
Data Lake Insight

Service Bulletin

Issue 01

Date 2025-01-09

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. i

Security Declaration

Vulnerability

Huawei's regulations on product vulnerability management are subject to the Vul. Response Process. For
details about this process, visit the following web page:
https://www.huawei.com/en/psirt/vul-response-process
For vulnerability information, enterprise customers can visit the following web page:
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. ii

https://www.huawei.com/en/psirt/vul-response-process
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Contents

1 Product Bulletin... 1
1.1 EOS Announcement for DLI Spark 3.1.1..1
1.2 EOL Announcement for DLI Yearly/Monthly and Pay-per-Use Queues as Well as Queue CUH Packages
.. 3
1.3 EOS Announcement for DLI Flink 1.10 and Flink 1.11... 6
1.4 EOS Announcement for DLI Spark 2.3.2..7
1.5 EOS Announcement for DLI Flink 1.7...9

2 Version Support Bulletin..11
2.1 Lifecycle of DLI Compute Engine Versions... 11
2.2 What's New in Flink 1.15... 12
2.3 What's New in Flink 1.12... 13
2.4 What's New in Spark 3.3.1...14
2.5 What's New in Spark 3.1.1...16
2.6 What's New in Spark 2.4.5...16
2.7 Differences Between Spark 2.4.x and Spark 3.3.x..18
2.7.1 Differences in SQL Queues Between Spark 2.4.x and Spark 3.3.x..18
2.7.2 Differences in General-Purpose Queues Between Spark 2.4.x and Spark 3.3.x...32
2.7.3 DLI Datasource V1 Table and Datasource V2 Table.. 36

Data Lake Insight
Service Bulletin Contents

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. iii

1 Product Bulletin

1.1 EOS Announcement for DLI Spark 3.1.1

Description

Huawei Cloud schedules an end of service (EOS) for DLI Spark 3.1.1 at 00:00
(GMT+08:00) on December 31, 2024.

Impact

After the EOS, no technical support will be provided for DLI Spark 3.1.1. You are
advised to select the Spark engine of the latest version when executing jobs. DLI
Spark 3.3.1 is recommended.

For jobs that are using DLI Spark 3.1.1, switch to the Spark engine of the latest
version as soon as possible. Otherwise, no technical support will be provided if an
error occurs during job execution.

If you have any questions or suggestions, please submit a service ticket or call us
on +86-4000-955-988 or +86-950-808.

FAQ
● How does the EOS affect the jobs that are using DLI Spark 3.1.1?

If a queue is created after the EOS of Spark 3.1.1, the compute engine that
has reached EOS cannot be selected during job execution.

Historical queues can still use Spark 2.3.2 to execute jobs. However, if an error
occurs during job execution, no technical support is provided. Replace the
compute engine with a new version as soon as possible.

● Which version can be used as a replacement after the EOS?

DLI Spark 3.3.1 is recommended.

● What are the advantages of DLI Spark 3.3.1?

Data Lake Insight
Service Bulletin 1 Product Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 1

https://console-intl.huaweicloud.com/ticket/?region=ap-southeast-1&locale=en-us#/ticketindex/serviceTickets

Table 1-1 Advantages of Spark 3.3.1

Feature Description

Native performance
acceleration

Improved the performance of Spark query
statements.

Metadata access
performance
improvement

Improved Spark's metadata access performance
for handling big data and enhanced data
processing efficiency.

Improving the
performance of OBS
Committer when
writing small files

Improved the performance of Object Storage
Service (OBS) when writing small files, improving
data transfer efficiency.

Dynamic executor
shuffle data
optimization

Improved the stability of resource scaling and
cleaned up Executors when shuffle files are no
longer needed.

Merging small files If a large number of small files are generated
during SQL execution, job execution and table
query will take a long time. In this case, you are
advised to merge small files.
Merge small files by referring to How Do I
Merge Small Files?

Modifying column
comments of non-
partitioned or
partitioned tables

You can modify the column comments of non-
partitioned or partitioned tables.

Collecting statistics on
the CPU usage of SQL
jobs

You can view the total CPU used on the console.

Viewing Spark logs of
container clusters

You need to view logs in the container.

Dynamic UDF loading
(OBT)

The UDF takes effect without restarting the
queue.

Supporting flame
graphs on the Spark UI

Flame graphs can be created on the Spark UI.

Optimizing the query
performance of the
NOT IN statement for
SQL jobs

The query performance of the NOT IN statement
is improved.

Optimizing the query
performance of the
Multi-INSERT
statement

The query performance of the Multi-INSERT
statement is improved.

● Does the upgrade affect the DLI resource price?

Data Lake Insight
Service Bulletin 1 Product Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 2

https://support.huaweicloud.com/intl/en-us/dli_faq/dli_03_0086.html
https://support.huaweicloud.com/intl/en-us/dli_faq/dli_03_0086.html

DLI bills you based on the amount of compute and storage resources
consumed by jobs, regardless of the compute engine version.

● How do I upgrade DLI Spark to version 3.1.1?

a. On the DLI management console, buy an elastic resource pool and create
queues within the pool to provide compute resources required for job
execution.

b. In the navigation pane on the left, choose Job Management > Spark
Jobs. On the displayed page, click Create Job in the upper right corner.

c. On the displayed page, locate the target job and click Edit in the
Operation column.

d. On the page displayed, select the latest Spark version. Spark 3.3.1 is
recommended.

1.2 EOL Announcement for DLI Yearly/Monthly and
Pay-per-Use Queues as Well as Queue CUH Packages

Description
To improve resource sharing and increase the utilization of compute resources, the
DLI team is upgrading yearly/monthly and pay-per-use queues to elastic resource
pool queues. This means if you need to use DLI compute resources, you will need
to buy an elastic resource pool and create queues within it.

● Huawei Cloud schedules an end of marketing (EOM) for DLI queues billed in
yearly/monthly and pay-per-use modes and queue CUH packages on March
31, 2024, at 00:00:00 (GMT+08:00).

● Huawei Cloud schedules an end of life (EOL) for DLI queues billed in yearly/
monthly and pay-per-use modes and queue CUH packages on June 30, 2025,
at 00:00:00 (GMT+08:00).

Impact
● Once the EOM is reached, new DLI queues billed in yearly/monthly and pay-

per-use modes and queue CUH packages, cannot be purchased.
Until June 30, 2024 at 00:00:00 (GMT+08:00), you can renew your queues for
up to one year or modify their specifications to meet your service needs.
After June 30, 2024, at 00:00:00 (GMT+08:00), it will no longer be possible to
renew or change your queues.

● Once the EOL is reached, queues will no longer be usable. Therefore, it is
necessary to use an elastic resource pool or the default queue before the
EOL. We recommend purchasing an elastic resource pool and creating queues
within it to enjoy a wider range of DLI product capabilities.

If you have any questions or suggestions, please submit a service ticket or call us
on +86-4000-955-988 or +86-950-808.

Data Lake Insight
Service Bulletin 1 Product Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 3

https://console-intl.huaweicloud.com/ticket/?region=ap-southeast-1&locale=en-us#/ticketindex/serviceTickets

Lifecycle of DLI Yearly/Monthly and Pay-per-Use Queues

Table 1-2 Lifecycle of DLI yearly/monthly and pay-per-use queues

Function Status EOM Date EOL Date

DLI yearly/
monthly and
pay-per-use
queues

EOM March 31,
2024

June 30, 2025

NO TE

● EOM: indicates that the sales of this function are stopped.

● EOL: indicates that all sales and service activities are stopped.

FAQ
● What will happen to jobs running on DLI queues with yearly/monthly or

pay-per-use billing after the EOM?
Once the EOM is reached, new queues cannot be purchased.
– Short-term solution: Until June 30, 2024 at 00:00:00 (GMT+08:00), you

can renew your queues for up to one year or modify their specifications
to meet your service needs.

– Long-term solution: Use the elastic resource pool or default queue. You
are advised to purchase an elastic resource pool and create queues in the
pool.

● What will happen to jobs running on DLI queues with yearly/monthly or
pay-per-use billing after the EOL?
Once the EOL is reached, queues billed in yearly/monthly or pay-per-use
mode will no longer be able to execute jobs.
Before the EOL, you need to move your jobs from yearly/monthly and pay-
per-use queues to queues in an elastic resource pool. To do this, you will need
to purchase an elastic resource pool, create a queue within the pool, and then
run your jobs on that queue.

● What function can be used as a replacement after the EOM and EOL?
If you are running jobs on queues billed in yearly/monthly or pay-per-use
mode, use an elastic resource pool or the default queue as soon as possible.
– For pay-per-use dedicated queues, they can be directly moved to newly

purchased elastic resource pools.
– For yearly/monthly or pay-per-use non-dedicated queues, you will need

to unsubscribe from them first, purchase new elastic resource pools, and
then execute jobs in those pools.

● What are the advantages of elastic resource pool queues compared with
yearly/monthly and pay-per-use queues?
– Yearly/Monthly and pay-per-use queues: Such queues have

predetermined resource specifications. However, if a job's resource

Data Lake Insight
Service Bulletin 1 Product Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 4

requirements fluctuate, the queue resources may either go to waste or
prove to be insufficient.

– Elastic resource pool queue: Dynamic scaling improves resource
utilization.

● Do I have to pay for an elastic resource pool? Is a queue created in an
elastic resource pool charged separately?
Elastic resource pools support the pay-per-use and package billing modes. For
more information about the billing, see Data Lake Insight Billing.
Queues added to an elastic resource pool are not billed separately, but be
included in the billing for the elastic resource pool.
– Pay-per-use: You are billed based on the actual CUs of the elastic

resource pool.
– Yearly/Monthly: You are billed based on the actual CUs of the elastic

resource pool, with the specification part billed yearly/monthly and any
excess billed on a pay-per-use basis.

– Elastic resource pool CUH package: You are billed based on the price of
the purchased package, with the specification within the package billed
on a yearly/monthly basis. Any excess beyond the package specification
will be billed on a pay-per-use basis.

For more billing information about elastic resource pools, see Billing for
Elastic Resource Pools.

● How do I create an elastic resource pool queue?

a. Buy an elastic resource pool.

i. On the DLI management console, choose Resources > Resource
Pool.

ii. On the Resource Pool page, click Buy Resource Pool in the upper
right corner.
Set parameters as instructed, click Buy, confirm the configuration,
and click Submit.

b. Create a queue in the elastic resource pool.
Create one or more queues in the elastic resource pool to run jobs.

i. Switch to the Resource Pool page.
ii. Locate the target elastic resource pool and click Add Queue in the

Operation column.
iii. On the Add Queue page, configure basic queue information. Click

OK.
c. Create a job.

Create a job and run it on the queue you have created.

Announcement published on: November 21, 2023

Data Lake Insight
Service Bulletin 1 Product Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 5

https://support.huaweicloud.com/intl/en-us/price-dli/dli_12_0004.html
https://support.huaweicloud.com/intl/en-us/price-dli/dli_12_0004.html

1.3 EOS Announcement for DLI Flink 1.10 and Flink
1.11

Description

Huawei Cloud schedules an end of service (EOS) for DLI Flink 1.10 and Flink 1.11
at 00:00 (GMT+08:00) on December 31, 2023.

Impact

After the EOS, no technical support will be provided for DLI Flink 1.10 and Flink
1.11. You are advised to select the Flink engine of the latest version when
executing jobs. DLI Flink 1.15 is recommended.

For jobs that are using Flink 1.10 or Flink 1.11, switch to the Flink engine of the
latest version as soon as possible. Otherwise, no technical support will be provided
if an error occurs during job execution.

If you have any questions or suggestions, please submit a service ticket or call us
on +86-4000-955-988 or +86-950-808.

FAQ
● How does the EOS affect the jobs that are using Flink 1.10 or 1.11?

If a queue is created after the EOS of Flink 1.10 or 1.11, the compute engine
that has reached EOS cannot be selected during job execution.
Historical queues can still use Flink 1.10 or Flink 1.11 to execute jobs.
However, if an error occurs during job execution, no technical support is
provided. Replace the compute engine with a new version as soon as possible.

● Which version can be used as a replacement after the EOS?
DLI Flink 1.15 is recommended.

● What are the advantages of Flink 1.15?
– The syntax design of Flink 1.15 has been improved to achieve higher

compatibility and consistency with mainstream open-source technology
standards.

– Flink 1.15 has added support for new connectors such as Hive and Hudi.
For more advantages, see Flink 1.15 Upgrade Guide.

● Does the upgrade of Flink affect the DLI resource price?
DLI bills you based on the amount of compute and storage resources
consumed by jobs, regardless of the compute engine version.

● How do I upgrade Flink to version 1.15?

a. On the DLI management console, buy an elastic resource pool and create
queues within the pool to provide compute resources required for job
execution.

b. Log in to the DLI management console. In the navigation pane on the
left, choose Job Management > Flink Jobs.

Data Lake Insight
Service Bulletin 1 Product Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 6

https://console-intl.huaweicloud.com/ticket/?region=ap-southeast-1&locale=en-us#/ticketindex/serviceTickets

c. On the displayed page, locate the target job and click Edit in the
Operation column.

d. On the page displayed, select the latest Flink version. Flink 1.15 is
recommended.
For the syntax of Flink 1.15, see Flink OpenSource SQL 1.15 Usage.

Announcement published on: July 6, 2023

1.4 EOS Announcement for DLI Spark 2.3.2

Description
Huawei Cloud schedules an end of service (EOS) for DLI Spark 2.3.2 at 00:00
(GMT+08:00) on December 31, 2023.

Impact
After the EOS, no technical support will be provided for DLI Spark 2.3.2. You are
advised to select the Spark engine of the latest version when executing jobs. DLI
Spark 3.3.1 is recommended.

For jobs that are using DLI Spark 2.3.2, switch to the Spark engine of the latest
version as soon as possible. Otherwise, no technical support will be provided if an
error occurs during job execution.

If you have any questions or suggestions, please submit a service ticket or call us
on +86-4000-955-988 or +86-950-808.

FAQ
● How does the EOS affect the jobs that are using DLI Spark 2.3.2?

If a queue is created after the EOS of Spark 2.3.2, the compute engine that
has reached EOS cannot be selected during job execution.
Historical queues can still use Spark 2.3.2 to execute jobs. However, if an error
occurs during job execution, no technical support is provided. Replace the
compute engine with a new version as soon as possible.

● Which version can be used as a replacement after the EOS?
DLI Spark 3.3.1 is recommended.

● What are the advantages of DLI Spark 3.3.1?

Table 1-3 Advantages of Spark 3.3.1

Feature Description

Native
performance
acceleration

Improved the performance of Spark query statements.

Metadata access
performance
improvement

Improved Spark's metadata access performance for
handling big data and enhanced data processing
efficiency.

Data Lake Insight
Service Bulletin 1 Product Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 7

https://support.huaweicloud.com/intl/en-us/sqlref-flink-dli/dli_08_15108.html
https://console-intl.huaweicloud.com/ticket/?region=ap-southeast-1&locale=en-us#/ticketindex/serviceTickets

Feature Description

Improving the
performance of
OBS Committer
when writing small
files

Improved the performance of Object Storage Service
(OBS) when writing small files, improving data
transfer efficiency.

Dynamic executor
shuffle data
optimization

Improved the stability of resource scaling and cleaned
up Executors when shuffle files are no longer needed.

Merging small files If a large number of small files are generated during
SQL execution, job execution and table query will take
a long time. In this case, you are advised to merge
small files.
Merge small files by referring to How Do I Merge
Small Files?

Modifying column
comments of non-
partitioned or
partitioned tables

You can modify the column comments of non-
partitioned or partitioned tables.

Collecting statistics
on the CPU usage
of SQL jobs

You can view the total CPU used on the console.

Viewing Spark logs
of container
clusters

You need to view logs in the container.

Dynamic UDF
loading (OBT)

The UDF takes effect without restarting the queue.

Supporting flame
graphs on the
Spark UI

Flame graphs can be created on the Spark UI.

Optimizing the
query performance
of the NOT IN
statement for SQL
jobs

The query performance of the NOT IN statement is
improved.

Optimizing the
query performance
of the Multi-
INSERT statement

The query performance of the Multi-INSERT
statement is improved.

● Does the upgrade affect the DLI resource price?

DLI bills you based on the amount of compute and storage resources
consumed by jobs, regardless of the compute engine version.

● How do I upgrade DLI Spark to version 2.4.5?

Data Lake Insight
Service Bulletin 1 Product Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 8

https://support.huaweicloud.com/intl/en-us/dli_faq/dli_03_0086.html
https://support.huaweicloud.com/intl/en-us/dli_faq/dli_03_0086.html

a. On the DLI management console, buy an elastic resource pool and create
queues within the pool to provide compute resources required for job
execution.

b. In the navigation pane on the left, choose Job Management > Spark
Jobs. On the displayed page, click Create Job in the upper right corner.

c. On the displayed page, locate the target job and click Edit in the
Operation column.

d. On the page displayed, select the latest Spark version. Spark 3.3.1 is
recommended.

Announcement published on: July 6, 2023

1.5 EOS Announcement for DLI Flink 1.7

Description

Huawei Cloud schedules an end of service (EOS) for DLI Flink 1.7 at 00:00 (GMT
+08:00) on December 31, 2022.

Impact

After the EOS, no technical support will be provided for DLI Flink 1.7. You are
advised to select the Flink engine of the latest version when executing jobs. DLI
Flink 1.15 is recommended.

For jobs that are using Flink 1.7, switch to the Flink engine of the latest version as
soon as possible. Otherwise, no technical support will be provided if an error
occurs during job execution.

If you have any questions or suggestions, please submit a service ticket or call us
on +86-4000-955-988 or +86-950-808.

FAQ
● Which functions of Flink 1.7 will not be evolved?

– The Flink Edge SQL function will no longer be supported for edge job
processing after Flink 1.7 EOS, and subsequent versions of Flink will not
support it either.

– Similarly, the sensitive variable function will no longer be supported after
Flink 1.7 EOS, and subsequent versions will not support it either.

● How does the EOS affect the jobs that are using Flink 1.7?
If a queue is created after the EOS of Flink 1.7, the compute engine that has
reached EOS cannot be selected during job execution.
If you encounter any errors when Flink 1.7 is used to execute jobs on
historical queues, note that this version will no longer receive any technical
support. It is recommended that you switch to a later version of the compute
engine as soon as possible.

● Which version can be used as a replacement after the EOS?
DLI Flink 1.15 is recommended.

Data Lake Insight
Service Bulletin 1 Product Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 9

https://console-intl.huaweicloud.com/ticket/?region=ap-southeast-1&locale=en-us#/ticketindex/serviceTickets

● What are the advantages of Flink 1.12?
Flink 1.12 supports DataGen, GaussDB(DWS), JDBC, MySQL CDC, Postgres
CDC, Redis, Upsert Kafka, and HBase source tables.
For more advantages, see Flink 1.12 Upgrade Guide.

● Does the upgrade of Flink affect the DLI resource price?
DLI bills you based on the amount of compute and storage resources
consumed by jobs, regardless of the compute engine version.

● How do I upgrade Flink to version 1.12?

a. On the DLI management console, buy an elastic resource pool and create
queues within the pool to provide compute resources required for job
execution.

b. Log in to the DLI management console. In the navigation pane on the
left, choose Job Management > Flink Jobs.

c. On the displayed page, locate the target job and click Edit in the
Operation column.

d. On the page displayed, select the latest Flink version. Flink 1.15 is
recommended.

Announcement published on: July 6, 2023

Data Lake Insight
Service Bulletin 1 Product Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 10

https://nightlies.apache.org/flink/flink-docs-release-1.17/release-notes/flink-1.12/

2 Version Support Bulletin

2.1 Lifecycle of DLI Compute Engine Versions

Version Description

DLI compute engine version is in Compute engine name x.y.z format. Compute
engine name can be Flink or Spark. Figure 2-1 describes the version.

Figure 2-1 DLI compute engine version description

Version Support
● Recommended Flink version: Flink 1.15
● Recommended Spark version: Spark 3.3.1

NO TE

You are not advised to use Spark/Flink engines of different versions for a long time.

● Doing so can lead to code incompatibility, which can negatively impact job execution
efficiency.

● Doing so may result in job execution failures due to conflicts in dependencies. Jobs rely
on specific versions of libraries or components.

Lifecycle of a Compute Engine Version

Table 2-1 lists the lifecycle of DLI compute engine versions, based on which you
can plan your version update pace.

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 11

Table 2-1 Lifecycle of DLI compute engine versions

Compute
Engine
Type

Version Status EOM Date EOS Date

Flink DLI Flink 1.15 Released June 30, 2025 June 30, 2026

DLI Flink 1.12 EOS December 31,
2023

December 31,
2024

DLI Flink 1.11 EOS June 30, 2022 December 31,
2023

DLI Flink 1.10 EOS June 30, 2022 December 31,
2023

DLI Flink 1.7 EOS December 31,
2021

December 31,
2022

Spark DLI Spark
3.3.1

Released June 30, 2025 June 30, 2026

DLI Spark
3.1.1

EOS December 31,
2023

December 31,
2024

DLI Spark
2.4.5

EOS December 31,
2023

December 31,
2024

DLI Spark
2.3.2

EOS June 30, 2022 December 31,
2023

NO TE

● End of Marketing (EOM): indicates that the sales of this version are stopped. Any new
purchases of resources will no longer support the engine version that has reached EOM.

● End of Service & Support (EOS): Services of this version are stopped. You are advised to
use the engine of the latest version when running jobs. After this date, Huawei Cloud
will no longer provide any technical support for the software version.

2.2 What's New in Flink 1.15
DLI complies with the release consistency of the open source Flink compute
engine. This section describes the updates in Flink 1.15.

For details about Flink 1.15, see Release Notes - Flink Jar 1.15 and Flink
OpenSource SQL 1.15 Usage.

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 12

https://nightlies.apache.org/flink/flink-docs-release-1.17/release-notes/flink-1.15/
https://support.huaweicloud.com/intl/en-us/sqlref-flink-dli/dli_08_15108.html
https://support.huaweicloud.com/intl/en-us/sqlref-flink-dli/dli_08_15108.html

Flink 1.15 Release Date
Version Release

Date
Status EOM Date EOS Date

DLI Flink 1.15 June 2023 Release
d

June 30, 2025 June 30, 2026

For more version support information, see Lifecycle of DLI Compute Engine
Versions.

Flink 1.15 Description
● The syntax design of Flink 1.15 has been improved to achieve higher

compatibility and consistency with mainstream open-source technology
standards.

● Flink 1.15 has added support for new connectors such as Hive and Hudi.
● For synchronous data migration scenarios in Flink 1.15, DataArts Studio's

DataArts Migration is recommended.
● Flink 1.15 now supports integration with DEW-CSMS secret management,

providing a privacy protection solution.
● Flink 1.15 supports minimal submission of Flink Jar jobs.

NO TE

Minimal submission means Flink only submits the necessary job dependencies, not the
entire Flink environment. By setting the scope of non-Connector Flink dependencies
(starting with flink-) and third-party libraries (like Hadoop, Hive, Hudi, and MySQL-
CDC) to provided, you ensure these dependencies are excluded from the Jar job,
avoiding conflicts with Flink core dependencies.
● Only Flink 1.15 supports minimal submission of Flink Jar jobs. Enable this by

configuring flink.dli.job.jar.minimize-submission.enabled=true in the runtime
optimization parameters.

● For Flink-related dependencies, use the provided scope by adding
<scope>provided</scope> in the dependencies, especially for non-Connector
dependencies under the org.apache.flink group starting with flink-.

● For dependencies related to Hadoop, Hive, Hudi, and MySQL-CDC, also use the
provided scope by adding <scope>provided</scope> in the dependencies.

● In the Flink source code, only methods marked with @Public or @PublicEvolving
are intended for user invocation. DLI guarantees compatibility with these methods.

2.3 What's New in Flink 1.12
DLI complies with the release consistency of the open source Flink compute
engine. This section describes the updates in Flink 1.12.

For more information about Flink 1.12, see Release Notes - Flink 1.12.

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 13

https://nightlies.apache.org/flink/flink-docs-release-1.17/release-notes/flink-1.12/

Flink 1.12 Release Date
Version Release

Date
Status EOM Date EOS Date

DLI Flink 1.12 December
2021

EOS December 31,
2023

December 31, 2024

For more version support information, see Lifecycle of DLI Compute Engine
Versions.

Flink 1.12 Description
● Added support for DataGen, GaussDB(DWS), JDBC, MySQL CDC, Postgres

CDC, Redis, Upsert Kafka, and HBase source tables.
● Added support for the merge of small files.
● Added support for Redis and RDS dimension tables.

2.4 What's New in Spark 3.3.1
DLI complies with the release consistency of the open source Spark compute
engine. This section describes the updates in Spark 3.3.1.

For more information about Spark 3.3.1, see Spark Release Notes.

Spark 3.3.1 Release Date
Version Release

Date
Status EOM Date EOS Date

DLI Spark
3.3.1

June 2023 Release
d

June 30, 2025 June 30, 2026

For more version support information, see Lifecycle of DLI Compute Engine
Versions.

Spark 3.3.1 Description
Table 2-2 lists the main features of Spark 3.3.1.

For more information on new features and performance optimizations, see
Release Notes - Spark 3.3.1.

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 14

https://spark.apache.org/releases/
https://spark.apache.org/releases/spark-release-3-3-1.html

Table 2-2 Advantages of Spark 3.3.1

Feature Description

Native performance
acceleration

Improved the performance of Spark query
statements.

Metadata access
performance
improvement

Improved Spark's metadata access performance for
handling big data and enhanced data processing
efficiency.

Improving the
performance of OBS
Committer when writing
small files

Improved the performance of Object Storage Service
(OBS) when writing small files, improving data
transfer efficiency.

Dynamic executor shuffle
data optimization

Improved the stability of resource scaling and
cleaned up Executors when shuffle files are no
longer needed.

Merging small files If a large number of small files are generated during
SQL execution, job execution and table query will
take a long time. In this case, you are advised to
merge small files.
Merge small files by referring to How Do I Merge
Small Files?

Modifying column
comments of non-
partitioned or partitioned
tables

You can modify the column comments of non-
partitioned or partitioned tables.

Collecting statistics on
the CPU usage of SQL
jobs

You can view the total CPU used on the console.

Viewing Spark logs of
container clusters

You need to view logs in the container.

Dynamic UDF loading
(OBT)

The UDF takes effect without restarting the queue.

Supporting flame graphs
on the Spark UI

Flame graphs can be created on the Spark UI.

Optimizing the query
performance of the NOT
IN statement for SQL
jobs

The query performance of the NOT IN statement is
improved.

Optimizing the query
performance of the
Multi-INSERT statement

The query performance of the Multi-INSERT
statement is improved.

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 15

https://support.huaweicloud.com/intl/en-us/dli_faq/dli_03_0086.html
https://support.huaweicloud.com/intl/en-us/dli_faq/dli_03_0086.html

2.5 What's New in Spark 3.1.1
DLI complies with the release consistency of the open source Spark compute
engine. This section describes the updates in Spark 3.1.1.

For more information about Spark 3.1.1, see Spark Release Notes.

Spark 3.1.1 Release Date

Version Release
Date

Status EOM Date EOS Date

DLI Spark
3.1.1

December
2021

EOS December 31,
2023

December 31, 2024

For more version support information, see Lifecycle of DLI Compute Engine
Versions.

Spark 3.1.1 Description

The following lists the main features of Spark 3.1.1.

For more new features, see Release Notes - Spark 3.1.1.

● [SPARK-33050]: Upgraded Apache ORC to version 1.5.12.
● [SPARK-33092]: Improved subexpression elimination.
● [SPARK-33480]: Added support for the char/varchar data type.
● [SPARK-32302]: Optimized the pushdown of some predicates.
● [SPARK-30648]: Added support for the pushdown of predicates in JSON

datasource tables.
● [SPARK-32346]: Added support for the pushdown of predicates in Avro

datasource tables.
● [SPARK-32461]: Optimized the Shuffle Hash Join algorithm.
● [SPARK-32272]: Added the SQL-standard command SET TIME ZONE.
● [SPARK-21492]: Fixed memory leak caused by the sort-merge join algorithm.
● [SPARK-27812]: Upgraded the Kubernetes client to version 4.6.1.

NO TE

DLI does not support built-in geospatial query functions since Spark 3.x.

2.6 What's New in Spark 2.4.5
DLI complies with the release consistency of the open source Spark compute
engine. This document describes the updates in Spark 2.4.5.

For more information about Spark 2.4.5, see Spark Release Notes.

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 16

https://spark.apache.org/releases/
https://spark.apache.org/releases/
https://spark.apache.org/releases/

Spark 2.4.5 Release Date
Version Release

Date
Status EOM Date EOS Date

DLI Spark
2.4.5

December
2021

EOS December 31,
2023

December 31, 2024

For more version support information, see Lifecycle of DLI Compute Engine
Versions.

Spark 2.4.5 Description
Table 2-3 lists the main features of Spark 2.4.5.

For more new features, see Release Notes - Spark 2.4.5.

Table 2-3 Advantages of Spark 2.4.5

Feature Description

Merging small files If a large number of small files are generated during SQL
execution, job execution and table query will take a long
time. In this case, you are advised to merge small files.
Merge small files by referring to How Do I Merge Small
Files?

Modifying column
comments of non-
partitioned or
partitioned tables

You can modify the column comments of non-partitioned
or partitioned tables.

Collecting statistics
on the CPU usage of
SQL jobs

You can view the total CPU used on the console.

Viewing Spark logs
of container clusters

You need to view logs in the container.

Dynamic UDF
loading (OBT)

The UDF takes effect without restarting the queue.

Supporting flame
graphs on the Spark
UI

Flame graphs can be created on the Spark UI.

Optimizing the
query performance
of the NOT IN
statement for SQL
jobs

The query performance of the NOT IN statement is
improved.

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 17

https://spark.apache.org/releases/
https://support.huaweicloud.com/intl/en-us/dli_faq/dli_03_0086.html
https://support.huaweicloud.com/intl/en-us/dli_faq/dli_03_0086.html

Feature Description

Optimizing the
query performance
of the Multi-
INSERT statement

The query performance of the Multi-INSERT statement
is improved.

2.7 Differences Between Spark 2.4.x and Spark 3.3.x

2.7.1 Differences in SQL Queues Between Spark 2.4.x and
Spark 3.3.x

DLI has summarized the differences in SQL queues between Spark 2.4.x and Spark
3.3.x to help you understand the impact of upgrading the Spark version on jobs
running in the SQL queues with the new engine.

Difference in the Return Type of the histogram_numeric Function
● Explanation:

The histogram_numeric function in Spark SQL returns an array of structs (x,
y), where the type of x varies between different engine versions.
– Spark 2.4.x: In Spark 3.2 or earlier, x is of type double.
– Spark 3.3.x: The type of x is equal to the input value type of the function.

● Is there any impact on jobs after the engine version upgrade?
There is an impact; related usages need to be adapted.

● Sample code:
Prepare data:
create table test_histogram_numeric(val int);
INSERT INTO test_histogram_numeric VALUES(1),(5),(8),(6),(7),(9),(8),(9);

Execute SQL:
select histogram_numeric(val,3) from test_histogram_numeric;

– Spark 2.4.5
[{"x":1.0,"y":1.0},{"x":5.5,"y":2.0},{"x":8.200000000000001,"y":5.0}]

– Spark 3.3.1
[{"x":1,"y":1.0},{"x":5,"y":2.0},{"x":8,"y":5.0}]

Spark 3.3.x No Longer Supports Using "0$" to Specify the First Argument
● Explanation:

In format_string(strfmt, obj, ...) and printf(strfmt, obj, ...), strfmt will no
longer support using 0$ to specify the first argument; the first argument
should always be referenced by 1$ when using argument indexing to indicate
the position of the argument in the parameter list.
– Spark 2.4.x: Both %0 and %1 can represent the first argument.
– Spark 3.3.x: %0 is no longer supported.

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 18

● Is there any impact on jobs after the engine version upgrade?
There is an impact; usages involving %0 need to be modified to adapt to
Spark 3.3.x.

● Sample code 1:
Execute SQL:
SELECT format_string('Hello, %0$s! I\'m %1$s!', 'Alice', 'Lilei');

– Spark 2.4.5
Hello, Alice! I'm Alice!

– Spark 3.3.1
DLI.0005: The value of parameter(s) 'strfmt' in `format_string` is invalid: expects %1$, %2$ and
so on, but got %0$.

● Sample code 2:
Execute SQL:
SELECT format_string('Hello, %1$s! I\'m %2$s!', 'Alice', 'Lilei');

– Spark 2.4.5
Hello, Alice! I'm Lilei!

– Spark 3.3.1
Hello, Alice! I'm Lilei!

Spark 3.3.x Empty String Without Quotes
● Explanation:

By default, in the CSV data source, empty strings are represented as "" in
Spark 2.4.5. After upgrading to Spark 3.3.1, empty strings have no quotes.
– Spark 2.4.x: Empty strings in the CSV data source are represented as "".
– Spark 3.3.x: Empty strings in the CSV data source have no quotes.

To restore the format of Spark 2.4.x in Spark 3.3.x, you can set
spark.sql.legacy.nullValueWrittenAsQuotedEmptyStringCsv to true.

● Is there any impact on jobs after the engine version upgrade?
There is an impact; the storage format of null values in exported ORC files
will be different.

● Sample code:
Prepare data:
create table test_null(id int,name string) stored as parquet;
insert into test_null values(1,null);

Export a CSV file and check the file content:
– Spark 2.4.5

1,""

– Spark 3.3.1
1,

Different Return Results of the describe function
● Explanation:

If the function does not exist, describe function will fail.
– Spark 2.4.x: The DESCRIBE function can still run and print Function:

func_name not found.
– Spark 3.3.x: The error message changes to failure if the function does not

exist.

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 19

● Is there any impact on jobs after the engine version upgrade?
There is an impact; the return information of the describe function related
APIs is different.

● Sample code:
Execute SQL:
describe function dli_no (dli_no does not exist)

– Spark 2.4.5
Successfully executed, function_desc content:
Function:func_name not found

– Spark 3.3.1
Execution failed, DLI.0005:
Undefined function: dli_no...

Clear Indication That Specified External Table Property is Not Supported
● Explanation:

The external property of the table becomes reserved. If the external property
is specified, certain commands will fail.
– Spark 2.4.x: Commands succeed when specifying the external property

via CREATE TABLE ... TBLPROPERTIES and ALTER TABLE ... SET
TBLPROPERTIES, but the external property is silently ignored, and the
table remains a managed table.

– Spark 3.3.x:
Commands will fail when specifying the external property via CREATE
TABLE ... TBLPROPERTIES and ALTER TABLE ... SET TBLPROPERTIES.
To restore the Spark 2.4.x usage in Spark 3.3.x, set
spark.sql.legacy.notReserveProperties to true.

● Is there any impact on jobs after the engine version upgrade?
There is an impact; related usages need to be adapted.

● Sample code:
Execute SQL:
CREATE TABLE test_external(id INT,name STRING) TBLPROPERTIES('external'=true);

– Spark 2.4.5
Successfully executed.

– Spark 3.3.1
DLI.0005: The feature is not supported: external is a reserved table property, please use CREATE
EXTERNAL TABLE.

New Support for Parsing Strings of "+Infinity", "+INF", and "-INF" Types
● Explanation:

– Spark 2.4.x: When reading values from JSON properties defined as
FloatType or DoubleType, Spark 2.4.x only supports parsing Infinity and
-Infinity.

– Spark 3.3.x: In addition to supporting Infinity and -Infinity, Spark 3.3.x
also supports parsing strings of +Infinity, +INF, and -INF.

● Is there any impact on jobs after the engine version upgrade?

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 20

Function enhancement, no impact.

Default Configuration spark.sql.adaptive.enabled = true
● Explanation:

– Spark 2.4.x: In Spark 2.4.x, the default value of the
spark.sql.adaptive.enabled configuration item is false, meaning that the
Adaptive Query Execution (AQE) feature is disabled.

– Spark 3.3.x: Starting from Spark 3.3.x-320, AQE is enabled by default,
that is, spark.sql.adaptive.enabled is set to true.

● Is there any impact on jobs after the engine version upgrade?
DLI functionality is enhanced, and the default value of
spark.sql.adaptive.enabled has changed.

Change in the Schema of SHOW TABLES Output
● Explanation:

The schema of the SHOW TABLES output changes from database: string to
namespace: string.
– Spark 2.4.x: The schema of the SHOW TABLES output is database:

string.
– Spark 3.3.x:

The schema of the SHOW TABLES output changes from database: string
to namespace: string.
For the built-in catalog, the namespace field is named database; for the
v2 catalog, there is no isTemporary field.
To revert to the style of Spark 2.4.x in Spark 3.3.x, set
spark.sql.legacy.keepCommandOutputSchema to true.

● Is there any impact on jobs after the engine version upgrade?
There is an impact; check the usages related to SHOW TABLES in jobs and
adapt them to meet the new version's usage requirements.

● Sample code:
Execute SQL:
show tables;

– Spark 2.4.5
database tableName isTemporary
db1 table1 false

– Spark 3.3.1
namespace tableName isTemporary
db1 table1 false

Schema Change in SHOW TABLE EXTENDED Output
● Explanation:

The schema of the SHOW TABLE EXTENDED output changes from database:
string to namespace: string.
– Spark 2.4.x: The schema of the SHOW TABLE EXTENDED output is

database: string.

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 21

– Spark 3.3.x:

– The schema of the SHOW TABLE EXTENDED output changes from
database: string to namespace: string.

For the built-in catalog, the namespace field is named database; there is
no change for the v2 catalog.

To revert to the style of Spark 2.4.x in Spark 3.3.x, set
spark.sql.legacy.keepCommandOutputSchema to true.

● Is there any impact on jobs after the engine version upgrade?

There is an impact; check the usages related to SHOW TABLES in jobs and
adapt them to meet the new version's usage requirements.

● Sample code:

Execute SQL:
show table extended like 'table%';

– Spark 2.4.5
database tableName isTemporary information
db1 table1 false Database:db1...

– Spark 3.3.1
namespace tableName isTemporary information
db1 table1 false Database:db1...

Impact of Table Refresh on Dependent Item Cache
● Explanation:

After upgrading to Spark 3.3.x, table refresh will clear the table's cache data
but keep the dependent item cache.

– Spark 2.4.x: In Spark 2.4.x, when performing a table refresh operation
(for example, REFRESH TABLE), the cache data of dependent items (for
example, views) is not retained.
ALTER TABLE .. ADD PARTITION
ALTER TABLE .. RENAME PARTITION
ALTER TABLE .. DROP PARTITION
ALTER TABLE .. RECOVER PARTITIONS
MSCK REPAIR TABLE
LOAD DATA
REFRESH TABLE
TRUNCATE TABLE
spark.catalog.refreshTable

– Spark 3.3.x: After upgrading to Spark 3.3.x, table refresh will clear the
table's cache data but keep the dependent item cache.

● Is there any impact on jobs after the engine version upgrade?

The upgraded engine version will increase the cache data of the original
dependencies.

Impact of Table Refresh on Other Cached Operations Dependent on the
Table

● Explanation:

– Spark 2.4.x: In Spark 2.4.x, refreshing a table will trigger the uncache
operation for all other caches referencing the table only if the table itself
is cached.

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 22

– Spark 3.3.x: After upgrading to the new engine version, refreshing the
table will trigger the uncache operation for other caches dependent on
the table, regardless of whether the table itself is cached.

● Is there any impact on jobs after the engine version upgrade?
DLI functionality is enhanced to ensure that the table refresh operation can
affect the cache, improving program robustness.

New Support for Using Typed Literals in ADD PARTITION
● Explanation:

– Spark 2.4.x:
In Spark 2.4.x, using typed literals (for example, date'2020-01-01') in
ADD PARTITION will parse the partition value as a string
date'2020-01-01', resulting in an invalid date value and adding a
partition with a null value.
The correct approach is to use a string value, such as ADD PARTITION(dt
= '2020-01-01').

– Spark 3.3.x: In Spark 3.3.x, partition operations support using typed
literals, supporting ADD PARTITION(dt = date'2020-01-01') and
correctly parsing the partition value as a date type instead of a string.

● Is there any impact on jobs after the engine version upgrade?
There is an impact; the handling of typed literals in ADD PARTITION has
changed.

● Sample code:
Prepare data:
create table test_part_type (id int,name string,pt date) PARTITIONED by (pt);
insert into test_part_type partition (pt = '2021-01-01') select 1,'name1';
insert into test_part_type partition (pt = date'2021-01-01') select 1,'name1';

Execute SQL:
select id,name,pt from test_part_type;
(Set the parameter spark.sql.forcePartitionPredicatesOnPartitionedTable.enabled to false.)

– Spark 2.4.5
1 name1 2021-01-01
1 name1

– Spark 3.3.1
1 name1 2021-01-01
1 name1 2021-01-01

Mapping Type Change of DayTimeIntervalType to Duration
● Explanation:

In the ArrowWriter and ArrowColumnVector developer APIs, starting from
Spark 3.3.x, the DayTimeIntervalType in Spark SQL is mapped to Apache
Arrow's Duration type.
– Spark 2.4.x: DayTimeIntervalType is mapped to Apache Arrow's Interval

type.
– Spark 3.3.x: DayTimeIntervalType is mapped to Apache Arrow's

Duration type.
● Is there any impact on jobs after the engine version upgrade?

There is an impact; the mapping type of DayTimeIntervalType has changed.

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 23

Type Change in the Return Result of Date Difference
● Explanation:

The date subtraction expression (e.g., date1 – date2) returns a
DayTimeIntervalType value.

– Spark 2.4.x: Returns CalendarIntervalType.

– Spark 3.3.x: Returns DayTimeIntervalType.

To restore the previous behavior, set spark.sql.legacy.interval.enabled to
true.

● Is there any impact on jobs after the engine version upgrade?

There is an impact; the default type of the date difference return result has
changed.

Mapping Type Change of Unit-to-Unit Interval
● Explanation:

– Spark 2.4.x: In Spark 2.4.x, unit-to-unit intervals (e.g., INTERVAL '1-1'
YEAR TO MONTH) and unit list intervals (e.g., INTERVAL '3' DAYS '1'
HOUR) are converted to CalendarIntervalType.

– Spark 3.3.x: In Spark 3.3.x, unit-to-unit intervals and unit list intervals are
converted to ANSI interval types: YearMonthIntervalType or
DayTimeIntervalType.

To restore the mapping type to that before Spark 2.4.x in Spark 3.3.x, set
the configuration item spark.sql.legacy.interval.enabled to true.

● Is there any impact on jobs after the engine version upgrade?

There is an impact; the mapped data type has changed.

Return Value Type Change in timestamps Subtraction Expression
● Explanation:

– Spark 2.4.x: In Spark 2.4.x, the timestamps subtraction expression (for
example, select timestamp'2021-03-31 23:48:00' –
timestamp'2021-01-01 00:00:00') returns a CalendarIntervalType
value.

– Spark 3.3.x: In Spark 3.3.x, the timestamps subtraction expression (for
example, select timestamp'2021-03-31 23:48:00' –
timestamp'2021-01-01 00:00:00') returns a DayTimeIntervalType value.

To restore the mapping type to that before Spark 2.4.x in Spark 3.3.x, set
spark.sql.legacy.interval.enabled to true.

● Is there any impact on jobs after the engine version upgrade?

There is an impact; the mapped data type has changed.

Mixed Use of Year-Month and Day-Time Fields No Longer Supported
● Explanation:

– Spark 2.4.x: Unit list interval literals can mix year-month fields (YEAR
and MONTH) and day-time fields (WEEK, DAY, ..., MICROSECOND).

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 24

– Spark 3.3.x: Unit list interval literals cannot mix year-month fields (YEAR
and MONTH) and day-time fields (WEEK, DAY, ..., MICROSECOND).
Invalid input is indicated.

To restore the usage to that before Spark 2.4.x in Spark 3.3.x, set
spark.sql.legacy.interval.enabled to true.

● Is there any impact on jobs after the engine version upgrade?

There is an impact.

Reserved Properties Cannot Be Used in CREATE TABLE .. LIKE .. Command
● Explanation:

Reserved properties cannot be used in the CREATE TABLE .. LIKE .. command.

– Spark 2.4.x: In Spark 2.4.x, the CREATE TABLE .. LIKE .. command can
use reserved properties.

For example, TBLPROPERTIES('location'='/tmp') does not change the
table location but creates an invalid property.

– Spark 3.3.x: In Spark 3.3.x, the CREATE TABLE .. LIKE .. command cannot
use reserved properties.

For example, using TBLPROPERTIES('location'='/tmp') or
TBLPROPERTIES('owner'='yao') will fail.

● Is there any impact on jobs after the engine version upgrade?

There is an impact.

● Sample code 1:

Prepare data:
CREATE TABLE test0(id int, name string);
CREATE TABLE test_like_properties LIKE test0 LOCATION 'obs://bucket1/test/test_like_properties';

Execute SQL:
DESCRIBE FORMATTED test_like_properties;

– Spark 2.4.5

The location is properly displayed.

– Spark 3.3.1

The location is properly displayed.

● Sample code 2:

Prepare data:
CREATE TABLE test_like_properties0(id int) using parquet LOCATION 'obs://bucket1/dbgms/
test_like_properties0';
CREATE TABLE test_like_properties1 like test_like_properties0 tblproperties('location'='obs://bucket1/
dbgms/test_like_properties1');

Execute SQL:
DESCRIBE FORMATTED test_like_properties1;

– Spark 2.4.5
DLI.0005:
mismatched input 'tblproperties' expecting {<EOF>, 'LOCATION'}

– Spark 3.3.1
The feature is not supported: location is a reserved table property, please use the LOCATION
clause to specify it.

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 25

Failure to Create a View with Auto-Generated Aliases
● Explanation:

– Spark 2.4.x: If the statement contains an auto-generated alias, it will
execute normally without any prompt.

– Spark 3.3.x: If the statement contains an auto-generated alias, creating/
changing the view will fail.
To restore the usage to that before Spark 2.4.x in Spark 3.3.x, set
spark.sql.legacy.allowAutoGeneratedAliasForView to true.

● Is there any impact on jobs after the engine version upgrade?
There is an impact.

● Sample code:
Prepare data:
create table test_view_alis(id1 int,id2 int);
INSERT INTO test_view_alis VALUES(1,2);

Execute SQL:
create view view_alis as select id1 + id2 from test_view_alis;

– Spark 2.4.5
Successfully executed.

– Spark 3.3.1
Error
Not allowed to create a permanent view `view_alis` without explicitly assigning an alias for
expression (id1 + id2)

If the following parameter is added in Spark 3.3.1, the SQL will execute
successfully:
spark.sql.legacy.allowAutoGeneratedAliasForView = true

Change in Return Value Type After Adding/Subtracting Time Field Intervals
to/from Dates

● Explanation:
The return type changes when adding/subtracting a time interval (for
example, 12 hours) to/from a date-time field (for example,
date'2011-11-11').
– Spark 2.4.x: In Spark 2.4.x, when performing date arithmetic operations

on JSON attributes defined as FloatType or DoubleType, such as
date'2011-11-11' plus or minus a time interval (such as 12 hours), the
return type is DateType.

– Spark 3.3.x: The return type changes to a timestamp (TimestampType)
to maintain compatibility with Hive.

● Is there any impact on jobs after the engine version upgrade?
There is an impact.

● Sample code:
Execute SQL:
select date '2011-11-11' - interval 12 hour

– Spark 2.4.5
2011-11-10

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 26

– Spark 3.3.1
1320897600000

Support for Char/Varchar Types in Spark SQL
● Explanation:

– Spark 2.4.x: Spark SQL table columns do not support Char/Varchar types;
when specified as Char or Varchar, they are forcibly converted to the
String type.

– Spark 3.3.x: Spark SQL table columns support CHAR/CHARACTER and
VARCHAR types.

● Is there any impact on jobs after the engine version upgrade?
There is no impact.

● Sample code:
Prepare data:
create table test_char(id int,name varchar(24),name2 char(24));

Execute SQL:
show create table test_char;

– Spark 2.4.5
create table `test_char`(`id` INT,`name` STRING,`name2` STRING)
ROW FORMAT...

– Spark 3.3.1
create table test_char(id INT,name VARCHAR(24),name2 VARCHAR(24))
ROW FORMAT...

Different Query Syntax for Null Partitions
● Explanation:

– Spark 2.4.x:
In Spark 3.0.1 or earlier, if the partition column is of type string, it is
parsed as its text representation, such as the string "null".
Querying null partitions using part_col='null'.

– Spark 3.3.x:
PARTITION(col=null) always parses to null in partition specification,
even if the partition column is of type string.
Querying null partitions using part_col is null.

● Is there any impact on jobs after the engine version upgrade?
There is an impact; queries for null partitions need to be adapted.

● Sample code:
Prepare data:
CREATE TABLE test_part_null (col1 INT, p1 STRING) USING PARQUET PARTITIONED BY (p1);
INSERT INTO TABLE test_part_null PARTITION (p1 = null) SELECT 0;

Execute SQL:
select * from test_part_null;

– Spark 2.4.5
0 null

Executing select * from test_part_null where p1='null' can find partition
data in Spark 2.4.5.

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 27

– Spark 3.3.1
0

Executing select * from test_part_null where p1 is null can find data in
Spark 3.3.1.

Different Handling of Partitioned Table Data
● Explanation:

In datasource v1 partition external tables, non-UUID partition path data
already exists.
Performing the insert overwrite partition operation in Spark 3.3.x will clear
previous non-UUID partition data, whereas Spark 2.4.x will not.
– Spark 2.4.x:

Retains data under non-UUID partition paths.
– Spark 3.3.x:

Deletes data under non-UUID partition paths.
● Is there any impact on jobs after the engine version upgrade?

There is an impact; it will clean up dirty data.
● Sample code:

Prepare data:
Create a directory named pt=pt1 under obs://bucket1/test/
overwrite_datasource and import a Parquet data file into it.
create table overwrite_datasource(id int,name string,pt string) using parquet PARTITIONED by(pt)
LOCATION 'obs://bucket1/test/overwrite_datasource';
SELECT * FROM overwrite_datasource1 where pt='pt1' Both versions do not query data.

Execute SQL:
insert OVERWRITE table overwrite_datasource partition(pt='pt1') values(2,'aa2');

– Spark 2.4.5
Retains the pt=pt1 directory.

– Spark 3.3.1
Deletes the pt=pt1 directory.

Retaining Quotes for Special Characters When Exporting CSV Files
● Explanation:

– Spark 2.4.x:
When exporting CSV files in Spark 2.4.x, if field values contain special
characters such as newline (\n) and carriage return (\r), and these special
characters are surrounded by quotes (e.g., double quotes "), Spark
automatically handles these quotes, omitting them in the exported CSV
file.
For example, the field value "a\rb" will not include quotes when
exported.

– Spark 3.3.x:
In Spark 3.3.x, the handling of exporting CSV files is optimized; if field
values contain special characters and are surrounded by quotes, Spark
retains these quotes in the final CSV file.

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 28

For example, the field value "a\rb" retains quotes when exported.

● Is there any impact on jobs after the engine version upgrade?

No impact on query results, but it affects the export file format.

● Sample code:

Prepare data:
create table test_null2(str1 string,str2 string,str3 string,str4 string);
insert into test_null2 select "a\rb", null, "1\n2", "ab";

Execute SQL:
SELECT * FROM test_null2;

– Spark 2.4.5
a b 1 2 ab

– Spark 3.3.1
a b 1 2 ab

Export query results to OBS and check the CSV file content:

– Spark 2.4.5
a
b,"","1
2",ab

– Spark 3.3.1
"a
b",,"1
2",ab

New Support for Adaptive Skip Partial Agg Configuration
● Explanation:

Spark 3.3.x introduces support for adaptive Skip partial aggregation. When
partial aggregation is ineffective, it can be skipped to avoid additional
performance overhead. Related parameters:

– spark.sql.aggregate.adaptivePartialAggregationEnabled: controls
whether to enable adaptive Skip partial aggregation. When set to true,
Spark dynamically decides whether to skip partial aggregation based on
runtime statistics.

– spark.sql.aggregate.adaptivePartialAggregationInterval: configures
the analysis interval, that is, after processing how many rows, Spark will
analyze whether to skip partial aggregation.

– spark.sql.aggregate.adaptivePartialAggregationRatio: Threshold to
determine whether to skip, based on the ratio of Processed groups/
Processed rows. If the ratio exceeds the configured threshold, Spark
considers pre-aggregation ineffective and may choose to skip it to avoid
further performance loss.

During usage, the system first analyzes at intervals configured by
spark.sql.aggregate.adaptivePartialAggregationInterval. When the
processed rows reach the interval, it calculates Processed groups/Processed
rows. If the ratio exceeds the threshold, it considers pre-aggregation
ineffective and can directly skip it.

● Is there any impact on jobs after the engine version upgrade?

Enhances DLI functionality.

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 29

New Support for Parallel Multi-Insert
● Explanation:

Spark 3.3.x adds support for Parallel Multi-Insert. In scenarios with multi-
insert SQL, where multiple tables are inserted in the same SQL, this type of
SQL is serialized in open-source Spark, limiting performance. Spark 3.3.x
introduces multi-insert parallelization optimization in DLI, allowing all inserts
to be executed concurrently, improving performance.
Enable the following features by setting them to true (default false):
spark.sql.lazyExecutionForDDL.enabled=true
spark.sql.parallelMultiInsert.enabled=true

● Is there any impact on jobs after the engine version upgrade?
Enhances DLI functionality, improving the reliability of jobs with multi-insert
parallelization features.

New Support for Enhance Reuse Exchange
● Explanation:

Spark 3.3.x introduces support for Enhance Reuse Exchange. When the SQL
plan includes reusable sort merge join conditions, setting
spark.sql.execution.enhanceReuseExchange.enabled to true allows reuse of
SMJ plan nodes.
Enable the following features by setting them to true (default false):
spark.sql.execution.enhanceReuseExchange.enabled=true

● Is there any impact on jobs after the engine version upgrade?
Enhances DLI functionality.

Difference in Reading TIMESTAMP Fields
● Explanation:

Differences in reading TIMESTAMP fields for the Asia/Shanghai time zone. For
values before 1900-01-01 08:05:43, values written by Spark 2.4.5 and read by
Spark 3.3.1 differ from values read by Spark 2.4.5.
– Spark 2.4.x:

For the Asia/Shanghai time zone, 1900-01-01 00:00:00, written in Spark
2.4.5 and read by Spark 2.4.5 returns -2209017600000.

– Spark 3.3.x:
For the Asia/Shanghai time zone, 1900-01-01 00:00:00, written in Spark
2.4.5, read by Spark 3.3.1 with
spark.sql.parquet.int96RebaseModeInRead=LEGACY returns
-2209017943000.

● Is there any impact on jobs after the engine version upgrade?
There is an impact; the usage of TIMESTAMP fields needs to be evaluated.

● Sample code:
Configure in the SQL interface:
spark.sql.session.timeZone=Asia/Shanghai

– Spark 2.4.5

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 30

create table parquet_timestamp_test (id int, col0 string, col1 timestamp) using parquet;
insert into parquet_timestamp_test values (1, "245", "1900-01-01 00:00:00");

Execute SQL to read data:
select * from parquet_timestamp_test;

Query results:
id col0 col1
1 245 -2209017600000

– Spark 3.3.1
spark.sql.parquet.int96RebaseModeInRead=LEGACY

Execute SQL to read data:
select * from parquet_timestamp_test;

Query results:
id col0 col1
1 245 -2209017943000

Difference in from_unixtime Function
● Explanation:

– Spark 2.4.x:
For the Asia/Shanghai time zone, -2209017600 returns 1900-01-01
00:00:00.

– Spark 3.3.x:
For the Asia/Shanghai time zone, -2209017943 returns 1900-01-01
00:00:00.

● Is there any impact on jobs after the engine version upgrade?
There is an impact; usage of this function needs to be checked.

● Sample code:
Configure in the SQL interface:
spark.sql.session.timeZone=Asia/Shanghai

– Spark 2.4.5
Execute SQL to read data:
select from_unixtime(-2209017600);

Query results:
 1900-01-01 00:00:00

– Spark 3.3.1
Execute SQL to read data:
select from_unixtime(-2209017600);

Query results:
1900-01-01 00:05:43

Difference in unix_timestamp Function
● Explanation:

For values less than 1900-01-01 08:05:43 in the Asia/Shanghai time zone.
– Spark 2.4.x:

For the Asia/Shanghai time zone, 1900-01-01 00:00:00 returns
-2209017600.

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 31

– Spark 3.3.x:
For the Asia/Shanghai time zone, 1900-01-01 00:00:00 returns
-2209017943.

● Is there any impact on jobs after the engine version upgrade?
There is an impact; usage of this function needs to be checked.

● Sample code:
Configure in the SQL interface:
spark.sql.session.timeZone=Asia/Shanghai

– Spark 2.4.5
Execute SQL to read data:
select unix_timestamp('1900-01-01 00:00:00');

Query results:
 -2209017600

– Spark 3.3.1
Execute SQL to read data:
select unix_timestamp('1900-01-01 00:00:00');

Query results
-2209017943

2.7.2 Differences in General-Purpose Queues Between Spark
2.4.x and Spark 3.3.x

DLI has summarized the differences in general-purpose queues between Spark
2.4.x and Spark 3.3.x to help you understand the impact of upgrading the Spark
version on jobs running in the general queues with the new engine.

Log4j Dependency Updated from 1.x to 2.x
● Explanation:

Log4j dependency is updated from 1.x to 2.x.
– Spark 2.4.x: Log4j dependency version 1.x (no longer supported by the

community).
– Spark 3.3.x: Log4j dependency version 2.x.

● Is there any impact on jobs after the engine version upgrade?
There is an impact.

Spark 3.3.x Does Not Support v1 Tables
● Explanation:

Spark 2.4.x supports datasource v1 and v2 tables. Spark 3.3.x does not support
datasource v1 tables.
For details, see DLI Datasource V1 Table and Datasource V2 Table.
– Spark 2.4.x supports datasource v1 and v2 tables.
– Spark 3.3.x does not support datasource v1 tables.

● Is there any impact on jobs after the engine version upgrade?

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 32

There is an impact. You are advised to migrate to v2 tables in Spark 2.4.5
before upgrading to Spark 3.3.1. For details, refer to the examples in DLI
Datasource V1 Table and Datasource V2 Table.

Empty Input Splits Do Not Create Partitions by Default
● Explanation:

– Spark 2.4.x: Empty input splits create partitions by default.
– Spark 3.3.x: Empty input splits do not create partitions by default.

When using Spark 3.3.x, spark.hadoopRDD.ignoreEmptySplits is set to
true.

● Is there any impact on jobs after the engine version upgrade?
There is an impact; it needs to be determined if partition names are used for
service judgments.

Event Log Compression Format Set to zstd
● Explanation:

In Spark 3.3.x, the default value for spark.eventLog.compression.codec is set
to zstd. Spark will no longer use the value of spark.io.compression.codec for
compressing event logs.
– Spark 2.4.x: Uses the value of spark.io.compression.codec for event log

compression format.
– Spark 3.3.x: spark.eventLog.compression.codec is set to zstd by default.

● Is there any impact on jobs after the engine version upgrade?
There is an impact; the event log compression format changes.

Change in spark.launcher.childConectionTimeout Configuration
● Explanation:

– Spark 2.4.x: The configuration name is
spark.launcher.childConectionTimeout.

– Spark 3.3.x: The configuration name is changed to
spark.launcher.childConnectionTimeout.

● Is there any impact on jobs after the engine version upgrade?
There is an impact; configuration parameter names change.

Spark 3.3.x No Longer Supports Apache Mesos as a Resource Manager
● Explanation:

– Spark 2.4.x: Uses Apache Mesos as a resource manager.
– Spark 3.3.x: No longer supports using Apache Mesos as a resource

manager.
● Is there any impact on jobs after the engine version upgrade?

Functional enhancement. If you were using Mesos as a resource manager in
Spark 2.4.x, you need to consider switching to another resource manager after
upgrading to Spark 3.3.x.

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 33

Spark 3.3.x Deletes Kubernetes Driver When the Application Terminates
Itself

● Explanation: Spark 3.3.x deletes the Kubernetes driver when the application
terminates itself.

● Is there any impact on jobs after the engine version upgrade?
Functional enhancement. After upgrading to Spark 3.3.x, this affects jobs that
rely on Kubernetes as a resource manager. Spark 3.3.x automatically deletes
the driver pod when the application terminates, which may affect resource
management and cleanup processes.

Spark 3.3.x Supports Custom Kubernetes Schedulers
● Explanation:

– Spark 2.4.x: Does not support using a specified Kubernetes scheduler to
manage resource allocation and scheduling for Spark jobs.

– Spark 3.3.x: Supports custom Kubernetes schedulers.
● Is there any impact on jobs after the engine version upgrade?

Functional enhancement; supports custom schedulers for resource allocation
and scheduling management.

Spark Converts Non-Nullable Schemas to Nullable
● Explanation:

In Spark 2.4.x, when the user-specified schema contains non-nullable fields,
Spark converts these non-nullable schemas to nullable.
In Spark 3.3.x, Spark respects the nullability specified in the user schema, that
is, if a field is defined as non-nullable, Spark retains this requirement and
does not automatically convert it to a nullable field.
– Spark 2.4.x: In Spark 2.4.x, when the user-specified schema contains non-

nullable fields, Spark converts these non-nullable schemas to nullable.
– Spark 3.3.x: Does not automatically convert non-nullable fields to

nullable.
To revert to the behavior of Spark 2.4.x in Spark 3.3.x, set
spark.sql.legacy.respectNullabilityInTextDatasetConversion to true.

● Is there any impact on jobs after the engine version upgrade?
There is an impact.

● Sample code:
Execute SQL:
spark.read.schema(StructType(
StructField("f1", LongType, nullable = false) ::
StructField("f2", LongType, nullable = false) :: Nil)
).option("mode", "DROPMALFORMED").json(Seq("""{"f1": 1}""").toDS).show(false);

– Spark 2.4.5
|f1 |f2 |
+---+---+
|1 |0 |

– Spark 3.3.1
|f1 |f2 |
+---+----+
|1 |null|

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 34

Change in Spark Scala Version
● Explanation:

The Spark Scala version changes.
– Spark 2.4.x: Uses Scala 2.11.
– Spark 3.3.x: Upgrades to Scala 2.12.

● Is there any impact on jobs after the engine version upgrade?
There is an impact; jars need to be recompiled with the updated Scala version.

Change in Supported Python Versions for PySpark
● Explanation:

The supported Python versions for PySpark change.
– Spark 2.4.x: PySpark supports Python 2.6+ to 3.7+.
– Spark 3.3.x: PySpark supports Python 3.6 or later.

● Is there any impact on jobs after the engine version upgrade?
There is an impact due to dependency version changes. You need to check
whether this issue is involved.

Change in Supported Pandas Versions for PySpark
● Explanation:

– Spark 2.4.x: PySpark does not specify a Pandas version.
– Spark 3.3.x: From Spark 3.3.x, PySpark requires Pandas 0.23.2 or later to

use Pandas-related functions like toPandas and createDataFrame from
Pandas DataFrame.

● Is there any impact on jobs after the engine version upgrade?
There is an impact due to dependency version changes. You need to check
whether this issue is involved.

Change in Supported PyArrow Versions for PySpark
● Explanation:

– Spark 2.4.x: PySpark does not specify a PyArrow version.
– Spark 3.3.x: From Spark 3.3.x, PySpark requires PyArrow 0.12.1 or later to

use PyArrow-related functions like Pandas_udf and toPandas.
● Is there any impact on jobs after the engine version upgrade?

There is an impact due to dependency version changes. You need to check
whether this issue is involved.

DataFrameWriter Triggered Queries Named as Command

In Spark 3.2.x, when DataFrameWriter triggered queries are sent to
QueryExecutionListener, these queries are always named as command. In Spark
3.1 or earlier, these queries may be named as save, insertInto, or saveAsTable,
depending on the specific operation.

● Explanation:

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 35

When a query execution is triggered by DataFrameWriter, it is always named
as command when sent to QueryExecutionListener.
– Spark 2.4.x: Named as save, insertInto, or saveAsTable.
– Spark 3.3.x: Named as command.

● Is there any impact on jobs after the engine version upgrade?
There is an impact.

2.7.3 DLI Datasource V1 Table and Datasource V2 Table

What Are DLI Datasource V1 and V2 Tables?
● DLI datasource V1 table (referred to as V1 table): This is a DLI-specific

datasource table format. DLI's custom create/insert/truncate commands are
used, and the data path of the table is $tablepath/UUID/Data file.

Figure 2-2 DLI datasource v1 table

● DLI datasource V2 table (referred to as V2 table): This is the open-source
datasource table format of Spark. Spark's open-source create/insert/truncate
commands are used, and the data path of the table is $tablepath/Data file.

Figure 2-3 DLI datasource v2 table

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 36

Compatibility of DLI Spark Versions with V1 and V2 Tables

Table 2-4 Compatibility of DLI Spark versions with v1 and v2 tables

Table
Type

Spark
2.3
SQL
Queu
e

Spark
2.3
Gener
al-
Purpo
se
Queu
e

Spark
2.4 SQL
Queue

Spark
2.4
General
-
Purpose
Queue

Spark
3.1
SQL
Queue

Spark
3.1
Gene
ral-
Purpo
se
Queu
e

Spark
3.3
SQL
Queu
e

Spark
3.3
Gener
al-
Purpo
se
Queu
e

V1
table

√ √ √ √ √ √ √ Partial
ly
suppo
rted

V2
table

× × √ √ × × √ √

Table 2-5 Syntax support list for Spark 3.3 general-purpose queues

Table
Type

selec
t

creat
e
table

creat
e
table
like

CTAS insert
into

insert
over
write

load
data

alter
table
set
locati
on

trunc
ate
table

V1
table

√ √ √ × × × × × ×

V2
table

√ √ √ √ √ √ √ √ √

How Do I Confirm If a User-Created Table is a V1 or V2 Table?
1. Use the datasource syntax to create a table:

CREATE TABLE IF NOT EXISTS table_name (id STRING) USING parquet;

2. Run show create table to check the value of the version field under
TBLPROPERTIES.

If v1, it is a V1 table; if v2, it is a V2 table.

To change a V1 table to a V2 table, submit a service ticket to contact customer
support.

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 37

Example Upgrade
NO TE

Upgrading the Spark engine and modifying data tables may cause changes in the cost of
billed resources if the type of compute resource changes when creating a queue.
● If the original queue uses compute resources of the elastic resource pool type, creating a

queue does not involve changes in the cost of compute resources.
● If the original queue uses compute resources of a non-elastic resource pool type,

creating a queue within an elastic resource pool will change the cost of compute
resources. Refer to the price details of compute resources for specifics.

● Example 1: Does upgrading Spark from version 2.4.x to Spark 3.3.1 affect
the version of data tables when using a SQL queue?
No, SQL queues in Spark 2.4.x support V1 and V2 tables, so upgrading Spark
only requires considering the compatibility of the Spark version with SQL
syntax.

● Example 2: Does upgrading Spark from version 2.4.x to Spark 3.3.1 affect
the version of data tables when using a general-purpose queue?
General-purpose queues in Spark 2.4.x support V1 and V2 tables, but general-
purpose queues in Spark 3.3.x do not support V1 tables.
Therefore, to upgrade Spark from version 2.4.x to 3.3.1, follow these steps:

a. Change V1 tables in Spark 2.4.x to V2 tables.
b. Upgrade V2 tables in Spark 2.4.x to V2 tables in Spark 3.3.1.

Consider the compatibility of Spark Jar job API syntax as well.

Table 2-6 Compatibility of DLI Spark versions with v1 and v2 tables

Table Type Spark 2.4 General-
Purpose Queue

Spark 3.3 General-
Purpose Queue

V1 table √ Partially supported

V2 table √ √

● Example 3: How do I upgrade V1 tables in Spark 2.3.2 to V2 tables in

Spark 3.3.1 using a general-purpose queue?
General-purpose queues in Spark 2.3.2 do not support V2 tables, and general-
purpose queues in Spark 3.3.1 do not support V1 tables.

a. Upgrade V1 tables in Spark 2.3.2 to V1 tables in Spark 2.4.5.
b. Change V1 tables in Spark 2.4.5 to V2 tables.
c. Upgrade V2 tables in Spark 2.4.5 to V2 tables in Spark 3.3.1.

Consider the compatibility of Spark Jar job API syntax as well.

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 38

Table 2-7 Compatibility of DLI Spark versions with v1 and v2 tables

Table Type Spark 2.3
General-
Purpose Queue

Spark 2.4 General-
Purpose Queue

Spark 3.3
General-
Purpose Queue

V1 table √ √ Partially
supported

V2 table × √ √

Data Lake Insight
Service Bulletin 2 Version Support Bulletin

Issue 01 (2025-01-09) Copyright © Huawei Technologies Co., Ltd. 39

	Contents
	1 Product Bulletin
	1.1 EOS Announcement for DLI Spark 3.1.1
	1.2 EOL Announcement for DLI Yearly/Monthly and Pay-per-Use Queues as Well as Queue CUH Packages
	1.3 EOS Announcement for DLI Flink 1.10 and Flink 1.11
	1.4 EOS Announcement for DLI Spark 2.3.2
	1.5 EOS Announcement for DLI Flink 1.7

	2 Version Support Bulletin
	2.1 Lifecycle of DLI Compute Engine Versions
	2.2 What's New in Flink 1.15
	2.3 What's New in Flink 1.12
	2.4 What's New in Spark 3.3.1
	2.5 What's New in Spark 3.1.1
	2.6 What's New in Spark 2.4.5
	2.7 Differences Between Spark 2.4.x and Spark 3.3.x
	2.7.1 Differences in SQL Queues Between Spark 2.4.x and Spark 3.3.x
	2.7.2 Differences in General-Purpose Queues Between Spark 2.4.x and Spark 3.3.x
	2.7.3 DLI Datasource V1 Table and Datasource V2 Table

