * from
pgxc_lockwait_detail; command.
SELECT * FROM PGXC_LOCKWAIT_DETAIL;
level | node_name | lock_wait_hierarchy | lock_type | database | relation | page | tuple |
virtual_xid | transaction_id | class_id | obj_id | obj_subid | virtual_transaction | p
id | mode | granted | fastpath | wait_for_pid | conflict_mode | query_id
| query | application_name | backend_start |
xact_start | query_start | state
-------+-----------+--+-----------+----------+------------+------+-------
+-------------+----------------+----------+--------+-----------+---------------------+--------
---------+---------------------+---------+----------+-----------------+-----------------+-------------------
+--+------------------+-------------------------------+--
-----------------------------+-------------------------------+---------------------
1 | datanode1 | datanode1:140378619314976 | relation | 16049 | 2147484411 | |
| | 673638 | | | | 19/297 | 1403786
19314976 | AccessExclusiveLock | f | f | 140378619263840 | AccessShareLock | 73183493945504391
| TRUNCATE t1 | coordinator1 | 2023-03-13 12:13:52.530602+08 | 2
023-03-13 14:52:16.1456+08 | 2023-03-13 14:52:16.148693+08 | active
2 | datanode1 | datanode1:140378619314976 -> 140378619263840 | relation | 16049 | 2147484411 |
| | | | | | | 23/16067 | 1403786
19263840 | AccessShareLock | t | f | | | 0 | begin;select * from t1;
| gsql | 2023-03-13 14:19:26.325602+08 | 2
023-03-13 14:52:12.042741+08 | 2023-03-13 14:52:12.042741+08 | idle in transaction
(2 rows)

----End

14.3.198 PGXC_INSTR_UNIQUE_SQL
PGXC_INSTR_UNIQUE_SQL displays the complete Unique SQL statistics of all CN
nodes in the cluster.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 847

Only the system administrator can access this view. The columns in this view are
the same as those in the GS_INSTR_UNIQUE_SQL view. For details about columns
in the view, see Table 14-266.

Table 14-266 GS_INSTR_UNIQUE_SQL columns

Name Type Description

node_name name Name of the CN that
receives SQL statements

node_id integer Node ID, which is the
same as the value of
node_id in the
pgxc_node table

user_name name Username

user_id oid User ID

unique_sql_id bigint Normalized Unique SQL
ID

query text Normalized SQL text

n_calls bigint Number of successful
execution times

min_elapse_time bigint Minimum running time
of the SQL statement in
the database (unit: μs)

max_elapse_time bigint Maximum running time
of SQL statements in the
database (unit: μs)

total_elapse_time bigint Total running time of
SQL statements in the
database (unit: μs)

n_returned_rows bigint Row activity - Number of
rows in the result set
returned by the SELECT
statement

n_tuples_fetched bigint Row activity - Randomly
scan rows (column-store
tables/foreign tables are
not counted.)

n_tuples_returned bigint Row activity - Sequential
scan rows (Column-store
tables/foreign tables are
not counted.)

n_tuples_inserted bigint Row activity - Inserted
rows

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 848

Name Type Description

n_tuples_updated bigint Row activity - Updated
rows

n_tuples_deleted bigint Row activity - Deleted
rows

n_blocks_fetched bigint Block access times of the
buffer, that is, physical
read/I/O

n_blocks_hit bigint Block hits of the buffer,
that is, logical read/
cache

n_soft_parse bigint Number of soft parsing
times (cache plan)

n_hard_parse bigint Number of hard parsing
times (generation plan)

db_time bigint Valid DB execution time,
including the waiting
time and network
sending time. If multiple
threads are involved in
query execution, the
value of DB_TIME is the
sum of DB_TIME of
multiple threads (unit:
μs).

cpu_time bigint CPU execution time,
excluding the sleep time
(unit: μs)

execution_time bigint SQL execution time in
the query executor, DDL
statements, and
statements (such as
Copy statements) that
are not executed by the
executor are not counted
(unit: μs).

parse_time bigint SQL parsing time (unit:
μs)

plan_time bigint SQL generation plan
time (unit: μs)

rewrite_time bigint SQL rewriting time (unit:
μs)

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 849

Name Type Description

pl_execution_time bigint Execution time of the
plpgsql procedural
language function (unit:
μs)

pl_compilation_time bigint Compilation time of the
plpgsql procedural
language function (unit:
μs)

net_send_time bigint Network time, including
the time spent by the CN
in sending data to the
client and the time spent
by the DN in sending
data to the CN (unit: μs)

data_io_time bigint File I/O time (unit: μs)

first_time timestamp with time
zone

Time of the first SQL
statement execution

last_time timestamp with time
zone

Time of the last SQL
statement execution

14.3.199 PGXC_LOCK_CONFLICTS
PGXC_LOCK_CONFLICTS displays information about conflicting locks in the
cluster.

When a lock is waiting for another lock or another lock is waiting for this one, a
lock conflict occurs.

Currently, PGXC_LOCK_CONFLICTS collects only information about locks whose
locktype is relation, partition, page, tuple, or transactionid.

Table 14-267 PGXC_LOCK_CONFLICTS columns

Name Type Description

locktype text Type of the locked object

nodename name Name of the node where the locked object
resides

dbname name Name of the database where the locked
object resides. The value is NULL if the
locked object is a transaction.

nspname name Name of the namespace of the locked object

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 850

Name Type Description

relname name Name of the relation targeted by the lock.
The value is NULL if the object is not a
relation or part of a relation.

partname name Name of the partition targeted by the lock.
The value is NULL if the locked object is not
a partition.

page integer Number of the page targeted by the lock.
The value is NULL if the locked object is
neither a page nor a tuple.

tuple smallint Number of the tuple targeted by the lock.
The value is NULL if the locked object is not
a tuple.

transactionid xid ID of the transaction targeted by the lock.
The value is NULL if the locked object is not
a transaction.

username name Name of the user who applies for the lock

gxid xid ID of the transaction that applies for the lock

xactstart timestamp
with time zone

Start time of the transaction that applies for
the lock

queryid bigint Latest query ID of the thread that applies for
the lock

query text Latest query statement of the thread that
applies for the lock

pid bigint ID of the thread that applies for the lock

mode text Lock mode

granted boolean ● TRUE if the lock has been held
● FALSE if the lock is still waiting for

another lock

14.3.200 PGXC_LWLOCKS
PGXC_LWLOCK offers details on lightweight locks that are currently held or being
waited for by all instances in the cluster. This view is supported only by 9.1.0.200
and later cluster versions.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 851

Table 14-268 PGXC_LWLOCKS columns

Name Type Description

nodename name Name of the node where the locked object
resides

pid bigint ID of the backend thread

query_id bigint ID of a query

lwtid integer Lightweight thread ID of the backend thread

reqlockid integer ID of the lightweight lock that is being
requested by the current thread

reqlock text Name of the lightweight lock corresponding
to reqlockid

heldlocknums integer Number of lightweight locks obtained by the
current thread

heldlockid integer Lightweight lock ID obtained by the current
thread

heldlock text Name of the lightweight lock corresponding
to heldlockid

heldlockmode text Lightweight lock mode corresponding to
heldlockid

Example

Use the PGXC_LWLOCKS view to get details on lightweight locks that are
currently held or being waited for by all instances in the cluster.
SELECT * FROM pgxc_lwlocks;
 nodename | pid | query_id | lwtid | reqlockid | reqlock | heldlocknums | heldlockid |
heldlock | heldlockmode
-----------+-----------------+-------------------+-------+-----------+---------+--------------+------------
+--------------------+--------------
 datanode1 | 139810224193360 | 78250043525924188 | 54844 | | | 1 | 76390 |
BUFFER_POOL_LWLOCK | Shared
 datanode1 | 139810224198200 | 78250043525924886 | 54922 | | | 1 | 957438 |
PGPROC_LWLOCK | Exclusive
 datanode2 | 140262654050288 | 0 | 54832 | | | 1 | 7 |
WALWriteLock | Exclusive
 datanode2 | 140262654052488 | 78250043525923195 | 54847 | | | 1 | 15862 |
BUFFER_POOL_LWLOCK | Shared
(4 rows)

14.3.201 PGXC_MEMORY_DEBUG_INFO
PGXC_MEMORY_DEBUG_INFO displays memory error information for each node
in the current cluster when executing jobs, making it easy to locate memory error
issues. When an error message "memory is temporarily unavailable" is prompted
during statement execution, this view can be used to query memory error
information for all nodes, which is the same as the memory error information

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 852

displayed in the log. This view is supported only by clusters of version 8.3.0 or
later.

NO TICE

This view only displays the most recent cluster information for errors, and
repeated error information will be overwritten. If the same query requests memory
multiple times and errors occur, the information will not be updated.

Table 14-269 PGXC_MEMORY_DEBUG_INFO columns

Column Type Description

node_name text Instance name, including CNs and DNs.

query_id bigint ID of the query that is currently requesting
memory.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 853

Column Type Description

memory_info text Current instance's memory usage, including:
● process_used_memory: memory size used by

the GaussDB(DWS) process.
● max_dynamic_memory: maximum dynamic

memory.
● dynamic_used_memory: used dynamic

memory.
● dynamic_peak_memory: dynamic peak value of

memory.
● dynamic_used_shrctx: maximum dynamic

shared memory context.
● dynamic_peak_shrctx: dynamic peak value of

shared memory context.
● shared_used_memory: used shared memory.
● cstore_used_memory: memory size used for

column store.
● comm_used_memory: memory size used by the

communication library.
● comm_peak_memory: peak value of memory

used by the communication library.
● other_used_memory: memory size used by

other components.
● topsql_used_memory: memory size used by

topsql.
● large_storage_memory: memory size used for

column-store compression and decompression.
● os_totalmem: total memory size of the

operating system.
● os_freeemem: remaining memory size of the

operating system.

summary text The total estimated memory consumption and
actual memory consumption of jobs on the
instance.

abnormal_qu
ery

text Thread ID and query ID with abnormal memory
usage, including two cases:
1. Session with the maximum current memory

usage.
2. Session with the largest difference between

estimated memory and actual memory usage.

abnormal_me
mory

text Memory block with the highest usage, including
the maximum shared memory context usage and
the maximum common memory context usage.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 854

Column Type Description

top_thread text Information on the top three threads with the
highest memory usage:
context name: memory block currently in use.
contextlevel: context level.
sessType: type of the top-level context node.
totalsize[274,13,260]MB: total memory, released
memory, and used memory size of the current
memory context, in MB.

create_time timestam
p with
time zone

Time when the memory shortage error occurred.

14.3.202 PGXC_NODE_ENV
PGXC_NODE_ENV displays the environmental variables information about all
nodes in a cluster.

Table 14-270 PGXC_NODE_ENV columns

Name Type Description

node_name text Names of all nodes in the cluster.

host text Host names of all nodes in the cluster.

process integer Process IDs of all nodes in the cluster.

port integer Port numbers of all nodes in the cluster.

installpath text Installation directory of all nodes in the cluster.

datapath text Data directories of all nodes in the cluster.

log_directory text Log directories of all nodes in the cluster.

14.3.203 PGXC_NODE_STAT_RESET_TIME
PGXC_NODE_STAT_RESET_TIME displays the time when statistics of each node in
the cluster are reset. All columns except node_name are the same as those in the
GS_NODE_STAT_RESET_TIME view. This view is accessible only to users with
system administrators rights.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 855

Table 14-271 PGXC_NODE_STAT_RESET_TIME columns

Name Type Description

node_name text Node name

reset_time timestamp Time when statistics on each node are reset

14.3.204 PGXC_OBS_IO_SCHEDULER_STATS
PGXC_OBS_IO_SCHEDULER_STATS displays the latest real-time statistics about
read/write requests of the OBS I/O Scheduler. This system view is supported only
by clusters of version 9.1.0 or later.

Table 14-272 PGXC_OBS_IO_SCHEDULER_STATS columns

Column Type Description

node_name text Node name.

io_type char Type of I/O operation, including:
● r: read.
● w: write.
● s: file operation.

current_bps int8 Current bandwidth rate, in KB/s.

best_bps int8 Best bandwidth rate achieved recently, in
KB/s.

waiting_request_n
um

int Number of queued requests currently waiting.

mean_request_size int8 Average length of requests processed recently,
in KB.

total_token_num int Total number of I/O tokens.

available_token_n
um

int Number of available I/O tokens.

total_worker_num int Total number of working threads.

idle_worker_num int Number of idle working threads.

Example

Step 1 Query statistics about read requests of OBS I/O Scheduler on each node:
SELECT * FROM pgxc_obs_io_scheduler_stats WHERE io_type = 'r' ORDER BY node_name;

 node_name | io_type | current_bps | best_bps | waiting_request_num | mean_request_size |
total_token_num | available_token_num | total_worker_num | idle_worker_num
--------------+---------+-------------+----------+---------------------+-------------------+-----------------

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 856

+---------------------+------------------+-----------------
 dn_6001_6002 | r | 26990 | 26990 | 0 | 215 | 18 | 16
| 12 | 10
 dn_6003_6004 | r | 21475 | 21475 | 10 | 190 | 30 | 30
| 20 | 20
 dn_6005_6006 | r | 12384 | 12384 | 36 | 133 | 30 | 27
| 20 | 17

According to the result, this is a snapshot of the statistics at a certain time point
when the current I/O scheduler reads I/Os. At this time, the bandwidth is
increasing, and current_bps is equal to best_bps. Take dn_6003_6004 as an
example. You can see that there are queuing requests on the current DN. The
value of total_token_num is the same as that of available_token_num,
indicating that the I/O scheduler has not started to process these requests when
the view is queried.

Step 2 Wait for a while and initiate the query again.
SELECT * FROM pgxc_obs_io_scheduler_stats WHERE io_type = 'r' ORDER BY node_name;

 node_name | io_type | current_bps | best_bps | waiting_request_num | mean_request_size |
total_token_num | available_token_num | total_worker_num | idle_worker_num
--------------+---------+-------------+----------+---------------------+-------------------+-----------------
+---------------------+------------------+-----------------
 dn_6001_6002 | r | 13228 | 26990 | 0 | 609 | 18 | 18
| 12 | 12
 dn_6003_6004 | r | 15717 | 21475 | 0 | 622 | 30 | 30
| 20 | 20
 dn_6005_6006 | r | 18041 | 21767 | 0 | 609 | 30 | 30
| 20 | 20
When the queue is empty and the value of available_token_num is equal to that
of total_token_num, it indicates that the I/O scheduler has finished processing all
requests and there are no new requests in line. The current_bps value is not 0
because it represents the average bandwidth (in bit/s) over a three-second period.
Therefore, the displayed value reflects the data from three seconds ago.

Step 3 After a short period of time, the query result is as follows. The value of
current_bps changes to 0.
SELECT * FROM pgxc_obs_io_scheduler_stats WHERE io_type = 'r' ORDER BY node_name;

 node_name | io_type | current_bps | best_bps | waiting_request_num | mean_request_size |
total_token_num | available_token_num | total_worker_num | idle_worker_num
--------------+---------+-------------+----------+---------------------+-------------------+-----------------
+---------------------+------------------+-----------------
 dn_6001_6002 | r | 0 | 26990 | 0 | 609 | 18 | 18
| 12 | 12
 dn_6003_6004 | r | 0 | 21475 | 0 | 622 | 30 | 30
| 20 | 20
 dn_6005_6006 | r | 0 | 21767 | 0 | 609 | 30 | 30
| 20 | 20

----End

14.3.205 PGXC_OBS_IO_SCHEDULER_PERIODIC_STATS
PGXC_OBS_IO_SCHEDULER_PERIODIC_STATS provides statistics on the number
of requests and flow control information for different types of OBS I/O Scheduler
requests, including read, write, and file operations. This system view is supported
only by clusters of version 9.1.0 or later.

The first query result shows the statistics from the cluster startup to the query
time, with detailed columns listed in the table below.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 857

Table 14-273 PGXC_OBS_IO_SCHEDULER_PERIODIC_STATS columns

Column Type Description

node_name name Name of a CN or DN, for
example, dn_6001_6002.

io_type char Type of I/O operation,
including:
● R: read
● W: write
● S: file operation

recent_throttled_req_nu
m

int Number of times flow
control was applied
between two query
views.

total_throttled_req_num int Total number of times
flow control was applied.

last_throttled_dur(s) int8 Time interval since the
last occurrence of flow
control.

waiting_req_num int Number of queued
requests currently
waiting.

mean_tps numeric(7,2) Average TPS
(transactions per second)
between two query
views.

mean_req_size(KB) int8 Average length of
requests between two
query views, in KB.

mean_req_latency(ms) int8 Average latency of
requests between two
query views, in ms.

max_req_latency(ms) int8 Maximum latency of
requests before two
query views, in ms.

mean_bps(KB/s) int8 Average read or write
speed between two
query views, in KB/s.

duration(s) int Time interval between
two query views, in
seconds.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 858

Example

Run the SELECT * FROM pgxc_obs_io_scheduler_periodic_stats statement to
query the view content. The following is an example of the query result:
SELECT * FROM pgxc_obs_io_scheduler_periodic_stats;

 node_name | io_type | recent_throttled_req_num | total_throttled_req_num | last_throttled_dur(s) |
waiting_req_num | mean_tps | mean_req_size(KB) | mean_req_latency(ms) | max_req_latency(ms) |
mean_bps(KB/s) | duration(s)
--------------+---------+--------------------------+-------------------------+-----------------------+-----------------
+----------+-------------------+----------------------+---------------------+----------------+-------------
 dn_6001_6002 | S | 0 | 0 | 0 | 0 | 0.00
| 0 | 0 | 0 | 0 | 155
 dn_6001_6002 | R | 0 | 0 | 0 | 0 | 0.00
| 0 | 0 | 0 | 0 | 155
 dn_6001_6002 | W | 0 | 0 | 0 | 0 | 0.00
| 0 | 0 | 0 | 0 | 155
 cn_5001 | S | 0 | 0 | 0 | 0 | .03 |
0 | 207 | 519 | 0 | 155
 cn_5001 | R | 0 | 0 | 0 | 0 | 0.00 |
0 | 0 | 0 | 0 | 155
 cn_5001 | W | 0 | 0 | 0 | 0 | .01 |
0 | 288 | 288 | 0 | 155
(6 rows)

To display 0 before the decimal point in the value of mean_tps, set the
display_leading_zero option in the behavior_compat_options parameter.

Run the select * from pgxc_obs_io_scheduler_periodic_stats statement. The
following information is displayed:
SELECT * FROM pgxc_obs_io_scheduler_periodic_stats;

 node_name | io_type | recent_throttled_req_num | total_throttled_req_num | last_throttled_dur(s) |
waiting_req_num | mean_tps | mean_req_size(KB) | mean_req_latency(ms) | max_req_latency(ms) |
mean_bps(KB/s) | duration(s)
--------------+---------+--------------------------+-------------------------+-----------------------+-----------------
+----------+-------------------+----------------------+---------------------+----------------+-------------
 dn_6001_6002 | S | 0 | 0 | 0 | 0 | 0.36
| 0 | 132 | 326 | 0 | 177
 dn_6001_6002 | R | 0 | 0 | 0 | 0 | 0.00
| 0 | 0 | 0 | 0 | 177
 dn_6001_6002 | W | 0 | 0 | 0 | 0 | 0.00
| 0 | 0 | 0 | 0 | 177
 cn_5001 | S | 0 | 0 | 0 | 0 | 0.00 |
0 | 0 | 0 | 0 | 177
 cn_5001 | R | 0 | 0 | 0 | 0 | 0.00 |
0 | 0 | 0 | 0 | 177
 cn_5001 | W | 0 | 0 | 0 | 0 | 0.00 |
0 | 0 | 0 | 0 | 177

14.3.206 PGXC_OS_RUN_INFO
PGXC_OS_RUN_INFO displays the OS running status of each node in the cluster.
All columns except node_name are the same as those in the PV_OS_RUN_INFO
view. Only the system administrator or the preset role gs_role_read_all_stats can
access this view.

Table 14-274 PGXC_OS_RUN_INFO field columns

Name Type Description

node_name text Node name

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 859

Name Type Description

id integer ID

name text Name of the OS running status

value numeric Value of the OS status

comments text Remarks of the OS status

cumulative boolean Whether the value of the OS status is
cumulative

14.3.207 PGXC_OS_THREADS
PGXC_OS_THREADS displays thread status information under all normal nodes in
the current cluster.

Table 14-275 PGXC_OS_THREADS columns

Name Type Description

node_name text Names of all normal nodes currently in the
cluster.

pid bigint Thread IDs currently running in the processes
of all normal nodes in the cluster.

lwpid integer Lightweight thread IDs corresponding to the
PIDs.

thread_name text Thread names corresponding to the PIDs.

creation_time timestamp
with time
zone

Creation time of the threads corresponding to
the PIDs.

14.3.208 PGXC_POOLER_STATUS
PGXC_POOLER_STATUS displays the pooler cache connection status of each CN in
the current cluster. This view can be queried only on CNs to display the connection
cache information of the pooler module on all CNs. The PGXC_POOLER_STATUS
view is supported only by clusters of version 8.2.1.300 or later.

Table 14-276 PGXC_POOLER_STATUS columns

Column Type Description

coorname text Name of the CN node.

database text Database name.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 860

Column Type Description

user_name text Username.

tid bigint ID of the thread used for the connection to
the CN.

node_oid bigint OID of the node connected to.

node_name name Name of the node connected to.

in_use boolean Whether the connection is currently in use.
The options are:
● t (true): The connection is in use.
● f (false): The connection is not in use.

fdsock bigint Peer socket.

remote_pid bigint Peer thread ID.

session_params text GUC session parameters issued by this
connection.

14.3.209 PGXC_PREPARED_XACTS
PGXC_PREPARED_XACTS displays the two-phase transactions in the prepared
phase.

Table 14-277 PGXC_PREPARED_XACTS columns

Name Type Description

pgxc_prepared_xact text Two-phase transactions in prepared phase

14.3.210 PGXC_REDO_STAT
PGXC_REDO_STAT displays statistics on redoing Xlogs of each node in the cluster.
All columns except node_name are the same as those in the PV_REDO_STAT
view. Only the system administrator or the preset role gs_role_read_all_stats can
access this view.

Table 14-278 PGXC_REDO_STAT columns

Name Type Description

node_name text Node name

phywrts bigint Number of physical writes

phyblkwrt bigint Number of physical blocks written

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 861

Name Type Description

writetim bigint Time taken for physical writes

avgiotim bigint Average time taken per write

lstiotim bigint Time taken for the last write

miniotim bigint Minimum time taken for a write

maxiowtm bigint Maximum time taken for a write

14.3.211 PGXC_REL_IOSTAT
PGXC_REL_IOSTAT displays disk read/write statistics on each node in the cluster.
This view is accessible only to users with system administrators rights.

Table 14-279 PGXC_REL_IOSTAT columns

Name Type Description

node_name text Node name

phyrds bigint Number of disk reads

phywrts bigint Number of disk writes

phyblkrd bigint Number of read pages

phyblkwrt bigint Number of written pages

14.3.212 PGXC_REPLICATION_SLOTS
PGXC_REPLICATION_SLOTS displays the replication information of DNs in the
cluster. All columns except node_name are the same as those in the
PG_REPLICATION_SLOTS view. This view is accessible only to users with system
administrators rights.

Table 14-280 PGXC_REPLICATION_SLOTS columns

Name Type Description

node_name text Node name

slot_name text Name of a replication node

plugin name Name of the output plug-in of the logical
replication slot

slot_type text Type of a replication node

datoid oid OID of the database on the replication node

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 862

Name Type Description

database name Name of the database on the replication node

active boolean Whether the replication node is active

xmin xid Transaction ID of the replication node

catalog_xmin text ID of the earliest-decoded transaction
corresponding to the logical replication slot

restart_lsn text Xlog file information on the replication node

dummy_stand
by

boolean Whether the replication node is the dummy
standby node

14.3.213 PGXC_RESPOOL_RUNTIME_INFO
PGXC_RESPOOL_RUNTIME_INFO displays the running information about all
resource pool jobs on all CNs.

Table 14-281 PGXC_RESPOOL_RUNTIME_INFO columns

Name Type Description

nodename name CN name.

nodegroup name Name of the logical cluster the resource pool
belongs to. The default cluster is installation.

rpname name Resource pool name.

ref_count int Number of jobs that reference the resource
pool. This count includes both controlled and
uncontrolled jobs.

fast_run int Number of jobs currently running in the
resource pool's fast lane.

fast_wait int Number of jobs currently queued in the
resource pool's fast lane.

slow_run int Number of jobs currently running in the
resource pool's slow lane.

slow_wait int Number of jobs currently queued in the
resource pool's slow lane.

14.3.214 PGXC_RESPOOL_RESOURCE_INFO
PGXC_RESPOOL_RESOURCE_INFO displays the real-time monitoring information
about the resource pools on all instances.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 863

NO TE

● On a DN, it only displays the monitoring information of the logical cluster that the DN
belongs to.

● Cluster 8.2.0 and later versions provide the negative memory feedback mechanism. The
CCN can decrease the estimated memory usage of statements based on their actual
memory usage on DNs, improving resource utilization by reducing overestimation.
However, the estimated memory usage on CNs remains unchanged. If the CCN allows
more jobs to run, the total estimated memory usage in the resource pool monitoring
view may exceed the memory upper limit of the resource pool.

● Only the operators occupying large memory are under statement memory control. The
memory, thread initialization costs, and expression costs of the operators with small
memory usage are not controlled. So the value of used_mem of the resource pool may
exceed the value of mem_limit to a limited extent.

Table 14-282 PGXC_RESPOOL_RESOURCE_INFO columns

Name Type Description

nodename name Instance name, including CNs and DNs.

nodegroup name Name of the logical cluster of the resource
pool. The default value is installation.

rpname name Resource pool name.

cgroup name Name of the Cgroup associated with the
resource pool.

ref_count int Number of jobs referenced by the resource
pool. The number is counted regardless of
whether the jobs are controlled by the resource
pool. This parameter is valid only on CNs.

fast_run int Number of running jobs in the fast lane of the
resource pool. This parameter is valid only on
CNs.

fast_wait int Number of jobs queued in the fast lane of the
resource pool. This parameter is valid only on
CNs.

fast_limit int Limit on the number of concurrent jobs in the
fast lane in a resource pool. This parameter is
valid only on CNs.

slow_run int Number of running jobs in the slow lane of the
resource pool. This parameter is valid only on
CNs.

slow_wait int Number of jobs queued in the slow lane of the
resource pool. This parameter is valid only on
CNs.

slow_limit int Limit on the number of concurrent jobs in the
slow lane in a resource pool. This parameter is
valid only on CNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 864

Name Type Description

used_cpu double Average number of CPUs used by the resource
pool in a 5s monitoring period. The value is
accurate to two decimal places.
● On a DN, it indicates the number of CPUs

used by the resource pool on the current
DN.

● On a CN, it indicates the total CPU usage of
resource pools on all DNs.

cpu_limit int It indicates the upper limit of available CPUs
for resource pools. If the CPU share is limited,
this parameter indicates the available CPUs for
GaussDB(DWS). If the CPU limit is specified,
this parameter indicates the available CPUs for
associated Cgroups.
● On a DN, it indicates the upper limit of

available CPUs for the resource pool on the
current DN.

● On a CN, it indicates the total upper limit of
available CPUs for resource pools on all
DNs.

used_mem int Memory size used by the resource pool (unit:
MB)
● On a DN, it indicates the memory usage of

the resource pool on the current DN.
● On a CN, it indicates the total memory

usage of resource pools on all DNs.

estimate_me
m

int Estimated memory used by the jobs running in
the resource pools on the current CN. This
parameter is valid only on CNs.

mem_limit int Upper limit of available memory for the
resource pool (unit: MB).
● On a DN, it indicates the upper limit of

available memory for the resource pool on
the current DN.

● On a CN, it indicates the total upper limit of
available memory for resource pools on all
DNs.

read_kbytes bigint Number of logical read bytes in the resource
pool within a 5s monitoring period (unit: KB).
● On a DN, it indicates the number of logical

read bytes in the resource pool on the
current DN.

● On a CN, it indicates the total logical read
bytes of resource pools on all DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 865

Name Type Description

write_kbytes bigint Number of logical write bytes in the resource
pool within a 5s monitoring period (unit: KB).
● On a DN, it indicates the number of logical

write bytes in the resource pool on the
current DN.

● On a CN, it indicates the total logical write
bytes of resource pools on all DNs.

read_counts bigint Number of logical reads in the resource pool
within a 5s monitoring period.
● On a DN, it indicates the number of logical

reads in the resource pool on the current
DN.

● On a CN, it indicates the total number of
logical reads in resource pools on all DNs.

write_counts bigint Number of logical writes in the resource pool
within a 5s monitoring period.
● On a DN, it indicates the number of logical

writes in the resource pool on the current
DN.

● On a CN, it indicates the total number of
logical writes in resource pools on all DNs.

read_speed double Average logical read rate of a resource pool in
a 5-second monitoring period, in KB/s
● On a DN, it indicates the logical read rate of

the resource pool on the current DN.
● On a CN, it indicates the overall logical read

rate of resource pools on all DNs.

write_speed double Average logical write rate of a resource pool in
a 5-second monitoring period, in KB/s
● On a DN, it indicates the logical write rate

of the resource pool on the current DN.
● On a CN, it indicates the overall logical

write rate of resource pools on all DNs.

send_speed double Average network sending rate of a resource
pool in a 5-second monitoring period, in KB/s
● On a DN, it indicates the network sending

rate of the resource pool on the current DN.
● On a CN, it indicates the sum of the

network sending rates of the resource pool
on all DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 866

Name Type Description

recv_speed double Average network sending rate of a resource
pool in a 5-second monitoring period, in KB/s
● On a DN, it indicates the network sending

rate of the resource pool on the current DN.
● On a CN, it indicates the sum of the

network sending rates of the resource pool
on all DNs.

14.3.215 PGXC_RESPOOL_RESOURCE_HISTORY
PGXC_RESPOOL_RESOURCE_HISTORY is used to query historical monitoring
information about resource pools on all instances.

Table 14-283 PGXC_RESPOOL_RESOURCE_HISTORY columns

Name Type Description

nodename name Instance name, including CNs and DNs

timestamp timestamp Time when resource pool monitoring
information is persistently stored

nodegroup name Name of the logical cluster the resource pool
belongs to. The default cluster is installation.

rpname name Resource pool name

cgroup name Name of the Cgroup associated with the
resource pool

ref_count int Number of jobs referenced by the resource
pool. The number is counted regardless of
whether the jobs are controlled by the resource
pool. This parameter is valid only on CNs.

fast_run int Number of running jobs in the fast lane of the
resource pool. This parameter is valid only on
CNs.

fast_wait int Number of jobs queued in the fast lane of the
resource pool. This parameter is valid only on
CNs.

fast_limit int Limit on the number of concurrent jobs in the
fast lane in a resource pool. This parameter is
valid only on CNs.

slow_run int Number of running jobs in the slow lane of the
resource pool. This parameter is valid only on
CNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 867

Name Type Description

slow_wait int Number of jobs queued in the slow lane of the
resource pool. This parameter is valid only on
CNs.

slow_limit int Limit on the number of concurrent jobs in the
slow lane in a resource pool. This parameter is
valid only on CNs.

used_cpu double Average number of CPUs used by the resource
pool in a 5s monitoring period. The value is
accurate to two decimal places.
● On a DN, it indicates the number of CPUs

used by the resource pool on the current
DN.

● On a CN, it indicates the total CPU usage of
resource pools on all DNs.

cpu_limit int It indicates the upper limit of available CPUs
for resource pools. If the CPU share is limited,
this parameter indicates the available CPUs for
GaussDB(DWS). If the CPU limit is specified,
this parameter indicates the available CPUs for
associated Cgroups.
● On a DN, it indicates the upper limit of

available CPUs for the resource pool on the
current DN.

● On a CN, it indicates the total upper limit of
available CPUs for resource pools on all
DNs.

used_mem int Memory used by the resource pool, in MB
● On a DN, it indicates the memory usage of

the resource pool on the current DN.
● On a CN, it indicates the total memory

usage of resource pools on all DNs.

estimate_me
m

int Estimated memory used by the jobs running in
the resource pools on the current CN. This
parameter is valid only on CNs.

mem_limit int Upper limit of available memory for the
resource pool, in MB
● On a DN, it indicates the upper limit of

available memory for the resource pool on
the current DN.

● On a CN, it indicates the total upper limit of
available memory for resource pools on all
DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 868

Name Type Description

read_kbytes bigint Number of logical read bytes in the resource
pool within a 5s monitoring period, in KB
● On a DN, it indicates the number of logical

read bytes in the resource pool on the
current DN.

● On a CN, it indicates the total logical read
bytes of resource pools on all DNs.

write_kbytes bigint Number of logical write bytes in the resource
pool within a 5s monitoring period, in KB
● On a DN, it indicates the number of logical

write bytes in the resource pool on the
current DN.

● On a CN, it indicates the total logical write
bytes of resource pools on all DNs.

read_counts bigint Number of logical reads in the resource pool
within a 5s monitoring period
● On a DN, it indicates the number of logical

reads in the resource pool on the current
DN.

● On a CN, it indicates the total number of
logical reads in resource pools on all DNs.

write_counts bigint Number of logical writes in the resource pool
within a 5s monitoring period.
● On a DN, it indicates the number of logical

writes in the resource pool on the current
DN.

● On a CN, it indicates the total number of
logical writes in resource pools on all DNs.

read_speed double Average logical read rate of a resource pool in
a 5-second monitoring period, in KB/s
● On a DN, it indicates the logical read rate of

the resource pool on the current DN.
● On a CN, it indicates the overall logical read

rate of resource pools on all DNs.

write_speed double Average logical write rate of a resource pool in
a 5-second monitoring period, in KB/s
● On a DN, it indicates the logical write rate

of the resource pool on the current DN.
● On a CN, it indicates the overall logical

write rate of resource pools on all DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 869

Name Type Description

send_speed double Average network sending rate of a resource
pool in a 5-second monitoring period, in KB/s
● On a DN, it indicates the network sending

rate of the resource pool on the current DN.
● On a CN, it indicates the sum of the

network sending rates of the resource pool
on all DNs.

recv_speed double Average network receiving rate of a resource
pool in a 5-second monitoring period, in KB/s
● On a DN, it indicates the network receiving

rate of the resource pool on the current DN.
● On a CN, it indicates the sum of the

network receiving rates of the resource pool
on all DNs.

14.3.216 PGXC_ROW_TABLE_IO_STAT
PGXC_ROW_TABLE_IO_STAT provides I/O statistics of all row-store tables of the
database on all CNs and DNs in the cluster. Except the nodename column of the
name type added in front of each row, the names, types, and sequences of other
columns are the same as those in the GS_ROW_TABLE_IO_STAT view. For details
about the columns, see Table 14-284.

Table 14-284 GS_ROW_TABLE_IO_STAT columns

Name Type Description

schemaname name Namespace of a table

relname name Name of a table

heap_read bigint Number of blocks logically read in the heap

heap_hit bigint Number of block hits in the heap

idx_read bigint Number of blocks logically read in the index

idx_hit bigint Number of block hits in the index

toast_read bigint Number of blocks logically read in the
TOAST table

toast_hit bigint Number of block hits in the TOAST table

tidx_read bigint Number of indexes logically read in the
TOAST table

tidx_hit bigint Number of index hits in the TOAST table

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 870

14.3.217 PGXC_RUNNING_XACTS
PGXC_RUNNING_XACTS displays information about running transactions on each
node in the cluster. The content is the same as that displayed in
PG_RUNNING_XACTS.

Table 14-285 PGXC_RUNNING_XACTS columns

Name Type Description

handle integer Handle corresponding to the transaction in
GTM

gxid xid Transaction ID

state tinyint Transaction status (3: prepared or 0: starting)

node text Node name

xmin xid Minimum transaction ID xmin on the node

vacuum boolean Whether the current transaction is lazy
vacuum

timeline bigint Number of database restarts

prepare_xid xid Transaction ID in prepared state. If the
status is not prepared, the value is 0.

pid bigint Thread ID corresponding to the transaction

next_xid xid Transaction ID sent from a CN to a DN

14.3.218 PGXC_SETTINGS
PGXC_SETTINGS displays the database running status of each node in the cluster.
All columns except node_name are the same as those in the PG_SETTINGS view.
This view is accessible only to users with system administrators rights.

Table 14-286 PGXC_SETTINGS columns

Name Type Description

node_name text Node name

name text Parameter name

setting text Current value of the parameter

unit text Implicit unit of the parameter

category text Logical group of the parameter

short_desc text Brief description of the parameter

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 871

Name Type Description

extra_desc text Detailed description of the parameter

context text Context of parameter values including
internal, postmaster, sighup, backend,
superuser, and user.

vartype text Parameter type. It can be bool, enum,
integer, real, or string.

source text Method of assigning the parameter value

min_val text Minimum value of the parameter If the
parameter type is not numeric data, the
value of this column is null.

max_val text Maximum value of the parameter. If the
parameter type is not numeric data, the
value of this column is null.

enumvals text[] Valid values of an enum-typed parameter. If
the parameter type is not enum, the value
of this column is null.

boot_val text Default parameter value used upon the
database startup

reset_val text Default parameter value used upon the
database reset

sourcefile text Configuration file used to set parameter
values. If parameter values are not
configured using the configuration file, the
value of this column is null.

sourceline integer Row number of the configuration file for
setting parameter values. If parameter
values are not configured using the
configuration file, the value of this column
is null.

14.3.219 PGXC_SESSION_WLMSTAT
PGXC_SESSION_WLMSTAT displays load management information about ongoing
jobs executed on each CN in the current cluster.

Table 14-287 PGXC_SESSION_WLMSTAT columns

Name Type Description

nodename name Node name.

datid oid OID of the database the backend is connected to.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 872

Name Type Description

datname name Name of the database the backend is connected
to.

threadid bigint ID of the backend thread.

processid integer PID of a backend thread

usesysid oid OID of the user who logged in to the backend

appname text Name of the application that is connected to the
backend

usename name Name of the user logged in to the backend

priority bigint Priority of Cgroup where the statement is located

attribute text Statement attributes
● Ordinary: default attribute of a statement

before it is parsed by the database
● Simple: simple statements
● Complicated: complicated statements
● Internal: internal statement of the database

block_time bigint Pending duration of the statements by now (unit:
s)

elapsed_time bigint Actual execution duration of the statements by
now (unit: s)

total_cpu_time bigint Total CPU usage duration of the statement on
the DN in the last period (unit: s)

cpu_skew_perce
nt

integer CPU usage inclination ratio of the statement on
the DN in the last period

statement_mem integer Estimated memory required for statement
execution. This column is reserved.

active_points integer Number of concurrently active points occupied by
the statement in the resource pool

dop_value integer DOP value obtained by the statement from the
resource pool

control_group text Cgroup currently used by the statement

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 873

Name Type Description

status text Status of a statement, including:
● pending
● running: The statement is being executed.
● finished: The execution is finished normally.

(If enqueue is set to StoredProc or
Transaction, this state indicates that only
some of the jobs in the statement have been
executed. This state persists until the finish of
this statement.)

● aborted: terminated unexpectedly
● active: normal status except for those above
● unknown: unknown status

enqueue text Current queuing status of the statements,
including:
● Global: global queuing.
● Respool: resource pool queuing.
● CentralQueue: queuing on the CCN
● Transaction: being in a transaction block
● StoredProc: being in a stored procedure
● None: not in a queue
● Forced None: being forcibly executed

(transaction block statement or stored
procedure statement are) because the
statement waiting time exceeds the specified
value

resource_pool name Current resource pool where the statements are
located.

query text Text of this backend's most recent query If state
is active, this column shows the executing query.
In all other states, it shows the last query that
was executed.

isplana bool In logical cluster mode, indicates whether a
statement occupies the resources of other logical
clusters. The default value is f, indicating that
resources of other logical clusters are not
occupied.

node_group text Logical cluster of the user running the statement

lane text Fast or slow lane for statement queries.
● fast: fast lane
● slow: slow lane
● none: not controlled

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 874

14.3.220 PGXC_STAT_ACTIVITY
PGXC_STAT_ACTIVITY displays information about the query performed by the
current user on all the CNs in the current cluster.

Table 14-288 PGXC_STAT_ACTIVITY columns

Name Type Description

coorname text Name of the CN in the current cluster

datid oid OID of the database that the user
session connects to in the backend

datname name Name of the database that the user
session connects to in the backend

pid bigint ID of the backend thread

lwtid integer Lightweight thread ID of the backend
thread

usesysid oid OID of the user logging in to the
backend

usename name Name of the user logging in to the
backend

application_name text Name of the application connected to
the backend

client_addr inet IP address of the client connected to the
backend. If this column is null, it
indicates either that the client is
connected via a Unix socket on the
server machine or that this is an
internal process such as autovacuum.

client_hostname text Host name of the connected client, as
reported by a reverse DNS lookup of
client_addr. This column will only be
non-null for IP connections, and only
when log_hostname is enabled.

client_port integer TCP port number that the client uses for
communication with this backend, or -1
if a Unix socket is used

backend_start timestamp
with time
zone

Startup time of the backend process,
that is, the time when the client
connects to the server

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 875

Name Type Description

xact_start timestamp
with time
zone

Time when the current transaction was
started, or NULL if no transaction is
active. If the current query is the first of
its transaction, this column is equal to
the query_start column.

query_start timestamp
with time
zone

Time when the currently active query
was started, or time when the last query
was started if state is not active

state_change timestamp
with time
zone

Time for the last status change

waiting boolean The value is t if the backend is waiting
for a lock or node. Otherwise, the value
is f.

enqueue text Queuing status of a statement. Its value
can be:
● waiting in global queue: The

statement is in the global concurrent
queues.

● waiting in respool queue: The
statement is queuing in the resource
pool. The scenarios are as follows:
1. When dynamic load balancing is

enabled, the number of simple
jobs exceeds the upper limit
(max_dop) of concurrent jobs on
the fast lane.

2. When dynamic load balancing is
disabled, the number of simple
jobs exceeds the upper limit
(max_dop) of concurrent jobs on
the fast lane or the number of
complex jobs exceeds the upper
limit of concurrent jobs on the
slow lane.

● waiting in ccn queue: The job is in
the CCN queue, which may be global
memory queuing, slow lane memory
queuing, or concurrent queuing.

● Empty or no waiting queue: The
statement is running.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 876

Name Type Description

state text Overall state of the backend. Its value
can be:
● active: The backend is executing a

query.
● idle: The backend is waiting for a

new client command.
● idle in transaction: The backend is

in a transaction, but there is no
statement being executed in the
transaction.

● idle in transaction (aborted): The
backend is in a transaction, but there
are statements failed in the
transaction.

● fastpath function call: The backend
is executing a fast-path function.

● disabled: This state is reported if
track_activities is disabled in this
backend.

NOTE
Only system administrators can view the
session status of their accounts. The state
information of other accounts is empty.

resource_pool name Resource pool used by the user

stmt_type text Type of a user statement

query_id bigint ID of a query

query text Text of this backend's most recent query
If the state is active, this column shows
the executing query. In all other states,
it shows the last query that was
executed.

connection_info text A string in JSON format recording the
driver type, driver version, driver
deployment path, and process owner of
the connected database (for details, see
connection_info).

Example

Run the following command to view blocked query statements.

SELECT datname,usename,state,query FROM PGXC_STAT_ACTIVITY WHERE waiting = true;

Check the working status of the snapshot thread.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 877

SELECT application_name,backend_start,state_change,state,query FROM PGXC_STAT_ACTIVITY WHERE
application_name='WDRSnapshot';

View the running query statements.

SELECT datname,usename,state,pid FROM PGXC_STAT_ACTIVITY;
 datname | usename | state | pid
----------+---------+--------+-----------------
 gaussdb | Ruby | active | 140298793514752
 gaussdb | Ruby | active | 140298718004992
 gaussdb | Ruby | idle | 140298650908416
 gaussdb | Ruby | idle | 140298625742592
 gaussdb | dbadmin | active | 140298575406848
(5 rows)

View the number of session connections that have been used by postgres. 1
indicates the number of session connections that have been used by postgres.

SELECT COUNT(*) FROM PGXC_STAT_ACTIVITY WHERE DATNAME='postgres';
 count

 1
(1 row)

14.3.221 PGXC_STAT_BAD_BLOCK
PGXC_STAT_BAD_BLOCK displays statistics about page or CU verification failures
after all nodes in a cluster are started.

Table 14-289 PGXC_STAT_BAD_BLOCK columns

Name Type Description

nodename text Node name.

databaseid integer Database OID.

tablespaceid integer Tablespace OID.

relfilenode integer File object ID.

forknum integer File type.

error_count integer Number of verification failures.

first_time timestamp
with time zone

Time of the first occurrence.

last_time timestamp
with time zone

Time of the latest occurrence.

14.3.222 PGXC_STAT_BGWRITER
PGXC_STAT_BGWRITER displays statistics on the background writer of each node
in the cluster. All columns except node_name are the same as those in the
PG_STAT_BGWRITER view. This view is accessible only to users with system
administrators rights.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 878

Table 14-290 PGXC_STAT_BGWRITER columns

Name Type Description

node_name text Node name

checkpoints_ti
med

bigint Number of scheduled checkpoints that have
been performed

checkpoints_r
eq

bigint Number of requested checkpoints that have
been performed

checkpoint_wr
ite_time

double
precision

Time spent on writing files to the disk during
checkpoints, in milliseconds

checkpoint_sy
nc_time

double
precision

Time spent on synchronizing data to the disk
during checkpoints, in milliseconds

buffers_check
point

bigint Number of buffers written during checkpoints

buffers_clean bigint Number of buffers written by the background
writer

maxwritten_cl
ean

bigint Number of times the background writer
stopped a cleaning scan because it had written
too many buffers

buffers_backe
nd

bigint Number of buffers written directly by a
backend

buffers_backe
nd_fsync

bigint Number of times that a backend has to
execute fsync

buffers_alloc bigint Number of buffers allocated

stats_reset timestamp
with time
zone

Time at which these statistics were reset

14.3.223 PGXC_STAT_DATABASE
PGXC_STAT_DATABASE displays the database status and statistics of each node in
the cluster. All columns except node_name are the same as those in the
PG_STAT_DATABASE view. This view is accessible only to users with system
administrators rights.

Table 14-291 PGXC_STAT_DATABASE columns

Name Type Description

node_name text Node name

datid oid Database OID

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 879

Name Type Description

datname name Database name

numbackends integer Number of backends currently connected to
this database on the current node. This is the
only column in this view that reflects the
current state value. All columns return the
accumulated value since the last reset.

xact_commit bigint Number of transactions in this database that
have been committed on the current node

xact_rollback bigint Number of transactions in this database that
have been rolled back on the current node

blks_read bigint Number of disk blocks read in this database on
the current node

blks_hit bigint Number of disk blocks found in the buffer
cache on the current node, that is, the number
of blocks hit in the cache. (This only includes
hits in the GaussDB(DWS) buffer cache, not in
the file system cache.)

tup_returned bigint Number of rows returned by queries in this
database on the current node

tup_fetched bigint Number of rows fetched by queries in this
database on the current node

tup_inserted bigint Number of rows inserted in this database on
the current node

tup_updated bigint Number of rows updated in this database on
the current node

tup_deleted bigint Number of rows deleted from this database on
the current node

conflicts bigint Number of queries canceled due to database
recovery conflicts on the current node
(conflicts occurring only on the standby
server). For details, see
PG_STAT_DATABASE_CONFLICTS.

temp_files bigint Number of temporary files created by this
database on the current node. All temporary
files are counted, regardless of why the
temporary file was created (for example,
sorting or hashing), and regardless of the
log_temp_files setting.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 880

Name Type Description

temp_bytes bigint Size of temporary files written to this database
on the current node. All temporary files are
counted, regardless of why the temporary file
was created, and regardless of the
log_temp_files setting.

deadlocks bigint Number of deadlocks in this database on the
current node

blk_read_time double
precision

Time spent reading data file blocks by
backends in this database on the current node,
in milliseconds

blk_write_tim
e

double
precision

Time spent writing into data file blocks by
backends in this database on the current node,
in milliseconds

stats_reset timestamp
with time
zone

Time when the database statistics are reset on
the current node

14.3.224 PGXC_STAT_OBJECT
PGXC_STAT_OBJECT displays statistics and autovacuum efficiency information
about tables of all instances in a cluster. This system view is supported only by
clusters of version 8.2.1 or later.

Table 14-292 PGXC_STAT_OBJECT columns

Name Type Referenc
e

Description

nodename name - Node name

datname name - Name of the database where the
table is located.

relnamespace name - Name of the schema where the
table is located.

relname name - Table name.

partname name - Partition name of the partitioned
table

databaseid oid PG_DATA
BASE.oid

Database OID.

relid oid PG_CLAS
S.oid

Table OID. It is the OID of the
primary table for a partitioned
table.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 881

Name Type Referenc
e

Description

partid oid PG_PARTI
TION
.oid

Partition OID. If the table is not
partitioned, the value is 0.

numscans bigint - Number of times that sequential
scans are started.

tuples_returne
d

bigint - Number of visible tuples fetched
by sequential scans.

tuples_fetche
d

bigint - Number of visible tuples fetched.

tuples_inserte
d

bigint - Number of inserted records.

tuples_update
d

bigint - Number of updated records.

tuples_delete
d

bigint - Number of deleted records.

tuples_hot_up
dated

bigint - Number of HOT updates.

n_live_tuples bigint - Number of visible tuples.

last_autovacu
um_begin_n_
dead_tuple

bigint - Number of tuples deleted before
Autovacuum is executed.

n_dead_tuples bigint - Number of tuples deleted after
Autovacuum is successful.

changes_since
_analyze

bigint - Last data modification time after
Analyze.

blocks_fetche
d

bigint - Number of selected pages.

blocks_hit bigint - Number of scanned pages.

cu_mem_hit bigint - Number of CU memory hits.

cu_hdd_sync bigint - Times that CUs are synchronously
read from disks.

cu_hdd_asyn bigint - Times that CUs are asynchronously
read from disks.

data_changed
_timestamp

timestamp
with time
zone

- Last data modification time.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 882

Name Type Referenc
e

Description

data_access_ti
mestamp

timestamp
with time
zone

- Last access time of a table.

analyze_times
tamp

timestamp
with time
zone

- Last Analyze time.

analyze_count bigint - Total number of Analyze times.

autovac_analy
ze_timestamp

timestamp
with time
zone

- Last Autoanalyze time.

autovac_analy
ze_count

bigint - Total number of Autoanalyze
times.

vacuum_times
tamp

timestamp
with time
zone

- Time of the latest Vacuum.

vacuum_coun
t

bigint - Total number of Vacuum times.

autovac_vacu
um_timestam
p

timestamp
with time
zone

- Last Autovacuum time.

autovac_vacu
um_count

bigint - Total number of Autovacuum
times.

autovacuum_s
uccess_count

bigint - Total number of successful
Autovacuum operations.

last_autovacu
um_time_cost

bigint - Time spent on the latest successful
Autovacuum, in microseconds.

avg_autovacu
um_time_cost

bigint - Average execution time of
successful Autovacuum operations.
Unit: μs.

last_autovacu
um_failed_co
unt

bigint - Total number of autovacuum
failures since the last successful
Autovacuum.

last_autovacu
um_trigger

smallint - Triggering mode of the latest
autovacuum, which helps
maintenance personnel determine
the Vacuum status.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 883

Name Type Referenc
e

Description

last_autovacu
um_oldestxmi
n

bigint - oldestxmin after the latest
successful Autovacuum execution.
If the table-level oldestxmin
feature is enabled, this field
records the value of oldestxmin
used by the latest
(AUTO)VACUUM of the table.

last_autovacu
um_scan_pag
es

bigint - Number of pages last scanned by
autovacuum (only for row-store
tables).

last_autovacu
um_dirty_pag
es

bigint - Number of pages last modified by
Autovacuum (only for row-store
tables).

last_autovacu
um_clear_dea
dtuples

bigint - Number of dead tuples last
cleared by Autovacuum (only for
row-store tables)

sum_autovacu
um_scan_pag
es

bigint - Total number of pages scanned by
Autovacuum since database
initialization (only for row-store
tables).

sum_autovacu
um_dirty_pag
es

bigint - Number of pages modified by
Autovacuum since database
initialization (only for row-store
tables).

sum_autovacu
um_clear_dea
dtuples

bigint - Total number of dead tuples
cleared by Autovacuum since
database initialization (only for
row-store tables).

last_autovacu
um_begin_cu_
size

bigint - Size of the CU file before the latest
Autovacuum operation (only for
column-store tables).

last_autovacu
um_cu_size

bigint - Size of the CU file after the latest
Autovacuum (only for column-
store tables).

last_autovacu
um_rewrite_si
ze

bigint - Size of the column-store file last
rewritten by autovacuum (only for
column-store tables).

last_autovacu
um_clear_size

bigint - Size of the column-store file last
cleared by Autovacuum (only for
column-store tables).

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 884

Name Type Referenc
e

Description

last_autovacu
um_clear_cbtr
ee_tuples

bigint - Number of cbtree tuples last
cleared by Autovacuum (only for
column-store tables).

sum_autovacu
um_rewrite_si
ze

bigint - Total size of column-store files
rewritten by Autovacuum since
database initialization (only for
column-store tables).

sum_autovacu
um_clear_size

bigint - Total size of column-store files
cleared by Autovacuum since
database initialization (only for
column-store tables).

sum_autovacu
um_clear_cbtr
ee_tuples

bigint - Total number of cbtree tuples
cleared by Autovacuum since
database initialization (only for
column-store tables).

last_autovacu
um_csn

bigint - If the table-level oldestxmin
feature is enabled, this field
records the CSN value
corresponding to the latest
oldestxmin value used by the
table (AUTO)VACUUM.

last_reference
_timestamp

timestamp
with time
zone

- Last access time of a table. (This
field is supported only by cluster
versions 8.3.0 and later.)
This parameter corresponds to the
latest time between
data_changed_time_stamp (last
modification time) and
data_access_timestamp (last
access time) in PG_STAT_OBJECT.

extra1 bigint - Reserved field 1.

extra2 bigint - Reserved field 2.

extra3 bigint - Reserved field 3.

extra4 bigint - Reserved field 4.

14.3.225 PGXC_STAT_REPLICATION
PGXC_STAT_REPLICATION displays the log synchronization status of each node in
the cluster. All columns except node_name are the same as those in the
PG_STAT_REPLICATION view. This view is accessible only to users with system
administrators rights.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 885

Table 14-293 PGXC_STAT_REPLICATION columns

Name Type Description

node_name text Node name

pid bigint PID of the thread

usesysid oid User system ID

usename name Username

application_n
ame

text Program name

client_addr inet Client address

client_hostna
me

text Client name

client_port integer Client port number

backend_start timestamp
with time
zone

Program start time

state text Log replication state (catch-up or consistent
streaming)

sender_sent_l
ocation

text Location where the sender sends logs

receiver_write
_location

text Location where the receiver writes logs

receiver_flush
_location

text Location where the receiver flushes logs

receiver_repla
y_location

text Location where the receiver replays logs

sync_priority integer Priority of synchronous duplication (0 indicates
asynchronization)

sync_state text Synchronization state (asynchronous
duplication, synchronous duplication, or
potential synchronization)

14.3.226 PGXC_STAT_TABLE_DIRTY
PGXC_STAT_TABLE_DIRTY displays statistics about all the tables on all the CNs
and DNs in the current cluster, and the dirty page rate of tables on a single CN or
DN. This view is supported only by clusters of version 8.1.3 or later.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 886

NO TE

The statistics of this view depend on the ANALYZE operation. To obtain the most accurate
information, perform the ANALYZE operation on the table first.

Table 14-294 PGXC_STAT_TABLE_DIRTY columns

Name Type Description

nodename text Node name

schema name Schema name of the table

tablename name Table name

partname name Partition name of the partitioned
table

last_vacuum timestampwith time
zone

Time of the last manual VACUUM

last_autovacuum timestampwith time
zone

Time of the last AUTOVACUUM

last_analyze timestampwith time
zone

Time of the last manual ANALYZE

last_autoanalyze timestampwith time
zone

Time of the last AUTOANALYZE

vacuum_count bigint Number of times VACUUM
operations

autovacuum_cou
nt

bigint Number of AUTOVACUUM
operations

analyze_count bigint Number of ANALYZE operations

autoanalyze_cou
nt

bigint Number of
AUTOANALYZE_COUNT
operations

n_tup_ins bigint Number of rows inserted

n_tup_upd bigint Number of rows updated

n_tup_del bigint Number of rows deleted

n_tup_hot_upd bigint Number of rows with HOT
updates

n_tup_change bigint Number of changed rows after
ANALYZE

n_live_tup bigint Estimated number of live rows

n_dead_tup bigint Estimated number of dead rows

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 887

Name Type Description

dirty_rate bigint Dirty page rate of a single CN or
DN

last_data_chang
ed

timestampwith time
zone

Time when a table was last
modified

Suggestion
● Before running VACUUM FULL on a system catalog with a high dirty page

rate, ensure that no user is performing operations on it.
● You are advised to run VACUUM FULL to tables (excluding system catalogs)

whose dirty page rate exceeds 80% or run it based on service scenarios.

Scenarios
1. Query the overall dirty page rate of all the user tables in a database.

select
 t1.schema,
 t1.tablename,
 t1.total_ins,
 t1.total_upd,
 t1.total_del,
 t1. total_tup_hot_upd,
 t1.total_change,
 t1.total_live,
 t1.total_dead,
 t1.total_dirty_rate,
 t1.max_dirty,
 t2.max_node,
 t1.min_dirty,
 t2.min_node
from
 (select
 a.schema,
 a.tablename,
 sum(a.n_tup_ins) as total_ins,
 sum(a.n_tup_upd) as total_upd,
 sum(a.n_tup_del) as total_del,
 sum(a.n_tup_hot_upd) as total_tup_hot_upd,
 sum(a.n_tup_change) as total_change,
 sum(a.n_live_tup) as total_live,
 sum(a.n_dead_tup) as total_dead,
 Round((total_dead / (total_dead + total_live + 0.0001) * 100),2) AS total_dirty_rate,
 max(a.dirty_rate) as max_dirty,
 min(a.dirty_rate) as min_dirty
 from pg_catalog.pgxc_stat_table_dirty a where a.partname is null and a.schema not in
('pg_toast','cstore','gs_logical_cluster','sys','dbms_om','information_schema','pg_catalog','dbms_output','
dbms_random','utl_raw','utl_raw dbms_sql','dbms_lob') group by a.tablename, a.schema
) t1,
 (select distinct
 tablename, schema,
 first_value(nodename) over(partition by tablename, schema order by dirty_rate) as min_node,
 first_value(nodename) over(partition by tablename, schema order by dirty_rate desc) as max_node
 from (select * from pg_catalog.pgxc_stat_table_dirty)) t2
where t1.tablename = t2.tablename and t1.schema = t2.schema;

2. Query the overall dirty page rate of all the tables (user tables and system
catalogs) in a database.
select
 t1.schema,

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 888

 t1.tablename,
 t1.total_ins,
 t1.total_upd,
 t1.total_del,
 t1. total_tup_hot_upd,
 t1.total_change,
 t1.total_live,
 t1.total_dead,
 t1.total_dirty_rate,
 t1.max_dirty,
 t2.max_node,
 t1.min_dirty,
 t2.min_node
from
 (select
 a.schema,
 a.tablename,
 sum(a.n_tup_ins) as total_ins,
 sum(a.n_tup_upd) as total_upd,
 sum(a.n_tup_del) as total_del,
 sum(a.n_tup_hot_upd) as total_tup_hot_upd,
 sum(a.n_tup_change) as total_change,
 sum(a.n_live_tup) as total_live,
 sum(a.n_dead_tup) as total_dead,
 Round((total_dead / (total_dead + total_live + 0.0001) * 100),2) AS total_dirty_rate,
 max(a.dirty_rate) as max_dirty,
 min(a.dirty_rate) as min_dirty
 from pg_catalog.pgxc_stat_table_dirty a where a.partname is null group by a.tablename, a.schema
) t1,
 (select distinct
 tablename, schema,
 first_value(nodename) over(partition by tablename, schema order by dirty_rate) as min_node,
 first_value(nodename) over(partition by tablename, schema order by dirty_rate desc) as max_node
 from (select * from pg_catalog.pgxc_stat_table_dirty)) t2
where t1.tablename = t2.tablename and t1.schema = t2.schema;

3. Query all system catalogs in a database.
select * from pgxc_stat_table_dirty where schema in
('pg_toast','cstore','gs_logical_cluster','sys','dbms_om','information_schema','pg_catalog','dbms_output','
dbms_random','utl_raw','utl_raw dbms_sql','dbms_lob');

14.3.227 PGXC_STAT_WAL
PGXC_STAT_WAL displays the WAL logs and data page traffic information of the
current query. This view is supported only by clusters 8.2.0 and later versions.

Table 14-295 PGXC_STAT_WAL columns

Name Type Description

query_id bigint ID of the current query

query_start timesta
mp

Start time of the query

global_wal bigint Total number of WAL logs generated by the
current query in the cluster, in bytes

global_avg_wal_
speed

bigint Average rate of WAL log generation for the
current query in the cluster, in byte/s

global_datapage bigint Total size of data pages generated by the current
query in the cluster, in bytes

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 889

Name Type Description

global_avg_data
page_speed

bigint Average rate of data page generation for the
current query in the cluster, in byte/s

min_wal_node Text Name of the instance group that generates the
smallest volume of WAL logs in the current query

min_wal bigint Minimum WAL logs generated by a node, in
bytes

max_wal_node Text Name of the instance group that generates the
largest volume of WAL logs in the current query

max_wal bigint Maximum WAL logs generated by a node, in
bytes

min_datapage_n
ode

Text Name of the instance group that generates the
smallest volume of data pages in the current
query

min_data_page bigint Minimum data pages generated by a node, in
bytes

max_datapage_n
ode

Text Name of the instance group that generates the
largest volume of data pages in the current query

max_data_page bigint Maximum data pages generated by a node, in
bytes

avg_wal_per_no
de

bigint Average WAL logs generated by each node, in
bytes

avg_datapage_p
er_node

bigint Average data pages generated by each node, in
bytes

query Text Statement that is being executed

NO TE

When row-store data is imported in batches without indexes, the Xlogs related to logical
new pages are generated during data page copy. If the volume of Xlogs is greater than the
default value, flow control will be triggered.

Examples
Query the statements that are being executed in the cluster, the total volumes of
WAL logs and data pages generated by these statements, their average generation
rates, and their distribution on DNs.

SELECT * FROM PGXC_STAT_WAL;
 query_id | query_start | global_wal | global_avg_wal_speed | global_datapage |
global_avg_datapage_speed | min_wal_node | min_wal | max_wal_node | max_wal | min_datapage_node |
min_data_page | max_datapage_node | max_data_page | avg_wal_per_node |
avg_datapage_per_node | query
-------------------+-------------------------------+------------+----------------------+-----------------
+---------------------------+--------------+----------+--------------+----------+-------------------+---------------

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 890

+-------------------+---------------+------------------+-
----------------------+--
 72620543991351767 | 2022-11-10 16:49:47.743291+08 | 7579052 | 419000 | 284057600
| 15740000 | datanode1 | 7579052 | datanode1 | 7579052 | datanode1 | 284057600
| datanode1 | 284057600 | 7579052 |
 284057600 | insert into mpptest3 select * from mpptest3;
 72620543991351781 | 2022-11-10 16:50:00.616697+08 | 55022176 | 10638000 | 0
| 0 | datanode1 | 55022176 | datanode1 | 55022176 | datanode1 | 0 |
datanode1 | 0 | 55022176 |
 0 | insert into mpptest1 select * from mpptest1;
(2 rows)

14.3.228 PGXC_SQL_COUNT
PGXC_SQL_COUNT displays the node-level and user-level statistics for the SQL
statements of SELECT, INSERT, UPDATE, DELETE, and MERGE INTO and DDL,
DML, and DCL statements of each CN in a cluster in real time, identifies query
types with heavy load, and measures the capability of a cluster or a node to
perform a specific type of query. You can calculate QPS based on the quantities
and response time of the preceding types of SQL statements at certain time
points. For example, USER1 SELECT is counted as X1 at T1 and as X2 at T2. The
SELECT QPS of the user can be calculated as follows: (X2 – X1)/(T2 – T1). In this
way, the system can draw cluster-user-level QPS curve graphs and determine
cluster throughput, monitoring changes in the service load of each user. If there
are drastic changes, the system can locate the specific statement type (such as
SELECT, INSERT, UPDATE, DELETE, and MERGE INTO). You can also observe QPS
curves to determine the time points when problems occur and then locate the
problems using other tools. The curves provide a basis for optimizing cluster
performance and locating problems.

Columns in the PGXC_SQL_COUNT view are the same as those in the
GS_SQL_COUNT view. For details, see Table 14-140.

NO TE

If a MERGE INTO statement can be pushed down and a DN receives it, the statement will
be counted on the DN and the value of the mergeinto_count column will increment by 1.
If the pushdown is not allowed, the DN will receive an UPDATE or INSERT statement. In
this case, the update_count or insert_count column will increment by 1.

14.3.229 PGXC_TABLE_CHANGE_STAT
PGXC_TABLE_CHANGE_STAT displays the changes of all tables of the database on
all CNs in the cluster. Except the nodename column of the name type added in
front of each row, the names, types, and sequences of other columns are the same
as those in the GS_TABLE_CHANGE_STAT view.

Table 14-296 PGXC_TABLE_CHANGE_STAT columns

Name Type Description

nodename name Node name

schemaname name Table namespace

relname name Table name

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 891

Name Type Description

last_vacuum timestamp
with time
zone

Time when the last VACUUM operation is
performed manually

vacuum_count bigint Number of times of manually performing the
VACUUM operation

last_autovacuum timestamp
with time
zone

Time when the last VACUUM operation is
performed automatically

autovacuum_cou
nt

bigint Number of times of automatically
performing the VACUUM operation

last_analyze timestamp
with time
zone

Time when the ANALYZE operation is
performed (both manually and
automatically)

analyze_count bigint Number of times of performing the
ANALYZE operation (both manually and
automatically)

last_autoanalyze timestamp
with time
zone

Time when the last ANALYZE operation is
performed automatically

autoanalyze_cou
nt

bigint Number of times of automatically
performing the ANALYZE operation

last_change bigint Time when the last modification (INSERT,
UPDATE, or DELETE) is performed

14.3.230 PGXC_TABLE_STAT
PGXC_TABLE_STAT provides statistics of all tables of the database on all CNs and
DNs in the cluster. Except the nodename column of the name type added in front
of each row, the names, types, and sequences of other columns are the same as
those in the GS_TABLE_STAT view.

Table 14-297 PGXC_TABLE_STAT columns

Name Type Description

nodename name Node name

schemaname name Table namespace

relname name Table name

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 892

Name Type Description

seq_scan bigint Number of sequential scans. Only row-store
tables are counted. For a partitioned table,
the sum of the number of scans of each
partition is displayed.

seq_tuple_rea
d

bigint Number of rows scanned in sequence. Only
row-store tables are counted.

index_scan bigint Number of index scans. Only row-store
tables are counted.

index_tuple_re
ad

bigint Number of rows scanned by the index. Only
row-store tables are counted.

tuple_inserted bigint Number of rows inserted

tuple_updated bigint Number of rows updated

tuple_deleted bigint Number of rows deleted

tuple_hot_upd
ated

bigint Number of rows with HOT updates.

live_tuples bigint Number of live tuples. Query the view on
the CN. If ANALYZE is executed, the total
number of live tuples in the table is
displayed. Otherwise, 0 is displayed. This
indicator applies only to row-store tables.

dead_tuples bigint Number of dead tuples. Query the view on
the CN. If ANALYZE is executed, the total
number of dead tuples in the table is
displayed. Otherwise, 0 is displayed. This
indicator applies only to row-store tables.

14.3.231 PGXC_THREAD_WAIT_STATUS
PGXC_THREAD_WAIT_STATUS displays all the call layer hierarchy relationship
between threads of the SQL statements on all the nodes in a cluster, and the
waiting status of the block for each thread, so that you can easily locate the
causes of process response failures and similar phenomena.

The definitions of PGXC_THREAD_WAIT_STATUS view and
PG_THREAD_WAIT_STATUS view are the same, because the essence of the
PGXC_THREAD_WAIT_STATUS view is the query summary result of the
PG_THREAD_WAIT_STATUS view on each node in the cluster.

Table 14-298 PGXC_THREAD_WAIT_STATUS columns

Name Type Description

node_name text Current node name

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 893

Name Type Description

db_name text Database name

thread_name text Thread name

query_id bigint Query ID. It is equivalent to debug_query_id.

tid bigint Thread ID of the current thread

lwtid integer Lightweight thread ID of the current thread

ptid integer Parent thread of the streaming thread

tlevel integer Level of the streaming thread

smpid integer Concurrent thread ID

wait_status text Waiting status of the current thread. For
details about the waiting status, see Table
14-231.

wait_event text If wait_status is acquire lock, acquire lwlock,
or wait io, this column describes the lock,
lightweight lock, and I/O information,
respectively. If wait_status is not any of the
three values, this column is empty.

Example:

Assume you run a statement on coordinator1, and no response is returned after a
long period of time. In this case, establish another connection to coordinator1 to
check the thread status on it.

 select * from pg_thread_wait_status where query_id > 0;
 node_name | db_name | thread_name | query_id | tid | lwtid | ptid | tlevel | smpid |
wait_status | wait_event
--------------+----------+--------------+----------+-----------------+-------+-------+--------+-------
+----------------------
 coordinator1 | gaussdb | gsql | 20971544 | 140274089064208 | 22579 | | 0 | 0 | wait node:
datanode4 |
(1 rows)

Furthermore, you can view the statement working status on each node in the
entire cluster. In the following example, no DNs have threads blocked, and there is
a huge amount of data to be read, causing slow execution.

select * from pgxc_thread_wait_status where query_id=20971544;
 node_name | db_name | thread_name | query_id | tid | lwtid | ptid | tlevel | smpid |
wait_status | wait_event
--------------+----------+--------------+----------+-----------------+-------+-------+--------+-------
+----------------------
 datanode1 | gaussdb | coordinator1 | 20971544 | 139902867994384 | 22735 | | 0 | 0 | wait
node: datanode3 |
 datanode1 | gaussdb | coordinator1 | 20971544 | 139902838634256 | 22970 | 22735 | 5 | 0 |
synchronize quit |
 datanode1 | gaussdb | coordinator1 | 20971544 | 139902607947536 | 22972 | 22735 | 5 | 1 |
synchronize quit |
 datanode2 | gaussdb | coordinator1 | 20971544 | 140632156796688 | 22736 | | 0 | 0 | wait
node: datanode3 |
 datanode2 | gaussdb | coordinator1 | 20971544 | 140632030967568 | 22974 | 22736 | 5 | 0 |

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 894

synchronize quit |
 datanode2 | gaussdb | coordinator1 | 20971544 | 140632081299216 | 22975 | 22736 | 5 | 1 |
synchronize quit |
 datanode3 | gaussdb | coordinator1 | 20971544 | 140323627988752 | 22737 | | 0 | 0 | wait
node: datanode3 |
 datanode3 | gaussdb | coordinator1 | 20971544 | 140323523131152 | 22976 | 22737 | 5 | 0 | net
flush data |
 datanode3 | gaussdb | coordinator1 | 20971544 | 140323548296976 | 22978 | 22737 | 5 | 1 | net
flush data
 datanode4 | gaussdb | coordinator1 | 20971544 | 140103024375568 | 22738 | | 0 | 0 | wait
node: datanode3
 datanode4 | gaussdb | coordinator1 | 20971544 | 140102919517968 | 22979 | 22738 | 5 | 0 |
synchronize quit |
 datanode4 | gaussdb | coordinator1 | 20971544 | 140102969849616 | 22980 | 22738 | 5 | 1 |
synchronize quit |
 coordinator1 | gaussdb | gsql | 20971544 | 140274089064208 | 22579 | | 0 | 0 | wait node:
datanode4 |
(13 rows)

14.3.232 PGXC_TOTAL_MEMORY_DETAIL
PGXC_TOTAL_MEMORY_DETAIL displays the memory usage in the cluster. Only
the system administrator or the preset role gs_role_read_all_stats can access this
view.

Table 14-299 PGXC_TOTAL_MEMORY_DETAIL columns

Name Type Description

nodename text Node name

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 895

Name Type Description

memorytype text Memory name, which can be set to any of
the following values:
● max_process_memory: memory used

by a GaussDB(DWS) cluster instance
● process_used_memory: memory used

by a GaussDB(DWS) process
● max_dynamic_memory: maximum

dynamic memory
● dynamic_used_memory: used dynamic

memory
● dynamic_peak_memory: dynamic peak

value of the memory
● dynamic_used_shrctx: maximum

dynamic shared memory context
● dynamic_peak_shrctx: dynamic peak

value of the shared memory context
● max_shared_memory: maximum

shared memory
● shared_used_memory: used shared

memory
● max_cstore_memory: maximum

memory allowed for column store
● cstore_used_memory: memory used for

column store
● max_sctpcomm_memory: maximum

memory allowed for the
communication library

● sctpcomm_used_memory: memory
used for the communication library

● sctpcomm_peak_memory: memory
peak of the communication library

● other_used_memory: other used
memory

● gpu_max_dynamic_memory:
maximum GPU memory

● gpu_dynamic_used_memory: sum of
the available GPU memory and
temporary GPU memory

● gpu_dynamic_peak_memory:
maximum memory used for GPU

● pooler_conn_memory: memory used
for pooler connections

● pooler_freeconn_memory: memory
used for idle pooler connections

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 896

Name Type Description

● storage_compress_memory: memory
used for column-store compression and
decompression

● udf_reserved_memory: memory
reserved for the UDF Worker process

● mmap_used_memory: memory used
for mmap

memorymbyte
s

integer Size of the used memory (MB)

14.3.233 PGXC_TOTAL_SCHEMA_INFO
PGXC_TOTAL_SCHEMA_INFO displays the schema space information of all
instances in the cluster, providing visibility into the schema space usage of each
instance. This view can be queried only on CNs.

Table 14-300 PGXC_TOTAL_SCHEMA_INFO columns

Name Type Description

schemaname text Schema name.

schemaid oid Schema OID.

databasename text Database name.

databaseid oid Database OID.

nodename text Instance name.

nodegroup text Node group name.

usedspace bigint Used space size.

permspace bigint Space upper limit.

14.3.234 PGXC_TOTAL_SCHEMA_INFO_ANALYZE
PGXC_TOTAL_SCHEMA_INFO_ANALYZE displays the overall schema space
information of the cluster, including the total cluster space, average space of
instances, skew ratio, maximum space of a single instance, minimum space of a
single instance, and names of the instances with the maximum space and
minimum space. It provides visibility into the schema space usage of the entire
cluster. This view can be queried only on CNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 897

Table 14-301 PGXC_TOTAL_SCHEMA_INFO_ANALYZE columns

Name Type Description

schemaname text Schema name.

databasename text Database name.

nodegroup text Node group name.

total_value bigint Total cluster space in this
schema.

avg_value bigint Average space per
instance in this schema.

skew_percent integer Skew ratio.

extend_info text The extended
information includes the
maximum and minimum
space values for a single
instance, as well as the
names of the instances
with the maximum and
minimum space values.

14.3.235 PGXC_TOTAL_USER_RESOURCE_INFO
The PGXC_TOTAL_USER_RESOURCE_INFO view displays real-time resource
consumption information of users on all instances. This view is supported only by
clusters of version 8.2.0 or later.

Table 14-302 PGXC_TOTAL_USER_RESOURCE_INFO columns

Name Type Description

nodename name Instance name, including CNs and DNs.

username name Username

used_memory integer Used memory (unit: MB)
On a DN, it indicates a user's memory usage
on the current DN.
On a CN, it indicates a user's total memory
usage on all DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 898

Name Type Description

total_memory integer Available memory (unit: MB). 0 indicates that
the available memory is not limited and
depends on the maximum memory available in
the database.
On a DN, it indicates the memory available to
a user on the current DN.
On a CN, it indicates the total memory
available to a user on all DNs.

used_cpu double
precision

Number of CPU cores in use. Only the CPU
usage of complex jobs in the non-default
resource pool is collected, and the value is the
CPU usage of the related cgroup.
On a DN, it indicates a user's CPU core usage
on the current DN.
On a CN, it indicates a user's total CPU core
usage on all DNs.

total_cpu integer Total number of CPU cores of the Cgroups
associated with a user.
On a DN, it indicates the CPU cores available
to a user on the current DN.
On a CN, it indicates the total CPU cores
available to a user on all DNs.

used_space bigint Used permanent table storage space (unit: KB)
On a DN, it indicates the size of the permanent
table storage space used by a user on the
current DN.
On a CN, it indicates the total size of the
permanent table storage space used by a user
on all DNs.

total_space bigint Available storage space (unit: KB). -1 indicates
that the storage space is not limited.
On a DN, it indicates the size of the permanent
table storage space available to a user on the
current DN.
On a CN, it indicates the total size of the
permanent table storage space available to a
user on all DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 899

Name Type Description

used_temp_sp
ace

bigint Used temporary table storage space (unit: KB)
On a DN, it indicates the size of the temporary
table storage space used by a user on the
current DN.
On a CN, it indicates the total size of the
temporary table storage space used by a user
on all DNs.

total_temp_sp
ace

bigint Available temporary table storage space (unit:
KB). -1 indicates that the storage space is not
limited.
On a DN, it indicates the size of the temporary
table storage space available to a user on the
current DN.
On a CN, it indicates the total size of the
temporary table storage space available to a
user on all DNs.

used_spill_spa
ce

bigint Size of space used for operator spill to disk, in
KB.
On a DN, it indicates the space used by a user
to spill operators to disk on the current DN.
On a CN, it indicates the total space used by a
user's operators spilled to disk on all DNs.

total_spill_spa
ce

bigint Size of space available for operator spill to
disk, in KB. The value -1 indicates that the
space is not limited.
On a DN, it indicates the space available for a
user to spill operators to disk on the current
DN.
On a CN, it indicates the total space available
for a user to spill operators to disk on all DNs.

read_kbytes bigint On a CN, it indicates the total number of bytes
logically read by a user on all DNs in the last 5
seconds, in KB.
On a DN, it indicates the total number of bytes
logically read by a user from the instance
startup time to the current time, in KB.

write_kbytes bigint On a CN, it indicates the total number of bytes
logically written by a user on all DNs in the
last 5 seconds, in KB.
On a DN, it indicates the total number of bytes
logically written by a user from the instance
startup time to the current time, in KB.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 900

Name Type Description

read_counts bigint On a CN, it indicates the total number of
logical reads performed by a user on all DNs in
the last 5 seconds.
On a DN, it indicates the total number of
logical reads performed by a user from the
instance startup time to the current time.

write_counts bigint On a CN, it indicates the total number of
logical writes performed by a user on all DNs
in the last 5 seconds.
On a DN, it indicates the total number of
logical writes performed by a user from the
instance startup time to the current time.

read_speed double
precision

On a CN, it indicates the average logical read
rate of a user on a single DN in the last 5
seconds, in KB/s.
On a DN, it indicates the average logical read
rate of a user on the DN in the last 5 seconds,
in KB/s.

write_speed double
precision

On a CN, it indicates the average logical write
rate of a user on a single DN in the last 5
seconds, in KB/s.
On a DN, it indicates the average logical write
rate of a user on the DN in the last 5 seconds,
in KB/s.

send_speed double
precision

On a CN, it indicates the sum of the average
network sending rates of a user on all DNs in
the last 5 seconds, in KB/s.
On a DN, it indicates the average network
sending rate of a user on the DN in the last 5
seconds, in KB/s.

recv_speed double
precision

On a CN, it indicates the sum of the average
network receiving rates of a user on all DNs in
the last 5 seconds, in KB/s.
On a DN, it indicates the average network
receiving rate of a user on the DN in the last 5
seconds, in KB/s.

14.3.236 PGXC_USER_TRANSACTION
PGXC_USER_TRANSACTION provides transaction information about users on all
CNs. It is accessible only to users with system administrator rights. This view is
valid only if the real-time resource monitoring function is enabled, that is, if
enable_resource_track is on.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 901

Table 14-303 PGXC_USER_TRANSACTION columns

Name Type Description

node_name name Node name.

usename name Username.

commit_counter bigint Number of commits.

rollback_counter bigint Number of rollbacks.

resp_min bigint Minimum response time.

resp_max bigint Maximum response time.

resp_avg bigint Average response time.

resp_total bigint Total response time.

14.3.237 PGXC_VARIABLE_INFO
PGXC_VARIABLE_INFO displays information about transaction IDs and OIDs of all
nodes in a cluster.

Table 14-304 PGXC_VARIABLE_INFO columns

Name Type Description

node_name text Node name.

nextOid oid Next OID to be generated under this node.

nextXid xid Next transaction OID to be generated under
this node.

oldestXid xid Oldest transaction ID for a node

xidVacLimit xid Critical point for forcing autovacuum.

oldestXidDB oid Database OID with the minimum
datafrozenxid under this node.

lastExtendCSNL
ogpage

integer Page number of the last extension of csnlog.

startExtendCSN
Logpage

integer Starting page number of the csnlog
extension.

nextCommitSeq
No

integer Next CSN to be generated under this node.

latestCompleted
Xid

xid Latest transaction ID on the node after
commit or rollback.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 902

Name Type Description

startupMaxXid xid Last transaction ID before the node
shutdown.

14.3.238 PGXC_WAIT_DETAIL
PGXC_WAIT_DETAIL displays detailed information about the SQL waiting
hierarchy of all nodes in a cluster. This view is supported only by clusters of version
8.1.3.200 or later.

Table 14-305 PGXC_WAIT_DETAIL columns

Name Type Description

level integer Level in the wait hierarchy. The value starts with
1 and increases by 1 when there is a wait
relationship.

lock_wait_hi
erarchy

text Wait hierarchy, in the format of Node name:
Process ID->Node name:Waiting process ID-
>Node name:Waiting process ID->...

node_name text Node name

db_name text Database name

thread_name text Thread name

query_id bigint ID of a query statement

tid bigint Thread ID of the current thread

lwtid integer Lightweight thread ID of the current thread

ptid integer Parent thread of the streaming thread

tlevel integer Level of the streaming thread

smpid integer Concurrent thread ID

wait_status text Waiting status of the current thread

wait_event text Virtual ID of the transaction holding or awaiting
this lock

exec_cn boolean SQL execution CN

wait_node text Lock level

query text Query statement

application_
name

text Name of the application connected to the
backend

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 903

Name Type Description

backend_star
t

timestamp
with time
zone

Startup time of the backend process, that is, the
time when the client connects to the server

xact_start timestamp
with time
zone

Start time of the current transaction

query_start timestamp
with time
zone

Start time of the active query

waiting boolean Waiting status

state text Overall state of the backend

waittime timestamp
with time
zone

Timestamp when the lock wait starts.
This column is available only in clusters of
version 9.1.0.200 or later.

holdtime timestamp
with time
zone

Timestamp when the lock starts to be obtained.
This column is available only in clusters of
version 9.1.0.200 or later.

Example

Step 1 Connect to the CN, start a transaction, and perform the update operation.
begin;update td set c2=6 where c1=1;

Step 2 Open another window to connect to the CN, start another transaction, and
perform the update operation. (Do not update the same record concurrently.)
begin;update td set c2=6 where c1=7;

In this case, the update operation is blocked.

Step 3 Open another window to connect to the CN node and create an index.
create index c2_key on td(c2);

Step 4 Run the select * from pgxc_wait_detail; command.
SELECT * FROM PGXC_WAIT_DETAIL;
level | lock_wait_hierarchy | node_name | db_name | thread_name | query_id
| tid | lwtid | ptid | tlevel | sm
pid | wait_status | wait_event | exec_cn | wait_node | query | application_name |
backend_start | xact_st
art | query_start | waiting | state
-------+--+-----------+----------+-------------+-------------------
+-----------------+--------+------+--------+---
----+--------------+------------+---------+-----------+--+------------------
+-------------------------------+-----------------
--------------+-------------------------------+---------+--------
1 | cn_5001:139870843444360 | cn_5001 | postgres | workload | 73183493945299462 |
139870843444360 | 578531 | | 0 |
0 | wait node | | t | | WLM fetch collect info from data nodes | workload |
2023-03-13 13:56:56.611486+08 | 2023-03-14 11:54
:33.562808+08 | 2023-03-13 13:57:00.262736+08 | t | active
1 | cn_5001:139870843654544 | cn_5001 | postgres | gsql | 73183493945299204 |

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 904

139870843654544 | 722259 | | 0 |
0 | wait node | | t | | update td set c2=6 where c1=1; | gsql | 2023-03-14
11:52:05.176588+08 | 2023-03-14 11:52
:19.054727+08 | 2023-03-14 11:53:58.114794+08 | t | active
1 | cn_5001:139870843655296 | cn_5001 | postgres | gsql | 73183493945299218 |
139870843655296 | 722301 | | 0 |
0 | wait node | | t | | update td set c2=6 where c1=7; | gsql | 2023-03-14
11:52:08.084265+08 | 2023-03-14 11:52
:42.978132+08 | 2023-03-14 11:53:59.459575+08 | t | active
1 | cn_5001:139870843656424 | cn_5001 | postgres | gsql | 73183493945299223 |
139870843656424 | 722344 | | 0 |
0 | acquire lock | relation | t | | create index c2_key on td(c2); | gsql | 2023-03-14
11:52:10.967028+08 | 2023-03-14 11:52
:53.463227+08 | 2023-03-14 11:54:00.25203+08 | t | active
2 | cn_5001:139870843656424 -> cn_5001:139870843655296 | cn_5001 | postgres | gsql |
73183493945299218 | 139870843655296 | 722344 | | |
| | | f | | update td set c2=6 where c1=7; | gsql | 2023-03-14
11:52:08.084265+08 | 2023-03-14 11:52
:42.978132+08 | 2023-03-14 11:53:59.459575+08 | t | active
(5 rows)

----End

14.3.239 PGXC_WAIT_EVENTS
PGXC_WAIT_EVENTS displays statistics on the waiting status and events of each
node in the cluster. The content is the same as that displayed in
GS_WAIT_EVENTS. This view is accessible only to users with system
administrators rights.

Table 14-306 PGXC_WAIT_EVENTS columns

Name Type Description

nodename name Node name.

type text Event type, which can be STATUS,
LOCK_EVENT, LWLOCK_EVENT, or
IO_EVENT

event text Event name. For details, see
PG_THREAD_WAIT_STATUS.

wait bigint Number of times an event occurs. This
column and all the columns below are
values accumulated during process
running.

failed_wait bigint Number of waiting failures. In the
current version, this column is used
only for counting timeout errors and
waiting failures of locks such as LOCK
and LWLOCK.

total_wait_time bigint Total duration of the event

avg_wait_time bigint Average duration of the event

max_wait_time bigint Maximum wait time of the event

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 905

Name Type Description

min_wait_time bigint Minimum wait time of the event

14.3.240 PGXC_WLM_OPERATOR_HISTORY
PGXC_WLM_OPERATOR_HISTORY displays operator information when a job is
finished on all CNs. This view is used to query data from GaussDB(DWS), and the
data in the database is cleared periodically every 3 minutes.

Only the system administrator or the preset role gs_role_read_all_stats can access
this view. For details about columns in the view, see Table 14-307.

Table 14-307 GS_WLM_OPERATOR_INFO columns

Name Type Description

nodename text Name of the CN where the statement is
executed

queryid bigint Internal query_id used for statement
execution

pid bigint Backend thread ID

plan_node_id integer plan_node_id of the execution plan of a query

plan_node_nam
e

text Name of the operator corresponding to
plan_node_id

start_time timestamp
with time
zone

Time when an operator starts to process the
first data record

duration bigint Total execution time of an operator. The unit
is ms.

query_dop integer Degree of parallelism (DOP) of the current
operator

estimated_rows bigint Number of rows estimated by the optimizer

tuple_processed bigint Number of elements returned by the current
operator

min_peak_mem
ory

integer Minimum peak memory used by the current
operator on all DNs. The unit is MB.

max_peak_me
mory

integer Maximum peak memory used by the current
operator on all DNs. The unit is MB.

average_peak_
memory

integer Average peak memory used by the current
operator on all DNs. The unit is MB.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 906

Name Type Description

memory_skew_
percent

integer Memory usage skew of the current operator
among DNs

min_spill_size integer Minimum spilled data among all DNs when a
spill occurs. The unit is MB. The default value
is 0.

max_spill_size integer Maximum spilled data among all DNs when a
spill occurs. The unit is MB. The default value
is 0.

average_spill_si
ze

integer Average spilled data among all DNs when a
spill occurs. The unit is MB. The default value
is 0.

spill_skew_perc
ent

integer DN spill skew when a spill occurs

min_cpu_time bigint Minimum execution time of the operator on
all DNs. The unit is ms.

max_cpu_time bigint Maximum execution time of the operator on
all DNs. The unit is ms.

total_cpu_time bigint Total execution time of the operator on all
DNs. The unit is ms.

cpu_skew_perce
nt

integer Skew of the execution time among DNs.

warning text Warning. The following warnings are
displayed:
1. Sort/SetOp/HashAgg/HashJoin spill
2. Spill file size large than 256MB
3. Broadcast size large than 100MB
4. Early spill
5. Spill times is greater than 3
6. Spill on memory adaptive
7. Hash table conflict

14.3.241 PGXC_WLM_OPERATOR_INFO
PGXC_WLM_OPERATOR_INFO displays the operator information of completed
jobs executed on CNs. The data in this view is obtained from
GS_WLM_OPERATOR_INFO.

Only the system administrator or the preset role gs_role_read_all_stats can access
this view. For details about columns in the view, see Table 14-307.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 907

Table 14-308 GS_WLM_OPERATOR_INFO columns

Name Type Description

nodename text Name of the CN where the statement is
executed

queryid bigint Internal query_id used for statement
execution

pid bigint Backend thread ID

plan_node_id integer plan_node_id of the execution plan of a query

plan_node_nam
e

text Name of the operator corresponding to
plan_node_id

start_time timestamp
with time
zone

Time when an operator starts to process the
first data record

duration bigint Total execution time of an operator. The unit
is ms.

query_dop integer Degree of parallelism (DOP) of the current
operator

estimated_rows bigint Number of rows estimated by the optimizer

tuple_processed bigint Number of elements returned by the current
operator

min_peak_mem
ory

integer Minimum peak memory used by the current
operator on all DNs. The unit is MB.

max_peak_me
mory

integer Maximum peak memory used by the current
operator on all DNs. The unit is MB.

average_peak_
memory

integer Average peak memory used by the current
operator on all DNs. The unit is MB.

memory_skew_
percent

integer Memory usage skew of the current operator
among DNs

min_spill_size integer Minimum spilled data among all DNs when a
spill occurs. The unit is MB. The default value
is 0.

max_spill_size integer Maximum spilled data among all DNs when a
spill occurs. The unit is MB. The default value
is 0.

average_spill_si
ze

integer Average spilled data among all DNs when a
spill occurs. The unit is MB. The default value
is 0.

spill_skew_perc
ent

integer DN spill skew when a spill occurs

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 908

Name Type Description

min_cpu_time bigint Minimum execution time of the operator on
all DNs. The unit is ms.

max_cpu_time bigint Maximum execution time of the operator on
all DNs. The unit is ms.

total_cpu_time bigint Total execution time of the operator on all
DNs. The unit is ms.

cpu_skew_perce
nt

integer Skew of the execution time among DNs.

warning text Warning. The following warnings are
displayed:
1. Sort/SetOp/HashAgg/HashJoin spill
2. Spill file size large than 256MB
3. Broadcast size large than 100MB
4. Early spill
5. Spill times is greater than 3
6. Spill on memory adaptive
7. Hash table conflict

14.3.242 PGXC_WLM_OPERATOR_STATISTICS
PGXC_WLM_OPERATOR_STATISTICS displays the operator information of jobs
being executed on CNs. The system administrator can query job operator
information of all users in the cluster, while common users can query only their
own job operator information.

For details about columns in the view, see Table 14-154.

Table 14-309 GS_WLM_OPERATOR_STATISTICS columns

Name Type Description

queryid bigint Internal query_id used for statement execution

pid bigint ID of the backend thread

plan_node_id integer plan_node_id of the execution plan of a query

plan_node_na
me

text Name of the operator corresponding to
plan_node_id. The maximum length of the
operator name is 127 characters (excluding
format characters such as spaces).

start_time timestamp
with time
zone

Time when the operator starts to be executed
for the first time.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 909

Name Type Description

duration bigint Total execution time of the operator from the
start to the end, in milliseconds.

status text Execution status of the current operator. The
value can be waiting, running, or finished.

query_dop integer DOP of the current operator

estimated_rows bigint Number of rows estimated by the optimizer. If
the number of returned estimated rows
exceeds int64_max, int64_max is displayed.

tuple_processe
d

bigint Total number of elements returned by the
current operator on all DNs. If the estimated
number of returned rows exceeds int64_max,
int64_max is displayed.

min_peak_mem
ory

integer Minimum peak memory used by the current
operator on all DNs. The unit is MB.

max_peak_me
mory

integer Maximum peak memory used by the current
operator on all DNs. The unit is MB.

average_peak_
memory

integer Average peak memory used by the current
operator on all DNs. The unit is MB.

memory_skew_
percent

integer Memory usage skew of the current operator
among DNs

min_spill_size integer Minimum logical spilled data among all DNs
when a spill occurs, in MB. The default value is
0.

max_spill_size integer Maximum logical spilled data among all DNs
when a spill occurs, in MB. The default value is
0.

average_spill_si
ze

integer Average logical spilled data among all DNs
when a spill occurs, in MB. The default value is
0.

spill_skew_perc
ent

integer DN spill skew when a spill occurs

min_cpu_time bigint Minimum execution time of the operator on
all DNs. The unit is ms.

max_cpu_time bigint Maximum execution time of the operator on
all DNs. The unit is ms.

total_cpu_time bigint Total execution time of the operator on all
DNs. The unit is ms.

cpu_skew_perc
ent

integer Skew of the execution time among DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 910

Name Type Description

warning text Warning. The following warnings are
displayed:
1. Sort/SetOp/HashAgg/HashJoin spill
2. Spill file size large than 256MB
3. Broadcast size large than 100MB
4. Early spill
5. Spill times is greater than 3
6. Spill on memory adaptive
7. Hash table conflict

parent_id integer Parent node ID of the operator node.

exec_count integer Maximum number of times that the operator
node can be executed on all DNs.

progress text Progress information of the operator. For the
first operator, it is the overall progress of the
job. For other operators, it is the progress of
the current operator.

min_net_size bigint Minimum network communication data
volume (KB) of the operator on all DNs. It
mainly applies to network operators.

max_net_size bigint Maximum network communication data
volume (KB) of the operator on all DNs. It
mainly applies to network operators.

total_net_size bigint Total network communication data volume
(KB) of the operator on all DNs. It mainly
applies to network operators.

min_read_bytes bigint Minimum amount of data read by the
operator from disks on all DNs. The unit is KB.

max_read_byte
s

bigint Maximum amount of data read by the
operator from disks on all DNs. The unit is KB.

total_read_byte
s

bigint Total amount of data read by the operator
from disks on all DNs, in KB.

min_write_byte
s

bigint Minimum amount of data written by the
operator to disks on all DNs. The unit is KB.

max_write_byte
s

bigint Maximum amount of data written by the
operator to disks on all DNs. The unit is KB.

total_write_byt
es

bigint Total amount of data written by the operator
to disks on all DNs, in KB.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 911

14.3.243 PGXC_WLM_SESSION_INFO
PGXC_WLM_SESSION_INFO displays load management information for
completed jobs executed on all CNs. The data in this view is obtained from
GS_WLM_SESSION_INFO.

Table 14-310 PGXC_WLM_SESSION_INFO columns

Name Type Description

datid oid OID of the database the backend is connected
to

dbname text Name of the database the backend is
connected to

schemaname text Schema name

nodename text Name of the CN where the statement is run

username text User name used for connecting to the backend

application_na
me

text Name of the application that is connected to
the backend

client_addr inet IP address of the client connected to this
backend. If this column is null, it indicates
either that the client is connected via a Unix
socket on the server machine or that this is an
internal process such as autovacuum.

client_hostnam
e

text Host name of the connected client, as
reported by a reverse DNS lookup of
client_addr. This column will only be non-null
for IP connections, and only when
log_hostname is enabled.

client_port integer TCP port number used by the client to
communicate with the backend. If a Unix
socket is used, it is –1.

query_band text Job type, which is specified by the GUC
parameter query_band parameter. The default
value is a null string.

block_time bigint Duration that a statement is blocked before
being executed, including the statement
parsing and optimization duration. The unit is
ms.

start_time timestamp
with time
zone

Time when the statement starts to be
executed

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 912

Name Type Description

finish_time timestamp
with time
zone

Time when the statement execution ends

duration bigint Execution time of a statement. The unit is ms.

estimate_total_
time

bigint Estimated execution time of a statement. The
unit is ms.

status text Final statement execution status. Its value can
be finished (normal) or aborted (abnormal).
The statement status here is the execution
status of the database server. If the statement
is successfully executed on the database server
but an error is reported in the result set, the
statement status is finished.

abort_info text Exception information displayed if the final
statement execution status is aborted.

resource_pool text Resource pool used by the user

control_group text Cgroup used by the statement

estimate_mem
ory

integer Estimated memory used by a statement on a
single instance. The unit is MB. This column
takes effect only when the GUC parameter
enable_dynamic_workload is set to on.

min_peak_mem
ory

integer Minimum memory peak of a statement across
all DNs. The unit is MB.

max_peak_me
mory

integer Maximum memory peak of a statement across
all DNs. The unit is MB.

average_peak_
memory

integer Average memory usage during statement
execution. The unit is MB.

memory_skew_
percent

integer Memory usage skew of a statement among
DNs

spill_info text Spill information for the statement on all DNs.
The options are:
None: The statement has not been spilled to
disks on any DNs.
All: The statement has been spilled to disks on
all DNs.
[a:b]: The statement has been spilled to disks
on a of b DNs.

min_spill_size integer Minimum spilled data among all DNs when a
spill occurs. The unit is MB. The default value
is 0.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 913

Name Type Description

max_spill_size integer Maximum spilled data among all DNs when a
spill occurs. The unit is MB. The default value
is 0.

average_spill_si
ze

integer Average spilled data among all DNs when a
spill occurs. The unit is MB. The default value
is 0.

spill_skew_perc
ent

integer DN spill skew when a spill occurs

min_dn_time bigint Minimum execution time of a statement
across all DNs. The unit is ms.

max_dn_time bigint Maximum execution time of a statement
across all DNs. The unit is ms.

average_dn_tim
e

bigint Average execution time of a statement across
all DNs. The unit is ms.

dntime_skew_p
ercent

integer Execution time skew of a statement among
DNs.

min_cpu_time bigint Minimum CPU time of a statement across all
DNs. The unit is ms.

max_cpu_time bigint Maximum CPU time of a statement across all
DNs. The unit is ms.

total_cpu_time bigint Total CPU time of a statement across all DNs.
The unit is ms.

cpu_skew_perc
ent

integer CPU time skew of a statement among DNs.

min_peak_iops integer Minimum IOPS peak of a statement across all
DNs. It is counted by ones in a column-store
table and by ten thousands in a row-store
table.

max_peak_iops integer Maximum IOPS peak of a statement across all
DNs. It is counted by ones in a column-store
table and by ten thousands in a row-store
table.

average_peak_i
ops

integer Average IOPS peak of a statement across all
DNs. It is counted by ones in a column-store
table and by ten thousands in a row-store
table.

iops_skew_perc
ent

integer I/O skew across DNs

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 914

Name Type Description

warning text Warning. The following warnings and
warnings related to SQL self-diagnosis tuning
are displayed:
1. Spill file size large than 256MB
2. Broadcast size large than 100MB
3. Early spill
4. Spill times is greater than 3
5. Spill on memory adaptive
6. Hash table conflict

queryid bigint Internal query ID used for statement execution

query text Statement to be executed. A maximum of 64
KB of strings can be retained.

query_plan text Execution plan of a statement
Specification restrictions:
1. Execution plans are displayed only for DML

statements.
2. In 8.2.1.100 and later versions, the number

of data binding times is added to the
execution plans of Parse Bind Execute (PBE)
statements to facilitate statement analysis.
The number of data binding times is
displayed in the format of PBE bind times:
Times.

node_group text Logical cluster of the user running the
statement

pid bigint PID of the backend thread for the statement.

lane text Fast/Slow lane where the statement is
executed

unique_sql_id bigint ID of the normalized unique SQL

session_id text Unique identifier of a session in the database
system. Its format is
session_start_time.tid.node_name.

min_read_bytes bigint Minimum I/O read bytes of a statement across
all DNs. The unit is byte.

max_read_byte
s

bigint Maximum I/O read bytes of a statement
across all DNs. The unit is byte.

average_read_b
ytes

bigint Average I/O read bytes of a statement across
all DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 915

Name Type Description

min_write_byte
s

bigint Minimum I/O write bytes of a statement
across all DNs.

max_write_byte
s

bigint Maximum I/O write bytes of a statement
across all DNs.

average_write_
bytes

bigint Average I/O write bytes of a statement across
all DNs.

recv_pkg bigint Total number of communication packages
received by a statement across all DNs.

send_pkg bigint Total number of communication packages
sent by a statement across all DNs.

recv_bytes bigint Total received data of the statement stream, in
byte.

send_bytes bigint Total sent data of the statement stream, in
byte.

stmt_type text Query type corresponding to the statement.

except_info text Information about the exception rule triggered
by the statement.

parse_time bigint Total parsing time before the statement is
queued (including lexical and syntax parsing,
optimization rewriting, and plan generation
time), in milliseconds. This column is only
supported in version 8.3.0.100 or later.

unique_plan_id bigint ID of the normalized unique plan.

sql_hash text Normalized SQL hash.

plan_hash text Normalized plan hash.

disk_cache_hit_
ratio

numeric(5,2) Disk cache hit rate. This column only applies
to OBS 3.0 tables and foreign tables.

disk_cache_disk
_read_size

bigint Total size of data read from disk cache, in MB.
This column only applies to OBS 3.0 tables
and foreign tables.

disk_cache_disk
_write_size

bigint Total size of data written to disk cache, in MB.
This column only applies to OBS 3.0 tables
and foreign tables.

disk_cache_rem
ote_read_size

bigint Total size of data read remotely from OBS due
to disk cache read failure, in MB. This column
only applies to OBS 3.0 tables and foreign
tables.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 916

Name Type Description

disk_cache_rem
ote_read_time

bigint Total number of times data is read remotely
from OBS due to disk cache read failure. This
column only applies to OBS 3.0 tables and
foreign tables.

vfs_scan_bytes bigint Total number of bytes scanned by the OBS
virtual file system in response to upper-layer
requests, in bytes. This column only applies to
OBS 3.0 tables and foreign tables.

vfs_remote_rea
d_bytes

bigint Total number of bytes actually read from OBS
by the OBS virtual file system, in bytes. This
column only applies to OBS 3.0 tables and
foreign tables.

preload_submit
_time

bigint Total time for submitting I/O requests in the
prefetching process, in microseconds. This
column only applies to OBS 3.0 tables.

preload_wait_ti
me

bigint Total time for waiting for I/O requests in the
prefetching process, in microseconds. This
column only applies to OBS 3.0 tables.

preload_wait_c
ount

bigint Total number of times that the prefetching
process waits for I/O requests. This column
only applies to OBS 3.0 tables.

disk_cache_loa
d_time

bigint Total time for reading from disk cache, in
microseconds. This column only applies to OBS
3.0 tables and foreign tables.

disk_cache_conf
lict_count

bigint Number of times a block in the disk cache
produces a hash conflict. This column only
applies to OBS 3.0 tables and foreign tables.

disk_cache_erro
r_count

bigint Number of disk cache read failures. This
column only applies to OBS 3.0 tables and
foreign tables.

disk_cache_erro
r_code

bigint Error code for disk cache read failures. This
column only applies to OBS 3.0 tables and
foreign tables.

obs_io_req_avg
_rtt

bigint Average Round Trip Time (RTT) for OBS I/O
requests, in microseconds. This column only
applies to OBS 3.0 tables and foreign tables.

obs_io_req_avg
_latency

bigint Average delay for OBS I/O requests, in
microseconds. This column only applies to OBS
3.0 tables and foreign tables.

obs_io_req_late
ncy_gt_1s

bigint Number of OBS I/O requests with a latency
exceeding 1 second. This column only applies
to OBS 3.0 tables and foreign tables.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 917

Name Type Description

obs_io_req_late
ncy_gt_10s

bigint Number of OBS I/O requests with a latency
exceeding 10 seconds. This column only
applies to OBS 3.0 tables and foreign tables.

obs_io_req_cou
nt

bigint Total number of OBS I/O requests. This
column only applies to OBS 3.0 tables and
foreign tables.

obs_io_req_retr
y_count

bigint Total number of retries for OBS I/O requests.
This column only applies to OBS 3.0 tables
and foreign tables.

obs_io_req_rate
_limit_count

bigint Total number of times OBS I/O requests are
flow-controlled. This column only applies to
OBS 3.0 tables and foreign tables.

14.3.244 PGXC_WLM_SESSION_HISTORY
PGXC_WLM_SESSION_HISTORY displays load management records after job
execution on all CNs. This view is used to query data from GaussDB(DWS), which
is periodically cleared every 3 minutes. For more information, refer to
GS_WLM_SESSION_HISTORY.

For details about columns in the view, see Table 14-311.

Table 14-311 GS_WLM_SESSION_HISTORY columns

Name Type Description

datid oid OID of the database this backend is connected
to

dbname text Name of the database the backend is
connected to

schemaname text Schema name

nodename text Name of the CN where the statement is run

username text User name used for connecting to the backend

application_na
me

text Name of the application that is connected to
the backend

client_addr inet IP address of the client connected to this
backend. If this column is null, it indicates
either that the client is connected via a Unix
socket on the server machine or that this is an
internal process such as autovacuum.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 918

Name Type Description

client_hostnam
e

text Host name of the connected client, as reported
by a reverse DNS lookup of client_addr. This
column will only be non-null for IP
connections, and only when log_hostname is
enabled.

client_port integer TCP port number that the client uses for
communication with this backend, or -1 if a
Unix socket is used

query_band text Job type, which is specified by the query_band
parameter. The default value is a null string.

block_time bigint Duration that a statement is blocked before
being executed, including the statement
parsing and optimization duration. The unit is
ms.

start_time timestamp
with time
zone

Time when the statement starts to be run

finish_time timestamp
with time
zone

Time when the statement execution ends

duration bigint Execution time of a statement. The unit is ms.

estimate_total_
time

bigint Estimated execution time of a statement. The
unit is ms.

status text Final statement execution status. Its value can
be finished (normal) or aborted (abnormal).
The statement status here is the execution
status of the database server. If the statement
is successfully executed on the database server
but an error is reported in the result set, the
statement status is finished.

abort_info text Exception information displayed if the final
statement execution status is aborted.

resource_pool text Resource pool used by the user

control_group text Cgroup used by the statement

estimate_mem
ory

integer Estimated memory used by a statement on a
single instance. The unit is MB. This column
takes effect only when the GUC parameter
enable_dynamic_workload is set to on.

min_peak_mem
ory

integer Minimum memory peak of a statement across
all DNs. The unit is MB.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 919

Name Type Description

max_peak_me
mory

integer Maximum memory peak of a statement across
all DNs. The unit is MB.

average_peak_
memory

integer Average memory usage during statement
execution. The unit is MB.

memory_skew_
percent

integer Memory usage skew of a statement among
DNs.

spill_info text Statement spill information on all DNs.
None indicates that the statement has not
been spilled to disks on any DNs.
All: The statement has been spilled to disks on
all DNs.
[a:b]: The statement has been spilled to disks
on a of b DNs.

min_spill_size integer Minimum spilled data among all DNs when a
spill occurs. The unit is MB. The default value is
0.

max_spill_size integer Maximum spilled data among all DNs when a
spill occurs. The unit is MB. The default value is
0.

average_spill_si
ze

integer Average spilled data among all DNs when a
spill occurs. The unit is MB. The default value is
0.

spill_skew_perc
ent

integer DN spill skew when a spill occurs

min_dn_time bigint Minimum execution time of a statement across
all DNs. The unit is ms.

max_dn_time bigint Maximum execution time of a statement
across all DNs. The unit is ms.

average_dn_tim
e

bigint Average execution time of a statement across
all DNs. The unit is ms.

dntime_skew_p
ercent

integer Execution time skew of a statement among
DNs.

min_cpu_time bigint Minimum CPU time of a statement across all
DNs. The unit is ms.

max_cpu_time bigint Maximum CPU time of a statement across all
DNs. The unit is ms.

total_cpu_time bigint Total CPU time of a statement across all DNs.
The unit is ms.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 920

Name Type Description

cpu_skew_perce
nt

integer CPU time skew of a statement among DNs.

min_peak_iops integer Minimum IOPS peak of a statement across all
DNs. It is counted by ones in a column-store
table and by ten thousands in a row-store
table.

max_peak_iops integer Maximum IOPS peak of a statement across all
DNs. It is counted by ones in a column-store
table and by ten thousands in a row-store
table.

average_peak_i
ops

integer Average IOPS peak of a statement across all
DNs. It is counted by ones in a column-store
table and by ten thousands in a row-store
table.

iops_skew_perc
ent

integer I/O skew across DNs.

warning text Warning. The following warnings and warnings
related to SQL self-diagnosis tuning are
displayed:
1. Spill file size large than 256MB
2. Broadcast size large than 100MB
3. Early spill
4. Spill times is greater than 3
5. Spill on memory adaptive
6. Hash table conflict

queryid bigint Internal query ID used for statement execution

query text Statement to be executed. A maximum of 64
KB of strings can be retained.

query_plan text Execution plan of a statement.
Specification restrictions:
1. Execution plans are displayed only for DML

statements.
2. In 8.2.1.100 and later versions, the number

of data binding times is added to the
execution plans of Parse Bind Execute (PBE)
statements to facilitate statement analysis.
The number of data binding times is
displayed in the format of PBE bind times:
Times.

node_group text Logical cluster of the user running the
statement

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 921

Name Type Description

pid bigint PID of the backend thread of the statement

lane text Fast/Slow lane where the statement is
executed

unique_sql_id bigint ID of the normalized unique SQL.

session_id text Unique identifier of a session in the database
system. Its format is
session_start_time.tid.node_name.

min_read_bytes bigint Minimum I/O read bytes of a statement across
all DNs. The unit is byte.

max_read_byte
s

bigint Maximum I/O read bytes of a statement across
all DNs. The unit is byte.

average_read_b
ytes

bigint Average I/O read bytes of a statement across
all DNs.

min_write_byte
s

bigint Minimum I/O write bytes of a statement across
all DNs.

max_write_byte
s

bigint Maximum I/O write bytes of a statement
across all DNs.

average_write_
bytes

bigint Average I/O write bytes of a statement across
all DNs.

recv_pkg bigint Total number of communication packages
received by a statement across all DNs.

send_pkg bigint Total number of communication packages sent
by a statement across all DNs.

recv_bytes bigint Total received data of the statement stream, in
byte.

send_bytes bigint Total sent data of the statement stream, in
byte.

stmt_type text Query type corresponding to the statement.

except_info text Information about the exception rule triggered
by the statement.

unique_plan_id bigint ID of the normalized unique plan.

sql_hash text Normalized SQL hash.

plan_hash text Normalized plan hash.

use_plan_baseli
ne

text Indicates whether the bound plan is used for
executing the current statement. If is used, the
name of the plan_baseline column in
pg_plan_baseline is displayed.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 922

Name Type Description

outline_name text Name of the outline used for the statement
plan.

loader_status text The JSON string for storing import and export
service information is as follows.
1. address: indicates the IP address of the peer

cluster. The port number is displayed for the
source cluster.

2. direction: indicates the import and export
service type. The value can be gds to file,
gds from file, gds to pipe, gds from pipe,
copy from or copy to.

3. min/max/total_lines/bytes: indicates the
minimum value, maximum value, total lines,
and bytes of the import and export
statements on all DNs.

parse_time bigint Total parsing time before the statement is
queued (including lexical and syntax parsing,
optimization rewriting, and plan generation
time), in milliseconds. This column is available
only in clusters of version 8.3.0.100 or later.

disk_cache_hit_
ratio

numeric(5,2
)

Disk cache hit rate. This column only applies to
OBS 3.0 tables and foreign tables with storage
and compute decoupled.

disk_cache_disk
_read_size

bigint Total size of data read from disk cache, in MB.
This column only applies to OBS 3.0 tables and
foreign tables with storage and compute
decoupled.

disk_cache_disk
_write_size

bigint Total size of data written to disk cache, in MB.
This column only applies to OBS 3.0 tables and
foreign tables with storage and compute
decoupled.

disk_cache_rem
ote_read_size

bigint Total size of data read remotely from OBS due
to disk cache read failure, in MB. This column
only applies to OBS 3.0 tables and foreign
tables with storage and compute decoupled.

disk_cache_rem
ote_read_time

bigint Total number of times data is read remotely
from OBS due to disk cache read failure. This
column only applies to OBS 3.0 tables and
foreign tables with storage and compute
decoupled.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 923

Name Type Description

vfs_scan_bytes bigint Total number of bytes scanned by the OBS
virtual file system in response to upper-layer
requests, in bytes. This column only applies to
OBS 3.0 tables and foreign tables with storage
and compute decoupled.

vfs_remote_rea
d_bytes

bigint Total number of bytes actually read from OBS
by the OBS virtual file system, in bytes. This
column only applies to OBS 3.0 tables and
foreign tables with storage and compute
decoupled.

preload_submit
_time

bigint Total time for submitting I/O requests in the
prefetching process, in microseconds. This
column only applies to OBS 3.0 tables with
storage and compute decoupled.

preload_wait_ti
me

bigint Total time for waiting for I/O requests in the
prefetching process, in microseconds. This
column only applies to OBS 3.0 tables with
storage and compute decoupled.

preload_wait_c
ount

bigint Total number of times that the prefetching
process waits for I/O requests. This column
only applies to OBS 3.0 tables with storage and
compute decoupled.

disk_cache_loa
d_time

bigint Total time for reading from disk cache, in
microseconds. This column only applies to OBS
3.0 tables and foreign tables with storage and
compute decoupled.

disk_cache_conf
lict_count

bigint Number of times a block in the disk cache
produces a hash conflict. This column only
applies to OBS 3.0 tables and foreign tables
with storage and compute decoupled.

disk_cache_erro
r_count

bigint Number of disk cache read failures. This
column only applies to OBS 3.0 tables and
foreign tables with storage and compute
decoupled.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 924

Name Type Description

disk_cache_erro
r_code

bigint Error code for disk cache read failures. Multiple
error codes may be generated. If the disk cache
fails to be read, OBS remote read is initiated
and cache blocks are rewritten. The error code
types are as follows: This column only applies
to OBS 3.0 tables and foreign tables.
● 1: A hash conflict occurs in the disk cache

block.
● 2: The generation time of the disk cache

block is later than that of the OldestXmin
transaction.

● 4: Invoking the pread system when reading
cache files from the disk cache failed.

● 8: The data version of the disk cache block
does not match.

● 16: The version of the data written to the
write cache does not match the latest
version.

● 32: Opening the cache file corresponding to
the cache block failed.

● 64: The size of the data read from the disk
cache does not match.

● 128: The CSN recorded in the disk cache
block does not match.

obs_io_req_avg
_rtt

bigint Average Round Trip Time (RTT) for OBS I/O
requests, in microseconds. This column only
applies to OBS 3.0 tables and foreign tables
with storage and compute decoupled.

obs_io_req_avg
_latency

bigint Average delay for OBS I/O requests, in
microseconds. This column only applies to OBS
3.0 tables and foreign tables with storage and
compute decoupled.

obs_io_req_late
ncy_gt_1s

bigint Number of OBS I/O requests with a latency
exceeding 1 second. This column only applies
to OBS 3.0 tables and foreign tables with
storage and compute decoupled.

obs_io_req_late
ncy_gt_10s

bigint Number of OBS I/O requests with a latency
exceeding 10 seconds. This column only applies
to OBS 3.0 tables and foreign tables with
storage and compute decoupled.

obs_io_req_cou
nt

bigint Total number of OBS I/O requests. This column
only applies to OBS 3.0 tables and foreign
tables with storage and compute decoupled.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 925

Name Type Description

obs_io_req_retr
y_count

bigint Total number of retries for OBS I/O requests.
This column only applies to OBS 3.0 tables and
foreign tables with storage and compute
decoupled.

obs_io_req_rate
_limit_count

bigint Total number of times OBS I/O requests are
flow-controlled. This column only applies to
OBS 3.0 tables and foreign tables with storage
and compute decoupled.

14.3.245 PGXC_WLM_SESSION_STATISTICS
PGXC_WLM_SESSION_STATISTICS displays load management information about
jobs that are being executed on CNs.

Table 14-312 PGXC_WLM_SESSION_STATISTICS columns

Name Type Description

datid oid OID of the database this backend is connected
to

dbname name Name of the database the backend is
connected to

schemaname text Schema name

nodename text Name of the CN where the statement is
executed

username name User name used for connecting to the backend

application_nam
e

text Name of the application that is connected to
the backend

client_addr inet IP address of the client connected to this
backend. If this column is null, it indicates
either that the client is connected via a Unix
socket on the server machine or that this is an
internal process such as autovacuum.

client_hostname text Host name of the connected client, as reported
by a reverse DNS lookup of client_addr. This
column will only be non-null for IP
connections, and only when log_hostname is
enabled.

client_port integer TCP port number used by the client to
communicate with the backend. If a Unix
socket is used, it is –1.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 926

Name Type Description

query_band text Job type, which is specified by the GUC
parameter query_band parameter. The default
value is a null string.

pid bigint ID of the backend thread

block_time bigint Block time before the statement is executed.
The unit is ms.

start_time timestamp
with time
zone

Time when the statement starts to be executed

duration bigint For how long a statement has been executing.
The unit is ms.

estimate_total_ti
me

bigint Estimated execution time of a statement. The
unit is ms.

estimate_left_ti
me

bigint Estimated remaining time of statement
execution. The unit is ms.

enqueue text Workload management resource status

resource_pool name Resource pool used by the user

control_group text Cgroup used by the statement

estimate_memor
y

integer Estimated memory used by a statement on a
single instance. The unit is MB. This column
takes effect only when the GUC parameter
enable_dynamic_workload is set to on.

min_peak_mem
ory

integer Minimum memory peak of a statement across
all DNs. The unit is MB.

max_peak_mem
ory

integer Maximum memory peak of a statement across
all DNs. The unit is MB.

average_peak_m
emory

integer Average memory usage during statement
execution. The unit is MB.

memory_skew_p
ercent

integer Memory usage skew of a statement among
DNs.

spill_info text Spill information for the statement on all DNs.
The options are:
None: The statement has not been spilled to
disks on any DNs.
All: The statement has been spilled to disks on
all DNs.
[a:b]: The statement has been spilled to disks
on a of b DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 927

Name Type Description

min_spill_size integer Minimum spilled data among all DNs when a
spill occurs. The unit is MB. The default value is
0.

max_spill_size integer Maximum spilled data among all DNs when a
spill occurs. The unit is MB. The default value is
0.

average_spill_siz
e

integer Average spilled data among all DNs when a
spill occurs. The unit is MB. The default value is
0.

spill_skew_perce
nt

integer DN spill skew when a spill occurs

min_dn_time bigint Minimum execution time of a statement across
all DNs. The unit is ms.

max_dn_time bigint Maximum execution time of a statement
across all DNs. The unit is ms.

average_dn_tim
e

bigint Average execution time of a statement across
all DNs. The unit is ms.

dntime_skew_pe
rcent

integer Execution time skew of a statement among
DNs.

min_cpu_time bigint Minimum CPU time of a statement across all
DNs. The unit is ms.

max_cpu_time bigint Maximum CPU time of a statement across all
DNs. The unit is ms.

total_cpu_time bigint Total CPU time of a statement across all DNs.
The unit is ms.

cpu_skew_perce
nt

integer CPU time skew of a statement among DNs.

min_peak_iops integer Minimum IOPS peak of a statement across all
DNs. It is counted by ones in a column-store
table and by ten thousands in a row-store
table.

max_peak_iops integer Maximum IOPS peak of a statement across all
DNs. It is counted by ones in a column-store
table and by ten thousands in a row-store
table.

average_peak_io
ps

integer Average IOPS peak of a statement across all
DNs. It is counted by ones in a column-store
table and by ten thousands in a row-store
table.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 928

Name Type Description

iops_skew_perce
nt

integer I/O skew across DNs.

min_read_speed integer Minimum I/O read rate of a statement across
all DNs within a monitoring period (5s). The
unit is KB/s.

max_read_speed integer Maximum I/O read rate of a statement across
all DNs within a monitoring period (5s). The
unit is KB/s.

average_read_sp
eed

integer Average I/O read rate of a statement across all
DNs within a monitoring period (5s). The unit
is KB/s.

min_write_speed integer Minimum I/O write rate of a statement across
all DNs within a monitoring period (5s). The
unit is KB/s.

max_write_spee
d

integer Maximum I/O write rate of a statement across
all DNs within a monitoring period (5s). The
unit is KB/s.

average_write_s
peed

integer Average I/O write rate of a statement across
all DNs within a monitoring period (5s). The
unit is KB/s.

recv_pkg bigint Total number of communication packages
received by a statement across all DNs.

send_pkg bigint Total number of communication packages sent
by a statement across all DNs.

recv_bytes bigint Total received data of the statement stream, in
byte.

send_bytes bigint Total sent data of the statement stream, in
byte.

warning text Warning. The following warnings and warnings
related to SQL self-diagnosis tuning are
displayed:
1. Spill file size large than 256MB
2. Broadcast size large than 100MB
3. Early spill
4. Spill times is greater than 3
5. Spill on memory adaptive
6. Hash table conflict

unique_sql_id bigint ID of the normalized unique SQL.

queryid bigint Internal query ID used for statement execution

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 929

Name Type Description

query text Statement that is being executed

query_plan text Execution plan of a statement
Specification restrictions:
1. Execution plans are displayed only for DML

statements.
2. In 8.2.1.100 and later versions, the number

of data binding times is added to the
execution plans of Parse Bind Execute (PBE)
statements to facilitate statement analysis.
The number of data binding times is
displayed in the format of PBE bind times:
Times.

node_group text Logical cluster of the user running the
statement

stmt_type text Query type corresponding to the statement.

except_info text Information about the exception rule triggered
by the statement.

parse_time bigint Total parsing time before the statement is
queued (including lexical and syntax parsing,
optimization rewriting, and plan generation
time), in milliseconds. This column is only
supported in version 8.3.0.100 or later.

unique_plan_id bigint ID of the normalized unique plan.

sql_hash text Normalized SQL hash.

plan_hash text Normalized plan hash.

disk_cache_hit_r
atio

numeric(5,
2)

Disk cache hit rate. This column only applies to
OBS 3.0 tables and foreign tables in decoupled
storage and compute scenarios.

disk_cache_disk_
read_size

bigint Total size of data read from disk cache, in MB.
This column only applies to OBS 3.0 tables and
foreign tables in decoupled storage and
compute scenarios.

disk_cache_disk_
write_size

bigint Total size of data written to disk cache, in MB.
This column only applies to OBS 3.0 tables and
foreign tables in decoupled storage and
compute scenarios.

disk_cache_remo
te_read_size

bigint Total size of data read remotely from OBS due
to disk cache read failure, in MB. This column
only applies to OBS 3.0 tables and foreign
tables in decoupled storage and compute
scenarios.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 930

Name Type Description

disk_cache_remo
te_read_time

bigint Total number of times data is read remotely
from OBS due to disk cache read failure. This
column only applies to OBS 3.0 tables and
foreign tables in decoupled storage and
compute scenarios.

block_name text Name of the interception rule that matches
the statement.

14.3.246 PGXC_WLM_TABLE_DISTRIBUTION_SKEWNESS
PGXC_WLM_TABLE_DISTRIBUTION_SKEWNESS displays data skews of tables in the
current database. You can quickly query the storage space skew of all tables in the
current database on each node. This view is supported only by clusters of version
8.2.1 or later.

The formula for calculating the skew rate is as follows: Skew rate
(SKEW_PERCENT) = (Maximum value – Average value) x 100/Maximum value

Table 14-313 PGXC_WLM_TABLE_DISTRIBUTION_SKEWNESS columns

Column Type Description

schema_name name Name of the schema where a table is

table_name name Table name

total_size numeric Total storage space of a table on all
nodes, in bytes

avg_size numeric(1000,0) Average storage space of a table on
each node, in bytes

max_percent numeric Percentage (%) of the maximum
storage space of a table on each node
to the total storage space

min_percent numeric Percentage (%) of the minimum
storage space of a table on each node
to the total storage space

skew_percent numeric Skew rate (%) of a table

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 931

NO TE

● To use this view to query the storage distribution information of a specified table, you
must have the SELECT permission on the table.

● This function is based on the physical file storage space recorded in the
PG_RELFILENODE_SIZE system catalog. Ensure that the GUC parameters
use_workload_manager and enable_perm_space are enabled.

● When you analyze the disk space skew of each table in a database in a large cluster
with a large amount of data, the PGXC_WLM_TABLE_DISTRIBUTION_SKEWNESS view
delivers better query performance than the gs_table_distribution() function and the
PGXC_GET_TABLE_SKEWNESS view. You are advised to use the
PGXC_WLM_TABLE_DISTRIBUTION_SKEWNESS view to query the table skew status
overview, and then use the gs_table_distribution(schemaname text, tablename text)
function to obtain the disk space distribution of a specified table on each node.

Example
You can use the PGXC_WLM_TABLE_DISTRIBUTION_SKEWNESS view to query
the table skew status overview, and then use the
gs_table_distribution(schemaname text, tablename text) function to obtain
the disk space distribution of a specified table on each node.

Step 1 Use the PGXC_WLM_TABLE_DISTRIBUTION_SKEWNESS view to query the table
skew status overview.
tpcds_col=# select * from pgxc_wlm_table_distribution_skewness;

The query result is as follows:

The data skew of the dbgen_version table is severe.

Step 2 Use the gs_table_distribution(schemaname text, tablename text) function to
query the disk space distribution of the dbgen_version table on each node.
tpcds_col=# select * from gs_table_distribution('public','dbgen_version');

The query result is as follows:

According to the preceding information, data skew occurs in the disk space
occupied by the table on DNs. Most data is stored on dn_6005_6006.

----End

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 932

14.3.247 PGXC_WLM_USER_RESOURCE_HISTORY
The PGXC_WLM_USER_RESOURCE_HISTORY view displays historical information
about resource consumption of all users on the corresponding instances. This view
is supported only by clusters of version 8.2.0 or later.

Table 14-314 PGXC_WLM_USER_RESOURCE_HISTORY columns

Name Type Description

nodename name Instance name, including CNs and DNs.

username text Username

timestamp timestamp
with time
zone

Timestamp

used_memory integer Used memory (unit: MB).
On a DN, it indicates a user's memory usage
on the current DN.
On a CN, it indicates a user's total memory
usage on all DNs.

total_memory integer Available memory (unit: MB). 0 indicates that
the available memory is not limited and
depends on the maximum memory available in
the database.
On a DN, it indicates the memory available to
a user on the current DN.
On a CN, it indicates the total memory
available to a user on all DNs.

used_cpu double
precision

Number of CPU cores in use. Only the CPU
usage of complex jobs in the non-default
resource pool is collected, and the value is the
CPU usage of the related cgroup.
On a DN, it indicates a user's CPU core usage
on the current DN.
On a CN, it indicates a user's total CPU core
usage on all DNs.

total_cpu integer Total number of CPU cores of the Cgroups
associated with a user.
On a DN, it indicates the CPU cores available
to a user on the current DN.
On a CN, it indicates the total CPU cores
available to a user on all DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 933

Name Type Description

used_space bigint Used permanent table storage space (unit: KB)
On a DN, it indicates the size of the permanent
table storage space used by a user on the
current DN.
On a CN, it indicates the total size of the
permanent table storage space used by a user
on all DNs.

total_space bigint Available storage space, in KB. –1 indicates
that the storage space is not limited.
On a DN, it indicates the size of the permanent
table storage space available to a user on the
current DN.
On a CN, it indicates the total size of the
permanent table storage space available to a
user on all DNs.

used_temp_sp
ace

bigint Used temporary table storage space (unit: KB)
On a DN, it indicates the size of the temporary
table storage space used by a user on the
current DN.
On a CN, it indicates the total size of the
temporary table storage space used by a user
on all DNs.

total_temp_sp
ace

bigint Available temporary table storage space, in KB.
–1 indicates that the storage space is not
limited.
On a DN, it indicates the size of the temporary
table storage space available to a user on the
current DN.
On a CN, it indicates the total size of the
temporary table storage space available to a
user on all DNs.

used_spill_spa
ce

bigint Size of space used for operator spill to disk, in
KB.
On a DN, it indicates displays the size of the
operator flushing space used by the user on
the current DN.
On a CN, it indicates the total space used by a
user's operators spilled to disk on all DNs.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 934

Name Type Description

total_spill_spa
ce

bigint Size of space available for operator spill to
disk, in KB. The value –1 indicates that the
space is not limited.
On a DN, it indicates displays the size of the
operator flushing space that can be used by
the user on the current DN.
On a CN, it indicates the total space available
for a user to spill operators to disk on all DNs.

read_kbytes bigint On a CN, it indicates total number of bytes
read by a user's complex jobs on all DNs in the
last 5 seconds. The unit is KB.
On a DN, it indicates the total number of bytes
read by a user's complex jobs from the
instance startup time to the current time. The
unit is KB.

write_kbytes bigint On a CN, it indicates total number of bytes
written by a user's complex jobs on all DNs in
the last 5 seconds.
On a DN, it indicates the total number of bytes
written by a user's complex jobs from the
instance startup time to the current time. The
unit is KB.

read_counts bigint On a CN, it indicates total number of read
times of a user's complex jobs on all DNs in
the last 5 seconds.
On a DN, it indicates total number of read
times of a user's complex jobs from the
instance startup time to the current time.

write_counts bigint On a CN, it indicates total number of write
times of a user's complex jobs on all DNs in
the last 5 seconds.
On a DN, it indicates total number of write
times of a user's complex jobs from the
instance startup time to the current time.

read_speed double
precision

On a CN, it indicates the average read rate of a
user's complex jobs on a single DN in the last 5
seconds, in KB/s.
On a DN, it indicates the average read rate of
a user's complex jobs on the DN in the last 5
seconds, in KB/s.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 935

Name Type Description

write_speed double
precision

On a CN, it indicates the average write rate of
a user's complex jobs on a single DN in the last
5 seconds, in KB/s.
On a DN, it indicates the average write rate of
a user's complex jobs on the DN in the last 5
seconds, in KB/s.

send_speed double
precision

On a CN, it indicates the sum of the average
network sending rates of a user on all DNs in a
5s monitoring period, in KB/s.
On a DN, it indicates the average network
sending rate of a user on the DN in a 5s
monitoring period, in KB/s.

recv_speed double
precision

On a CN, it indicates the sum of the average
network receiving rates of a user on all DNs in
a 5s monitoring period, in KB/s.
On a DN, it indicates the average network
receiving rate of a user on the DN in a 5s
monitoring period, in KB/s.

14.3.248 PGXC_WLM_WORKLOAD_RECORDS
PGXC_WLM_WORKLOAD_RECORDS displays the status of job executed by the
current user on CNs. Only the system administrator or the preset role
gs_role_read_all_stats can access this view. This view is available only when
enable_dynamic_workload is set to on.

Table 14-315 PGXC_WLM_WORKLOAD_RECORDS columns

Name Type Description

node_name text Name of the CN where the job is executed.

thread_id bigint ID of the backend thread.

processid integer lwpid of the thread.

timestamp bigint Start time of statement execution.

username name Username logged in to the backend.

memory integer Memory required for the statement.

active_points integer Number of resources consumed by the
statement on the resource pool.

max_points integer Maximum number of resources in the resource
pool.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 936

Name Type Description

priority integer Priority of a job.

resource_pool text Resource pool where a job is.

status text Job execution status. The options are:
pending
running
finished
aborted
unknown

control_group text Cgroups used by a job.

enqueue text Queue for the job, including:
GLOBAL: global queue.
RESPOOL: resource pool queue.
ACTIVE: not queued.

query text Statement currently being executed.

14.3.249 PGXC_WORKLOAD_SQL_COUNT
PGXC_WORKLOAD_SQL_COUNT displays statistics on the number of SQL
statements executed in workload Cgroups on all CNs in a cluster, including the
number of SELECT, UPDATE, INSERT, and DELETE statements and the number of
DDL, DML, and DCL statements. Only the system administrator or the preset role
gs_role_read_all_stats can access this view.

Table 14-316 PGXC_WORKLOAD_SQL_COUNT columns

Name Type Description

node_name name Node name.

workload name Workload Cgroup name.

select_count bigint Number of SELECT
statements.

update_count bigint Number of UPDATE
statements.

insert_count bigint Number of INSERT
statements.

delete_count bigint Number of DELETE
statements.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 937

Name Type Description

ddl_count bigint Number of DDL
statements.

dml_count bigint Number of DML
statements.

dcl_count bigint Number of DCL
statements.

14.3.250 PGXC_WORKLOAD_SQL_ELAPSE_TIME
PGXC_WORKLOAD_SQL_ELAPSE_TIME displays statistics on the response time of
SQL statements in workload Cgroups on all CNs in a cluster, including the
maximum, minimum, average, and total response time of SELECT, UPDATE,
INSERT, and DELETE statements. The unit is microsecond. Only the system
administrator or the preset role gs_role_read_all_stats can access this view.

Table 14-317 PGXC_WORKLOAD_SQL_ELAPSE_TIME columns

Name Type Description

node_name name Node name.

workload name Workload Cgroup name.

total_select_elapse bigint Total response time of
SELECT statements.

max_select_elapse bigint Maximum response time
of SELECT statements.

min_select_elapse bigint Minimum response time
of SELECT statements.

avg_select_elapse bigint Average response time
of SELECT statements.

total_update_elapse bigint Total response time of
UPDATE statements.

max_update_elapse bigint Maximum response time
of UPDATE statements.

min_update_elapse bigint Minimum response time
of UPDATE statements.

avg_update_elapse bigint Average response time
of UPDATE statements.

total_insert_elapse bigint Total response time of
INSERT statements.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 938

Name Type Description

max_insert_elapse bigint Maximum response time
of INSERT statements.

min_insert_elapse bigint Minimum response time
of INSERT statements.

avg_insert_elapse bigint Average response time
of INSERT statements.

total_delete_elapse bigint Total response time of
DELETE statements.

max_delete_elapse bigint Maximum response time
of DELETE statements.

min_delete_elapse bigint Minimum response time
of DELETE statements.

avg_delete_elapse bigint Average response time
of DELETE statements.

14.3.251 PGXC_WORKLOAD_TRANSACTION
PGXC_WORKLOAD_TRANSACTION provides transaction information about
workload cgroups on all CNs. Only the system administrator or the preset role
gs_role_read_all_stats can access this view. This view is valid only when the real-
time resource monitoring function is enabled, that is, when
enable_resource_track is on.

Table 14-318 PGXC_WORKLOAD_TRANSACTION columns

Name Type Description

node_name name Node name.

workload name Workload Cgroup name.

commit_counter bigint Number of the commits.

rollback_counter bigint Number of rollbacks.

resp_min bigint Minimum response time,
in microseconds.

resp_max bigint Maximum response time,
in microseconds.

resp_avg bigint Average response time,
in microseconds.

resp_total bigint Total response time, in
microseconds.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 939

14.3.252 PLAN_TABLE
PLAN_TABLE displays the plan information collected by EXPLAIN PLAN. Plan
information is in a session-level life cycle. After the session exits, the data will be
deleted. Data is isolated between sessions and between users.

Table 14-319 PLAN_TABLE columns

Name Type Description

statement_id varchar2(30) Query tag specified by a user

plan_id bigint ID of a plan to be queried

id int ID of each operator in a generated plan

operation varchar2(30) Operation description of an operator in a plan

options varchar2(255) Operation parameters

object_name name Name of an operated object. It is defined by
users, not the object alias used in the query.

object_type varchar2(30) Object type

object_owner name User-defined schema to which an object
belongs

projection varchar2(400
0)

Returned column information

NO TE

● A valid object_type value consists of a relkind type defined in PG_CLASS (TABLE
ordinary table, INDEX, SEQUENCE, VIEW, FOREIGN TABLE, COMPOSITE TYPE, or
TOASTVALUE TOAST table) and the rtekind type used in the plan (SUBQUERY, JOIN,
FUNCTION, VALUES, CTE, or REMOTE_QUERY).

● For RangeTableEntry (RTE), object_owner is the object description used in the plan.
Non-user-defined objects do not have object_owner.

● Information in the statement_id, object_name, object_owner, and projection columns
is stored in letter cases specified by users and information in other columns is stored in
uppercase.

● PLAN_TABLE supports only SELECT and DELETE and does not support other DML
operations.

14.3.253 PV_FILE_STAT
By collecting statistics about the data file I/Os, PV_FILE_STAT displays the I/O
performance of the data to detect the performance problems, such as abnormal
I/O operations.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 940

Table 14-320 PV_FILE_STAT columns

Name Type Description

filenum oid File ID.

dbid oid Database ID.

spcid oid Tablespace ID.

phyrds bigint Number of physical files read.

phywrts bigint Number of physical files written.

phyblkrd bigint Number of physical file blocks read.

phyblkwrt bigint Number of physical file blocks written.

readtim bigint Total duration of file reads, in microseconds.

writetim bigint Total duration of file writes, in microseconds.

avgiotim bigint Average duration of file reads and writes, in
microseconds.

lstiotim bigint Duration of the last file read, in microseconds.

miniotim bigint Minimum duration of file reads and writes, in
microseconds.

maxiowtm bigint Maximum duration of file reads and writes, in
microseconds.

14.3.254 PV_INSTANCE_TIME
PV_INSTANCE_TIME collects statistics on the running time of processes and the
time consumed in each execution phase, in microseconds.

PV_INSTANCE_TIME records time consumption information of the current node.
The time consumption information is classified into the following types:

● DB_TIME: effective time spent by jobs in multi-core scenarios

● CPU_TIME: CPU time spent

● EXECUTION_TIME: time spent within executors

● PARSE_TIME: time spent on parsing SQL statements

● PLAN_TIME: time spent on generating plans

● REWRITE_TIME: time spent on rewriting SQL statements

● PL_EXECUTION_TIME: execution time of the PL/pgSQL stored procedure

● PL_COMPILATION_TIME: compilation time of the PL/pgSQL stored procedure

● NET_SEND_TIME: time spent on the network

● DATA_IO_TIME: I/O time spent

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 941

Table 14-321 PV_INSTANCE_TIME columns

Name Type Description

stat_id integer Type ID.

stat_name text Name of the runtime type.

value bigint Runtime value.

14.3.255 PV_MATVIEW_DETAIL
PV_MATVIEW_DETAIL displays detailed information about a materialized view.
This view is supported only by clusters of version 9.1.0 200 or later.

Table 14-322 PV_MATVIEW_DETAIL columns

Name Type Description

matview text Materialized view name

baserel text Base table name

partids oidvector OID of the partition when the partition is
specified

contain_entire
_rel

boolean Whether to create a materialized view based
on the entire base table

build_mode text build mode of the materialized view (same as
build_mode in pg_matview)

refresh_mode text Refresh mode of the materialized view (same
as refresh_mode in pg_matview)

refresh_meth
od

text Refresh method of the materialized view
(same as refresh_method of pg_matview)
'c' indicates a full refresh.

mapping text Mapping between base table partitions and
materialized view partitions

active boolean Whether the materialized view needs to be
refreshed

refresh_start_t
ime

timestamp
with time
zone

Start time of the last refresh

refresh_finish_
time

timestamp
with time
zone

End time of the last refresh

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 942

14.3.256 PV_OS_RUN_INFO
PV_OS_RUN_INFO displays the running status of the current operating system.

Table 14-323 PV_OS_RUN_INFO columns

Name Type Description

id integer ID.

name text Name of the operating system status.

value numeric Value of the operating system status.

comments text Comments on the operating system status.

cumulative boolean Whether the value of the operating system
status is cumulative.

14.3.257 PV_SESSION_MEMORY
PV_SESSION_MEMORY displays statistics about memory usage at the session
level in the unit of MB, including all the memory allocated to Postgres and Stream
threads on DNs for jobs currently executed by users.

Table 14-324 PV_SESSION_MEMORY columns

Name Type Description

sessid text Thread start time and ID

init_mem integer Memory allocated to the currently executed task
before the task enters the executor, in MB

used_mem integer Memory allocated to the currently executed task, in
MB

peak_mem integer Peak memory allocated to the currently executed task,
in MB

14.3.258 PV_SESSION_MEMORY_DETAIL
PV_SESSION_MEMORY_DETAIL displays statistics about thread memory usage by
memory context.

The memory context TempSmallContextGroup collects information about all
memory contexts whose value in the totalsize column is less than 8192 bytes in
the current thread, and the number of the collected memory contexts is recorded
in the usedsize column. Therefore, the totalsize and freesize columns for
TempSmallContextGroup in the view display the corresponding information about
all the memory contexts whose value in the totalsize column is less than 8192

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 943

bytes in the current thread, and the usedsize column displays the number of these
memory contexts.

You can run the SELECT * FROM pv_session_memctx_detail (threadid,'');
statement to record information about all memory contexts of a thread into the
threadid_timestamp.log file in the /tmp/dumpmem directory. threadid can be
obtained from the following table.

Table 14-325 PV_SESSION_MEMORY_DETAIL columns

Name Type Description

sessid text Thread start time+thread ID (string:
timestamp.threadid)

sesstype text Thread name

contextname text Name of the memory context

level smallint Hierarchy of the memory context

parent text Name of the parent memory context

totalsize bigint Total size of the memory context, in bytes

freesize bigint Total size of released memory in the memory
context, in bytes

usedsize bigint Size of used memory in the memory context,
in bytes. For TempSmallContextGroup, this
parameter specifies the number of collected
memory contexts.

Example
Query the usage of all MemoryContexts on the current node.

Locate the thread in which the MemoryContext is created and used based on
sessid. Check whether the memory usage meets the expectation based on
totalsize, freesize, and usedsize to see whether memory leakage may occur.

SELECT * FROM PV_SESSION_MEMORY_DETAIL order by totalsize desc;
 sessid | sesstype | contextname | level | parent
| totalsize | freesize | usedsize
----------------------------+-------------------------+---+-------
+------------------------------+-----------+----------+----------
 0.139975915622720 | postmaster | gs_signal | 1 |
TopMemoryContext | 17209904 | 8081136 | 9128768
 1667462258.139973631031040 | postgres | SRF multi-call context | 5 |
FunctionScan_139973631031040 | 1725504 | 3168 | 1722336
 1667461280.139973666686720 | postgres | CacheMemoryContext | 1 |
TopMemoryContext | 1472544 | 284456 | 1188088
 1667450443.139973877479168 | postgres | CacheMemoryContext | 1 |
TopMemoryContext | 1472544 | 356088 | 1116456
 1667462258.139973631031040 | postgres | CacheMemoryContext | 1 |
TopMemoryContext | 1472544 | 128216 | 1344328
 1667461250.139973915236096 | postgres | CacheMemoryContext | 1 |
TopMemoryContext | 1472544 | 226352 | 1246192
 1667450439.139974010144512 | WLMarbiter | CacheMemoryContext | 1 |

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 944

TopMemoryContext | 1472544 | 386736 | 1085808
 1667450439.139974151726848 | WDRSnapshot | CacheMemoryContext | 1 |
TopMemoryContext | 1472544 | 159720 | 1312824
 1667450439.139974026925824 | WLMmonitor | CacheMemoryContext | 1 |
TopMemoryContext | 1472544 | 297976 | 1174568
 1667451036.139973746386688 | postgres | CacheMemoryContext | 1 |
TopMemoryContext | 1472544 | 208064 | 1264480
 1667461250.139973950891776 | postgres | CacheMemoryContext | 1 |
TopMemoryContext | 1472544 | 270016 | 1202528
 1667450439.139974076212992 | WLMCalSpaceInfo | CacheMemoryContext | 1 |
TopMemoryContext | 1472544 | 393952 | 1078592
 1667450439.139974092994304 | WLMCollectWorker | CacheMemoryContext | 1 |
TopMemoryContext | 1472544 | 94848 | 1377696
 1667461254.139973971343104 | postgres | CacheMemoryContext | 1 |
TopMemoryContext | 1472544 | 338544 | 1134000
 1667461280.139973822945024 | postgres | CacheMemoryContext | 1 |
TopMemoryContext | 1472544 | 284456 | 1188088
 1667450439.139974202070784 | JobScheduler | CacheMemoryContext | 1 |
TopMemoryContext | 1472544 | 216728 | 1255816
 1667450454.139973860697856 | postgres | CacheMemoryContext | 1 |
TopMemoryContext | 1472544 | 388384 | 1084160
 0.139975915622720 | postmaster | Postmaster | 1 |
TopMemoryContext | 1004288 | 88792 | 915496
 1667450439.139974218852096 | AutoVacLauncher | CacheMemoryContext | 1 |
TopMemoryContext | 948256 | 183488 | 764768
 1667461250.139973915236096 | postgres | TempSmallContextGroup | 0
| | 584448 | 148032 | 119
 1667462258.139973631031040 | postgres | TempSmallContextGroup | 0
| | 579712 | 162128 | 123

14.3.259 PV_SESSION_STAT
PV_SESSION_STAT displays session state statistics based on session threads or the
AutoVacuum thread.

Table 14-326 PV_SESSION_STAT columns

Name Type Description

sessid text Thread ID and thread start time.

statid integer Statistics ID.

statname text Name of the statistics session.

statunit text Unit of the statistics session.

value bigint Value of the statistics session.

14.3.260 PV_SESSION_TIME
PV_SESSION_TIME displays statistics about the running time of session threads
and time consumed in each execution phase, in microseconds.

Table 14-327 PV_SESSION_TIME columns

Name Type Description

sessid text Thread ID and thread start time.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 945

Name Type Description

stat_id integer Statistics ID.

stat_name text Name of the runtime type.

value bigint Runtime value.

14.3.261 PV_TOTAL_MEMORY_DETAIL
PV_TOTAL_MEMORY_DETAIL displays statistics about memory usage of the
current database node in the unit of MB.

Table 14-328 PV_TOTAL_MEMORY_DETAIL columns

Name Type Description

nodename text Node name

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 946

Name Type Description

memorytype text Memory type. Its value can be:
● max_process_memory: memory used by a

GaussDB(DWS) cluster instance
● process_used_memory: memory used by a

GaussDB(DWS) process
● max_dynamic_memory: maximum dynamic

memory
● dynamic_used_memory: used dynamic memory
● dynamic_peak_memory: dynamic peak value of

the memory
● dynamic_used_shrctx: maximum dynamic

shared memory context
● dynamic_peak_shrctx: dynamic peak value of

the shared memory context
● max_shared_memory: maximum shared

memory
● shared_used_memory: used shared memory
● max_cstore_memory: maximum memory

allowed for column store
● cstore_used_memory: memory used for column

store
● max_sctpcomm_memory: maximum memory

allowed for the communication library
● sctpcomm_used_memory: memory used for the

communication library
● sctpcomm_peak_memory: memory peak of the

communication library
● other_used_memory: other used memory
● gpu_max_dynamic_memory: maximum GPU

memory
● gpu_dynamic_used_memory: sum of the

available GPU memory and temporary GPU
memory

● gpu_dynamic_peak_memory: maximum
memory used for GPU

● pooler_conn_memory: memory used for pooler
connections

● pooler_freeconn_memory: memory used for idle
pooler connections

● storage_compress_memory: memory used for
column-store compression and decompression

● udf_reserved_memory: memory reserved for the
UDF Worker process

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 947

Name Type Description

● mmap_used_memory: memory used for mmap

memorymbytes integer Size of allocated memory-typed memory

14.3.262 PV_REDO_STAT
PV_REDO_STAT displays statistics on redoing Xlogs on the current node.

Table 14-329 PV_REDO_STAT columns

Name Type Description

phywrts bigint Number of physical writes.

phyblkwrt bigint Number of physical blocks written.

writetim bigint Time taken for physical writes.

avgiotim bigint Average time taken per write.

lstiotim bigint Time taken for the last write.

miniotim bigint Minimum time taken for a write.

maxiowtm bigint Maximum time taken for a write.

14.3.263 PV_RUNTIME_ATTSTATS
PV_RUNTIME_ATTSTATS displays table-level statistics in the memory generated
by autoanalyze. The descriptions of the columns in PV_RUNTIME_RELSTATS are
the same as those in PG_STATS. This view is used only by clusters of version 8.2.0
or later.

Table 14-330 PV_RUNTIME_ATTSTATS columns

Column Type Reference Description

schemaname name PG_NAMESP
ACE.nspname

Name of the schema that contains
the table

tablename name PG_CLASS.rel
name

Table name

attname name PG_ATTRIBU
TE.attname

Column name

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 948

Column Type Reference Description

inherited boolean - If the value is true, the inherited
subcolumns are included. If the
value is false, only the columns in
a specified table are included.

null_frac real - Percentage of column entries that
are null

avg_width integer - Average width in bytes of column's
entries

n_distinct real - ● If the value is greater than 0, it
indicates the estimated number
of distinct values in the column.

● Negative of the number of
distinct values divided by the
number of rows if the value is
less than 0

The negated form is used when
ANALYZE believes that the number
of distinct values is likely to
increase as the table grows.
The positive form is used when the
column seems to have a fixed
number of possible values. For
example, -1 indicates a unique
column in which the number of
distinct values is the same as the
number of rows.

n_dndistinct real - Number of unique non-null data
values in the dn1 column
● Exact number of distinct values

if the value is greater than 0
● Negative of the number of

distinct values divided by the
number of rows if the value is
less than 0 (For example, if the
value of a column appears
twice in average, set
n_dndistinct=-0.5.)

● The number of distinct values is
unknown if the value is 0.

most_commo
n_vals

anyarray - List of the most common values in
a column. If this combination does
not have the most common
values, it will be NULL.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 949

Column Type Reference Description

most_commo
n_freqs

real[] - List of the frequencies of the most
common values, that is, the
number of occurrences of each
value divided by the total number
of rows. (NULL if
most_common_vals is NULL)

histogram_bo
unds

anyarray - List of values that divide the
column's values into groups of
equal proportion. The values in
most_common_vals, if present,
are omitted from this histogram
calculation. This field is null if the
field data type does not have a <
operator or if the
most_common_vals list accounts
for the entire population.

correlation real - Statistical correlation between
physical row ordering and logical
ordering of the column values. It
ranges from -1 to +1. When the
value is near to -1 or +1, an index
scan on the column is estimated
to be cheaper than when it is near
to zero, due to reduction of
random access to the disk. This
column is null if the column data
type does not have a < operator.

most_commo
n_elems

anyarray - A list of the most commonly used
non-null element values

most_commo
n_elem_freqs

real[] - A list of the frequencies of the
most commonly used element
values

elem_count_h
istogram

real[] - A histogram of the counts of
distinct non-null element values

14.3.264 PV_RUNTIME_RELSTATS
PV_RUNTIME_RELSTATS displays table-level statistics in the memory generated
by autoanalyze. The descriptions of the columns in PV_RUNTIME_RELSTATS are
the same as those in PG_CLASS. This view is used only by clusters of version 8.2.0
or later.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 950

Table 14-331 PV_RUNTIME_RELSTATS columns

Name Type Description

nspname name Schema name.

relname name Name of an object, such as a table or index.

relpages double
precision

Size of the on-disk representation of this table
in pages (of size BLCKSZ). This is only an
estimate used by the optimizer.

reltuples double
precision

Number of rows in the table. This is only an
estimate used by the optimizer.

relallvisible integer Number of pages marked as all visible in the
table. This column is used by the optimizer for
optimizing SQL execution.

relhasindex boolean Its value is true if this column is a table and
has (or recently had) at least one index.
It is set by CREATE INDEX but is not
immediately cleared by DROP INDEX. If the
VACUUM process detects that a table has no
index, it clears the relhasindex column and
sets the value to false.

changes bigint Total historical modifications in the table by
the time the lightweight autoanalyze is
triggered.

level text Current phase of the memory statistics
generated by the lightweight autoanalyze. It
can be local, sendlist, or global.

14.3.265 REDACTION_COLUMNS
REDACTION_COLUMNS displays information about all redaction columns in the
current database.

Table 14-332 REDACTION_COLUMNS columns

Name Type Description

object_owner name Owner of the object to
be redacted.

object_name name Redacted object name.

column_name name Redacted column name.

function_type integer Redaction type.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 951

Name Type Description

function_parameters text Parameter used when
the redaction type is
partial (reserved).

regexp_pattern text Pattern string when the
redaction type is regexp
(reserved).

regexp_replace_string text Replacement string
when the redaction type
is regexp (reserved).

regexp_position integer Start and end
replacement positions
when the redaction type
is regexp (reserved).

regexp_occurrence integer Replacement times when
the redaction type is
regexp (reserved).

regexp_match_parameter text Regular control
parameter used when
the redaction type is
regexp (reserved).

function_info text Redaction function
information.

column_description text Description of the
redacted column.

inherited bool Whether a redacted
column is inherited from
another redacted
column.

policy_name name Name of the data
masking policy. This
parameter is supported
only by clusters of
version 8.2.1.100 or later.

14.3.266 REDACTION_POLICIES
REDACTION_POLICIES displays information about all redaction objects in the
current database.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 952

Table 14-333 REDACTION_POLICIES columns

Name Type Description

object_owner name Owner of the object to
be redacted.

object_name name Redacted object name.

policy_name name Name of the redaction
policy.

expression text Policy effective
expression (for users).

enable boolean Policy status (enabled or
disabled).

policy_description text Policy description.

inherited bool Whether a redacted
column is inherited from
another redacted
column.

14.3.267 REMOTE_TABLE_STAT
REMOTE_TABLE_STAT provides statistics of all tables of the database on all DNs
in the cluster. Except the nodename column of the name type added in front of
each row, the names, types, and sequences of other columns are the same as
those in the GS_TABLE_STAT view.

Table 14-334 REMOTE_TABLE_STAT columns

Name Type Description

nodename name Node name

schemaname name Table namespace

relname name Table name

seq_scan bigint Number of sequential scans. Only row-store
tables are counted. For a partitioned table,
the sum of the number of scans of each
partition is displayed.

seq_tuple_rea
d

bigint Number of rows scanned in sequence. Only
row-store tables are counted.

index_scan bigint Number of index scans. Only row-store
tables are counted.

index_tuple_re
ad

bigint Number of rows scanned by the index. Only
row-store tables are counted.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 953

Name Type Description

tuple_inserted bigint Number of rows inserted

tuple_updated bigint Number of rows updated

tuple_deleted bigint Number of rows deleted

tuple_hot_upd
ated

bigint Number of rows with HOT updates.

live_tuples bigint Number of live tuples. Query the view on
the CN. If ANALYZE is executed, the total
number of live tuples in the table is
displayed. Otherwise, 0 is displayed. This
indicator applies only to row-store tables.

dead_tuples bigint Number of dead tuples. Query the view on
the CN. If ANALYZE is executed, the total
number of dead tuples in the table is
displayed. Otherwise, 0 is displayed. This
indicator applies only to row-store tables.

14.3.268 SHOW_TSC_INFO
Queries TSC information about the current node. This view is supported only by
clusters of version 8.2.1 or later.

Table 14-335 Parameter

Name Type Description

node_name text Node name

tsc_mult bigint TSC conversion multiplier

tsc_shift bigint TSC conversion shifts

tsc_frequency float8 TSC frequency.

tsc_use_freqen
cy

boolean Indicates whether to use the TSC frequency for time
conversion.

tsc_ready boolean Indicates whether the TSC frequency can be used for
time conversion

tsc_scalar_erro
r_info

text Error information about obtaining TSC conversion
information

tsc_freq_error_
info

text Error information about obtaining TSC frequency
information

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 954

14.3.269 SHOW_ALL_TSC_INFO
Queries TSC information about all nodes. This view is supported only by clusters of
version 8.2.1 or later.

Table 14-336 Parameter

Name Type Description

node_name text Node name

tsc_mult bigint TSC conversion multiplier

tsc_shift bigint TSC conversion shifts

tsc_frequency float8 TSC frequency.

tsc_use_freqen
cy

boolean Indicates whether to use the TSC frequency for time
conversion.

tsc_ready boolean Indicates whether the TSC frequency can be used for
time conversion

tsc_scalar_erro
r_info

text Error information about obtaining TSC conversion
information

tsc_freq_error_
info

text Error information about obtaining TSC frequency
information

14.3.270 USER_COL_COMMENTS
USER_COL_COMMENTS stores the column comments of the tables and views
that the current user can access.

Name Type Description

column_name character varying(64) Column name

table_name character varying(64) Table or view name

owner character varying(64) Owner of the table or view

comments text Comments

14.3.271 USER_CONSTRAINTS
USER_CONSTRAINTS displays the table constraint information accessible to the
current user.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 955

Name Type Description

constraint_name vcharacter
varying(64)

Constraint name

constraint_type text Constraint type
● C: Check constraint
● F: Foreign key constraint
● P: Primary key constraint
● U: Unique constraint.

table_name character
varying(64)

Name of constraint-related table

index_owner character
varying(64)

Owner of constraint-related index (only
for the unique constraint and primary key
constraint)

index_name character
varying(64)

Name of constraint-related index (only for
the unique constraint and primary key
constraint)

Example
Query constraints on a specified table of the current user. Replace t1 with the
actual table name.

SELECT * FROM USER_CONSTRAINTS WHERE table_name='t1';
 constraint_name | constraint_type | table_name | index_owner | index_name
-----------------+-----------------+------------+-------------+---------------
 c_custkey_key | p | t1 | u1 | c_custkey_key
(1 row)

14.3.272 USER_CONS_COLUMNS
USER_CONSTRAINTS displays the information about constraint columns of the
tables accessible to the current user.

Name Type Description

table_name character
varying(64)

Name of constraint-related table

column_name character
varying(64)

Name of constraint-related column

constraint_name character
varying(64)

Constraint name

position smallint Position of the column in the table

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 956

14.3.273 USER_INDEXES
USER_INDEXES displays index information in the current schema.

Name Type Description

owner character varying(64) Index owner

index_name character varying(64) Index name

table_name character varying(64) Name of the table
corresponding to the
index

uniqueness text Whether the index is
unique

generated character varying(1) Whether the index name
is generated by the
system

partitioned character(3) Whether the index has
the property of the
partition table

14.3.274 USER_IND_COLUMNS
USER_IND_COLUMNS displays column information about all indexes accessible to
the current user.

Name Type Description

index_owner character varying(64) Index owner

index_name character varying(64) Index name

table_owner character varying(64) Table owner

table_name character varying(64) Table name

column_name name Column name

column_position smallint Position of a column in
the index

14.3.275 USER_IND_EXPRESSIONS
USER_IND_EXPRESSIONS displays information about the function-based
expression index accessible to the current user.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 957

Name Type Description

index_owner character varying(64) Index owner

index_name character varying(64) Index name

table_owner character varying(64) Table owner

table_name character varying(64) Table name

column_expression text Function-based index
expression of a specified
column

column_position smallint Position of a column in
the index

14.3.276 USER_IND_PARTITIONS
USER_IND_PARTITIONS displays information about index partitions accessible to
the current user.

Name Type Description

index_owner character
varying(64)

Name of the owner of the partitioned table
index to which the index partition belongs

schema character
varying(64)

Schema of the partitioned index to which the
index partition belongs

index_name character
varying(64)

Index name of the partitioned table to which
the index partition belongs

partition_nam
e

character
varying(64)

Name of the index partition

index_partitio
n_usable

boolean Whether the index partition is available

high_value text Boundary of the table partition corresponding
to the index partition. For a range partition,
the boundary is the upper boundary. For a list
partition, the boundary is the boundary value
set.
Reserved field for forward compatibility. The
parameter pretty_high_value is added in
version 8.1.3 to record the information.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 958

Name Type Description

pretty_high_v
alue

text Boundary of the table partition corresponding
to the index partition. For a range partition,
the boundary is the upper boundary. For a list
partition, the boundary is the boundary value
set.
The query result is the instant decompilation
output of the partition boundary expression.
The output of this column is more detailed
than that of high_value. The output
information can be collation and column data
type.

def_tablespac
e_name

name Tablespace name of the index partition

14.3.277 USER_JOBS
USER_JOBS displays all scheduled jobs owned by the current user. This view is
accessible only to users with system administrator rights.

Table 14-337 USER_JOBS columns

Name Type Description

job int4 Job ID

log_user name not
null

User name of the job creator

priv_user name not
null

User name of the job executor

dbname name not
null

Database in which the job is created

start_date timestamp
without
time zone

Job start time

start_suc text Start time of the successful job execution

last_date timestamp
without
time zone

Start time of the last job execution

last_suc text Start time of the last successful job execution

this_date timestamp
without
time zone

Start time of the ongoing job execution

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 959

Name Type Description

this suc text Same as THIS_DATE

next_date timestamp
without
time zone

Schedule time of the next job execution

next suc text Same as next_date

broken text Task status
Y: the system does not try to execute the task.
N: the system attempts to execute the task.

status char Status of the current job. The value range is 'r',
's', 'f', 'd'. The default value is 's'. The indications
are as follows:
● r: running
● s: finished
● f: failed
● d: aborted

interval text Time expression used to calculate the next
execution time. If this parameter is set to null,
the job will be executed once only.

failures smallint Number of consecutive failures.

what text Body of the PL/SQL blocks or anonymous clock
that the job executes

14.3.278 USER_OBJECTS
USER_OBJECTS displays all database objects accessible to the current user.

Name Type Description

owner name Owner of the object

object_name name Object name

object_id oid OID of the object

object_type name Type of the object

namespace oid Namespace containing the object

created timestamp with time
zone

Object creation time

last_ddl_time timestamp with time
zone

Last time when the object was
modified

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 960

NO TICE

For details about the value ranges of last_ddl_time and last_ddl_time, see
PG_OBJECT.

14.3.279 USER_PART_INDEXES
USER_PART_INDEXES displays information about partitioned table indexes
accessible to the current user.

Name Type Description

index_owner character
varying(64)

Name of the owner of the
partitioned table index

schema character
varying(64)

Schema of the partitioned table
index

index_name character
varying(64)

Name of the partitioned table
index

table_name character
varying(64)

Name of the partitioned table to
which the partitioned table index
belongs

partitioning_type text Partition policy of the partitioned
table
NOTE

Currently, only range partitioning
and list partitioning are supported.

partition_count bigint Number of index partitions of the
partitioned table index

def_tablespace_name name Tablespace name of the
partitioned table index

partitioning_key_coun
t

integer Number of partition keys of the
partitioned table

14.3.280 USER_PART_TABLES
USER_PART_TABLES displays information about partitioned tables accessible to
the current user.

Name Type Description

table_owner character
varying(64)

Name of the owner of the
partitioned table

schema character
varying(64)

Schema of the partitioned
table

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 961

Name Type Description

table_name character
varying(64)

Name of the partitioned table

partitioning_type text Partition policy of the
partitioned table
NOTE

Currently, only range partitioning
and list partitioning are
supported.

partition_count bigint Number of partitions of the
partitioned table

def_tablespace_name name Tablespace name of the
partitioned table

partitioning_key_count integer Number of partition keys of
the partitioned table

14.3.281 USER_PROCEDURES
USER_PROCEDURES displays information about all stored procedures and
functions in the current schema.

Name Type Description

owner character varying(64) Owner of the stored
procedure or the function

object_name character varying(64) Name of the stored
procedure or the function

argument_number smallint Number of the input
parameters in the stored
procedure

14.3.282 USER_SEQUENCES
USER_SEQUENCES displays sequence information in the current schema.

Name Type Description

sequence_owner character varying(64) Owner of the sequence

sequence_name character varying(64) Name of the sequence

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 962

14.3.283 USER_SOURCE
USER_SOURCE displays information about stored procedures or functions in this
mode, and provides the columns defined by the stored procedures or the
functions.

Name Type Description

owner character varying(64) Owner of the stored procedure
or the function

name character varying(64) Name of the stored procedure
or the function

text text Definition of the stored
procedure or the function

14.3.284 USER_SYNONYMS
USER_SYNONYMS displays synonyms accessible to the current user.

Table 14-338 USER_SYNONYMS columns

Name Type Description

schema_name text Name of the schema the
synonym belongs to.

synonym_name text Synonym name.

table_owner text Owner of the associated
object.

table_schema_na
me

text Name of the schema the
associated object belongs to.

table_name text Name of the associated
object.

14.3.285 USER_TAB_COLUMNS
USER_TAB_COLUMNS stores information about columns of the tables and views
that the current user can access.

Name Type Description

owner character
varying(64)

Owner of a table/view

table_name character
varying(64)

Table/View name

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 963

Name Type Description

column_name character
varying(64)

Column name

data_type character
varying(128)

Data type of the column

column_id integer Sequence number of the column when
a table/view is created

data_length integer Length of the column, in bytes

comments text Comments

avg_col_len numeric Average length of a column, in bytes

nullable bpchar Whether the column can be empty. For
the primary key constraint and non-
null constraint, the value is n.

data_precision integer Precision of the data type. This
parameter is valid for the numeric
data type and NULL for other data
types.

data_scale integer Number of decimal places. This
parameter is valid for the numeric
data type and 0 for other data types.

char_length numeric Length of a column, in characters. This
parameter is valid only for the varchar,
nvarchar2, bpchar, and char types.

schema character
varying(64)

Namespace that contains the table or
view.

kind text Type of the current record. If the
column belongs to a table, the value
of this column is table. If the column
belongs to a view, the value of this
column is view.

14.3.286 USER_TAB_COMMENTS
USER_TAB_COMMENTS displays comments about all tables and views accessible
to the current user.

Name Type Description

owner character varying(64) Owner of the table or view

table_name character varying(64) Name of the table or view

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 964

Name Type Description

comments text Comments

14.3.287 USER_TAB_PARTITIONS
USER_TAB_PARTITIONS displays all table partitions accessible to the current user.
Each partition of a partitioned table accessible to the current user has a piece of
record in USER_TAB_PARTITIONS.

Name Type Description

table_owner character varying(64) Owner of the table that contains
the partition

schema character varying(64) Schema of the partitioned table

table_name character varying(64) Table name

partition_name character varying(64) Name of the partition

high_value text Upper boundary of a range
partition or boundary value set
of a list partition
Reserved field for forward
compatibility. The parameter
pretty_high_value is added in
version 8.1.3 to record the
information.

pretty_high_valu
e

text Upper boundary of a range
partition or boundary value set
of a list partition
The query result is the instant
decompilation output of the
partition boundary expression.
The output of this column is
more detailed than that of
high_value. The output
information can be collation and
column data type.

tablespace_name name Name of the tablespace that
contains the partition

14.3.288 USER_TABLES
USER_TABLES displays table information in the current schema.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 965

Name Type Description

owner character varying(64) Table owner

table_name character varying(64) Table name

tablespace_name character varying(64) Name of the tablespace
that contains the table

status character varying(8) Whether the current
record is valid

temporary character(1) Whether the table is a
temporary table
● Y indicates that it is a

temporary table.
● N indicates that it is

not a temporary table.

dropped character varying Whether the current
record is deleted
● YES indicates that it is

deleted.
● NO indicates that it is

not deleted.

num_rows numeric Estimated number of
rows in the table

14.3.289 USER_TRIGGERS
USER_TRIGGERS displays the information about triggers accessible to the current
user.

Name Type Description

trigger_name character varying(64) Trigger name

table_name character varying(64) Name of the table that
defines the trigger

table_owner character varying(64) Owner of the table that
defines the trigger

14.3.290 USER_VIEWS
USER_VIEWS displays information about all views in the current schema.

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 966

Name Type Description

owner character varying(64) Owner of the view

view_name character varying(64) View name

14.3.291 V$SESSION
V$SESSION displays all session information about the current session.

Table 14-339 V$SESSION columns

Name Type Description

sid bigint OID of the background process of the current
activity

serial# integer Sequence number of the active background
process, which is 0 in GaussDB(DWS).

user# oid OID of the user that has logged in to the
background process

username name Name of the user that has logged in to the
background process

14.3.292 V$SESSION_LONGOPS
V$SESSION_LONGOPS displays the progress of ongoing operations.

Table 14-340 V$SESSION_LONGOPS columns

Name Type Description

sid bigint OID of the running background process

serial# integer Sequence number of the running background process,
which is 0 in GaussDB(DWS).

sofar integer Completed workload, which is empty in GaussDB(DWS).

totalwork integer Total workload, which is empty in GaussDB(DWS).

Data Warehouse Service
Developer Guide 14 GaussDB(DWS) System Catalogs and Views

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 967

15 GUC Parameters of the
GaussDB(DWS) Database

15.1 Viewing GUC Parameters
GaussDB(DWS) GUC parameters can control database system behaviors. You can
check and adjust the GUC parameters based on your business scenario and data
volume.

● After a cluster is installed, you can check database parameters on the
GaussDB(DWS) management console.

● You can also connect to a cluster and run SQL commands to check the GUC
parameters.
– Run the SHOW command.

NO TE

Method 2 can only be used to check the GUC parameter values of CNs, while the
GUC parameter values of DNs can be viewed through Method 1: by using the
management console.

To view a certain parameter, run the following command:
SHOW server_version;

server_version indicates the database version.
Run the following command to view values of all parameters:
SHOW ALL;

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 968

– Use the pg_settings view.

To view a certain parameter, run the following command:
SELECT * FROM pg_settings WHERE NAME='server_version';

Run the following command to view values of all parameters:
SELECT * FROM pg_settings;

15.2 Configuring GUC Parameters
To ensure the optimal performance of GaussDB(DWS), you can adjust the GUC
parameters in the database.

Parameter Types and Values
● The GUC parameters of GaussDB(DWS) are classified into the following types:

– SUSET: database administrator parameters. This type of parameters takes
effect immediately after they are set. You do not need to restart the
cluster. If a parameter of this type is set in the current session, the
parameter takes effect only in the current session.

– USERSET: common user parameters. This type of parameters takes effect
immediately after they are set. You do not need to restart the cluster. If a
parameter of this type is set in the current session, the parameter takes
effect only in the current session.

– POSTMASTER: database server parameters. This type of parameters takes
effect only after the cluster is restarted. After you modify a parameter of
this type, the system displays a message indicating that the cluster is to
be restarted. You are advised to manually restart the cluster during off-
peak hours for the setting to take effect.

– SIGHUP: global database parameters. This type of parameters takes
effect globally and cannot take effect for single sessions.

– BACKEND: global database parameters. This type of parameters takes
effect globally and cannot take effect for single sessions.

● All parameter names are case insensitive. A parameter value can be an
integer, floating point number, string, Boolean value, or enumerated value.

– The Boolean values can be on/off, true/false, yes/no, or 1/0, and are
case-insensitive.

– The enumerated value range is specified in the enumvals column of the
system catalog pg_settings.

● For parameters using units, specify their units during the setting, or default
units are used.

– The default units are specified in the unit column of pg_settings.

– The unit of memory can be KB, MB, or GB.

– The unit of time can be ms, s, min, h, or d.

Setting GUC Parameters

You can configure GUC parameters in the following ways:

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 969

● Method 1: After a cluster is created, log in to the GaussDB(DWS) console and
modify the database parameters of the cluster. For details, see Modifying
Database Parameters.

● Method 2: Connect to a cluster and run SQL commands to configure the
parameters of the SUSET or USERSET type.
Set parameters at database, user, or session levels.
– Set a database-level parameter.

ALTER DATABASE dbname SET paraname TO value;

The setting takes effect in the next session.
– Set a user-level parameter.

ALTER USER username SET paraname TO value;

The setting takes effect in the next session.
– Set a session-level parameter.

SET paraname TO value;

Parameter value in the current session is changed. After you exit the
session, the setting becomes invalid.

Procedure

The following example shows how to set explain_perf_mode.

Step 1 View the value of explain_perf_mode.
SHOW explain_perf_mode;
 explain_perf_mode

 normal
(1 row)

Step 2 Set explain_perf_mode.

Perform one of the following operations:

● Set a database-level parameter.
ALTER DATABASE gaussdb SET explain_perf_mode TO pretty;

If the following information is displayed, the setting has been modified.
ALTER DATABASE

The setting takes effect in the next session.
● Set a user-level parameter.

ALTER USER dbadmin SET explain_perf_mode TO pretty;

If the following information is displayed, the setting has been modified.
ALTER USER

The setting takes effect in the next session.
● Set a session-level parameter.

SET explain_perf_mode TO pretty;

If the following information is displayed, the setting has been modified.
SET

Step 3 Check whether the parameter is correctly set.
SHOW explain_perf_mode;
 explain_perf_mode

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 970

https://support.huaweicloud.com/intl/en-us/mgtg-dws/dws_01_0152.html
https://support.huaweicloud.com/intl/en-us/mgtg-dws/dws_01_0152.html

 pretty
(1 row)

----End

15.3 GUC Parameter Usage
The database provides many operation parameters. Configuration of these
parameters affects the behavior of the database system. Before modifying these
parameters, learn the impact of these parameters on the database. Otherwise,
unexpected results may occur.

Precautions
● If the value range of a parameter is a string, the string should comply with

the naming conventions of the path and file name in the OS running the
database.

● If the allowed maximum value of a parameter is INT_MAX, it indicates the
maximum parameter value varies by OS.

● If the allowed maximum value of a parameter is DBL_MAX, it indicates the
maximum parameter value varies by OS.

15.4 Connection and Authentication

15.4.1 Connection Settings
This section describes parameters related to the connection mode between the
client and server.

max_connections

Parameter description: Specifies the maximum number of allowed parallel
connections to the database. This parameter influences the concurrent processing
capability of the cluster.

Type: POSTMASTER

Value range: an integer. For CNs, the value ranges from 100 to 16384. For DNs,
the value ranges from 100 to 262143. Because there are internal connections in
the cluster, the maximum value is rarely reached. If invalid value for parameter
"max_connections" is displayed in the log, you need to decrease the
max_connections value for DNs.

Default value: 800 for CNs and 5000 for DNs. If the default value is greater than
the maximum value supported by kernel (determined when the gs_initdb
command is executed), an error message will be displayed.

Setting suggestions:

Retain the default value of this parameter on CNs. On a DN, the value of this
parameter is calculated as follows:

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 971

dop_limit x 20 x 6 + 24: dop_limit indicates the number of CPUs of each DN in the
cluster. It is calculated as follows: dop_limit = Number of logical CPU cores of a
single server/Number of DNs of a single server.

The minimum value is 5000.

If the parameter is set to a large value, GaussDB(DWS) requires more SystemV
shared memories or semaphores, which may exceed the maximum default
configuration of the OS. In this case, modify the value as needed.

NO TICE

The value of max_connections is related to max_prepared_transactions. Before
setting max_connections, ensure that the value of max_prepared_transactions is
greater than or equal to that of max_connections. In this way, each session has a
prepared transaction in the waiting state.

sysadmin_reserved_connections

Parameter description: Specifies the minimum number of connections reserved
for administrators.

Type: POSTMASTER

Value range: an integer ranging from 0 to 262143

Default value: 3

application_name

Parameter description: Specifies the name of the client program connecting to
the database.

Type: USERSET

Value range: a string

Default value: gsql

connection_info

Parameter description: Specifies the database connection information, including
the driver type, driver version, driver deployment path, and process owner. (This is
an O&M parameter. Do not configure it by yourself.)

Type: USERSET

Value range: a string

Default value: an empty string

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 972

NO TE

● An empty string indicates that the driver connected to the database does not support
automatic setting of the connection_info parameter or the parameter is not set by
users in applications.

● The following is an example of the concatenated value of connection_info:
{"driver_name":"ODBC","driver_version": "(GaussDB x.x.x build 39137c2d) compiled at 2022-09-23
15:43:11 commit 3629 last mr 5138 debug","driver_path":"/usr/local/lib/
psqlodbcw.so","os_user":"omm"}

For ODBC, JDBC, and GSQL connections, driver_name, driver_version, driver_path, and
os_user are displayed by default. For other interface connections, driver_name and
driver_version are displayed by default. The display of driver_path and os_user is
specified by users.

15.4.2 Security and Authentication (postgresql.conf)
This section describes parameters about how to securely authenticate the client
and server.

authentication_timeout

Parameter description: Specifies the longest duration to wait before the client
authentication times out. If a client is not authenticated by the server within the
timeout period, the server automatically breaks the connection from the client so
that the faulty client does not occupy connection resources.

Type: SIGHUP

Value range: an integer ranging from 1 to 600. The minimum unit is second (s).

Default value: 1min

session_timeout

Parameter description: Specifies the maximum idle time without any operations
after a connection to the server is established.

Type: USERSET

Value range: an integer ranging from 0 to 86400. The minimum unit is second (s).
0 means to disable the timeout.

Default value: 10 min

NO TICE

● The gsql client of GaussDB(DWS) has an automatic reconnection mechanism. If
the initialized local connection of a user to the server times out, gsql
disconnects from and reconnects to the server.

● Connections from the pooler connection pool to other CNs and DNs are not
controlled by the session_timeout parameter.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 973

ssl_ciphers

Parameter description: Specifies the encryption algorithm list supported by the
SSL.

Type: POSTMASTER

Value range: a string. Separate multiple encryption algorithms with semicolons
(;).

Default value: ALL

NO TE

● The default value of ssl_ciphers is ALL, indicating that all the following encryption
algorithms are supported. Users are advised to retain the default value, unless there are
other special requirements on the encryption algorithm.

● TLS1_3_RFC_AES_128_GCM_SHA256

● TLS1_3_RFC_AES_256_GCM_SHA384

● TLS1_3_RFC_CHACHA20_POLY1305_SHA256

● TLS1_3_RFC_AES_128_CCM_SHA256

● TLS1_3_RFC_AES_128_CCM_8_SHA256

● Currently, SSL connection authentication supports only the TLS1.3 encryption algorithm,
which has better performance and security. It is also compatible with SSL connection
authentication between clients that comply with TLS1.2.

ssl_renegotiation_limit

Parameter description: Specifies the traffic volume over the SSL-encrypted
channel before the session key is renegotiated. The renegotiation traffic limitation
mechanism reduces the probability that attackers use the password analysis
method to crack the key based on a huge amount of data but causes big
performance losses. The traffic indicates the sum of sent and received traffic.

Type: USERSET

NO TE

You are advised to retain the default value, that is, disable the renegotiation mechanism.
You are not advised to use the gs_guc tool or other methods to set the
ssl_renegotiation_limit parameter in the postgresql.conf file. The setting does not take
effect.

Value range: an integer ranging from 0 to INT_MAX. The unit is KB. 0 indicates
that the renegotiation mechanism is disabled.

Default value: 0

password_policy

Parameter description: Specifies whether to check the password complexity when
you run the CREATE ROLE/USER or ALTER ROLE/USER command to create or
modify a GaussDB(DWS) account.

Type: SIGHUP

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 974

NO TICE

For security purposes, do not disable the password complexity policy.

Value range: an integer, 0 or 1

● 0 indicates that no password complexity policy is enabled.

● 1 indicates that the default password complexity policy is disabled.

Default value: 1

password_reuse_time

Parameter description: Specifies whether to check the reuse days of the new
password when you run the ALTER USER or ALTER ROLE command to change a
user password.

Type: SIGHUP

NO TICE

When you change the password, the system checks the values of
password_reuse_time and password_reuse_max.

● If the values of password_reuse_time and password_reuse_max are both
positive numbers, the password can be reused if either of the following
conditions is met:

● If the value of password_reuse_time is 0, the days of password reuse are not
limited and only the times of password reuse are limited.

● If the value of password_reuse_max is 0, the times of password reuse are not
limited and only the days of password reuse are limited.

● If the values of both parameters are 0, password reuse is not restricted.

Value range: a floating number ranging from 0 to 3650. The unit is day.

● 0 indicates that the password reuse days are not checked.

● A positive number indicates that the new password cannot be the one that is
used within the specified days.

Default value: 60

password_reuse_max

Parameter description: Specifies whether to check the reuse times of the new
password when you run the ALTER USER or ALTER ROLE command to change a
user password.

Type: SIGHUP

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 975

NO TICE

When you change the password, the system checks the values of
password_reuse_time and password_reuse_max.
● If the values of password_reuse_time and password_reuse_max are both

positive numbers, the password can be reused if either of the following
conditions is met:

● If the value of password_reuse_time is 0, the days of password reuse are not
limited and only the times of password reuse are limited.

● If the value of password_reuse_max is 0, the times of password reuse are not
limited and only the days of password reuse are limited.

● If the values of both parameters are 0, password reuse is not restricted.

Value range: an integer ranging from 0 to 1000

● 0 indicates that the password reuse times are not checked.
● A positive number indicates that the new password cannot be the one whose

reuse times exceed the specified number.

Default value: 0

password_lock_time
Parameter description: Specifies the duration before an account is automatically
unlocked.

Type: SIGHUP

NO TICE

● The lock and unlock functions will only work if both password_lock_time and
failed_login_attempts are positive numbers.

● The integer part of the value of the parameter password_lock_time indicates
the number of days, while the decimal part can be converted into hours,
minutes, and seconds.

Value range: a floating number ranging from 0 to 365. The unit is day.

● 0 indicates that the automatic locking function does not take effect if the
password verification fails.

● A positive number indicates the duration after which an account is
automatically unlocked.

Default value: 1

failed_login_attempts
Parameter description: Specifies the maximum number of incorrect password
attempts before an account is locked. The account will be automatically unlocked
after the time specified in password_lock_time. For example, incorrect password

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 976

attempts during login and password input failures when using the ALTER USER
command

Type: SIGHUP

Value range: an integer ranging from 0 to 1000

● 0 indicates that the automatic locking function does not take effect.

● A positive number indicates that an account is locked when the number of
incorrect password attempts reaches the value of failed_login_attempts.

Default value: 10

NO TICE

● The locking and unlocking functions take effect only when the values of
failed_login_attempts and password_lock_time are positive numbers.

● failed_login_attempts works with the SSL connection mode of the client to
identify the number of incorrect password attempts. If PGSSLMODE is set to
allow or prefer, two connection requests are generated for a password
connection request. One request attempts an SSL connection, and the other
request attempts a non-SSL connection. In this case, the number of incorrect
password attempts perceived by the user is the value of failed_login_attempts
divided by 2.

password_encryption_type

Parameter description: Specifies the encryption type of user passwords.

Type: SIGHUP

Value range: an integer, 0, 1, or 2

Table 15-1 Value description

Value Password Storage Format Supported Driver

0 Passwords are encrypted using MD5
and stored in ciphertext.

Huawei-developed and
open source GaussDB
drivers

1 Passwords are encrypted using
SHA256 and are compatible with the
MD5 user authentication method for
Postgres clients.
Passwords are encrypted using MD5
and SHA256.

Huawei-developed and
open source GaussDB
drivers

2 Passwords are encrypted using
SHA256 and stored in ciphertext.

Huawei-developed
GaussDB drivers

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 977

NO TICE

● MD5 is not recommended as it is not a secure encryption algorithm.
● For a user created when password_encryption_type is set to 2, the password

has been saved using the SHA256 algorithm. In this case, changing the
parameter value does not change the password storage method in the
database. So, open source clients using MD5 may still fail to connect to the
database.

● When password_encryption_type is set to 1 and pg_hba is set to MD5 or
SHA256, the two encryption modes are checked to ensure compatibility.

Default value: 1

password_min_length
Parameter description: Specifies the minimum account password length.

Type: SIGHUP

Value range: an integer. A password can contain 6 to 999 characters.

Default value: 8

password_max_length
Parameter description: Specifies the maximum account password length.

Type: SIGHUP

Value range: an integer. A password can contain 6 to 999 characters.

Default value: 32

password_min_uppercase
Parameter description: Specifies the minimum number of uppercase letters that
an account password must contain.

Type: SIGHUP

Value range: an integer ranging from 0 to 999.

● 0 means no limit.
● A positive integer indicates the minimum number of uppercase letters in the

password specified for creating an account.

Default value: 0

password_min_lowercase
Parameter description: Specifies the minimum number of lowercase letters that
an account password must contain.

Type: SIGHUP

Value range: an integer ranging from 0 to 999.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 978

● 0 means no limit.
● A positive integer indicates the minimum number of lowercase letters in the

password specified for creating an account.

Default value: 0

password_min_digital
Parameter description: Specifies the minimum number of digits that an account
password must contain.

Type: SIGHUP

Value range: an integer ranging from 0 to 999.

● 0 means no limit.
● A positive integer indicates the minimum number of digits in the password

specified for creating an account.

Default value: 0

password_min_special
Parameter description: minimum number of special characters that a password
must contain.

Type: SIGHUP

Value range: an integer ranging from 0 to 999.

● 0 means no limit.
● A positive integer indicates the minimum number of special characters in the

password specified for creating an account.

Default value: 0

Table 15-2 Special characters

No. Chara
cter

No. Charac
ter

No. Charac
ter

No. Charact
er

1 ~ 9 * 17 | 25 <

2 ! 10 (18 [26 .

3 @ 11) 19 { 27 >

4 # 12 - 20 } 28 /

5 $ 13 _ 21] 29 ?

6 % 14 = 22 ; - -

7 ^ 15 + 23 : - -

8 & 16 \ 24 , - -

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 979

password_effect_time
Parameter description: Specifies the validity period of an account password.

Type: SIGHUP

Value range: a floating number ranging from 0 to 999. The unit is day.

● 0 indicates the function of validity period restriction is disabled.
● A floating point number from 1 to 999 indicates the validity period of the

password specified for creating an account. When the password is about to
expire or has expired, the system prompts the user to change the password.

Default value: 90

password_notify_time
Parameter description: Specifies how many days in advance users are notified
before the account password expires.

Type: SIGHUP

Value range: an integer ranging from 0 to 999. The unit is day.

● 0 indicates the reminder is disabled.
● A positive integer indicates how long before expiry the reminder will appear.

Default value: 7

15.4.3 Communication Library Parameters
This section describes parameter settings and value ranges for communication
libraries.

comm_max_datanode
Parameter description: Specifies the maximum number of DNs supported by the
communication library.

Type: USERSET

Value range: an integer ranging from 1 to 8192

Default value: actual number of DNs

NO TICE

Increasing this parameter value takes effect immediately, while decreasing the
value takes effect after the cluster is restarted.

comm_max_stream
Parameter description: maximum number of logical connection data structures
cached in the communication library.

Type: SIGHUP

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 980

Value range: an integer ranging from 1 to 65535

Default value: 1024

NO TE

If the value of comm_max_datanode is small, the process memory is sufficient. In this case,
you can increase the value of comm_max_stream.

max_stream_pool

Parameter description: Specifies the maximum number of stream threads that
can be contained in a stream thread pool. This feature is supported in 8.1.2 or
later.

Type: SUSET

Value range: an integer ranging from –1 to INT_MAX. The values –1 and 0
indicate that the stream thread pool is disabled.

Default value:

● The formula for a new cluster is max_stream_pool=MIN(max_connections,
max_process_memory/16/5MB, 1024).

● The formula for a cluster upgraded from versions earlier than is
max_stream_pool = MIN(max_connections,
max_process_memory/16/5MB, 1024, value of the old cluster). During the
upgrade, the settings for the new cluster are forcibly used, but the old value is
used if it is smaller.

NO TE

● The number of stream threads in a thread pool can be reduced in real time. If the value
of this parameter is increased, the number of stream threads is increased to meet the
service requirements.

● Generally, you are advised not to change the value of this parameter because the
stream thread pool supports the automatic cleanup function.

● If too many idle stream threads occupy the memory, you can decrease the value of this
parameter to save the memory.

enable_stream_sync_quit

Parameter description: whether the stream threads exit synchronously when the
stream plan ends. This parameter is supported only by clusters of version 8.2.1.300
or later.

Type: USERSET

Value range: Boolean

● on indicates that threads in the stream thread group exit after the steam plan
ends.

● off indicates that stream threads exit directly after the stream plan ends
without waiting for the threads in the stream thread group to exit.

Default value: off

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 981

enable_connect_standby
Parameter description: Sets the connection between a CN and a standby DN.
This parameter is supported only by clusters of version 8.3.0 or later.

Type: USERSET

Value range: Boolean

● on indicates that the CN connects to the standby server.
● off indicates that the CN connects to the primary DN.

Default value: off

CA UTION

● You are not advised to use this parameter in routine services. This parameter
applies only to O&M operations. You are not advised to use the gs_guc tool for
global settings. Otherwise, problems such as data inconsistency and result set
errors may occur.

● Enabling this parameter for a session with temporary tables will delete the
temporary table data on DNs and prevent further actions on those tables.

comm_max_receiver
Parameter description: Specifies the number of internal receiving threads of the
communication library.

Type: POSTMASTER

Value range: an integer ranging from 1 to 50

Default value: 4

comm_quota_size
Parameter description: Specifies the maximum size of packets that can be
continuously sent by the communication library. When you use a 1GE NIC, a small
value ranging from 20 KB to 40 KB is recommended.

Type: USERSET

Value range: an integer ranging from 0 to 102400. The default unit is KB. The
value 0 indicates that the quota mechanism is not used.

Default value: 1 MB

comm_usable_memory
Parameter description: Specifies the maximum memory that can be used by the
communication library cache on a single DN.

Type: SIGHUP

Value range: an integer ranging from 1 to 256. The default unit is KB. The
minimum size cannot be less than 1 GB for installation.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 982

Default value: max_process_memory/8

NO TICE

This parameter must be specifically set based on environment memory and the
deployment method. If it is too large, out-of-memory (OOM) may occur. If it is
too small, the performance of the communication library may deteriorate.

comm_memory_pool_percent

Parameter description: Specifies the percentage of the memory pool resources
that can be used by the communication library on a DN. This parameter is used to
adaptively reserve memory used by the communication libraries.

Type: POSTMASTER

Value range: an integer ranging from 0 to 100

Default value: 0

NO TICE

If the memory used by the communication library is small, set this parameter to a
small value. Otherwise, set it to a large value.

comm_client_bind

Parameter description: Specifies whether to bind the client of the communication
library to a specified IP address when the client initiates a connection.

Type: USERSET

Value range: Boolean

● on indicates that the client is bound to a specified IP address.

● off indicates that the client is not bound to any IP addresses.

NO TICE

If multiple IP addresses of a node in a cluster are on the same communication
network segment, set this parameter to on. In this case, the client is bound to the
IP address specified by listen_addresses. The concurrency performance of a cluster
depends on the number of random ports because a port can be used only by one
client at a time.

Default value: off

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 983

comm_no_delay

Parameter description: Specifies whether to use the NO_DELAY attribute of the
communication library connection. Restart the cluster for the setting to take
effect.

Type: USERSET

Value range: Boolean

Default value: off

NO TICE

If packet loss occurs because a large number of packets are received per second,
set this parameter to off to reduce the total number of packets.

comm_debug_mode

Parameter description: Specifies the debug mode of the communication library,
that is, whether to print logs about the communication layer. The setting is
effective at the session layer.

NO TICE

When the switch is set to on, the number of printed logs is huge, adding extra
overhead and reducing database performance. Therefore, set the switch to on only
in the debug mode.

Type: USERSET

Value range: Boolean

● on indicates the detailed debug log of the communication library is printed.

● off indicates the detailed debug log of the communication library is not
printed.

Default value: off

comm_ackchk_time

Parameter description: Specifies the duration after which the communication
library server automatically triggers ACK when no data package is received.

Type: USERSET

Value range: an integer ranging from 0 to 20000. The unit is millisecond (ms). 0
indicates that automatic ACK triggering is disabled.

Default value: 2000

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 984

comm_timer_mode
Parameter description: Specifies the timer mode of the communication library,
that is, whether to print timer logs in each phase of the communication layer. The
setting is effective at the session layer.

NO TICE

When the switch is set to on, the number of printed logs is huge, adding extra
overhead and reducing database performance. Therefore, set the switch to on only
in the debug mode.

Type: USERSET

Value range: Boolean

● on indicates the detailed timer log of the communication library is printed.
● off indicates the detailed timer log of the communication library is not

printed.

Default value: off

comm_stat_mode
Parameter description: Specifies the stat mode of the communication library, that
is, whether to print statistics about the communication layer. The setting is
effective at the session layer.

NO TICE

When the switch is set to on, the number of printed logs is huge, adding extra
overhead and reducing database performance. Therefore, set the switch to on only
in the debug mode.

Type: USERSET

Value range: Boolean

● on indicates the statistics log of the communication library is printed.
● off indicates the statistics log of the communication library is not printed.

Default value: off

enable_stateless_pooler_reuse
Parameter description: Specifies whether to enable the pooler reuse mode. The
setting takes effect after the cluster is restarted.

Type: POSTMASTER

Value range: Boolean

● on or true indicates that the pooler reuse mode is enabled.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 985

● off or false indicates that the pooler reuse mode is disabled.

NO TICE

Set this parameter to the same value for CNs and DNs. If
enable_stateless_pooler_reuse is set to off for CNs and set to on for DNs,
the cluster communication fails. Restart the cluster to make the setting take
effect.

Default value: off

comm_cn_dn_logic_conn
Parameter description: Specifies a switch for logical connections between CNs
and DNs. The parameter setting takes effect only after the cluster is restarted.

Type: POSTMASTER

Value range: Boolean

● on or true indicates that CNs and DNs are logically connected and the
libcomm component is used.

● off or false indicates that the connections between CNs and DNs are physical,
with the libpq component in use.

NO TICE

If comm_cn_dn_logic_conn is set to off for CNs and set to on for DNs, cluster
communication will fail. You are advised to set this parameter to the same
value for all CNs and DNs. Restart the cluster to make the setting take effect.

Default value: off

client_connection_check_interval
Parameter description: Specifies the interval for checking the client connection
status. This parameter is supported by clusters of version 8.2.0 or later.

Type: USERSET

Value range: an integer ranging from 0 to INT_MAX. The unit is ms. The value 0
indicates that the client connection status is not checked.

Default value: 10000

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 986

NO TICE

During a long query executed in a session where a client (such as gsql, JDBC, or
ODBC) directly connects to the CN,
● The CN checks the client connection status at the interval specified by

client_connection_check_interval. If it detects that the client has been
disconnected from the CN, the server terminates the long query and releases
related resources to avoid waste of cluster resources.

● The DN checks its connection to the CN at the interval specified by
client_connection_check_interval. If the DN detects that it has been
disconnected from the CN, it terminates the long query and releases related
resources to avoid waste of cluster resources.

conn_recycle_timeout
Parameter description: the interval for reclaiming idle connections between a CN
and other nodes to the connection pool. This parameter is supported only by
clusters of version 8.2.1 or later.

Type: USERSET

Value range: an integer ranging from 0 to 3600, in second (s). 0 indicates that the
function of reclaiming idle connections is disabled.

Default value: 30

15.5 Resource Consumption

15.5.1 Memory
This section describes memory parameters.

NO TICE

Parameters described in this section take effect only after the database service
restarts.

enable_memory_limit
Parameter description: Specifies whether to enable the logical memory
management module.

Type: POSTMASTER

Value range: Boolean

● on indicates the logic memory management module is enabled.
● off indicates the logic memory management module is disabled.

Default value: on

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 987

NO TICE

● If the result of max_process_memory - max_shared_memory - cstore buffers
is less than 2 GB, enable_memory_limit is forcibly set to off.

● The max_shared_memory parameter is closely related to the shared_buffers,
max_connections, and max_prepared_transactions parameters. If the value of
max_shared_memory is too large, decrease the values of the other three
parameters.

● The dynamic load management function depends on the memory management
function. After the enable_memory_limit parameter is disabled, the dynamic
load management and TopSQL functions become invalid.

max_process_memory
Parameter description: Specifies the maximum physical memory of a database
node.

Type: SIGHUP

Value range: an integer ranging from 2 x 1024 x 1024 to INT_MAX/2. The unit is
KB.

Default value: Determined based on non-secondary DNs. If multiple DNs are
deployed on a server, the value is (Physical memory size) x 0.8/(1 + Number of
primary DNs). If a single DN is deployed on a server, the value is (Physical
memory size) x 0.6. If the calculation result is less than 2 GB, the value is 2 GB by
default. The default size of the secondary DN is 12 GB.

Setting suggestions:

● On DNs, the value of this parameter is determined based on the physical
system memory and the number of DNs deployed on a single node. If
multiple DNs are deployed on a server, the calculation formula for the
max_process_memory value is as follows: (Physical memory size –
vm.min_free_kbytes) x 0.8/(n + Number of primary DNs). If only one DN is
deployed on a server, the calculation formula for the max_process_memory
value is (Physical memory size – vm.min_free_kbytes) x 0.6. This parameter
aims to ensure system reliability, preventing node OOM caused by increasing
memory usage. vm.min_free_kbytes indicates OS memory reserved for
kernels to receive and send data. Its value is at least 5% of the total memory.
That is, max_process_memory = Physical memory x 0.8/ (n + Number of
primary DNs). If the cluster scale (number of nodes in the cluster) is smaller
than 256, n=1; if the cluster scale is larger than 256 and smaller than 512,
n=2; if the cluster scale is larger than 512, n=3.

● You are not advised to set this parameter to the minimum threshold.
● Set this parameter on CNs to the same value as that on DNs.
● RAM is the maximum memory allocated to the cluster.
● In GaussDB(DWS) 8.2.0 and later versions, the initial value of

max_process_memory is increased to improve memory resource utilization.
However, in an unbalanced cluster where a server has two primary DNs
running, using the initial value of max_process_memory may cause OOM. In
8.2.0 and later versions, the max_process_memory parameter is changed to

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 988

the SIGHUP type and can be manually adjusted. The
max_process_memory_auto_adjust parameter is added. If a cluster is
unbalanced, its CM will dynamically adjust max_process_memory based on
the cluster status. The value of max_process_memory is (Physical memory –
vm.min_free_kbytes) x 0.8/Number of primary DNs.

● In GaussDB(DWS) 8.2.1 or later, the application scope of dynamically
adjusting the value of max_process_memory is expanded from clusters where
each server has only one DN to all cluster deployment modes.
– If max_process_memory_auto_adjust is set to on, the value of

max_process_memory is dynamically adjusted between the upper limit
and the lower limit. The lower limit is calculated as follows: (Physical
memory size) x 0.8/(1 + Number of primary DNs). The upper limit is
specified by the GUC parameter max_process_memory_balanced. (For
details about how to set max_process_memory_balanced, contact
technical support.)

– When the cluster works in load balancing mode, the upper limit of
max_process_memory is used to improve the overall memory usage of
the node. Compared with earlier versions, the memory usage is improved.

– When the cluster is not in load balancing mode, the lower limit of
max_process_memory is used. The overall memory usage of the node is
the same as that in versions earlier than 8.2.1.

– In upgrade scenarios, to ensure forward compatibility, the system does
not set max_process_memory_balanced, and max_process_memory
uses the value set before the upgrade by default.

max_process_memory_auto_adjust
Parameter description: Specifies whether to enable automatic adjustment for
max_process_memory parameter. (This parameter is supported only by cluster
versions 8.2.0 and later.) In a cluster where each server only has one DN, if this
function is enabled, the CM dynamically adjusts the value of
max_process_memory on the corresponding DN during an active/standby
switchover.

Type: SIGHUP

Value range: Boolean

Default value: on

Suggestion: Set this parameter to on. For a cluster where each server only has
one DN, the initial value of max_process_memory is increased in 8.2.0 and later
versions to improve memory resource utilization. However, after a primary/
standby switchover, there will be two primary DNs running on the same server.
Using the initial value of max_process_memory in this case may cause OOM, and
you need to let the CM dynamically adjust the value.

shared_buffers
Parameter description: Specifies the size of shared memory used by
GaussDB(DWS). If this parameter is set to a large value, GaussDB(DWS) may
require more System V shared memory than the default setting.

Type: POSTMASTER

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 989

Value range: an integer ranging from 128 to INT_MAX. The unit is 8 KB.

Changing the value of BLCKSZ will result in a change in the minimum value of the
shared_buffers.

Default value: The value of this parameter for CNs is half of that for DNs, which
is calculated using the formula POWER(2,ROUND(LOG(2,max_process_memory/
18),0)). If the maximum value allowed by the OS is smaller than 32 MB, this
parameter will be automatically changed to the maximum value allowed by the
OS during database initialization.

Setting suggestions:

You are advised to set this parameter for DNs to a value greater than that for CNs,
because GaussDB(DWS) pushes its most queries down to DNs.

It is recommended that shared_buffers be set to a value less than 40% of the
memory. Set it to a large value for row-store tables and a small value for column-
store tables. For column-store tables: shared_buffers = (Memory of a single server/
Number of DNs on the single server) x 0.4 x 0.25

If you want to increase the value of shared_buffers, you also need to increase the
value of checkpoint_segments, because a longer period of time is required to
write a large amount of new or changed data.

bulk_write_ring_size
Parameter description: Specifies the size of the ring buffer used for data parallel
import.

Type: USERSET

Value range: an integer ranging from 16384 to INT_MAX. The unit is KB.

Default value: 2 GB

Setting suggestions: Increase the value of this parameter on DNs if a huge
amount of data is to be imported.

buffer_ring_ratio
Parameter description: ring buffer threshold for parallel data export

Type: USERSET

Value range: integer in the range 1–1000

Default value: 250

NO TE

● The default value indicates that the threshold is 250/1000 (a quarter) of
shared_buffers.

● The minimum value is 1/1000 of the value of shared_buffers.
● The maximum value is the value of shared_buffers.

Setting suggestions: If the cache hit ratio is not as expected during export, you
are advised to configure this parameter on DNs.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 990

enable_cstore_ring_buffer

Parameter description: Specifies whether to enable column-store RingBuffer. This
parameter is supported only by cluster versions 8.2.0 and later.

Type: USERSET

Value range: Boolean

Default value: off

Suggestion: If workloads have been running for a period of time, a large amount
of frequently queried data has been stored in the CStoreBuffer, and you want to
query large tables that are rarely accessed, you are advised to enable this function
before the query and disable it after the query.

temp_buffers

Parameter description: Specifies the maximum size of local temporary buffers
used by each database session.

Type: USERSET

Value range: an integer ranging from 800 to INT_MAX/2. The unit is 8 KB.

Default value: 8 MB

NO TE

● This parameter can be modified only before the first use of temporary tables within
each session. Subsequent attempts to change the value of this parameter will not take
effect on that session.

● Based on the value of temp_buffers, a session allocates temporary buffers as required.
The cost of setting a large value in sessions that do not require many temporary buffers
is only a buffer descriptor. If a buffer is used, 8192 bytes will be consumed for it.

max_prepared_transactions

Parameter description: Specifies the maximum number of transactions that can
stay in the prepared state simultaneously. If this parameter is set to a large value,
GaussDB(DWS) may require more System V shared memory than the default
setting.

When GaussDB(DWS) is deployed as an HA system, set this parameter on the
standby server to the same value or a value greater than that on the primary
server. Otherwise, queries will fail on the standby server.

Type: POSTMASTER

Value range: an integer ranging from 0 to 536870911. The value of CN set to 0
indicates that the prepared transaction feature is disabled.

Default value: 800 for both CNs and DNs

NO TE

Set this parameter to a value greater than or equal to that of max_connections to avoid
failures in preparation.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 991

work_mem
Parameter description: Specifies the memory capacity to be used by internal sort
operations and Hash tables before writing to temporary disk files. Sort operations
are used for ORDER BY, DISTINCT, and merge joins. Hash tables are required for
Hash joins as well as Hash-based aggregations and IN subqueries.

For a complex query, several sort or Hash operations may be running in parallel;
each operation will be allowed to use as much memory as this value specifies. If
the memory is insufficient, data is written into temporary files. In addition, several
running sessions could be performing such operations concurrently. Therefore, the
total memory used may be many times the value of work_mem.

Type: USERSET

Value range: an integer ranging from 64 to INT_MAX. The unit is KB.

Default value: 512 MB for small-scale memory and 2 GB for large-scale memory
(If max_process_memory is greater than or equal to 30 GB, it is large-scale
memory. Otherwise, it is small-scale memory.)

Setting suggestions:

If the physical memory specified by work_mem is insufficient, additional operator
calculation data will be written into temporary tables based on query
characteristics and the degree of parallelism. This reduces performance by five to
ten times, and prolongs the query response time from seconds to minutes.

● In complex serial query scenarios, each query requires five to ten associated
operations. Set work_mem using the following formula: work_mem = 50% of
the memory/10.

● In simple serial query scenarios, each query requires two to five associated
operations. Set work_mem using the following formula: work_mem = 50% of
the memory/5.

● For concurrent queries, use the formula: work_mem = work_mem in
serialized scenario/Number of concurrent SQL statements.

NO TICE

Once memory adaptation is enabled, there is no need to use work_mem to
optimize operator memory usage after collecting statistics. The system
generates a plan for each statement and estimates the memory usage of each
operator and the entire statement based on the current workload. The system
then schedules the queue based on the workload and the overall memory
usage of the statement, which can result in statement queuing in high-
concurrency scenarios.

query_mem
Parameter description: Specifies the memory used by query. If the value of
query_mem is greater than 0, the optimizer adjusts the estimated query memory
to this value when generating an execution plan.

Type: USERSET

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 992

Value range: 0 or an integer greater than 32 MB. The default unit is KB. If the
value is set to a negative value or less than 32 MB, the default value 0 is used. In
this case, the optimizer does not adjust the estimated query memory.

Default value: 0

query_max_mem

Parameter description: Specifies the maximum memory that can be used by
query. If the value of query_max_mem is greater than 0, when generating an
execution plan, the optimizer uses this value to set the available memory for
operators. If job memory usage exceeds the value of this parameter, an error is
reported and the job exits.

Type: USERSET

Value range: 0 or an integer greater than 32 MB. The default unit is KB. If the
value is less than 32 MB, the system automatically sets this parameter to the
default value 0. In this case, the optimizer does not limit the memory usage of
jobs.

Default value: 0

agg_max_mem

Parameter description: Specifies the maximum memory that can be used by the
Agg operator when the number of aggregation columns exceeds 5. This parameter
takes effect only if the value of agg_max_mem is greater than 0. (This parameter
is supported only in 8.1.3.200 and later cluster versions.)

Type: USERSET

Value range: 0 or an integer greater than 32 MB. The default unit is KB. If the
value is less than 32 MB, the system automatically sets this parameter to the
default value 0. In this case, the memory usage of the Agg operator is not limited
based on the value.

Default value:

● If the current cluster is upgraded from an earlier version to 8.1.3 or later, the
value in the earlier version is inherited. The default value is INT_MAX.

● If the current cluster version is 8.1.3 or later, the default value is 2GB.

enable_rowagg_memory_control

Parameter description: Specifies the upper limit of the memory used by the row-
store agg operator.

Type: USERSET

Value range: Boolean

● on indicates that the memory usage limit of the row-store agg operator is
enabled. Setting this parameter to on can avoid OOM caused by the row-
store agg operator, but may affect the agg performance.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 993

● off indicates that the memory usage limit of the row-store agg operator is
disabled. If this parameter is set to off, the system memory may be
unavailable.

Default value: on

maintenance_work_mem

Parameter description: Specifies the maximum size of memory to be used for
maintenance operations, such as VACUUM, CREATE INDEX, and ALTER TABLE
ADD FOREIGN KEY. This parameter may affect the execution efficiency of
VACUUM, VACUUM FULL, CLUSTER, and CREATE INDEX.

Type: USERSET

Value range: an integer ranging from 1024 to INT_MAX. The unit is KB.

Default value: 512 MB for small-scale memory and 2 GB for large-scale memory
(If max_process_memory is greater than or equal to 30 GB, it is large-scale
memory. Otherwise, it is small-scale memory.)

Setting suggestions:

● You are advised to set this parameter to the same value of work_mem so
that database dump can be cleared or restored more quickly. In a database
session, only one maintenance operation can be performed at a time.
Maintenance is usually performed when there are not much sessions.

● When the Automatic Cleanup process is running, up to
autovacuum_max_workers times of this memory may be allocated. Set
maintenance_work_mem to a value equal to or larger than the value of
work_mem.

● If a large amount of data needs to be processed in the cluster, increase the
value of this parameter in sessions.

psort_work_mem

Parameter description: Specifies the memory used for internal sort operations on
column-store tables before they are written into temporary disk files. This
parameter can be used for inserting tables having a partial cluster key or index,
creating a table index, and deleting or updating a table.

Type: USERSET

NO TICE

Multiple running sessions may perform partial sorting on a table at the same
time. Therefore, the total memory usage may be several times of the
psort_work_mem value.

Value range: an integer ranging from 64 to INT_MAX. The unit is KB.

Default value: 512 MB

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 994

max_loaded_cudesc
Parameter description: Specifies the number of loaded CuDescs per column when
a column-store table is scanned. Increasing the value will improve the query
performance and increase the memory usage, particularly when there are many
columns in the column tables.

Type: USERSET

Value range: an integer ranging from 100 to INT_MAX/2

Default value: 1024

NO TICE

When the value of max_loaded_cudesc is set to a large value, the memory may
be insufficient.

max_stack_depth
Parameter description: Specifies the maximum safe depth of GaussDB(DWS)
execution stack. The safety margin is required because the stack depth is not
checked in every routine in the server, but only in key potentially-recursive
routines, such as expression evaluation.

Type: SUSET

Take the following into consideration when setting this parameter:

● The ideal value of this parameter is the maximum stack size enforced by the
kernel (value of ulimit -s).

● Setting this parameter to a value larger than the actual kernel limit means
that a running recursive function may crash an individual backend process. In
an OS where GaussDB(DWS) can check the kernel limit, such as the SLES,
GaussDB(DWS) will prevent this parameter from being set to a value greater
than the kernel limit.

● Since not all the OSs provide this function, you are advised to set a specific
value for this parameter.

Value range: an integer ranging from 100 to INT_MAX. The unit is KB.

Default value: 2 MB

NO TE

2 MB is a small value and will not incur system breakdown in general, but may lead to
execution failures of complex functions.

cstore_buffers
Parameter description: Specifies the size of the shared buffer used by ORC,
Parquet, or CarbonData data of column-store tables and OBS or HDFS column-
store foreign tables.

Type: POSTMASTER

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 995

Value range: an integer ranging from 16384 to INT_MAX. The unit is KB.

Default value: The value of this parameter for CNs is 32 MB, while that for DNs is
calculated using the formula POWER(2,ROUND(LOG(2,max_process_memory/
18),0)).

Setting suggestions:

Column-store tables use the shared buffer specified by cstore_buffers instead of
that specified by shared_buffers. When column-store tables are mainly used,
reduce the value of shared_buffers and increase that of cstore_buffers.

Use cstore_buffers to specify the cache of ORC, Parquet, or CarbonData metadata
and data for OBS or HDFS foreign tables. The metadata cache size should be 1/4
of cstore_buffers and not exceed 2 GB. The remaining cache is shared by column-
store data and foreign table column-store data.

enable_orc_cache

Parameter description: Specifies whether to reserve 1/4 of cstore_buffers for
storing ORC metadata when the cstore buffer is initialized.

Type: POSTMASTER

Value range: Boolean

Default value:

● on indicates that the orc metadata cache is enabled, which improves the
query performance of the HDFS table but occupies the column-store buffer
resources. The column-store performance deteriorates.

● off indicates the orc metadata cache is disabled.

dfs_max_memory

Parameter description: Specifies the maximum memory that can be occupied
during ORC export. If the memory is insufficient when a wide table is exported,
increase the value of this parameter and try again. This parameter is supported
only by clusters of version 8.3.0 or later.

Type: USERSET

Value range: an integer ranging from 131072 to 10485760. The unit is KB.

Default value: 262144 KB (256 MB)

schedule_splits_threshold

Parameter description: Specifies the maximum number of files that can be stored
in memory when you schedule an HDFS foreign table. If the number is exceeded,
all files in the list will be spilled to disk for scheduling.

Type: USERSET

Value range: an integer ranging from 1 to INT_MAX

Default value: 60000

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 996

bulk_read_ring_size

Parameter description: Specifies the ring buffer size used for data parallel export.

Type: USERSET

Value range: an integer ranging from 256 to INT_MAX. The unit is KB.

Default value: 16 MB

check_cu_size_threshold

Parameter description: When inserting data into a column-store table, if the
amount of data already inserted in a CU exceeds the value of this parameter, row-
level size verification will be performed to prevent the creation of uncompressed
CUs larger than 1 GB.

Type: USERSET

Value range: an integer ranging from 0 to 1048576. The unit is MB.

Default value: 1 GB

NO TICE

If row-level size verification fails multiple times, you are advised to temporarily set
the parameter to 0 at the session level.

max_volatile_memory

Parameter description: Specifies the maximum total memory occupied by
contexts related to volatile temporary tables in all sessions. The memory used by a
query to create a volatile table cannot exceed the value of this parameter, or an
error will be reported. This parameter is supported by clusters of version 8.2.0 or
later.

Type: SIGHUP

Value range: an integer ranging from 1024 to INT_MAX. The unit is KB.

Default value: 1 GB

async_io_acc_max_memory

Parameter description: Specifies the maximum memory that can be used for
asynchronous read/write acceleration in a single task thread. This parameter is
supported only by clusters of version 9.0.0 or later.

Type: USERSET

Value range: an integer ranging from 4096 to INT_MAX/2, in KB.

Default value: 128MB

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 997

15.5.2 Statement Disk Space Control
This section describes parameters related to statement disk space control, which
are used to limit the disk space usage of statements.

sql_use_spacelimit
Parameter description: Specifies the allowed maximum space for files to be
spilled to disks in a single SQL statement on a single DN. This parameter limits the
space occupied by ordinary tables, temporary tables, and intermediate result sets
spilled to disks. System administrators are also restricted by this parameter.

Type: USERSET

Value range: an integer ranging from -1 to INT_MAX. The unit is KB. –1 indicates
no limit.

Default value: Set sql_use_spacelimit to 10% of the total disk space of the
instance.

NO TE

For example, if sql_use_spacelimit is set to 100 in the statement, and the data spilled to
disks on a single DN exceeds 100 KB, DWS will stop the query and display a message
indicating threshold exceeded.
insert into user1.t1 select * from user2.t1;
ERROR: The space used on DN (104 kB) has exceeded the sql use space limit (100 kB).

Handling suggestion:
● Optimize the statement to reduce the data spilled to disks.
● If the disk space is sufficient, increase the value of this parameter.

temp_file_limit
Parameter description: Specifies the total space for files spilled to disks in a
single thread. The temporary file can be the one used by sorting or hash tables, or
cursors in a session.

This is a session-level setting.

Type: SUSET

Value range: an integer ranging from -1 to INT_MAX. The unit is KB. –1 indicates
no limit.

Default value: Set temp_file_limit to 10% of the total disk space of the instance.

NO TICE

This parameter does not apply to disk space occupied by temporary tablespaces
used for executing SQL queries.

bi_page_reuse_factor
Parameter description: Specifies the percentage of idle space of old pages that
can be reused when page replication is used for data synchronization between

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 998

primary and standby DNs in the scenario where data is inserted into row-store
tables in batches.

Type: USERSET

Value range: an integer ranging from 0 to 100. The value is a percentage. Value 0
indicates that the old pages are not reused and new pages are requested.

Default value: 70

NO TICE

● You are not advised to set this parameter to a value less than 50 (except 0). If
the idle space of the reused page is small, too much old page data will be
transmitted between the primary and standby DNs. As a result, the batch
insertion performance deteriorates.

● You are not advised to set this parameter to a value greater than 90. If this
parameter is set to a value greater than 90, idle pages will be frequently
queried, but old pages cannot be reused.

15.5.3 Kernel Resources
This section describes kernel resource parameters. Whether these parameters take
effect depends on OS settings.

max_files_per_process
Parameter description: Specifies the maximum number of files that can be
opened simultaneously by each server process. If the operating system kernel
enforces a reasonable limit, then this parameter does not need to be set.

However, on some platforms (especially most BSD systems), the kernel allows
independent processes to open far more files than the system can actually
support. If users encounter failures such as "Too many open files", they should try
reduce the setting. Typically, the system must meet this requirement: Number of
file descriptors ≥ Maximum number of concurrent statements x Number of
primary DNs on the current server x max_files_per_process x 3.

Type: POSTMASTER

Value range: an integer ranging from 25 to INT_MAX

Default value: 1000

max_files_per_node
Parameter description: Specifies the maximum number of files that can be
opened by a single SQL statement on a single node. Generally, you do not need to
set this parameter. This parameter is supported only by clusters of version 8.1.3 or
later.

Type: SUSET

Value range: an integer ranging from –1 to INT_MAX. The value –1 indicates that
the maximum number is limited.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 999

Default value: –1

NO TE

● The default value of this parameter is –1 in a new cluster. In an upgrade scenario, the
default value of this parameter is retained for forward compatibility.

● If error message "The last file name is [%s] and %d files have already been opened on
data node [%s] with a maximum of %d files." is displayed during statement execution,
increase the value of max_files_per_node.

enable_fd_check

Parameter description: Specifies whether to perform verification when FD is used.
This parameter is supported only in 8.2.1.300 and later versions.

Type: SIGHUP

Value range: Boolean

● on indicates that FD verification is enabled.

● off indicates that FD verification is enabled.

Default value: on

15.5.4 Cost-based Vacuum Delay
The purpose of cost-based vacuum delay is to allow administrators to reduce the
I/O impact of VACUUM and ANALYZE statements on concurrently active
databases. For example, when maintenance statements such as VACUUM and
ANALYZE do not need to be executed quickly and do not interfere with other
database operations, administrators can use this function to achieve this purpose.

NO TICE

Certain operations hold critical locks and should be complete as quickly as
possible. In GaussDB(DWS), cost-based vacuum delays do not take effect during
such operations. To avoid uselessly long delays in such cases, the actual delay is
calculated as follows and is the maximum value of the following calculation
results:

● vacuum_cost_delay*accumulated_balance/vacuum_cost_limit

● vacuum_cost_delay*4

During the execution of the ANALYZE | ANALYSE and VACUUM statements, the
system maintains an internal counter that keeps track of the estimated cost of the
various I/O operations that are performed. When the accumulated cost reaches a
limit (specified by vacuum_cost_limit), the process performing the operation will
sleep for a short period of time (specified by vacuum_cost_delay). Then, the
counter resets and the operation continues.

By default, this feature is disabled. To enable this feature, set vacuum_cost_delay
to a value other than 0.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1000

vacuum_cost_delay
Parameter description: Specifies the length of time that the process will sleep
when vacuum_cost_limit has been exceeded.

Type: USERSET

Value range: an integer ranging from 0 to 100. The unit is millisecond (ms). A
positive number enables cost-based vacuum delay and 0 disables cost-based
vacuum delay.

Default value: 0

NO TICE

● On many systems, the effective resolution of sleep length is 10 ms. Therefore,
setting this parameter to a value that is not a multiple of 10 has the same
effect as setting it to the next higher multiple of 10.

● This parameter is set to a small value, such as 10 or 20 milliseconds. Adjusting
vacuum's resource consumption is best done by changing other parameters.

vacuum_cost_page_hit
Parameter description: Specifies the estimated cost for vacuuming a buffer found
in the shared buffer. It represents the cost to lock the buffer pool, look up the
shared Hash table, and scan the page.

Type: USERSET

Value range: an integer ranging from 0 to 10000. The unit is millisecond (ms).

Default value: 1

vacuum_cost_page_miss
Parameter description: Specifies the estimated cost for vacuuming a buffer read
from the disk. It represents the cost to lock the buffer pool, look up the shared
Hash table, read the desired block from the disk, and scan the block.

Type: USERSET

Value range: an integer ranging from 0 to 10000. The unit is millisecond (ms).

Default value: 2

vacuum_cost_page_dirty
Parameter description: Specifies the estimated cost charged when vacuum
modifies a block that was previously clean. It represents the I/Os required to flush
the dirty block out to disk again.

Type: USERSET

Value range: an integer ranging from 0 to 10000. The unit is millisecond (ms).

Default value: 20

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1001

vacuum_cost_limit
Parameter description: Specifies the cost limit. The cleanup process will sleep if
this limit is exceeded.

Type: USERSET

Value range: an integer ranging from 1 to 10000. The unit is ms.

Default value: 200

15.5.5 Asynchronous I/O Operations

enable_adio_debug
Parameter description: Specifies whether to enable logging related to ADIO,
which helps to locate ADIO-related issues. General users are not advised to set this
O&M parameter.

Type: SUSET

Value range: Boolean

● on or true indicates the log switch is enabled.
● off or false indicates the log switch is disabled.

Default value: off

enable_fast_allocate
Parameter description: Specifies whether the quick allocation switch of the disk
space is enabled. This switch can be enabled only in the XFS file system.

Type: SUSET

Value range: Boolean

● on or true indicates that this function is enabled.
● off or false indicates that the function is disabled.

Default value: off

prefetch_quantity
Parameter description: Specifies the number of row-store prefetches using the
ADIO.

Type: USERSET

Value range: an integer ranging from 1024 to 1048576. The unit is 8 KB.

Default value: 32 MB

backwrite_quantity
Parameter description: Specifies the number of row-store writes using the ADIO.

Type: USERSET

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1002

Value range: an integer ranging from 1024 to 1048576. The unit is 8 KB.

Default value: 8MB

cstore_prefetch_quantity
Parameter description: Specifies the number of column-store prefetches using
the ADIO.

Type: USERSET

Value range: an integer. The value range is from 1024 to 1048576 and the unit is
KB.

Default value: 32 MB

cstore_backwrite_quantity
Parameter description: Specifies the number of column-store writes using the
ADIO.

Type: USERSET

Value range: an integer. The value range is from 1024 to 1048576 and the unit is
KB.

Default value: 8MB

cstore_backwrite_max_threshold
Parameter description: Specifies the maximum number of column-store writes
buffered in the database using the ADIO.

Type: USERSET

Value range: an integer ranging from 4096 to INT_MAX/2, in KB

Default value: 2 GB

fast_extend_file_size
Parameter description: Specifies the disk size that the row-store pre-scales using
the ADIO.

Type: SUSET

Value range: an integer. The value range is from 1024 to 1048576 and the unit is
KB.

Default value: 8MB

effective_io_concurrency
Parameter description: Specifies the number of requests that can be
simultaneously processed by the disk subsystem. For the RAID array, the
parameter value must be the number of disk drive spindles in the array.

Type: USERSET

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1003

Value range: an integer ranging from 0 to 1000

Default value: 1

cu_preload_max_distance

Parameter description: Specifies the maximum number of CU groups that can be
prefetched. This is supported only by clusters of version 9.1.0.100 or later.

Type: USERSET

Value range: an integer ranging from 0 to 1024. The value 0 indicates that
prefetching is disabled.

Default value: 0

cu_preload_count

Parameter description: Specifies the maximum number of CUs to be prefetched.
This parameter is supported only by clusters of version 9.1.0 or later.

Type: USERSET

Value range: an integer. The value ranges from 0 to 10000. The value 0 indicates
that prefetching is disabled.

Default value: 600

15.5.6 Disk Caching
The following parameters are supported only by clusters of version 9.1.0 or later.

enable_disk_cache

Parameter description: Specifies whether to enable file caching. Setting this
parameter to on only takes effect when enable_aio_scheduler is set to on and
obs_worker_pool_size is greater than or equal to 4.

Type: USERSET

Value range: Boolean

Default value: off

enable_disk_cache_recovery

Parameter description: Specifies whether file caching can be restored when the
cluster is restarted.

Type: USERSET

Value range: Boolean

Default value: off

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1004

disk_cache_block_size
Parameter description: Specifies the size of a single block cached in the file
system, in KB.

Type: POSTMASTER

Value range: an integer ranging from 8 to 8 x 1024 x 1024 x 1024

Default value: 1MB

disk_cache_max_size
Parameter description: Specifies the total caching size of the file system, in KB.

Type: SIGHUP

Value range: an integer ranging from 1 GB to 1 PB

Default value: 1/3 of the EVS disk capacity

NO TE

The EVS capacity is divided into two parts: 1/3 x 2 replicas are used to store local persistent
data (such as column-store indexes, row-store tables, and local column-store tables), and
the other 1/3 is reserved for cache.

disk_cache_max_open_fd
Parameter description: Specifies the maximum number of files that can be
concurrently opened in the cache of the file system.

Type: POSTMASTER

Value range: an integer ranging from 0 to INT_MAX

Default value: 1000

disk_cache_a1out_min_ratio
Parameter description: Specifies the length ratio of the a1_out queue at its
minimum in the LRU2Q algorithm cached in the file system (the actual minimum
length of the queue is disk_cache_a1out_min_ratio x disk_cache_max_size).

Type: POSTMASTER

Value range: a double-precision floating-point number ranging from 0 to
DOUBLE_MAX

Default value: 0.5

disk_cache_a1out_max_ratio
Parameter description: Specifies the length ratio of the a1_out queue at its
maximum on the LRU2Q algorithm cached in the file system (the actual
maximum length of the queue is disk_cache_a1out_max_ratio x
disk_cache_max_size).

Type: POSTMASTER

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1005

Value range: a floating point number ranging from 0 to DOUBLE_MAX

Default value: 8

disk_cache_a1in_ratio

Parameter description: Specifies the length ratio of the a1_in queue of the
LRU2Q algorithm cached in the file system.

Type: POSTMASTER

Value range: a floating point number ranging from 0 to 1

Default value: 0.25

disk_cache_base_paths

Parameter description: Specifies the path for storing cache files in file caching.

Type: POSTMASTER

Value range: a string

Default value: disk_cache

install_as_standby

Parameter description: Specifies whether the node is the standby one during
startup.

Type: POSTMASTER

Value range: Boolean

on indicates setting the node as the standby one.

off indicates setting the node as the primary one.

Default value: off

15.6 Parallel Data Import
GaussDB(DWS) provides a parallel data import function that enables a large
amount of data to be imported in a fast and efficient manner. This section
describes parameters for importing data in parallel in GaussDB(DWS).

raise_errors_if_no_files

Parameter description: Specifies whether distinguish between the problems "the
number of imported file records is empty" and "the imported file does not exist".
If set to TRUE, GaussDB(DWS) reports the error "file does not exist" when the
issue "the imported file does not exist" occurs.

Type: SUSET

Value range: Boolean

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1006

● on indicates the messages of "the number of imported file records is empty"
and "the imported file does not exist" are distinguished when files are
imported.

● off indicates the messages of "the number of imported file records is empty"
and "the imported file does not exist" are not distinguished when files are
imported.

Default value: off

partition_max_cache_size
Parameter description: To optimize the inserting of column-store partitioned
tables in batches, data is cached during the inserting process and then written to
the disk in batches. You can use partition_max_cache_size to specify the size of
the data buffer. If the value is too large, much memory will be consumed. If it is
too small, the performance of inserting column-store partitioned tables in batches
will deteriorate.

Type: USERSET

Value range: 4096 to INT_MAX/2. The minimum unit is KB.

Default value: 2 GB

partition_mem_batch
Parameter description: To optimize the performance of batch insert into column-
store partitioned tables, data is cached during the inserting process and then
written to the disk in batches. If partition_max_cache_size is configured,
partition_mem_batch can be used to specify the number of caches. If this
parameter is set to a large value, the available cache of each partition will be
small, and the performance of batch insert into column-store partitioned tables
will deteriorate. If this parameter is set to a small value, the available cache of
each partition will be large, consuming much system memory.

Type: USERSET

Value range: 1 to 65535

Default value: 256

gds_debug_mod
Parameter description: Specifies whether to enable the debug function of Gauss
Data Service (GDS). This parameter is used to better locate and analyze GDS
faults. After the debug function is enabled, types of packets received or sent by
GDS, peer end of GDS during command interaction, and other interaction
information about GDS are written into the logs of corresponding nodes. In this
way, state switching on the GaussDB state machine and the current state are
recorded. If this function is enabled, additional log I/O resources will be consumed,
affecting log performance and validity. You are advised to enable this function
only when locating GDS faults.

Type: USERSET

Value range: Boolean

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1007

● on indicates that the GDS debug function is enabled.
● off indicates that the GDS debug function is disabled.

Default value: off

max_copy_data_display
Parameter description: GUC control added for the length of the rawrecord field
in the copy error table, in the text type. The maximum value is 1 GB minus 8203
bytes (that is, 1073733621 bytes). This parameter is supported only by clusters of
version 8.2.1.100 or later.

When this parameter is set, it indicates the maximum number of characters that
can be displayed. If the number of characters exceeds the maximum, an ellipsis
(...) is displayed at the end.

Type: USERSET

Value range: 0 to 1073733616

Default value: 1024

15.7 Write Ahead Logs

15.7.1 Settings

wal_level
Parameter description: Specifies the level of the information that is written to
WALs.

Type: POSTMASTER

Value range: enumerated values

● minimal
Advantages: Certain bulk operations (including creating tables and indexes,
executing cluster operations, and copying tables) are safely skipped in
logging, which can make those operations much faster.
Disadvantages: WALs only contain basic information required for the recovery
from a database server crash or an emergency shutdown. Archived WALs
cannot be used to restore data.

● archive
Adds logging required for WAL archiving, supporting the database restoration
from archives.

● hot_standby
– Further adds information required to run SQL queries on a standby server

and takes effect after a server restart.
– To enable read-only queries on a standby server, the wal_level parameter

must be set to hot_standby on the primary server and the same value
must be set on the standby server. There is little measurable difference in

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1008

performance between using hot_standby and archive levels, so feedback
is welcome if any production performance impacts are noticeable.

Default value: hot_standby

NO TICE

● To enable WAL archiving and data streaming replication between primary and
standby servers, set this parameter to archive or hot_standby.

● If this parameter is set to archive, hot_standby must be set to off. Otherwise,
the database startup fails.

synchronous_commit
Parameter description: Specifies the synchronization mode of the current
transaction.

Type: USERSET

Value range: enumerated values

● on indicates synchronization logs of a standby server are updated to disks.
● off indicates asynchronous commit.
● local indicates local commit.
● remote_write indicates synchronization logs of a standby server are written

to disks.
● remote_receive indicates synchronization logs of a standby server are

required to receive data.

Default value: on

wal_buffers
Parameter description: Specifies the number of XLOG_BLCKSZs used for storing
WAL data. The size of each XLOG_BLCKSZ is 8 KB.

Type: POSTMASTER

Value range: –1 to 218. The unit is 8 KB.

● If this parameter is set to –1, the value of wal_buffers is automatically
changed to 1/32 of shared_buffers. The minimum value is 8 x XLOG_BLCKSZ,
and the maximum value is 2048 x XLOG_BLCKSZ.

● If it is set to a value smaller than 8, the value 8 is used. If it is set to a value
greater than 2048, the value 2048 is used.

Default value: 256 MB

Setting suggestions: The content of WAL buffers is written to disks at each
transaction commit, and setting this parameter to a large value does not
significantly improve system performance. Setting this parameter to hundreds of
megabytes can improve the disk writing performance on the server, to which a
large number of transactions are committed. Based on experiences, the default
value meets user requirements in most cases.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1009

enable_wal_decelerate
Parameter description: Specifies whether to enable WAL log rate limiting. This
parameter is supported only by cluster versions 8.2.0 and later.

Type: SIGHUP

Value range: Boolean

● on indicates that this feature is enabled.
● off indicates that this feature is disabled.

Default value: on

wal_decelerate_policy
Parameter description: Specifies the behavior policy after rate limiting is
triggered. This parameter is supported only by clusters of 8.2.0 and later versions.

Type: USERSET

Value range: enumerated values

● warning indicates that an alarm is generated but the rate is not limited.
● decelerate indicates that the rate will be limited based on policy settings.

Default value: warning

NO TE

Setting the parameter to warning does not affect performance. Setting it to decelerate will
limit the rate based on policy settings if the rate exceeds the threshold.

wal_write_speed
Parameter description: Specifies the maximum WAL write speed (byte/s) allowed
by each query on a single DN. This parameter is supported only by clusters of 8.2.0
or later.

Type: USERSET

Value range: an integer ranging from 1024 to 10240000, in KB.

Default value: 30MB

NO TE

The rate of a large number of jobs with index copy and deletion operations will be limited.

wal_decelerate_trigger_threshold
Parameter description: Specifies the threshold of WAL write rate limiting for each
query on a single DN. This parameter is supported only by cluster versions 8.2.0
and later.

Type: USERSET

Value range: an integer ranging from 1024 to 100000000000, in KB.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1010

Default value: 128MB

NO TE

This function is triggered only if the number of Xlogs generated by a single query is greater
than the value of this parameter. DDL operations or a small number of DML operations are
not affected.

commit_delay
Parameter description: Specifies the duration of committed data be stored in the
WAL buffer.

Type: USERSET

Value range: an integer, ranging from 0 to 100000 (unit: μs). 0 indicates no delay.

Default value: 0

NO TICE

● When this parameter is set to a value other than 0, the committed transaction
is stored in the WAL buffer instead of being written to the WAL immediately.
Then, the WalWriter process flushes the buffer out to disks periodically.

● If system load is high, other transactions are probably ready to be committed
within the delay. If no transactions are waiting to be submitted, the delay is a
waste of time.

commit_siblings
Parameter description: Specifies a limit on the number of ongoing transactions. If
the number of ongoing transactions is greater than the limit, a new transaction
will wait for the period of time specified by commit_delay before it is submitted.
If the number of ongoing transactions is less than the limit, the new transaction is
immediately written into a WAL.

Type: USERSET

Value range: an integer ranging from 0 to 1000

Default value: 5

enable_xlog_group_insert
Parameter description: Specifies whether to enable the group insertion mode for
WALs. Only the Kunpeng architecture supports this parameter.

Type: SIGHUP

Value range: Boolean

● on: enabled
● off: disabled

Default value: on

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1011

wal_compression

Parameter description: Specifies whether to compress FPI pages.

Type: USERSET

Value range: Boolean

● on: enable the compression
● off: disable the compression

Default value: on

NO TICE

● Only zlib compression algorithm is supported.
● For clusters that are upgraded to the current version from an earlier version,

this parameter is set to off by default. You can run the gs_guc command to
enable the FPI compression function if needed.

● If the current version is a newly installed version, this parameter is set to on by
default.

● If this parameter is manually enabled for a cluster upgraded from an earlier
version, the cluster cannot be rolled back.

wal_compression_level

Parameter description: Specifies the compression level of zlib compression
algorithm when the wal_compression parameter is enabled.

Type: USERSET

Value range: an integer ranging from 0 to 9.

● 0 indicates no compression.
● 1 indicates the lowest compression ratio.
● 9 indicates the highest compression ratio.

Default value: 9

15.7.2 Checkpoints

checkpoint_segments

Parameter description: minimum number of WAL segment files in the period
specified by checkpoint_timeout. The size of each log file is 16 MB.

Type: SIGHUP

Value range: an integer. The minimum value is 1.

Default value: 64

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1012

NO TICE

Increasing the value of this parameter speeds up the export of big data. Set this
parameter based on checkpoint_timeout and shared_buffers. This parameter
affects the number of WAL log segment files that can be reused. Generally, the
maximum number of reused files in the pg_xlog folder is twice the number of
checkpoint segments. The reused files are not deleted and are renamed to the
WAL log segment files which will be later used.

checkpoint_timeout
Parameter description: Specifies the maximum time between automatic WAL
checkpoints.

Type: SIGHUP

Value range: an integer ranging from 30 to 3600 (s)

Default value: 15min

NO TICE

If the value of checkpoint_segments is increased, you need to increase the value
of this parameter. The increase of them further requires the increase of
shared_buffers. Consider all these parameters during setting.

enable_delayed_unlinks
Parameter description: Specifies whether to enable delayed checkpoint deletion.
This parameter is supported only by clusters of version 9.1.0 or later.

Type: SIGHUP

Value range: Boolean

● on indicates that delayed checkpoint deletion is enabled.
● off indicates that delayed checkpoint deletion is disabled.

Default value: on

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1013

NO TICE

● When delayed checkpoint deletion is enabled, the primary DN will move the
relfilenode file to be deleted to the pg_delayed_unlinks_bin directory of the
corresponding database when creating a checkpoint.

● To determine whether an OID is reused, the system not only checks whether
the relfilenode file exists in the corresponding database directory, but also
checks whether the pg_delayed_unlinks_bin directory exists.

● After the standby DN replays to the corresponding checkpoint record, the
primary DN will delete the batch of relfilenode files in the
pg_delayed_unlinks_bin directory corresponding to the checkpoint replayed by
the standby DN in the next checkpoint.

● When there are enough delayed-deletion relfilenode records (10 million), the
excess relfilenode files will remain in the pg_delayed_unlinks_bin directory
until the corresponding database/tablespace is deleted or the node is restarted
and the files are cleaned up.

15.7.3 Archiving

archive_mode

Parameter description: When archive_mode is enabled, completed WAL
segments are sent to archive storage by setting archive_command.

Type: SIGHUP

Value range: Boolean

● on: The archiving is enabled.

● off: The archiving is disabled.

Default value: off

NO TICE

When wal_level is set to minimal, archive_mode cannot be used.

archive_command

Parameter description: Specifies the command used to archive WALs set by the
administrator. You are advised to set the archive log path to an absolute path.

Type: SIGHUP

Value range: a string

Default value: (disabled)

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1014

NO TICE

● Any %p in the string is replaced with the absolute path of the file to archive,
and any %f is replaced with only the file name. (The relative path is relative to
the data directory.) Use %% to embed an actual % character in the command.

● This command returns zero only if it succeeds. Example:
archive_command = 'cp --remove-destination %p /mnt/server/archivedir/%f'
archive_command = 'copy %p /mnt/server/archivedir/%f' # Windows

● --remove-destination indicates that files will be overwritten during the
archiving.

● When archive_mode is set to on or not specified, a backup folder will be
created in the pg_xlog directory and WALs will be compressed and copied to
the pg_xlog/backup directory.

archive_timeout
Parameter description: Specifies the archiving period.

Type: SIGHUP

Value range: an integer ranging from 0 to INT_MAX. The unit is second. 0
indicates that archiving timeout is disabled.

Default value: 0

NO TICE

● The server is forced to switch to a new WAL segment file with the period
specified by this parameter.

● Archived files that are closed early due to a forced switch are still of the same
length as completely full files. Therefore, a very short archive_timeout will
bloat the archive storage. You are advised to set archive_timeout to 60s.

15.8 HA Replication

15.8.1 Sending Server

wal_keep_segments
Parameter description: Specifies the number of Xlog file segments. Specifies the
minimum number of transaction log files stored in the pg_xlog directory. The
standby server obtains log files from the primary server for streaming replication.

Type: SIGHUP

Value range: an integer ranging from 2 to INT_MAX

Default value: 128

Setting suggestions:

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1015

● During WAL archiving or recovery from a checkpoint on the server, the system
retains more log files than the number specified by wal_keep_segments.

● If this parameter is set to a too small value, a transaction log may have been
overwritten by a new transaction log before requested by the standby server.
As a result, the request fails, and the relationship between the primary and
standby servers is interrupted.

● If the HA system uses asynchronous transmission, increase the value of
wal_keep_segments when data greater than 4 GB is continuously imported
in COPY mode. Take T6000 board as an example. If the data to be imported
reaches 50 GB, you are advised to set this parameter to 1000. You can
dynamically restore the setting of this parameter after data import is
complete and the WAL synchronization is proper.

max_build_io_limit
Parameter description: Specifies the data volume that can be read from the disk
per second when the primary server provides a build session to the standby server.

Type: SIGHUP

Value range: an integer ranging from 0 to 1048576. The unit is KB.

Default value: 0, indicating that the I/O flow is not restricted when the primary
server provides a build session to the standby server.

Setting suggestions: Set this parameter based on the disk bandwidth and job
model. If there is no flow restriction or job interference, for disks with good
performance such as SSDs, a full build consumes a relatively small proportion of
bandwidth and has little impact on service performance. In this case, you do not
need to set the threshold. If the service performance of a common 10,000 rpm
SAS disk deteriorates significantly during a build, you are advised to set the
parameter to 20 MB.

This setting directly affects the build speed and completion time. Therefore, you
are advised to set this parameter to a value larger than 10 MB. During off-peak
hours, you are advised to remove the flow restriction to restore to the normal
build speed.

NO TE

● This parameter is used during peak hours or when the disk I/O pressure of the primary
server is high. It limits the build flow rate on the standby server to reduce the impact on
primary server services. After the service peak hours, you can remove the restriction or
reset the flow rate threshold.

● You are advised to set a proper threshold based on service scenarios and disk
performance.

15.8.2 Primary Server

vacuum_defer_cleanup_age
Parameter description: Specifies the number of transactions by which VACUUM
will defer the cleanup of invalid row-store table records, so that VACUUM and
VACUUM FULL do not clean up deleted tuples immediately.

Type: SIGHUP

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1016

Value range: an integer ranging from 0 to 1000000. 0 means no delay.

Default value: 0

data_replicate_buffer_size
Parameter description: Specifies the size of memory used by queues when the
sender sends data pages to the receiver. The value of this parameter affects the
buffer size copied for the replication between the primary and standby servers.

Type: POSTMASTER

Value range: an integer ranging from 4 to 1023. The unit is MB.

Default value: 16MB for CNs and 128MB for DNs

enable_data_replicate
Parameter description: Specifies the data synchronization mode between the
primary and standby servers when data is imported to row-store tables in a
database.

Type: USERSET

Value range: Boolean

● on indicates that data pages are used for the data synchronization between
the primary and standby servers when data is imported to row-store tables in
a database. This parameter cannot be set to on if replication_type is set to 1.

● off indicates that the primary and standby servers synchronize data using
Xlogs while the data is imported to a row-store table.

Default value: on

enable_incremental_catchup
Parameter description: Specifies the data catchup mode between the primary
and standby nodes.

Type: SIGHUP

Value range: Boolean

● on indicates that the standby node uses the incremental catchup mode. That
is, the standby server scans local data files on the standby server to obtain the
list of differential data files between the primary and standby nodes and then
performs catchup between the primary and standby nodes.

● off indicates that the standby node uses the full catchup mode. That is, the
standby node scans all local data files on the primary node to obtain the list
of differential data files between the primary and standby nodes and
performs catchup between the primary and standby nodes.

Default value: on

wait_dummy_time
Parameter description: Specifies the maximum duration for the primary, standby,
and secondary clusters to wait for the secondary cluster to start in sequence and

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1017

the maximum duration for the secondary cluster to send the scanning list when
incremental data catchup is enabled.

Type: SIGHUP

Value range: Integer, from 1 to INT_MAX, in seconds.

Default value: 300s

CA UTION

The unit can only be second.

15.8.3 Standby Server

build_backup_param
Parameter description: Specifies the minimum specifications for disk backup
during incremental build.

Type: SIGHUP

Value range: a string

Default value: (1%, 1G, 1G)

NO TE

This parameter specifies whether the pg_rewind_bak directory is generated during
incremental build. The character string takes effect only when it is configured in the 'x %,
yG, zG' format. This parameter is valid only when gs_guc set is set to a valid value. x
indicates the percentage of minimum remaining space, y indicates the minimum remaining
space, and z indicates the total disk space.
The pg_rewind_bak file is generated and backed up only when both of the following
conditions are met:
● Condition 1: The total disk capacity is greater than or equals to z GB. If this condition is

not met, the backup is not performed. If this condition is met, the system continues to
check condition 2.

● Condition 2: The remaining disk space is greater than or equals to y GB and the
percentage of the remaining disk space is greater than or equals to x %.

15.9 Query Planning

15.9.1 Optimizer Method Configuration
These configuration parameters provide a crude method of influencing the query
plans chosen by the query optimizer. If the default plan chosen by the optimizer
for a particular query is not optimal, a temporary solution is to use one of these
configuration parameters to force the optimizer to choose a different plan. Better
ways include adjusting the optimizer cost constants, manually running ANALYZE,
increasing the value of the default_statistics_target configuration parameter, and
adding the statistics collected in a specific column using ALTER TABLE SET
STATISTICS.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1018

enable_bitmapscan
Parameter description: Controls whether the query optimizer uses the bitmap-
scan plan type.

Type: USERSET

Value range: Boolean

● on indicates it is enabled.
● off indicates it is disabled.

Default value: on

enable_hashagg
Parameter description: Controls whether the query optimizer uses the Hash
aggregation plan type.

Type: USERSET

Value range: Boolean

● on indicates it is enabled.
● off indicates it is disabled.

Default value: on

enable_mixedagg
Parameter description: Controls whether the query optimizer uses the Mixed Agg
plan type.

Type: USERSET

Value range: Boolean

● on indicates that a Mixed Agg query plan is generated for the Grouping Sets
statement (including Rollup or Cube) that meets certain conditions.

● off indicates it is disabled.

Default value: on

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1019

NO TICE

● The default value of this parameter is on in a newly installed cluster of
9.1.0.200 or later. In an upgrade scenario, the default value of this parameter is
retained for forward compatibility.

● The Mixed Agg query plan can be used to improve the performance of
statements dealing with a large amount of data (the data volume of a single
DN table is greater than 100 GB).
Mixed Agg is not supported in the following scenarios:
● The data type of the columns in the GROUP BY clause do not support

hashing.
● The aggregate function uses DISTINCT for deduplication or ORDER BY for

sorting.
● The GROUPING SETS clause does not contain empty groups.

enable_hashjoin
Parameter description: Controls whether the query optimizer uses the Hash-join
plan type.

Type: USERSET

Value range: Boolean

● on indicates it is enabled.
● off indicates it is disabled.

Default value: on

enable_indexscan
Parameter description: Controls whether the query optimizer uses the index-scan
plan type.

Type: USERSET

Value range: Boolean

● on indicates it is enabled.
● off indicates it is disabled.

Default value: on

enable_indexonlyscan
Parameter description: Controls whether the query optimizer uses the index-
only-scan plan type.

Type: USERSET

Value range: Boolean

● on indicates it is enabled.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1020

● off indicates it is disabled.

Default value: on

enable_material
Parameter description: Controls whether the query optimizer uses
materialization. It is impossible to suppress materialization entirely, but setting
this parameter to off prevents the optimizer from inserting materialized nodes.

Type: USERSET

Value range: Boolean

● on indicates it is enabled.
● off indicates it is disabled.

Default value: on

enable_mergejoin
Parameter description: Controls whether the query optimizer uses the merge-join
plan type.

Type: USERSET

Value range: Boolean

● on indicates it is enabled.
● off indicates it is disabled.

Default value: off

enable_nestloop
Parameter description: Controls whether the query optimizer uses the nested-
loop join plan type to fully scan internal tables. It is impossible to suppress nested-
loop joins entirely, but setting this parameter to off allows the optimizer to choose
other methods if available.

Type: USERSET

Value range: Boolean

● on indicates it is enabled.
● off indicates it is disabled.

Default value: off

enable_index_nestloop
Parameter description: Controls whether the query optimizer uses the nested-
loop join plan type to scan the parameterized indexes of internal tables.

Type: USERSET

Value range: Boolean

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1021

● on indicates the query optimizer uses the nested-loop join plan type.

● off indicates the query optimizer does not use the nested-loop join plan type.

Default value: The default value for a newly installed cluster is on. If the cluster is
upgraded from R8C10, the forward compatibility is retained. If the version is
upgraded from R7C10 or an earlier version, the default value is off.

left_join_estimation_enhancement

Parameter description: Specifies whether to use the optimized estimated number
of rows for left join. This parameter is supported only by clusters of version
8.3.0.100 or later.

Type: USERSET

Value range: Boolean

● on indicates that the optimized value is used.

● off indicates it is disabled.

Default value: off

enable_seqscan

Parameter description: Controls whether the query optimizer uses the sequential
scan plan type. It is impossible to suppress sequential scans entirely, but setting
this variable to off allows the optimizer to preferentially choose other methods if
available.

Type: USERSET

Value range: Boolean

● on indicates it is enabled.

● off indicates it is disabled.

Default value: on

enable_sort

Parameter description: Controls whether the query optimizer uses the sort
method. It is impossible to suppress explicit sorts entirely, but setting this variable
to off allows the optimizer to preferentially choose other methods if available.

Type: USERSET

Value range: Boolean

● on indicates it is enabled.

● off indicates it is disabled.

Default value: on

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1022

max_opt_sort_rows

Parameter description: Specifies the maximum number of optimized limit+offset
rows in an ORDER BY clause. This parameter is supported only by clusters of
version 8.3.0 or later.

Type: USERSET

Value range: an integer ranging from 0 to INT_MAX

● If the value is 0, the parameter does not take effect.
● If this parameter is set to any other value, the optimization takes effect when

the number of limit+offset rows in the ORDER BY clause is less than the value
of this parameter. If the number of limit+offset rows in the order by clause is
greater than the value of this parameter, the optimization does not take
effect. After the optimization, the time required is reduced, but the memory
usage may increase.

Default value: 0

enable_tidscan

Parameter description: Controls whether the query optimizer uses the Tuple ID
(TID) scan plan type.

Type: USERSET

Value range: Boolean

● on indicates it is enabled.
● off indicates it is disabled.

Default value: on

enable_kill_query

Parameter description: In CASCADE mode, when a user is deleted, all the objects
belonging to the user are deleted. This parameter specifies whether the queries of
the objects belonging to the user can be unlocked when the user is deleted.

Type: SUSET

Value range: Boolean

● on indicates the unlocking is allowed.
● off indicates the unlocking is not allowed.

Default value: off

enforce_oracle_behavior

Parameter description: Controls the rule matching modes of regular expressions.

Type: USERSET

Value range: Boolean

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1023

● on indicates that the ORACLE matching rule is used.
● off indicates that the POSIX matching rule is used.

Default value: on

enable_stream_concurrent_update
Parameter description: Controls the use of stream in concurrent updates. This
parameter is restricted by the enable_stream_operator parameter.

Type: USERSET

Value range: Boolean

● on indicates that the optimizer can generate stream plans for the UPDATE
statement.

● off indicates that the optimizer can generate only non-stream plans for the
UPDATE statement.

Default value: on

enable_stream_ctescan
Parameter description: Specifies whether a stream plan supports ctescan.

Type: USERSET

Value range: Boolean

● on indicates that ctescan is supported for the stream plan.
● off indicates that ctescan is not supported for the stream plan.

Default value: off

enable_stream_operator
Parameter description: Controls whether the query optimizer uses streams.

Type: USERSET

Value range: Boolean

● on indicates it is enabled.
● off indicates it is disabled.

Default value: on

enable_stream_recursive
Parameter description: Specifies whether to push WITH RECURSIVE join queries
to DNs for processing.

Type: USERSET

Value range: Boolean

● on: WITH RECURSIVE join queries will be pushed down to DNs.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1024

● off: WITH RECURSIVE join queries will not be pushed down to DNs.

Default value: on

enable_value_redistribute

Parameter description: Specifies whether to generate value redistribute plans. In
8.2.0 and later cluster versions, this parameter takes effect for rank, dense_rank,
and row_number without the PARTITION BY clause.

Type: USERSET

Value range: Boolean

● on indicates that value redistribute plans are generated.
● off indicates that no value redistribute plans are generated.

Default value: on

max_recursive_times

Parameter description: Specifies the maximum number of WITH RECURSIVE
iterations.

Type: USERSET

Value range: an integer ranging from 0 to INT_MAX

Default value: 200

enable_vector_engine

Parameter description: Controls whether the query optimizer uses the vectorized
executor.

Type: USERSET

Value range: Boolean

● on indicates it is enabled.
● off indicates it is disabled.

Default value: on

enable_broadcast

Parameter description: Controls whether the query optimizer uses the broadcast
distribution method when it evaluates the cost of stream.

Type: USERSET

Value range: Boolean

● on indicates it is enabled.
● off indicates it is disabled.

Default value: on

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1025

enable_redistribute
Parameter description: Controls whether the query optimizer uses the local
redistribute or split redistribute distribution method when estimating the cost of
streams. This parameter is supported only by clusters of version 8.2.1.300 or later.

Type: USERSET

Value range: Boolean

● on indicates that either of the distribution methods is used.
● off indicates that none of the distribution methods is used.

Default value: on

enable_change_hjcost
Parameter description: Specifies whether the optimizer excludes internal table
running costs when selecting the Hash Join cost path. If it is set to on, tables with
a few records and high running costs are more possible to be selected.

Type: USERSET

Value range: Boolean

● on indicates it is enabled.
● off indicates it is disabled.

Default value: off

enable_fstream
Parameter description: Controls whether the query optimizer uses streams when
it delivers statements. This parameter is only used for external HDFS tables.

This parameter has been discarded. To reserve forward compatibility, set this
parameter to on, but the setting does not make a difference.

Type: USERSET

Value range: Boolean

● on indicates it is enabled.
● off indicates it is disabled.

Default value: off

enable_hashfilter
Parameter description: Controls whether hashfilters can be generated for plans
that contain replication tables (including dual and constant tables). This
parameter is supported by clusters of version 8.2.0 or later.

Type: USERSET

Value range: Boolean

● on indicates that hashfilters can be generated.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1026

● off indicates that no hashfilters can be generated.

Default value: on

best_agg_plan
Parameter description: The query optimizer generates three plans for the
aggregate operation under the stream:

1. hashagg+gather(redistribute)+hashagg
2. redistribute+hashagg(+gather)
3. hashagg+redistribute+hashagg(+gather).

This parameter is used to control the query optimizer to generate which type of
hashagg plans.

Type: USERSET

Value range: an integer ranging from 0 to 3.

● When the value is set to 1, the first plan is forcibly generated.
● When the value is set to 2 and if the group by column can be redistributed,

the second plan is forcibly generated. Otherwise, the first plan is generated.
● When the value is set to 3 and if the group by column can be redistributed,

the third plan is generated. Otherwise, the first plan is generated.
● When the value is set to 0, the query optimizer chooses the most optimal

plan based on the estimated costs of the three plans above.

Default value: 0

turbo_engine_version
Parameter description: For tables with the turbo storage format specified during
table creation (by setting the enable_turbo_store parameter to on in the table
properties), and when the query does not involve merge join or sort agg
operators, the executor can use the turbo execution engine, which can significantly
improve performance.

Type: USERSET

Value range: an integer ranging from 0 to 3.

● The value 0 indicates that the turbo execution engine is disabled.
● The value 1 indicates that the turbo execution engine is only used for single-

table aggregate queries.
● The value 2 indicates that the turbo execution engine is only used for single-

table aggregate or multi-table join queries.
● The value 3 indicates that the turbo execution engine can be used to

accelerate most commonly used operators, except for operators such as
merge join and sort agg. When the data volume is large and
turbo_engine_version is set to 3, the occurrence of merge join and sort agg
operators is relatively rare, so turbo execution engine acceleration can be
achieved for almost SQL statements.

Default value: 0

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1027

NO TICE

You are advised not to enable the turbo execution engine in cross-VW scenarios.

enable_bucket_stream_opt
Parameter description: Specifies whether to use the bucket agg and bucket join
policies for level-2 partitioned tables or 3.0 hash distributed tables. It speeds up
SQL statement execution by avoiding local data redistribution or broadcast. This is
supported only by clusters of version 9.1.0.200 or later.

Type: USERSET

Value range: Boolean

● true: The optimizer uses the bucket agg and bucket join execution policies
to generate plans when the conditions for the policy to be applied are met. If
this optimization policy is used, "Bucket Stream: true" is displayed at the end
of the EXPLAIN statement.

● false: The optimizer does not use the bucket agg and bucket join execution
policies to generate plans.

Default value: true

NO TICE

● The default value of this parameter is true in a newly installed cluster of
9.1.0.200 or later. In an upgrade scenario, the default value of this parameter is
retained for forward compatibility.

● The bucket agg and bucket join execution policies take effect only when the
current query has 16 or fewer available CPUs and meets one of the following
conditions:
1. The distribution column for level-2 partitions must match the
secondary_part_column of these partitions. It is recommended that the
number of level-2 partitions be the number of DNs multiplied by 12. Supported
multiples include 4, 6, 8, 12, and 16.
2. Tables in version 3.0 must use hash distribution, with the number of buckets
or DNs exceeding 10.

● If the local stream cost in the plan is low, the query may not select the bucket
agg and bucket join policies.

enable_turbo_zero_padding
Parameter description: Specifies whether the turbo engine aligns decimal points
for single-column numeric values.

Type: SIGHUP

Value range: Boolean

● on indicates that decimal point alignment is performed for better
performance.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1028

● off indicates that decimal point alignment is not performed, which is
compatible with the behavior of the original column storage execution
engine.

Default value: on

spill_compression

Parameter description: Specifies the compression algorithm used when the
executor operator runs out of memory and needs to spill data to disk. This is
supported only by clusters of version 9.1.0.100 or later.

Type: USERSET

Value range: enumerated values

● 'lz4' indicates that the lz4 compression algorithm is used, which provides
better performance for scenarios with smaller spill volumes, but requires more
storage space.

● 'zstd' indicates that the zstd compression algorithm is used, which provides
better performance for scenarios with larger spill volumes where I/O is the
main bottleneck, and requires approximately 2/3 of the storage space used by
lz4.

Default value: 'lz4'

index_selectivity_cost

Parameter description: Controls the cost calculation of cbtree when scanning
column-store table indexes (for selectivity > 0.001). This parameter is only
supported by clusters of version 8.2.1.100 or later.

Type: USERSET

Value range: a floating point number, which can be –1 or ranges from 0 to 1000.

● If this parameter is set to 0, the index selection rate is not affected by the
threshold 0.001.

● If the value is –1, the value is impacted by disable_cost.
● When it is set to other values, the value is the coefficient for cbtree cost

calculation.

Default value: –1

index_cost_limit

Parameter description: threshold for disabling the cost calculation of cbtree
during column-store table index scanning. This parameter is supported only by
clusters of version 8.2.1.100 or later.

Type: USERSET

Value range: an integer ranging from 0 to 2147483647

● If the value is 0, the parameter does not take effect.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1029

● If this parameter is set to other values and the number of rows in a table is
less than the value of this parameter, the table is not affected by the index
selection rate threshold 0.001.

Default value: 0

volatile_shipping_version

Parameter description: Controls the execution scope of volatile functions to be
pushed down.

Type: USERSET

Value range: 0, 1, 2, 3

● When set to 3, it extends the support for pushing down InlineCTE when it is
only referenced once, on top of the support provided by a value 2. It also
extends the support for pushing down the use of volatile functions in UPSERT
operations involving replicated tables.

● When the value is 2, pushdown can be performed when VOLATILE functions
are contained in the target column of the copied CTE result.

● If this parameter is set to 1, the nextval, uuid_generate_v1, sys_guid, and
uuid functions can be completely pushed down if they are in the target
column of a statement.

● If this parameter is set to 0, random functions can be completely pushed
down. The nextval and uuid_generate_v1 functions can be pushed down
only if INSERT contains simple query statements.

Default value: 3

agg_redistribute_enhancement

Parameter description: When the aggregate operation is performed, which
contains multiple group by columns and all of the columns are not in the
distribution column, you need to select one group by column for redistribution.
This parameter controls the policy of selecting a redistribution column.

Type: USERSET

Value range: Boolean

● on indicates the column that can be redistributed and evaluates the most
distinct value for redistribution.

● off indicates the first column that can be redistributed for redistribution.

Default value: off

enable_valuepartition_pruning

Parameter description: Specifies whether the DFS partitioned table is dynamically
or statically optimized.

Type: USERSET

Value range: Boolean

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1030

● on indicates that the DFS partitioned table is dynamically or statically
optimized.

● off indicates that the DFS partitioned table is not dynamically or statically
optimized.

Default value: on

expected_computing_nodegroup
Parameter description: Specifies a computing Node Group or the way to choose
such a group. The Node Group mechanism is now for internal use only. You do not
need to set it.

During join or aggregation operations, a Node Group can be selected in four
modes. In each mode, the specified candidate computing Node Groups are listed
for the optimizer to select an appropriate one for the current operator.

Type: USERSET

Value range: a string

● optimal: The list of candidate computing Node Groups consists of the Node
Group where the operator's operation objects are located and the DNs in the
Node Groups on which the current user has the COMPUTE permission.

● query: The list of candidate computing Node Groups consists of the Node
Group where the operator's operation objects are located and the DNs in the
Node Groups where base tables involved in the query are located.

● bind: If the current session user is a logical cluster user, the candidate
computing Node Group is the Node Group of the logical cluster associated
with the current user. If the session user is not a logical cluster user, the
candidate computing Node Group selection rule is the same as that when this
parameter is set to query.

● Node Group name:
– If enable_nodegroup_debug is set to off, the list of candidate computing

Node Groups consists of the Node Group where the operator's operation
objects are located and the specified Node Group.

– If enable_nodegroup_debug is set to on, the specified Node Group is
used as the candidate Node Group.

Default value: bind

enable_nodegroup_debug
Parameter description: Specifies whether the optimizer assigns computing
workloads to a specific Node Group when multiple Node Groups exist in an
environment. The Node Group mechanism is now for internal use only. You do not
need to set it.

This parameter takes effect only when expected_computing_nodegroup is set to
a specific Node Group.

Type: USERSET

Value range: Boolean

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1031

● on indicates that computing workloads are assigned to the Node Group
specified by expected_computing_nodegroup.

● off indicates no Node Group is specified to compute.

Default value: off

stream_multiple

Parameter description: Specifies the weight used for optimizer to calculate the
final cost of stream operators.

The base stream cost is multiplied by this weight to make the final cost.

Type: USERSET

Value range: a floating point number ranging from 0 to 10000

Default value: 1

NO TICE

This parameter is applicable only to Redistribute and Broadcast streams.

qrw_inlist2join_optmode

Parameter description: Specifies whether enable inlist-to-join (inlist2join) query
rewriting.

Type: USERSET

Value range: a string

● disable: inlist2join disabled
● cost_base: cost-based inlist2join query rewriting
● rule_base: forcible rule-based inlist2join query rewriting
● A positive integer: threshold of Inlist2join query rewriting. If the number of

elements in the list is greater than the threshold, the rewriting is performed.

Default value: disable

enable_inlist_hashing

Parameter description: Specifies whether to use inlist hash optimization. This
parameter is supported only by clusters of version 9.1.0 or later.

Type: USERSET

Value range: Boolean

● on indicates that inlist hash optimization is enabled.
● off indicates that inlist hash optimization is disabled.

Default value: on

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1032

setop_optmode
Parameter description: Specifies whether to perform deduplication on the query
branch statements of a set operation (UNION/EXCEPT/INTERSECT) without the
ALL option.

Type: USERSET

Value range: enumerated values

● disable: The query branch does not perform deduplication.
● force: The query branch forcibly performs deduplication.
● cost: The optimizer compares the costs of query branches with and without

deduplication, and choose the execution mode with lower costs.

Default value: cost

NO TICE

● The default value of this parameter is cost in a newly installed cluster of
9.1.0.200 or later. In an upgrade scenario, the default value of this parameter is
retained for forward compatibility.

● This parameter takes effect only if the execution plan of a SQL statement
meets the following conditions:
● The UNION, EXCEPT, and INTERSECT operations in the SQL statement do

not contain the ALL option.
● Data redistribution has been performed on the query branches where the

set operation is to be performed.

skew_option
Parameter description: Specifies whether an optimization policy is used

Type: USERSET

Value range: a string

● off: policy disabled
● normal: radical policy. All possible skews are optimized.
● lazy: conservative policy. Uncertain skews are ignored.

Default value: normal

enable_expr_skew_optimization
Parameter description: Specifies whether to use expression statistics in the skew
optimization policy. This is supported only by clusters of version 9.1.0.100 or later.

Type: USERSET

Value range: Boolean

● on indicates that expression statistics are used to determine whether data
skew occurs in the skew optimization policy.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1033

● off indicates that expression statistics are not used to determine whether data
skew occurs in the skew optimization policy.

Default value: on

prefer_hashjoin_path
Parameter description: whether to preferentially generate hashjoin paths so that
other paths with high costs can be pre-pruned to shorten the overall plan
generation time. This parameter is supported only by clusters of version 8.2.1 or
later.

Type: USERSET

Value range: Boolean

● on indicates that the optimization of generating hash join paths in advance is
enabled.

● off indicates that the optimization of generating hash join paths in advance is
disabled.

Default value: on

enable_hashfilter_test
Parameter description: whether to add hash filters to columns for base table
scan to check whether the results meet expectations. In addition, this parameter
determines whether to check the DN accuracy when data is inserted (that is,
whether the current data should be inserted into the current DN).

Type: USERSET

Value range: Boolean

● on adds a hash filter for the distribution column to the base table scan and
performs accurate DN verification during data insertion.

● off does not add a hash filter for the distribution column to the base table
scan and does not perform DN verification during data insertion.

Default value: on

NO TICE

● This parameter is valid only for tables distributed in hash mode.
● If this parameter is set to on, DN accuracy is verified during data insertion,

affecting data insertion performance.

enable_cu_align_8k
Parameter description: Specifies whether to set the CUs in V3 tables to 8 KB. This
parameter is supported only by clusters of version 9.1.0 or later.

Type: USERSET

Value range: Boolean

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1034

● on indicates that the CUs in V3 tables are set to 8,192 bytes.
● off indicates that the CUs in V3 tables are set to 512 bytes.

Default value: off

enable_cu_batch_insert
Parameter description: Specifies whether to enable the multi-column CU batch
write feature for V2 tables. This parameter is supported only by clusters of version
9.1.0 or later.

Type: USERSET

Value range: Boolean

● on indicates that the multi-column CU batch write feature is enabled for V2
tables.

● off indicates that the multi-column CU batch write feature is disabled for V2
tables.

Default value: off

enable_topk_optimization
Parameter description: Specifies whether to enable Top K sorting optimization.
This is supported only by clusters of version 9.1.0.200 or later.

Type: USERSET

Value range: Boolean

● on indicates that Top K sorting optimization is enabled.
● off indicates that Top K sorting optimization is disabled.

Default value: on

late_read_strategy
Parameter description: Specifies whether to use the late materialization feature.
This is supported only by clusters of version 9.1.0.200 or later.

Type: USERSET

Value range: enumerated values

● topk: enables the late materialization optimization method for statements
that involve both sorting and limiting.

● none: indicates that the late materialization optimization method is not used.

Default value: topk

15.9.2 Optimizer Cost Constants
This section describes the optimizer cost constants. The cost variables described in
this section are measured on an arbitrary scale. Only their relative values matter,
therefore scaling them all in or out by the same factor will result in no differences
in the optimizer's choices. By default, these cost variables are based on the cost of

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1035

sequential page fetches, that is, seq_page_cost is conventionally set to 1.0 and
the other cost variables are set with reference to the parameter. However, you can
use a different scale, such as actual execution time in milliseconds.

seq_page_cost
Parameter description: Specifies the optimizer's estimated cost of a disk page
fetch that is part of a series of sequential fetches.

Type: USERSET

Value range: a floating point number ranging from 0 to DBL_MAX

Default value: 1

random_page_cost
Parameter description: Specifies the optimizer's estimated cost of an out-of-
sequence disk page fetch.

Type: USERSET

Value range: a floating point number ranging from 0 to DBL_MAX

Default value: 4

NO TE

● Although the server allows you to set the value of random_page_cost to less than that
of seq_page_cost, it is not physically sensitive to do so. However, setting them equal
makes sense if the database is entirely cached in RAM, because in that case there is no
penalty for fetching pages out of sequence. Also, in a heavily-cached database you
should lower both values relative to the CPU parameters, since the cost of fetching a
page already in RAM is much smaller than it would normally be.

● This value can be overwritten for tables and indexes in a particular tablespace by setting
the tablespace parameter of the same name.

● Comparing to seq_page_cost, reducing this value will cause the system to prefer index
scans and raising it makes index scans relatively more expensive. You can increase or
decrease both values at the same time to change the disk I/O cost relative to CPU cost.

cpu_tuple_cost
Parameter description: Specifies the optimizer's estimated cost of processing
each row during a query.

Type: USERSET

Value range: a floating point number ranging from 0 to DBL_MAX

Default value: 0.01

cpu_index_tuple_cost
Parameter description: Specifies the optimizer's estimated cost of processing
each index entry during an index scan.

Type: USERSET

Value range: a floating point number ranging from 0 to DBL_MAX

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1036

Default value: 0.005

cpu_operator_cost
Parameter description: Specifies the optimizer's estimated cost of processing
each operator or function during a query.

Type: USERSET

Value range: a floating point number ranging from 0 to DBL_MAX

Default value: 0.0025

effective_cache_size
Parameter description: Specifies the optimizer's assumption about the effective
size of the disk cache that is available to a single query.

When setting this parameter you should consider both GaussDB(DWS)'s shared
buffer and the kernel's disk cache. Also, take into account the expected number of
concurrent queries on different tables, since they will have to share the available
space.

This parameter has no effect on the size of shared memory allocated by
GaussDB(DWS). It is used only for estimation purposes and does not reserve
kernel disk cache. The value is in the unit of disk page. Usually the size of each
page is 8192 bytes.

Type: USERSET

Value range: an integer ranging is from 1 to INT_MAX. The unit is 8 KB.

A value greater than the default one may enable index scanning, and a value less
than the default one may enable sequence scanning.

Default value: 128MB

allocate_mem_cost
Parameter description: Specifies the query optimizer's estimated cost of creating
a Hash table for memory space using Hash join. This parameter is used for
optimization when the Hash join estimation is inaccurate.

Type: USERSET

Value range: a floating point number ranging from 0 to DBL_MAX

Default value: 0

smp_thread_cost
Parameter description: Specifies the optimizer's cost for calculating parallel
threads of an operator. This parameter is used for tuning if query_dop is not
suitable for system load management. (This parameter is supported only by
clusters of version 8.2.0 or later.)

Type: USERSET

Value range: a floating point number ranging from 1 to 10000

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1037

Default value: 1000

15.9.3 Genetic Query Optimizer
This section describes parameters related to genetic query optimizer. The genetic
query optimizer (GEQO) is an algorithm that plans queries by using heuristic
searching. This algorithm reduces planning time for complex queries and the cost
of producing plans are sometimes inferior to those found by the normal
exhaustive-search algorithm.

geqo
Parameter description: Controls the use of genetic query optimization.

Type: USERSET

Value range: Boolean

● on indicates GEQO is enabled.
● off indicates GEQO is disabled.

Default value: on

NO TICE

Generally, do not set this parameter to off. geqo_threshold provides more subtle
control of GEQO.

geqo_threshold
Parameter description: Specifies the number of FROM items. Genetic query
optimization is used to plan queries when the number of statements executed is
greater than this value.

Type: USERSET

Value range: an integer ranging from 2 to INT_MAX

Default value: 12

NO TICE

● For simpler queries it is best to use the regular, exhaustive-search planner, but
for queries with many tables it is better to use GEQO to manage the queries.

● A FULL OUTER JOIN construct counts as only one FROM item.

geqo_effort
Parameter description: Controls the trade-off between planning time and query
plan quality in GEQO.

Type: USERSET

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1038

Value range: an integer ranging from 1 to 10

Default value: 5

NO TICE

● Larger values increase the time spent in query planning, but also increase the
probability that an efficient query plan is chosen.

● geqo_effort does not have direct effect. This parameter is only used to
compute the default values for the other variables that influence GEQO
behavior. You can manually set other parameters as required.

geqo_pool_size
Parameter description: Specifies the pool size used by GEQO, that is, the number
of individuals in the genetic population.

Type: USERSET

Value range: an integer ranging from 0 to INT_MAX

NO TICE

The value of this parameter must be at least 2, and useful values are typically
from 100 to 1000. If this parameter is set to 0, GaussDB(DWS) selects a proper
value based on geqo_effort and the number of tables.

Default value: 0

geqo_generations
Parameter description: Specifies the number parameter iterations of the
algorithm used by GEQO.

Type: USERSET

Value range: an integer ranging from 0 to INT_MAX

NO TICE

The value of this parameter must be at least 1, and useful values are typically
from 100 to 1000. If it is set to 0, a suitable value is chosen based on
geqo_pool_size.

Default value: 0

geqo_selection_bias
Parameter description: Specifies the selection bias used by GEQO. The selection
bias is the selective pressure within the population.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1039

Type: USERSET

Value range: a floating point number ranging from 1.5 to 2.0

Default value: 2

geqo_seed
Parameter description: Specifies the initial value of the random number
generator used by GEQO to select random paths through the join order search
space.

Type: USERSET

Value range: a floating point number ranging from 0.0 to 1.0

NO TICE

Varying the value changes the setting of join paths explored, and may result in a
better or worse path being found.

Default value: 0

15.9.4 Other Optimizer Options

default_statistics_target
Parameter description: Specifies the default statistics target for table columns
without a column-specific target set via ALTER TABLE SET STATISTICS. If this
parameter is set to a positive number, it indicates the number of samples of
statistics information. If this parameter is set to a negative number, percentage is
used to set the statistic target. The negative number converts to its corresponding
percentage, for example, –5 means 5%. During sampling, a random sample size is
determined by multiplying the default_statistics_target by 300. For example, if
the default value is 100, then 30,000 pages will be randomly read and 30,000 data
records will be randomly selected from them to complete the random sampling.

Type: USERSET

Value range: an integer ranging from –100 to 10000

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1040

NO TICE

● A larger positive number than the parameter value increases the time required
to do ANALYZE, but might improve the quality of the optimizer's estimates.

● Changing settings of this parameter may result in performance deterioration. If
query performance deteriorates, you can:
1. Restore to the default statistics.
2. Use hints to optimize the query plan. For details, see Hint-based Tuning.

● If this parameter is set to a negative value, the number of samples is greater
than or equal to 2% of the total data volume, and the number of records in
user tables is less than 1.6 million, the time taken by running ANALYZE will be
longer than when this parameter uses its default value.

● AUTOANALYZE does not allow you to set a sampling size for temporary table
sampling. Its default value will be used for sampling.

● If statistics are forcibly calculated based on memory, the sampling size is
limited by the maintenance_work_mem parameter.

Default value: 100

random_function_version
Parameter description: Specifies the random function version selected by
ANALYZE during data sampling. This feature is supported only in 8.1.2 or later.

Type: USERSET

Value range: enumerated values

● The value 0 indicates that the random function provided by the C standard
library is used.

● The value 1 indicates that the optimized and enhanced random function is
used.

Default value:

● If the current cluster is upgraded from an earlier version to 8.2.0.100, the
default value is 0 to ensure forward compatibility.

● If the cluster version 8.2.0.100 is newly installed, the default value is 1.

constraint_exclusion
Parameter description: Controls the query optimizer's use of table constraints to
optimize queries.

Type: USERSET

Value range: enumerated values

● on indicates the constraints for all tables are examined.
● off: No constraints are examined.
● partition indicates that only constraints for inherited child tables and UNION

ALL subqueries are examined.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1041

NO TICE

When constraint_exclusion is set to on, the optimizer compares query
conditions with the table's CHECK constraints, and omits scanning tables for
which the conditions contradict the constraints.

Default value: partition

NO TE

Currently, this parameter is set to on by default to partition tables. If this parameter is set
to on, extra planning is imposed on simple queries, which has no benefits. If you have no
partitioned tables, set it to off.

cursor_tuple_fraction

Parameter description: Specifies the optimizer's estimated fraction of a cursor's
rows that are retrieved.

Type: USERSET

Value range: a floating point number ranging from 0.0 to 1.0

NO TICE

Smaller values than the default value bias the optimizer towards using fast start
plans for cursors, which will retrieve the first few rows quickly while perhaps
taking a long time to fetch all rows. Larger values put more emphasis on the total
estimated time. At the maximum setting of 1.0, cursors are planned exactly like
regular queries, considering only the total estimated time and how soon the first
rows might be delivered.

Default value: 0.1

from_collapse_limit

Parameter description: Specifies whether the optimizer merges sub-queries into
upper queries based on the resulting FROM list. The optimizer merges sub-queries
into upper queries if the resulting FROM list would have no more than this many
items.

Type: USERSET

Value range: an integer ranging from 1 to INT_MAX

NO TICE

Smaller values reduce planning time but may lead to inferior execution plans.

Default value: 8

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1042

join_collapse_limit

Parameter description: Specifies whether the optimizer rewrites JOIN constructs
(except FULL JOIN) into lists of FROM items based on the number of the items in
the result list.

Type: USERSET

Value range: an integer ranging from 1 to INT_MAX

NO TICE

● Setting this parameter to 1 prevents join reordering. As a result, the join order
specified in the query will be the actual order in which the relations are joined.
The query optimizer does not always choose the optimal join order. Therefore,
advanced users can temporarily set this variable to 1, and then specify the join
order they desire explicitly.

● Smaller values reduce planning time but lead to inferior execution plans.

Default value: 8

join_search_mode

Parameter description: plan path search mode.

Type: USERSET

Value range: enumerated values

● exhaustive: Traditional dynamic planning and genetic methods are used to
search for planned paths.

● heuristic: The heuristic method is used to search for planned paths. This
method improves the plan generation performance, but there is a possibility
that the optimal plan is ignored. This setting only takes effect for scenarios
where a Drive Hint is specified or the number of joined tables exceeds
from_collapse_limit.

Default value: heuristic

enable_from_collapse_hint

Parameter description: Specifies whether to rewrite the FROM list to make the
hint take effect, and then rewrite it again based on the from_collapse_limit and
join_collapse_limit parameters. This parameter is supported by clusters of version
8.2.0 or later.

Type: USERSET

Value range: Boolean

● on indicates that the FROM list is first rewritten in hint mode.
● off indicates that the FROM list is rewritten without difference.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1043

NO TICE

● If this parameter is enabled, the optimizer preferentially rewrites the FROM list
in hint mode. However, you can learn whether a hint takes effect only after the
plan is generated.

● If this parameter is disabled, the plan is generated in the same way as that in
versions earlier than 8.2.0. That is, the plan is generated regardless of whether
the table has hints.

Default value: on

plan_mode_seed

Parameter description: This is a commissioning parameter. Currently, it supports
only OPTIMIZE_PLAN and RANDOM_PLAN. OPTIMIZE_PLAN indicates the optimal
plan, the cost of which is estimated using the dynamic planning algorithm, and its
value is 0. RANDOM_PLAN indicates the plan that is randomly generated. If
plan_mode_seed is set to –1, you do not need to specify the value of the seed
identifier. Instead, the optimizer generates a random integer ranging from 1 to
2147483647, and then generates a random execution plan based on this random
number. If plan_mode_seed is set to an integer ranging from 1 to 2147483647,
you need to specify the value of the seed identifier, and the optimizer generates a
random execution plan based on the seed value.

Type: USERSET

Value range: an integer ranging from –1 to 2147483647

Default value: 0

NO TICE

● If plan_mode_seed is set to RANDOM_PLAN, the optimizer generates different
random execution plans, which may not be the optimal. Therefore, to
guarantee the query performance, the default value 0 is recommended during
upgrade, scale-out, scale-in, and O&M.

● If this parameter is not set to 0, the specified hint will not be used.

enable_hdfs_predicate_pushdown

Parameter description: Specifies whether the function of pushing down
predicates the native data layer is enabled.

Type: SUSET

Value range: Boolean

● on indicates this function is enabled.
● off indicates this function is disabled.

Default value: on

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1044

windowagg_pushdown_enhancement
Parameter description: Specifies whether to enable enhanced predicate
pushdown for window functions in aggregation scenarios. (This parameter is
supported only by clusters of version 8.2.0 or later.)

Type: SUSET

Value range: Boolean

● on indicates that the predicate pushdown enhancement for window functions
is enabled in aggregation scenarios.

● off indicates that the predicate pushdown enhancement for window functions
is disabled in aggregation scenarios.

Default value: on

implied_quality_optmode
Parameter description: Specifies how to pass conditions for the equivalent
columns in a statement. (This parameter is supported only by clusters of version
8.2.0 or later.)

Type: SUSET

Value range: enumerated values

● normal indicates forward compatibility with 8.1.3 and earlier versions, that is,
the implied expression behavior is optimized.

● negative indicates that the implied expression behavior is not optimized.
● positive indicates that type conversion expressions are optimized in addition

to the operations specified by normal.

Default value: normal

enable_random_datanode
Parameter description: Specifies whether the function that random query about
DNs in the replication table is enabled. A complete data table is stored on each
DN for random retrieval to release the pressure on nodes.

Type: USERSET

Value range: Boolean

● on: This function is enabled.
● off: This function is disabled.

Default value: on

hashagg_table_size
Parameter description: Specifies the hash table size during HASH AGG execution.

Type: USERSET

Value range: an integer ranging from 0 to INT_MAX/2

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1045

Default value: 0

enable_codegen
Parameter description: Specifies whether code optimization can be enabled.
Currently, the code optimization uses the LLVM optimization.

Type: USERSET

Value range: Boolean

● on indicates code optimization can be enabled.
● off indicates code optimization cannot be enabled.

NO TICE

Currently, the LLVM optimization only supports the vectorized executor and
SQL on Hadoop features. You are advised to set this parameter to off in other
cases.

Default value: on

codegen_strategy
Parameter description: Specifies the codegen optimization strategy that is used
when an expression is converted to codegen-based.

Type: USERSET

Value range: enumerated values

● partial indicates that you can still call the LLVM dynamic optimization
strategy using the codegen framework of an expression even if functions that
are not codegen-based exist in the expression.

● pure indicates that the LLVM dynamic optimization strategy can be called
only when all functions in an expression can be codegen-based.

NO TICE

In the scenario where query performance reduces after the codegen function
is enabled, you can set this parameter to pure. In other scenarios, do not
change the default value partial of this parameter.

Default value: partial

enable_codegen_print
Parameter description: Specifies whether the LLVM IR function can be printed in
logs.

Type: USERSET

Value range: Boolean

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1046

● on indicates that the LLVM IR function can be printed in logs.
● off indicates that the LLVM IR function cannot be printed in logs.

Default value: off

codegen_cost_threshold
Parameter description: The LLVM compilation takes some time to generate
executable machine code. Therefore, LLVM compilation is beneficial only when the
actual execution cost is more than the sum of the code required for generating
machine code and the optimized execution cost. This parameter specifies a
threshold. If the estimated execution cost exceeds the threshold, LLVM
optimization is performed.

Type: USERSET

Value range: an integer ranging from 0 to INT_MAX

Default value: 10000

llvm_compile_expr_limit
Parameter description: Specifies the limit for compiling expressions with LLVM. If
there are more expressions than the limit, only the first ones are compiled and an
alarm is generated. (To allow the alarm to be generated, execute SET
analysis_options="on(LLVM_COMPILE)" before explain performance is
executed.)

Type: USERSET

Value range: an integer ranging from –1 to INT_MAX

Default value: 500

llvm_compile_time_limit
Parameter description: If the percentage of the LLVM compilation time to the
executor running time exceeds the threshold specified by
llvm_compile_time_limit, an alarm is generated. (To allow the alarm to be
generated, execute SET analysis_options="on(LLVM_COMPILE)" before explain
performance is executed.) This parameter is supported only by clusters of version
8.3.0 or later.

Type: USERSET

Value range: a floating point number ranging from 0.0 to 1.0

Default value: 0.2

enable_constraint_optimization
Parameter description: Specifies whether the informational constraint
optimization execution plan can be used for an HDFS foreign table.

Type: SUSET

Value range: Boolean

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1047

● on indicates the plan can be used.
● off indicates the plan cannot be used.

Default value: on

enable_bloom_filter
Parameter description: Specifies whether the BloomFilter optimization is used.

Type: USERSET

Value range: Boolean

● on indicates the BloomFilter optimization can be used.
● off indicates the BloomFilter optimization cannot be used.

Default value: on

NO TICE

Scenario: If in a HASH JOIN, the thread of the foreign table contains HDFS tables
or column-store tables, the Bloom filter is triggered.
Constraints:
1. Only INNER JOIN, SEMI JOIN, RIGHT JOIN, RIGHT SEMI JOIN, RIGHT ANTI

JOIN and RIGHT ANTI FULL JOIN are supported.
2. JOIN condition of the internal table: It cannot be an expression for HDFS

internal or foreign tables. It can be an expression for column-store tables, but
only at the non-join layer.

3. The join condition of the foreign table must be simple column join.
4. When the join conditions of the internal and foreign tables (HDFS) are both

simple column joins, the estimated data that can be removed at the plan layer
must be over 1/3.

5. Joined columns cannot contain NULL values.
6. Data type:

● HDFS internal and foreign tables support SMALLINT, INTEGER, BIGINT,
REAL/FLOAT4, DOUBLE PRECISION/FLOAT8, CHAR(n)/CHARACTER(n)/
NCHAR(n), VARCHAR(n)/CHARACTER VARYING(n), CLOB and TEXT.

● Column-store tables support SMALLINT, INTEGER, BIGINT, OID, "char",
CHAR(n)/CHARACTER(n)/NCHAR(n), VARCHAR(n)/CHARACTER
VARYING(n), NVARCHAR2(n), CLOB, TEXT, DATE, TIME, TIMESTAMP and
TIMESTAMPTZ. The collation of the character type must be C.

runtime_filter_type
Parameter description : Specifies the type of runtime filter used, and only takes
effect when enable_bloom_filter is enabled. This is supported only by clusters of
version 9.1.0.100 or later.

Type: USERSET

Value range: enumerated values

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1048

● All indicates that the runtime filters in all scenarios are used.
● Topn_filter indicates the runtime filters in the ORDER BY scenario with LIMIT

are used.
● Bloom_filter indicates that only runtime filters in join scenarios are used, and

a bloom filter is generated for filtering after meeting certain conditions.
● Min_max indicates that only the runtime filters in join scenarios are used and

only a min_max filter is generated for filtering.
● None indicates that no runtime filters are used, and only the original bloom

filter has filtering effect.

Default value: All

NO TICE

● Application scenario: Plan type of the HASH JOIN foreign table in a column-
store table and the ORDER BY plan type with LIMIT in a column-store table.

● Constraints:
● The usage restrictions for JOIN scenarios are the same as those for the

enable_bloom_filter parameter.
● In the order by scenario with limit, the order by field types only support

SMALLINT, INTEGER, BIGINT, "char", CHAR(n)/CHARACTER(n)/
NCHAR(n), VARCHAR(n)/CHARACTER VARYING(n), NVARCHAR2(n),
TEXT, DATE, TIME, TIMESTAMP, and TIMESTAMPTZ, and the sorting rules
for character types must be specified as C.

runtime_filter_ratio

Parameter description: Specifies the threshold for using bloom filter for fine-
grained row-level filtering in join scenarios in runtime filter, and only takes effect
when runtime_filter_type is set to a value greater than or equal to Bloom_filter.
This is supported only by clusters of version 9.1.0.100 or later.

Type: USERSET

Value range: a floating point number ranging from 0.0 to 1.0

Default value: 0.01

NO TICE

● Application scenario: HASH JOIN of column-store tables, where the internal
table estimate_join_rows/foreign table estimate_join_rows ≤
runtime_filter_ratio. Fine-grained row-level filtering is only recommended for
join scenarios where there is a significant difference in data volume between
the internal and foreign tables. Improper runtime_filter_ratio settings may
lead to degraded performance in join scenarios.

● Usage restrictions: Fine-grained row-level filtering is only supported for join
field types of SMALLINT, INTEGER, BIGINT, and FLOAT.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1049

runtime_filter_cost_options
Parameter description : Specifies whether to generate a runtime filter plan based
on the cost. This is supported only by clusters of version 9.1.0.200 or later.

Type: USERSET

Value range: a string

● apply_partial: The runtime filter path can be generated as long as the build
end contains a table required by a runtime filter on the probe end.

● apply_all: The runtime filter path can be generated only when the build end
contains all tables required by the runtime filter that can be applied to the
probe end.

Default value: '', indicating that runtime filters are not used during plan
generation, regardless of the cost.

NO TICE

If both apply_partial and apply_all are set, the setting of apply_all takes effect.

enable_extrapolation_stats
Parameter description: Specifies whether to use the extrapolation logic based on
historical statistics. Using this logic may increase the accuracy of estimation for
tables whose statistics have not been collected. However, there is also a possibility
that the estimation is too large due to incorrect inference.

Type: USERSET

Value range: Boolean

● on indicates that the extrapolation logic is used for data of DATE type based
on historical statistics.

● off indicates that the extrapolation logic is not used for data of DATE type
based on historical statistics.

Default value:

● If the current cluster is upgraded from an earlier version to 8.2.0.100, the
default value is off to ensure forward compatibility.

● If the cluster version 8.2.0.100 is newly installed, the default value is on.

autoanalyze
Parameter description: Specifies whether to allow automatic statistics collection
for a table that has no statistics or a table whose amount of data modification
reaches the threshold for triggering ANALYZE when a plan is generated. In this
case, AUTOANALYZE cannot be triggered for foreign tables or temporary tables
with the ON COMMIT [DELETE ROWS|DROP] option. To collect statistics, you
need to manually perform the ANALYZE operation. If an exception occurs in the
database during the execution of autoanalyze on a table, after the database is
recovered, the system may still prompt you to collect the statistics of the table

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1050

when you run the statement again. In this case, manually perform the ANALYZE
operation on the table to synchronize statistics.

NO TICE

If the amount of data modification reaches the threshold for triggering ANALYZE,
the amount of data modification exceeds autovacuum_analyze_threshold +
autovacuum_analyze_scale_factor * reltuples. reltuples indicates the estimated
number of rows in the table recorded in pg_class.

Type: SUSET

Value range: Boolean

● on indicates that the table statistics are automatically collected.

● off indicates that the table statistics are not automatically collected.

Default value: on

enable_analyze_partition

Parameter description: Specifies whether to support collecting statistics for a
specific partition of a table. After enabling this parameter, you can collect statistics
for a specific partition using ANALYZE table_name PARTITION
(partition_name), and when querying data on this partition of the table, the
optimizer will choose to use partition statistics.

Type: USERSET

Value range: Boolean

● on indicates supporting collecting statistics for a specific partition of a table.

● off indicates that collecting statistics for a specific partition of a table is not
supported.

Default value: off

analyze_use_dn_correlation

Parameter description: Specifies whether CNs use correlation statistics of DNs
when executing ANALYZE. This is supported only by clusters of version 9.1.0.100 or
later.

Type: USERSET

Value range: Boolean

● on indicates that CNs use correlation statistics of DNs.

● off indicates that CNs do not use correlation statistics of DNs.

Default value: on

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1051

analyze_predicate_column_threshold
Parameter description: Specifies whether to enable ANALYZE operations for
predicate columns and the minimum number of columns supported. This is
supported only by clusters of version 9.1.0.100 or later.

Type: SIGHUP

Value range: an integer ranging from 0 to 10000

● The value 0 indicates that ANALYZE operations are disabled for predicate
columns and predicate columns are not collected or analyzed.

● A value greater than 0 indicates that predicate column collection is enabled
and predicate column analysis is performed only on tables whose number of
columns is greater than or equal to the value of this parameter.

Default value: 10

enable_runtime_analyze_concurrent
Parameter description: Specifies whether to support concurrent RUNTIME
ANALYZE operations on a table. This is supported only by clusters of version
9.1.0.100 or later.

Type: USERSET

Value range: Boolean

● on indicates that concurrent operations are supported.
● off indicates that concurrent operations are not supported.

Default value: on

analyze_max_columns_count
Parameter description: Specifies the maximum number of columns supported by
ANALYZE. This is supported only by clusters of version 9.1.0.100 or later.

Type: USERSET

Value range: an integer ranging from –1 to 10000

● –1 indicates that the number of columns supported by ANALYZE is not
limited.

● A value greater than –1 indicates that only columns up to this value will be
collected, and any columns beyond this value will not be collected.

Default value: –1

query_dop
Parameter description: Specifies the user-defined degree of parallelism.

Type: USERSET

Value range: an integer ranging from –64 to 64.

[1, 64]: Fixed SMP is enabled, and the system will use the specified degree.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1052

0: SMP adaptation function is enabled. The system dynamically selects the optimal
parallelism degree [1,8] (x86 platforms) or [1,64] (Kunpeng platforms) for each
query based on the resource usage and query plans.

[–64, –1]: SMP adaptation is enabled, and the system will dynamically select a
degree from the limited range.

NO TE

● For TP services that mainly involve short queries, if services cannot be optimized
through lightweight CNs or statement delivery, it will take a long time to generate an
SMP plan. You are advised to set query_dop to 1. For AP services with complex
statements, you are advised to set query_dop to 0.

● After enabling concurrent queries, ensure you have sufficient CPU, memory, network,
and I/O resources to achieve the optimal performance.

● To prevent performance deterioration caused by an overly large value of query_dop, the
system calculates the maximum number of available CPU cores for a DN and uses the
number as the upper limit for this parameter. If the value of query_dop is greater than
4 and also the upper limit, the system resets query_dop to the upper limit.

Default value: 1 (0 for cloud flavors with 64 GB or larger memory)

query_dop_ratio
Parameter description: Specifies the DOP multiple used to adjust the optimal
DOP preset in the system when query_dop is set to 0. That is, DOP = Preset DOP
x query_dop_ratio (ranging from 1 to 64). If this parameter is set to 1, the DOP
cannot be adjusted.

Type: USERSET

Value range: a floating point number ranging from 0 to 64

Default value: 1

debug_group_dop
Parameter description: Specifies the unified DOP parallelism degree allocated to
the groups that use the Stream operator as the vertex in the generated execution
plan when the value of query_dop is 0. This parameter is used to manually specify
the DOP for specific groups for performance optimization. Its format is
G1,D1,G2,D2,...,, where G1 and G2 indicate the group IDs that can be obtained
from logs and D1 and D2 indicate the specified DOP values and can be any
positive integers.

Type: USERSET

Value range: a string

Default value: empty

NO TICE

This parameter is used only for internal optimization and cannot be set. You are
advised to use the default value.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1053

enable_analyze_check
Parameter description: Checks whether statistics were collected about tables
whose reltuples and relpages are shown as 0 in pg_class during plan generation.
This parameter has been discarded in clusters of version 8.1.3 or later, but is
reserved for compatibility with earlier versions. The setting of this parameter
does not take effect.

Type: SUSET

Value range: Boolean

● on enables the check.
● off disables the check.

Default value: on

enable_sonic_hashagg
Parameter description: Specifies whether to use the Hash Agg operator for
column-oriented hash table design when certain constraints are met.

Type: USERSET

Value range: Boolean

● on indicates that the Hash Agg operator is used for column-oriented hash
table design when certain constraints are met.

● off indicates that the Hash Agg operator is not used for column-oriented hash
table design.

NO TE

● If enable_sonic_hashagg is enabled and certain constraints are met, the Hash Agg
operator will be used for column-oriented hash table design, and the memory usage of
the operator can be reduced. However, in scenarios where the code generation
technology (enabled by enable_codegen) can significantly improve performance, the
performance of the operator may deteriorate.

● If enable_sonic_hashagg is set to on, when certain constraints are met, the hash
aggregation operator designed for column-oriented hash tables is used and its name is
displayed as Sonic Hash Aggregation in the output of the Explain Analyze/Performance
operation. When the constraints are not met, the operator name is displayed as Hash
Aggregation.

Default value: on

enable_sonic_hashjoin
Parameter description: Specifies whether to use the Hash Join operator for
column-oriented hash table design when certain constraints are met.

Type: USERSET

Value range: Boolean

● on indicates that the Hash Join operator is used for column-oriented hash
table design when certain constraints are met.

● off indicates that the Hash Join operator is not used for column-oriented hash
table design.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1054

NO TE

● Currently, the parameter can be used only for Inner Join.
● If enable_sonic_hashjoin is enabled, the memory usage of the Hash Inner operator can

be reduced. However, in scenarios where the code generation technology can
significantly improve performance, the performance of the operator may deteriorate.

● If enable_sonic_hashjoin is set to on, when certain constraints are met, the hash join
operator designed for column-oriented hash tables is used and its name is displayed as
Sonic Hash Join in the output of the Explain Analyze/Performance operation. When the
constraints are not met, the operator name is displayed as Hash Join.

Default value: on

enable_sonic_optspill
Parameter description: Specifies whether to optimize the number of hash join or
hash agg files spilled to disks in the sonic scenario. This parameter takes effect
only when enable_sonic_hashjoin or enable_sonic_hashagg is enabled.

Type: USERSET

Value range: Boolean

● on indicates that the number of files spilled to disks is optimized.
● off indicates that the number of files spilled to disks is not optimized.

NO TE

For the hash join or hash agg operator that meets the sonic criteria, if this parameter is set
to off, one file is spilled to disks for each column. If this parameter is set to on and the data
types of different columns are similar, only one file (a maximum of five files) will be spilled
to disks.

Default value: on

expand_hashtable_ratio
Parameter description: Specifies the expansion ratio used to resize the hash table
during the execution of the Hash Agg and Hash Join operators.

Type: USERSET

Value range: a floating point number of 0 or ranging from 0.5 to 10

NO TE

● Value 0 indicates that the hash table is adaptively expanded based on the current
memory size.

● The value ranging from 0.5 to 10 indicates the multiple used to expand the hash table.
Generally, a larger hash table delivers better performance but occupies more memory
space. If the memory space is insufficient, data may be spilled to disks in advance,
causing performance deterioration.

Default value: 0

plan_cache_mode
Parameter description: Specifies the policy for generating an execution plan in
the prepare statement.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1055

Type: USERSET

Value range: enumerated values

● auto indicates that the custom plan or generic plan is selected by default.
● force_generic_plan indicates that the generic plan is forcibly used.
● force_custom_plan indicates that the custom plan is forcibly used.

NO TE

● This parameter is valid only for the prepare statement. It is used when the
parameterized field in the prepare statement has severe data skew.

● custom plan is a plan generated after you run a prepare statement where parameters
in the execute statement is embedded in the prepare statement. The custom plan
generates a plan based on specific parameters in the execute statement. This scheme
generates a preferred plan based on specific parameters each time and has good
execution performance. The disadvantage is that the plan needs to be regenerated
before each execution, resulting in a large amount of repeated optimizer overhead.

● generic plan is a plan generated for the prepare statement. The plan policy binds
parameters to the plan when you run the execute statement and execute the plan. The
advantage of this solution is that repeated optimizer overheads can be avoided in each
execution. The disadvantage is that the plan may not be optimal when data skew occurs
for the bound parameter field. When some bound parameters are used, the plan
execution performance is poor.

Default value: auto

wlm_query_accelerate
Parameter description: Specifies whether the query needs to be accelerated when
short query acceleration is enabled.

Type: USERSET

Value range: an integer ranging from –1 to 1

● –1: indicates that short queries are controlled by the fast lane, and the long
queries are controlled by the slow lane.

● 0: indicates that queries are not accelerated. Both short and long queries are
controlled by the slow lane.

● 1: indicates that queries are accelerated. Both short queries and long queries
are controlled by the fast lane.

Default value: –1

show_unshippable_warning
Parameter description: Specifies whether to print the alarm for the statement
pushdown failure to the client.

Type: USERSET

Value range: Boolean

● on: Records the reason why the statement cannot be pushed down in a
WARNING log and prints the log to the client.

● off: Logs the reason why the statement cannot be pushed down only.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1056

Default value: off

hashjoin_spill_strategy
Parameter description: specifies the hash join policy for spilling data to disks. This
feature is supported in 8.1.2 or later.

Type: USERSET

Value range: The value is an integer ranging from 0 to 6.

● 0: If an inner table is too large to be fully stored in database memory, the
table will be partitioned. If the table cannot be further partitioned and there
is not enough memory for storing it, the system will check whether the
foreign table can be stored in memory and be used to create a hash table. If
the foreign table can be stored in the memory and used to create a hash
table, HashJoin will be performed. Otherwise, NestLoop will be performed.

● 1: If an inner table is too large to be fully stored in database memory, the
table will be partitioned. If the table cannot be further partitioned and there
is still not enough memory for storing it, the system will check whether the
foreign table can be stored in memory and be used to create a hash table. If
both the inner and outer tables are large, a hash join is forcibly performed.

● 2: If the size of the inner table is large and cannot be partitioned after data is
spilled to disks for multiple times, HashJoin will be forcibly performed.

● 3: If the size of the inner table is large and cannot be partitioned after data is
spilled to disks for multiple times, the system attempts to place the outer
table in the available memory of the database to create a hash table. If both
the inner and outer tables are large, an error is reported.

● 4: If the size of the inner table is large and cannot be partitioned after data is
spilled to disks for multiple times, an error is reported.

● 5: If the inner table is large and cannot be fully stored in database memory,
and the foreign table can be fully stored in memory, the foreign table will be
used to create a hash table and perform HashJoin. If the foreign table cannot
be fully stored in memory, it will be partitioned until the inner and foreign
tables cannot be further partitioned. Then, NestLoop will be performed.

● 6: If the inner table is large and cannot be fully stored in database memory,
and the foreign table can be fully stored in memory, the foreign table will be
used to create a hash table and perform HashJoin. If the foreign table cannot
be fully stored in memory, it will be partitioned until the inner and foreign
tables cannot be further partitioned. Then, HashJoin will be forcibly
performed.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1057

NO TE

● This parameter is valid only for a vectorized hash join operator.
● If the number of distinct values is small and the data volume is large, data may fail to

be flushed to disks. As a result, the memory usage is too high and the memory is out of
control. If this parameter is set to 0, the system attempts to swap the inner and outer
tables or perform a nested loop join to prevent this problem. However, a nested loop
join may deteriorate performance in some scenarios. In this case, this parameter can be
set to 1, 2, or 6 to forcibly perform HashJoin.

● The value 0 does not take effect for a vectorized full join, and the behavior is the same
as that of the value 1. The system attempts to create a hash table only for the outer
table and does not perform a nested loop join.

● If the inner table is too large to be fully stored in memory, but the foreign table can be
stored in memory, you are advised to set this parameter to 5 or 6 rather than 0 or 1,
directly performing Hashjoin on the foreign table without multiple rounds of
partitioning and spill to disk. If a foreign table contains only a small amount of distinct
data, creating a hash table using the foreign table may cause performance
deterioration. In this case, you can change the value of this parameter to 0 or 1.

Default value: 0

max_streams_per_query
Parameter description: Controls the number of Stream nodes in a query plan.
(This parameter is supported only in 8.1.1 and later cluster versions.)

Type: SUSET

Value range: an integer ranging from –1 to 10000.

● –1 indicates that the number of Stream nodes in the query plan is not limited.
● A value within the range 0 to 10000 indicates that when the number of

Stream nodes in the query plan exceeds the specified value, an error is
reported and the query plan will not be executed.

NO TE

● This parameter controls only the Stream nodes on DNs and does not control the Gather
nodes on the CN.

● This parameter does not affect the EXPLAIN query plan, but affects EXPLAIN ANALYZE
and EXPLAIN PERFORMANCE.

Default value: –1

enable_agg_limit_opt
Parameter description: Specifies whether to optimize select distinct col from
table limit N. This parameter is valid only if N is less than 16,384. The parameter
table indicates a column-store table. This parameter is supported only by clusters
of version 8.2.0.101 or later.

Type: USERSET

Value range: Boolean

● on indicates that the optimization is enabled. After this function is enabled,
query results are from different DNs, and you do not need to create a full
hash table on each DN, significantly improving query performance.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1058

● off indicates that the optimization is disabled.

Default value: on

stream_ctescan_pred_threshold

Parameter description: minimum number of filter criteria contained in a CTE
when enable_stream_ctescan is set to on and the CTE contains only a single
table filtering condition. If the value is greater than or equal to the value of this
parameter, the share scan mode is used. If the value is less than the value of this
parameter, the inline mode is used. This parameter is supported only by clusters of
version 8.2.1 or later.

Type: SUSET

Value range: an integer ranging from 0 to INT_MAX

Default value: 2

stream_ctescan_max_estimate_mem

Parameter description: maximum estimated memory value of the CTE when
enable_stream_ctescan is set to on. This parameter must be used together with
stream_ctescan_refcount_threshold. If the estimated memory is greater than the
value of stream_ctescan_max_estimate_mem and the number of references is
less than the value of stream_ctescan_refcount_threshold, the inline mode is
used. Otherwise, the sharescan mode is used. This parameter is supported only by
clusters of version 8.2.1 or later.

Type: SUSET

Value range: an integer ranging from 32 x 1024 (32 MB) to INT_MAX, in KB.

Default value: 256 MB

stream_ctescan_refcount_threshold

Parameter description: maximum number of times that the CTE can be
referenced when enable_stream_ctescan is set to on. This parameter must be
used together with stream_ctescan_max_estimate_mem. If the estimated
memory is greater than the value of stream_ctescan_max_estimate_mem and
the number of references is less than the value of
stream_ctescan_refcount_threshold, the inline mode is used. Otherwise, the
sharescan mode is used. This parameter is supported only by clusters of version
8.2.1 or later.

Type: SUSET

Value range: an integer ranging from 0 to INT_MAX

Default value: 4

NO TE

This parameter takes effect only when the value is greater than 0. When the value is 0, only
stream_ctescan_max_estimate_mem is used to control the inline behavior.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1059

inlist_rough_check_threshold
Parameter description: Specifies the maximum number of values in the IN
condition when enable_csqual_pushdown is enabled and the filter criterion is IN
for rough check pushdown. If the number of values in the IN filter condition
exceeds the value of this parameter, the maximum and minimum values in the IN
filter condition are used for pushdown. This parameter is supported only by
clusters of version 8.2.0.101 or later.

Type: SUSET

Value range: an integer ranging from 0 to 10000

Default value: 100

NO TE

If the IN condition is executed on the only distribution column of a table, values can be
filtered on DNs. In this case, the maximum number of values in the IN condition is
inlist_rough_check_threshold multiplied by the number of DNs.

enable_array_optimization
Parameter description: whether to split the Array type generated by the IN, ANY,
or ALL condition into common expressions for execution. This parameter will
support multiple optimizations such as vectorized execution, rough check pruning,
and partition pruning. This parameter is supported only by clusters of version 8.2.1
or later.

Type: SUSET

Value range: Boolean

● on indicates that expressions of the Array type are split for optimization.
● off indicates that expressions of the Array type are not split for optimization.

Default value: on

max_skew_num
Parameter description: controls the number of skew values allowed by the
optimizer for redistribution optimization. This parameter is supported only by
clusters of version 8.2.1 or later.

Type: SUSET

Value range: an integer ranging from 0 to INT_MAX

Default value: 10

enable_dict_plan
Parameter description: Specifies whether the optimizer uses dictionary encoding
to speed up queries that use perators such as Group By and Filter. This parameter
is supported only by clusters of 8.3.0 or later.

Type: USERSET

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1060

Value range: Boolean

● on: enables the optimizer dictionary encoding.
● off: disables the optimizer dictionary encoding.

Default value: off

dict_plan_distinct_limit

Parameter description: Specifies the distinct value of a column in a table.
Dictionary encoding is enabled only when the value is less than or equal to the
threshold. This parameter is supported only by clusters of 8.3.0 or later.

Type: USERSET

Value range: 0 to INT_MAX

Default value: 10000

NO TE

The two parameters dict_plan_distinct_limit and dict_plan_duplicate_ratio determine if
dictionary encoding is applied.

dict_plan_duplicate_ratio

Parameter description: Specifies the repetition rate threshold of a column.
Dictionary encoding is enabled only when the repetition rate of the column is
greater than or equal to the threshold. Dictionary encoding is suitable for columns
with a small number of distinct values and a high repetition rate. This parameter
is supported only by clusters of 8.3.0 or later.

Type: USERSET

Value range: 0.0 to 100, in percentage

Default value: 90

NO TE

The two parameters dict_plan_distinct_limit and dict_plan_duplicate_ratio determine if
dictionary encoding is applied.

enable_cu_predicate_pushdown

Parameter description: Specifies whether simple filter criteria are pushed down to
the CU for filtering. This parameter is supported only by clusters of 8.3.0 or later.

Type: USERSET

Value range: Boolean

● on: Simple filter criteria are pushed down to the CU for filtering.
● off: Simple filter criteria are not pushed down to the CU for filtering.

Default value: off

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1061

NO TE

Simple filter criteria in dictionary columns refer to expressions containing the equal sign
(=), IN, and is (not) null. Before the CU loads VectorBatch, this filter condition is applied at
the storage layer. Therefore, this filter is called CU Predicate Filter.

info_constraint_options
Parameter description: Specifies whether or which kind of informational
constraints can be created. This is supported only by clusters of version 9.1.0.100
or later.

Type: USERSET

Value range: enumerated values

● none: indicates that no informational constraint can be created.
● foreign_key: indicates that foreign key constraints can be created.

Default value: none

15.10 Error Reporting and Logging

15.10.1 Logging Destination

log_statement_length_limit
Parameter description: Specifies the length of SQL statements to be printed. If
the length of an SQL statement exceeds the specified value, the SQL statement is
recorded in the statement-Timestamp.log file. This parameter is supported only
by 9.1.0.200 and later versions.

Type: SUSET

Value range: an integer ranging from 0 to INT_MAX.

Default value: 1024

15.10.2 Logging Time

client_min_messages
Parameter description: Specifies which level of messages are sent to the client.
Each level covers all the levels following it. The lower the level is, the fewer
messages are sent.

Type: USERSET

NO TICE

When the values of client_min_messages and log_min_messages are the same,
the levels are different.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1062

Valid values: Enumerated values. Valid values: debug5, debug4, debug3, debug2,
debug1, info, log, notice, warning, error For details about the parameters, see
Table 15-3.

Default value: notice

log_min_messages
Parameter description: Specifies which level of messages will be written into
server logs. Each level covers all the levels following it. The lower the level is, the
fewer messages will be written into the log.

Type: SUSET

NO TICE

When the values of client_min_messages and log_min_messages are the same,
the levels are different.

Value range: enumerated type. Valid values: debug5, debug4, debug3, debug2,
debug1, info, log, notice, warning, error, fatal, panic For details about the
parameters, see Table 15-3.

Default value: warning

log_min_error_statement
Parameter description: Specifies which SQL statements that cause errors
condition will be recorded in the server log.

Type: SUSET

Value range: enumerated type. Valid values: debug5, debug4, debug3, debug2,
debug1, info, log, notice, warning, error, fatal, panic For details about the
parameters, see Table 15-3.

NO TE

● The default is error, indicating that statements causing errors, log messages, fatal
errors, or panics will be logged.

● panic: This feature is disabled.

Default value: error

log_min_duration_statement
Parameter description: Specifies the threshold for logging statement execution
durations. The execution duration that is greater than the specified value will be
logged.

This parameter helps track query statements that need to be optimized. For clients
using extended query protocol, durations of the Parse, Bind, and Execute are
logged independently.

Type: SUSET

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1063

NO TICE

If this parameter and log_statement are used at the same time, statements
recorded based on the value of log_statement will not be logged again after their
execution duration exceeds the value of this parameter. If you are not using
syslog, it is recommended that you log the process ID (PID) or session ID using
log_line_prefix so that you can link the current statement message to the last
logged duration.

Value range: an integer ranging from -1 to INT_MAX. The unit is millisecond.

● If this parameter is set to 250, execution durations of SQL statements that run
250 ms or longer will be logged.

● 0: Execution durations of all the statements are logged.

● –1: This feature is disabled.

Default value: 30min

backtrace_min_messages

Parameter description: Prints the function's stack information to the server's log
file if the level of information generated is greater than or equal to this parameter
level.

Type: SUSET

NO TICE

This parameter is used for locating customer on-site problems. Because frequent
stack printing will affect the system's overhead and stability, therefore, when you
locate the onsite problems, set the value of this parameter to ranks other than
fatal and panic.

Value range: enumerated values

Valid values: debug5, debug4, debug3, debug2, debug1, info, log, notice,
warning, error, fatal, panic For details about the parameters, see Table 15-3.

Default value: panic

Table 15-3 explains the message security levels used in GaussDB(DWS). If logging
output is sent to syslog or eventlog, severity is translated in GaussDB(DWS) as
shown in the table.

Table 15-3 Message Severity Levels

Severity Description syslog eventlog

debug[1-5] Provides detailed debug
information.

DEBUG INFORMATIO
N

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1064

Severity Description syslog eventlog

log Reports information of
interest to administrators, for
example, checkpoint activity.

INFO INFORMATIO
N

info Provides information
implicitly requested by the
user, for example, output
from VACUUM VERBOSE.

INFO INFORMATIO
N

notice Provides information that
might be helpful to users, for
example, notice of truncation
of long identifiers and index
created as part of the
primary key.

NOTICE INFORMATIO
N

warning Provides warnings of likely
problems, for example,
COMMIT outside a
transaction block.

NOTICE WARNING

error Reports an error that causes
a command to terminate.

WARNING ERROR

fatal Reports the reason that
causes a session to
terminate.

ERR ERROR

panic Reports an error that caused
all database sessions to
terminate.

CRIT ERROR

plog_merge_age

Parameter description: Specifies the output interval of performance log data.

Type: SUSET

NO TICE

This parameter value is in milliseconds. You are advised to set this parameter to a
value that is a multiple of 1000. That is, the value is in seconds. Name extension
of the performance log files controlled by this parameter is .prf. These log files are
stored in the $GAUSSLOG/gs_profile/<node_name> directory. node_name is the
value of pgxc_node_name in the postgres.conf file. You are advised not to use
this parameter externally.

Value range: an integer ranging from 0 to INT_MAX. The unit is millisecond (ms).

● 0 indicates that the current session will not output performance log data.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1065

● A value other than 0 indicates the output interval of performance log data. As
the value decreases, more log data is generated, which negatively impacts
performance.

Default value: 3s

profile_logging_module
Parameter description: Specifies the type of performance logs. When using this
parameter, ensure that the value of plog_merge_age is not 0. This parameter is a
session-level parameter, and you are not advised to use the gs_guc tool to set it.
Only clusters of 8.1.3 and later versions support this function.

Type: USERSET

Value range: a string

Default value: OBS, HADOOP and REMOTE_DATANODE are enabled. MD is
disabled. You can run the SHOW profile_logging_module command to view the
value.

Setting method: First, you can run SHOW profile_logging_module to view which
module is controllable. For example, the query output result is as follows:

show profile_logging_module;
profile_logging_module
--
ALL,on(OBS,HADOOP,REMOTE_DATANODE),off(MD)(1 row)

Open the MD performance log and view the setting. The ALL identifier is
equivalent to a shortcut operation. That is, logs of all modules can be enabled or
disabled.

set profile_logging_module='on(md)';
SET

show profile_logging_module;
profile_logging_module

ALL,on(MD,OBS,HADOOP,REMOTE_DATANODE),off()(1 row)

15.10.3 Logging Content

debug_print_parse
Parameter description: Specifies whether to print parsing tree results.

Type: SIGHUP

Value range: Boolean

● on indicates the printing result function is enabled.
● off indicates the printing result function is disabled.

Default value: off

debug_print_rewritten
Parameter description: Specifies whether to print query rewriting results.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1066

Type: SIGHUP

Value range: Boolean

● on indicates the printing result function is enabled.
● off indicates the printing result function is disabled.

Default value: off

debug_print_plan

Parameter description: Specifies whether to print query execution results.

Type: SIGHUP

Value range: Boolean

● on indicates the printing result function is enabled.
● off indicates the printing result function is disabled.

Default value: off

NO TICE

● Debugging information about debug_print_parse, debug_print_rewritten, and
debug_print_plan are printed only when the log level is set to log or higher.
When these parameters are set to on, their debugging information will be
recorded in server logs and will not be sent to client logs. You can change the
log level by setting client_min_messages and log_min_messages.

● Do not invoke the gs_encrypt_aes128 and gs_decrypt_aes128 functions when
debug_print_plan is set to on, preventing the risk of sensitive information
disclosure. You are advised to filter parameter information of the
gs_encrypt_aes128 and gs_decrypt_aes128 functions in the log files generated
when debug_print_plan is set to on, and then provide the information to
external maintenance engineers for fault locating. After you finish using the
logs, delete them as soon as possible.

debug_pretty_print

Parameter description: Specifies the logs produced by debug_print_parse,
debug_print_rewritten, and debug_print_plan. The output format is more
readable but much longer than the output generated when this parameter is set
to off.

Type: USERSET

Value range: Boolean

● on indicates the indentation is enabled.
● off indicates the indentation is disabled.

Default value: on

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1067

log_duration
Parameter description: Specifies whether to record the duration of every
completed SQL statement. For clients using extended query protocols, the time
required for parsing, binding, and executing steps are logged independently.

Type: SUSET

Value range: Boolean

● If this parameter is set to off, the difference between setting this parameter
and setting log_min_duration_statement is that when
log_min_duration_statement is exceeded, the query text is logged, but this
parameter does not log it.

● If this parameter is set to on and log_min_duration_statement has a positive
value, all durations are logged but the query text is included only for
statements exceeding the threshold. This behavior can be used for gathering
statistics in high-load situation.

Default value: on

log_error_verbosity
Parameter description: Specifies the amount of detail written in the server log for
each message that is logged.

Type: SUSET

Value range: enumerated values

● terse indicates that the output excludes the logging of DETAIL, HINT, QUERY,
and CONTEXT error information.

● verbose indicates that the output includes the SQLSTATE error code, the
source code file name, function name, and number of the line in which the
error occurs.

● default indicates that the output includes the logging of DETAIL, HINT,
QUERY, and CONTEXT error information, and excludes the SQLSTATE error
code, the source code file name, function name, and number of the line in
which the error occurs.

Default value: default

log_lock_waits
Parameter description: If the time that a session used to wait a lock is longer
than the value of deadlock_timeout, this parameter specifies whether to record
this message in the database. This is useful in determining if lock waits are
causing poor performance.

Type: SUSET

Value range: Boolean

● on indicates the information is recorded.
● off indicates the information is not recorded.

Default value: off

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1068

log_statement

Parameter description: Specifies whether to record SQL statements. For clients
using extended query protocols, logging occurs when an execute message is
received, and values of the Bind parameters are included (with any embedded
single quotation marks doubled).

Type: SUSET

NO TICE

Statements that contain simple syntax errors are not logged even if
log_statement is set to all, because the log message is emitted only after basic
parsing has been completed to determine the statement type. If the extended
query protocol is used, this setting also does not log statements before the
execution phase (during parse analysis or planning). Set
log_min_error_statement to ERROR or lower to log such statements.

Value range: enumerated values

● none indicates that no statement is recorded.

● ddl indicates that all data definition statements, such as CREATE, ALTER, and
DROP, are recorded.

● mod indicates that all DDL statements and data modification statements,
such as INSERT, UPDATE, DELETE, TRUNCATE, and COPY FROM, are recorded.

● all indicates that all statements are recorded. The PREPARE, EXECUTE, and
EXPLAIN ANALYZE statements are also recorded.

Default value: none

log_temp_files

Parameter description: Specifies whether to record the delete information of
temporary files. Temporary files can be created for sorting, hashing, and
temporary querying results. A log entry is generated for each temporary file when
it is deleted.

Type: SUSET

Value range: an integer ranging from -1 to INT_MAX. The unit is KB.

● A positive value indicates that the delete information of temporary files
whose values are larger than that of log_temp_files is recorded.

● If the parameter is set to 0, all the delete information of temporary files is
recorded.

● If the parameter is set to -1, the delete information of no temporary files is
recorded.

Default value: –1

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1069

logging_module
Parameter description: Specifies whether module logs can be output on the
server. This parameter is a session-level parameter, and you are not advised to use
the gs_guc tool to set it.

Type: USERSET

Value range: a string

Default value: off. All the module logs on the server can be viewed by running
show logging_module.

Setting method: First, you can run show logging_module to view which module
is controllable. For example, the query output result is as follows:

show logging_module;
logging_module
--
--
--

ALL,on(),off(DFS,GUC,HDFS,ORC,SLRU,MEM_CTL,AUTOVAC,ANALYZE,CACHE,ADIO,SSL,GDS,TBLSPC,WLM,SP
ACE,OBS,EXECUTOR,VEC_EXECUTOR,STREAM,LLVM,OPT,OPT_REWRITE,OPT_JOIN,OPT_AGG,OPT_SUBPLAN,
OPT_SETOP,OPT_CARD,OPT_SKEW,SMP,UDF,COOP_ANALYZE,WLMCP,ACCELERATE,PLANHINT,PARQUET,CARB
ONDATA,SNAPSHOT,XACT,HANDLE,CLOG,TQUAL,EC,REMOTE,CN_RETRY,PLSQL,TEXTSEARCH,SEQ,INSTR,CO
MM_IPC,COMM_PARAM,CSTORE,JOB,STREAMPOOL,STREAM_CTESCAN)
(1 row)

Controllable modules are identified by uppercase letters, and the special ID ALL is
used for setting all module logs. You can control module logs to be exported by
setting the log modules to on or off. Enable log output for SSL:

set logging_module='on(SSL)';
SET
show
logging_module;

 logging_module
--
--
--
--

ALL,on(SSL),off(DFS,GUC,HDFS,ORC,SLRU,MEM_CTL,AUTOVAC,ANALYZE,CACHE,ADIO,GDS,TBLSPC,WLM,SP
ACE,OBS,EXECUTOR,VEC_EXECUTOR,STREAM,LLVM,OPT,OPT_REWRITE,OPT_JOIN,OPT_AGG,OPT_SUBPLAN,
OPT_SETOP,OPT_CARD,OPT_SKEW,SMP,UDF,COOP_ANALYZE,WLMCP,A
CCELERATE,PLANHINT,PARQUET,CARBONDATA,SNAPSHOT,XACT,HANDLE,CLOG,TQUAL,EC,REMOTE,CN_RET
RY,PLSQL,TEXTSEARCH,SEQ,INSTR,COMM_IPC,COMM_PARAM,CSTORE,JOB,STREAMPOOL,STREAM_CTESCA
N)
(1 row)

SSL log output is enabled.

The ALL identifier is equivalent to a shortcut operation. That is, logs of all modules
can be enabled or disabled.

set logging_module='off(ALL)';
SET
show
logging_module;

 logging_module
--
--
--

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1070

ALL,on(),off(DFS,GUC,HDFS,ORC,SLRU,MEM_CTL,AUTOVAC,ANALYZE,CACHE,ADIO,SSL,GDS,TBLSPC,WLM,SP
ACE,OBS,EXECUTOR,VEC_EXECUTOR,STREAM,LLVM,OPT,OPT_REWRITE,OPT_JOIN,OPT_AGG,OPT_SUBPLAN,
OPT_SETOP,OPT_CARD,OPT_SKEW,SMP,UDF,COOP_ANALYZE,WLMCP,
ACCELERATE,PLANHINT,PARQUET,CARBONDATA,SNAPSHOT,XACT,HANDLE,CLOG,TQUAL,EC,REMOTE,CN_RE
TRY,PLSQL,TEXTSEARCH,SEQ,INSTR,COMM_IPC,COMM_PARAM,CSTORE,JOB,STREAMPOOL,STREAM_CTESCA
N)
(1 row)

set logging_module='on(ALL)';
SET
show
logging_module;

 logging_module
--
--
--

ALL,on(DFS,GUC,HDFS,ORC,SLRU,MEM_CTL,AUTOVAC,ANALYZE,CACHE,ADIO,SSL,GDS,TBLSPC,WLM,SPACE,
OBS,EXECUTOR,VEC_EXECUTOR,STREAM,LLVM,OPT,OPT_REWRITE,OPT_JOIN,OPT_AGG,OPT_SUBPLAN,OPT_
SETOP,OPT_CARD,OPT_SKEW,SMP,UDF,COOP_ANALYZE,WLMCP,ACCELE
RATE,PLANHINT,PARQUET,CARBONDATA,SNAPSHOT,XACT,HANDLE,CLOG,TQUAL,EC,REMOTE,CN_RETRY,PLS
QL,TEXTSEARCH,SEQ,INSTR,COMM_IPC,COMM_PARAM,CSTORE,JOB,STREAMPOOL,STREAM_CTESCAN),off()
(1 row)

COMM_IPC logs must be enabled or disabled explicitly. You can run either of the
following command to enable the log function of COMM_IPC:
set logging_module='on(ALL)';
SET
set logging_module='on(COMM_IPC)';
SET

After the setting is performed, the log function of the COMM_IPC module will not
be automatically disabled. To disable the log function of the COMM_IPC module,
you must run the following commands:
set logging_module='off(ALL)';
SET
set logging_module='off(COMM_IPC)';
SET

Dependency relationship: The value of this parameter depends on the settings of
log_min_messages.

enable_unshipping_log
Parameter description: Specifies whether to log statements that are not pushed
down. The logs help locate performance issues that may be caused by statements
not pushed down.

Type: SUSET

Value range: Boolean

● on: Statements not pushed down will be logged.
● off: Statements not pushed down will not be logged.

Default value: on

log_statement_filter_list
Parameter description: Specifies whether to record SQL statements. It sets a
collection of error codes, with multiple error codes separated by commas, for

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1071

example: GS_001, GS_002. No SQL statement is recorded in the error code log.
This parameter is supported only by 9.1.0.200 and later versions.

Type: SUSET

Value range: a string

Default value: an empty string

15.11 Alarm Detection
During cluster running, error scenarios can be detected in a timely manner to
inform users as soon as possible.

enable_alarm

Parameter description: Enables the alarm detection thread to detect the fault
scenarios that may occur in the database.

Type: POSTMASTER

Value range: Boolean

● on indicates the alarm detection thread can be enabled.
● off indicates the alarm detection thread cannot be enabled.

Default value: on

connection_alarm_rate

Parameter description: Specifies the ratio restriction that the maximum number
of allowed parallel connections to the database. The maximum number of
concurrent connections to the database is max_connections x
connection_alarm_rate.

Type: SIGHUP

Value range: a floating point number ranging from 0.0 to 1.0

Default value: 0.9

alarm_report_interval

Parameter description: Specifies the interval at which an alarm is reported.

Type: SIGHUP

Value range: a non-negative integer. The unit is second.

Default value: 10

15.12 Statistics During the Database Running

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1072

15.12.1 Query and Index Statistics Collector
The query and index statistics collector is used to collect statistics during database
running. The statistics include the times of inserting and updating a table and an
index, the number of disk blocks and tuples, and the time required for the last
cleanup and analysis on each table. The statistics can be viewed by querying
system view families pg_stats and pg_statistic. The following parameters are used
to set the statistics collection feature in the server scope.

track_activities
Parameter description: Collects statistics about the commands that are being
executed in session.

Type: SUSET

Value range: Boolean

● on indicates that the statistics collection function is enabled.
● off indicates that the statistics collection function is disabled.

Default value: on

track_counts
Parameter description: Collects statistics about data activities.

Type: SUSET

Value range: Boolean

● on indicates that the statistics collection function is enabled.
● off indicates that the statistics collection function is disabled.

NO TE

When the database to be cleaned up is selected from the AutoVacuum automatic cleanup
process, the database statistics are required. In this case, the default value is set to on.

Default value: on

track_io_timing
Parameter description: Collects statistics about I/O invoking timing in the
database. The I/O timing statistics can be queried by using the pg_stat_database
parameter.

Type: SUSET

Value range: Boolean

● If this parameter is set to on, the collection function is enabled. In this case,
the collector repeatedly queries the OS at the current time. As a result, large
numbers of costs may occur on some platforms. Therefore, the default value
is set to off.

● off indicates that the statistics collection function is disabled.

Default value: off

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1073

track_functions
Parameter description: Collects statistics about invoking times and duration in a
function.

Type: SUSET

NO TICE

When the SQL functions are set to inline functions queried by the invoking, these
SQL functions cannot be traced no matter these functions are set or not.

Value range: enumerated values

● pl indicates that only procedural language functions are traced.
● all indicates that SQL and C language functions are traced.
● none indicates that the function tracing function is disabled.

Default value: none

track_activity_query_size
Parameter description: Specifies byte counts for each active session's currently
executing command. This parameter is used for pg_stat_activity.query and

pgxc_stat_activity.query columns. If no unit is specified, the unit is byte by
default.

Type: POSTMASTER

Value range: an integer ranging from 100 to 102400

Default value: 1024

update_process_title
Parameter description: Collects statistics updated with a process name each time
the server receives a new SQL statement.

The process name can be viewed on Windows task manager by running the ps
command.

Type: SUSET

Value range: Boolean

● on indicates that the statistics collection function is enabled.
● off indicates that the statistics collection function is disabled.

Default value: off

track_thread_wait_status_interval
Parameter description: Specifies the interval of collecting the thread status
information periodically.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1074

Type: SUSET

Value range: an integer ranging from 0 to 1440, in minutes.

Default value: 30min

enable_save_datachanged_timestamp

Parameter description: Specifies whether to record the time when INSERT,
UPDATE, DELETE, or EXCHANGE/TRUNCATE/DROP PARTITION is performed on
table data.

Type: USERSET

Value range: Boolean

● on indicates that the time when an operation is performed on table data will
be recorded.

● off indicates that the time when an operation is performed on table data will
not be recorded.

Default value: on

enable_save_dataaccess_timestamp

Parameter description: Specifies whether to record the last access time of a table.
This parameter is supported only by 8.2.1.210 and later cluster versions.

Type: USERSET

Value range: Boolean

● on indicates that the last access time of the table is recorded.

● off indicates that the last access time of the table is not recorded.

Default value: off

instr_unique_sql_count

Parameter description: Specifies whether to collect Unique SQL statements and
the maximum number allowed.

Type: SIGHUP

Value range: an integer ranging from 0 to INT_MAX

● If it is set to 0, Unique SQL statistics are not collected.

● If the value is greater than 0, the number of Unique SQL statements collected
on the CN cannot exceed the value of this parameter. When the number of
collected Unique SQL statements reaches the upper limit, the collection is
stopped. In this case, you can increase the value of reload to continue the
collection.

Default value: 0

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1075

CA UTION

If a new value is smaller than the original value, the Unique SQL statistics
collected on the CN will be cleared. Note that the clearing operation is performed
by the background thread of the resource management module. If the GUC
parameter use_workload_manager is set to off, the clearing operation may fail.
In this case, you can use the reset_instr_unique_sql function for clearing.

instr_unique_sql_timeout
Parameter description: Specifies the lifetime of a Unique SQL statement. The
background thread of StatCollector checks all Unique SQL statements every hour.
If a Unique SQL statement is not executed for more than
instr_unique_sql_timeout hours, the Unique SQL statement will be deleted. This
feature is supported in 8.1.2 or later.

Type: SIGHUP

Value range: an integer ranging from 0 to INT_MAX, in hours

● The value 0 indicates that expired Unique SQL statements will not be deleted.
● If the value is greater than 0, the Unique SQL statement that is not executed

for more than instr_unique_sql_timeout hours will be deleted.

Default value: 24

track_sql_count
Parameter description: Specifies whether to collect statistics on the number of
the SELECT, INSERT, UPDATE, DELETE, and MERGE INTO statements that are
being executed in each session, the response time of the SELECT, INSERT,
UPDATE, and DELETE statements, and the number of DDL, DML, and DCL
statements.

Type: SUSET

Value range: Boolean

● on indicates that the statistics collection function is enabled.
● off indicates that the statistics collection function is disabled.

Default value: on

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1076

NO TE

● The track_sql_count parameter is restricted by the track_activities parameter.

● If track_activities is set to on and track_sql_count is set to off, a warning
message indicating that track_sql_count is disabled will be displayed when the
view gs_sql_count, pgxc_sql_count, gs_workload_sql_count,
pgxc_workload_sql_count, global_workload_sql_count,
gs_workload_sql_elapse_time, pgxc_workload_sql_elapse_time, or
global_workload_sql_elapse_time are queried.

● If both track_activities and track_sql_count are set to off, two logs indicating
that track_activities is disabled and track_sql_count is disabled will be displayed
when the views are queried.

● If track_activities is set to off and track_sql_count is set to on, a log indicating
that track_activities is disabled will be displayed when the views are queried.

● If this parameter is disabled, querying the view returns 0.

enable_track_wait_event
Parameter description: Specifies whether to collect statistics on waiting events,
including the number of occurrence times, number of failures, duration, maximum
waiting time, minimum waiting time, and average waiting time.

Type: SIGHUP

Value range: Boolean

● on indicates that the statistics collection function is enabled.
● off indicates that the statistics collection function is disabled.

Default value: off

NO TE

● The enable_track_wait_event parameter is restricted by track_activities. Its functions
cannot take effect no matter whether it is enabled if track_activities is disabled.

● When track_activities or enable_track_wait_event is disabled, if you query the
get_instr_wait_event function, gs_wait_events view, or pgxc_wait_events view, a
message is displayed indicating that the GUC parameter is disabled and the query result
is 0.

● If track_activities or enable_track_wait_event is disabled during cluster running,
GaussDB(DWS) will not collect statistics on waiting events. However, statistics that have
been collected are not affected.

enable_wdr_snapshot
Parameter description: Specifies whether to enable the performance view
snapshot function. After this function is enabled, GaussDB(DWS) will periodically
create snapshots for some system performance views and save them permanently.
In addition, it will accept manual snapshot creation requests.

Type: SIGHUP

Value range: Boolean

● on indicates that the snapshot function is enabled.
● off indicates that the snapshot function is disabled.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1077

Default value: off

NO TE

● If the create_wdr_snapshot function is executed to manually create a view when the
enable_wdr_snapshot parameter is disabled, a message is displayed indicating that the
GUC parameter is not enabled.

● If the enable_wdr_snapshot parameter is modified during the snapshot creation
process, the snapshot that is being created is not affected. The modification takes effect
when the snapshot is manually or periodically created next time.

wdr_snapshot_interval

Parameter description: Specifies the interval for automatically creating
performance view snapshots.

Type: SIGHUP

Value range: an integer ranging from 10 to 180, in minutes

Default value: 60

NO TE

● The value of this parameter must be set in accordance with the cluster load. You are
advised to set this parameter to a value greater than the time required for creating a
snapshot.

● If the value of wdr_snapshot_interval is less than the time required for creating a
snapshot, the system will skip this snapshot creation because it finds that the previous
snapshot creation is not complete when the time for this automatic snapshot creation
arrives.

wdr_snapshot_retention_days

Parameter description: Specifies the maximum number of days for storing
performance snapshot data.

Type: SIGHUP

Value range: an integer ranging from 1 to 15, in days

Default value: 8

NO TE

● If enable_wdr_snapshot is enabled, snapshot data that has been stored for
wdr_snapshot_retention_days days will be automatically deleted.

● The value of this parameter must be set in accordance with the available disk space. A
larger value requires more disk space.

● The modification of this parameter does not take effect immediately. The expired
snapshot data will be cleared only when a snapshot is automatically created next time.

enable_parallel_analyze

Parameter description: Specifies whether to use parallel sampling for internal
and foreign table analysis. This parameter is supported only by clusters of version
9.1.0 or later.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1078

Type: USERSET

Value range: Boolean

● true indicates that parallel sampling is used for internal and foreign table
analysis.

● false indicates that parallel sampling is not used for internal and foreign table
analysis.

Default value: true

CA UTION

● When enable_parallel_analyze is set to true and analyzing foreign tables, try
to avoid adding NOT NULL constraints to the target foreign table columns to
prevent constraint failure due to data source changes. Currently, parallel
sampling does not support materialized views. If analyze fails due to such
reasons, set this parameter to false.

● Currently, parallel sampling only supports analyzing ordinary column-store
internal tables. This optimization does not take effect when the internal table
uses hstore/hstore_opt or is declared as a replicated table.

● Currently, parallel sampling only supports analyzing foreign tables stored in
parquet/orc format. This optimization does not take effect when the foreign
table is in another format.

parallel_analyze_workers
Parameter description: Specifies the number of concurrent threads for parallel
analyze sampling. This parameter is supported only by clusters of version 9.1.0 or
later.

Type: USERSET

Value range: an integer ranging from 0 to 64

Default value: 10

NO TE

The value of this parameter should correspond to the cluster load. When the cluster load is
low, you can increase the parameter value appropriately based on the cluster configuration
to further improve the efficiency of analyze execution.

analyze_sample_multiplier
Parameter description: Specifies the multiplier for the stripe sampling rate used
in analyzing foreign tables. This parameter is supported only by clusters of version
9.1.0 or later.

Type: SUSET

Value range: an integer ranging from 0 to 100. 0 indicates that the stripe
sampling rate is 100%.

Default value: 3

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1079

15.12.2 Performance Statistics
During database operation, accessing locks, disk I/O operations, and handling
invalid messages can all be performance bottlenecks for the database.
GaussDB(DWS) provides performance statistics methods that can help easily
locate performance issues.

Generating Performance Statistics Logs

Parameter description: For each query, the following four parameters control the
performance statistics of corresponding modules recorded in the server log:

● The og_parser_stats parameter controls the performance statistics of a parser
recorded in the server log.

● The log_planner_stats parameter controls the performance statistics of a
query optimizer recorded in the server log.

● The log_executor_stats parameter controls the performance statistics of an
executor recorded in the server log.

● The log_statement_stats parameter controls the performance statistics of the
whole statement recorded in the server log.

All these parameters can only provide assistant analysis for administrators, which
are similar to the getrusage() of the Linux OS.

Type: SUSET

NO TICE

● log_statement_stats records the total statement statistics while other
parameters only record statistics about each statement.

● The log_statement_stats parameter cannot be enabled together with other
parameters recording statistics about each statement.

Value range: Boolean

● on indicates the function of recording performance statistics is enabled.

● off indicates the function of recording performance statistics is disabled.

Default value: off

15.13 Resource Management
If database resource usage is not controlled, concurrent tasks easily preempt
resources. As a result, the OS will be overloaded and cannot respond to user tasks;
or even crash and cannot provide any services to users. The GaussDB(DWS)
workload management function balances the database workload based on
available resources to avoid database overloading.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1080

use_workload_manager

Parameter description: Specifies whether to enable the resource management
function. This parameter must be applied on both CNs and DNs.

Type: SIGHUP

Value range: Boolean

● on indicates the resource management function is enabled.
● off indicates the resource management function is disabled.

NO TE

● If method 2 in Setting GUC Parameters is used to change the parameter value,
the new value takes effect only for the threads that are started after the change. In
addition, the new value does not take effect for new jobs that are executed by
backend threads and reused threads. You can make the new value take effect for
these threads by using kill session or restarting the node.

● After the value of use_workload_manager changes from off to on, the resource
management view becomes available, and you can query the storage resource
usage collected in the off state. If there are slight errors and the storage resource
usage needs to be corrected, run the following command. If data is inserted into
the table during the command execution, the statistics may be inaccurate.
select gs_wlm_readjust_user_space(0);

Default value: on

enable_perm_space

Parameter description: Specifies whether to enable the perm space function. This
parameter must be applied on both CNs and DNs.

Type: POSTMASTER

Value range: Boolean

● on indicates the perm space function is enabled.
● off indicates the perm space function is disabled.

Default value: on

space_once_adjust_num

Parameter description: In the space control and space statistics functions,
specifies the threshold of the number of files processed each time during slow
building and fine-grained calibration. This parameter is supported only by clusters
of version 8.1.3 or later.

Type: SIGHUP

Value range: an integer ranging from 0 to INT_MAX

● The value 0 indicates that the slow build and fine-grained calibration
functions are disabled.

Default value: 300

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1081

NO TE

The file quantity threshold affects database resources. You are advised to set the threshold
to a proper value.

space_readjust_schedule

Parameter description: In the space control and space statistics functions,
specifies the space error threshold for triggering automatic calibration. This
parameter is supported only by clusters of version 8.1.3 or later.

Type: SIGHUP

Value range: a string

● off indicates that automatic calibration is disabled.
● auto indicates that automatic calibration is enabled and the error threshold

for triggering automatic calibration is 1 GB.
● auto (space size + K/M/G) indicates that the automatic calibration is

enabled and the error threshold for triggering automatic calibration is xxx
KB/MB/GB (user-defined). For example, auto(200M) indicates that the
automatic calibration is enabled and the error threshold for triggering
automatic calibration is 200 MB.

Default value: auto

default_partition_cache_strategy

Parameter description: Specifies the default policy for controlling partition
caching. This parameter is supported only by clusters of version 8.3.0 or later.

Type: USERSET

Value range: enumerated values

● cache_each_partition_as_possible enables maximum data caching. Data may
not be written to CUs when being inserted into different partitions.

● flush_when_switch_partition indicates that data is written to CUs if the data
belongs to different partitions during insertion.

Default value: cache_each_partition_as_possible

enable_libcomm_schedule

Parameter description: Specifies whether to enable network control. This
parameter is supported only by clusters of version 8.2.1 or later.

Type: POSTMASTER

Value range: Boolean

● on indicates that network control is enabled.
● off indicates that network control is disabled.

Default value: on

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1082

max_active_statements
Parameter description: Specifies the maximum global concurrency. This
parameter applies to a job on a CN.

The database administrator changes the value of this parameter based on system
resources (for example, CPU, I/O, and memory resources) so that the system fully
supports the concurrency tasks and avoids too many concurrency tasks resulting in
system crash.

Type: SIGHUP

Value range: an integer ranging from –1 to INT_MAX. The values –1 and 0
indicate that the number of concurrent requests is not limited.

Default value: 60

max_queue_statements
Parameter description: Specifies the maximum queue length. This parameter is
supported only by clusters of version 8.3.0 or later.

This parameter applies to CNs only and affects all cluster jobs. The system gives
an error if the job queue length surpasses this parameter when delivering jobs.

This parameter applies to all types of queues, such as global concurrent, fast lane,
slow lane, CCN global memory, and CCN resource pool queues. Each queue is
measured independently.

Type: SIGHUP

Value range: an integer ranging from –1 to INT_MAX. The value –1 indicates that
the number of queued jobs is not limited.

Default value: –1

parctl_min_cost
Parameter description: Specifies the minimum estimated cost of a complex job
under static resource management. Threshold for dividing simple jobs and
complex jobs. A job whose estimated cost is less than the value of this parameter
is a simple job, and a job whose estimated cost is larger than or equal to the value
of this parameter is a complex job.

Type: SIGHUP

Value range: an integer ranging from –1 to INT_MAX

● If parctl_min_cost is –1, all jobs are simple jobs.
● Jobs whose estimated cost is less than 10 are simple jobs.

Default value: 100000

cgroup_name
Parameter description: Specifies the name of the Cgroup in use. It can be used to
change the priorities of jobs in the queue of a Cgroup.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1083

If you set cgroup_name and then session_respool, the Cgroups associated with
session_respool take effect. If you reverse the order, Cgroups associated with
cgroup_name take effect.

If the Workload Cgroup level is specified during the cgroup_name change, the
database does not check the Cgroup level. The level ranges from 1 to 10.

Type: USERSET

You are not advised to set cgroup_name and session_respool at the same time.

Value range: a string

Default value: DefaultClass:Medium

NO TE

DefaultClass:Medium indicates the Medium Cgroup belonging to the Timeshare Cgroup
under the DefaultClass Cgroup.

cpu_collect_timer
Parameter description: Specifies how frequently CPU data is collected during
statement execution on DNs.

The database administrator changes the value of this parameter based on system
resources (for example, CPU, I/O, and memory resources) so that the system fully
supports the concurrency tasks and avoids too many concurrency tasks resulting in
system crash.

Type: SIGHUP

Value range: an integer ranging from 1 to INT_MAX. The unit is second.

Default value: 30

enable_cgroup_switch
Parameter description: Specifies whether the database automatically switches to
the TopWD group when executing statements by group type.

Type: USERSET

Value range: Boolean

● on: The database automatically switches to the TopWD group when
executing statements by group type.

● off: The database does not automatically switch to the TopWD group when
executing statements by group type.

Default value: off

memory_tracking_mode
Parameter description: Specifies the memory information recording mode.

Type: USERSET

Value range:

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1084

● none: Memory statistics is not collected.
● normal: Only memory statistics is collected in real time and no file is

generated.
● executor: The statistics file is generated, containing the context information

about all allocated memory used by the execution layer.
● fullexec: The generated file includes the information about all memory

contexts requested by the execution layer.

Default value: none

memory_detail_tracking

Parameter description: Specifies the sequence number of the memory
background information distributed in the needed thread and plannodeid of the
query where the current thread is located.

Type: USERSET

Value range: a string

Default value: empty

NO TICE

It is recommended that you retain the default value for this parameter.

enable_resource_track

Parameter description: Specifies whether the real-time resource monitoring
function is enabled. This parameter must be applied on both CNs and DNs.

Type: SIGHUP

Value range: Boolean

● on indicates the resource monitoring function is enabled.
● off indicates the resource monitoring function is disabled.

Default value: on

enable_resource_record

Parameter description: Specifies whether resource monitoring records are
archived. When this parameter is enabled, records that have been executed are
archived to the corresponding INFO views (GS_WLM_SESSION_INFO and
GS_WLM_OPERAROR_INFO). This parameter must be applied on both CNs and
DNs.

Type: SIGHUP

Value range: Boolean

● on indicates that the resource monitoring records are archived.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1085

● off indicates that the resource monitoring records are not archived.

Default value: on

NO TE

The default value of this parameter is on for a new cluster. In upgrade scenarios, the
default value of this parameter is the same as that of the source version.

enable_track_record_subsql
Parameter description: Specifies whether to enable the function of recording and
archiving sub-statements. When this function is enabled, sub-statements in stored
procedures and anonymous blocks are recorded and archived to the corresponding
INFO table (GS_WLM_SESSION_INFO). This parameter is a session-level
parameter. It can be configured and take effect in the session connected to the CN
and affects only the statements in the session. It can also be configured on both
the CN and DN and take effect globally.

Type: USERSET

Value range: Boolean

● on indicates that the sub-statement resource monitoring records are archived.
● off indicates that the sub-statement resource monitoring records are not

archived.

Default value: on

block_rule_cost
Parameter description: Specifies the minimum cost to trigger a query filter. This
is supported only by clusters of version 9.1.0.200 or later.

Type: USERSET

Value range: an integer ranging from –1 to INT_MAX

● Value –1 indicates that the system filters all statements without considering
the cost.

● Value 0 indicates that all statements whose cost is greater than 0 are
intercepted, but special statements (whose cost is 0) are not intercepted.

● If the value is greater than 0 and the statement cost is less than the value of
block_rule_cost, the statement is not intercepted; otherwise, it is intercepted.

Default value: –1

enable_user_metric_persistent
Parameter description: Specifies whether the user historical resource monitoring
dumping function is enabled. When this function is enabled, data in the
PG_TOTAL_USER_RESOURCE_INFO view is periodically sampled and saved to the
GS_WLM_USER_RESOURCE_HISTORY system catalog, and data in the
GS_RESPOOL_RESOURCE_INFO view is periodically sampled and saved to the
GS_RESPOOL_RESOURCE_HISTORY system catalog.

Type: SIGHUP

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1086

Value range: Boolean

● on indicates that the user historical resource monitoring dumping function is
enabled.

● off indicates that the user historical resource monitoring dumping function is
disabled.

Default value: on

user_metric_retention_time
Parameter description: Specifies the retention time of the user historical resource
monitoring data. This parameter is valid only when
enable_user_metric_persistent is set to on.

Type: SIGHUP

Value range: an integer ranging from 0 to 3650. The unit is day.

● If this parameter is set to 0, user historical resource monitoring data is
permanently stored.

● If the value is greater than 0, user historical resource monitoring data is
stored for the specified number of days.

Default value: 7

enable_instance_metric_persistent
Parameter description: Specifies whether the instance resource monitoring
dumping function is enabled. When this function is enabled, the instance
monitoring data is saved to the system catalog GS_WLM_INSTANCE_HISTORY.

Type: SIGHUP

Value range: Boolean

● on indicates that the instance resource monitoring dumping function is
enabled.

● off: Specifies that the instance resource monitoring dumping function is
disabled.

Default value: on

instance_metric_retention_time
Parameter description: Specifies the retention time of the instance historical
resource monitoring data. This parameter is valid only when
enable_instance_metric_persistent is set to on.

Type: SIGHUP

Value range: an integer ranging from 0 to 3650. The unit is day.

● If this parameter is set to 0, instance historical resource monitoring data is
permanently stored.

● If the value is greater than 0, the instance historical resource monitoring data
is stored for the specified number of days.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1087

Default value: 7

resource_track_level

Parameter description: Specifies the resource monitoring level of the current
session. This parameter is valid only when enable_resource_track is set to on.

Type: USERSET

Value range: enumerated values

● none: Resources are not monitored.
● query: enables query-level resource monitoring. If this function is enabled, the

plan information (similar to the output information of EXPLAIN) of SQL
statements will be recorded in top SQL statements.

● perf: enables the perf-level resource monitoring. If this function is enabled,
the plan information (similar to the output information of EXPLAIN ANALYZE)
that contains the actual execution time and the number of execution rows
will be recorded in the top SQL.

● operator: enables the operator-level resource monitoring. If this function is
enabled, not only the information including the actual execution time and
number of execution rows is recorded in the top SQL statement, but also the
operator-level execution information is updated to the top SQL statement.

Default value: query

fast_obs_tablesize_method

Parameter description: Specifies the method for quickly calculating the size of
column-store v3 and v3 hstore_opt tables. This parameter is supported only by
clusters of version 9.1.0.100 or later.

Type: USERSET

Value range: enumerated values

● 0: The table size is calculated by listing OBS files.
● 1: The table size is calculated through WLM background statistics using

pg_relfilenode_size.
● 2: The table size is estimated by calculating the maximum offset of each file

in cudesc.

Default value: 2

fast_obs_dbsize_method

Parameter description: Specifies the method for quickly calculating the size of
database data on OBS. This parameter is supported only by clusters of version
9.1.0.100 or later.

Type: USERSET

Value range: enumerated values

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1088

● 0: The size of the database is directly estimated based on the OBS bucket.
● 1: The size of the entire database is normally calculated in regular mode.

Default value: 0

time_track_strategy
Parameter description: Specifies the policy used to collect the operator execution
time of the current session. This parameter is supported only by clusters of version
8.2.1 or later.

Type: SIGHUP

Value range: enumerated values

● tsc: Use Time-Stamp Counter (TSC) to collect the operator execution time.
This method is applicable to perf-level top SQL statements and EXPLAIN and
applies only to non-vectorized operators. In other scenarios, the time function
is still used.

● vector: Disable the collection of the execution time of the non-vectorized
operators in the top SQL statements at the perf level. Other scenarios use the
time function perform collection and are not affected.

● timer: The time function used in all scenarios to collect the operator
execution time. In cluster 8.2.0 and earlier versions, only this method is used.

● opt: The database prioritizes selecting TSC for operator self-timing collection
based on node conditions. If TSC is not available, the default time function is
used for time collection.

Default value: timer

NO TE

● The TSC has two methods of converting the time, including the TSC frequency and TSC
conversion factors. By default, only the TSC frequency can be used on the x86 platform,
and the TSC conversion factor is prioritized on the Arm platform. You can view the TSC
conversion information for the current or all nodes through TSC-related views or
functions.

● In a cluster installation scenario, the default value of this parameter is tsc. In an
upgrade scenario, the default value of this parameter is timer to ensure forward
compatibility.

● The TSC mode is a forced mode, which means that TSC is still used even if it is
unreliable.

resource_track_cost
Parameter description: Specifies the minimum execution cost for resource
monitoring on statements in the current session. This parameter is valid only when
enable_resource_track is set to on.

Type: USERSET

Value range: an integer ranging from –1 to INT_MAX

● –1 indicates that resource monitoring is disabled.
● A value greater than or equal to 0 indicates that statements whose execution

cost exceeds this value will be monitored.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1089

Default value: 0

NO TE

The default value of this parameter is 0 for a new cluster. In upgrade scenarios, the default
value of this parameter is the same as that of the source version.

resource_track_duration
Parameter description: Specifies the minimum statement execution time that
determines whether information about jobs of a statement recorded in the real-
time view (see Table 12-1) will be dumped to a historical view after the
statement is executed. Job information will be dumped from the real-time view
(with the suffix statistics) to a historical view (with the suffix history) if the
statement execution time is no less than this value. This parameter is valid only
when enable_resource_track is set to on.

Type: USERSET

Value range: an integer ranging from 0 to INT_MAX. The unit is second (s).

● 0 indicates that information about all statements recorded in the real-time
resource monitoring view (see Table 12-1) will be archived into historical
views.

● If the value is greater than 0, the system archives historical information if the
total execution and queuing time of statements in the real-time resource
monitoring view (Table 12-1) goes over the parameter value.

Default value: 60s

resource_track_subsql_duration
Parameter description: Filters the minimum execution time of substatements in a
stored procedure. This parameter is supported only by clusters of version 8.2.1 or
later.

If the execution time of a sub-statement in a stored procedure is greater than the
value of this parameter, the job information is archived to the Top SQL table. This
parameter takes effect only when enable_track_record_subsql is set to on.

Type: USERSET

Value range: an integer ranging from 0 to INT_MAX. The unit is second (s).

● If the value is 0, historical information about all substatements in the stored
procedure is archived.

● If the value is greater than 0, historical information is archived when the
execution time of a substatement in a stored procedure exceeds the value of
this parameter.

Default value: 180s

query_exception_count_limit
Parameter description: Specifies the maximum number of times that a job
triggers an exception rule. If the number of times that a job triggers an exception

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1090

rule reaches the upper limit, the job will be automatically added to the blocklist
and cannot be executed anymore. The job can be resumed only after it is removed
from the blocklist.

Type: USERSET

Value range: an integer ranging from –1 to INT_MAX

● If the value is –1, the number of times that a job triggers an exception rule is
not limited. That is, the job will not be automatically added to blocklist even if
it triggers an exception rule for many times.

● If the value is greater than or equal to 0, the job will be added to the blocklist
immediately when the number of times it triggers an exception rule reaches
the threshold. The values 0 and 1 both indicate that a job is added to blocklist
once the job triggers an exception rule.

Default value: –1

dynamic_memory_quota

Parameter description: Specifies the memory quota in adaptive load scenarios,
that is, the proportion of maximum available memory to total system memory.

Type: SIGHUP

Value range: an integer ranging from 1 to 100

Default value: 80

disable_memory_protect

Parameter description: Stops memory protection. To query system views when
system memory is insufficient, set this parameter to on to stop memory
protection. This parameter is used only to diagnose and debug the system when
system memory is insufficient. Set it to off in other scenarios.

Type: USERSET

Value range: Boolean

● on indicates that memory protection stops.

● off indicates that memory is protected.

Default value: off

query_band

Parameter description: Specifies the job type of the current session.

Type: USERSET

Value range: a string

Default value: empty

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1091

enable_dynamic_workload
Parameter description: Specifies whether to enable the dynamic workload
management function.

Type: POSTMASTER

Value range: Boolean

● on indicates the dynamic workload management function is enabled.
● off indicates the dynamic workload management function is disabled.

Default value: on

NO TICE

● If memory adaptation is enabled, you do not need to use work_mem to
optimize the operator memory usage after collecting statistics. The system will
generate a plan for each statement based on the current load, estimating the
memory used by each operator and by the entire statement. In a concurrency
scenario, statements are queued based on the system load and their memory
usage.

● The optimizer may not accurately estimate the number of rows and will
probably underestimate or overestimate memory usage. If the memory usage is
underestimated, the allocated memory will be automatically increased during
statement running. If the memory usage is overestimated, system resources will
not be fully used, and the number of statements waiting in a queue will
increase, which probably results in low performance. To improve performance,
identify the statements whose estimated memory usage is much greater than
the DN peak memory and adjust the value of query_max_mem accordingly.
For details, see Configuring Optimizer Parameters.

● Due to the inaccurate estimation of memory by the optimizer, in cluster
versions earlier than 8.2.1, the enable_dynamic_workload parameter often
needs to be disabled to avoid the situation where CCN global queuing occurs.
However, this operation will result in the unavailability of dynamic workload
management. Therefore, enable_global_memctl is introduced in 8.2.1. When a
CCN exception occurs, you can disable the enable_global_memctl parameter
so that jobs can be delivered to and run in the resource pool.

enable_global_memctl
Parameter description: Specifies whether to enable the global memory
management function. This parameter is supported only by clusters of version
8.2.1 or later.

Type: SIGHUP

Value range: Boolean

● on indicates that the global memory management is enabled.
● off indicates that global memory management is disabled.

Default value: on

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1092

NO TE

The dynamic load function consists of two layers of memory management: global memory
management and resource pool management. Global memory management determines
whether a job can be delivered based on its estimated memory. Resource pool management
determines whether a job can be delivered based on resource pool parameters. In versions
earlier than 8.2.1, the global memory management function is enabled by default after the
dynamic load management function is enabled. The statement memory usage may be
underestimated or overestimated by the optimizer. As a result, jobs are queued in the
global memory management queue on the CCN. In GaussDB 8.2.1, this parameter is used
to control whether to enable the global memory management to improve job efficiency
and reduce CCN queue exceptions.

CA UTION

Pay attention to the following when modifying this parameter:
1. When this parameter is disabled, it means that the user does not need CCN

control function, and the CCN memory negative feedback mechanism will be
invalid.

2. When a job is running, if the value of GUC is changed from OFF to ON, the
CCN memory negative feedback mechanism takes effect. If the concurrency is
high, the memory may be temporarily unavailable. After the running job is
done, the dynamic load function recovers.

3. When a job is running and most jobs are delivered by users from the default
resource pool, you are not advised to change the GUC parameter from enabled
to disabled . It may cause a memory error. When there is no job delivered by
users from the default resource pool, then you can change the parameter. You
are advised to bind a user resource pool before delivering jobs.

enable_wlm_internal_memory_limit
Parameter description: Specifies whether to enable the built-in limit on estimated
statement memory usage in load management. (This parameter is supported only
by clusters of version 8.2.0 or later.)

In the memory management module of load management, some built-in
restrictions are imposed on the estimated memory of statements. For example:

● The estimated memory of statements cannot exceed 80% of the memory
upper limit of the associated resource pool.

● If the concurrency control parameter active_statements of the resource pool
is not set to 1, the estimated memory of the statement cannot exceed 40% of
the memory upper limit of the associated resource pool.

● During the estimation of statement memory usage, a range is provided first.
The maximum value indicates the memory required for optimal statement
running performance. The minimum value indicates the memory required for
statement running when data spilling is allowed. The final estimation will be
within this range. The maximum estimated memory cannot exceed 90% of
the memory upper limit of the associated resource pool.

These built-in restrictions can prevent overestimation of statement memory. If
memory usage is overestimated, statements will preoccupy too much memory,

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1093

causing subsequent jobs to queue and affecting resource utilization. To avoid such
problems, the kernel limits the estimated memory usage of a single statement.
Execution plans under the built-in restrictions may not be optimal, and may affect
the performance of a statement. The memory negative feedback mechanism is
provided in 8.2.0 and later cluster versions to alleviate this problem. The
enable_wlm_internal_memory_limit parameter is added in 8.2.0 and later
versions. You can determine whether to enable the built-in restrictions.

Type: SIGHUP

Value range: Boolean

● on indicates that the built-in restrictions on statement memory estimation are
enabled.

● off indicates that the built-in restrictions on statement memory estimation
are disabled.

Default value: on

enable_strict_memory_expansion
Parameter description: Specifies whether to enable strict control over the
increase of statement memory usage. (This parameter is supported only by
clusters of version 8.2.0 or later.)

The CN calculates the estimated memory for a statement and preempts memory
accordingly. If there is sufficient memory, the DN can increase the memory used
for a statement to facilitate its execution. If this parameter is enabled, the increase
of memory usage for a statement will be strictly controlled. The memory usage of
a statement will not be allowed to exceed its estimated maximum usage. The
memory usage of an operator is increased proportionally each time, so the
memory usage after an increase may exceed the allowed maximum, but to a
limited extent.

Type: SIGHUP

Value range: Boolean

● on indicates that strict control over statement memory usage is enabled.
● off indicates that strict control over statement memory usage is disabled.

Default value: off

allow_zero_estimate_memory
Parameter description: Specifies whether the estimated memory usage of a
statement can be 0. (This parameter is supported only by clusters of version 8.2.0
or later.)

If the table queried by a statement does not contain statistics, the estimated
memory of the statement on the CN may be 0. In this case, the memory usage of
operators in the statement is limited by work_mem. (work_mem is not
recommended for operator memory usage control). If work_mem is large and
there are many operators in a statement, the actual memory of the statement will
be large. If this parameter is set to off, the estimated memory usage cannot be 0
for queries that have not been analyzed. This setting can help reduce unexpected
problems.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1094

Type: SIGHUP

Value range: Boolean

● on indicates that the estimated memory usage of a statement can be 0.
● off indicates that the estimated memory usage of a statement cannot be 0.

Default value: on

wlm_memory_feedback_adjust

Parameter description: Specifies whether to enable memory negative feedback in
dynamic load management. (This parameter is supported only by clusters of
version 8.2.0 or later.)

Memory is preempted based on the estimated statement memory usage
calculated on the CN. If the estimated memory usage of a statement is too high, it
will preempt too much memory, causing subsequent jobs to be queued. With the
negative memory feedback mechanism, if the cluster memory usage has been
overestimated for a period of time, the CCN node will dynamically release some
memory for subsequent jobs, improving resource utilization.

Type: SIGHUP

Value range: a string

● on indicates that memory negative feedback is enabled.
● off indicates that memory negative feedback is disabled.
● on() enables the memory negative feedback function and specifies the time

and estimated memory percentage parameter required to trigger the negative
feedback. For example, on(60,50) indicates that to trigger the negative
feedback mechanism, the memory must be overestimated for 60 consecutive
seconds, and the preempted memory needs must exceed 50% of the available
memory. By default, the wait time before the negative feedback mechanism
takes effect is 50 seconds. The minimum estimated total memory usage for
triggering the mechanism is over 40% of the available system memory.

Default value: on

bbox_dump_count

Parameter description: Specifies the maximum number of core files that are
generated by GaussDB(DWS) and can be stored in the path specified by
bbox_dump_path. If the number of core files exceeds this value, old core files will
be deleted. This parameter is valid only if enable_bbox_dump is set to on.

Type: USERSET

Value range: an integer ranging from 1 to 20

Default value: 8

NO TE

When core files are generated during concurrent SQL statement execution, the number of
files may be larger than the value of bbox_dump_count.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1095

io_limits
Parameter description: This parameter has been discarded in version 8.1.2 and is
reserved for compatibility with earlier versions. This parameter is invalid in the
current version.

Type: USERSET

Value range: an integer ranging from 0 to 1073741823

Default value: 0

io_priority
Parameter description: This parameter has been discarded in version 8.1.2 and is
reserved for compatibility with earlier versions. This parameter is invalid in the
current version.

Type: USERSET

Value range: enumerated values

● None
● Low
● Medium
● High

Default value: None

session_respool
Parameter description: Specifies the resource pool associated with the current
session.

Type: USERSET

If you set cgroup_name and then session_respool, the Cgroups associated with
session_respool take effect. If you reverse the order, Cgroups associated with
cgroup_name take effect.

If the Workload Cgroup level is specified during the cgroup_name change, the
database does not check the Cgroup level. The level ranges from 1 to 10.

You are not advised to set cgroup_name and session_respool at the same time.

Value range: a string. This parameter can be set to the resource pool configured
through create resource pool.

Default value: invalid_pool

enable_transaction_parctl
Parameter description: whether to control transaction block statements and
stored procedure statements.

Type: USERSET

Value range: Boolean

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1096

● on: Transaction block statements and stored procedure statements are
controlled.

● off: Transaction block statements and stored procedure statements are not
controlled.

Default value: on

session_history_memory
Parameter description: Specifies the memory size of a historical query view.

Type: SIGHUP

Value range: an integer ranging from 10 MB to 50% of max_process_memory

Default value: 100MB

topsql_retention_time
Parameter description: Specifies the retention period of historical Top SQL data
in the gs_wlm_session_info and gs_wlm_operator_info tables.

Type: SIGHUP

Value range: an integer ranging from 0 to 3650. The unit is day.

● If it is set to 0, the data is stored permanently.
● If the value is greater than 0, the data is stored for the specified number of

days.

Default value: 30

CA UTION

● Before setting this GUC parameter to enable the data retention function, delete
data from the gs_wlm_session_info and gs_wlm_operator_info tables.

● The default value of this parameter is 30 for a new cluster. In upgrade
scenarios, the default value of this parameter is the same as that of the source
version.

transaction_pending_time
Parameter description: maximum queuing time of transaction block statements
and stored procedure statements if enable_transaction_parctl is set to on.

Type: USERSET

Value range: an integer ranging from –1 to INT_MAX. The unit is second (s).

● –1 or 0: No queuing timeout is specified for transaction block statements and
stored procedure statements. The statements can be executed when resources
are available.

● Value greater than 0: If transaction block statements and stored procedure
statements have been queued for a time longer than the specified value, they
are forcibly executed regardless of the current resource situation.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1097

Default value: 0

NO TICE

This parameter is valid only for internal statements of stored procedures and
transaction blocks. That is, this parameter takes effect only for the statements
whose enqueue value (for details, see PG_SESSION_WLMSTAT) is Transaction or
StoredProc.

wlm_sql_allow_list
Parameter description: Specifies whitelisted SQL prefix matching statements for
resource management. Whitelisted SQL prefix matching statements are not
monitored by resource management.

Type: SIGHUP

Value range: a string, which contains a maximum of 1,024 characters

Default value: empty

NO TICE

● One or more whitelisted SQL statements can be specified in
wlm_sql_allow_list. If multiple SQL statements are to be whitelisted, use
semicolons (;) to separate them.

● The system determines whether SQL statements are monitored based on the
prefix match. The SQL statements are case insensitive. For example, if
wlm_sql_allow_list is set to 'SELECT', all SELECT statements are not
monitored by the resource management module.

● The system identifies spaces at the beginning of the parameter value. For
example, 'SELECT' and ' SELECT' have different representations. ' SELECT'
filters only the SELECT statements with spaces at the beginning.

● The system has some whitelisted SQL statements by default, which cannot be
modified. You can query the default whitelisted SQL prefix matching
statements and the SQL statements that have been successfully added to the
whitelist by GUC through the system view GS_WLM_SQL_ALLOW.

● New SQL statements cannot be appended to the whitelisted SQL statements
specified by wlm_sql_allow_list but can be set only through overwriting. To
add an SQL statement, query the original GUC value, add the new statement to
the end of the original value, separate the statements with a semicolon (;), and
set the GUC value again.

wlm_sql_white_list
Parameter description: Specifies whitelisted SQL full match statements for
resource management. Whitelisted SQL full match statements are not monitored
by resource management. This is supported by clusters of version 9.1.0.200 or
later.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1098

Type: SIGHUP

Value range: a string, which contains a maximum of 1,024 characters

Default value: empty

NO TICE

● One or more whitelisted SQL statements can be specified in
wlm_sql_white_list. If multiple SQL statements are to be whitelisted, use
semicolons (;) to separate them.

● The system determines whether SQL statements are monitored based on full
match. The SQL statements are case insensitive. For example, if the SQL
statement is wlm_sql_allow_list='SELECT count(1) FROM t1';, only SELECT
count(1) FROM t1; is not monitored.

● Spaces at the beginning of the parameter value whitelist character string are
identified. For example, 'SELECT count(1) FROM t1;' and' SELECT count(1)
FROM t1;' have different meanings. ' SELECT count(1) FROM t1;' filters only
SELECT count(1) FROM t1; statements with spaces at the beginning.

● The system has some whitelisted SQL statements by default, which cannot be
modified. You can query the default whitelisted SQL full match statements and
the SQL statements that have been successfully added to the whitelist by GUC
through the system view GS_WLM_SQL_ALLOW.

● New SQL statements cannot be appended to the whitelisted SQL statements
specified by wlm_sql_white_list but can be set only through overwriting. To
add an SQL statement, query the original GUC value, add the new statement to
the end of the original value, separate the statements with a semicolon (;), and
set the GUC value again.

● You are advised to add the database liveness detection statement to the SQL
full match whitelist.

15.14 Automatic Cleanup
The automatic cleanup process (autovacuum) in the system automatically runs
the VACUUM and ANALYZE statements to reclaim the record space marked as
deleted and update statistics about the table.

NO TE

autovacuum does not block service statements initiated by users. autovacuum and
autoanalyze statements can be executed concurrently without conflicts. This function is
supported only in versions later than 8.2.1.300.

autovacuum
Parameter description: Specifies whether to start the automatic cleanup process
(autovacuum). Ensure that the track_counts parameter is set to on before
enabling the automatic cleanup process.

For clusters of version 8.1.3 or later, automatic cleanup can be configured on the
GaussDB(DWS) management console. For details, see Intelligent O&M Overview.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1099

https://support.huaweicloud.com/intl/en-us/mgtg-dws/dws_01_1161.html

For clusters of version 8.1.2 or earlier, configure the feature by referring to
Configuring GUC Parameters.

Type: SIGHUP

Value range: Boolean

● on indicates the database automatic cleanup process is enabled.
● off indicates that the database automatic cleanup process is disabled.

Default value: on

NO TE

Set autovacuum to on if you want to enable the function of automatically cleaning up
two-phase transactions after the system recovers from faults.
● If autovacuum is set to on and autovacuum_max_workers to 0, the autovacuum

process will not be automatically performed and only abnormal two-phase
transactions are cleaned up after the system recovers from faults.

● If autovacuum is set to on and the value of autovacuum_max_workers is greater
than 0, the system will automatically clean up two-phase transactions and processes
after recovering from faults.

NO TICE

Even if this parameter is set to off, the database initiates a cleanup process when
transaction ID wraparound needs to be prevented. When a CREATE DATABASE or
DROP DATABASE operation fails, the transaction may have been committed or
rolled back on some nodes whereas some nodes are still in the prepared state. In
this case, perform the following operations to manually restore the nodes:
1. Use the gs_clean tool (setting the option parameter to -N) to query the xid of

the abnormal two-phase transaction and nodes in the prepared status.
2. Log in to the nodes whose transactions are in the prepared status.

Administrators connect to an available database such as gaussdb to run the
SET xc_maintenance_mode = on statement.

3. Commit or roll back the two-phase transaction based on the global transaction
status.

4. If autovacuum is set to off for a long time in the cluster and you want to
change the value to on, you must perform VACUUM FULL on the key system
catalogs of the cluster. These key system catalogs include pg_class,
pg_attribute, pg_index, pg_type, pg_statistic, pg_statistic_ext, pg_proc,
pg_partition, pg_constraint, pg_inherits, pg_rewrite, pg_description,
pg_depend, pg_shdepend, pg_shdescription, pgxc_class, pg_jobs,
pg_redaction_policy, pg_redaction_column, pg_object, and pg_matview.

autovacuum_mode
Parameter description: Specifies whether the autoanalyze or autovacuum
function is enabled. This parameter is valid only when autovacuum is set to on.

Type: SIGHUP

Value range: enumerated values

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1100

● analyze indicates that only autoanalyze is performed.
● vacuum indicates that only autovacuum is performed.
● mix indicates that both autoanalyze and autovacuum are performed.
● none indicates that neither of them is performed.

Default value: mix

autoanalyze_mode
Parameter description: Specifies the autoanalyze mode. This parameter is
supported by clusters of version 8.2.0 or later.

Type: USERSET

Value range: enumerated values

● normal indicates common autoanalyze.
● light indicates lightweight autoanalyze.

Default value:

● If the current cluster is upgraded from an earlier version to 8.2.0, the default
value is normal to ensure forward compatibility.

● If the cluster version 8.2.0 is newly installed, the default value is light.

autoanalyze_cache_num
Parameter description: Specifies the maximum number of tables whose statistics
can be cached by lightweight autoanalyze. If the number of tables exceeds this
value, the statistics about the earliest 100 tables will be deleted. This feature is
supported only in 8.2.0 or later.

Type: SIGHUP

Value range: an integer ranging from 100 to INT_MAX

Default value: 10000

autoanalyze_timeout
Parameter description: Specifies the timeout period of autoanalyze. If the
duration of analyze on a table exceeds the value of autoanalyze_timeout,
analyze is automatically canceled.

Type: SIGHUP

Value range: an integer ranging from 0 to 2147483. The unit is second.

Default value: 5min

analyze_stats_mode
Parameter description: Specifies the mode for ANALYZE to calculate statistics.

Type: USERSET

Value range: enumerated values

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1101

● memory indicates that the memory is forcibly used to calculate statistics.
Multi-column statistics are not calculated.

● sample_table indicates that temporary sampling tables are forcibly used to
calculate statistics. Temporary tables do not support this mode.

● dynamic indicates that the statistics calculation mode is determined based on
the size of maintenance_work_mem. If maintenance_work_mem can store
samples, the memory mode is used. Otherwise, the temporary sampling table
mode is used.

Default value:

● If the current cluster is upgraded from an earlier version to 8.2.0.100, the
default value is memory to ensure forward compatibility.

● If the cluster version 8.2.0.100 is newly installed, the default value is dynamic.

analyze_sample_mode

Parameter description: Specifies the sampling model used by ANALYZE.

Type: USERSET

Value range: an integer ranging from 0 to 2

● 0 indicates the default reservoir sampling.
● 1 indicates the optimized reservoir sampling.
● 2 indicates range sampling.

Default value: 0

autovacuum_io_limits

Parameter description: Specifies the upper limit of I/Os triggered by the
autovacuum process per second. This parameter has been discarded in version
8.1.2 and is reserved for compatibility with earlier versions. This parameter is
invalid in the current version.

Type: SIGHUP

Value range: an integer ranging from –1 to 1073741823. –1 indicates that the
default Cgroup is used.

Default value: –1

autovacuum_max_workers

Parameter description: Specifies the maximum number of automatic cleanup
threads running at the same time.

Type: SIGHUP

Value range: an integer ranging from 0 to 128. 0 indicates that autovacuum is
disabled.

Default value: 4

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1102

NO TE

This parameter works with autovacuum. The rules for clearing system catalogs and user
tables are as follows:
● When autovacuum_max_workers is set to 0, autovacuum is disabled and no tables are

cleared.
● When autovacuum_max_workers is set to a value greater than 0 and autovacuum is

set to off, the system only clears the system catalogs and column-store tables with
delta tables enabled (such as vacuum delta tables, vacuum cudesc tables, and delta
merge).

● When autovacuum_max_workers is set to a value greater than 0 and autovacuum is
set to on, all tables will be cleared.

autovacuum_naptime
Parameter description: Specifies the interval between two automatic cleanup
operations.

Type: SIGHUP

Value range: an integer ranging from 1 to 2147483. The unit is second.

Default value: 60s

autovacuum_vacuum_threshold
Parameter description: Specifies the threshold for triggering the VACUUM
operation. When the number of deleted or updated records in a table exceeds the
specified threshold, the VACUUM operation is executed on this table.

Type: SIGHUP

Value range: an integer ranging from 0 to INT_MAX

Default value: 50

autovacuum_analyze_threshold
Parameter description: Specifies the threshold for triggering the ANALYZE
operation. When the number of deleted, inserted, or updated records in a table
exceeds the specified threshold, the ANALYZE operation is executed on this table.

Type: SIGHUP

Value range: an integer ranging from 0 to INT_MAX

Default value:

● If the current cluster is upgraded from an earlier version to 8.1.3, the default
value is 10000 to ensure forward compatibility.

● If the current cluster version is 8.1.3, the default value is 50.

autovacuum_vacuum_scale_factor
Parameter description: Specifies the size scaling factor of a table added to the
autovacuum_vacuum_threshold parameter when a VACUUM event is triggered.

Type: SIGHUP

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1103

Value range: a floating point number ranging from 0.0 to 100.0

Default value: 0.2

autovacuum_analyze_scale_factor
Parameter description: Specifies the size scaling factor of a table added to the
autovacuum_analyze_threshold parameter when an ANALYZE event is triggered.

Type: SIGHUP

Value range: a floating point number ranging from 0.0 to 100.0

Default value:

● If the current cluster is upgraded from an earlier version to 8.1.3, the default
value is 0.25 to ensure forward compatibility.

● If the current cluster version is 8.1.3, the default value is 0.1.

autovacuum_freeze_max_age
Parameter description: Specifies the maximum age (in transactions) that a
table's pg_class.relfrozenxid column can attain before a VACUUM operation is
forced to prevent transaction ID wraparound within the table.

The old files under the subdirectory of pg_clog/ can also be deleted by the
VACUUM operation. Even if the automatic cleanup process is forbidden, the
system will invoke the automatic cleanup process to prevent the cyclic repetition.

Type: SIGHUP

Value range: an integer ranging from 100000 to 576460752303423487

Default value: 4000000000

autovacuum_vacuum_cost_delay
Parameter description: Specifies the value of the cost delay used in the
autovacuum operation.

Type: SIGHUP

Value range: an integer ranging from –1 to 100. The unit is ms. –1 indicates that
the normal vacuum cost delay is used.

Default value: 2ms

autovacuum_vacuum_cost_limit
Parameter description: Specifies the value of the cost limit used in the
autovacuum operation.

Type: SIGHUP

Value range: an integer ranging from –1 to 10000. –1 indicates that the normal
vacuum cost limit is used.

Default value: –1

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1104

check_crossvw_write
Parameter description: Specifies whether to enable cross-VW write detection.
This parameter is supported only by clusters of version 9.1.0.100 or later.

Type: USERSET

Value range: an integer, -1 or 1.

● The value –1 indicates that it is compatible with the capabilities of version
9.0.3. For the v3 table vacuum, it only clears non-last files for all epochs.

● The value 1 indicates checking whether it is a cross-VW write scenario. For the
v3 table vacuum, if it is determined to be a non-cross-VW write scenario, it
clears non-last files for all epochs, clears the last file for the current epoch,
and clears the last file for epochs that are less than the current epoch. If it is
determined to be a cross-VW write scenario, CNs will obtain epoch
information from all DNs and package it into an epochList to be sent to the
metadata VW. The v3 table vacuum will clear non-last files for all epochs and
clear the last file for epochs that are less than max{epochList} and not in
epochList.

Default value: 1

global_colvacuum_tuple_scale_factor
Parameter description: Specifies whether to enable global autovacuum for cross-
VW file cleanup of V3 tables. This is supported only by clusters of version 9.1.0.200
or later.

Type: SIGHUP

Value range: an integer ranging from -1 to 100.

● –1 indicates that global autovacuum is disabled. autovacuum only cleans up
non-last files from all epochs.

● 0 indicates that global autovacuum is enabled. The threshold for triggering
global autovacuum is the product of the dead tuple threshold of the
partitioned table and the number of nodes where the table is located.

● 1-100 indicates that global autovacuum is enabled. The threshold for
triggering global autovacuum is a multiple of the dead tuple threshold of the
partitioned table.

Default value: 0

colvacuum_threshold_scale_factor
Parameter description: Specifies the minimum percentage of dead tuples for
vacuum rewriting in column-store tables. When AUTOVACUUM detects that the
total number of dead tuples in a column-store table is greater than
RelDefaultFullCuSize(60000) and the ratio of this number to all_tuples is greater
than 1/2, the VACUUM operation is started on the column-store table. A file is
rewritten only when the ratio of dead tuples to (all_tuple - null_tuple) in the file is
greater than the value of this parameter.

Type: SIGHUP

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1105

Value range: an integer ranging from –2 to 100.

● –2 indicates that vacuum rewriting and vacuum cleanup are not performed.
● –1 indicates to perform vacuum rewriting is not performed and only vacuum

cleanup is performed.
● The value ranges from 0 to 100, indicating the percentage of dead tuples.

Default value: 70

enable_pg_stat_object
Parameter description: Specifies whether AUTO VACUUM updates the
PG_STAT_OBJECT system catalog. This parameter is supported only by clusters of
version 8.2.1 or later.

Type: USERSET

Value range: Boolean

● on indicates that the PG_STAT_OBJECT system catalog is updated during
AUTO VACUUM.

● off indicates that the PG_STAT_OBJECT system catalog is not updated during
AUTO VACUUM.

Default value: on

enable_col_index_vacuum
Parameter description: Specifies whether to allow AUTO VACUUM to clear dirty
data in column-store indexes. Clearing dirty data of column-store indexes can
prevent index space expansion and optimize the performance of importing tables
with indexes to the database. This parameter is supported only by clusters of
version 8.2.1.100 or later.

Type: SIGHUP

Value range: Boolean

● on indicates that AUTO VACUUM is allowed to clear dirty data of column-
store indexes.

● off indicates that AUTO VACUUM is not allowed to clear dirty data of
column-store indexes.

Default value: on

NO TICE

By default, this parameter is set to on in a newly installed cluster and off after an
old cluster is upgraded.

enable_table_level_oldestxmin
Parameter description: Specifies whether to enable table-level oldestxmin. This
feature gives each table a separate oldestxmin. During VACUUM, the table ignores

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1106

long transactions that do not involve the table. This allows the table to be cleaned
faster and reuse space more efficiently. This parameter is supported only by
clusters of version 8.3.0 or later.

Type: SIGHUP

Value range: Boolean

● on indicates that table-level oldestxmin is enabled.
● off indicates that table-level oldestxmin is disabled.

Default value: off

NO TICE

● A long transaction refers to a transaction that has been running for a long
period of time but has not been committed. For details, see old_txn_threshold.

● Table-level oldestxmin does not take effect on system catalogs. System
catalogs still use global oldestxmin, which means all long transactions are not
ignored during VACUUM.

old_txn_threshold

Parameter description: When table-level oldestxmin is calculated, transactions
that run longer than the value of this parameter are regarded as long
transactions. This parameter is supported only by clusters of version 8.3.0 or later.

Type: SIGHUP

Value range: an integer ranging from 1 to 1000000. The unit is second.

Default value: 600

NO TICE

● Calculation rules of table-level oldestxmin:
● The transaction running duration is calculated based on the snapshot time.
● Transactions that run for shorter than old_txn_threshold are not

considered long transactions and affect how oldestxmin is computed for all
tables.

● Transactions that run for longer than old_txn_threshold are considered
long transactions. When computing oldestxmin for a table, the system
ignores transactions that do not affect the table, and counts transactions
that affect the table as active.

● You need to adjust old_txn_threshold during service running. If a transaction
uses a snapshot for longer than old_txn_threshold, the system shows an error
"Snapshot is invalid" when opening a table or partition that is not open yet. If
this error is reported, increase the value of old_txn_threshold.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1107

15.15 Default Settings of Client Connection

15.15.1 Statement Behavior
This section describes related default parameters involved in the execution of SQL
statements.

search_path

Parameter description: Specifies the order in which schemas are searched when
an object is referenced with no schema specified. The value of this parameter
consists of one or more schema names. Different schema names are separated by
commas (,).

Type: USERSET

● If the schema of a temporary table exists in the current session, the scheme
can be listed in search_path by using the alias pg_temp, for example,
'pg_temp,public'. The schema of a temporary table has the highest search
priority and is always searched before all the schemas specified in pg_catalog
and search_path. Therefore, do not explicitly specify pg_temp to be searched
after other schemas in search_path. This setting will not take effect and an
error message will be displayed. If the alias pg_temp is used, the temporary
schema will be only searched for database objects, including tables, views,
and data types. Functions or operator names will not be searched for.

● The schema of a system catalog, pg_catalog, has the second highest search
priority and is the first to be searched among all the schemas, excluding
pg_temp, specified in search_path. Therefore, do not explicitly specify
pg_catalog to be searched after other schemas in search_path. This setting
will not take effect and an error message will be displayed.

● When an object is created without specifying a particular schema, the object
will be placed in the first valid schema listed in search_path. An error will be
reported if the search path is empty.

● The current effective value of the search path can be examined through the
SQL function current_schema. This is different from examining the value of
search_path, because the current_schema function displays the first valid
schema name in search_path.

Value range: a string

NO TE

● When this parameter is set to "$user", public, a database can be shared (where no
users have private schemas, and all share use of public), and private per-user schemas
and combinations of them are supported. Other effects can be obtained by modifying
the default search path setting, either globally or per-user.

● When this parameter is set to a null string (''), the system automatically converts it into
a pair of double quotation marks ("").

● If the content contains double quotation marks, the system considers them as insecure
characters and converts each double quotation mark into a pair of double quotation
marks.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1108

Default value: "$user",public

NO TE

$user indicates the name of the schema with the same name as the current session user. If
the schema does not exist, $user will be ignored.

current_schema
Parameter description: Specifies the current schema.

Type: USERSET

Value range: a string

Default value: "$user",public

NO TE

$user indicates the name of the schema with the same name as the current session user. If
the schema does not exist, $user will be ignored.

default_tablespace
Parameter description: Specifies the default tablespace of the created objects
(tables and indexes) when a CREATE command does not explicitly specify a
tablespace.

● The value of this parameter is either the name of a tablespace, or an empty
string that specifies the use of the default tablespace of the current database.
If a non-default tablespace is specified, users must have CREATE privilege for
it. Otherwise, creation attempts will fail.

● This parameter is not used for temporary tables. For them, the
temp_tablespaces is consulted instead.

● This parameter is not used when users create databases. By default, a new
database inherits its tablespace setting from the template database.

Type: USERSET

Value range: a string. An empty string indicates that the default tablespace is
used.

Default value: empty

default_storage_nodegroup
Parameter description: Specifies the Node Group where a table is created by
default. This parameter takes effect only for ordinary tables.

Type: USERSET

Value range: a string

● installation: indicates that the table is created in the installed Node Group by
default.

● random_node_group: indicates that the table is created in a randomly
selected Node Group by default. This feature is supported in 8.1.2 or later and
is used only in the test environment.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1109

● roach_group: indicates that the table is created in all nodes by default. This
value is reserved for the Roach tool and cannot be used in other scenarios.

● A value other than the preceding three options indicates that the table is
created in a specified Node Group.

Default value: installation

default_colversion
Parameter description: Sets the storage format version of the column-store table
that is created by default.

Type: SIGHUP

Value range: enumerated values

● 1.0: Each column in a column-store table is stored in a separate file. The file
name is relfilenode.C1.0, relfilenode.C2.0, relfilenode.C3.0, or similar.

● 2.0: All columns of a column-store table are combined and stored in a file.
The file is named relfilenode.C1.0.

● 3.0: CU data of column-store tables is stored in OBS and the file is named
fileid.0. This is supported only by clusters of version 9.1.0 or later.

Default value: 2.0

temp_tablespaces
Parameter description: Specifies tablespaces to which temporary objects will be
created (temporary tables and their indexes) when a CREATE command does not
explicitly specify a tablespace. Temporary files for sorting large data are created in
these tablespaces.

The value of this parameter is a list of names of tablespaces. When there is more
than one name in the list, GaussDB(DWS) chooses a random tablespace from the
list upon the creation of a temporary object each time. Except that within a
transaction, successively created temporary objects are placed in successive
tablespaces in the list. If the element selected from the list is an empty string,
GaussDB(DWS) will automatically use the default tablespace of the current
database instead.

Type: USERSET

Value range: a string An empty string indicates that all temporary objects are
created only in the default tablespace of the current database. For details, see
default_tablespace.

Default value: empty

check_function_bodies
Parameter description: Specifies whether to enable validation of the function
body string during the execution of CREATE FUNCTION. Verification is
occasionally disabled to avoid problems, such as forward references when you
restore function definitions from a dump.

Type: USERSET

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1110

Value range: Boolean

● on indicates that validation of the function body string is enabled during the
execution of CREATE FUNCTION.

● off indicates that validation of the function body string is disabled during the
execution of CREATE FUNCTION.

Default value: on

default_transaction_isolation

Parameter description: Specifies the default isolation level of each transaction.

Type: USERSET

Value range: enumerated values

● READ COMMITTED: Only committed data is read. This is the default.
● READ UNCOMMITTED: GaussDB(DWS) does not support READ

UNCOMMITTED. If READ UNCOMMITTED is set, READ COMMITTED is
executed instead.

● REPEATABLE READ: Only the data committed before transaction start is read.
Uncommitted data or data committed in other concurrent transactions cannot
be read.

● SERIALIZABLE: GaussDB(DWS) does not support SERIALIZABLE. If
SERIALIZABLE is set, REPEATABLE READ is executed instead.

Default value: READ COMMITTED

default_transaction_read_only

Parameter description: Specifies whether each new transaction is in read-only
state.

Type: SIGHUP

Value range: Boolean

● on indicates the transaction is in read-only state.
● off indicates the transaction is in read/write state.

Default value: off

default_transaction_read_only_probe

Parameter description: Specifies whether to terminate the execution of special
statements (e.g., statements for flushing data to disks and generating new tables
or physical files) when the database is about to become read-only (disk usage
reaches 90%). The CM module checks and sets the disk usage threshold. It is not
advised to set this parameter. This is supported only by clusters of version
9.1.0.200 or later.

Type: USERSET

Value range: Boolean

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1111

● on indicates that the execution of the special statement is terminated.
● off indicates that the execution of the special statement is not terminated.

Default value: off

default_transaction_deferrable
Parameter description: Specifies the default delaying state of each new
transaction. It currently has no effect on read-only transactions or those running
at isolation levels lower than serializable.

GaussDB(DWS) does not support the serializable isolation level of each
transaction. The parameter is insignificant.

Type: USERSET

Value range: Boolean

● on indicates a transaction is delayed by default.
● off indicates a transaction is not delayed by default.

Default value: off

session_replication_role
Parameter description: Specifies the behavior of replication-related triggers and
rules for the current session.

Type: USERSET

NO TICE

Setting this parameter will discard all the cached execution plans.

Value range: enumerated values

● origin indicates that the system copies operations such as insert, delete, and
update from the current session.

● replica indicates that the system copies operations such as insert, delete, and
update from other places to the current session.

● local indicates that the system will detect the role that has logged in to the
database when using the function to copy operations and will perform related
operations.

Default value: origin

statement_timeout
Parameter description: If the statement execution time (starting when the server
receives the command) is longer than the duration specified by the parameter,
error information is displayed when you attempt to execute the statement and the
statement then exits.

Type: USERSET

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1112

Value range: an integer ranging from 0 to 2147483647. The unit is ms.

Default value:

● If the current cluster is upgraded from an earlier version to 8.2.0, the value in
the earlier version is inherited. The default value is 0.

● If the cluster version 8.2.0 is newly installed, the default value is 24h.

vacuum_freeze_min_age
Parameter description: Specifies the minimum cutoff age (in the same
transaction), based on which VACUUM decides whether to replace transaction IDs
with FrozenXID while scanning a table.

Type: USERSET

Value range: an integer from 0 to 576460752303423487.

NO TE

Although you can set this parameter to a value ranging from 0 to 1000000000 anytime,
VACUUM will limit the effective value to half the value of autovacuum_freeze_max_age
by default.

Default value: 5000000000

vacuum_freeze_table_age
Parameter description: Specifies the time that VACUUM freezes tuples while
scanning the whole table. VACUUM performs a whole-table scan if the value of
the pg_class.relfrozenxid column of the table has reached the specified time.

Type: USERSET

Value range: an integer from 0 to 576460752303423487.

NO TE

Although users can set this parameter to a value ranging from 0 to 2000000000 anytime,
VACUUM will limit the effective value to 95% of autovacuum_freeze_max_age by default.
Therefore, a periodic manual VACUUM has a chance to run before an anti-wraparound
autovacuum is launched for the table.

Default value: 15000000000

bytea_output
Parameter description: Specifies the output format for values of the bytea type.

Type: USERSET

Value range: enumerated values

● hex indicates the binary data is converted to the two-byte hexadecimal digit.
● escape indicates the traditional PostgreSQL format is used. It takes the

approach of representing a binary string as a sequence of ASCII characters,
while converting those bytes that cannot be represented as an ASCII character
into special escape sequences.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1113

Default value: hex

xmlbinary
Parameter description: Specifies how binary values are to be encoded in XML.

Type: USERSET

Value range: enumerated values

● base64
● hex

Default value: base64

xmloption
Parameter description: Specifies whether DOCUMENT or CONTENT is implicit
when converting between XML and string values.

Type: USERSET

Value range: enumerated values

● document indicates an HTML document.
● content indicates a common string.

Default value: content

gin_pending_list_limit
Parameter description: Specifies the maximum size of the GIN pending list which
is used when fastupdate is enabled. If the list grows larger than this maximum
size, it is cleaned up by moving the entries in it to the main GIN data structure in
batches. This setting can be overridden for individual GIN indexes by modifying
index storage parameters.

Type: USERSET

Value range: an integer ranging from 64 to INT_MAX. The unit is KB.

Default value: 4 MB

15.15.2 Zone and Formatting
This section describes parameters related to the time format setting.

DateStyle
Parameter description: Specifies the display format for date and time values, as
well as the rules for interpreting ambiguous date input values.

This variable contains two independent components: the output format
specifications (ISO, Postgres, SQL, or German) and the input/output order of year/
month/day (DMY, MDY, or YMD). The two components can be set separately or
together. The keywords Euro and European are synonyms for DMY; the keywords
US, NonEuro, and NonEuropean are synonyms for MDY.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1114

Type: USERSET

Value range: a string

Default value: ISO, MDY

NO TE

gs_initdb will initialize this parameter so that its value is the same as that of lc_time.

Suggestion: The ISO format is recommended. Postgres, SQL, and German use
abbreviations for time zones, such as EST, WST, and CST.

IntervalStyle
Parameter description: Specifies the display format for interval values.

Type: USERSET

Value range: enumerated values

● sql_standard indicates that output matching SQL standards will be
generated.

● postgres indicates that output matching PostgreSQL 8.4 will be generated
when the DateStyle parameter is set to ISO.

● postgres_verbose indicates that output matching PostgreSQL 8.4 will be
generated when the DateStyle parameter is set to non_ISO.

● iso_8601 indicates that output matching the time interval "format with
designators" defined in ISO 8601 will be generated.

● oracle indicates the output result that matches the numtodsinterval function
in the Oracle database. For details, see numtodsinterval.

NO TICE

The IntervalStyle parameter also affects the interpretation of ambiguous interval
input.

Default value: postgres

TimeZone
Parameter description: Specifies the time zone for displaying and interpreting
time stamps.

Type: USERSET

Value range: a string. You can obtain it by querying the pg_timezone_names
view.

Default value: UTC

NO TE

gs_initdb will set a time zone value that is consistent with the system environment.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1115

timezone_abbreviations
Parameter description: Specifies the time zone abbreviations that will be
accepted by the server.

Type: USERSET

Value range: a string. You can obtain it by querying the pg_timezone_names view.

Default value: Default

NO TE

Default indicates an abbreviation that works in most of the world. There are also other
abbreviations, such as Australia and India that can be defined for a particular installation.

extra_float_digits
Parameter description: Specifies the number of digits displayed for floating-point
values, including float4, float8, and geometric data types. The parameter value is
added to the standard number of digits (FLT_DIG or DBL_DIG as appropriate).

Type: USERSET

Value range: an integer ranging from –15 to 3

NO TE

● This parameter can be set to 3 to include partially-significant digits. It is especially
useful for dumping float data that needs to be restored exactly.

● This parameter can also be set to a negative value to suppress unwanted digits.

Default value: 0

client_encoding
Parameter description: Specifies the client-side encoding type (character set).

Set this parameter as needed. Try to keep the client code and server code
consistent to improve efficiency.

Type: USERSET

Value range: encoding compatible with PostgreSQL. UTF8 indicates that the
database encoding is used.

NO TE

● You can run the locale -a command to check and set the system-supported zone and
the corresponding encoding format.

● By default, gs_initdb will initialize the setting of this parameter based on the current
system environment. You can also run the locale command to check the current
configuration environment.

● To use consistent encoding for communication within a cluster, you are advised to retain
the default value of client_encoding. Modification to this parameter in the
postgresql.conf file (by using the gs_guc tool, for example) does not take effect.

Default value: UTF8

Recommended value: SQL_ASCII or UTF8

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1116

lc_messages
Parameter description: Specifies the language in which messages are displayed.

Valid values depend on the current system. On some systems, this zone category
does not exist. Setting this variable will still work, but there will be no effect. In
addition, translated messages for the desired language may not exist. In this case,
you can still see the English messages.

Type: SUSET

Value range: a string

NO TE

● You can run the locale -a command to check and set the system-supported zone and
the corresponding encoding format.

● By default, gs_initdb will initialize the setting of this parameter based on the current
system environment. You can also run the locale command to check the current
configuration environment.

Default value: C

lc_monetary
Parameter description: Specifies the display format of monetary values. It affects
the output of functions such as to_char. Valid values depend on the current
system.

Type: USERSET

Value range: a string

NO TE

● You can run the locale -a command to check and set the system-supported zone and
the corresponding encoding format.

● By default, gs_initdb will initialize the setting of this parameter based on the current
system environment. You can also run the locale command to check the current
configuration environment.

Default value: C

lc_numeric
Parameter description: Specifies the display format of numbers. It affects the
output of functions such as to_char. Valid values depend on the current system.

Type: USERSET

Value range: a string

NO TE

● You can run the locale -a command to check and set the system-supported zone and
the corresponding encoding format.

● By default, gs_initdb will initialize the setting of this parameter based on the current
system environment. You can also run the locale command to check the current
configuration environment.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1117

Default value: C

lc_time
Parameter description: Specifies the display format of time and zones. It affects
the output of functions such as to_char. Valid values depend on the current
system.

Type: USERSET

Value range: a string

NO TE

● You can run the locale -a command to check and set the system-supported zone and
the corresponding encoding format.

● By default, gs_initdb will initialize the setting of this parameter based on the current
system environment. You can also run the locale command to check the current
configuration environment.

Default value: C

default_text_search_config
Parameter description: Specifies the text search configuration.

If the specified text search configuration does not exist, an error will be reported.
If the specified text search configuration is deleted, set
default_text_search_config again. Otherwise, an error will be reported, indicating
incorrect configuration.

● The text search configuration is used by text search functions that do not
have an explicit argument specifying the configuration.

● When a configuration file matching the environment is determined, gs_initdb
will initialize the configuration file with a setting that corresponds to the
environment.

Type: USERSET

Value range: a string

NO TE

GaussDB(DWS) supports the following two configurations: pg_catalog.english and
pg_catalog.simple.

Default value: pg_catalog.english

15.15.3 Other Default Parameters
This section describes the default database loading parameters of the database
system.

dynamic_library_path
Parameter description: Specifies the path for saving the shared database files
that are dynamically loaded for data searching. When a dynamically loaded

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1118

module needs to be opened and the file name specified in the CREATE
FUNCTION or LOAD command does not have a directory component, the system
will search this path for the required file.

The value of dynamic_library_path must be a list of absolute paths separated by
colons (:) or by semi-colons (;) on the Windows OS. The special variable $libdir in
the beginning of a path will be replaced with the module installation directory
provided by GaussDB(DWS). Example:
dynamic_library_path = '/usr/local/lib/postgresql:/opt/testgs/lib:$libdir'

Type: SUSET

Value range: a string

NO TE

If the value of this parameter is set to an empty character string, the automatic path search
is turned off.

Default value: $libdir

gin_fuzzy_search_limit
Parameter description: Specifies the upper limit of the size of the set returned by
GIN indexes.

Type: USERSET

Value range: an integer ranging from 0 to INT_MAX. The value 0 indicates no
limit.

Default value: 0

15.16 Lock Management
In GaussDB(DWS), concurrent transactions may cause single-node deadlocks or
distributed deadlocks due to resource competition. This section describes
parameters used for managing transaction lock mechanisms.

deadlock_timeout
Parameter description: Specifies the time, in milliseconds, to wait on a lock
before checking whether there is a deadlock condition. When the applied lock
exceeds the preset value, the system will check whether a deadlock occurs.

● The check for deadlock is relatively expensive. Therefore, the server does not
check it when waiting for a lock every time. Deadlocks do not frequently
occur when the system is running. Therefore, the system just needs to wait on
the lock for a while before checking for a deadlock. Increasing this value
reduces the time wasted in needless deadlock checks, but slows down
reporting of real deadlock errors. On a heavily loaded server, you may need to
raise it. The value you have set needs to exceed the transaction time. By doing
this, the possibility that a lock will be released before the waiter decides to
check for deadlocks will be reduced.

● When log_lock_waits is set, this parameter also determines the duration you
need to wait before a log message about the lock wait is issued. If you are

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1119

trying to investigate locking delays, you need to set this parameter to a value
smaller than normal deadlock_timeout.

Type: SUSET

Value range: an integer ranging from 1 to 2147483647. The unit is millisecond
(ms).

Default value: 1s

ddl_lock_timeout

Parameter description: Indicates the number of seconds a DDL command should
wait for the locks to become available. If the time spent in waiting for a lock
exceeds the specified time, an error is reported. This parameter is supported only
by clusters of version 8.1.3.200 or later.

Type: SUSET

Value range: an integer ranging from 0 to INT_MAX. The unit is millisecond (ms).

● If the value of this parameter is 0, this parameter does not take effect.
● If the value of this parameter is greater than 0, the lock wait time of DDL

statements is the value of this parameter, and the lock wait time of other
locks is the value of lockwait_timeout.

Default value: 0

NO TE

This parameter has a higher priority than lockwait_timeout and takes effect only for
AccessExclusiveLock.

ddl_select_concurrent_mode

Parameter description: Specifies the concurrency mode of DDL and SELECT
statements. This parameter is supported only by clusters of version 8.1.3.320, 8.2.1,
or later.

Type: SUSET

Value range: a string

● none: DDL and select statements cannot be executed concurrently. Waiting
statements are in the lock wait state.

● truncate: When the TRUNCATE statement is blocked by the SELECT
statement, the SELECT statement is interrupted and the TRUNCATE
statement is executed first.

● exchange: When the EXCHANGE statement is blocked by the SELECT
statement, the SELECT statement is interrupted and the EXCHANGE
statement is executed first.

● vacuum_full: When the vacuum_full statement is blocked by the SELECT
statement, the SELECT statement is interrupted and the vacuum_full
statement is executed first. This is supported only by clusters of version
9.1.0.200 or later.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1120

● insert_overwrite: When the insert_overwrite statement is blocked by the
SELECT statement, the SELECT statement is interrupted and the
insert_overwrite statement is executed first. This is supported only by clusters
of version 9.1.0.200 or later.

Default value: none

NO TE

● To reserve time for the SELECT statement to respond to signals, if the value of
ddl_lock_timeout is less than 1 second in the current version, 1 second is used.

● Concurrency is not supported when there are conflicts with locks of higher levels (more
than one level). For example, autoanalyze is triggered by SELECT when
autoanalyze_mode is set to normal.

● This parameter allows for SELECT statements in either a single statement or a
transaction block. However, in other versions, it only supports SELECT statements in a
single statement. For concurrent SELECT operations in a single statement or transaction
block, learn more information in the description of parameter
enable_cancel_select_in_txnblock.

● Values other than none can be used together. For example, if this parameter is set to
truncate, exchange, the TRUNCATE and EXCHANGE statements are blocked by the
SELECT statement. The SELECT statement is interrupted and executed first.

enable_cancel_select_in_txnblock
Parameter description: Specifies whether the SELECT statement in a transaction
block can be interrupted. This parameter is supported only by clusters of version
8.2.1, 9.1.0.200, or later.

Type: USERSET

Value range: Boolean

● on indicates that the select operation in the transaction block can be
interrupted.

● off indicates that the select operation in the transaction block cannot be
interrupted.

Default value: on

NO TE

● This parameter controls whether the SELECT statement in a transaction block can be
interrupted by the DDL operation specified in ddl_select_concurrent_mode.

● The ddl_select_concurrent_mode parameter controls DDL statements such as
TRUNCATE and EXCHANGE, and the enable_cancel_select_in_txnblock parameter
controls SELECT statements.

lockwait_timeout
Parameter description: Specifies the longest time to wait before a single lock
times out. If the time you wait before acquiring a lock exceeds the specified time,
an error is reported.

Type: SUSET

Value range: an integer ranging from 0 to INT_MAX. The unit is millisecond (ms).

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1121

Default value: 20 min

update_lockwait_timeout
Parameter description: sets the maximum duration that a lock waits for
concurrent updates on a row to complete when the concurrent update feature is
enabled. If the time you wait before acquiring a lock exceeds the specified time,
an error is reported.

Type: SUSET

Value range: an integer ranging from 0 to INT_MAX. The unit is millisecond (ms).

Default value: 2min

max_locks_per_transaction
Parameter description: Controls the average number of object locks allocated for
each transaction.

● The size of the shared lock table is calculated under the condition that a
maximum of N independent objects need to be locked at any time. N =
max_locks_per_transaction x (max_connections + max_prepared_transactions).
Objects that do not exceed the preset number can be locked simultaneously
at any time. You may need to increase this value when you modify many
different tables in a single transaction. This parameter can only be set at
database start.

● If this parameter is set to a large value, GaussDB(DWS) may require more
System V shared memory than the default setting.

● When running a standby server, you must set this parameter to a value that is
no less than that on the primary server. Otherwise, queries will not be allowed
on the standby server.

Type: POSTMASTER

Value range: an integer ranging from 10 to INT_MAX

Default value: 256

max_pred_locks_per_transaction
Parameter description: Controls the average number of predicated locks
allocated for each transaction.

● The size of the shared and predicated lock table is calculated under the
condition that a maximum of N independent objects need to be locked at any
time. N = max_pred_locks_per_transaction x (max_connections +
max_prepared_transactions). Objects that do not exceed the preset number
can be locked simultaneously at any time. You may need to increase this
value when you modify many different tables in a single transaction. This
parameter can only be set at server start.

● If this parameter is set to a large value, GaussDB(DWS) may require more
System V shared memory than the default setting.

Type: POSTMASTER

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1122

Value range: an integer ranging from 10 to INT_MAX

Default value: 64

partition_lock_upgrade_timeout
Parameter description: Specifies the time to wait before the attempt of a lock
upgrade from ExclusiveLock to AccessExclusiveLock times out on partitions.

● When you do MERGE PARTITION and CLUSTER PARTITION on a partitioned
table, temporary tables are used for data rearrangement and file exchange. To
concurrently perform as many operations as possible on the partitions,
ExclusiveLock is acquired for the partitions during data rearrangement and
AccessExclusiveLock is acquired during file exchange.

● Generally, a partition waits until it acquires a lock, or a timeout occurs if the
partition waits for a period of time longer than specified by the
lockwait_timeout parameter.

● When doing MERGE PARTITION or CLUSTER PARTITION on a partitioned
table, you need to acquire AccessExclusiveLock during file exchange. If the
lock fails to be acquired, the acquisition is retried in 50 ms. This parameter
specifies the time to wait before the lock acquisition attempt times out.

● If this parameter is set to –1, the lock upgrade never times out. The lock
upgrade is continuously retried until it succeeds.

Type: USERSET

Value range: an integer ranging from –1 to 3000, in seconds

Default value: 1800

enable_release_scan_lock
Parameter description: Specifies whether a SELECT statement releases a level-1
lock after the statement execution is complete. This parameter reduces DDL
conflicts with SELECT locks within transaction blocks. This parameter is supported
only by clusters of version 8.3.0 or later.

Type: USERSET

Value range: Boolean

● on indicates that DDL operations will be blocked to wait for the release of
cluster locks. The SELECT statement releases the level-1 lock after it finishes,
not when the transaction commits.

● off indicates that DDL operations will not be blocked.

Default value: off

enable_global_deadlock_detector
Parameter description: Specifies whether the distributed deadlock detection
function module is enabled. This parameter is supported only by clusters of 8.3.0
and later versions.

Type: SIGHUP

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1123

Value range: Boolean

● on indicates that DDL operations will be blocked to wait for the release of
cluster locks.

● off indicates that DDL operations will not be blocked.
Default value: off

NO TE

When distributed deadlock detection is on, the system can find and break deadlocks
within a time limit. It does this by releasing the locked resources and canceling the
most recent transaction. The user then sees an error "cancelled by global deadlock
detector".

global_deadlock_detector_period
Parameter description: Specifies the distributed deadlock detection interval. This
parameter is supported only by cluster versions 8.3.0 and later.

Type: SIGHUP

Value range: an integer ranging from 1 to INT_MAX. The unit is s.

Default value: 5s

vacuum_full_interruptible
Parameter description: Controls the behavior that the VACUUM FULL statement
gives a lock to other statements. This is supported only by clusters of version
9.1.0.200 or later.

Type: USERSET

Value range: Boolean

● on indicates that DDL operations will be blocked to wait for the release of
cluster locks. When VACUUM FULL blocks other statements, it interrupts the
execution and gives the lock to other statements.

● off indicates that DDL operations will not be blocked. When VACUUM FULL
blocks other statements, it does not interrupt the execution. Other statements
can be executed only after VACUUM FULL has completed and released the
lock.

Default value: off

forbid_interrupt_vacuum_full_appnames
Parameter description: Specifies which statements are given locks by the
VACUUM FULL statement when vacuum_full_interruptible is set to on. If the
application name of the statement is included in the list specified by the
parameter, VACUUM FULL does not lock the statement even if
vacuum_full_interruptible is set to on. This is supported only by clusters of
version 9.1.0.200 or later.

Type: SIGHUP

Value range: a string

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1124

Default value: CalculateSpaceInfo,OM,gs_roach

NO TE

● If multiple application names are configured, separate them with commas (,), for
example,
forbid_interrupt_vacuum_full_appnames='CalculateSpaceInfo,OM,gs_roach'.

● The application name can contain only letters, digits, and underscores (_) and cannot
contain special characters such as spaces and quotation marks.

● The application name is case insensitive. That is, om and OM are considered as the
same application name.

● When vacuum_full_interruptible is off, VACUUM FULL does not give locks to any
statement.

15.17 Version and Platform Compatibility

15.17.1 Compatibility with Earlier Versions
GaussDB(DWS) provides parameter controls for the downward compatibility and
external compatibility features of the database. The backward compatibility of the
database system can provide support for old versions of database applications.
The parameters introduced in this section mainly control the backward
compatibility of the database.

array_nulls

Parameter description: Determines whether the array input parser recognizes
unquoted NULL as a null array element.

Type: USERSET

Value range: Boolean

● on indicates that null values can be entered in arrays.
● off indicates backward compatibility with the old behavior. Arrays containing

NULL values can still be created when this parameter is set to off.

Default value: on

backslash_quote

Parameter description: Determines whether a single quotation mark can be
represented by \' in a string text.

Type: USERSET

NO TICE

When the string text meets the SQL standards, \ has no other meanings. This
parameter only affects the handling of non-standard-conforming string texts,
including escape string syntax (E'...').

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1125

Value range: enumerated values

● on indicates that the use of \' is always allowed.
● off indicates that the use of \' is rejected.
● safe_encoding indicates that the use of \' is allowed only when client

encoding does not allow ASCII \ within a multibyte character.

Default value: safe_encoding

default_with_oids
Parameter description: Determines whether CREATE TABLE and CREATE TABLE
AS include an OID field in newly-created tables if neither WITH OIDS nor
WITHOUT OIDS is specified. It also determines whether OIDs will be included in
tables created by SELECT INTO.

It is not recommended that OIDs be used in user tables. Therefore, this parameter
is set to off by default. When OIDs are required for a particular table, WITH OIDS
needs to be specified during the table creation.

Type: USERSET

Value range: Boolean

● on indicates CREATE TABLE and CREATE TABLE AS can include an OID field
in newly-created tables.

● off indicates CREATE TABLE and CREATE TABLE AS cannot include any OID
field in newly-created tables.

Default value: off

escape_string_warning
Parameter description: Specifies a warning on directly using a backslash (\) as an
escape in an ordinary character string.

● Applications that wish to use a backslash (\) as an escape need to be
modified to use escape string syntax (E'...'). This is because the default
behavior of ordinary character strings is now to treat the backslash as an
ordinary character in each SQL standard.

● This variable can be enabled to help locate codes that need to be changed.

Type: USERSET

Value range: Boolean

Default value: on

lo_compat_privileges
Parameter description: Determines whether to enable backward compatibility for
the privilege check of large objects.

Type: SUSET

Value range: Boolean

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1126

on indicates that the privilege check is disabled when users read or modify large
objects. This setting is compatible with versions earlier than PostgreSQL 9.0.

Default value: off

quote_all_identifiers

Parameter description: When the database generates SQL, this parameter
forcibly quotes all identifiers even if they are not keywords. This will affect the
output of EXPLAIN as well as the results of functions, such as pg_get_viewdef. For
details, see the --quote-all-identifiers parameter of gs_dump.

Type: USERSET

Value range: Boolean

● on indicates the forcible quotation function is enabled.

● off indicates the forcible quotation function is disabled.

Default value: off

sql_inheritance

Parameter description: Determines whether to inherit semantics.

Type: USERSET

Value range: Boolean

off indicates that child tables cannot be accessed by various commands. That is,
an ONLY keyword is used by default. This setting is compatible with versions
earlier than PostgreSQL 7.1.

Default value: on

standard_conforming_strings

Parameter description: Determines whether ordinary string texts ('...') treat
backslashes as ordinary texts as specified in the SQL standard.

● Applications can check this parameter to determine how string texts will be
processed.

● It is recommended that characters be escaped by using the escape string
syntax (E'...').

Type: USERSET

Value range: Boolean

● on indicates that the function is enabled.

● off indicates that the function is disabled.

Default value: on

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1127

synchronize_seqscans
Parameter description: Controls sequential scans of tables to synchronize with
each other. Concurrent scans read the same data block about at the same time
and share the I/O workload.

Type: USERSET

Value range: Boolean

● on indicates that a scan may start in the middle of the table and then "wrap
around" the end to cover all rows to synchronize with the activity of scans
already in progress. This may result in unpredictable changes in the row
ordering returned by queries that have no ORDER BY clause.

● off indicates that the scan always starts from the table heading.

Default value: on

enable_beta_features
Parameter description: Controls whether certain limited features, such as GDS
table join, are available. These features are not explicitly prohibited in earlier
versions, but are not recommended due to their limitations in certain scenarios.

Type: USERSET

Value range: Boolean

● on indicates that the features are enabled and forward compatible, but may
incur errors in certain scenarios.

● off indicates that the features are disabled.

Default value: off

15.17.2 Platform and Client Compatibility
Many platforms use the database system. External compatibility of the database
system provides a lot of convenience for platforms.

transform_null_equals
Parameter description: Determines whether expressions of the form expr = NULL
(or NULL = expr) are treated as expr IS NULL. They return true if expr evaluates to
NULL, and false otherwise.

● The correct SQL-standard-compliant behavior of expr = NULL is to always
return null (unknown).

● Filtered forms in Microsoft Access generate queries that appear to use expr =
NULL to test for null values. If you turn this option on, you can use this
interface to access the database.

Type: USERSET

Value range: Boolean

● on indicates expressions of the form expr = NULL (or NULL = expr) are
treated as expr IS NULL.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1128

● off indicates expr = NULL always returns NULL.

Default value: off

NO TE

New users are always confused about the semantics of expressions involving NULL values.
Therefore, off is used as the default value.

td_compatible_truncation

Parameter description: Determines whether to enable features compatible with a
Teradata database. You can set this parameter to on when connecting to a
database compatible with the Teradata database, so that when you perform the
INSERT operation, overlong strings are truncated based on the allowed maximum
length before being inserted into char- and varchar-type columns in the target
table. This ensures all data is inserted into the target table without errors
reported.

NO TE

● The string truncation function cannot be used if the INSERT statement includes a
foreign table.

● If inserting multi-byte character data (such as Chinese characters) to database with the
character set byte encoding (SQL_ASCII, LATIN1), and the character data crosses the
truncation position, the string is truncated based on its bytes instead of characters.
Unexpected result will occur in tail after the truncation. If you want correct truncation
result, you are advised to adopt encoding set such as UTF8, which has no character data
crossing the truncation position.

Type: USERSET

Value range: Boolean

● on indicates overlong strings are truncated.

● off indicates overlong strings are not truncated.

Default value: off

behavior_compat_options

Parameter description: Specifies the database compatibility behavior, which
consists of multiple items separated by commas (,).

Type: USERSET

Value range: a string

Default value: In upgrade scenarios, the default value of this parameter is the
same as that in the cluster before the upgrade. When a new cluster is installed,
the default value of this parameter is
check_function_conflicts,check_function_shippable,unsupported_set_function_
case to prevent serious issues caused by incorrect function attributes that users
define.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1129

NO TE

● Currently, only items in Table 15-4 are supported.
● Multiple items are separated by commas (,), for example, set

behavior_compat_options='end_month_calculate,display_leading_zero';.
● strict_concat_functions and strict_text_concat_td are mutually exclusive.
● You are not advised to set behavior_compat_options to 'return_null_string' in Oracle

compatibility mode. If this option is set, do not insert query results into tables.

Table 15-4 Compatibility configuration items

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

display_leadi
ng_zero

Specifies how floating point numbers are displayed.
● If this item is not specified, decimal numbers between

–1 and 0, and between 0 and 1, do not display the
leading zero before the decimal point. For example,
0.25 is displayed as .25.

● If this item is specified, decimal numbers between –1
and 0, and between 0 and 1, display the leading zero
before the decimal point. For example, 0.25 is
displayed as 0.25.

ORA
TD

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1130

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

end_month_c
alculate

Specifies the calculation logic of the add_months
function.
Assuming that the two parameters of the add_months
function are param1 and param2, and the sum of the
months of param1 and param2 is result:
● If this item is not specified, and the Day of param1

indicates the last day of a month shorter than result,
the Day in the calculation result will equal that in
param1. For example:

select add_months('2018-02-28',3) from dual;
add_months

2018-05-28 00:00:00
(1 row)

● If this item is specified, and the Day of param1
indicates the last day of a month shorter than result,
the Day in the calculation result will equal that in
result. For example:

select add_months('2018-02-28',3) from dual;
add_months

2018-05-31 00:00:00
(1 row)

ORA
TD

compat_anal
yze_sample

Specifies the sampling behavior of the ANALYZE
operation.
If this item is specified, the sample collected by the
ANALYZE operation will be limited to around 30,000
records, controlling CN memory consumption and
maintaining the stability of ANALYZE.

ORA
TD
MyS
QL

bind_schema
_tablespace

Binds a schema with the tablespace with the same
name.
If a tablespace name is the same as sche_name,
default_tablespace will also be set to sche_name if
search_path is set to sche_name.

ORA
TD
MyS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1131

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

bind_procedu
re_searchpat
h

Specifies the search path of the database object for
which no schema name is specified.
If no schema name is specified for a stored procedure,
the search is performed in the schema the stored
procedure belongs to.
If the stored procedure is not found, the following
operations are performed:
● If this item is not specified, the system reports an

error and exits.
● If this item is specified, the search continues based on

the settings of search_path. If the issue persists, the
system reports an error and exits.

ORA
TD
MyS
QL

correct_to_nu
mber

Controls the compatibility of the to_number() result.
If this item is specified, the result of the to_number()
function is the same as that of PG11. Otherwise, the
result is the same as that of Oracle.

ORA

unbind_divid
e_bound

Controls the range check on the result of integer division.
● If this item is not specified, the division result is

checked. If the result is out of the range, an error is
reported. In the following example, an out-of-range
error is reported because the value of INT_MIN/(–1)
is greater than the value of INT_MAX.

SELECT (-2147483648)::int / (-1)::int;
ERROR: integer out of range

● If this item is specified, the range of the division result
does not need to be checked. In the following
example, INT_MIN/(–1) can be used to obtain the
output result INT_MAX+1.

SELECT (-2147483648)::int / (-1)::int;
 ?column?

 2147483648
(1 row)

ORA
TD

merge_updat
e_multi

Specifies whether to perform an update when MERGE
INTO is executed to match multiple rows.
If this item is specified, no error is reported when
multiple rows are matched. Otherwise, an error is
reported (same as Oracle).

ORA
TD

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1132

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

disable_row_
update_multi

Specifies whether to perform an update when multiple
rows of a row-store table are matched.
If this item is specified, an error is reported when
multiple rows are matched. Otherwise, multiple rows can
be matched and updated by default.

ORA
TD

return_null_s
tring

Specifies how to display the empty result (empty string
'') of the lpad(), rpad(), repeat(),
regexp_split_to_table(), and split_part() functions.
● If this item is not specified, the empty string is

displayed as NULL.
select length(lpad('123',0,'*')) from dual;
length

(1 row)

● If this item is specified, the empty string is displayed
as single quotation marks ('').

select length(lpad('123',0,'*')) from dual;
length

0
(1 row)

ORA

compat_conc
at_variadic

Specifies the compatibility of variadic results of the
concat() and concat_ws() functions.
If this item is specified and a concat function has a
parameter of the variadic type, different result formats
in Oracle and Teradata are retained. If this item is not
specified and a concat function has a parameter of the
variadic type, the result format of Oracle is retained for
both Oracle and Teradata.

ORA
TD

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1133

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

convert_strin
g_digit_to_nu
meric

Specifies the type casting priority for binary BOOL
operations on the CHAR type and INT type.
● If this item is not specified, the type casting priority is

the same as that of PG9.6.
● After this item is configured, all binary BOOL

operations of the CHAR type and INT type are forcibly
converted to the NUMERIC type for computation.
After this configuration item is set, the CHAR types
that are affected include BPCHAR, VARCHAR,
NVARCHAR2, and TEXT, and the INT types that are
affected include INT1, INT2, INT4, and INT8.

CAUTION
This configuration item is valid only for binary BOOL operation,
for example, INT2>TEXT and INT4=BPCHAR. Non-BOOL
operation is not affected. This configuration item does not
support conversion of UNKNOWN operations such as INT>'1.1'.
After this configuration item is enabled, all BOOL operations of
the CHAR and INT types are preferentially converted to the
NUMERIC type for computation, which affects the computation
performance of the database. When the JOIN column is a
combination of affected types, the execution plan is affected.

ORA
TD
MyS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1134

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

check_functio
n_conflicts

Controls the check of the custom plpgsql/SQL function
attributes.
● If this parameter is not specified, the IMMUTABLE/

STABLE/VOLATILE attributes of a custom function
are not checked.

● If this parameter is specified, the IMMUTABLE
attribute of a custom function is checked. If the
function contains a table or the STABLE/VOLATILE
function, an error is reported during the function
execution. In a custom function, a table or the
STABLE/VOLATILE function conflicts with the
IMMUTABLE attribute, thus function behaviors are not
IMMUTABLE in this case.

For example, when this parameter is specified, an error is
reported in the following scenarios:
CREATE OR replace FUNCTION sql_immutable (INTEGER)
RETURNS INTEGER AS 'SELECT a+$1 from shipping_schema.t4 where a=1;'
LANGUAGE SQL IMMUTABLE
RETURNS NULL
ON NULL INPUT;
select sql_immutable(1);
ERROR: IMMUTABLE function cannot contain SQL statements with
relation or Non-IMMUTABLE function.
CONTEXT: SQL function "sql_immutable" during startup
referenced column: sql_immutable

ORA
TD
MyS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1135

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

varray_verific
ation

Indicates whether to verify the array length and array
type length. This parameter is compatible with
GaussDB(DWS) of versions earlier than 8.1.0.
If this parameter is specified, the array length and array
type length are not verified.
Scenario 1
CREATE OR REPLACE PROCEDURE varray_verification
AS
 TYPE org_varray_type IS varray(5) OF VARCHAR2(2);
 v_org_varray org_varray_type;
BEGIN
 v_org_varray(1) := '111'; --If the value exceeds the limit of
VARCHAR2(2), the setting will be consistent with that in the historical
version and no verification is performed after configuring this option.
END;
/
Scenario 2
CREATE OR REPLACE PROCEDURE varray_verification_i3_1
AS
 TYPE org_varray_type IS varray(2) OF NUMBER(2);
 v_org_varray org_varray_type;
BEGIN
 v_org_varray(3) := 1; --If the value exceeds the limit of varray(2)
specified for array length, the setting will be consistent with that in the
historical version and no verification is performed after configuring this
option.
END;
/

ORA
TD

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1136

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

strict_concat_
functions

Indicates whether the textanycat() and anytextcat()
functions are compatible with the return value if there
are null parameters. This parameter and
strict_text_concat_td are mutually exclusive.
In MySQL-compatible mode, this parameter has no
impact.
● If this configuration item is not specified, the returned

values of the textanycat() and anytextcat()
functions are the same as those in the Oracle
database.

● When this configuration item is specified, if there are
null parameters in the textanycat() and
anytextcat() functions, the returned value is also
null. Different result formats in Oracle and Teradata
are retained.

If this configuration item is not specified, the returned
values of the textanycat() and anytextcat() functions
are the same as those in the Oracle database.
SELECT textanycat('gauss', cast(NULL as BOOLEAN));
 textanycat

 gauss
(1 row)

SELECT 'gauss' || cast(NULL as BOOLEAN); -- In this case, the || operator is
converted to the textanycat function.
 ?column?

 gauss
(1 row)

When setting this configuration item, retain the results
that are different from those in Oracle and Teradata:
SELECT textanycat('gauss', cast(NULL as BOOLEAN));
 textanycat

(1 row)

SELECT 'gauss' || cast(NULL as BOOLEAN); -- In this case, the || operator is
converted to the textanycat function.
 ?column?

(1 row)

ORA
TD

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1137

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

strict_text_co
ncat_td

In Teradata compatible mode, whether the textcat(),
textanycat() and anytextcat() functions are compatible
with the return value if there are null parameters. This
parameter and strict_concat_functions are mutually
exclusive.
● If this parameter is not specified, the return values of

the textcat(), textanycat(), and anytextcat()
functions in Teradata-compatible mode are the same
as those in GaussDB(DWS).

● When this parameter is specified, if the textcat(),
textanycat(), and anytextcat() functions contain any
null parameter values, the return value is null in
Teradata-compatible mode.

If this parameter is not specified, the return values of the
textcat(), textanycat(), and anytextcat() functions are
the same as those in GaussDB(DWS).
td_compatibility_db=# SELECT textcat('abc', NULL);
textcat

abc
(1 row)
td_compatibility_db=# SELECT 'abc' || NULL; -- In this case, the operator ||
is converted to the textcat() function.
?column?

abc
(1 row)

When this parameter is specified, NULL is returned if any
of the textcat(), textanycat(), and anytextcat()
functions returns a null value.
td_compatibility_db=# SELECT textcat('abc', NULL);
textcat

(1 row)
td_compatibility_db=# SELECT 'abc' || NULL;
?column?

(1 row)

TD

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1138

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

compat_displ
ay_ref_table

Sets the column display format in the view.
● If this parameter is not specified, the prefix is used by

default, in the tab.col format.
● Specify this parameter to the same original definition.

It is displayed only when the original definition
contains a prefix.

SET behavior_compat_options='compat_display_ref_table';
CREATE OR REPLACE VIEW viewtest2 AS SELECT a.c1, c2, a.c3, 0 AS c4
FROM viewtest_tbl a;
SELECT pg_get_viewdef('viewtest2');
pg_get_viewdef

SELECT a.c1, c2, a.c3, 0 AS c4 FROM viewtest_tbl a;
(1 row)

ORA
TD

para_support
_set_func

Whether the input parameters of the COALESCE(),
NVL(), GREATEST(), and LEAST() functions in a
column-store table support multiple result set
expressions.
● If this item is not specified and the input parameter

contains multiple result set expressions, an error is
reported, indicating that the function is not
supported.

SELECT COALESCE(regexp_split_to_table(c3,'#'),
regexp_split_to_table(c3,'#')) FROM regexp_ext2_tb1 ORDER BY 1 LIMIT 5;
ERROR: set-valued function called in context that cannot accept a set

● When this configuration item is specified, the function
input parameter can contain multiple result set
expressions.

SELECT COALESCE(regexp_split_to_table(c3,'#'),
regexp_split_to_table(c3,'#')) FROM regexp_ext2_tb1 ORDER BY 1 LIMIT 5;
 coalesce

 a
 a
 a
 a
 a
(5 rows)

ORA
TD

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1139

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

disable_selec
t_truncate_p
arallel

Controls the DDL lock level such as TRUNCATE in a
partitioned table.
● If this item is specified, the concurrent execution of

TRUNCATE and DML operations (such as SELECT) on
different partitions is forbidden, and the fast query
shipping (FQS) of the SELECT operation on the
partitioned table is allowed. You can set this
parameter in the OLTP database, where there are
many simple queries on partitioned tables, and there
is no requirement for concurrent TRUNCATE and DML
operations on different partitions.

● If this item is not specified, SELECT and TRUNCATE
operations can be concurrently performed on different
partitions in a partitioned table, and the FQS of the
partitioned table is disabled to avoid possible
inconsistency.

ORA
TD
MyS
QL

bpchar_text_
without_rtri
m

In Teradata-compatible mode, controls the space to be
retained on the right during the character conversion
from bpchar to text. If the actual length is less than the
length specified by bpchar, spaces are added to the
value to be compatible with the Teradata style of the
bpchar string.
Currently, ignoring spaces at the end of a string for
comparison is not supported. If the concatenated string
contains spaces at the end, the comparison is space-
sensitive.
The following is an example:
td_compatibility_db=# select length('a'::char(10)::text);
length

10
(1 row)

td_compatibility_db=# select length('a'||'a'::char(10));
length

11
(1 row)

TD

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1140

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

convert_empt
y_str_to_null_
td

In Teradata-compatible mode, controls the to_date,
to_timestamp, and to_number type conversion
functions to return null when they encounter empty
strings, and controls the format of the return value when
the to_char function encounters an input parameter of
the date type.
Example:
If this parameter is not specified:
td_compatibility_db=# select to_number('');
 to_number

 0
(1 row)

td_compatibility_db=# select to_date('');
ERROR: the format is not correct
DETAIL: invalid date length "0", must between 8 and 10.
CONTEXT: referenced column: to_date

td_compatibility_db=# select to_timestamp('');
 to_timestamp

 0001-01-01 00:00:00 BC
(1 row)

td_compatibility_db=# select to_char(date '2020-11-16');
 to_char

 2020-11-16 00:00:00+08
(1 row)

If this parameter is specified, and parameters of
to_number, to_date, and to_timestamp functions
contain empty strings:
td_compatibility_db=# select to_number('');
 to_number

(1 row)

td_compatibility_db=# select to_date('');
 to_date

(1 row)

td_compatibility_db=# select to_timestamp('');
 to_timestamp

(1 row)

TD

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1141

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

td_compatibility_db=# select to_char(date '2020-11-16');
 to_char

 2020/11/16
(1 row)

disable_case_
specific

Determines whether to ignore case sensitivity during
character type match. This parameter is valid only in
Teradata-compatible mode.
● If this item is not specified, characters are case-

sensitive during character type match.
● If this item is specified, characters are case-insensitive

during character type match.
After being specified, this item will affect five character
types (CHAR, TEXT, BPCHAR, VARCHAR, and
NVARCHAR), 12 operators (<, >, =, >=, <=, !=, <>, !=,
like, not like, in, and not in), and expressions case
when and decode.
CAUTION

After this item is enabled, the UPPER function is added before
the character type, which affects the estimation logic. Therefore,
an enhanced estimation model is required. (Suggested settings:
cost_param = 16, cost_model_version = 1, join_num_distinct =
–20, and qual_num_distinct = 200)

TD

enable_interv
al_to_text

Controls the implicit conversion from the interval type
to the text type.
● When this option is enabled, the implicit conversion

from the interval type to the text type is supported.
SELECT TO_DATE('20200923', 'yyyymmdd') - TO_DATE('20200920',
'yyyymmdd') = '3'::text;
?column?

f
(1 row)

● When this option is disabled, the implicit conversion
from the interval type to the text type is not
supported.
SELECT TO_DATE('20200923', 'yyyymmdd') - TO_DATE('20200920',
'yyyymmdd') = '3'::text;
?column?

t
(1 row)

ORA
TD
MyS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1142

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

case_insensiti
ve

In MySQL-compatible mode, configure this parameter to
specify the case-insensitive input parameters of the
locate, strpos, and instr string functions.
Currently, this parameter is not configured by default.
That is, the input parameter is case-sensitive.
Example:
● If this parameter is not configured, the input

parameter is case-sensitive.
mysql_compatibility_db=# SELECT LOCATE('sub', 'Substr');
 locate

 0
(1 row)

● If this parameter is configured, the input parameter is
case-insensitive.
mysql_compatibility_db=# SELECT LOCATE('sub', 'Substr');
 locate

 1
(1 row)

MyS
QL

inherit_not_n
ull_strict_fun
c

Controls the original strict attribute of a function. A
function with one parameter can transfer the NOT NULL
attribute. func(x) is used an example. If func() is the
strict attribute and x contains the NOT NULL constraint,
func(x) also contains the NOT NULL constraint.
The compatible configuration item is effective in some
optimization scenarios, for example, NOT IN and
COUNT(DISTINCT) optimization. However, the
optimization results may be incorrect in specific
scenarios.
Currently, this parameter is not configured by default to
ensure that the result is correct. However, the
performance may be rolled back. If an error occurs, you
can set this parameter to roll back to the historical
version.

ORA
TD
MyS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1143

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

disable_comp
at_minmax_e
xpr_mysql

Specifies the method for processing the input parameter
null in the greatest/least expression in MySQL-
compatible mode.
You can configure this parameter to roll back to a
historical version.
● If this parameter is not configured and the input

parameter is null, null is returned.
mysql_compatibility_db=# SELECT greatest(1, 2, null), least(1, 2, null);
 greatest | least
----------+-------
 |
(1 row)

● If this parameter is configured, the maximum or
minimum value of non-null parameters is returned.
mysql_compatibility_db=# SELECT greatest(1, 2, null), least(1, 2, null);
 greatest | least
----------+-------
 2 | 1
(1 row)

MyS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1144

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

disable_comp
at_substr_my
sql

Specifies the behavior of the substr/substring function
when the start position pos is ≤ 0 in MySQL-compatible
mode.
You can configure this parameter to roll back to a
historical version.
● If this parameter is not configured, that is, an empty

string is returned when pos = 0. When pos < 0,
TRUNCATE starts from the last |pos| character on.
mysql_compatibility_db=# SELECT substr('helloworld',0);
 substr

(1 row)
mysql_compatibility_db=# SELECT
substring('helloworld',0),substring('helloworld',-2,4);
 substring | substring
-----------+-----------
 | ld
(1 row)

● If this parameter is configured and pos is ≤ 0,
characters are truncated from the left.
mysql_compatibility_db=# SELECT substr('helloworld',0);
 substr

 helloworld
(1 row)
mysql_compatibility_db=# SELECT
substring('helloworld',0),substring('helloworld',-2,4);
 substring | substring
------------+-----------
 helloworld | h
(1 row)

MyS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1145

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

disable_comp
at_trim_mysq
l

Specifies the method for processing the input parameter
in the trim/ltrim/rtrim function in MySQL-compatible
mode.
You can configure this parameter to roll back to a
historical version.
● If this parameter is not configured, the entire

substring is matched.
mysql_compatibility_db=# SELECT trim('{}{name}
{}','{}'),trim('xyznamezyx','xyz');
 btrim | btrim
--------+---------
 {name} | namezyx
(1 row)

● If this parameter is configured, a single character in
the character set is matched.
mysql_compatibility_db=# SELECT trim('{}{name}
{}','{}'),trim('xyznamezyx','xyz');
 btrim | btrim
-------+-------
 name | name
(1 row)

MyS
QL

light_object_
mtime

Specifies whether the mtime column in the pg_object
system catalog records object operations.
● If this parameter is configured, the GRANT, REVOKE,

and TRUNCATE operations are not recorded by
mtime, that is, the mtime column is not updated.

● If this parameter is not configured (by default), the
ALTER, COMMENT, GRANT, REVOKE, and
TRUNCATE operations are recorded by mtime, that
is, the mtime column is updated.

ORA
TD
MyS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1146

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

disable_inclu
ding_all_mys
ql

In MySQL-compatible mode, this parameter controls
whether the CREATE TABLE...LIKE syntax is
INCLUDING_ALL.
By default, this parameter is not set. That is, in MySQL
compatibility mode, CREATE TABLE... LIKE syntax is
INCLUDING_ALL.
You can configure this parameter to roll back to a
historical version.
● If this parameter is not set, in MySQL-compatible

mode, the CREATE TABLE... LIKE syntax is in
INCLUDING_ALL.
mysql_compatibility_db=# CREATE TABLE mysql_like(id int, name
varchar(10), score int) DISTRIBUTE BY hash(id) COMMENT
'mysql_like';
CREATE TABLE
mysql_compatibility_db=# CREATE INDEX index_like ON
mysql_like(name);
CREATE INDEX
mysql_compatibility_db=# \d+ mysql_like;
 Table "public.mysql_like"
 Column | Type | Modifiers | Storage | Stats target |
Description
--------+-----------------------+-----------+----------+--------------
+-------------
 id | integer | | plain | |
 name | character varying(10) | | extended | |
 score | integer | | plain | |
Indexes:
 "index_like" btree (name) TABLESPACE pg_default
Has OIDs: no
Distribute By: HASH(id)
Location Nodes: ALL DATANODES
Options: orientation=row, compression=no

mysql_compatibility_db=# CREATE TABLE copy_like like mysql_like;
CREATE TABLE
mysql_compatibility_db=# \d+ copy_like;
 Table "public.copy_like"
 Column | Type | Modifiers | Storage | Stats target |
Description
--------+-----------------------+-----------+----------+--------------
+-------------
 id | integer | | plain | |
 name | character varying(10) | | extended | |
 score | integer | | plain | |
Indexes:
 "copy_like_name_idx" btree (name) TABLESPACE pg_default
Has OIDs: no
Distribute By: HASH(id)
Location Nodes: ALL DATANODES
Options: orientation=row, compression=no

MyS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1147

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

● If this parameter is set, in MySQL-compatible mode,
the CREATE TABLE... LIKE syntax is empty.
mysql_compatibility_db=# SET behavior_compat_options =
'disable_including_all_mysql';
SET
mysql_compatibility_db=# CREATE TABLE mysql_copy LIKE mysql_like;
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using round-
robin as the distribution mode by default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data
distribution column.
CREATE TABLE
mysql_db=# \d+ mysql_copy;
 Table "public.mysql_copy"
 Column | Type | Modifiers | Storage | Stats target |
Description
--------+-----------------------+-----------+----------+--------------
+-------------
 id | integer | | plain | |
 name | character varying(10) | | extended | |
 score | integer | | plain | |
Has OIDs: no
Distribute By: ROUND ROBIN
Location Nodes: ALL DATANODES
Options: orientation=row, compression=no

cte_onetime_
inline

Indicates whether to execute inline for non-stream
plans.
● When this parameter is set, the CTE that is not in a

stream plan and is referenced only once executes
inline.

● If this parameter is not set, the CTE that is not in a
stream plan and is referenced only once does not
execute inline.

ORA
TD
MyS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1148

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

skip_first_aft
er_mysql

Controls whether to ignore the FIRST/AFTER colname
syntax in ALTER TABLE ADD/MODIFY/CHANGE
COLUMN in MySQL-compatible mode.
● If this parameter is set, the FIRST/AFTER colname

syntax is ignored, and executing this syntax will not
result in any errors.
mysql_compatibility_db=# SET behavior_compat_options =
'skip_first_after_mysql';
mysql_compatibility_db=# ALTER TABLE t1 ADD COLUMN b text after
a;
ALTER TABLE

● If this parameter is not set, the FIRST/AFTER
colname syntax is not supported, and executing this
syntax causes errors.
mysql_compatibility_db=# SET behavior_compat_options = '';
mysql_compatibility_db=# ALTER TABLE t1 ADD COLUMN b text after
a;
ERROR: FIRST/AFTER is not yet supported.

MyS
QL

enable_divisi
on_by_zero_
mysql

Specifies whether division or modulo operations will
result in an error when the divisor is 0 in MySQL-
compatible mode. (This configuration item is supported
only by clusters of version 8.1.3.110 or later.)
● If this parameter is set, NULL is returned if the divisor

is 0 in a division or modulo operation.
compatible_mysql_db=# SET behavior_compat_options =
'enable_division_by_zero_mysql';
SET
compatible_mysql_db=# SELECT 1/0 AS test;
 test

(1 row)

● If this parameter is not set, an error is returned if the
divisor is 0 in a division or modulo operation.
compatible_mysql_db=# SELECT 1/0;
ERROR: division by zero

MyS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1149

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

normal_sessi
on_id

Indicates whether to generate a session ID in normal
format.
● If this option is set, a session ID in normal format will

be generated, which is compatible with session IDs in
clusters of version 8.1.3 or earlier.
SET behavior_compat_options='normal_session_id';
SELECT pg_current_sessionid();
 pg_current_sessionid

 1660268184.140594655524608
(1 row)

● If this parameter is not set, a session ID in pretty
format will be generated.
SET behavior_compat_options='';
SELECT pg_current_sessionid();
 pg_current_sessionid

 1660268184.140594655524608.coordinator1
(1 row)

ORA
TD
MyS
QL

disable_jsonb
_exact_match

Specifies whether to check the jsonb type during fuzzy
match for binary operators. (This parameter is supported
by clusters of version 8.2.0 or later.)
● If this parameter is specified, operators search for

matched items within the entire search scope
(including the jsonb type) during fuzzy match. This
setting is compatible with the match rules of clusters
of version 8.1.1 to 8.1.3.
SET behavior_compat_options='disable_jsonb_exact_match';
select '2022' - '2'::text;
ERROR: cannot delete from scalar

● If this parameter is not specified, fuzzy match is
performed within the search scope, except for the
jsonb type. This setting is compatible with the match
rules of clusters of version earlier than 8.1.1.
SET behavior_compat_options='';
select '2022' - '2'::text;
 ?column?

 2020
(1 row)

ORA
TD
MyS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1150

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

merge_into_
with_trigger

Controls whether the MERGE INTO operation can be
performed on tables with triggers. (This parameter is
supported only by clusters of version 8.1.3.200 or later.)
● When this option is set, the MERGE INTO operation

can be performed on tables with triggers. When the
MERGE INTO operation is performed, the trigger on
the table is not activated.

● If this option is not set, an error is reported when the
MERGE INTO operation is performed on a table with
triggers.

ORA
TD
MyS
QL

add_column_
default_v_fun
c

Controls whether expression in alter table add column
default expression supports volatile functions. (This
parameter is supported only by clusters of version
8.1.3.200 or later.)
● If this option is selected, expression in alter table

add column default expression supports volatile
functions.

● If this option is not selected, expression in alter table
add column default expression does not support
volatile functions. If expression contains volatile
functions, an error will be reported during statement
execution.

ORA
TD
MyS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1151

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

disable_full_g
roup_by_mys
ql

Specifies whether to display non-aggregated function
query columns after GROUP BY in a query. (This
parameter is supported by clusters of version 8.2.0.101 or
later.)
● If this option is specified, the query does not display

any non-aggregated function query columns after
GROUP BY.
SET behavior_compat_options='disable_full_group_by_mysql';
SELECT a,b FROM t1 GROUP BY a;
 a | b
---+---
 1 | 1
 2 | 2
(2 rows)

● If this option is not specified, the query must display
all non-aggregated function query columns after
GROUP BY, or an error will be reported.
SET behavior_compat_options='';
SELECT a,b FROM t1 GROUP BY a;
ERROR: column "t1.b" must appear in the GROUP BY clause or be
used in an aggregate function
LINE 1: SELECT a,b FROM t1 GROUP BY a;

CAUTION
This parameter must be used together with
full_group_by_mode. For details, see full_group_by_mode.
After configuring this option, if full_group_by_mode is set to
notpadding, non-aggregated query columns that are not part
of the GROUP BY clause must have consistent data after
grouping. Otherwise, the values in that column will be random.

MyS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1152

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

disable_gc_fd
w_filter_parti
al_pushdown

Controls whether filter criteria are pushed down when
querying data from a foreign table (of type gc_fdw) in a
collaborative analysis scenario. (This parameter is
supported only by clusters of version 8.2.1 or later.)
● When this option is specified, if there are factors in

the filter criteria that do not meet the pushdown
conditions (such as non-immutable functions), all
filter criteria will not be pushed down to ensure the
consistency of the result set. This behavior is
compatible with clusters of version earlier than 8.2.1.
-- Create a table in the source cluster.
CREATE TABLE t1(c1 INT, c2 INT, c3 INT) DISTRIBUTE BY HASH(c1);
-- Create a foreign table with the same structure in the local cluster.
CREATE SERVER server_remote FOREIGN DATA WRAPPER gc_fdw
options(ADDRESS 'address', DBNAME 'dbname', USERNAME
'username', PASSWORD 'password');
CREATE FOREIGN TABLE t1(c1 INT, c2 INT, c3 INT) SERVER
server_remote;
-- Enable the parameter and see the pushdown behavior.
SET behavior_compat_options =
'disable_gc_fdw_filter_partial_pushdown';
EXPLAIN (verbose on,costs off) SELECt * FROM t1 WHERE c1>3 AND
c2 <100 AND now() - '20230101' < c3;
 QUERY
PLAN
--
--
 Streaming (type: GATHER)
 Output: c1, c2, c3
 Node/s: All datanodes
 -> Foreign Scan on ca_schema.t1
 Output: c1, c2, c3
 Filter: ((t1.c1 > 3) AND (t1.c2 < 100) AND ((now() -
'2023-01-01 00:00:00-08'::timestamp with time zone) <
(t1.c3)::interval))
 Remote SQL: SELECT c1, c2, c3 FROM ca_schema.t1
(7 rows)

● If this parameter is not set, the pushable part of the
filter criteria will be pushed down to the source
cluster for execution, while the non-pushable part will
be executed in the local cluster, which can improve
the efficiency of foreign table queries.
-- Disable this parameter and see the pushdown behavior.
SET behavior_compat_options = '';
EXPLAIN (verbose on,costs off) SELECT * FROM t1 WHERE c1>3 AND
c2 <100 AND now() - '20230101' < c3;
 QUERY
PLAN
--

ORA
TD
MyS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1153

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

 Streaming (type: GATHER)
 Output: c1, c2, c3
 Node/s: All datanodes
 -> Foreign Scan on ca_schema.t1
 Output: c1, c2, c3
 Filter: ((now() - '2023-01-01 00:00:00-08'::timestamp with time
zone) < (t1.c3)::interval)
 Remote SQL: SELECT c1, c2, c3 FROM ca_schema.t1 WHERE
((c1 > 3)) AND ((c2 < 100))
(7 rows)

ignore_unshi
pped_concurr
ent_update

Determines whether to ignore new tuples when the
UPDATE or DELETE statement is executed in the current
session if the statement is not pushed down and the
tuples are updated by other sessions. By default, new
tuples are not processed. (This parameter is supported
only by clusters of version 8.2.1 or later.)
● If this parameter is specified, new tuples are ignored

when the UPDATE or DELETE statement is executed
in the current session. If the UPDATE or DELETE
statement is successfully executed, data inconsistency
occurs in concurrent update scenarios. This behavior is
compatible with the behavior in versions earlier than
8.2.1.

● If this parameter is not set and the UPDATE or
DELETE statement executed in the current session
detects that tuples have been updated, the UPDATE
or DELETE statement of the current session will be re-
executed to ensure data consistency. The number of
statement execution retries is controlled by the
max_query_retry_times parameter.

ORA
TD
MyS
QL

disable_set_g
lobal_var_on
_datanode

Controls whether the set_config function can be used to
set global variables on DNs. (This parameter is
supported only by clusters of version 8.2.1 or later.)
● When this parameter is set, the set_config function

cannot be used to set global variables on DNs. By
default, this behavior is compatible with the behavior
in versions earlier than 8.2.1.

● If this parameter is not set, the set_config function
can set global variables on DNs. As a result, the
global variable values on CNs and DNs are
inconsistent, and errors may occur when the
read_global_var function is pushed down.

ORA
TD
MyS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1154

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

deparse_view
_with_partiti
on

Controls whether the view definition contains the
partition clause when the table corresponding to the
view is a partitioned table and the DML operation is
performed on the view. (This parameter is supported
only by clusters of version 8.2.1 or later.)
● When this parameter is set, the delivered DML

statement contains the partition clause.
CREATE TABLE test_range_row(a int, d int, constraint con1 primary
key(a, d))
WITH(orientation=row) DISTRIBUTE BY hash(a) PARTITION BY
RANGE(d)
(
 PARTITION p1 values LESS THAN (60),
 PARTITION p2 values LESS THAN (75),
 PARTITION p3 values LESS THAN (90),
 PARTITION p4 VALUES LESS THAN (maxvalue)
);
CREATE VIEW view_p1 AS SELECT * FROM test_range_row
PARTITION(p1);

SET behavior_compat_options = 'deparse_view_with_partition';
EXPLAIN (COSTS OFF, VERBOSE) INSERT INTO view_p1(a, d) SELECT
1,2;
 QUERY
PLAN
--

Insert on updatable_view_basic_schema.test_range_row
 Node/s: All datanodes
 Node expr: test_range_row.a
 Remote query: INSERT INTO
updatable_view_basic_schema.test_range_row PARTITION(p1) (a, d)
VALUES ($1, $2)
 -> Result
 Output: 1, 2
(6 rows)

● If this parameter is not set, the delivered DML
statement does not contain the partition clause.
SET behavior_compat_options = '';
EXPLAIN (COSTS OFF, VERBOSE) INSERT INTO view_p1(a, d) SELECT
1,2;
 QUERY
PLAN
--

Insert on updatable_view_basic_schema.test_range_row
 Node/s: All datanodes
 Node expr: test_range_row.a
 Remote query: INSERT INTO
updatable_view_basic_schema.test_range_row (a, d) VALUES ($1, $2)
 -> Result

ORA
TD
MyS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1155

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

 Output: 1, 2
(6 rows)

variadic_null_
check

Whether variadic can transfer the NULL parameter. This
function is disabled by default. (This parameter is
supported only by clusters of version 8.2.1.300 or later.)
● When this parameter is set, passing NULL parameters

to variadic is not allowed and will result in an error.
SET behavior_compat_options = 'variadic_null_check';

SELECT format ('array', VARIADIC NULL);
ERROR: VARIADIC parameter must be an array

NOTE
To be compatible with MySQL, enabling
compat_concat_variadic does not take effect for the concat
and concat_ws functions, and the NULL parameter can still
be passed in.

● If this parameter is not set, NULL parameters can be
passed to variadic.
SET behavior_compat_options = '';
SELECT format ('array', VARIADIC NULL);
 format

 array
(1 row)

ORA
TD
MyS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1156

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

enable_use_s
yscol_in_repli
cate_table

Specifies whether oid, ctid, tableoid, or xc_node_id can
be used as filter, join, and having conditions during
INSERT, UPDATE, MERGE INTO, and DELETE
statements are executed on replication tables. This
parameter is not set by default. This parameter is
supported only by clusters of version 8.2.1.200 or later.
● If this parameter is not set and oid, ctid, tableoid, or

xc_node_id is used as filter, join, or having conditions
when the INSERT, UPDATE, MERGE INTO, or DELETE
statements are executed on replication tables, the
following error is reported:
ERROR: Can not use system column oid/ctid/tableoid/xc_node_id in
Replication Table.

● When this parameter is set, the INSERT, UPDATE,
MERGE INTO, and DELETE statements can be
executed on replication tables using the system
column id, ctid, tableoid, or xc_node_id.
CAUTION

If oid, ctid, tableoid, or xc_node_id is used as filter, join, and
having conditions when the INSERT, UPDATE, MERGE INTO,
or DELETE statements are executed on partition tables, the
statement may result in cluster core dumps. In this case,
exercise caution when setting this parameter.

ORA
TD
MYS
QL

enable_force
_add_batch

Determines whether GaussDB(DWS) receives U packets
in addbatch mode when support_batch_bind is set to
on and enable_fast_query_shipping and
enable_light_proxy are both set to off. This parameter
is not set by default. This parameter is supported only by
clusters of version 8.2.1.200 or later.
● If this parameter is not set, support_batch_bind is set

to on, and enable_fast_query_shipping and
enable_light_proxy are both set to off,
GaussDB(DWS) does not receive U packets in
addbatch mode.

● If this parameter is set, support_batch_bind is set to
on, and enable_fast_query_shipping and
enable_light_proxy are both set to off,
GaussDB(DWS) receives U packets in addbatch mode.
However, packets are imported to the database
slowly, which may cause insufficient memory. So,
exercise caution when setting this parameter.

ORA
TD
MYS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1157

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

disable_merg
esort_withou
t_material

Controls whether the current stream segment contains
materialized operators. If it is, merge sort is used. This
parameter is supported only by clusters of version
8.2.1.100 or later.
● If this parameter is set and the current stream

segment contains materialized operators (material,
sort, agg, and CteScan), merge sort can be used.
Otherwise, merge sort cannot be used.

● If this parameter is unset, there is no need to verify
whether the current stream segment contains
materialized operators to determine whether to use
merge sort.

ORA
TD
MYS
QL

enable_push
down_groupi
ngset_subqu
ery

Specifies whether conditions from the outer query that
are only related to a subquery can be pushed down to
the subquery when the subquery contains a grouping
set. This parameter is supported only by clusters of
version 8.2.1.100 or later.
● If the subquery contains grouping sets and this

parameter is set, the conditions in the outer query
cannot be pushed down to the subquery.

● If the subquery contains grouping sets and this
parameter is not set, the conditions in the outer query
can be pushed down to the subquery.

ORA
TD
MYS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1158

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

enable_whol
e_row_var

This parameter mainly involves two scenarios: 1.
controlling whether tables or views are allowed to
appear in SQL expressions, including but not limited to
the target list of queries, GROUP BY lists, etc.; 2.
controlling whether non-table records are allowed to
appear in SQL expressions. This parameter is supported
only by clusters of version 8.3.0 or later.
● When this parameter is set, tables or views are

allowed to appear in SQL expressions.
SET behavior_compat_options = 'enable_whole_row_var';
SELECT a1 FROM t a1;
 a1

(0 rows)
SELECT t FROM (SELECT 1) as t;
 t

 (1)
(1 rows)

● If this parameter is unset, tables or views are not
allowed to appear in SQL expressions.
SET behavior_compat_options = '';
SELECT a1 FROM t a1;
ERROR: Table or view cannot appear in expression. Table/view name:
t, alias: a1. Please check targetList, groupClause etc.
SELECT t FROM (SELECT 1) as t;
ERROR: Non-table records cannot appear in expression. alias: t.
Please check targetList, groupClause etc.

ORA
TD
MYS
QL

enable_unkn
own_datatyp
e

Specifies whether tables containing unknown columns
can be created. This parameter is supported only by
clusters of version 8.3.0 or later.
● When this parameter is set, tables containing

unknown columns can be created.
SET behavior_compat_options = 'enable_unknown_datatype';
CREATE TABLE t(a unknown);
WARNING: column "a" has type "unknown"
DETAIL: Proceeding with relation creation anyway.
CREATE TABLE

● If this parameter is unset, tables containing unknown
columns cannot be created. If the table creation SQL
contains an unknown column, an error will be
reported.
SET behavior_compat_options = '';
create table t(a unknown);
ERROR: column "a" has type "unknown"

ORA
TD
MYS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1159

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

alter_distribu
te_key_by_pa
rtition

Specifies whether INSERT INTO is executed by partition
when ALTER TABLE is used to modify the distribution
column of a partitioned table. This option is supported
only by 8.2.1.2108.2.1.2 and later cluster versions.
● If this parameter is set, INSERT INTO is executed by

partition. The memory usage decreases but the
performance deteriorates.

● If this parameter is unset, INSERT INTO is performed
on the entire partitioned table. The performance is
good but the memory usage is high.

ORA
TD
MYS
QL

disable_upda
te_returning_
check

Specifies whether to prevent multiple joins when a
replication table is updated with the returning
statement. This parameter is supported only by clusters
of version 8.3.0 or later.
● If the parameter is not set, the following error is

reported when updating a replication table with a
returning statement and involving multiple joins:
ERROR: Unsupported FOR UPDATE replicated table joined with other
table.

● Setting this parameter ensures backward
compatibility with earlier versions. However, when
updating a replication table with a returning
statement and involving multiple joins, there may be
inconsistencies in the result set.

ORA
TD
MYS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1160

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

check_functio
n_shippable

Controls the check of the custom plpgsql/SQL function
attributes. This parameter is supported only by clusters
of version 8.3.0 or later.
● If this parameter is not specified, the IMMUTABLE/

STABLE/VOLATILE attributes of a user-defined
function are not checked.

● If this parameter is specified, the IMMUTABLE/
STABLE/VOLATILE attributes of user-defined
functions are checked based on the following
principles:
– Whitelist: For the three functions in

DBMS_OUTPUT, skip the
check_function_shippable check.

– If a user-defined function contains DML
statements and the outer layer is IMMUTABLE or
SHIPPABLE, the function is pushed down. As a
result, an error is reported.

– If the outer layer of a user-defined function is
SHIPPABLE and the inner layer is IMMUTABLE, the
function passes the check.

– If the outer layer of a user-defined function is
SHIPPABLE, the inner layer is SHIPPABLE and not
IMMUTABLE, the function passes the check.

– If the outer layer of a user-defined function is
SHIPPABLE but the inner layer is none of the
above, an error is reported.

For example, when this parameter is specified, an error is
reported in the following scenarios:
CREATE OR replace function func_ship(a int)
returns int
LANGUAGE plpgsql
NOT FENCED SHIPPABLE
AS $function$
begin
perform test_ship();
return a;
EXCEPTION WHEN OTHERS THEN
return a;
end $function$;
select func_ship(a) from tt3;
ERROR: parent function is shippable but child is not immutable or
shippable.

ORA
TD
MYS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1161

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

enable_full_s
tring_agg

Specifies how string_agg(a, delimeter) over (partition
by b order by c) behaves in different situations, such as
using full or incremental aggregation in the window. This
parameter is supported only by clusters of version 8.3.0
or later.
If this parameter is not set, incremental aggregation is
used. If this parameter is set, full aggregation is used. By
default, this parameter is not set.
CREATE TABLE string_agg_dn_col(c1 int, c2 text) WITH(orientation =
column) distribute by hash(c1);
INSERT INTO string_agg_dn_col values(1, 'test');
INSERT INTO string_agg_dn_col values(1, 'haidian');
INSERT INTO string_agg_dn_col values(1, 'nanjing');
SELECT t.c1 AS c1, string_agg(t.c2, ',') OVER(PARTITION BY t.c1 ORDER BY
t.c2) AS c2 FROM string_agg_dn_col t ORDER BY c2;
 c1 | c2
----+----------------------
 1 | haidian
 1 | haidian,nanjing
 1 | haidian,nanjing,test
(3 rows)

SET behavior_compat_options='enable_full_string_agg';
SELECT t.c1 AS c1, string_agg(t.c2, ',') OVER(PARTITION BY t.c1 ORDER BY
t.c2) AS c2 FROM string_agg_dn_col t ORDER BY c2;
 c1 | c2
----+----------------------
 1 | haidian,nanjing,test
 1 | haidian,nanjing,test
 1 | haidian,nanjing,test
(3 rows)

ORA
TD
MYS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1162

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

enable_bank
er_round

Specifies how numeric types round their values, using
the rounding or banker method. This parameter is
supported only by clusters of version 8.3.0 or later.
Behaviors controlled by parameters include:
● Type conversion working when INSERT INTO

and ::xxx specify a type, such as integer types (int1,
int2, int4, int8), any precision types (decimal, numeric,
number), or money types.

● Rounding and conversion functions for the numeric
type: round(xxx.xx,s), cast('xxx.xx',numeric), or
to_char(xxx.xx,'xxx').

● Mathematical calculation of the numeric type.
NOTE

The banker's rounding rule is as follows: if the digit to be
rounded is greater than 5, round up; if it is less than 5, round
down; if it is exactly 5, round to the nearest even number.

● If this parameter is set, rounding uses the banker
method.

SET behavior_compat_options = enable_banker_round;
SELECT 1.5::int1,1.5::int2,1.5::int4,1.5::int8,1.5::numeric(10,0),1.115::money;
 int1 | int2 | int4 | int8 | numeric | money
------+------+------+------+---------+-------
 2 | 2 | 2 | 2 | 2 | $1.12
SELECT 0.5::int1,0.5::int2,0.5::int4,0.5::int8,0.5::numeric(10,0),1.105::money;
 int1 | int2 | int4 | int8 | numeric | money
------+------+------+------+---------+-------
 0 | 0 | 0 | 0 | 0 | $1.10
SELECT
round(1.05,1),round(1.15,1),cast('1.05',numeric(10,1)),cast('1.15',numeric(1
0,1)),to_char(1.05,'9D9'),to_char(1.15,'9D9');
 round | round | numeric | numeric | to_char | to_char
-------+-------+---------+---------+---------+---------
 1.0 | 1.2 | 1.0 | 1.2 | 1.0 | 1.2

● If this parameter is set, rounding uses round-off
method.

SET behavior_compat_options = '';
SELECT 1.5::int1,1.5::int2,1.5::int4,1.5::int8,1.5::numeric(10,0),1.115::money;
 int1 | int2 | int4 | int8 | numeric | money
------+------+------+------+---------+-------
 2 | 2 | 2 | 2 | 2 | $1.12
SELECT 0.5::int1,0.5::int2,0.5::int4,0.5::int8,0.5::numeric(10,0),1.105::money;
 int1 | int2 | int4 | int8 | numeric | money
------+------+------+------+---------+-------
 1 | 1 | 1 | 1 | 1 | $1.11
SELECT
round(1.05,1),round(1.15,1),cast('1.05',numeric(10,1)),cast('1.15',numeric(1
0,1)),to_char(1.05,'9D9'),to_char(1.15,'9D9');

ORA
TD
MYS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1163

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

 round | round | numeric | numeric | to_char | to_char
-------+-------+---------+---------+---------+---------
 1.1 | 1.2 | 1.1 | 1.2 | 1.1 | 1.2

enable_int_di
vision_by_tru
ncate

Controls whether the integer division behavior result set
returns integers or floating point numbers and the
option is compatible with PG or ORA behaviors.
● If this parameter is set, the integer division result is

an integer, the decimal places are truncated, and this
parameter is compatible with PG behaviors.
SET behavior_compat_options = 'enable_int_division_by_truncate';
SELECT 8::int8 / 3::int8, 8::int4 / 3::int4, 8::int2 / 3::int2, 8::int1 / 3::int1;
 ?column? | ?column? | ?column? | ?column?
----------+----------+----------+----------
 2 | 2 | 2 | 2
(1 row)

● If this parameter is unset, the integer division result
returns a floating point number, including decimal
places, and this parameter is compatible with ORA
behaviors.
SET behavior_compat_options = '';
SELECT 8::int8 / 3::int8, 8::int4 / 3::int4, 8::int2 / 3::int2, 8::int1 / 3::int1;
 ?column? | ?column? | ?column? | ?column?
------------------+------------------+------------------+------------------
 2.66666666666667 | 2.66666666666667 | 2.66666666666667 |
2.66666666666667
(1 row)

ORA
TD
MYS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1164

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

unsupported
_set_function
_case

Specifies whether multiple result set functions can be
returned in a CASE WHEN condition. This parameter is
supported only by clusters of version 8.3.0.100 or later.
This parameter is enabled by default for newly installed
clusters of version 9.1.0 or later.
● If this parameter is set, column storage does not

support multiple result set functions in a CASE WHEN
condition.
CREATE TABLE t1(id int, c1 text) with(orientation=column);
INSERT INTO t1 values(1, 'a#1');
SET behavior_compat_options = 'unsupported_set_function_case';
SELECT CASE split_part(regexp_split_to_table(c1, E'\,'),'#',1) when 'a'
then c1 else null end from t1;
ERROR: set-valued function called in context that cannot accept a set

● If this parameter is not set, column storage supports
multiple result set functions in a CASE WHEN
condition.
SET behavior_compat_options = '';
SELECT CASE split_part(regexp_split_to_table(c1, E'\,'),'#',1) when 'a'
then c1 else null end from t1;
 case

 a#1
(1 row)

ORA
TD
MYS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1165

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

enable_chan
ge_search_pa
th

Specifies whether the search path can be modified after
forming a general plan generic_plan. This is supported
only by clusters of version 9.1.0 or later.
● When this parameter is not set, if a new search path

is set and an EXECUTE statement is executed, the
database will still search for the corresponding table
under the original schema of the table.
CREATE SCHEMA s1
 CREATE TABLE abc(f1 INT);
CREATE SCHEMA s2
 CREATE TABLE abc(f1 INT);
SET search_path = s1;
INSERT INTO s1.abc VALUES(123);INSERT INTO s2.abc VALUES(456);
SET search_path = s1;
PREPARE p1 AS SELECT f1 FROM abc;
EXECUTE p1;
 f1

 123
(1 row)
SET search_path = s2;
SELECT f1 FROM abc;
 f1

 456
(1 row)
EXECUTE p1;
 f1

 123
(1 row)

● When this parameter is set, if a new search path is set
and an EXECUTE statement is executed, the database
will search for the corresponding table in the newly
set search path.
SET behavior_compat_options = 'enable_change_search_path';
EXECUTE p1;
 f1

 456
(1 row)

SET search_path = s1;
EXECUTE p1;
 f1

 123
(1 row)

TD

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1166

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

enable_varch
ar_to_nvarch
ar2

Specifies whether varchar fields created or updated
through DDL statements are automatically switched to
nvarchar2 fields. This is supported only by clusters of
version 9.1.0 or later.
● If this parameter is set, varchar fields created or

updated through DDL statements are automatically
switched to nvarchar2 fields.

● If this parameter is unset, varchar fields created or
updated through DDL statements are not
automatically switched to nvarchar2 fields.

ORA
TD
MYS
QL

normalize_ne
gative_zero

Specifies whether the ceil() and round() functions
return –0 when processing specific values of the float
type. This parameter is supported only by clusters of
version 8.1.3.333 or later.
● When this parameter is set, the ceil() function returns

0 when processing (–1,0), and the round() function
returns 0 when processing [–0.5, 0).
SET behavior_compat_options='normalize_negative_zero';
SELECT ceil(cast(-0.1 as float));
 ceil

 0
(1 row)
SELECT round(cast(-0.1 as FLOAT));
 round

 0
(1 row)

● When this parameter is not set, the ceil() function
returns –0 when processing (–1,0), and the round()
function returns –0 when processing [–0.5, 0).
SET behavior_compat_options = '';
SELECT ceil(cast(-0.1 as FLOAT));
 ceil

 -0
(1 row)
SELECT round(cast(-0.1 as FLOAT));
 round

 -0
(1 row)

ORA
TD
MyS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1167

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

disable_client
_detection_co
mmit

Specifies whether to check there is a connection with the
client before each transaction is committed. If the
connection does not exist, an error is reported, the
transaction is rolled back, and data duplication caused
by repeated issuance due to disconnection is prevented.
This parameter is supported only by clusters of version
8.1.3.333 or later.
● If this parameter is not set, the system checks the

existence of the client connection before each
transaction is committed.

● If this parameter is set, the system does not check the
existence of the client connection before each
transaction is committed.

ORA
TD
MyS
QL

change_illeg
al_char

Specifies the display of illegal UTF8 characters when
reading with GDS. This parameter is supported only by
clusters of version 8.3.0.100 or later.
When this parameter is enabled, illegal UTF8 characters
that are incompatible with GDS are displayed as "�"
instead of "?".

MyS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1168

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

row_use_pse
udo_name

Specifies whether row-related expressions generate
pseudo column names for anonymous columns. This is
supported only by clusters of version 9.1.0.100 or later.
● When this parameter is not set, if there is a

corresponding real column name in the row
expression, the real column name is used. If it is an
anonymous column, pseudo column names f1, f2...fn
are generated.

SELECT row_to_json(row(1,'foo'));
 row_to_json

 {"f1":1,"f2":"foo"}
(1 row)

CREATE TABLE json_tbl(id INT, x INT, y text) WITH (ORIENTATION =
COLUMN);
INSERT INTO json_tbl VALUES (1, 1, 'txt1'), (2, 2, 'txt2'), (3, 3, 'txt3');
SELECT to_json(t.*) FROM json_tbl t;
 to_json

 {"id":3,"x":3,"y":"txt3"}
 {"id":1,"x":1,"y":"txt1"}
 {"id":2,"x":2,"y":"txt2"}
(3 rows)

● When this parameter is set, pseudo column names f1,
f2...fn are generated for anonymous columns under
the column storage condition in the row expression.

SET behavior_compat_options='ROW_USE_PSEUDO_NAME';
SELECT to_json(t.*) FROM json_tbl t;
 to_json

 {"f1":3,"f2":3,"f3":"txt3"}
 {"f1":1,"f2":1,"f3":"txt1"}
 {"f1":2,"f2":2,"f3":"txt2"}
(3 rows)

ORA
TD
MyS
QL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1169

Configuratio
n Item

Behavior Appl
icabl
e
Com
pati
bilit
y
Mod
e

enable_trunc
_orc_string

Controls the foreign table query behavior when the
foreign table field is in ORC format and the data type is
varchar(n), but the field type in the ORC file is string and
the length of the string exceeds n.
This parameter is supported only by clusters of version
8.1.3.336, 8.2.1.236, 8.3.0.100, 910.100, or later.
● If this parameter is not set, an error message is

returned, indicating that the field is too long.
● If this parameter is set, the query is responded to, and

the result is truncated by the length defined by
varchar(n).

ORA
TD
MyS
QL

gds_fill_multi
_missing_fiel
ds

Controls the behavior when the GDS foreign table fault
tolerance parameter fill_missing_fields is set to true or
on. When fill_missing_fields is set to true or on in a
GDS foreign table, any missing columns at the end of a
row in the data source file are automatically set to
NULL. Before this, only the last column in a row of the
data source file can be missing without an error being
reported. This parameter is supported only by 8.1.3,
8.2.1.200, 9.1.0.100, and later cluster versions.
● If this option is specified, the GDS foreign table

tolerates the missing of multiple last columns in a
row of the source data file.

● If this option is not specified, only the missing of the
last column in a row of the data source file is
tolerated in the GDS foreign table. This parameter
compatible with historical behavior.

ORA
TD
MyS
QL

enable_matview

Parameter description: Controls whether CREATE MATERIALIZED VIEW can be
used to create materialized views.

Type: SIGHUP

Value range: Boolean

● on indicates that CREATE MATERIALIZED VIEW can be used to create
materialized views.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1170

● off indicates that CREATE MATERIALIZED VIEW cannot be used to create
materialized views.

Default value: off

15.18 Fault Tolerance
This section describes parameters used for controlling the methods that the server
processes an error occurring in the database system.

exit_on_error

Parameter description: Specifies whether to terminate the current session.

Type: SUSET

Value range: Boolean

● on indicates that any error will terminate the current session.
● off indicates that only a FATAL error will terminate the current session.

Default value: off

omit_encoding_error

Parameter description: When performing character encoding conversion in the
database, if a character encoding error occurs and the target character set
encoding is UTF-8, the converted character with the error can be ignored and
replaced with "?".

Type: USERSET

Value range: Boolean

● on indicates that characters that have conversion errors will be ignored and
replaced with question marks (?), and error information will be recorded in
logs.

● off indicates that characters that have conversion errors cannot be converted
and error information will be directly displayed.

Default value: off

max_query_retry_times

Parameter description: Specifies the maximum number of retries for the
automatic retry feature when a SQL statement encounters an error. Currently, the
supported error types for retry include Connection reset by peer, Lock wait
timeout, and Connection timed out. Setting this parameter to 0 will disable the
retry feature.

Type: USERSET

Value range: an integer ranging from 0 to 20

Default value: 6

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1171

max_cn_temp_file_size
Parameter description: Specifies the maximum number of temporary files that
can be used by the CN during automatic SQL statement retries. The value 0
indicates that no temporary file is used.

Type: SIGHUP

Value range: an integer ranging from 0 to 10485760. The unit is KB.

Default value: 5GB

retry_ecode_list
Parameter description: Specifies the list of SQL error types that support
automatic retry.

Type: USERSET

Value range: a string

Default value: YY001 YY002 YY003 YY004 YY005 YY006 YY007 YY008 YY009
YY010 YY011 YY012 YY013 YY014 YY015 53200 08006 08000 57P01 XX003 XX009
YY016 CG003 CG004 F0011 F0012 45003 42P30

15.19 Connection Pool Parameters
When a connection pool is used to access the database, database connections are
established and then stored in the memory as objects during system running.
When you need to access the database, no new connection is established. Instead,
an existing idle connection is selected from the connection pool. After you finish
accessing the database, the database does not disable the connection but puts it
back into the connection pool. The connection can be used for the next access
request.

min_pool_size
Parameter description: Specifies the minimum number of connections between a
CN's connection pool and another CN/DN.

Type: POSTMASTER

Value range: an integer ranging from 1 to 65535

Default value: 1

max_pool_size
Parameter description: Specifies the maximum number of connections between a
CN's connection pool and another CN/DN.

Type: POSTMASTER

Value range: an integer ranging from 1 to 65535

Default value: 800 for CNs and 5000 for DNs

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1172

persistent_datanode_connections
Parameter description: Specifies whether to release the connection for the
current session.

Type: USERSET

Value range: Boolean

● off indicates that the connection for the current session will be released.
● on indicates that the connection for the current session will not be released.

NO TICE

After this function is enabled, a session may hold a connection but does not
run a query. As a result, other query requests fail to be connected. To fix this
problem, the number of sessions must be less than or equal to
max_active_statements.

Default value: off

cache_connection
Parameter description: Specifies whether to reclaim the connections of a
connection pool.

Type: USERSET

Value range: Boolean

● on indicates that the connections of a connection pool will be reclaimed.
● off indicates that the connections of a connection pool will not be reclaimed.

Default value: on

enable_force_reuse_connections
Parameter description: Specifies whether a session forcibly reuses a new
connection.

Type: USERSET

Value range: Boolean

● on indicates that the new connection is forcibly used.
● off indicates that the current connection is used.

Default value: off

enable_pooler_parallel
Parameter description: Specifies whether a CN's connection pool can be
connected in parallel mode.

Type: SIGHUP

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1173

Value range: Boolean

● on indicates that a CN's connection pool can be connected in parallel mode.
● off indicates that a CN's connection pool cannot be connected in parallel

mode.

Default value: on

syscache_clean_policy
Parameter description: Specifies the policy for clearing the memory and number
of idle DN connections. This is supported only by clusters of version 9.1.0.100 or
later.

Type: SIGHUP

Value range: a string

This parameter policy consists of three values:

1. The first value ranges from 0 to 1 and represents the percentage of total
available memory used by DNs. When the percentage of used memory
reaches this value, 1/4 of the stream threads will be cleared, and the second
value will be evaluated.

2. The second value ranges from 0 to 1 and represents the percentage of total
available memory used by syscache on DNs. When the percentage of syscache
memory usage reaches this value, the third value will be evaluated.

3. The third value ranges from 0 to INT_MAX and is measured in MB. It
represents the size of syscache memory used by idle threads. When the
syscache memory usage of an idle thread reaches this value, the syscache
used by that thread will be cleared.

Default value: 0.8,0.3,64

NO TICE

● Before setting this parameter, evaluate the memory usage using the
pv_session_memory_detail and pv_total_memory_detail views.

● When setting this parameter, follow the specified format, ensuring that the
three values are separated by commas without spaces.

● If the parameter is not set according to the specified format and the setting
fails, a WARNING log will be generated in the log, and the parameter value
displayed when using the SHOW command to query the parameter will be the
last successfully set value. If the setting fails and the system is restarted, the
parameter will be set to the default value.

● During the Readcommand phase, if a thread on CN times out after 30 seconds,
it will clear DNs if syscache is greater than 256 MB. There are two operations:
1. If the overall memory usage reaches 80%, an auxiliary thread will monitor

the memory usage and clear 1/4 of the stream threads. It will also check if
syscache usage exceeds 30% of the total memory usage. If it does, it will
clear the syscache of Readcommand phase pg threads greater than 64 MB.

2. If a stream thread is idle for more than 30 seconds and syscache usage is
greater than 64 MB, it will clear the syscache.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1174

15.20 Cluster Transaction Parameters
This section describes the settings and value ranges of cluster transaction
parameters.

transaction_isolation

Parameter description: Specifies the isolation level of the current transaction.

Type: USERSET

Value range:

● READ COMMITTED: Only committed data is read. This is the default.

● READ UNCOMMITTED: GaussDB(DWS) does not support READ
UNCOMMITTED. If READ UNCOMMITTED is set, READ COMMITTED is
executed instead.

● REPEATABLE READ: Only the data committed before transaction start is read.
Uncommitted data or data committed in other concurrent transactions cannot
be read.

● SERIALIZABLE: GaussDB(DWS) does not support SERIALIZABLE. If
SERIALIZABLE is set, REPEATABLE READ is executed instead.

Default value: READ COMMITTED

transaction_read_only

Parameter description: Specifies that the current transaction is a read-only
transaction.

Type: USERSET

Value range: Boolean

● on indicates that the current transaction is a read-only transaction.

● off indicates that the current transaction can be a read/write transaction.

Default value: off for CNs and on for DNs

xc_maintenance_mode

Parameter description: Specifies whether the system is in maintenance mode.

Type: SUSET

Value range: Boolean

● on indicates that maintenance mode is enabled.

● off indicates that the maintenance mode is disabled.

Default value: off

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1175

NO TICE

Enable the maintenance mode with caution to avoid cluster data inconsistencies.

allow_concurrent_tuple_update
Parameter description: Specifies whether to allow concurrent update.

Type: USERSET

Value range: Boolean

● on indicates it is enabled.
● off indicates it is disabled.

Default value: on

gtm_backup_barrier
Parameter description: Specifies whether to create a restoration point for the
GTM starting point.

Type: SUSET

Value range: Boolean

● on indicates that a restoration point will be created for the GTM starting
point.

● off indicates that a restoration point will not be created for the GTM starting
point.

Default value: off

gtm_conn_check_interval
Parameter description: Sets the CN to check whether the connection between the
local thread and the primary GTM is normal.

Type: SIGHUP

Value range: an integer ranging from 0 to INT_MAX/1000. The unit is second.

Default value: 10s

transaction_deferrable
Parameter description: Specifies whether to delay the execution of a read-only
serial transaction without incurring an execution failure. Assume this parameter is
set to on. When the server detects that the tuples read by a read-only transaction
are being modified by other transactions, it delays the execution of the read-only
transaction until the other transactions finish modifying the tuples. Currently, this
parameter is not used in GaussDB(DWS). Similar to this parameter, the
default_transaction_deferrable parameter is used to specify whether to allow
delayed execution of a transaction.

Type: USERSET

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1176

Value range: Boolean

● on indicates that the execution of a read-only serial transaction can be
delayed.

● off indicates that the execution of a read-only serial transaction cannot be
delayed.

Default value: off

enforce_two_phase_commit

Parameter description: This parameter is reserved for compatibility with earlier
versions. This parameter is invalid in the current version.

enable_show_any_tuples

Parameter description: This parameter is available only in a read-only transaction
and is used for analysis. When this parameter is set to on/true, all versions of
tuples in the table are displayed.

Type: USERSET

Value range: Boolean

● on/true indicates that all versions of tuples in the table are displayed.

● off/false indicates that no versions of tuples in the table are displayed.

Default value: off

gtm_connect_retries

Parameter description: Specifies the number of GTM reconnection attempts.

Type: SIGHUP

Value range: an integer ranging from 1 to 2147483647

Default value: 30

idle_in_transaction_timeout

Parameter description: duration during which a transaction is allowed to be in
the idle state. When a transaction is in the idle state for a period specified by this
parameter, the transaction is terminated. This function takes effect only for client
connections that are directly connected to CNs and does not take effect for direct
DNs or internal connections. This parameter is supported only by clusters of
version 8.2.1.100 or later.

Type: USERSET

Value range: 0 to 86400, in second.

Default value: 0, indicating that the function is disabled.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1177

15.21 Developer Operations

enable_light_colupdate

Parameter description: Specifies whether to enable the lightweight column-store
update.

Type: USERSET

Value range: Boolean

● on indicates that the lightweight column-store update is enabled.
● off indicates that the lightweight column-store update is disabled.

Default value: off

NO TE

There is a low probability that an error is reported when lightweight UPDATE and backend
column-store AUTOVACUUM coexist. You can run ALTER TABLE to set the table-level
parameter enable_column_autovacuum_garbage to off to avoid this issue. If the table-
level parameter enable_column_autovacuum_garbage is set to off, the backend column-
store AUTOVACUUM of the table is disabled.

enable_fast_query_shipping

Parameter description: Specifies whether to use the distributed framework for a
query planner.

Type: USERSET

Value range: Boolean

● on indicates that execution plans are generated on CNs and DNs separately.
● off indicates that the distributed framework is used. Execution plans are

generated on CNs and then sent to DNs for execution.

Default value: on

enable_trigger_shipping

Parameter description: Specifies whether the trigger can be pushed to DNs for
execution.

Type: USERSET

Value range: Boolean

● on indicates that the trigger can be pushed to DNs for execution.
● off indicates that the trigger cannot be pushed to DNs. It must be executed

on the CN.

Default value: on

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1178

enable_remotejoin
Parameter description: Specifies whether JOIN operation plans can be delivered
to DNs for execution.

Type: USERSET

Value range: Boolean

● on indicates that JOIN operation plans can be delivered to DNs for execution.
● off indicates that JOIN operation plans cannot be delivered to DNs for

execution.

Default value: on

enable_remotegroup
Parameter description: Specifies whether the execution plans of GROUP BY and
AGGREGATE can be delivered to DNs for execution.

Type: USERSET

Value range: Boolean

● on indicates that the execution plans of GROUP BY and AGGREGATE can be
delivered to DNs for execution.

● off indicates that the execution plans of GROUP BY and AGGREGATE cannot
be delivered to DNs for execution.

Default value: on

enable_remotelimit
Parameter description: Specifies whether the execution plan specified in the
LIMIT clause can be pushed down to DNs for execution.

Type: USERSET

Value range: Boolean

● on indicates that the execution plan specified in the LIMIT clause can be
pushed down to DNs for execution.

● off indicates that the execution plan specified in the LIMIT clause cannot be
delivered to DNs for execution.

Default value: on

enable_limit_stop
Parameter description: whether to enable the early stop optimization for LIMIT
statements. For a LIMIT n statement, if early stop is enabled, the CN requests the
DN to end the execution after receiving n pieces of data. This method is applicable
to complex queries with LIMIT. This parameter is supported only by clusters of
version 8.1.3.320 or later.

Type: USERSET

Value range: Boolean

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1179

● on indicates that early stop is enabled for LIMIT statements.
● off indicates that early stop is disabled for LIMIT statements.

Default value: on

enable_remotesort

Parameter description: Specifies whether the execution plan of the ORDER BY
clause can be delivered to DNs for execution.

Type: USERSET

Value range: Boolean

● on indicates that the execution plan of the ORDER BY clause can be delivered
to DNs for execution.

● off indicates that the execution plan of the ORDER BY clause cannot be
delivered to DNs for execution.

Default value: on

enable_join_pseudoconst

Parameter description: Specifies whether joining with the pseudo constant is
allowed. A pseudo constant indicates that the variables on both sides of a join are
identical to the same constant.

Type: USERSET

Value range: Boolean

● on indicates that joining with the pseudo constant is allowed.
● off indicates that joining with the pseudo constant is not allowed.

Default value: off

cost_model_version

Parameter description: Specifies the model used for cost estimation in the
application scenario. This parameter affects the distinct estimation of the
expression, HashJoin cost model, estimation of the number of rows, distribution
key selection during redistribution, and estimation of the number of aggregate
rows.

Type: USERSET

Value range: 0, 1, 2, 3, or 4

● 0 indicates that the original cost estimation model is used.
● 1 indicates that the enhanced distinct estimation of the expression, HashJoin

cost estimation model, estimation of the number of rows, distribution key
selection during redistribution, and estimation of the number of aggregate
rows are used on the basis of 0.

● 2 indicates that the ANALYZE sampling algorithm with better randomicity is
used on the basis of 1 to improve the accuracy of statistics collection.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1180

● 3 indicates that the broadcast cost estimation in large cluster scenarios is
optimized based on 2 so that the optimizer can select a better plan. This
option is supported only by clusters of version 8.3.0 or later.

● 4 indicates that in addition to the optimizations made to the cost estimation
of hashjoin parallelization, skew, and column-store index ordering in 3, there
are also optimized row estimations for coalesce expressions and improved
recognition of skew optimization for subquery constant output columns
during joins.

Default value: 4

debug_assertions
Parameter description: Specifies whether to enable various assertion checks. This
parameter assists in debugging. If you are experiencing strange problems or
crashes, set this parameter to on to identify programming defects. To use this
parameter, the macro USE_ASSERT_CHECKING must be defined (through the
configure option --enable-cassert) during the GaussDB(DWS) compilation.

Type: USERSET

Value range: Boolean

● on indicates that various assertion checks are enabled.
● off indicates that various assertion checks are disabled.

NO TE

This parameter is set to on by default if GaussDB(DWS) is compiled with various assertion
checks enabled.

Default value: off

distribute_test_param
Parameter description: Specifies whether the embedded test stubs for testing the
distribution framework take effect. In most cases, developers embed some test
stubs in the code during fault injection tests. Each test stub is identified by a
unique name. The value of this parameter is a triplet that includes three values:
thread level, test stub name, and error level of the injected fault. The three values
are separated by commas (,).

Type: USERSET

Value range: a string indicating the name of any embedded test stub.

Default value: –1, default, default

enable_crc_check
Parameter description: Specifies whether to enable data checks. Check
information is generated when table data is written and is checked when the data
is read. You are not advised to modify the settings.

Type: POSTMASTER

Value range: Boolean

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1181

● on indicates that data checks are enabled.
● off indicates that data checks are disabled.

Default value: on

NO TICE

If CRC is enabled, all data on a page must be written to WALs when hint bits of
tuples on the page are modified for the first time after a checkpoint. This
deteriorates the performance of the first query after the checkpoint.

ignore_checksum_failure
Parameter description: Sets whether to ignore check failures (but still generates
an alarm) and continues reading data. This parameter is valid only if
enable_crc_check is set to on. Continuing reading data may result in breakdown,
damaged data being transferred or hidden, failure of data recovery from remote
nodes, or other serious problems. You are not advised to modify the settings.

Type: SUSET

Value range: Boolean

● on indicates that data check errors are ignored.
● off indicates that data check errors are reported.

Default value: off

default_table_behavior
Parameter description: behavior type of the default table. This parameter is
supported only by clusters of version 8.2.1 or later.

Type: USERSET

Value range: column_btree_index, column_high_compress,
column_middle_compress, or column_low_compress

● column_btree_index indicates that the default index for creating a column-
store table is btree.

● column_high_compress indicates that the default compression level of
column-store tables is high.

● column_middle_compress indicates that the default compression level of
column-store tables is middle.

● column_low_compress indicates that the default compression level of
column-store tables is low.

Default value: an empty string

enable_colstore
Parameter description: Specifies whether to create a table as a column-store
table by default when no storage method is specified. The value for each node

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1182

must be the same. This parameter is used for tests. Users are not allowed to
enable it.

Type: SUSET

Value range: Boolean

Default value: off

enable_force_vector_engine
Parameter description: Specifies whether to forcibly generate vectorized
execution plans for a vectorized execution operator if the operator's child node is a
non-vectorized operator. When this parameter is set to on, vectorized execution
plans are forcibly generated. When enable_force_vector_engine is enabled, no
matter it is a row-store table, column-store table, or hybrid row-column store
table, if the plantree does not contain scenarios that do not support vectorization,
the vectorized executor is forcibly used.

Type: USERSET

Value range: Boolean

Default value: off

enable_csqual_pushdown
Parameter description: Specifies whether to deliver filter criteria for a rough
check during query.

Type: USERSET

Value range: Boolean

● on indicates that a rough check is performed with filter criteria delivered
during query.

● off indicates that a rough check is performed without filter criteria delivered
during query.

Default value: on

explain_dna_file
Parameter description: Specifies the name of a CSV file exported when
explain_perf_mode is set to run.

Type: USERSET

NO TICE

The value of this parameter must be an absolute path plus a file name with the
extension .csv.

Value range: a string

Default value: NULL

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1183

explain_perf_mode

Parameter description: Specifies the display format of the explain command.

Type: USERSET

Value range: normal, pretty, summary, and run

● normal indicates that the default printing format is used.

● pretty indicates that the optimized display mode of GaussDB(DWS) is used. A
new format contains a plan node ID, directly and effectively analyzing
performance.

● summary indicates that the analysis result based on such information is
printed in addition to the printed information in the format specified by
pretty.

● run indicates that in addition to the printed information specified by
summary, the database exports the information as a CSV file.

Default value: pretty

join_num_distinct

Parameter description: Controls the default distinct value of the join column or
expression in application scenarios.

Type: USERSET

Value range: a double-precision floating point number greater than or equal to –
100. Decimals may be truncated when displayed on clients.

● If the value is greater than 0, the value is used as the default distinct value.

● If the value is greater than or equal to –100 and less than 0, it means the
percentage used to estimate the default distinct value.

● If the value is 0, the default distinct value is 200.

Default value: –20

outer_join_max_rows_multipler

Parameter description: Specifies the maximum number of estimated rows for
outer joins.

Type: USERSET

Value range: 0 or a double-precision floating point number greater than or equal
to 1. Decimals may be truncated when displayed on clients.

● If the value is 0, the estimated number of rows for outer joins is not limited.

● If the value is greater than or equal to 1, the estimated number of rows
cannot exceed a multiple of the number of rows in the foreign table in the
outer join.

Default value: 1.1

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1184

qual_num_distinct
Parameter description: Controls the default distinct value of the filter column or
expression in application scenarios.

Type: USERSET

Value range: a double-precision floating point number greater than or equal to –
100. Decimals may be truncated when displayed on clients.

● If the value is greater than 0, the value is used as the default distinct value.
● If the value is greater than or equal to –100 and less than 0, it means the

percentage used to estimate the default distinct value.
● If the value is 0, the default distinct value is 200.

Default value: 200

trace_notify
Parameter description: Specifies whether to generate a large amount of
debugging output for the LISTEN and NOTIFY commands. client_min_messages
or log_min_messages must be DEBUG1 or lower so that such output can be
recorded in the logs on the client or server separately.

Type: USERSET

Value range: Boolean

● on indicates that the function is enabled.
● off indicates that the function is disabled.

Default value: off

trace_sort
Parameter description: Specifies whether to display information about resource
usage during sorting operations in logs. This parameter is available only when the
macro TRACE_SORT is defined during the GaussDB(DWS) compilation. However,
TRACE_SORT is currently defined by default.

Type: USERSET

Value range: Boolean

● on indicates that the function is enabled.
● off indicates that the function is disabled.

Default value: off

zero_damaged_pages
Parameter description: Specifies whether to detect a damaged page header that
causes GaussDB(DWS) to report an error, aborting the current transaction.

Type: SUSET

Value range: Boolean

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1185

● on indicates that the function is enabled.
● off indicates that the function is disabled.

NO TE

● Setting this parameter to on causes the system to report a warning, pad the damaged
page with zeros, and then continue with subsequent processing. This behavior will
damage data, that is, all rows on the damaged page. However, it allows you to bypass
the error and retrieve rows from any undamaged pages that are present in the table.
Therefore, it is useful for restoring data that is damaged due to a hardware or software
error. In most cases, you are not advised to set this parameter to on unless you do not
want to restore data from the damaged pages of a table.

● For a column-store table, the system will skip the entire CU and then continue
processing. The supported scenarios include the CRC check failure, magic check failure,
and incorrect CU length.

Default value: off

replication_test
Parameter description: Specifies whether to enable internal testing on the data
replication function.

Type: USERSET

Value range: Boolean

● on indicates that internal testing on the data replication function is enabled.
● off indicates that internal testing on the data replication function is disabled.

Default value: off

cost_param
Parameter description: Controls use of different estimation methods in specific
customer scenarios, allowing estimated values approximating to onsite values.
This parameter can control various methods simultaneously by performing AND
(&) operations on the bit for each method. A method is selected if its value is not
0.

If cost_param & 1 is not set to 0, an improvement mechanism is selected for
calculating a non-equi join selection rate, which is more accurate in estimation of
self-join (join between two same tables). In V300R002C00 and later, cost_param
& 1=0 is not used. That is, an optimized formula is selected for calculation.

When cost_param & 2 is set to a value other than 0, the selection rate is
estimated based on multiple filter criteria. The lowest selection rate among all
filter criteria, but not the product of the selection rates for two tables under a
specific filter criterion, is used as the total selection rate. This method is more
accurate when a close correlation exists between the columns to be filtered.

When cost_param & 4 is not 0, the selected debugging model is not
recommended when the stream node is evaluated.

When cost_param & 16 is not 0, the model between fully correlated and fully
uncorrelated models is used to calculate the comprehensive selection rate of two
or more filtering conditions or join conditions. If there are many filtering
conditions, the strongly-correlated model is preferred.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1186

Type: USERSET

Value range: an integer ranging from 1 to INT_MAX

Default value: 16

convert_string_to_digit
Parameter description: Specifies the implicit conversion priority, which
determines whether to preferentially convert strings into numbers.

Type: USERSET

Value range: Boolean

● on indicates that strings are preferentially converted into numbers.
● off indicates that strings are not preferentially converted into numbers.

Default value: on

NO TICE

Modify this parameter only when absolutely necessary because the modification
will change the rule for converting internal data types and may cause unexpected
results.

nls_timestamp_format
Parameter description: Specifies the default timestamp format.

Type: USERSET

Value range: a string

Default value: DD-Mon-YYYY HH:MI:SS.FF AM

enable_partitionwise
Parameter description: Specifies whether to select an intelligent algorithm for
joining partitioned tables.

Type: USERSET

Value range: Boolean

● on indicates that an intelligent algorithm is selected.
● off indicates that an intelligent algorithm is not selected.

Default value: off

enable_partition_dynamic_pruning
Parameter description: Specifies whether dynamic pruning is enabled during
partition table scanning.

Type: USERSET

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1187

Value range: Boolean

● on: enable
● off: disable

Default value: on

max_user_defined_exception
Parameter description: Specifies the maximum number of exceptions. The default
value cannot be changed.

Type: USERSET

Value range: an integer

Default value: 1000

datanode_strong_sync
Parameter description: This parameter no longer takes effect.

Type: USERSET

Value range: Boolean

● on indicates that forcible synchronization between stream nodes is enabled.
● off indicates that forcible synchronization between stream nodes is disabled.

Default value: off

enable_global_stats
Parameter description: Specifies the current statistics mode. This parameter is
used to compare global statistics generation plans and the statistics generation
plans for a single DN. This parameter is used for tests. Users are not allowed to
enable it.

Type: SUSET

Value range: Boolean

● on or true indicates the global statistics mode.
● off or false indicates the single-DN statistics mode.

Default value: on

enable_fast_numeric
Parameter description: Specifies whether to enable optimization for numeric data
calculation. Calculation of numeric data is time-consuming. Numeric data is
converted into int64- or int128-type data to improve numeric data calculation
performance.

Type: USERSET

Value range: Boolean

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1188

● on/true indicates that optimization for numeric data calculation is enabled.
● off/false indicates that optimization for numeric data calculation is disabled.

Default value: on

enable_row_fast_numeric

Parameter description: Specifies the format in which numeric data in a row-store
table is spilled to disks.

Type: USERSET

Value range: Boolean

● on/true indicates that numeric data in a row-store table is spilled to disks in
bigint format.

● off/false indicates that numeric data in a row-store table is spilled to disks in
the original format.

NO TICE

If this parameter is set to on, you are advised to enable
enable_force_vector_engine to improve the query performance of large data sets.
However, compared with the original format, there is a high probability that the
bigint format occupies more disk space. For example, the TPC-H test set occupies
about 7% more space (reference value, may vary depending on the environment).

Default value: off

rewrite_rule

Parameter description: Specifies the rewriting rule for enabled optional queries.
Some query rewriting rules are optional. Enabling them cannot always improve
query efficiency. In a specific customer scenario, you can set the query rewriting
rules through the GUC parameter to achieve optimal query efficiency.

This parameter can control the combination of query rewriting rules, for example,
there are multiple rewriting rules: rule1, rule2, rule3, and rule4. To set the
parameters, you can perform the following operations:

set rewrite_rule=rule1; --Enable query rewriting rule rule1.
set rewrite_rule=rule2,rule3; --Enable query rewriting rules rule2 and rule3.
set rewrite_rule=none; --Disable all optional query rewriting rules.

Type: USERSET

Value range: a string

● none: No optional query rewrite rules are used.
● Lazyagg: The Lazy Agg query rewrite rule is used to eliminate aggregate

operations in subqueries.
● magicset: The Magic Set query rewrite rule is used to push conditions from

the main query down to promoted sublinks.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1189

● uniquecheck: Uses the Unique Check rewriting rule. (The scenario where the
target column does not contain the expression sublink of the aggregate
function can be improved. The function can be enabled only when the value
of the target column is unique after the sublink is aggregated based on the
associated column. This function is recommended to be used by optimization
engineers.)

● disablerep: Uses the function that prohibits pulling up sublinks of the
replication table. (Disables sublink pull-up for the replication table.)

● projection_pushdown: the Projection Pushdown rewriting rule (Removes
columns that are not used by the parent query from the subquery).

● or_conversion: the OR conversion rewriting rule (eliminates the association
OR conditions that are inefficient to execute).

● plain_lazyagg: the Plain Lazy Agg query rewriting rule (eliminates
aggregation operations in a single subquery). This option is supported only by
clusters of version 8.1.3.100 or later.

● eager_magicset: Uses the eager_magicset query rewriting rule (to push
down conditions from the main query to subqueries). This option is supported
only by clusters of version 8.2.0 or later.

● casewhen_simplification: This rewrite rule uses the CASE WHEN statement
to simplify queries. When enabled, it rewrites (case when xxx then const1
else const2)=const1. This option is supported only by clusters of version 8.3.0
or later.

● outer_join_quality_imply: When there is an equi-join condition between a
left outer join and a right outer join, this rule pushes the expression condition
on the outer table's join column down to the inner table's join column. This
option is supported only by clusters of version 8.3.0 or later.

● inlist_merge: This query rewrite rule uses the inlist_or_inlist method to
merge OR statements with the same base table column. When enabled, it
merges and rewrites (where a in (list1) or a in (list2)) to support
inlist2join. This option is supported only by clusters of version 8.3.0 or later.

● subquery_qual_pull_up: For subqueries that cannot be promoted, if the
subquery has filtering conditions on columns that are also used for joining
with other tables, this rule extracts the filtering conditions from the subquery
and passes them to the other side of the join condition. Currently, only var op
const forms without type conversion, such as a > 2, are supported. When
enabled, it is assumed that outer_join_quality_imply is also enabled. This is
supported only by clusters of version 9.1.0 or later.

Default value: magicset, or_conversion, projection_pushdown, plain_lazyagg,
or subquery_qual_pull_up

mv_rewrite_rule
Parameter description: whether to enable the rewriting rule for the materialized
view.

Type: USERSET

Value range: a string

● none: No materialized view rewriting rule is used. This value is available only
in clusters of version 8.2.1.100 or later.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1190

● text: materialized view rewriting rule that uses text matching. This value is
available only in clusters of version 8.2.1.100 or later.

● general: indicates whether to enable structure matching. This value is
supported only by 9.1.0.200 and later cluster versions. To choose general,
contact technical support.

Default value: text,general

enable_compress_spill
Parameter description: Specifies whether to enable the compression function of
writing data to a disk.

Type: USERSET

Value range: Boolean

● on/true indicates that optimization for writing data to a disk is enabled.
● off/false indicates that optimization for writing data to a disk is disabled.

Default value: on

analysis_options
Parameter description: Specifies whether to enable corresponding features, such
as data validation and performance statistics.

Type: USERSET

Value range: a string

● LLVM_COMPILE indicates that the codegen compilation time of each thread
is displayed on the explain performance page.

● HASH_CONFLICT indicates that the log file in the pg_log directory of the DN
process displays the hash table statistics, including the hash table size, hash
chain length, and hash conflict information.

● STREAM_DATA_CHECK indicates that a CRC check is performed on data
before and after network data transmission.

● TURBO_DATA_CHECK indicates that the data context of the ScalarVector
and VectorBatch operators of Turbo is verified. This parameter is supported
only by clusters of version 8.3.0.100 or later.

● KEEP_SAMPLE_DATA: This parameter retains the sampling data used in each
analyze operation in the form of temporary tables. This parameter is
supported only by clusters of version 9.1.0 or later.

● BLOCK_RULE: indicates that the time required for checking the query filter is
displayed on the explain performance page. This is supported only by
9.1.0.100 and later cluster versions.

Default value: off(ALL), which indicates that no location function is enabled.

resource_track_log
Parameter description: Specifies the log level of self-diagnosis. Currently, this
parameter takes effect only in multi-column statistics.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1191

Type: USERSET

Value range: a string

● summary: Brief diagnosis information is displayed.
● detail: Detailed diagnosis information is displayed.

Currently, the two parameter values differ only when there is an alarm about
multi-column statistics not collected. If the parameter is set to summary, such an
alarm will not be displayed. If it is set to detail, such an alarm will be displayed.

Default value: summary

hll_default_log2m

Parameter description: Specifies the number of buckets for HLL data. The
number of buckets affects the precision of distinct values calculated by HLL. The
more buckets there are, the smaller the deviation is. The deviation range is as
follows: [–1.04/2log2m*1/2, +1.04/2log2m*1/2]

Type: USERSET

Value range: an integer ranging from 10 to 16

Default value: 11

hll_default_regwidth

Parameter description: Specifies the number of bits in each bucket for HLL data.
A larger value indicates more memory occupied by HLL. hll_default_regwidth
and hll_default_log2m determine the maximum number of distinct values that
can be calculated by HLL. For details, see Table 15-5.

Type: USERSET

Value range: an integer ranging from 1 to 5

Default value: 5

Table 15-5 Maximum number of calculated distinct values determined by
hll_default_log2m and hll_default_regwidth

log2m regwidth =
1

regwidth =
2

regwidth =
3

regwidth =
4

regwidth =
5

10 7.4e+02 3.0e+03 4.7e+04 1.2e+07 7.9e+11

11 1.5e+03 5.9e+03 9.5e+04 2.4e+07 1.6e+12

12 3.0e+03 1.2e+04 1.9e+05 4.8e+07 3.2e+12

13 5.9e+03 2.4e+04 3.8e+05 9.7e+07 6.3e+12

14 1.2e+04 4.7e+04 7.6e+05 1.9e+08 1.3e+13

15 2.4e+04 9.5e+04 1.5e+06 3.9e+08 2.5e+13

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1192

hll_default_expthresh
Parameter description: Specifies the default threshold for switching from the
explicit mode to the sparse mode.

Type: USERSET

Value range: an integer ranging from –1 to 7 –1 indicates the auto mode; 0
indicates that the explicit mode is skipped; a value from 1 to 7 indicates that the
mode is switched when the number of distinct values reaches 2hll_default_expthresh.

Default value: –1

hll_default_sparseon
Parameter description: Specifies whether to enable the sparse mode by default.

Type: USERSET

Valid value: 0 and 1 0 indicates that the sparse mode is disabled by default. 1
indicates that the sparse mode is enabled by default.

Default value: 1

hll_max_sparse
Parameter description: Specifies the size of max_sparse.

Type: USERSET

Value range: an integer ranging from –1 to INT_MAX

Default value: –1

enable_compress_hll
Parameter description: Specifies whether to enable memory optimization for
HLL.

Type: USERSET

Value range: Boolean

● on or true indicates that memory optimization is enabled.
● off or false indicates that memory optimization is disabled.

Default value: off

approx_count_distinct_precision
Parameter description: Specifies the number of buckets in the HyperLogLog++
(HLL++) algorithm. This parameter can be used to adjust the error rate of the
approx_count_distinct aggregate function. The number of buckets affects the
precision of estimating the distinct value. More bacukets make the estimation
more accurate. The deviation range is as follows: [–1.04/2log2m*1/2,
+1.04/2log2m*1/2]

Type: USERSET

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1193

Value range: an integer ranging from 10 to 20.

Default value: 17

udf_memory_limit
Parameter description: Controls the maximum physical memory that can be used
when each CN or DN executes UDFs.

Type: POSTMASTER

Value range: an integer ranging from 200 x 1024 to the value of
max_process_memory and the unit is KB.

Default value: 0.05 * max_process_memory

FencedUDFMemoryLimit
Parameter description: Controls the virtual memory used by each fenced udf
worker process.

Type: USERSET

Suggestion: You are not advised to set this parameter. You can set
udf_memory_limit instead.

Value range: an integer. The unit can be KB, MB, or GB. 0 indicates that the
memory is not limited.

Default value: 0

UDFWorkerMemHardLimit
Parameter description: Specifies the maximum value of
fencedUDFMemoryLimit.

Type: POSTMASTER

Suggestion: You are not advised to set this parameter. You can set
udf_memory_limit instead.

Value range: an integer. The unit can be KB, MB, or GB.

Default value: 1 GB

enable_pbe_optimization
Parameter description: Specifies whether the optimizer optimizes the query plan
for statements executed in Parse Bind Execute (PBE) mode.

Type: USERSET

Value range: Boolean

● on indicates that the optimizer optimizes the query plan.
● off indicates that the optimization does not optimize the query plan.

Default value: on

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1194

enable_light_proxy
Parameter description: Specifies whether the optimizer optimizes the execution
of simple queries on CNs.

Type: USERSET

Value range: Boolean

● on indicates that the optimizer optimizes the execution.
● off indicates that the optimization does not optimize the execution.

Default value: on

checkpoint_flush_after
Parameter description: Specifies the number of consecutive disk pages that the
checkpointer writer thread writes before asynchronous flush. In GaussDB(DWS),
the size of a disk page is 8 KB.

Type: SIGHUP

Value range: an integer ranging from 0 to 256. 0 indicates that the asynchronous
flush function is disabled. For example, if the value is 32, the checkpointer thread
continuously writes 32 disk pages (that is, 32 x 8 = 256 KB) before asynchronous
flush.

Default value: 32

enable_parallel_ddl
Parameter description: Controls whether multiple CNs can concurrently perform
DDL operations on the same database object.

Type: USERSET

Value range: Boolean

● on indicates that DDL operations can be performed safely and that no
distributed deadlock occurs.

● off indicates that DDL operations cannot be performed safely and that
distributed deadlocks may occur.

Default value: on

gc_fdw_verify_option
Parameter description: Specifies whether to enable the logic for verifying the
number of rows in a result set in the collaborative analysis. This parameter is
supported only by clusters of version 8.1.3.310 or later.

Type: USERSET

Value range: Boolean

● on indicates that the logic for verifying the number of rows in the result set is
enabled. The SELECT COUNT statement is used to obtain the expected
number of rows and compare it with the actual number of rows.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1195

● off indicates that the logic for verifying the number of rows in the result set is
disabled and only the required result set is obtained.

Default value: on

NO TE

● If this parameter is enabled, the performance deteriorates slightly. In performance-
sensitive scenarios, you can disable this parameter to improve the performance.

● If the result set row count check fails, an exception will be reported. To enable
cooperative analysis logs, set log_min_messages to debug1 and logging_module to
'on(COOP_ANALYZE)'.

show_acce_estimate_detail
Parameter description: When the GaussDB(DWS) cluster is accelerated
(acceleration_with_compute_pool is set to on), specifies whether the EXPLAIN
statement displays the evaluation information about execution plan pushdown to
computing Node Groups. The evaluation information is generally used by O&M
personnel during maintenance, and it may affect the output display of the
EXPLAIN statement. Therefore, this parameter is disabled by default. The
evaluation information is displayed only if the verbose option of the EXPLAIN
statement is enabled.

Type: USERSET

Value range: Boolean

● on indicates that the evaluation information is displayed in the output of the
EXPLAIN statement.

● off indicates that the evaluation information is not displayed in the output of
the EXPLAIN statement.

Default value: off

support_batch_bind
Parameter description: Specifies whether to batch bind and execute PBE
statements through interfaces such as JDBC, ODBC, and Libpq.

Type: SIGHUP

Value range: Boolean

● on indicates that batch binding and execution are used.
● off indicates that batch binding and execution are not used.

Default value: on

full_group_by_mode
Parameter description: Used in conjunction with disable_full_group_by_mysql in
behavior_compat_options to control two different behaviors when
disable_full_group_by_mysql syntax is enabled.

Type: USERSET

Value range: a string

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1196

● nullpadding indicates that NULL values in non-aggregate columns are filled
with the non-NULL values in that column, potentially resulting in different
rows in the result set.

● notpadding indicates that NULL values in non-aggregate columns are not
processed, and the entire row data is used, resulting in a random row for non-
aggregate columns in the result set.

Default value: notpadding

NO TICE

This parameter only takes effect when disable_full_group_by_mysql is enabled in
the MySQL-compatible library and non-aggregate columns are present in the
query. The two behaviors of this parameter only apply to non-aggregate columns
in the query.

enable_cudesc_streaming
Parameter description: Specifies whether to use the cudesc streaming path for
accessing data across logical clusters in the decoupled storage and compute
architecture. This parameter is supported only by clusters of version 9.1.0 or later.

Type: SUSET

Value range: enumerated values
● off indicates that cudesc streaming is disabled.
● on indicates that cudesc streaming is enabled.
● only_read_on indicates that cudesc streaming is supported only during data

reading.

Default value: on

force_read_from_rw
Parameter description: Forces data to be read from other logical clusters in the
decoupled storage and compute architecture (i.e., read data from the logical
cluster where the table resides). This parameter is supported only by clusters of
version 9.0.0 or later.

Type: USERSET

Value range: Boolean

Default value: off

kv_sync_up_timeout
Parameter description: Specifies the timeout interval for KV synchronization in
the decoupled storage and compute architecture. This parameter is supported only
by clusters of version 9.0.0 or later.

Type: USERSET

Value range: an integer ranging from 0 to 2147483647

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1197

Default value: 10min

enable_insert_foreign_table_dop

Parameter description: Specifies whether to enable DOP acceleration when data
is written into an OBS foreign table. The number of DOP threads on each DN is
determined by query_dop. By adjusting its value, you can control the level of
parallelism for your queries. This parameter is supported only in 9.1.0.200 and
later versions.

Type: USERSET

Value range: Boolean

● on indicates that foreign table DOP acceleration is enabled.
● off indicates that foreign table DOP acceleration is disabled.

Default value: off

enable_insert_foreign_table_dop_opt

Parameter description: Specifies whether to enable partition redistribution
optimization after insert dop is enabled for a foreign table. If the number of
partitions to be exported is greater than 10 times the number of partitions, you
are advised to enable this function to reduce small files in a single partition and
improve export performance. This parameter is supported only in 9.1.0.200 and
later versions.

Type: USERSET

Value range: Boolean

● on indicates that the insert dop redistribution optimization of the partitioned
foreign table is enabled.

● off indicates that the insert dop redistribution optimization of the partitioned
foreign table is disabled.

Default value: off

default_sequence_cache

Parameter description: Specifies the default cache value for CREATE SEQUENCE.
This is supported only by clusters of version 9.1.0.100 or later.

Type: SIGHUP

Value range: an integer ranging from 1 to 16384

Default value:

● In a newly installed cluster of 9.1.0.100 or later, the default value is 20.
● If the cluster is upgraded to version 9.1.0.100 or later from an earlier version,

the default value will be 1. This means that only one value can be generated
at a time, and no cache will be available.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1198

NO TICE

The setting of this parameter does not impact the cache value created when using
the cache parameter explicitly in CREATE SEQUENCE. It also does not affect the
cache value created by CREATE SEQUENCE in earlier versions during an upgrade.

15.22 Auditing

15.22.1 Audit Switch

audit_enabled

Parameter description: Specifies whether to enable or disable the audit process.
After the audit process is enabled, the auditing information written by the
background process can be read from the pipe and written into audit files.

Type: SIGHUP

Value range: Boolean

● on indicates that the auditing function is enabled.

● off indicates that the auditing function is disabled.

Default value: on

audit_space_limit

Parameter description: Specifies the total disk space occupied by audit files.

Type: SIGHUP

Value range: an integer ranging from 1024 to 1073741824. The unit is KB.

Default value: 1GB

audit_object_name_format

Parameter description: Specifies the format of the object name displayed in the
object_name field of audit logs.

Type: USERSET

Value range: enumerated values

● single indicates that the object_name field displays a single object name,
which is the name of the target object.

● all indicates that the object_name field displays multiple object names.

Default value: single

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1199

NO TE

If the default value is set to all, multiple object names are displayed for SELECT, DELETE,
UPDATE, INSERT, MERGE, CREATE TABLE AS, CREATE VIEW AS, DROP USER... CASCADE,
DROP OWNED BY... CASCADE, DROP SCHEMA... CASSCADE, DROP TABLE... CASCADE, DROP
FOREIGN TABLE... CASCADE, and DROP VIEW... CASCADE.

audit_object_details

Parameter description: whether to record the object_details field in audit logs.
This field indicates the table name, column name, and column type in the audit
statement. This parameter is supported only by clusters of version 8.2.1.100 or
later.

Type: USERSET

Value range: Boolean

● on indicates that the object_details field is recorded during the audit.
● off indicates that the object_details field is not recorded during the audit.

Default value: off

NO TE

● If this parameter is set to on, the table name, column name, and column type in the
statement will be audited, which may affect the performance. So, exercise caution when
setting this parameter to on.

● If this parameter is set to on, the object_details field records the following statements:
SELECT, DELETE, UPDATE, INSERT, MERGE, CREATE TABLE AS SELECT, GRANT, and
DECLARE CURSOR. GRANT statements that fail to be executed are not recorded.

15.22.2 Operation Audit

audit_operation_exec

Parameter description: Specifies whether to audit successful operations in
GaussDB(DWS). Set this parameter as required.

Type: SIGHUP

Value range: a string

● none: indicates that no audit item is configured. If any audit item is
configured, none becomes invalid.

● all: indicates that all successful operations are audited. This value overwrites
the concurrent configuration of any other audit items. Note that even if this
parameter is set to all, not all DDL operations are audited. You need to
control the object level of DDL operations by referring to
audit_system_object.

● login: indicates that successful logins are audited.
● logout: indicates that user logouts are audited.
● database_process: indicates that database startup, stop, switchover, and

recovery operations are audited.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1200

● user_lock: indicates that successful locking and unlocking operations are
audited.

● grant_revoke: indicates that successful granting and reclaiming of a user's
permission are audited.

● ddl: indicates that successful DDL operations are audited. DDL operations are
controlled at a fine granularity based on operation objects. Therefore,
audit_system_object is used to control the objects whose DDL operations are
to be audited. (The audit function takes effect as long as
audit_system_object is configured, no matter whether ddl is set.)

● select: indicates that successful SELECT operations are audited.
● copy: indicates that successful COPY operations are audited.
● userfunc: indicates that successful operations for user-defined functions,

stored procedures, and anonymous blocks are audited.
● set: indicates that successful SET operations are audited.
● transaction: indicates that successful transaction operations are audited.
● vacuum: indicates that successful VACUUM operations are audited.
● analyze: indicates that successful ANALYZE operations are audited.
● explain: indicates that successful EXPLAIN operations are audited.
● specialfunc: indicates that successful calls to special functions are audited.

Special functions include pg_terminate_backend and pg_cancel_backend.
● insert: indicates that successful INSERT operations are audited.
● update: indicates that successful UPDATE operations are audited.
● delete: indicates that successful DELETE operations are audited.
● merge: indicates that successful MERGE operations are audited.
● show: indicates that successful SHOW operations are audited.
● checkpoint: indicates that successful CHECKPOINT operations are audited.
● barrier: indicates that successful BARRIER operations are audited.
● cluster: indicates that successful CLUSTER operations are audited.
● comment: indicates that successful COMMENT operations are audited.
● cleanconn: indicates that successful CLEANCONNECTION operations are

audited.
● prepare: indicates that successful PREPARE, EXECUTE, and DEALLOCATE

operations are audited.
● constraints: indicates that successful CONSTRAINTS operations are audited.
● cursor: indicates that successful cursor operations are audited.
● discard indicates that the successful executions related to global temporary

tables in the current session are audited.

Default value: login, logout, database_process, user_lock, grant_revoke, set,
transaction, or cursor

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1201

NO TICE

● You are advised to reserve transaction. Otherwise, statements in a transaction
will not be audited.

● You are advised to reserve cursor. Otherwise, the SELECT statements in a
cursor will not be audited.

● The Data Studio client automatically encapsulates SELECT statements using
CURSOR.

● If a user-defined function or stored procedure contains a FETCH statement, the
common_text field records the corresponding CURSOR content when the
FETCH statement is audited.

audit_operation_error
Parameter description: Specifies whether to audit failed operations in
GaussDB(DWS). Set this parameter as required.

Type: SIGHUP

Value range: a string

● none: indicates that no audit item is configured. If any audit item is
configured, none becomes invalid.

● syn_success: synchronizes the audit_operation_exec configuration. To be
specific, if the audit of a successful operation is configured, the corresponding
failed operation is also audited. Note that even after syn_success is
configured, you can continue to configure the audit of other failed operations.
If audit_operation_exec is set to all, all failed operations are audited. If
audit_operation_exec is set to none, syn_success is equivalent to none, that
is, no audit item is configured.

● parse: indicates that the failed command parsing is audited, including the
timeout of waiting for a command execution.

● login: indicates that failed logins are audited.
● user_lock: indicates that failed locking and unlocking operations are audited.
● violation: indicates that a user's access violation operations are audited.
● grant_revoke: indicates that failed granting and reclaiming of a user's

permission are audited.
● ddl: indicates that failed DDL operations are audited. DDL operations are

controlled at a fine granularity based on operation objects and configuration
of audit_system_object. Therefore, failed DDL operations of the type
specified in audit_system_object will be audited after ddl is configured.

● select: indicates that failed SELECT operations are audited.
● copy: indicates that failed COPY operations are audited.
● userfunc: indicates that failed operations for user-defined functions, stored

procedures, and anonymous blocks are audited.
● set: indicates that failed SET operations are audited.
● transaction: indicates that failed transaction operations are audited.
● vacuum: indicates that failed VACUUM operations are audited.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1202

● analyze: indicates that failed ANALYZE operations are audited.
● explain: indicates that failed EXPLAIN operations are audited.
● specialfunc: indicates that failed calls to special functions are audited. Special

functions include pg_terminate_backend and pg_cancel_backend.
● insert: indicates that failed INSERT operations are audited.
● update: indicates that failed UPDATE operations are audited.
● delete: indicates that failed DELETE operations are audited.
● merge: indicates that failed MERGE operations are audited.
● show: indicates that failed SHOW operations are audited.
● checkpoint: indicates that failed CHECKPOINT operations are audited.
● barrier: indicates that failed BARRIER operations are audited.
● cluster: indicates that failed CLUSTER operations are audited.
● comment: indicates that failed COMMENT operations are audited.
● cleanconn: indicates that failed CLEANCONNECTION operations are audited.
● prepare: indicates that failed PREPARE, EXECUTE, and DEALLOCATE

operations are audited.
● constraints: indicates that failed CONSTRAINTS operations are audited.
● cursor: indicates that failed cursor operations are audited.
● blacklist: indicates that the blacklist execution failure is audited.
● discard indicates that the execution failures related to global temporary

tables in the current session are audited.

Default value: login

audit_inner_tool

Parameter description: Specifies whether to audit the operations of the internal
maintenance tool in GaussDB(DWS).

Type: SIGHUP

Value range: Boolean

● on: indicates that all operations of the internal maintenance tool are audited.
● off: indicates that all operations of the internal maintenance tool are not

audited.

Default value: off

audit_system_object

Parameter description: Specifies whether to audit the CREATE, DROP, and ALTER
operations on the GaussDB(DWS) database object. The GaussDB(DWS) database
objects include databases, users, schemas, and tables. The operations on the
database object can be audited by changing the value of this parameter.

Type: SIGHUP

Value range: an integer ranging from 0 to 134217727

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1203

● 0 indicates that the function of auditing the CREATE, DROP, and ALTER
operations on the GaussDB(DWS) database object can be disabled.

● Other values indicate that the CREATE, DROP, and ALTER operations on a
certain or some GaussDB(DWS) database objects are audited.

Value description:

The value of this parameter is calculated by 25 binary bits. The 25 binary bits
represent 25 types of GaussDB(DWS) database objects. If the corresponding binary
bit is set to 0, the CREATE, DROP, and ALTER operations on corresponding
database objects are not audited. If it is set to 1, the CREATE, DROP, and ALTER
operations are audited. For details about the audit content represented by these
25 binary bits, see Table 15-6.

Default value: 12303

Table 15-6 Meaning of each value for the audit_system_object parameter

Binary Bit Meaning Value Description

Bit 0 Whether to audit the
CREATE, DROP, and ALTER
operations on databases.

● 0 indicates that the CREATE,
DROP, and ALTER operations on
these objects are not audited.

● 1 indicates that the CREATE,
DROP, and ALTER operations on
these objects are audited.

Bit 1 Whether to audit the
CREATE, DROP, and ALTER
operations on schemas.

● 0 indicates that the CREATE,
DROP, and ALTER operations on
these objects are not audited.

● 1 indicates that the CREATE,
DROP, and ALTER operations on
these objects are audited.

Bit 2 Whether to audit the
CREATE, DROP, and ALTER
operations on users.

● 0 indicates that the CREATE,
DROP, and ALTER operations on
these objects are not audited.

● 1 indicates that the CREATE,
DROP, and ALTER operations on
these objects are audited.

Bit 3 Whether to audit the
CREATE, DROP, ALTER,
and TRUNCATE
operations on tables.

● 0 indicates that the CREATE,
DROP, ALTER, and TRUNCATE
operations on these objects are
not audited.

● 1 indicates that the CREATE,
DROP, ALTER, and TRUNCATE
operations on these objects are
audited.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1204

Binary Bit Meaning Value Description

Bit 4 Whether to audit the
CREATE, DROP, and ALTER
operations on indexes.

● 0 indicates that the CREATE,
DROP, and ALTER operations on
these objects are not audited.

● 1 indicates that the CREATE,
DROP, and ALTER operations on
these objects are audited.

Bit 5 Whether to audit the
CREATE, DROP, and ALTER
operations on views.

● 0 indicates that the CREATE,
DROP, and ALTER operations on
these objects are not audited.

● 1 indicates that the CREATE,
DROP, and ALTER operations on
these objects are audited.

Bit 6 Whether to audit the
CREATE, DROP, and ALTER
operations on triggers.

● 0 indicates that the CREATE,
DROP, and ALTER operations on
these objects are not audited.

● 1 indicates that the CREATE,
DROP, and ALTER operations on
these objects are audited.

Bit 7 Whether to audit the
CREATE, DROP, and ALTER
operations on procedures/
functions.

● 0 indicates that the CREATE,
DROP, and ALTER operations on
these objects are not audited.

● 1 indicates that the CREATE,
DROP, and ALTER operations on
these objects are audited.

Bit 8 Whether to audit the
CREATE, DROP, and ALTER
operations on tablespaces.

● 0 indicates that the CREATE,
DROP, and ALTER operations on
these objects are not audited.

● 1 indicates that the CREATE,
DROP, and ALTER operations on
these objects are audited.

Bit 9 Whether to audit the
CREATE, DROP, and ALTER
operations on resource
pools.

● 0 indicates that the CREATE,
DROP, and ALTER operations on
these objects are not audited.

● 1 indicates that the CREATE,
DROP, and ALTER operations on
these objects are audited.

Bit 10 Whether to audit the
CREATE, DROP, and ALTER
operations on workloads.

● 0 indicates that the CREATE,
DROP, and ALTER operations on
these objects are not audited.

● 1 indicates that the CREATE,
DROP, and ALTER operations on
these objects are audited.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1205

Binary Bit Meaning Value Description

Bit 11 Whether to audit the
CREATE, DROP, and ALTER
operations on SERVER
FOR HADOOP objects.

● 0 indicates that the CREATE,
DROP, and ALTER operations on
these objects are not audited.

● 1 indicates that the CREATE,
DROP, and ALTER operations on
these objects are audited.

Bit 12 Whether to audit the
CREATE, DROP, and ALTER
operations on data
sources.

● 0 indicates that the CREATE,
DROP, and ALTER operations on
these objects are not audited.

● 1 indicates that the CREATE,
DROP, and ALTER operations on
these objects are audited.

Bit 13 Whether to audit the
CREATE, DROP, and ALTER
operations on Node
Groups.

● 0 indicates that the CREATE,
DROP, and ALTER operations on
these objects are not audited.

● 1 indicates that the CREATE,
DROP, and ALTER operations on
these objects are audited.

Bit 14 Whether to audit the
CREATE, DROP, and ALTER
operations on ROW LEVEL
SECURITY objects.

● 0 indicates that the CREATE,
DROP, and ALTER operations on
these objects are not audited.

● 1 indicates that the CREATE,
DROP, and ALTER operations on
these objects are audited.

Bit 15 Whether to audit the
CREATE, DROP, and ALTER
operations on types.

● 0 indicates that the CREATE,
DROP, and ALTER operations on
types are not audited.

● 1 indicates that the CREATE,
DROP, and ALTER operations on
types are audited.

Bit 16 Whether to audit the
CREATE, DROP, and ALTER
operations on text search
objects (configurations
and dictionaries)

● 0 indicates that the CREATE,
DROP, and ALTER operations on
text search objects are not
audited.

● 1 indicates that the CREATE,
DROP, and ALTER operations on
text search objects are audited.

Bit 17 Whether to audit the
CREATE, DROP, and ALTER
operations on directories.

● 0 indicates that the CREATE,
DROP, and ALTER operations on
directories are not audited.

● 1 indicates that the CREATE,
DROP, and ALTER operations on
directories are audited.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1206

Binary Bit Meaning Value Description

Bit 18 Whether to audit the
CREATE, DROP, and ALTER
operations on workloads.

● 0 indicates that the CREATE,
DROP, and ALTER operations on
types are not audited.

● 1 indicates that the CREATE,
DROP, and ALTER operations on
types are audited.

Bit 19 Whether to audit the
CREATE, DROP, and ALTER
operations on redaction
policies.

● 0 indicates that the CREATE,
DROP, and ALTER operations on
redaction policies are not
audited.

● 1 indicates that the CREATE,
DROP, and ALTER operations on
redaction policies are audited.

Bit 20 Whether to audit the
CREATE, DROP, and ALTER
operations on sequences.

● 0 indicates that the CREATE,
DROP, and ALTER operations on
sequences are not audited.

● 1 indicates that the CREATE,
DROP, and ALTER operations on
sequences are audited.

Bit 21 Whether to audit the
CREATE, DROP, and ALTER
operations on nodes.

● 0 indicates that the CREATE,
DROP, and ALTER operations on
nodes are not audited.

● 1 indicates that the CREATE,
DROP, and ALTER operations on
nodes are audited.

Bit 21 Whether to audit the
CREATE, DROP, and ALTER
operations on MATVIEW
objects.

● 0 indicates that the CREATE,
DROP, and ALTER operations on
MATVIEW objects are not
audited.

● 1 indicates that the CREATE,
DROP, and ALTER operations on
MATVIEW objects are audited.

Bit 22 Whether to audit the
CREATE, DROP, and ALTER
operations on STATISTIC
objects.

● 0 indicates that the CREATE,
DROP, and ALTER operations on
STATISTIC objects are not
audited.

● 1 indicates that the CREATE,
DROP, and ALTER operations on
STATISTIC objects are audited.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1207

Binary Bit Meaning Value Description

Bit 23 Whether to audit the
CREATE, DROP, and ALTER
operations on
PUBLICATION objects.

● 0 indicates that the CREATE,
DROP, and ALTER operations on
PUBLICATION objects are not
audited.

● 1 indicates that the CREATE,
DROP, and ALTER operations on
PUBLICATION objects are
audited.

Bit 24 Whether to audit the
CREATE, DROP, and ALTER
operations on
SUBSCRIPTION objects.

● 0 indicates that the CREATE,
DROP, and ALTER operations on
SUBSCRIPTION objects are not
audited.

● 1 indicates that the CREATE,
DROP, and ALTER operations on
SUBSCRIPTION objects are
audited.

Bit 25 Whether to audit the
CREATE, DROP, and ALTER
operations on BLOCK
RULE objects.

● 0 indicates that the CREATE,
DROP, and ALTER operations on
BLOCK RULE objects are not
audited.

● 1 indicates that the CREATE,
DROP, and ALTER operations on
BLOCK RULE objects are audited.

enableSeparationOfDuty

Parameter description: Specifies whether the separation of permissions is
enabled.

Type: POSTMASTER

Value range: Boolean

● on indicates that the separation of permissions is enabled.

● off indicates that the separation of permissions is disabled.

Default value: off

security_enable_options

Parameter description: Specifies whether grant_to_public,
grant_with_grant_option, and foreign_table_options can be used in security
mode. (This parameter is supported only by clusters of version 8.2.0 or later.)

Type: SIGHUP

Value range: a string

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1208

● on indicates that grant to public can be used in security mode.
● on indicates that with grant option can be used in security mode.
● foreign_table_options allows users to perform operations on foreign tables in

security mode without explicitly granting the useft permission to users.

Default value: empty

NO TE

● In a newly installed cluster, this parameter is left blank by default, indicating that none
of grant_to_public, grant_with_grant_option, and foreign_table_options can be used
in security mode.

● In upgrade scenarios, the default value of this parameter is forward compatible. If the
default values of enable_grant_public and enable_grant_option are ON before the
upgrade, the default value of security_enable_options is grant_to_public,
grant_with_grant_option after the upgrade.

15.23 Transaction Monitoring
By setting transaction timeout alerts, you can monitor transactions that are
automatically rolled back and identify statement issues, as well as monitor
statements that take too long to execute.

transaction_sync_naptime
Parameter description: For data consistency, when the local transaction's status
differs from that in the snapshot of the GTM, other transactions will be blocked.
You need to wait for a few minutes until the transaction status of the local host is
consistent with that of the GTM. The gs_clean tool is automatically triggered for
cleansing when the waiting period on the CN exceeds that of
transaction_sync_naptime. The tool will shorten the blocking time after it
completes the cleansing.

Type: USERSET

Value range: an integer. The minimum value is 0. The unit is second.

Default value: 5s

NO TE

If the value of this parameter is set to 0, gs_clean will not be automatically invoked for the
cleansing before the blocking arrives the duration. Instead, the gs_clean tool is invoked by
gs_clean_timeout. The default value is 5 minutes.

transaction_sync_timeout
Parameter description: For data consistency, when the local transaction's status
differs from that in the snapshot of the GTM, other transactions will be blocked.
You need to wait for a few minutes until the transaction status of the local host is
consistent with that of the GTM. An exception is reported when the waiting
duration on the CN exceeds the value of transaction_sync_timeout. Roll back the
transaction to avoid system blocking due to long time of process response failures
(for example, sync lock).

Type: USERSET

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1209

Value range: an integer. The minimum value is 0. The unit is second.

Default value: 10min

NO TE

● If the value is 0, no error is reported when the blocking times out or the transaction is
rolled back.

● The value of this parameter must be greater than gs_clean_timeout. Otherwise,
unnecessary transaction rollback will probably occur due to a block timeout caused by
residual transactions that have not been deleted by gs_clean on a DN.

15.24 GTM Parameters

log_min_messages
Parameter description: Specifies which level of messages will be written into
server logs. Each level covers all the levels following it. The lower the level is, the
fewer messages will be written into the log.

NO TICE

If the values of client_min_messages and log_min_messages are the same, they
indicate different levels.

Type: SUSET

Valid values: enumerated values. Valid values are debug, debug5, debug4,
debug3, debug2, debug1, info, log, notice, warning, error, fatal, and panic. For
details about the parameters, see Table 15-3.

Default value: warning

enable_alarm
Parameter description: Specifies whether to enable the alarm detection thread to
detect the fault scenarios that may occur in the database.

Type: POSTMASTER

Value range: Boolean

● on: Alarm detection thread is enabled.
● off: Alarm detection thread is disabled.

Default value: on

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1210

15.25 Miscellaneous Parameters

enable_cluster_resize

Parameter description: Indicates whether the current session is for scaling or
redistributing data. It should only be used for these specific sessions and not set
for other service sessions.

Type: SUSET

Value range: Boolean

● on indicates that the current session is for scaling or redistributing data, and
allows the execution of specific SQL statements for redistribution.

● off indicates that the current session is not for scaling or redistributing data,
and does not allow the execution of specific SQL statements for redistribution.

Default value: off

NO TE

This parameter is used for internal O&M. Do not set it to on unless absolutely necessary.

dfs_partition_directory_length

Parameter description: Specifies the largest directory name length for the
partition directory of a table partitioned by VALUE in the HDFS.

Type: USERSET

Value range: 92 to 7999

Default value: 512

enable_hadoop_env

Parameter description: Sets whether local row- and column-store tables can be
created in a database while the Hadoop feature is used. In the GaussDB(DWS)
cluster, it is set to off by default to support local row- and column- based storage
and cross-cluster access to Hadoop. You are not advised to change the value of
this parameter.

Type: USERSET

Value range: Boolean

● on or true, indicating that local row- and column-store tables cannot be
created in a database while the Hadoop feature is used.

● off or false, indicating that local row- and column-based tables can be
created in a database while the Hadoop feature is used.

Default value: off

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1211

enable_upgrade_merge_lock_mode

Parameter description: If this parameter is set to on, the delta merge operation
internally increases the lock level, and errors can be avoided when update and
delete operations are performed at the same time.

Type: USERSET

Value range: Boolean

● If this parameter is set to on, the delta merge operation internally increases
the lock level. In this way, when any two of the DELTAMERGE, UPDATE, and
DELETE operations are concurrently performed, an operation can be
performed only after the previous one is complete.

● If this parameter is set to off, and any two of the DELTAMERGE, UPDATE,
and DELETE operations are concurrently performed to data in a row in the
delta table of the HDFS table, errors will be reported during the later
operation, and the operation will stop.

Default value: off

job_queue_processes

Parameter description: Specifies the number of jobs that can be concurrently
executed.

Type: POSTMASTER

Value range: 0 to 1000

Functions:

● Setting job_queue_processes to 0 indicates that the scheduled task function
is disabled and that no job will be executed. (Enabling scheduled tasks may
affect the system performance. At sites where this function is not required,
you are advised to disable it.)

● Setting job_queue_processes to a value that is greater than 0 indicates that
the scheduled task function is enabled and this value is the maximum number
of tasks that can be concurrently processed.

After the scheduled task function is enabled, the job_scheduler thread at a
scheduled interval polls the pg_jobs system catalog. The scheduled task check is
performed every second by default.

Too many concurrent tasks consume many system resources, so you need to set
the number of concurrent tasks to be processed. If the current number of
concurrent tasks reaches job_queue_processes and some of them expire, these
tasks will be postponed to the next polling period. Therefore, you are advised to
set the polling interval (the interval parameter of the submit API) based on the
execution duration of each task to avoid the problem that tasks in the next polling
period cannot be properly processed because overlong task execution time.

Note: If the number of parallel jobs is large and the value is too small, these jobs
will wait in queues. However, a large parameter value leads to large resource
consumption. You are advised to set this parameter to 100 and change it based on
the system resource condition.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1212

Default value: 10

job_queue_naptime

Parameter description: Specifies how often to check the scheduling tasks and
how long to wait for a task thread to start. This parameter is supported only by
clusters of version 8.3.0 or later.

Type: SIGHUP

Value range: 0 ~ 2147483, in seconds.

Default value: 1

job_retention_time

Parameter description: Specifies the maximum number of days for storing
pg_job execution results. This parameter is supported only by clusters of version
8.3.0 or later.

Type: SIGHUP

Value range: 0 to 3650, in days

Default value: 30

ngram_gram_size

Parameter description: Specifies the length of the ngram parser segmentation.

Type: USERSET

Value range: an integer ranging from 1 to 4

Default value: 2

ngram_grapsymbol_ignore

Parameter description: Specifies whether the ngram parser ignores graphical
characters.

Type: USERSET

Value range: Boolean

● on: Ignores graphical characters.
● off: Does not ignore graphical characters.

Default value: off

ngram_punctuation_ignore

Parameter description: Specifies whether the ngram parser ignores punctuations.

Type: USERSET

Value range: Boolean

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1213

● on: Ignores punctuations.
● off: Does not ignore punctuations.

Default value: on

zhparser_dict_in_memory
Parameter description: Specifies whether Zhparser adds a dictionary to memory.

Type: POSTMASTER

Value range: Boolean

● on: Adds the dictionary to memory.
● off: Does not add the dictionary to memory.

Default value: on

zhparser_multi_duality
Parameter description: Specifies whether Zhparser aggregates segments in long
words with duality.

Type: USERSET

Value range: Boolean

● on: Aggregates segments in long words with duality.
● off: Does not aggregate segments in long words with duality.

Default value: off

zhparser_multi_short
Parameter description: Specifies whether Zhparser executes long words
composite divide.

Type: USERSET

Value range: Boolean

● on: Performs compound segmentation for long words.
● off: Does not perform compound segmentation for long words.

Default value: on

zhparser_multi_zall
Parameter description: Specifies whether Zhparser displays all single words
individually.

Type: USERSET

Value range: Boolean

● on: Displays all single words separately.
● off: Does not display all single words separately.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1214

Default value: off

zhparser_multi_zmain
Parameter description: Specifies whether Zhparser displays important single
words separately.

Type: USERSET

Value range: Boolean

● on: Displays important single words separately.
● off: Does not display important single words separately.

Default value: off

zhparser_punctuation_ignore
Parameter description: Specifies whether the Zhparser segmentation result
ignores special characters including punctuations (\r and \n will not be ignored).

Type: USERSET

Value range: Boolean

● on: Ignores all the special characters including punctuations.
● off: Does not ignore all the special characters including punctuations.

Default value: on

zhparser_seg_with_duality
Parameter description: Specifies whether Zhparser aggregates segments in long
words with duality.

Type: USERSET

Value range: Boolean

● on: Aggregates segments in long words with duality.
● off: Does not aggregate segments in long words with duality.

Default value: off

acceleration_with_compute_pool
Parameter description: Specifies whether to use the computing resource pool for
acceleration when OBS is queried.

Type: USERSET

Value range: Boolean

● on indicates that the query covering OBS is accelerated based on the cost
when the computing resource pool is available.

● off indicates that no query is accelerated using the computing resource pool.

Default value: off

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1215

redact_compat_options

Parameter description: Specifies the compatibility option for calculation using
masked data. This parameter is supported only by clusters of version 8.1.3.310 or
later.

Type: USERSET

Value range: a string

● none indicates that compatibility options are specified.
● disable_comparison_operator_mask indicates that comparison operators

that do not expose raw data can bypass the data masking check and generate
the actual calculation result.

Default value: none

enable_redactcol_computable

Parameter description: Specifies whether to enable the data masking function.

Type: POSTMASTER

Value range: Boolean

● on indicates that masked data can be used for calculation.
● off indicates that masked data cannot be used for calculation.

Default value: off

enable_redactcol_equal_const

Parameter description: Specifies whether to allow equivalent comparison
between masked columns and constants during masked data calculation.

Type: SIGHUP

Value range: Boolean

● on indicates that the equivalent comparison between masked columns and
constants is allowed during masked data calculation.

● off indicates that the equivalent comparison between masked columns and
constants is not allowed during masked data calculation.

Default value: off

table_skewness_warning_threshold

Parameter description: Specifies the threshold for triggering a table skew alarm.

Type: SUSET

Value range: a floating point number ranging from 0 to 1

Default value: 1

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1216

table_skewness_warning_rows
Parameter description: Specifies the minimum number of rows for triggering a
table skew alarm.

Type: SUSET

Value range: an integer ranging from 0 to INT_MAX

Default value: 100000

auto_process_residualfile
Parameter description: Specifies whether to enable the residual file recording
function.

Type: SIGHUP

Value range: Boolean

● on indicates that the residual file recording function is enabled.
● off indicates that the residual file recording function is disabled.

Default value: off

enable_view_update
Parameter description: Enables the view update function or not.

Type: POSTMASTER

Value range: Boolean

● on indicates that the view update function is enabled.
● off indicates that the view update function is disabled.

Default value: off

view_independent
Parameter description: Decouples views from tables, functions, and synonyms or
not. After the base table is restored, automatic association and re-creation are
supported.

Type: SIGHUP

Value range: Boolean

● on indicates that the view decoupling function is enabled. Tables, functions,
synonyms, and other views on which views depend can be deleted separately
(except temporary tables and temporary views). Associated views are reserved
but unavailable.

● off indicates that the view decoupling function is disabled. Tables, functions,
synonyms, and other views on which views depend cannot be deleted
separately. You can only delete them in the cascade mode.

Default value: off

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1217

bulkload_report_threshold

Parameter description: Sets the threshold for reporting import and export
statistics. When the data volume exceeds this threshold, the
PGXC_BULKLOAD_STATISTICS view can be used to query synchronized data
volume, record count, execution time, and other information.

Type: SIGHUP

Value range: an integer ranging from 0 to INT_MAX

Default value: 50

assign_abort_xid

Parameter description: Determines the transaction to be aborted based on the
specified XID in a query.

Type: USERSET

Value range: a character string with the specified XID

CA UTION

This parameter is used only for quick restoration if a user deletes data by mistake
(DELETE operation). Do not use this parameter in other scenarios. Otherwise,
visible transaction errors may occur.

default_distribution_mode

Parameter description: Specifies the default distribution mode of a table. This
feature is supported only in 8.1.2 or later.

Type: USERSET

Value range: enumerated values
● roundrobin: If the distribution mode is not specified during table creation, the

default distribution mode is selected according to the following rules:

a. If the primary key or unique constraint is included during table creation,
hash distribution is selected. The distribution column is the column
corresponding to the primary key or unique constraint.

b. If the primary key or unique constraint is not included during table
creation, round-robin distribution is selected.

● hash: If the distribution mode is not specified during table creation, the
default distribution mode is selected according to the following rules:

a. If the primary key or unique constraint is included during table creation,
hash distribution is selected. The distribution column is the column
corresponding to the primary key or unique constraint.

b. If the primary key or unique constraint is not included during table
creation but there are columns whose data types can be used as
distribution columns, hash distribution is selected. The distribution

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1218

column is the first column whose data type can be used as a distribution
column.

c. If the primary key or unique constraint is not included during table
creation and no column whose data type can be used as a distribution
column exists, round-robin distribution is selected.

Default value: roundrobin

NO TE

The default value of this parameter is roundrobin for a new GaussDB(DWS) 8.1.2 cluster
and is hash for an upgrade to GaussDB(DWS) 8.1.2.

feature_support_options
Parameter description: Controls whether to enable data masking and PostGIS
functions. The value is composed of several configuration items separated by
commas.

Type: SIGHUP

Value range: a string

● If this parameter is left blank, data masking and PostGIS are disabled.
● enable_postgis_extension: enables the postgis extension function.

If this option is not set, the postgis extension cannot be enabled. If this item is
disabled after the postgis extension is enabled, the functions and operators
provided by postgis cannot be used.

● enable_data_redaction: enables data masking.
If this parameter is not set, the parameter redact_compat_options also
becomes invalid. As a result, masking policies cannot be created or modified,
and an error is reported when masking data is queried, calculated, or
exported.

Default value: When a new cluster is installed, the default value of this parameter
is empty. In an upgrade scenario, it remains forward-compatible and consistent
with whether the corresponding data masking and PostGIS functions are
configured in the cluster before the upgrade.

max_volatile_tables
Parameter description: Specifies the maximum number of volatile tables created
for each session, including volatile tables and their auxiliary tables. This parameter
is supported by clusters of version 8.2.0 or later.

Type: USERSET

Value range: an integer ranging from 0 to INT_MAX

Default value: 300

vector_engine_strategy
Parameter description: Specifies the vectorization enhancement policy. This
parameter is supported only by clusters of version 8.3.0 or later.

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1219

Type: USERSET

Value range: enumerated values

● force specifies that the vectorization-enhanced plan is forcibly rolled back to
the row storage plan when there are scenarios that do not support
vectorization.

● improve specifies that vectorization enhancement is enabled even when there
are scenarios that do not support vectorization.

Default value: improve

default_temptable_type
Parameter description: Specifies the type of temporary table created when
CREATE TABLE is used to create a temporary table without specifying the table
type before TEMP or TEMPORARY. This parameter is supported only by clusters of
version 9.1.0 or later.

Type: USERSET

Value range: enumerated values

● local: creates a local temporary table when the type is not specified.
● volatile: creates a volatile temporary table when the type is not specified.

Default value: local

foreign_table_default_rw_options
Parameter description: Specifies the default permissions when creating a foreign
table without specifying them. This parameter is supported only by clusters of
version 9.0.3 or later.

Type: USERSET

Value range: a string

● READ_ONLY indicates the read-only permission.
● WRITE_ONLY indicates the write-only permission.
● READ_WRITE indicates the read-write permission.

Default value: READ_ONLY

Data Warehouse Service
Developer Guide 15 GUC Parameters of the GaussDB(DWS) Database

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1220

16 GaussDB(DWS) Developer Terms

Term Description

A – E

ACID Four essential properties that a transaction should have in a
DBMS: Atomicity, Consistency, Isolation, and Durability.

cluster ring A cluster ring consists of several physical servers. The primary-
standby-secondary relationships among its DNs do not involve
external DNs. That is, none of the primary, standby, or secondary
counterparts of DNs belonging to the ring are deployed in other
rings. A ring is the smallest unit used for scaling.

Bgwriter A background write thread created when the database starts.
The thread pushes dirty pages in the database to a permanent
device (such as a disk).

bit The smallest unit of information handled by a computer. One bit
is expressed as a 1 or a 0 in a binary numeral, or as a true or a
false logical condition. A bit is physically represented by an
element such as high or low voltage at one point in a circuit, or
a small spot on a disk that is magnetized in one way or the
other. A single bit conveys little information a human would
consider meaningful. A group of eight bits, however, makes up a
byte, which can be used to represent many types of information,
such as a letter of the alphabet, a decimal digit, or other
character.

Bloom filter Bloom filter is a space-efficient binary vectorized data structure,
conceived by Burton Howard Bloom in 1970, that is used to test
whether an element is a member of a set. False positive
matches are possible, but false negatives are not, in other
words, a query returns either "possibly in set (possible error)" or
"definitely not in set". In the cases, Bloom filter sacrificed the
accuracy for time and space.

Data Warehouse Service
Developer Guide 16 GaussDB(DWS) Developer Terms

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1221

Term Description

CCN The Central Coordinator (CCN) is a node responsible for
determining, queuing, and scheduling complex operations in
each CN to enable the dynamic load management of
GaussDB(DWS).

CIDR Classless Inter-Domain Routing (CIDR). CIDR abandons the
traditional class-based (class A: 8; class B: 16; and class C: 24)
address allocation mode and allows the use of address prefixes
of any length, effectively improving the utilization of address
space. A CIDR address is in the format of IP address/Number of
bits in a network ID. For example, in 192.168.23.35/21, 21
indicates that the first 21 bits are the network prefix and others
are the host ID.

Cgroups A control group (Cgroup), also called a priority group (PG) in
GaussDB(DWS). The Cgroup is a kernel feature of SUSE Linux
and Red Hat that can limit, account for, and isolate the resource
usage of a collection of processes.

CLI Command-line interface (CLI). Users use the CLI to interact with
applications. Its input and output are based on texts. Commands
are entered through keyboards or similar devices and are
compiled and executed by applications. The results are displayed
in text or graphic forms on the terminal interface.

CM Cluster Manager (CM) manages and monitors the running
status of functional units and physical resources in the
distributed system, ensuring stable running of the entire system.

CMS The Cluster Management Service (CMS) component manages
the cluster status.

CN The Coordinator (CN) stores database metadata, splits query
tasks and supports their execution, and aggregates the query
results returned from DNs.

CU Compression Unit (CU) is the smallest storage unit in a column-
storage table.

core file A file that is created when memory overwriting, assertion
failures, or access to invalid memory occurs in a process, causing
it to fail. This file is then used for further analysis.
A core file contains a memory dump, in an all-binary and port-
specific format. The name of a core file consists of the word
"core" and the OS process ID.
The core file is available regardless of the type of platform.

Data Warehouse Service
Developer Guide 16 GaussDB(DWS) Developer Terms

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1222

Term Description

core dump When a program stops abnormally, the core dump, memory
dump, or system dump records the state of the working memory
of the program at that point in time. In practice, other key
pieces of program state are usually dumped at the same time,
including the processor registers, which may include the
program counter and stack pointer, memory management
information, and other processor and OS flags and information.
A core dump is often used to assist diagnosis and computer
program debugging.

DBA A database administrator (DBA) instructs or executes database
maintenance operations.

DBLINK An object defining the path from one database to another. A
remote database object can be queried with DBLINK.

DBMS Database Management System (DBMS) is a piece of system
management software that allows users to access information in
a database. This is a collection of programs that allows you to
access, manage, and query data in a database. A DBMS can be
classified as memory DBMS or disk DBMS based on the location
of the data.

DCL Data control language (DCL)

DDL Data definition language (DDL)

DML Data manipulation language (DML)

DN Datanode performs table data storage and query operations.

ETCD The Editable Text Configuration Daemon (ETCD) is a distributed
key-value storage system used for configuration sharing and
service discovery (registration and search).

ETL Extract-Transform-Load (ETL) refers to the process of data
transmission from the source to the target database.

Extension
Connector

Extension Connector is provided by GaussDB(DWS) to process
data across clusters. It can send SQL statements to Spark, and
can return execution results to your database.

Backup A backup, or the process of backing up, refers to the copying
and archiving of computer data in case of data loss.

backup and
restoration

A collection of concepts, procedures, and strategies to protect
data loss caused by invalid media or misoperations.

standby
server

A node in the GaussDB(DWS) HA solution. It functions as a
backup of the primary server. If the primary server is behaving
abnormally, the standby server is promoted to primary, ensuring
data service continuity.

Data Warehouse Service
Developer Guide 16 GaussDB(DWS) Developer Terms

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1223

Term Description

crash A crash (or system crash) is an event in which a computer or a
program (such as a software application or an OS) ceases to
function properly. Often the program will exit after encountering
this type of error. Sometimes the offending program may appear
to freeze or hang until a crash reporting service documents
details of the crash. If the program is a critical part of the OS
kernel, the entire computer may crash (possibly resulting in a
fatal system error).

encoding Encoding is representing data and information using code so
that it can be processed and analyzed by a computer.
Characters, digits, and other objects can be converted into
digital code, or information and data can be converted into the
required electrical pulse signals based on predefined rules.

encoding
technology

A technology that presents data using a specific set of
characters, which can be identified by computer hardware and
software.

table A set of columns and rows. Each column is referred to as a field.
The value in each field represents a data type. For example, if a
table contains people's names, cities, and states, it has three
columns: Name, City, and State. In every row in the table, the
Name column contains a name, the City column contains a city,
and the State column contains a state.

tablespace A tablespace is a logical storage structure that contains tables,
indexes, large objects, and long data. A tablespace provides an
abstract layer between physical data and logical data, and
provides storage space for all database objects. When you create
a table, you can specify which tablespace it belongs to.

concurrency
control

A DBMS service that ensures data integrity when multiple
transactions are concurrently executed in a multi-user
environment. In a multi-threaded environment, GaussDB(DWS)
concurrency control ensures that database operations are safe
and all database transactions remain consistent at any given
time.

query Specifies requests sent to the database, such as updating,
modifying, querying, or deleting information.

query
operator

An iterator or a query tree node, which is a basic unit for the
execution of a query. Execution of a query can be split into one
or more query operators. Common query operators include scan,
join, and aggregation.

query
fragment

Each query task can be split into one or more query fragments.
Each query fragment consists of one or more query operators
and can independently run on a node. Query fragments
exchange data through data flow operators.

Data Warehouse Service
Developer Guide 16 GaussDB(DWS) Developer Terms

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1224

Term Description

durability One of the ACID features of database transactions. Durability
indicates that transactions that have been committed will
permanently survive and not be rolled back.

stored
procedure

A group of SQL statements compiled into a single execution
plan and stored in a large database system. Users can specify a
name and parameters (if any) for a stored procedure to execute
the procedure.

OS An operating system (OS) is loaded by a bootstrap program to a
computer to manage other programs in the computer. Other
programs are applications or application programs.

secondary
server

To ensure high cluster availability, the primary server
synchronizes logs to the secondary server if data synchronization
between the primary and standby servers fails. If the primary
server suddenly breaks down, the standby server is promoted to
primary and synchronizes logs from the secondary server for the
duration of the breakdown.

BLOB Binary large object (BLOB) is a collection of binary data stored
in a database, such as videos, audio, and images.

dynamic load
balancing

In GaussDB(DWS), dynamic load balancing automatically
adjusts the number of concurrent jobs based on the usage of
CPU, I/O, and memory to avoid service errors and to prevent the
system from stop responding due to system overload.

segment A segment in the database indicates a part containing one or
more regions. Region is the smallest range of a database and
consists of data blocks. One or more segments comprise a
tablespace.

F – J

failover Automatic switchover from a faulty node to its standby node.
Reversely, automatic switchback from the standby node to the
primary node is called failback.

FDW A foreign data wrapper (FDW) is a SQL interface provided by
Postgres. It is used to access big data objects stored in remote
data so that DBAs can integrate data from unrelated data
sources and store them in public schema in the database.

Data Warehouse Service
Developer Guide 16 GaussDB(DWS) Developer Terms

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1225

Term Description

freeze An operation automatically performed by the AutoVacuum
Worker process when transaction IDs are exhausted.
GaussDB(DWS) records transaction IDs in row headings. When a
transaction reads a row, the transaction ID in the row heading
and the actual transaction ID are compared to determine
whether this row is explicit. Transaction IDs are integers
containing no symbols. If exhausted, transaction IDs are re-
calculated outside of the integer range, causing the explicit rows
to become implicit. To prevent such a problem, the freeze
operation marks a transaction ID as a special ID. Rows marked
with these special transaction IDs are explicit to all transactions.

GDB As a GNU debugger, GDB allows you to see what is going on
'inside' another program while it executes or what another
program was doing the moment that it crashed. GDB can
perform four main kinds of things (make PDK functions
stronger) to help you catch bugs in the act:
● Starts your program, specifying anything that might affect its

behavior.
● Stops a program in a specific condition.
● Checks what happens when a program stops.
● Modifies the program content to rectify the fault and

proceeds with the next one.

GDS General Data Service (GDS). To import data to GaussDB(DWS),
you need to deploy the tool on the server where the source data
is stored so that DNs can use this tool to obtain data.

GIN index Generalized inverted index (GIN) is used for handling cases
where the items to be indexed are composite values, and the
queries to be handled by the index need to search for element
values that appear within the composite items.

GNU The GNU Project was publicly announced on September 27,
1983 by Richard Stallman, aiming at building an OS composed
wholly of free software. GNU is a recursive acronym for "GNU's
Not Unix!". Stallman announced that GNU should be
pronounced as Guh-NOO. Technically, GNU is similar to Unix in
design, a widely used commercial OS. However, GNU is free
software and contains no Unix code.

gsql GaussDB(DWS) interaction terminal. It enables you to
interactively type in queries, issue them to GaussDB(DWS), and
view the query results. Queries can also be entered from files.
gsql supports many meta commands and shell-like commands,
allowing you to conveniently compile scripts and automate
tasks.

GTM Global Transaction Manager (GTM) manages the status of
transactions.

Data Warehouse Service
Developer Guide 16 GaussDB(DWS) Developer Terms

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1226

Term Description

GUC Grand unified configuration (GUC) includes parameters for
running databases, the values of which determine database
system behavior.

HA High availability (HA) is a solution in which two modules
operate in primary/standby mode to achieve high availability.
This solution helps to minimize the duration of service
interruptions caused by routine maintenance (planned) or
sudden system breakdowns (unplanned), improving the system
and application usability.

HBA Host-based authentication (HBA) allows hosts to authenticate
on behalf of all or some of the system users. It can apply to all
users on a system or a subset using the Match directive. This
type of authentication can be useful for managing computing
clusters and other fairly homogenous pools of machines. In all,
three files on the server and one on the client must be modified
to prepare for host-based authentication.

HDFS Hadoop Distributed File System (HDFS) is a subproject of
Apache Hadoop. HDFS is highly fault tolerant and is designed to
run on low-end hardware. The HDFS provides high-throughput
access to large data sets and is ideal for applications having
large data sets.

server A combination of hardware and software designed for providing
clients with services. This word alone refers to the computer
running the server OS, or the software or dedicated hardware
providing services.

advanced
package

Logical and functional stored procedures and functions provided
by GaussDB(DWS).

isolation One of the ACID features of database transactions. Isolation
means that the operations inside a transaction and data used
are isolated from other concurrent transactions. The concurrent
transactions do not affect each other.

relational
database

A database created using a relational model. It processes data
using methods of set algebra.

archive
thread

A thread started when the archive function is enabled on a
database. The thread archives database logs to a specified path.

failover The automatic substitution of a functionally equivalent system
component for a failed one. The system component can be a
processor, server, network, or database.

environment
variable

An environment variable defines the part of the environment in
which a process runs. For example, it can define the part of the
environment as the main directory, command search path,
terminal that is in use, or the current time zone.

Data Warehouse Service
Developer Guide 16 GaussDB(DWS) Developer Terms

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1227

Term Description

checkpoint A mechanism that stores data in the database memory to disks
at a certain time. GaussDB(DWS) periodically stores the data of
committed and uncommitted transactions to disks. The data and
redo logs can be used for database restoration if a database
restarts or breaks down.

encryption A function hiding information content during data transmission
to prevent the unauthorized use of the information.

node Cluster nodes (or nodes) are physical and virtual severs that
make up the GaussDB(DWS) cluster environment.

error
correction

A technique that automatically detects and corrects errors in
software and data streams to improve system stability and
reliability.

process An instance of a computer program that is being executed. A
process may be made up of multiple threads of execution. Other
processes cannot use a thread occupied by the process.

PITR Point-In-Time Recovery (PITR) is a backup and restoration
feature of GaussDB(DWS). Data can be restored to a specified
point in time if backup data and WAL logs are normal.

record In a relational database, a record corresponds to data in each
row of a table.

cluster A cluster is an independent system consisting of servers and
other resources, ensuring high availability. In certain conditions,
clusters can implement load balancing and concurrent
processing of transactions.

K – O

LLVM LLVM is short for Low Level Virtual Machine. Low Level Virtual
Machine (LLVM) is a compiler framework written in C++ and is
designed to optimize the compile-time, link-time, run-time, and
idle-time of programs that are written in arbitrary programming
languages. It is open to developers and compatible with existing
scripts.
GaussDB(DWS) LLVM dynamic compilation can be used to
generate customized machine code for each query to replace
original common functions. Query performance is improved by
reducing redundant judgment conditions and virtual function
invocation, and by making local data more accurate during
actual queries.

LVS Linux Virtual Server (LVS), a virtual server cluster system, is used
for balancing the load of a cluster.

Data Warehouse Service
Developer Guide 16 GaussDB(DWS) Developer Terms

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1228

Term Description

logical
replication

Data synchronization mode between primary and standby
databases or between two clusters. Different from physical
replication which replays physical logs, logical replication
transfers logical logs between two clusters or synchronizes data
through SQL statements in logical logs.

logical log Logs recording database changes made through SQL
statements. Generally, the changes are logged at the row level.
Logical logs are different from physical logs that record changes
of physical pages.

logical
decoding

Logic decoding is a process of extracting all permanent changes
in database tables into a clear and easy-to-understand format
by decoding Xlogs.

logical
replication
slot

In a logical replication process, logic replication slots are used to
prevent Xlogs from being reclaimed by the system or VACUUM.
In GaussDB(DWS), a logical replication slot is an object that
records logical decoding positions. It can be created, deleted,
read, and pushed by invoking SQL functions.

MPP Massive Parallel Processing (MPP) refers to cluster architecture
that consists of multiple machines. The architecture is also
called a cluster system.

MVCC Multi-Version Concurrency Control (MVCC) is a protocol that
allows a tuple to have multiple versions, on which different
query operations can be performed. A basic advantage is that
read and write operations do not conflict.

NameNode The NameNode is the centerpiece of a Hadoop file system,
managing the namespace of the file system and client access to
files.

Node Group In GaussDB(DWS), a Node Group refers to a DN set, which is a
sub-cluster. Node Groups can be classified into Storage Node
Groups, which store local table data; and Computing Node
Groups, which perform aggregation and join for queries.

OLAP Online analytical processing (OLAP) is the most important
application in the database warehouse system. It is dedicated to
complex analytical operations, helps decision makers and
executives to make decisions, and rapidly and flexibly processes
complex queries involving a great amount of data based on
analysts' requirements. In addition, the OLAP provides decision
makers with query results that are easy to understand, allowing
them to learn the operating status of the enterprise. These
decision makers can then produce informed and accurate
solutions based on the query results.

OM Operations Management (OM) provides management interfaces
and tools for routine maintenance and configuration
management of the cluster.

Data Warehouse Service
Developer Guide 16 GaussDB(DWS) Developer Terms

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1229

Term Description

ORC Optimized Row Columnar (ORC) is a widely used file format for
structured data in a Hadoop system. It was introduced from the
Hadoop HIVE project.

client A computer or program that accesses or requests services from
another computer or program.

free space
management

A mechanism for managing free space in a table. This
mechanism enables the database system to record free space in
each table and establish an easy-to-search data structure,
accelerating operations (such as INSERT) performed on the free
space.

cross-cluster In GaussDB(DWS), users can access data in other DBMS through
foreign tables or using an Extension Connector. Such access is
cross-cluster.

junk tuple A tuple that is deleted using the DELETE and UPDATE
statements. When deleting a tuple, GaussDB(DWS) only marks
the tuples that are to be cleared. The Vacuum thread will then
periodically clear these junk tuples.

column An equivalent concept of "field". A database table consists of
one or more columns. Together they describe all attributes of a
record in the table.

logical node Multiple logical nodes can be installed on the same node. A
logical node is a database instance.

schema A collection of database objects that define the logical structure,
such as tables, views, sequences, stored procedures, synonyms,
indexes, clusters, and database links.

schema file A SQL file that determines the database structure.

P – T

Page Minimum memory unit for row storage in the GaussDB(DWS)
relational object structure. The default size of a page is 8 KB.

PostgreSQL An open-source DBMS developed by volunteers all over the
world. PostgreSQL is not controlled by any companies or
individuals. Its source code can be used for free.

Postgres-XC Postgres-XC is an open source PostgreSQL cluster to provide
write-scalable, synchronous, multi-master PostgreSQL cluster
solution.

Postmaster A thread started when the database service is started. It listens
to connection requests from other nodes in the cluster or from
clients.
After receiving and accepting a connection request from the
standby server, the primary server creates a WAL Sender thread
to interact with the standby server.

Data Warehouse Service
Developer Guide 16 GaussDB(DWS) Developer Terms

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1230

Term Description

RHEL Red Hat Enterprise Linux (RHEL)

redo log A log that contains information required for performing an
operation again in a database. If a database is faulty, redo logs
can be used to restore the database to its original state.

SCTP The Stream Control Transmission Protocol (SCTP) is a transport-
layer protocol defined by Internet Engineering Task Force (IETF)
in 2000. The protocol ensures the reliability of datagram
transport based on unreliable service transmission protocols by
transferring SCN narrowband signaling over IP network.

savepoint A savepoint marks the end of a sub-transaction (also known as
a nested transaction) in a relational DBMS. The process of a
long transaction can be divided into several parts. After a part is
successfully executed, a savepoint will be created. If later
execution fails, the transaction will be rolled back to the
savepoint instead of being totally rolled back. This is helpful for
recovering database applications from complicated errors. If an
error occurs in a multi-statement transaction, the application
can possibly recover by rolling back to the save point without
terminating the entire transaction.

session A task created by a database for a connection when an
application attempts to connect to the database. Sessions are
managed by the session manager. They execute initial tasks to
perform all user operations.

shared-
nothing
architecture

A distributed computing architecture, in which none of the
nodes share CPUs or storage resources. This architecture has
good scalability.

SLES SUSE Linux Enterprise Server (SLES) is an enterprise Linux OS
provided by SUSE.

SMP Symmetric multiprocessing (SMP) lets multiple CPUs run on a
computer and share the same memory and bus. To ensure an
SMP system achieves high performance, an OS must support
multi-tasking and multi-thread processing. In databases, SMP
means to concurrently execute queries using the multi-thread
technology, efficiently using all CPU resources and improving
query performance.

SQL Structure Query Language (SQL) is a standard database query
language. It consists of DDL, DML, and DCL.

Data Warehouse Service
Developer Guide 16 GaussDB(DWS) Developer Terms

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1231

Term Description

SSL Secure Socket Layer (SSL) is a network security protocol
introduced by Netscape. SSL is a security protocol based on the
TCP and IP communications protocols and uses the public key
technology. SSL supports a wide range of networks and provides
three basic security services, all of which use the public key
technology. SSL ensures the security of service communication
through the network by establishing a secure connection
between the client and server and then sending data through
this connection.

convergence
ratio

Downlink to uplink bandwidth ratio of a switch. A high
convergence ratio indicates a highly converged traffic
environment and severe packet loss.

TCP Transmission Control Protocol (TCP) sends and receives data
through the IP protocol. It splits data into packets for sending,
and checks and reassembles received package to obtain original
information. TCP is a connection-oriented, reliable protocol that
ensures information correctness in transmission.

trace A way of logging to record information about the way a
program is executed. This information is typically used by
programmers for debugging purposes. System administrators
and technical support can diagnose common problems by using
software monitoring tools and based on this information.

full backup Backup of the entire database cluster.

full
synchronizati
on

A data synchronization mechanism specified in the
GaussDB(DWS) HA solution. Used to synchronize all data from
the primary server to a standby server.

Log File A file to which a computer system writes a record of its
activities.

transaction A logical unit of work performed within a DBMS against a
database. A transaction consists of a limited database operation
sequence, and must have ACID features.

data A representation of facts or directives for manual or automatic
communication, explanation, or processing. Data includes
constants, variables, arrays, and strings.

data
redistribution

A process whereby a data table is redistributed among nodes
after users change the data distribution mode.

Data Warehouse Service
Developer Guide 16 GaussDB(DWS) Developer Terms

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1232

Term Description

data
distribution

A mode in which table data is split and stored on each database
instance in a distributed system. Table data can be distributed in
hash, replication, or random mode. In hash mode, a hash value
is calculated based on the value of a specified column in a tuple,
and then the target storage location of the tuple is determined
based on the mapping between nodes and hash values. In
replication mode, tuples are replicated to all nodes. In random
mode, data is randomly distributed to the nodes.

data
partitioning

A division of a logical database or its constituent elements into
multiple parts (partitions) whose data does not overlap based
on specified ranges. Data is mapped to storage locations based
on the value ranges of specific columns in a tuple.

Database
Name

A collection of data that is stored together and can be accessed,
managed, and updated. Data in a view in the database can be
classified into the following types: numerals, full text, digits, and
images.

DB instance A database instance consists of a process in GaussDB(DWS) and
files controlled by the process. GaussDB(DWS) installs multiple
database instances on one physical node. GTM, CM, CN, and DN
installed on cluster nodes are all database instances. A database
instance is also called a logical node.

database HA GaussDB(DWS) provides a highly reliable HA solution. Every
logical node in GaussDB(DWS) is identified as a primary or
standby node. Only one GaussDB(DWS) node is identified as
primary at a time. When the HA system is deployed for the first
time, the primary server synchronizes all data from each standby
server (full synchronization). The HA system then synchronizes
only data that is new or has been modified from each standby
server (incremental synchronization). When the HA system is
running, the primary server can receive data read and write
operation requests and the standby servers only synchronize
logs.

database file A binary file that stores user data and the data inside the
database system.

data flow
operator

An operator that exchanges data among query fragments. By
their input/output relationships, data flows can be categorized
into Gather flows, Broadcast flows, and Redistribution flows.
Gather combines multiple query fragments of data into one.
Broadcast forwards the data of one query fragment to multiple
query fragments. Redistribution reorganizes the data of
multiple query fragments and then redistributes the reorganized
data to multiple query fragments.

Data Warehouse Service
Developer Guide 16 GaussDB(DWS) Developer Terms

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1233

Term Description

data
dictionary

A reserved table within a database which is used to store
information about the database itself. The information includes
database design information, stored procedure information, user
rights, user statistics, database process information, database
increase statistics, and database performance statistics.

deadlock Unresolved contention for the use of resources.

index An ordered data structure in the database management system.
An index accelerates querying and the updating of data in
database tables.

statistics Information that is automatically collected by databases,
including table-level information (number of tuples and number
of pages) and column-level information (column value range
distribution histogram). Statistics in databases are used to
estimate the cost of execution plans to find the plan with the
lowest cost.

stop word In computing, stop words are words which are filtered out
before or after processing of natural language data (text),
saving storage space and improving search efficiency.

U – Z

vacuum A thread that is periodically started up by a database to clear
junk tuples. Multiple Vacuum threads can be started
concurrently by setting a parameter.

verbose The VERBOSE option specifies the information to be displayed.

WAL Write-ahead logging (WAL) is a standard method for logging a
transaction. Corresponding logs must be written into a
permanent device before a data file (carrier for a table and
index) is modified.

WAL
Receiver

A thread created by the standby server during database
duplication. The thread is used to receive data and commands
from the primary server and to tell the primary server that the
data and commands have been acknowledged. Only one WAL
receiver thread can run on one standby server.

WAL Sender Name of a thread created by the primary node after the primary
node receives a connection request from the standby node
during database replication. This thread is used to send data and
commands to standby servers and to receive responses from the
standby servers. Multiple WAL Sender threads may run on one
primary server. Each WAL Sender thread corresponds to a
connection request initiated by a standby server.

WAL Writer A thread for writing redo logs that are created when a database
is started. This thread is used to write logs in the memory to a
permanent device, such as a disk.

Data Warehouse Service
Developer Guide 16 GaussDB(DWS) Developer Terms

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1234

Term Description

WLM The WorkLoad Manager (WLM) is a module for controlling and
allocating system resources in GaussDB(DWS).

Xlog A transaction log. A logical node can have only one Xlog file.

xDR X detailed record. It refers to detailed records on the user and
signaling plans and can be categorized into charging data
records (CDRs), user flow data records (UFDRs), transaction
detail records (TDRs), and data records (SDRs).

network
backup

Network backup provides a comprehensive and flexible data
protection solution to Microsoft Windows, UNIX, and Linux
platforms. Network backup can back up, archive, and restore
files, folders, directories, volumes, and partitions on a computer.

physical
node

A physical machine or device.

system
catalog

A table storing meta information about the database. The meta
information includes user tables, indexes, columns, functions,
and the data types in a database.

pushdown GaussDB(DWS) is a distributed database, where CN can send a
query plan to multiple DNs for parallel execution. This CN
behavior is called pushdown. It achieves better query
performance than extracting data to CN for query.

compression Data compression, source coding, or bit-rate reduction involves
encoding information that uses fewer bits than the original
representation. Compression can be either lossy or lossless.
Lossless compression reduces bits by identifying and eliminating
statistical redundancy. No information is lost in lossless
compression. Lossy compression reduces bits by identifying and
removing unnecessary or unimportant information. The process
of reducing the size of a data file is commonly referred as data
compression, although its formal name is source coding (coding
done at the source of the data, before it is stored or
transmitted).

consistency One of the ACID features of database transactions. Consistency
is a database status. In such a status, data in the database must
comply with integrity constraints.

metadata Data that provides information about other data. Metadata
describes the source, size, format, or other characteristics of
data. In database columns, metadata explains the content of a
data warehouse.

Data Warehouse Service
Developer Guide 16 GaussDB(DWS) Developer Terms

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1235

Term Description

atomicity One of the ACID features of database transactions. Atomicity
means that a transaction is composed of an indivisible unit of
work. All operations performed in a transaction must either be
committed or uncommitted. If an error occurs during transaction
execution, the transaction is rolled back to the state when it was
not committed.

online scale-
out

Online scale-out means that data can be saved to the database
and query services are not interrupted during redistribution in
GaussDB(DWS).

dirty page A page that has been modified and is not written to a
permanent device.

incremental
backup

Incremental backup stores all files changed since the last valid
backup.

incremental
synchronizati
on

A data synchronization mechanism in the GaussDB(DWS) HA
solution. Only data modified since the last synchronization is
synchronized to the standby server.

Host A node that receives data read and write operations in the
GaussDB(DWS) HA system and works with all standby servers.
At any time, only one node in the HA system is identified as the
primary server.

thesaurus Standardized words or phrases that express document themes
and are used for indexing and retrieval.

dump file A specific type of the trace file. A dump is typically a one-time
output of diagnostic data in response to an event, whereas a
trace tends to be continuous output of diagnostic data.

resource pool Resource pools used for allocating resources in GaussDB(DWS).
By binding a user to a resource pool, you can limit the priority of
the jobs executed by the user and resources available to the
jobs.

tenant A database service user who runs services using allocated
computing (CPU, memory, and I/O) and storage resources.
Service level agreements (SLAs) are met through resource
management and isolation.

minimum
restoration
point

A method used by GaussDB(DWS) to ensure data consistency.
During startup, GaussDB(DWS) checks consistency between the
latest WAL logs and the minimum restoration point. If the
record location of the minimum restoration point is greater than
that of the latest WAL logs, the database fails to start.

Data Warehouse Service
Developer Guide 16 GaussDB(DWS) Developer Terms

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1236

	Contents
	1 Before You Start
	2 GaussDB(DWS) Development Design Proposal
	2.1 Overview
	2.2 GaussDB(DWS) Connection Management Specifications
	2.3 GaussDB(DWS) Object Design Specifications
	2.3.1 DATABASE Object Design
	2.3.2 USER Object Design
	2.3.3 Schema Object Design
	2.3.4 TABLESPACE Object Design
	2.3.5 TABLE Object Design (Prioritized)
	2.3.6 INDEX Object Design (Prioritized)
	2.3.7 VIEW Object Design

	2.4 GaussDB(DWS) SQL Statement Development Specifications
	2.4.1 DDL Operations
	2.4.2 INSERT Operation
	2.4.3 UPDATE and DELETE Operations
	2.4.4 SELECT Operation

	2.5 GaussDB(DWS) Stored Procedure Development Specifications
	2.6 Detailed Design Rules for GaussDB(DWS) Objects
	2.6.1 GaussDB(DWS) Database Object Naming Rules
	2.6.2 GaussDB(DWS) Database Object Design Rules
	2.6.2.1 GaussDB(DWS) Database and Schema Design Rules
	2.6.2.2 GaussDB(DWS) Table Design Rules
	2.6.2.3 GaussDB(DWS) Column Design Rules
	2.6.2.4 GaussDB(DWS) Constraint Design Rules
	2.6.2.5 Design Rules for GaussDB(DWS) Views and Associated Tables

	2.6.3 GaussDB(DWS) JDBC Configuration Rules
	2.6.4 GaussDB(DWS) SQL Writing Rules
	2.6.5 Rules for Using Custom GaussDB(DWS) External Functions (pgSQL/Java)
	2.6.6 Rules for Using GaussDB(DWS) PL/pgSQL

	3 Creating and Managing GaussDB(DWS) Database Objects
	3.1 Creating and Managing GaussDB(DWS) Databases
	3.2 Creating and Managing GaussDB(DWS) Schemas
	3.3 Creating and Managing GaussDB(DWS) Tables
	3.4 Selecting a GaussDB(DWS) Table Storage Model
	3.5 Creating and Managing GaussDB(DWS) Partitioned Tables
	3.6 Creating and Managing GaussDB(DWS) Indexes
	3.7 Creating and Using GaussDB(DWS) Sequences
	3.8 Creating and Managing GaussDB(DWS) Views
	3.9 Creating and Managing GaussDB(DWS) Scheduled Tasks
	3.10 Viewing GaussDB(DWS) System Catalogs

	4 Syntax Compatibility Differences Among Oracle, Teradata, and MySQL
	5 GaussDB(DWS) Database Security Management
	5.1 GaussDB(DWS) User and Permissions Management
	5.1.1 GaussDB(DWS) Database User Types
	5.1.2 GaussDB(DWS) Database User Management
	5.1.3 Creating a Custom Password Policy for GaussDB(DWS)
	5.1.4 GaussDB(DWS) Database Permissions Management
	5.1.5 Separation of Duties in GaussDB(DWS)

	5.2 GaussDB(DWS) Sensitive Data Management
	5.2.1 GaussDB(DWS) Row-Level Access Control
	5.2.2 GaussDB(DWS) Data Masking
	5.2.3 Encrypting and Decrypting GaussDB(DWS) Strings
	5.2.4 Using pgcrypto to Encrypt GaussDB(DWS) Data

	6 GaussDB(DWS) Data Query
	6.1 GaussDB(DWS) Single-Table Query
	6.2 GaussDB(DWS) Multi-Table Join Query
	6.3 GaussDB(DWS) Subquery Expressions
	6.4 GaussDB(DWS) WITH Expressions
	6.5 Usage of GaussDB(DWS) UNION
	6.6 Data Reading/Writing Across Logical Clusters
	6.7 SQL on Hudi
	6.7.1 Introduction to Hudi
	6.7.2 Preparations Before Using Hudi
	6.7.3 Hudi User Interfaces
	6.7.4 Creating a Hudi Data Description (Foreign Table)
	6.7.5 Synchronizing Hudi Tasks
	6.7.6 Querying a Hudi Foreign Table
	6.7.7 Accessing Hudi Tables on MRS

	7 GaussDB(DWS) Sorting Rules
	8 GaussDB(DWS) User-Defined Functions
	8.1 GaussDB(DWS) PL/Java Functions
	8.2 GaussDB(DWS) PL/pgSQL Functions

	9 GaussDB(DWS) Stored Procedure
	9.1 Overview
	9.2 Converting Data Types in GaussDB(DWS) Stored Procedures
	9.3 GaussDB(DWS) Stored Procedure Array and Record
	9.3.1 Arrays
	9.3.2 record

	9.4 GaussDB(DWS) Stored Procedure Declaration Syntax
	9.5 Basic Statements of GaussDB(DWS) Stored Procedures
	9.6 Dynamic Statements of GaussDB(DWS) Stored Procedures
	9.6.1 Executing Dynamic Query Statements
	9.6.2 Executing Dynamic Non-query Statements
	9.6.3 Dynamically Calling Stored Procedures
	9.6.4 Dynamically Calling Anonymous Blocks

	9.7 GaussDB(DWS) Stored Procedure Control Statements
	9.7.1 RETURN Statements
	9.7.2 Conditional Statements
	9.7.3 Loop Statements
	9.7.4 Branch Statements
	9.7.5 NULL Statements
	9.7.6 Error Trapping Statements
	9.7.7 GOTO Statements

	9.8 Other Statements in a GaussDB(DWS) Stored Procedure
	9.9 GaussDB(DWS) Stored Procedure Cursor
	9.9.1 Overview
	9.9.2 Explicit Cursor
	9.9.3 Implicit Cursor
	9.9.4 Cursor Loop

	9.10 GaussDB(DWS) Stored Procedure Advanced Package
	9.10.1 DBMS_LOB
	9.10.2 DBMS_RANDOM
	9.10.3 DBMS_OUTPUT
	9.10.4 UTL_RAW
	9.10.5 DBMS_JOB
	9.10.6 DBMS_SQL

	9.11 GaussDB(DWS) Stored Procedure Debugging

	10 Using PostGIS Extension
	10.1 PostGIS
	10.2 Using PostGIS
	10.3 PostGIS Support and Constraints
	10.4 OPEN SOURCE SOFTWARE NOTICE (For PostGIS)

	11 Using JDBC or ODBC for GaussDB(DWS) Secondary Development
	11.1 Prerequisites
	11.2 JDBC-Based Development
	11.2.1 JDBC Development Process
	11.2.2 JDBC Package and Driver Class
	11.2.3 Loading a Driver
	11.2.4 Connecting to a Database
	11.2.5 Executing SQL Statements
	11.2.6 Processing Data in a Result Set
	11.2.7 Common JDBC Development Examples
	11.2.8 Processing RoaringBitmap Result Sets and Importing It to GaussDB (DWS)
	11.2.9 JDBC Interfaces

	11.3 ODBC-Based Development
	11.3.1 ODBC Package and Its Dependent Libraries and Header Files
	11.3.2 Configuring a Data Source in the Linux OS
	11.3.3 Configuring a Data Source in the Windows OS
	11.3.4 ODBC Development Example
	11.3.5 ODBC Interfaces

	12 GaussDB(DWS) Resource Monitoring
	12.1 User Resource Monitoring
	12.2 Resource Pool Monitoring
	12.3 Monitoring Memory Resources
	12.4 Instance Resource Monitoring
	12.5 Real-time Top SQL
	12.6 Historical Top SQL
	12.7 Example for Querying for Top SQLs

	13 GaussDB(DWS) Performance Tuning
	13.1 Overview
	13.2 Performance Diagnosis
	13.2.1 Cluster Performance Analysis
	13.2.2 Slow SQL Analysis
	13.2.2.1 Querying SQL Statements That Affect Performance Most
	13.2.2.2 Checking Blocked Statements

	13.2.3 SQL Diagnosis
	13.2.4 Table Diagnosis

	13.3 System Optimization
	13.3.1 Tuning Database Parameters
	13.3.2 SMP Parallel Execution
	13.3.3 Configuring LLVM

	13.4 SQL Tuning
	13.4.1 SQL Query Execution Process
	13.4.2 SQL Execution Plan
	13.4.3 Execution Plan Operator
	13.4.4 SQL Tuning Process
	13.4.5 Updating Statistics
	13.4.6 Reviewing and Modifying a Table Definition
	13.4.7 Advanced SQL Tuning
	13.4.7.1 SQL Self-Diagnosis
	13.4.7.2 Optimizing Statement Pushdown
	13.4.7.3 Optimizing Subqueries
	13.4.7.4 Optimizing Statistics
	13.4.7.5 Optimizing Operators
	13.4.7.6 Optimizing Data Skew
	13.4.7.7 Proactive Preheating and Tuning of Disk Cache
	13.4.7.8 SQL Statement Rewriting Rules

	13.4.8 Configuring Optimizer Parameters
	13.4.9 Hint-based Tuning
	13.4.9.1 Plan Hint Optimization
	13.4.9.2 Join Order Hints
	13.4.9.3 Join Operation Hints
	13.4.9.4 Rows Hints
	13.4.9.5 Stream Operation Hints
	13.4.9.6 Scan Operation Hints
	13.4.9.7 Sublink Name Hints
	13.4.9.8 Skew Hints
	13.4.9.9 Hint That Disables Subquery Pull-up
	13.4.9.10 Dictionary Code Hint
	13.4.9.11 Configuration Parameter Hints
	13.4.9.12 Hint Errors, Conflicts, and Other Warnings
	13.4.9.13 Plan Hint Cases

	13.4.10 Routinely Maintaining Tables
	13.4.11 Routinely Recreating an Index
	13.4.12 Automatic Retry upon SQL Statement Execution Errors
	13.4.13 Query Band Load Identification

	13.5 SQL Tuning Examples
	13.5.1 Case: Selecting an Appropriate Distribution Column
	13.5.2 Case: Creating an Appropriate Index
	13.5.3 Case: Adding NOT NULL for JOIN Columns
	13.5.4 Case: Pushing Down Sort Operations to DNs
	13.5.5 Case: Configuring cost_param for Better Query Performance
	13.5.6 Case: Adjusting the Partial Clustering Key
	13.5.7 Case: Adjusting the Table Storage Mode in a Medium Table
	13.5.8 Case: Reconstructing Partition Tables
	13.5.9 Case: Adjusting the GUC Parameter best_agg_plan
	13.5.10 Case: Rewriting SQL Statements and Eliminating Prune Interference
	13.5.11 Case: Rewriting SQL Statements and Deleting in-clause
	13.5.12 Case: Setting Partial Cluster Keys
	13.5.13 Case: Converting from NOT IN to NOT EXISTS

	14 GaussDB(DWS) System Catalogs and Views
	14.1 Overview of System Catalogs and System Views
	14.2 System Catalogs
	14.2.1 GS_BLOCKLIST_QUERY
	14.2.2 GS_BLOCKLIST_SQL
	14.2.3 GS_OBSSCANINFO
	14.2.4 GS_RESPOOL_RESOURCE_HISTORY
	14.2.5 GS_WLM_INSTANCE_HISTORY
	14.2.6 GS_WLM_OPERATOR_INFO
	14.2.7 GS_WLM_SESSION_INFO
	14.2.8 GS_WLM_USER_RESOURCE_HISTORY
	14.2.9 PG_AGGREGATE
	14.2.10 PG_AM
	14.2.11 PG_AMOP
	14.2.12 PG_AMPROC
	14.2.13 PG_ATTRDEF
	14.2.14 PG_ATTRIBUTE
	14.2.15 PG_AUTHID
	14.2.16 PG_AUTH_HISTORY
	14.2.17 PG_AUTH_MEMBERS
	14.2.18 PG_BLOCKLISTS
	14.2.19 PG_CAST
	14.2.20 PG_CLASS
	14.2.21 PG_COLLATION
	14.2.22 PG_CONSTRAINT
	14.2.23 PG_CONVERSION
	14.2.24 PG_DATABASE
	14.2.25 PG_DB_ROLE_SETTING
	14.2.26 PG_DEFAULT_ACL
	14.2.27 PG_DEPEND
	14.2.28 PG_DESCRIPTION
	14.2.29 PG_ENUM
	14.2.30 PG_EXCEPT_RULE
	14.2.31 PG_EXTENSION
	14.2.32 PG_EXTENSION_DATA_SOURCE
	14.2.33 PG_FINE_DR_INFO
	14.2.34 PG_FOREIGN_DATA_WRAPPER
	14.2.35 PG_FOREIGN_SERVER
	14.2.36 PG_FOREIGN_TABLE
	14.2.37 PG_INDEX
	14.2.38 PG_INHERITS
	14.2.39 PG_JOB_INFO
	14.2.40 PG_JOBS
	14.2.41 PG_LANGUAGE
	14.2.42 PG_LARGEOBJECT
	14.2.43 PG_LARGEOBJECT_METADATA
	14.2.44 PG_MATVIEW
	14.2.45 PG_NAMESPACE
	14.2.46 PG_OBJECT
	14.2.47 PG_OBSSCANINFO
	14.2.48 PG_OPCLASS
	14.2.49 PG_OPERATOR
	14.2.50 PG_OPFAMILY
	14.2.51 PG_PARTITION
	14.2.52 PG_PLTEMPLATE
	14.2.53 PG_PROC
	14.2.54 PG_PUBLICATION
	14.2.55 PG_PUBLICATION_NAMESPACE
	14.2.56 PG_PUBLICATION_REL
	14.2.57 PG_RANGE
	14.2.58 PG_REDACTION_COLUMN
	14.2.59 PG_REDACTION_POLICY
	14.2.60 PG_RELFILENODE_SIZE
	14.2.61 PG_RLSPOLICY
	14.2.62 PG_RESOURCE_POOL
	14.2.63 PG_REWRITE
	14.2.64 PG_SECLABEL
	14.2.65 PG_SHDEPEND
	14.2.66 PG_SHDESCRIPTION
	14.2.67 PG_SHSECLABEL
	14.2.68 PG_STATISTIC
	14.2.69 PG_STATISTIC_EXT
	14.2.70 PG_STAT_OBJECT
	14.2.71 PG_SUBSCRIPTION
	14.2.72 PG_SYNONYM
	14.2.73 PG_TABLESPACE
	14.2.74 PG_TRIGGER
	14.2.75 PG_TS_CONFIG
	14.2.76 PG_TS_CONFIG_MAP
	14.2.77 PG_TS_DICT
	14.2.78 PG_TS_PARSER
	14.2.79 PG_TS_TEMPLATE
	14.2.80 PG_TYPE
	14.2.81 PG_USER_MAPPING
	14.2.82 PG_USER_STATUS
	14.2.83 PG_WORKLOAD_ACTION
	14.2.84 PGXC_CLASS
	14.2.85 PGXC_GROUP
	14.2.86 PGXC_NODE
	14.2.87 PLAN_TABLE_DATA
	14.2.88 SNAPSHOT
	14.2.89 TABLES_SNAP_TIMESTAMP
	14.2.90 System Catalogs for Performance View Snapshot

	14.3 System Views
	14.3.1 ALL_ALL_TABLES
	14.3.2 ALL_CONSTRAINTS
	14.3.3 ALL_CONS_COLUMNS
	14.3.4 ALL_COL_COMMENTS
	14.3.5 ALL_DEPENDENCIES
	14.3.6 ALL_IND_COLUMNS
	14.3.7 ALL_IND_EXPRESSIONS
	14.3.8 ALL_INDEXES
	14.3.9 ALL_OBJECTS
	14.3.10 ALL_PROCEDURES
	14.3.11 ALL_SEQUENCES
	14.3.12 ALL_SOURCE
	14.3.13 ALL_SYNONYMS
	14.3.14 ALL_TAB_COLUMNS
	14.3.15 ALL_TAB_COMMENTS
	14.3.16 ALL_TABLES
	14.3.17 ALL_USERS
	14.3.18 ALL_VIEWS
	14.3.19 DBA_DATA_FILES
	14.3.20 DBA_USERS
	14.3.21 DBA_COL_COMMENTS
	14.3.22 DBA_CONSTRAINTS
	14.3.23 DBA_CONS_COLUMNS
	14.3.24 DBA_IND_COLUMNS
	14.3.25 DBA_IND_EXPRESSIONS
	14.3.26 DBA_IND_PARTITIONS
	14.3.27 DBA_INDEXES
	14.3.28 DBA_OBJECTS
	14.3.29 DBA_PART_INDEXES
	14.3.30 DBA_PART_TABLES
	14.3.31 DBA_PROCEDURES
	14.3.32 DBA_SEQUENCES
	14.3.33 DBA_SOURCE
	14.3.34 DBA_SYNONYMS
	14.3.35 DBA_TAB_COLUMNS
	14.3.36 DBA_TAB_COMMENTS
	14.3.37 DBA_TAB_PARTITIONS
	14.3.38 DBA_TABLES
	14.3.39 DBA_TABLESPACES
	14.3.40 DBA_TRIGGERS
	14.3.41 DBA_VIEWS
	14.3.42 DUAL
	14.3.43 GET_ALL_TSC_INFO
	14.3.44 GET_TSC_INFO
	14.3.45 GLOBAL_COLUMN_TABLE_IO_STAT
	14.3.46 GLOBAL_REDO_STAT
	14.3.47 GLOBAL_REL_IOSTAT
	14.3.48 GLOBAL_ROW_TABLE_IO_STAT
	14.3.49 GLOBAL_STAT_DATABASE
	14.3.50 GLOBAL_TABLE_CHANGE_STAT
	14.3.51 GLOBAL_TABLE_STAT
	14.3.52 GLOBAL_WORKLOAD_SQL_COUNT
	14.3.53 GLOBAL_WORKLOAD_SQL_ELAPSE_TIME
	14.3.54 GLOBAL_WORKLOAD_TRANSACTION
	14.3.55 GS_ALL_CONTROL_GROUP_INFO
	14.3.56 GS_BLOCKLIST_QUERY
	14.3.57 GS_BLOCKLIST_SQL
	14.3.58 GS_CLUSTER_RESOURCE_INFO
	14.3.59 GS_COLUMN_TABLE_IO_STAT
	14.3.60 GS_OBS_READ_TRAFFIC
	14.3.61 GS_OBS_WRITE_TRAFFIC
	14.3.62 GS_INSTR_UNIQUE_SQL
	14.3.63 GS_NODE_STAT_RESET_TIME
	14.3.64 GS_OBS_LATENCY
	14.3.65 GS_QUERY_MONITOR
	14.3.66 GS_QUERY_RESOURCE_INFO
	14.3.67 GS_REL_IOSTAT
	14.3.68 GS_RESPOOL_RUNTIME_INFO
	14.3.69 GS_RESPOOL_RESOURCE_INFO
	14.3.70 GS_RESPOOL_MONITOR
	14.3.71 GS_ROW_TABLE_IO_STAT
	14.3.72 GS_SESSION_CPU_STATISTICS
	14.3.73 GS_SESSION_MEMORY_STATISTICS
	14.3.74 GS_SQL_COUNT
	14.3.75 GS_STAT_DB_CU
	14.3.76 GS_STAT_SESSION_CU
	14.3.77 GS_TABLE_CHANGE_STAT
	14.3.78 GS_TABLE_STAT
	14.3.79 GS_TOTAL_NODEGROUP_MEMORY_DETAIL
	14.3.80 GS_USER_MONITOR
	14.3.81 GS_USER_TRANSACTION
	14.3.82 GS_VIEW_DEPENDENCY
	14.3.83 GS_VIEW_DEPENDENCY_PATH
	14.3.84 GS_VIEW_INVALID
	14.3.85 GS_WAIT_EVENTS
	14.3.86 GS_WLM_OPERAROR_INFO
	14.3.87 GS_WLM_OPERATOR_HISTORY
	14.3.88 GS_WLM_OPERATOR_STATISTICS
	14.3.89 GS_WLM_SESSION_INFO
	14.3.90 GS_WLM_SESSION_HISTORY
	14.3.91 GS_WLM_SESSION_STATISTICS
	14.3.92 GS_WLM_SQL_ALLOW
	14.3.93 GS_WORKLOAD_SQL_COUNT
	14.3.94 GS_WORKLOAD_SQL_ELAPSE_TIME
	14.3.95 GS_WORKLOAD_TRANSACTION
	14.3.96 MPP_TABLES
	14.3.97 PG_AVAILABLE_EXTENSION_VERSIONS
	14.3.98 PG_AVAILABLE_EXTENSIONS
	14.3.99 PG_BULKLOAD_STATISTICS
	14.3.100 PG_COMM_CLIENT_INFO
	14.3.101 PG_COMM_DELAY
	14.3.102 PG_COMM_STATUS
	14.3.103 PG_COMM_RECV_STREAM
	14.3.104 PG_COMM_SEND_STREAM
	14.3.105 PG_COMM_QUERY_SPEED
	14.3.106 PG_CONTROL_GROUP_CONFIG
	14.3.107 PG_CURSORS
	14.3.108 PG_EXT_STATS
	14.3.109 PG_GET_INVALID_BACKENDS
	14.3.110 PG_GET_SENDERS_CATCHUP_TIME
	14.3.111 PG_GROUP
	14.3.112 PG_INDEXES
	14.3.113 PG_JOB
	14.3.114 PG_JOB_PROC
	14.3.115 PG_JOB_SINGLE
	14.3.116 PG_LIFECYCLE_DATA_DISTRIBUTE
	14.3.117 PG_LOCKS
	14.3.118 PG_LWLOCKS
	14.3.119 PG_NODE_ENV
	14.3.120 PG_OS_THREADS
	14.3.121 PG_POOLER_STATUS
	14.3.122 PG_PREPARED_STATEMENTS
	14.3.123 PG_PREPARED_XACTS
	14.3.124 PG_PUBLICATION_TABLES
	14.3.125 PG_QUERYBAND_ACTION
	14.3.126 PG_REPLICATION_SLOTS
	14.3.127 PG_ROLES
	14.3.128 PG_RULES
	14.3.129 PG_RUNNING_XACTS
	14.3.130 PG_SECLABELS
	14.3.131 PG_SEQUENCES
	14.3.132 PG_SESSION_WLMSTAT
	14.3.133 PG_SESSION_IOSTAT
	14.3.134 PG_SETTINGS
	14.3.135 PG_SHADOW
	14.3.136 PG_SHARED_MEMORY_DETAIL
	14.3.137 PG_STATS
	14.3.138 PG_STAT_ACTIVITY
	14.3.139 PG_STAT_ALL_INDEXES
	14.3.140 PG_STAT_ALL_TABLES
	14.3.141 PG_STAT_BAD_BLOCK
	14.3.142 PG_STAT_BGWRITER
	14.3.143 PG_STAT_DATABASE
	14.3.144 PG_STAT_DATABASE_CONFLICTS
	14.3.145 PG_STAT_GET_MEM_MBYTES_RESERVED
	14.3.146 PG_STAT_USER_FUNCTIONS
	14.3.147 PG_STAT_USER_INDEXES
	14.3.148 PG_STAT_USER_TABLES
	14.3.149 PG_STAT_REPLICATION
	14.3.150 PG_STAT_SYS_INDEXES
	14.3.151 PG_STAT_SYS_TABLES
	14.3.152 PG_STAT_XACT_ALL_TABLES
	14.3.153 PG_STAT_XACT_SYS_TABLES
	14.3.154 PG_STAT_XACT_USER_FUNCTIONS
	14.3.155 PG_STAT_XACT_USER_TABLES
	14.3.156 PG_STATIO_ALL_INDEXES
	14.3.157 PG_STATIO_ALL_SEQUENCES
	14.3.158 PG_STATIO_ALL_TABLES
	14.3.159 PG_STATIO_SYS_INDEXES
	14.3.160 PG_STATIO_SYS_SEQUENCES
	14.3.161 PG_STATIO_SYS_TABLES
	14.3.162 PG_STATIO_USER_INDEXES
	14.3.163 PG_STATIO_USER_SEQUENCES
	14.3.164 PG_STATIO_USER_TABLES
	14.3.165 PG_THREAD_WAIT_STATUS
	14.3.166 PG_TABLES
	14.3.167 PG_TDE_INFO
	14.3.168 PG_TIMEZONE_ABBREVS
	14.3.169 PG_TIMEZONE_NAMES
	14.3.170 PG_TOTAL_MEMORY_DETAIL
	14.3.171 PG_TOTAL_SCHEMA_INFO
	14.3.172 PG_TOTAL_USER_RESOURCE_INFO
	14.3.173 PG_USER
	14.3.174 PG_USER_MAPPINGS
	14.3.175 PG_VIEWS
	14.3.176 PG_WLM_STATISTICS
	14.3.177 PGXC_AIO_RESOURCE_POOL_STATS
	14.3.178 PGXC_BULKLOAD_PROGRESS
	14.3.179 PGXC_BULKLOAD_INFO
	14.3.180 PGXC_BULKLOAD_STATISTICS
	14.3.181 PGXC_COLUMN_TABLE_IO_STAT
	14.3.182 PGXC_COMM_CLIENT_INFO
	14.3.183 PGXC_COMM_DELAY
	14.3.184 PGXC_COMM_RECV_STREAM
	14.3.185 PGXC_COMM_SEND_STREAM
	14.3.186 PGXC_COMM_STATUS
	14.3.187 PGXC_COMM_QUERY_SPEED
	14.3.188 PGXC_DEADLOCK
	14.3.189 PGXC_DISK_CACHE_STATS
	14.3.190 PGXC_DISK_CACHE_ALL_STATS
	14.3.191 PGXC_DISK_CACHE_PATH_INFO
	14.3.192 PGXC_GET_STAT_ALL_TABLES
	14.3.193 PGXC_GET_STAT_ALL_PARTITIONS
	14.3.194 PGXC_GET_TABLE_SKEWNESS
	14.3.195 PGXC_GTM_SNAPSHOT_STATUS
	14.3.196 PGXC_INSTANCE_TIME
	14.3.197 PGXC_LOCKWAIT_DETAIL
	14.3.198 PGXC_INSTR_UNIQUE_SQL
	14.3.199 PGXC_LOCK_CONFLICTS
	14.3.200 PGXC_LWLOCKS
	14.3.201 PGXC_MEMORY_DEBUG_INFO
	14.3.202 PGXC_NODE_ENV
	14.3.203 PGXC_NODE_STAT_RESET_TIME
	14.3.204 PGXC_OBS_IO_SCHEDULER_STATS
	14.3.205 PGXC_OBS_IO_SCHEDULER_PERIODIC_STATS
	14.3.206 PGXC_OS_RUN_INFO
	14.3.207 PGXC_OS_THREADS
	14.3.208 PGXC_POOLER_STATUS
	14.3.209 PGXC_PREPARED_XACTS
	14.3.210 PGXC_REDO_STAT
	14.3.211 PGXC_REL_IOSTAT
	14.3.212 PGXC_REPLICATION_SLOTS
	14.3.213 PGXC_RESPOOL_RUNTIME_INFO
	14.3.214 PGXC_RESPOOL_RESOURCE_INFO
	14.3.215 PGXC_RESPOOL_RESOURCE_HISTORY
	14.3.216 PGXC_ROW_TABLE_IO_STAT
	14.3.217 PGXC_RUNNING_XACTS
	14.3.218 PGXC_SETTINGS
	14.3.219 PGXC_SESSION_WLMSTAT
	14.3.220 PGXC_STAT_ACTIVITY
	14.3.221 PGXC_STAT_BAD_BLOCK
	14.3.222 PGXC_STAT_BGWRITER
	14.3.223 PGXC_STAT_DATABASE
	14.3.224 PGXC_STAT_OBJECT
	14.3.225 PGXC_STAT_REPLICATION
	14.3.226 PGXC_STAT_TABLE_DIRTY
	14.3.227 PGXC_STAT_WAL
	14.3.228 PGXC_SQL_COUNT
	14.3.229 PGXC_TABLE_CHANGE_STAT
	14.3.230 PGXC_TABLE_STAT
	14.3.231 PGXC_THREAD_WAIT_STATUS
	14.3.232 PGXC_TOTAL_MEMORY_DETAIL
	14.3.233 PGXC_TOTAL_SCHEMA_INFO
	14.3.234 PGXC_TOTAL_SCHEMA_INFO_ANALYZE
	14.3.235 PGXC_TOTAL_USER_RESOURCE_INFO
	14.3.236 PGXC_USER_TRANSACTION
	14.3.237 PGXC_VARIABLE_INFO
	14.3.238 PGXC_WAIT_DETAIL
	14.3.239 PGXC_WAIT_EVENTS
	14.3.240 PGXC_WLM_OPERATOR_HISTORY
	14.3.241 PGXC_WLM_OPERATOR_INFO
	14.3.242 PGXC_WLM_OPERATOR_STATISTICS
	14.3.243 PGXC_WLM_SESSION_INFO
	14.3.244 PGXC_WLM_SESSION_HISTORY
	14.3.245 PGXC_WLM_SESSION_STATISTICS
	14.3.246 PGXC_WLM_TABLE_DISTRIBUTION_SKEWNESS
	14.3.247 PGXC_WLM_USER_RESOURCE_HISTORY
	14.3.248 PGXC_WLM_WORKLOAD_RECORDS
	14.3.249 PGXC_WORKLOAD_SQL_COUNT
	14.3.250 PGXC_WORKLOAD_SQL_ELAPSE_TIME
	14.3.251 PGXC_WORKLOAD_TRANSACTION
	14.3.252 PLAN_TABLE
	14.3.253 PV_FILE_STAT
	14.3.254 PV_INSTANCE_TIME
	14.3.255 PV_MATVIEW_DETAIL
	14.3.256 PV_OS_RUN_INFO
	14.3.257 PV_SESSION_MEMORY
	14.3.258 PV_SESSION_MEMORY_DETAIL
	14.3.259 PV_SESSION_STAT
	14.3.260 PV_SESSION_TIME
	14.3.261 PV_TOTAL_MEMORY_DETAIL
	14.3.262 PV_REDO_STAT
	14.3.263 PV_RUNTIME_ATTSTATS
	14.3.264 PV_RUNTIME_RELSTATS
	14.3.265 REDACTION_COLUMNS
	14.3.266 REDACTION_POLICIES
	14.3.267 REMOTE_TABLE_STAT
	14.3.268 SHOW_TSC_INFO
	14.3.269 SHOW_ALL_TSC_INFO
	14.3.270 USER_COL_COMMENTS
	14.3.271 USER_CONSTRAINTS
	14.3.272 USER_CONS_COLUMNS
	14.3.273 USER_INDEXES
	14.3.274 USER_IND_COLUMNS
	14.3.275 USER_IND_EXPRESSIONS
	14.3.276 USER_IND_PARTITIONS
	14.3.277 USER_JOBS
	14.3.278 USER_OBJECTS
	14.3.279 USER_PART_INDEXES
	14.3.280 USER_PART_TABLES
	14.3.281 USER_PROCEDURES
	14.3.282 USER_SEQUENCES
	14.3.283 USER_SOURCE
	14.3.284 USER_SYNONYMS
	14.3.285 USER_TAB_COLUMNS
	14.3.286 USER_TAB_COMMENTS
	14.3.287 USER_TAB_PARTITIONS
	14.3.288 USER_TABLES
	14.3.289 USER_TRIGGERS
	14.3.290 USER_VIEWS
	14.3.291 V$SESSION
	14.3.292 V$SESSION_LONGOPS

	15 GUC Parameters of the GaussDB(DWS) Database
	15.1 Viewing GUC Parameters
	15.2 Configuring GUC Parameters
	15.3 GUC Parameter Usage
	15.4 Connection and Authentication
	15.4.1 Connection Settings
	15.4.2 Security and Authentication (postgresql.conf)
	15.4.3 Communication Library Parameters

	15.5 Resource Consumption
	15.5.1 Memory
	15.5.2 Statement Disk Space Control
	15.5.3 Kernel Resources
	15.5.4 Cost-based Vacuum Delay
	15.5.5 Asynchronous I/O Operations
	15.5.6 Disk Caching

	15.6 Parallel Data Import
	15.7 Write Ahead Logs
	15.7.1 Settings
	15.7.2 Checkpoints
	15.7.3 Archiving

	15.8 HA Replication
	15.8.1 Sending Server
	15.8.2 Primary Server
	15.8.3 Standby Server

	15.9 Query Planning
	15.9.1 Optimizer Method Configuration
	15.9.2 Optimizer Cost Constants
	15.9.3 Genetic Query Optimizer
	15.9.4 Other Optimizer Options

	15.10 Error Reporting and Logging
	15.10.1 Logging Destination
	15.10.2 Logging Time
	15.10.3 Logging Content

	15.11 Alarm Detection
	15.12 Statistics During the Database Running
	15.12.1 Query and Index Statistics Collector
	15.12.2 Performance Statistics

	15.13 Resource Management
	15.14 Automatic Cleanup
	15.15 Default Settings of Client Connection
	15.15.1 Statement Behavior
	15.15.2 Zone and Formatting
	15.15.3 Other Default Parameters

	15.16 Lock Management
	15.17 Version and Platform Compatibility
	15.17.1 Compatibility with Earlier Versions
	15.17.2 Platform and Client Compatibility

	15.18 Fault Tolerance
	15.19 Connection Pool Parameters
	15.20 Cluster Transaction Parameters
	15.21 Developer Operations
	15.22 Auditing
	15.22.1 Audit Switch
	15.22.2 Operation Audit

	15.23 Transaction Monitoring
	15.24 GTM Parameters
	15.25 Miscellaneous Parameters

	16 GaussDB(DWS) Developer Terms

