
ServiceStage

Best Practices

Issue 01

Date 2024-09-27

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 Hosting and Managing a Weather Forecast Microservice Application on
ServiceStage... 1
1.1 Overview.. 1
1.2 Deploying a Weather Forecast Microservice Using Source Code... 3
1.2.1 Preparations... 3
1.2.2 Deploying a Microservice Using Source Code.. 7
1.3 Deploying a Weather Forecast Microservice Using a Software Package.. 15
1.3.1 Preparations.. 15
1.3.2 Deploying a Microservice Using a Software Package... 19
1.4 Microservice Routine O&M..28
1.5 Dark Launch..28
1.6 Microservice Governance... 32
1.7 FAQs.. 35
1.7.1 What Should I Do If a Weather Forecast Application with the Same Name Exists in the Current
Environment?...36

2 Enabling Security Authentication for an Exclusive ServiceComb Engine................ 37

3 Connecting ServiceComb Engine Dashboard Data to AOM through ServiceStage
...40

4 Migrating the Registered Microservice Engine Using ServiceStage Without Code
Modification...43

5 Hosting a Spring Boot Application on ServiceStage...45
5.1 Preparations.. 45
5.2 Deploying and Accessing Spring Boot Applications..49
5.3 Upgrading Component Versions Using ELB Dark Launch.. 52

6 Using GitLab to Interconnect with Jenkins to Automatically Build and Upgrade
Components Deployed on ServiceStage..54
6.1 Overview.. 54
6.2 Preparations.. 54
6.2.1 Preparing the Jenkins Environment...54
6.2.2 Uploading Code to GitLab.. 56
6.2.3 Installing and Initializing obsutil.. 56
6.2.4 Installing and Initializing KooCLI... 57

ServiceStage
Best Practices Contents

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

6.2.5 Installing the Jenkins Plug-in and Configuring Jenkins..59
6.3 Procedure... 61
6.3.1 Interconnection Tests... 61
6.3.2 Configuring a Pipeline Build Task.. 62
6.3.3 upgrade.sh Description ...64
6.4 Build Verification... 69
6.4.1 Manual Build... 69
6.4.2 Jenkins Build Triggered by GitLab..70

ServiceStage
Best Practices Contents

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

1 Hosting and Managing a Weather
Forecast Microservice Application on

ServiceStage

1.1 Overview
A weather forecast microservice application provides weather forecasts as well as
displays ultraviolet (UV) and humidity indexes. This section uses a weather
forecast application to demonstrate the application scenarios of the microservice
architecture and best practices of managing the runtime environment, building
applications, and governing microservices on ServiceStage.

A weather forecast microservice application consists of a frontend component and
backend components. The frontend component weathermapweb is developed
using Node.js to discover backend components. The backend components are
developed using the Java chassis and Spring Cloud microservice development
frameworks and include microservices weather, forecast, fusionweather, weather-
beta, and edge-service.

Where,

● weathermapweb is an interface microservice developed by Node.js.

● weather is a microservice that provides the current weather of a specified city.

● forecast is a microservice that provides weather forecast for a specified city in
the next few days.

● fusionweather is an aggregation microservice that provides comprehensive
weather forecast functions by accessing the weather and forecast
microservices.

● weather-beta is a new version of the weather microservice. It allows you to
query the UV index of a specified city.

● edge-service is the unified portal for all other microservices.

Table 1-1 lists the backend components.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

Table 1-1 Components of the weather forecast microservice application

Microservice
development
framework

Component Name

Java Chassis weather

forecast

fusionweather

weather-beta

edge-service

weathermapweb

Spring Cloud weather

forecast

fusionweather

weather-beta

edge-service

weathermapweb

The following figure shows the logical networking and calling relationship of the
weather forecast application:

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

ServiceStage supports deployment and access of microservice applications
developed based on Java chassis and Spring Cloud using source code and software
packages.

This document describes how to host and manage a microservice application on
ServiceStage by using the weather forecast microservice application developed
based on Java chassis and two microservice application deployment methods
(Deploying a Weather Forecast Microservice Using Source Code and Deploying
a Weather Forecast Microservice Using a Software Package).

1.2 Deploying a Weather Forecast Microservice Using
Source Code

1.2.1 Preparations

Preparing Resources
To facilitate subsequent operations, ensure that:

1. Create a VPC. For details, see Creating a VPC.
2. Create an exclusive ServiceComb engine with security authentication disabled.

For details, see Creating a Microservice Engine.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0013935842.html
https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0079.html

The VPC to which the ServiceComb engine belongs is the one created in 1. If
the VPCs are inconsistent, correctly configure the VPC connectivity.

3. Create a CCE cluster. In a trial scenario, set Management Scale to 50 nodes
and HA to No. For details, see Buying a Cluster.
– The VPC to which the CCE cluster belongs is the one created in 1.
– The cluster contains at least one ECS node with 8 vCPUs and 16 GB

memory or two ECS nodes with 4 vCPUs and 8 GB memory, and is bound
to an EIP. For details, see Creating a Node.

– The CCE cluster cannot be bound to other environments.
4. In this example, the GitHub source code repository is bound to ServiceStage

to implement source code building, archiving, and application creation. You
need to register an account on the GitHub official website.

Forking the Weather Forecast Source Code

Use your account to log in to GitHub and fork the weather forecast source code.
Source code address: https://github.com/servicestage-demo/weathermap.git

Setting GitHub Repository Authorization

You can set GitHub repository authorization so that build projects and application
components can use the authorization information to access the GitHub source
code repository.

Step 1 Log in to ServiceStage.

Step 2 Choose Continuous Delivery > Repository Authorization > Create
Authorization and configure authorization information by referring to the
following table.

Parameter Description

*Name Use the default authorization name. The name cannot be changed
after the authorization is created.

*Repositor
y
Authorizati
on

1. Select GitHub.
2. Select OAuth for Method.
3. Click Use OAuth Authorization and complete the

authorization for accessing the GitHub source code repository
as prompted.

----End

Creating an Organization

Step 1 Choose Deployment Source Management > Organization Management.

Step 2 Click Create Organization. On the displayed page, specify Organization Name.
For example, org-test.

Step 3 Click OK.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0028.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0363.html
https://github.com/
https://github.com/servicestage-demo/weathermap.git

Figure 1-1 Creating an organization

----End

Creating an Environment

Step 1 Choose Environment Management > Create Environment and set the
environment information by referring to the following table.

Parameter Description

Environment Enter an environment name, for example, env-test.

Enterprise Project Specify Enterprise Project.
Enterprise projects let you manage cloud resources and
users by project.
It is available after you enable the enterprise project
function.

Description Retain the default value.

VPC Select the VPC prepared in Preparing Resources.
NOTE

The VPC cannot be modified after the environment is created.

Environment Type Select Kubernetes.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

https://support.huaweicloud.com/intl/en-us/usermanual-em/pm_topic_0002.html
https://support.huaweicloud.com/intl/en-us/usermanual-em/pm_topic_0002.html

Figure 1-2 Configuring an environment

Step 2 Click Create Now.

Step 3 In the Resources area, choose Clusters from Compute and click Bind now.

Step 4 In the dialog box that is displayed, select the CCE cluster created in Preparing
Resources and click OK.

Step 5 In the Resources area, choose ServiceComb Engines from Middleware and click
Manage Resource.

Step 6 In the dialog box that is displayed, select the ServiceComb engine created in
Preparing Resources and click OK.

----End

Creating an Application

Step 1 Click in the upper left corner to return to the Environment Management
page.

Step 2 Choose Application Management > Create Application and set basic application
information.

1. Name: Enter weathermap.

NO TE

If an application with the same name already exists in the application list, rectify the
fault by referring to What Should I Do If a Weather Forecast Application with the
Same Name Exists in the Current Environment?

2. Enterprise Project: Enterprise projects let you manage cloud resources and
users by project.

It is available after you enable the enterprise project function.

Step 3 Click OK.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://support.huaweicloud.com/intl/en-us/usermanual-em/pm_topic_0002.html

Figure 1-3 Creating an application

----End

1.2.2 Deploying a Microservice Using Source Code

Scenarios
ServiceStage allows you to quickly deploy microservices in containers (such as
CCE) or VMs (such as ECS), and supports source code deployment, JAR/WAR
package deployment, and Docker image package deployment. In addition,
ServiceStage allows you to deploy, upgrade, roll back, start, stop, and delete
applications developed in different programming languages, such as Java, PHP,
Node.js, and Python.

In this practice, backend components developed in Java and frontend components
developed in Node.js are used.

User Story
In this practice, you can deploy an application in containers and register
microservice instances with the ServiceComb engine. The following components
need to be created for the weathermap application:

1. Frontend component: weathermapweb, which is developed in Node.js.
2. Backend components: weather, fusionweather, forecast, and edge-service,

which are developed based on Java.

The procedures for deploying a microservice are as follows:

1. Creating and Deploying a Backend Application Component
2. Setting the Access Mode of the edge-service Component
3. Creating and Deploying a Frontend Component
4. Confirming the Deployment Result
5. Setting the Access Mode
6. Accessing an Application

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

Creating and Deploying a Backend Application Component

You need to create and deploy four application components (weather, forecast,
fusionweather, and edge-service), which correspond to the four software packages
generated by the backend build jobs.

Step 1 Log in to ServiceStage.

Step 2 Choose Application Management.

Step 3 Click Create Component in the Operation column of the application created in
Creating an Application (for example, weathermap).

Step 4 In the Basic Information area, set the following mandatory parameters. Retain
the default values for other parameters.

Parameter Description

Component
Name

Enter the name of the corresponding backend component (for
example, weather).

Component
Version

Click Generate. By default, the version number is generated
based on the time when you click Generate. The format is
yyyy.mmdd.hhmms, where s is the ones place of the second in
the timestamp. For example, if the timestamp is
2022.0803.104321, the version number is 2022.0803.10431.

Environmen
t

Select the environment created in Creating an Environment, for
example, env-test.

Application Select the application created in Creating an Application, for
example, weathermap.

Step 5 In the Component Package area, set the following mandatory parameters. Retain
the default values for other parameters.

Parameter Description

Stack Select Java.

Source
Code/
Software
Package

1. Select Source code repository.
2. Select GitHub,
3. Authorization: Select the authorization information created in

Setting GitHub Repository Authorization.
4. Username/Organization: Select the username used to log in

to GitHub in Forking the Weather Forecast Source Code.
5. Repository: Select the name of the weather forecast source

code repository that has been forked to your GitHub account.
For example, weathermap.

6. Branch: Select master.

Step 6 In the Build Job area, set mandatory build parameters.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

1. Command: Retain the default value.
2. Dockerfile Address: Set this parameter by referring to the following table.

Component Name Dockerfile Address

weather ./weather/

forecast ./forecast/

fusionweather ./fusionweather/

edge-service ./edge-service/

3. Organization: Select the organization created in Creating an Organization.
4. Environment: Select Use current environment.
5. Retain the default values for other parameters.

Figure 1-4 Configuring build parameters

Step 7 Click Next.

Step 8 In the Resources area, set Instances for each component and retain the default
values for other parameters.

Component Name Instances

weather 2

forecast 1

fusionweather 1

edge-service 1

Step 9 Bind the ServiceComb engine.

NO TE

● After a component is deployed, the microservice will be registered with the bound
ServiceComb engine.

● All components must be registered with the same ServiceComb engine.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

1. Choose Cloud Service Settings > Microservice Engine.
2. Click Bind Microservice Engine.
3. Select the managed exclusive ServiceComb engine in the current environment.
4. Click OK.

Step 10 Click Create and Deploy.

----End

Setting the Access Mode of the edge-service Component

Step 1 Click in the upper left corner to return to the Application Management page.

Step 2 Click the application created in Creating an Application (for example,
weathermap). The Overview page is displayed.

Step 3 In the Component List area, locate the row that contains edge-service and click
View Access Mode in the External Access Address column.

Step 4 Click Add Service in the TCP/UDP Route Configuration area and set parameters
by referring to the following table.

Parameter Description

Service Name Retain the default value.

Access Mode Select Public network access.

Access Type Select Elastic IP address.

Service Affinity Retain the default value.

Protocol Select TCP.

Container Port Enter 3010.

Access Port Select Automatically generated.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

Figure 1-5 Setting the access mode of the edge-service component

Step 5 Click OK.

----End

Creating and Deploying a Frontend Component

Step 1 Click in the upper left corner to return to the Application Management page.

Step 2 Click Create Component in the Operation column of the application created in
Creating an Application (for example, weathermap).

Step 3 In the Basic Information area, set the following mandatory parameters. Retain
the default values for other parameters.

Parameter Description

Component
Name

Enter the frontend component name weathermapweb.

Component
Version

Click Generate. By default, the version number is generated
based on the time when you click Generate. The format is
yyyy.mmdd.hhmms, where s is the ones place of the second in
the timestamp. For example, if the timestamp is
2022.0803.104321, the version number is 2022.0803.10431.

Environment Select the environment created in Creating an Environment, for
example, env-test.

Application Select the application created in Creating an Application, for
example, weathermap.

Step 4 In the Component Package area, set the following mandatory parameters. Retain
the default values for other parameters.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

Parameter Description

Stack Select Node.js.

Source
Code/
Software
Package

1. Select Source code repository.
2. Select GitHub,
3. Authorization: Select the authorization information created in

Setting GitHub Repository Authorization.
4. Username/Organization: Select the username used to log in

to GitHub in Forking the Weather Forecast Source Code.
5. Repository: Select the name of the weather forecast source

code repository that has been forked to your GitHub account.
For example, weathermap.

6. Branch: Select master.

Step 5 In the Build Job area, set mandatory build parameters.

1. Command: Retain the default value.
2. Dockerfile Address: Set this parameter by referring to the following table.

Component Name Dockerfile Address

weathermapweb ./weathermapweb/

3. Organization: Select the organization created in Creating an Organization.
4. Environment: Select Use current environment.
5. Retain the default values for other parameters.

Step 6 Click Next to add an environment variable.

1. Choose Container Settings > Environment Variable.
2. Click Add Environment Variable to configure environment variables.

Type Name Variable/Variable Reference

Add
manu
ally

SERVICE_ADDR Access address generated in
Setting the Access Mode of
the edge-service
Component.

Step 7 Click Create and Deploy.

----End

Confirming the Deployment Result

Step 1 Click in the upper left corner to return to the Application Management page.

Step 2 Choose Cloud Service Engine > Microservice Catalog.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

Step 3 Select the ServiceComb engine where the microservice application is deployed
from the Microservice Engine drop-down list.

Step 4 Select the application (for example, weathermap) created in Creating an
Application from Microservice List.

If the number of instances of each microservice is the same as listed in the
following table, the deployment is successful.

Component Name Instances

weather 2

forecast 1

fusionweather 1

edge-service 1

----End

Setting the Access Mode

Step 1 Choose Application Management.

Step 2 Click the application created in Creating an Application (for example,
weathermap). The Overview page is displayed.

Step 3 In the Component List area, locate the row that contains weathermapweb and
click View Access Mode in the External Access Address column.

Step 4 Click Add Service in the TCP/UDP Route Configuration area and set parameters
by referring to the following table.

Parameter Description

Service Name Retain the default value.

Access Mode Select Public network access.

Access Type Select Elastic IP address.

Service Affinity Retain the default value.

Protocol Select TCP.

Container Port Enter 3000.

Access Port Select Automatically generated.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

Figure 1-6 Setting the access mode

Step 5 Click OK.

Figure 1-7 Access address

----End

Accessing an Application

Step 1 Click in the upper left corner to return to the Application Management page.

Step 2 Click the application created in Creating an Application (for example,
weathermap). The Overview page is displayed.

Step 3 In the Component List area, locate the row that contains weathermapweb and
click View Access Mode in the External Access Address column.

If the following page is displayed, the weather forecast microservice application is
successfully deployed.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

Figure 1-8 Application deployed successfully

NO TE

● The data is real-time data.

● When you access the application for the first time, it takes some time for the weather
system to be ready. If the preceding page is not displayed, refresh the page.

----End

1.3 Deploying a Weather Forecast Microservice Using a
Software Package

1.3.1 Preparations

Preparing Resources

To facilitate subsequent operations, ensure that:

1. Create a VPC. For details, see Creating a VPC.
2. Create an exclusive ServiceComb engine 2.4.0 or later with security

authentication disabled. For details, see Creating a Microservice Engine.
The VPC to which the ServiceComb engine belongs is the one created in 1. If
the VPCs are inconsistent, correctly configure the VPC connectivity.

3. Create a CCE cluster. In a trial scenario, set Management Scale to 50 nodes
and HA to No. For details, see Buying a Cluster.
– The VPC to which the CCE cluster belongs is the one created in 1.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0013935842.html
https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0079.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0028.html

– The cluster contains at least one ECS node with 8 vCPUs and 16 GB
memory or two ECS nodes with 4 vCPUs and 8 GB memory, and is bound
to an EIP. For details, see Creating a Node.

– The CCE cluster cannot be bound to other environments.

4. Create a bucket for storing software packages. For details, see Creating a
Bucket.

Downloading and Uploading Component Software Packages

Step 1 Download the weather forecast component software package to the local PC by
referring to Table 1-2. (This practice uses the component developed based on Java
chassis.)

Table 1-2 Software packages of the weather forecast components

Microservi
ce
Developm
ent
Framewor
k

Componen
t Name

Component
Software Package
Name

Description of
Downloading a
Component Software
Package

Java
Chassis

weather weather-1.0.0.jar 1. Access software
package repository of
weather forecast
components.

2. Click ServiceComb to
access the software
package repository of
weather forecast
components developed
using the Java chassis
microservice
development framework.

weather-
beta

weather-beta-2.0.0.jar

forecast forecast-1.0.0.jar

fusionweat
her

fusionweather-1.0.0.ja
r

edge-
service

edge-service-1.0.0.jar

weatherma
pweb

weathermapweb.zip

Spring
Cloud

weather weather-1.0.0.jar 1. Access software
package repository of
weather forecast
components.

2. Click Spring Cloud to
access the software
package repository of
weather forecast
components developed
using the Spring Cloud
microservice
development framework.

weather-
beta

weather-beta-2.0.0.jar

forecast forecast-1.0.0.jar

fusionweat
her

fusionweather-1.0.0.ja
r

edge-
service

edge-service-1.0.0.jar

weatherma
pweb

weathermapweb.zip

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0363.html
https://support.huaweicloud.com/intl/en-us/ugobs-obs/obs_41_0009.html
https://support.huaweicloud.com/intl/en-us/ugobs-obs/obs_41_0009.html
https://github.com/servicestage-demo/weathermap/releases
https://github.com/servicestage-demo/weathermap/releases
https://github.com/servicestage-demo/weathermap/releases
https://github.com/servicestage-demo/weathermap/releases
https://github.com/servicestage-demo/weathermap/releases
https://github.com/servicestage-demo/weathermap/releases
https://github.com/servicestage-demo/weathermap/releases
https://github.com/servicestage-demo/weathermap/releases

Step 2 Upload the preceding software packages to the bucket prepared in Preparing
Resources.

Upload the software package. For details, see Uploading an Object.

----End

Creating an Organization

Step 1 Log in to ServiceStage.

Step 2 Choose Deployment Source Management > Organization Management.

Step 3 Click Create Organization. On the displayed page, specify Organization Name.
For example, org-test.

Step 4 Click OK.

Figure 1-9 Creating an organization

----End

Creating an Environment

Step 1 Choose Environment Management > Create Environment and set the
environment information by referring to the following table.

Parameter Description

Environment Enter an environment name, for example, env-test.

Enterprise Project Specify Enterprise Project.
Enterprise projects let you manage cloud resources and
users by project.
It is available after you enable the enterprise project
function.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

https://support.huaweicloud.com/intl/en-us/ugobs-obs/obs_41_0017.html
https://support.huaweicloud.com/intl/en-us/usermanual-em/pm_topic_0002.html
https://support.huaweicloud.com/intl/en-us/usermanual-em/pm_topic_0002.html

Parameter Description

Description Retain the default value.

VPC Select the VPC prepared in Preparing Resources.
NOTE

● The VPC cannot be modified after the environment is created.
● After a VPC is selected, resources in the VPC are loaded for

selection. Resources that are not in the VPC cannot be
selected.

Environment Type Select Kubernetes.

Figure 1-10 Configuring an environment

Step 2 Click Create Now.

Step 3 In the Resources area, choose Clusters from Compute and click Bind now.

Step 4 In the dialog box that is displayed, select the CCE cluster created in Preparing
Resources and click OK.

Step 5 In the Resources area, choose ServiceComb Engines from Middleware and click
Manage Resource.

Step 6 In the dialog box that is displayed, select the ServiceComb engine created in
Preparing Resources and click OK.

----End

Creating an Application

Step 1 Click in the upper left corner to return to the Environment Management
page.

Step 2 Choose Application Management > Create Application and set basic application
information.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

1. Name: Enter weathermap.

NO TE

If an application with the same name already exists in the application list, rectify the
fault by referring to What Should I Do If a Weather Forecast Application with the
Same Name Exists in the Current Environment?

2. Enterprise Project: Enterprise projects let you manage cloud resources and
users by project.
It is available after you enable the enterprise project function.

Step 3 Click OK.

Figure 1-11 Creating an application

----End

1.3.2 Deploying a Microservice Using a Software Package

Scenarios
ServiceStage allows you to quickly deploy microservices in containers (such as
CCE) or VMs (such as ECS), and supports source code deployment, JAR/WAR
package deployment, and Docker image package deployment. In addition,
ServiceStage allows you to deploy, upgrade, roll back, start, stop, and delete
applications developed in different programming languages, such as Java, PHP,
Node.js, and Python.

In this practice, backend components developed in Java and frontend components
developed in Node.js are used.

User Story
In this practice, you can deploy an application in containers and register
microservice instances with the ServiceComb engine. The following components
need to be created and deployed for the weathermap application:

1. Frontend component: weathermapweb, which is developed in Node.js.
2. Backend components: weather, fusionweather, forecast, and edge-service,

which are developed based on Java.

The procedures for deploying a microservice are as follows:

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

https://support.huaweicloud.com/intl/en-us/usermanual-em/pm_topic_0002.html

1. Creating and Deploying a Backend Application Component
2. Setting the Access Mode of the edge-service Component
3. Creating and Deploying a Frontend Component
4. Confirming the Deployment Result
5. Setting the Access Mode
6. Accessing an Application

Creating and Deploying a Backend Application Component
You need to create and deploy four application components (weather, forecast,
fusionweather, and edge-service), which correspond to the four software packages
generated by the backend build jobs.

Step 1 Log in to ServiceStage.

Step 2 Choose Application Management. The application list is displayed.

Step 3 Click Create Component in the Operation column of the application created in
Creating an Application (for example, weathermap).

Step 4 In the Basic Information area, set the following mandatory parameters. Retain
the default values for other parameters.

Parameter Description

Component
Name

Enter the name of the corresponding backend component (for
example, weather).

Component
Version

Click Generate. By default, the version number is generated
based on the time when you click Generate. The format is
yyyy.mmdd.hhmms, where s is the ones place of the second in
the timestamp. For example, if the timestamp is
2022.0803.104321, the version number is 2022.0803.10431.

Environmen
t

Select the environment created in Creating an Environment, for
example, env-test.

Application Select the application created in Creating an Application, for
example, weathermap.

Step 5 In the Component Package area, set the following mandatory parameters. Retain
the default values for other parameters.

Parameter Description

Stack Select Java.

Upload
Method

Click Select Software Package and select the uploaded software
package of the corresponding component by referring to Table
1-2.

Step 6 In the Build Job area, set the following mandatory parameters. Retain the default
values for other parameters.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

Parameter Description

Organizatio
n

An organization is used to manage images generated during
component building.
Select the organization created in Creating an Organization.

Environmen
t

Select Use current environment to use the CCE cluster in the
deployment environment to which the component belongs to
build an image.
In the current environment, masters and nodes in the CCE cluster
must have the same CPU architecture. Otherwise, the component
build fails.

Step 7 Click Next.

Step 8 In the Resources area, set Instances for each component and retain the default
values for other parameters.

Component Name Instances

weather 2

forecast 1

fusionweather 1

edge-service 1

Step 9 Bind the ServiceComb engine.

NO TE

● After a component is deployed, the microservice will be registered with the ServiceComb
engine.

● All components must be registered with the same ServiceComb engine.

1. Choose Cloud Service Settings > Microservice Engine.
2. Click Bind Microservice Engine.
3. Select the managed ServiceComb engine in the current environment.
4. Click OK.

Step 10 (Optional) Choose Container Settings > Environment Variable > Add
Environment Variable. Then add environment variables for the weather, forecast,
and fusionweather components by referring to the following table.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

Type Name Variable/Variable Reference

Add
manua
lly

MOCK_ENABLED Set the parameter value to
false.
● true: If no EIP is bound to

the ECS node in the CCE
cluster created in Preparing
Resources or the node
cannot access the public
network, set this parameter
to true. The weather data
used by the application is
simulated data.

● false: If an EIP has been
bound to the ECS node in the
CCE cluster created in
Preparing Resources and
the node can access the
public network, set this
parameter to false or do not
set this parameter. The
weather data used by the
application is real-time data.

Step 11 Click Create and Deploy.

----End

Setting the Access Mode of the edge-service Component

Step 1 Click in the upper left corner to return to the Application Management page.

Step 2 Click the application created in Creating an Application (for example,
weathermap). The Overview page is displayed.

Step 3 In the Component List area, locate the row that contains edge-service and click
View Access Mode in the External Access Address column.

Step 4 Click Add Service in the TCP/UDP Route Configuration area and set parameters
by referring to the following table.

Parameter Description

Service Name Retain the default value.

Access Mode Select Public network access.

Access Type Select Elastic IP address.

Service Affinity Retain the default value.

Protocol Select TCP.

Container Port Enter 3010.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

Parameter Description

Access Port Select Automatically generated.

Figure 1-12 Setting the access mode of the edge-service component

Step 5 Click OK.

----End

Creating and Deploying a Frontend Component

Step 1 Click in the upper left corner to return to the Application Management page.

Step 2 Click Create Component in the Operation column of the application created in
Creating an Application (for example, weathermap).

Step 3 In the Basic Information area, set the following mandatory parameters. Retain
the default values for other parameters.

Parameter Description

Component
Name

Enter the frontend component name weathermapweb.

Component
Version

Click Generate. By default, the version number is generated
based on the time when you click Generate. The format is
yyyy.mmdd.hhmms, where s is the ones place of the second in
the timestamp. For example, if the timestamp is
2022.0803.104321, the version number is 2022.0803.10431.

Environmen
t

Select the environment created in Creating an Environment, for
example, env-test.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

Parameter Description

Application Select the application created in Creating an Application, for
example, weathermap.

Step 4 In the Component Package area, set the following mandatory parameters. Retain
the default values for other parameters.

Parameter Description

Stack Select Node.js.

Upload
Method

Click Select Software Package and select the uploaded software
package of component weathermapweb by referring to Table
1-2.

Figure 1-13 Setting frontend software package parameters

Step 5 In the Build Job area, set the following mandatory parameters. Retain the default
values for other parameters.

Parameter Description

Organizatio
n

An organization is used to manage images generated during
component building.
Select the organization created in Creating an Organization.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

Parameter Description

Environmen
t

Select Use current environment to use the CCE cluster in the
deployment environment to which the component belongs to
build an image.
In the current environment, masters and nodes in the CCE cluster
must have the same CPU architecture. Otherwise, the component
build fails.

Step 6 Click Next to add an environment variable.

1. Choose Container Settings > Environment Variable.
2. Click Add Environment Variable to configure environment variables.

Type Name Variable/Variable Reference

Add
manu
ally

SERVICE_ADDR Access address generated in
Setting the Access Mode of
the edge-service
Component.

Step 7 Click Create and Deploy.

----End

Confirming the Deployment Result

Step 1 Click in the upper left corner to return to the Application Management page.

Step 2 Choose Cloud Service Engine > Microservice Catalog.

Step 3 Select the ServiceComb engine where the microservice application is deployed
from the Microservice Engine drop-down list.

Step 4 Select the application (for example, weathermap) created in Creating an
Application from Microservice List.

If the number of instances of each microservice is the same as listed in the
following table, the deployment is successful.

Component Name Instances

weather 2

forecast 1

fusionweather 1

edge-service 1

----End

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

Setting the Access Mode

Step 1 Choose Application Management.

Step 2 Click the application created in Creating an Application (for example,
weathermap). The Overview page is displayed.

Step 3 In the Component List area, locate the row that contains weathermapweb and
click View Access Mode in the External Access Address column.

Step 4 Click Add Service in the TCP/UDP Route Configuration area and set parameters
by referring to the following table.

Parameter Description

Service Name Retain the default value.

Access Mode Select Public network access.

Access Type Select Elastic IP address.

Service Affinity Retain the default value.

Protocol Select TCP.

Container Port Enter 3000.

Access Port Select Automatically generated.

Figure 1-14 Setting the access mode

Step 5 Click OK.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

Figure 1-15 Access address

----End

Accessing an Application

Step 1 Click in the upper left corner to return to the Application Management page.

Step 2 Click the application created in Creating an Application (for example,
weathermap). The Overview page is displayed.

Step 3 In the Component List area, locate the row that contains weathermapweb and
click View Access Mode in the External Access Address column.

If the following page is displayed, the weather forecast microservice application is
successfully deployed.

Figure 1-16 Application deployed successfully

NO TE

● The data is real-time data.

● When you access the application for the first time, it takes some time for the weather
system to be ready. If the preceding page is not displayed, refresh the page.

----End

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

1.4 Microservice Routine O&M

Scenarios
ServiceStage supports application monitoring, events, alarms, logs, tracing
diagnosis, and built-in AI capabilities, implementing easy O&M.

User Story
In actual application scenarios, you can monitor application running status in real
time based on graphic metrics and threshold-crossing alarms. In addition, you can
quickly locate application running problems and analyze performance bottlenecks
based on performance management and log policies.

Procedure

Step 1 Log in to ServiceStage.

Step 2 Choose Application Management.

Step 3 Click an application (for example, weathermap). The Overview page is displayed.

Step 4 In the Component List area, click the target component. The component overview
page is displayed.

Perform routine O&M by referring to Component O&M.

----End

1.5 Dark Launch
The weather-beta microservice is a new version of the weather microservice and
allows you to query the UV index. Before upgrading to weather-beta, a small
number of requests are diverted to the later version for function verification. If the
functions are normal, the earlier version will be brought offline. During the
upgrade, customer requests should not be interrupted. During the deployment of
the later version, traffic is not diverted to the later version. Before the earlier
version is brought offline, traffic is migrated from the earlier version to the later
version.

ServiceStage provides dark launch to achieve the preceding objectives.

This section describes how to deploy weather-beta using dark launch of
ServiceStage.

Step 1 Log in to ServiceStage.

Step 2 Choose Application Management.

Step 3 Click an application (for example, weathermap). The Overview page is displayed.

Step 4 In the Component List area, click the target weather component. The component
overview page is displayed.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0042.html

Step 5 In the upper right corner of the page, click Upgrade.

Step 6 Select Dark Launch and click Next.

Step 7 Configure the dark launch version based on how you deploy the weather forecast
microservice.
● If source code is used for deployment, set the following mandatory

parameters. Retain the default values for other parameters.

Parameter Description

Command Select Default command or script.

Dockerfile
Address

Enter
./weather-beta/

Component
Version

Click Generate. By default, the version number is generated
based on the time when you click Generate. The format is
yyyy.mmdd.hhmms, where s is the ones place of the second
in the timestamp. For example, if the timestamp is
2022.0803.104321, the version number is 2022.0803.10431.

● If a software package is used for deployment, set the following mandatory

parameters. Retain the default values for other parameters.

Parameter Description

Upload
Method

1. Move the cursor to the weather-1.0.0.jar software
package.

2. Click .
3. Select the weather-beta-2.0.0.jar software package that

has been uploaded when Downloading and Uploading
Component Software Packages.

Component
Version

Click Generate. By default, the version number is generated
based on the time when you click Generate. The format is
yyyy.mmdd.hhmms, where s is the ones place of the second
in the timestamp. For example, if the timestamp is
2022.0803.104321, the version number is 2022.0803.10431.

Step 8 Set mandatory parameters by referring to the following table. Retain the default
values for other parameters.

Parameter Description

Deployment
Architecture

1. Click Select.
2. Select Type 2: Registers the service with the microservice

center (microservice B implements dark launch).
3. Click OK.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

Parameter Description

Dark
Launch
Policy

Select Traffic ratio-based.

Traffic Ratio ● Traffic Ratio: percentage of traffic directed to the new
version. Set it to 50.

● Current Traffic Ratio: percentage of traffic directed to the
current version. It is automatically set to 50.

Instances
Deployed
for Dark
Launch

Select Canary (increase, then decrease instances).

First Batch
of Dark
Launch
Instances

Set this parameter to 1.

Deployment
Batch with
Remaining
Instances

Set this parameter to 1.

Figure 1-17 Configuring the dark launch policy

Step 9 Click Upgrade.

Wait until the component status changes from Upgrading/Rolling back the
component to Releasing, indicating that the component is released in dark
launch.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

After the dark launch is successful, the servicecomb.routeRule.weather
configuration item is delivered to the ServiceComb engine connected to the
weather microservice.

You can view the configuration item from Cloud Service Engine > Configuration
Management.

Step 10 Ensure that the dark launch version is working properly.

Access the application by referring to Accessing an Application and refresh the
weather forecast page multiple times. The pages of the dark launch version and of
the current version are periodically displayed based on the dark launch policy.

Figure 1-18 Current version (without UV data)

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

Figure 1-19 Dark launch version (with UV data)

----End

1.6 Microservice Governance

Scenarios

ServiceComb engines provide governance policies such as load balancing, service
degradation, rate limiting, fault tolerance, circuit breaker, fault injection, blacklist,
and whitelist.

User Story

You can configure governance policies in advance based on actual service
scenarios to flexibly respond to service requirement changes and ensure stable
running of applications.

Service degradation: In this practice, if the number of frontend requests increases
sharply, the system responds slowly or may even break down. In this case, you can
degrade the forecast microservice from fusionweather and request only important
real-time weather data to ensure the proper running of important service
functions and restore the service when traffic peaks are over.

Service Degradation

ServiceStage supports service degradation by microservice or API. The following
uses the forecast microservice as an example.

Step 1 Log in to ServiceStage.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

Step 2 Choose Cloud Service Engine > Microservice Governance.

Step 3 Select the ServiceComb engine where the weather forecast component is deployed
from the Microservice Engine drop-down list.

Step 4 Select weathermap from the All applications drop-down list.

Step 5 Click the fusionweather microservice. The Microservice Governance page is
displayed.

Figure 1-20 Accessing the Microservice Governance page

Step 6 Set a service degradation policy.

1. Select Service Degradation.
2. Click New.
3. Set Service Degradation Object to forecast.
4. Set Service Degradation to Open.
5. Click OK.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

Figure 1-21 Setting a service degradation policy

Step 7 Check the configurations.

Access the application. The weather forecast on the right is blank.

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

Figure 1-22 Microservice degraded

Step 8 Click to delete the service degradation policy to prevent it from affecting user
experience.

Figure 1-23 Deleting a policy

----End

1.7 FAQs

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

1.7.1 What Should I Do If a Weather Forecast Application
with the Same Name Exists in the Current Environment?

Symptom
When you create a weather forecast application with a specified name (for
example, weathermap) on ServiceStage, the system displays the error
"SVCSTG.00100458: The application name already exists" indicating that an
application with the same name exists in the application list.

Solution

Step 1 When creating an application, set Name to a unique application name, for
example, weathermap_test.

Step 2 Click the created weather forecast application, for example, weathermap_test.
The application Overview page is displayed.

Step 3 Click Environment Variables and select an environment (for example, env-test)
from the drop-down list.

Step 4 Click Add Environment Variable to configure environment variables.

1. Set Name based on the selected source code repository branch by referring to
the following table.

Technology Used
by Microservice
Components

Name

Java Chassis servicecomb_service_application

Spring Cloud spring_cloud_servicecomb_discovery_appName

2. Set Variable/Variable Reference to the name of the created application, for

example, weathermap_test.

Step 5 Click Submit.

----End

ServiceStage
Best Practices

1 Hosting and Managing a Weather Forecast
Microservice Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

2 Enabling Security Authentication for an
Exclusive ServiceComb Engine

Overview

The exclusive ServiceComb engine supports security authentication based on the
Role-Based Access Control (RBAC) policy and allows you to enable or disable
security authentication.

After security authentication is enabled for an engine, the security authentication
account and password must be configured for all microservices connected to the
engine. Otherwise, the microservice fails to be registered, causing service loss.

Application Scenarios

This section describes how to enable security authentication for an exclusive
ServiceComb engine and ensure that services of microservice components
connected to the engine are not affected.

Procedure

Step 1 Upgrade SDK used by microservice components.

To enable the security authentication function, SDK must support the security
authentication function. If the SDK version used by the current microservice
components is earlier than the required version (Spring Cloud Huawei requires
1.6.1 or later, and Java chassis requires 2.3.5 or later), you need to upgrade SDK.

Step 2 Configure security authentication parameters for microservice components.

Before enabling security authentication for a ServiceComb engine, configure
security authentication parameters for the microservice components that have
been connected to the engine. To configure security authentication parameters,
you need to configure the security authentication account and password:

● Configuring the security authentication account and password for a Spring
Cloud microservice component

ServiceStage
Best Practices

2 Enabling Security Authentication for an Exclusive
ServiceComb Engine

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

Table 2-1 Configuring the security authentication account and password for a
Spring Cloud microservice component

Configuration File Configuration Environmental Variables Injection

Add the following configurations to
the bootstrap.yml file of the
microservice. If they are configured,
skip this step.
spring:
 cloud:
 servicecomb:
 credentials:
 account:
 name: test #Security authentication
account. Set this parameter based on the site
requirements.
 password: mima #Password of the
security authentication account. Set this
parameter based on the site requirements.
 cipher: default

Add the following environment
variables. For details, see Manually
Adding an Application Environment
Variable.
● spring_cloud_servicecomb_credentials

_account_name: security
authentication account. Set this
parameter based on the site
requirements.

● spring_cloud_servicecomb_credentials
_account_password: password of the
security authentication account. Set
this parameter based on the site
requirements.

NO TE

● By default, the user password is stored in plaintext, which cannot ensure security. You
are advised to encrypt the password for storage. For details, see Custom Encryption
Algorithms for Storage.

● If security authentication is not enabled for the ServiceComb engine and security
authentication parameters are configured for the microservice components connected to
the ServiceComb engine, the normal service functions of the microservice components
are not affected.

● Configuring the security authentication account and password for a Java
chassis microservice component

ServiceStage
Best Practices

2 Enabling Security Authentication for an Exclusive
ServiceComb Engine

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0282.html
https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0282.html
https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0282.html
https://support.huaweicloud.com/intl/en-us/devg-servicestage/cse_04_0009.html
https://support.huaweicloud.com/intl/en-us/devg-servicestage/cse_04_0009.html

Table 2-2 Configuring the security authentication account and password for a
Java chassis microservice component

Configuration File Configuration Environmental Variables Injection

Add the following configurations
to the microservice.yml file of the
microservice. If they are
configured, skip this step.
servicecomb:
 credentials:
 rbac.enabled: true #Whether to enable
security authentication. Set this parameter
based on the site requirements.
 cipher: default
 account:
 name: test #Security authentication
account. Set this parameter based on the site
requirements.
 password: mima #Password of the
security authentication account. Set this
parameter based on the site requirements.
 cipher: default

Add the following environment
variables. For details, see Manually
Adding an Application Environment
Variable.
– servicecomb_credentials_rbac_enab

led: whether to enable security
authentication. Set this parameter
based on the site requirements.
true: security authentication is
enabled; false: security
authentication is disabled.

– servicecomb_credentials_account_n
ame: security authentication
account. Set this parameter based
on the site requirements.

– servicecomb_credentials_account_p
assword: password of the security
authentication account. Set this
parameter based on the site
requirements.

Step 3 Enable security authentication for an exclusive ServiceComb engine. For details,
see Enabling Security Authentication.

NO TE

After security authentication is enabled, if security authentication parameters are not
configured for the microservice components connected to the engine, or the security
authentication account and password configured for the microservice components are
incorrect, the heartbeat of the microservice components fails and the service is forced to go
offline.

----End

ServiceStage
Best Practices

2 Enabling Security Authentication for an Exclusive
ServiceComb Engine

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0282.html
https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0282.html
https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0282.html
https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0095.html

3 Connecting ServiceComb Engine
Dashboard Data to AOM through

ServiceStage

Background

For Java chassis applications connected to the ServiceComb engine, the real-time
monitoring data on the ServiceComb engine dashboard is retained for 5 minutes
by default. To permanently store historical monitoring data for subsequent query
and analysis, use the custom metric monitoring function of ServiceStage to
connect the microservice data displayed on the ServiceComb engine dashboard to
AOM.

This section uses the application deployed using a software package as an
example to describe how to complete the connection.

Procedure

Step 1 Add dependency.

In the development environment, open the application project that requires
persistent storage of historical monitoring data and add the following dependency
to the pom file of the microservice:

<dependency>
 <groupId>org.apache.servicecomb</groupId>
 <artifactId>metrics-core</artifactId>
</dependency>
<dependency>
 <groupId>org.apache.servicecomb</groupId>
 <artifactId>metrics-prometheus</artifactId>
</dependency>

Step 2 Recompile and package the application project to which the dependency has been
added, and upload the package.

● Upload the software package to the SWR software repository. For details, see
Uploading the Software Package .

● Upload the software package to the OBS bucket. For details, see Uploading
an Object.

ServiceStage
Best Practices

3 Connecting ServiceComb Engine Dashboard Data
to AOM through ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0064.html#servicestage_03_0064__en-us_topic_0187251865_section12585124174817
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0307.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0307.html

Step 3 Deploy the application component.
● To deploy a new component, go to Step 4.
● If the component has been deployed, go to Step 5.

Step 4 Deploy the component packaged and uploaded in Step 2. For details, see
Creating a Component Based on a Container Using UI Configurations.

1. During component deployment, choose Advanced Settings > O&M Policy
and configure the following parameters:

Parameter Value

Report Path /metrics

Report Port 9696

Figure 3-1 Setting custom monitoring

2. After the component is successfully deployed, go to Step 6.

Step 5 Connect monitoring metrics to AOM.

1. Log in to ServiceStage.
2. Choose Application Management.
3. Click the application where the component is located. The Overview page of

the application is displayed.
4. In the Component List area, click the target component. The component

overview page is displayed.
5. Click Deploy.
6. Select Single-batch Release and click Next.
7. Choose Advanced Settings > O&M Policy and configure the following

parameters:

Parameter Value

Report Path /metrics

ServiceStage
Best Practices

3 Connecting ServiceComb Engine Dashboard Data
to AOM through ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0265.html

Parameter Value

Report Port 9696

Figure 3-2 Monitoring metrics

8. Click Deploy and wait until the component is redeployed successfully.

Step 6 On the AOM console, view monitoring metrics and export monitoring data. For
details, see Metric Monitoring.

----End

ServiceStage
Best Practices

3 Connecting ServiceComb Engine Dashboard Data
to AOM through ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

https://support.huaweicloud.com/intl/en-us/usermanual-aom/aom_02_0017.html

4 Migrating the Registered Microservice
Engine Using ServiceStage Without Code

Modification

Context

This section describes how to migrate the microservice application components
that are developed using the Java chassis microservice framework and registered
with the professional ServiceComb engine to the exclusive ServiceComb engine
without any code modification.

NO TICE

Services will be interrupted during the migration of the microservice registration
engine. Evaluate and select a proper time window before the migration.

Prerequisites

You have created an exclusive ServiceComb engine with security authentication
disabled. For details, see Creating a Microservice Engine.

Select the VPC in the microservice application component environment the same
as the VPC and subnet where the engine is located.

Procedure

Step 1 Log in to ServiceStage.

Step 2 Delete the deployed microservice application component instances.

1. Choose Application Management.
2. Click the application where the microservice application is located. The

Overview page is displayed.
3. In the Component List area, select the components to be deleted and click

Bulk Delete.

ServiceStage
Best Practices

4 Migrating the Registered Microservice Engine
Using ServiceStage Without Code Modification

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0079.html

4. In the displayed dialog box, click OK.

Step 3 Modify the environment for deploying microservice application components.

1. Click in the upper left corner to return to the Application Management
page.

2. Choose Environment Management.
3. Click the environment where the microservice application is deployed.
4. In the Resources area, choose ServiceComb Engines from Middleware.
5. Select Cloud Service Engine and click Remove.
6. Click Manage Resource.
7. Select the created exclusive ServiceComb engine and click OK.

Step 4 Redeploy the microservice application component. For details, see Creating a
Component Based on a Container Using UI Configurations.

----End

ServiceStage
Best Practices

4 Migrating the Registered Microservice Engine
Using ServiceStage Without Code Modification

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0265.html
https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0265.html

5 Hosting a Spring Boot Application on
ServiceStage

5.1 Preparations
Spring Boot is an open-source application development framework based on the
Spring framework. It helps you quickly build stand-alone and production ready
applications.

This best practice uses the sample code provided by Spring to help you quickly
deploy, access, and upgrade Spring applications on ServiceStage.

Preparing Resources

To facilitate subsequent operations, ensure that:

1. Create a VPC. For details, see Creating a VPC.
2. Create a CCE cluster. In a trial scenario, set Management Scale to 50 nodes

and HA to No. For details, see Buying a Cluster.
– The VPC to which the CCE cluster belongs is the one created in 1.
– The cluster contains at least one ECS node with 8 vCPUs and 16 GB

memory or two ECS nodes with 4 vCPUs and 8 GB memory, and is bound
to an EIP. For details, see Creating a Node.

– The CCE cluster cannot be bound to other environments.
3. You have registered and obtained a public domain name from the domain

name provider. For details, see Creating a Public Zone.
4. In this example, the GitHub source code repository is bound to ServiceStage

to implement source code building, archiving, and application creation. You
need to register a GitHub account. For details, see Creating an account on
GitHub.

Forking Source Code

Step 1 Log in to GitHub.

ServiceStage
Best Practices 5 Hosting a Spring Boot Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

https://spring.io/projects/spring-boot
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0013935842.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0028.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0363.html
https://support.huaweicloud.com/intl/en-us/usermanual-dns/en-us_topic_0035467702.html
https://github.com/
https://docs.github.com/en/get-started/start-your-journey/creating-an-account-on-github
https://docs.github.com/en/get-started/start-your-journey/creating-an-account-on-github
https://github.com/

Step 2 Go to the source code repository.

● Source code repository address of the baseline version: https://github.com/
spring-guides/gs-spring-boot/tree/boot-2.7

● Source code repository address of the dark launch version: https://
github.com/herocc19/gs-spring-boot-kubernetes

Step 3 Fork the source code repository to your account. For details, see Forking a
repository.

----End

Setting GitHub Repository Authorization

You can set GitHub repository authorization so that build projects and application
components can use the authorization information to access the GitHub source
code repository.

Step 1 Log in to ServiceStage.

Step 2 Choose Continuous Delivery > Repository Authorization > Create
Authorization.

Step 3 Retain the default authorization name.

Step 4 Set Repository Authorization.

1. Select GitHub.

2. Select OAuth for Method.

3. Click Use OAuth Authorization.

4. After reading the service statement, select I understand that the source
code building function of the ServiceStage service collects the
information above and agree to authorize the collection and use of the
information.

5. Click OK.

6. Enter your GitHub account and password to log in to GitHub for identity
authentication. Wait until the authorization is complete.

Step 5 Click OK. You can view the created authorization in the repository authorization
list.

----End

Creating an Organization

Step 1 Choose Deployment Source Management > Organization Management.

Step 2 Click Create Organization. On the displayed page, specify Organization Name.
For example, org-test.

Step 3 Click OK.

ServiceStage
Best Practices 5 Hosting a Spring Boot Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

https://github.com/spring-guides/gs-spring-boot/tree/boot-2.7
https://github.com/spring-guides/gs-spring-boot/tree/boot-2.7
https://github.com/herocc19/gs-spring-boot-kubernetes
https://github.com/herocc19/gs-spring-boot-kubernetes
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/fork-a-repo#forking-a-repository
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/fork-a-repo#forking-a-repository

Figure 5-1 Creating an organization

----End

Creating an Environment

Step 1 Choose Environment Management > Create Environment and set the
environment information by referring to the following table.

Parameter Description

Environment Enter an environment name, for example, env-test.

Enterprise Project Specify Enterprise Project.
Enterprise projects let you manage cloud resources and
users by project.
It is available after you enable the enterprise project
function.

Description Retain the default value.

VPC Select the VPC prepared in Preparing Resources.
NOTE

The VPC cannot be modified after the environment is created.

Environment Type Select Kubernetes.

ServiceStage
Best Practices 5 Hosting a Spring Boot Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

https://support.huaweicloud.com/intl/en-us/usermanual-em/pm_topic_0002.html
https://support.huaweicloud.com/intl/en-us/usermanual-em/pm_topic_0002.html

Figure 5-2 Configuring an environment

Step 2 Click Create Now.

Step 3 In the Resources area, choose Clusters from Compute and click Bind now.

Step 4 In the dialog box that is displayed, select the CCE cluster created in Preparing
Resources and click OK.

----End

Creating an Application

Step 1 Click in the upper left corner to return to the Environment Management page.

Step 2 Choose Application Management > Create Application and set basic application
information.

1. Name: Enter an application name, for example, springGuides.
2. Enterprise Project: Enterprise projects let you manage cloud resources and

users by project.
It is available after you enable the enterprise project function.

Step 3 Click OK.

ServiceStage
Best Practices 5 Hosting a Spring Boot Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

https://support.huaweicloud.com/intl/en-us/usermanual-em/pm_topic_0002.html

Figure 5-3 Creating an application

----End

5.2 Deploying and Accessing Spring Boot Applications
To deploy and access Spring Boot applications, perform the following steps:

1. Creating and Deploying Spring Boot Application Components
2. Accessing Spring Boot Applications

Creating and Deploying Spring Boot Application Components

Step 1 Log in to ServiceStage.

Step 2 Choose Application Management. The application list is displayed.

Step 3 Click Create Component in the Operation column of the application created in
Creating an Application (for example, springGuides).

Step 4 In the Basic Information area, set the following mandatory parameters. Retain
the default values for other parameters.

Parameter Description

Component
Name

Enter a component name, for example, spring-boot.

Component
Version

Enter 1.0.0.

Environmen
t

Select the environment created in Creating an Environment, for
example, env-test.

Application Select the application created in Creating an Application, for
example, springGuides.

Step 5 In the Component Package area, set the following mandatory parameters. Retain
the default values for other parameters.

ServiceStage
Best Practices 5 Hosting a Spring Boot Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

Parameter Description

Stack Select Java.

Source
Code/
Software
Package

1. Select Source code repository.
2. Select GitHub,
3. Authorization: Select the authorization information created in

Setting GitHub Repository Authorization.
4. Username/Organization: Select the username used to log in

to GitHub in Forking Source Code.
5. Repository: Select the name of the Spring Boot source code

repository that has been forked to your GitHub account. For
example, gs-spring-boot.

6. Branch: Select boot-2.7.

Step 6 In the Build Job area, set the following mandatory parameters. Retain the default
values for other parameters.

Parameter Description

Command 1. Select Custom command.
2. Enter the following command in the command text box:

cd ./complete/;mvn clean package

Organizatio
n

Select the organization created in Creating an Organization.
An organization is used to manage images generated during
component building.

Environmen
t

Select Use current environment to use the CCE cluster in the
deployment environment to which the component belongs to
build an image.
In the current environment, masters and nodes in the CCE cluster
must have the same CPU architecture. Otherwise, the component
build fails.

ServiceStage
Best Practices 5 Hosting a Spring Boot Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

Figure 5-4 Configuring build parameters

Step 7 Click Next.

Step 8 In the Access Mode area, click to enable Public Network Access and set
public network access parameters for the component by referring to the following
table.

Parameter Description

Public
Network
Access

Enable this option.

Public
Network
Load
Balancer

By default, managed ELBs in the deployment environment to
which the component belongs are selected.

Client
Protocol

Retain the default value.

Domain
Name

Select Bind Domain Name and enter the public domain name
obtained in Preparing Resources.

Listening
Port

Enter 8080.

Step 9 Click Create and Deploy.

----End

Accessing Spring Boot Applications

Step 1 Click in the upper left corner to return to the Application Management page.

ServiceStage
Best Practices 5 Hosting a Spring Boot Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

Step 2 Click the application created in Creating an Application (for example,
springGuides). The Overview page is displayed.

Step 3 In the Component List area, locate the row that contains the component name
(for example, spring-boot) configured in Creating and Deploying Spring Boot
Application Components and click the access address in the External Access
Address column to access the application.

If information similar to the following is displayed, the application is successfully
deployed:
Greetings from Spring Boot!

----End

5.3 Upgrading Component Versions Using ELB Dark
Launch

Step 1 Go to the ServiceStage console.

Step 2 Choose Application Management. The application list is displayed.

Step 3 Click the application created in Creating an Application (for example,
springGuides). The Overview page is displayed.

Step 4 On the Component List tab, click the component created in Deploying and
Accessing Spring Boot Applications (for example, spring-boot). The Overview
page is displayed.

Step 5 In the upper right corner of the page, click Upgrade.

Step 6 Set Upgrade Type to Dark Launch and click Next.

Step 7 Set mandatory parameters for dark launch by referring to the following table.
Retain the default values for other parameters.

Parameter Description

Source
Code/Image

The value is fixed to the GitHub source code repository selected
during component creation and deployment.
1. Click Modify.
2. Authorization: Select the authorization information created in

Setting GitHub Repository Authorization.
3. Username/Organization: Select the username used to log in

to GitHub in Forking Source Code.
4. Repository: Select the name of the Spring Boot source code

repository that has been forked to your GitHub account. For
example, gs-spring-boot-kubernetes.

5. Branch: Select main.

Command 1. Select Custom command.
2. Enter the following command in the command text box:

cd ./complete/;mvn clean package

ServiceStage
Best Practices 5 Hosting a Spring Boot Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

Parameter Description

Component
Version

Enter 1.0.1.

Deployment
Architecture

1. Click Select.
2. Select Type 3: Connects the service to load balancer

(microservice A implements dark launch).
3. Click OK.

Dark
Launch
Policy

Select Traffic ratio-based.

Traffic Ratio ● Traffic Ratio: percentage of traffic directed to the new
version. Set it to 50.

● Current Traffic Ratio: percentage of traffic directed to the
current version. It is automatically set to 50.

Instances
Deployed
for Dark
Launch

Select Canary (increase, then decrease instances).

First Batch
of Dark
Launch
Instances

Set this parameter to 1.

Deployment
Batch with
Remaining
Instances

Set this parameter to 1.

Step 8 Click Upgrade.

Wait until the component status changes from Upgrading/Rolling back the
component to Releasing, indicating that the component is released in dark
launch.

Step 9 Perform Accessing Spring Boot Applications multiple times. If "Greetings from
Spring Boot!" and "Hello" are displayed alternately on the page, the dark launch
version of ELB is released.

----End

ServiceStage
Best Practices 5 Hosting a Spring Boot Application on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

6 Using GitLab to Interconnect with
Jenkins to Automatically Build and Upgrade

Components Deployed on ServiceStage

6.1 Overview
After the code is developed, you need to pack the code into an image package or
JAR package on Jenkins before each rollout, upload the image package to SWR or
the JAR package to OBS, and then use ServiceStage to upgrade the component
version. This process is complex. Frequent version tests cause low development
and O&M efficiency and poor user experience.

If you manage your code on GitLab and use ServiceStage with components
deployed to host applications, you can use GitLab to interconnect with Jenkins for
automatic build and packaging to upgrade the components deployed on
ServiceStage.

This practice uses the shell script output after Jenkins build and packaging to
automatically build and package code after integration and upgrade components
deployed on ServiceStage.

6.2 Preparations

6.2.1 Preparing the Jenkins Environment

Environment Description

Install Jenkins on a Linux VM. The following lists the environment information
used in this practice. If you use an image package for deployment, install Docker
on the VM.

● VM: CentOS 7.9
● Jenkins: 2.319.3

ServiceStage
Best Practices

6 Using GitLab to Interconnect with Jenkins to
Automatically Build and Upgrade Components

Deployed on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

● Git: installed using yum
● JDK: 11.0.8
● Apache Maven: 3.8.6

NO TE

The following parameter needs to be added to start Jenkins:
-Dhudson.security.csrf.GlobalCrumbIssuerConfiguration.DISABLE_CSRF_PROTECTION=true

Otherwise, GitLab fails to interconnect with Jenkins. The error is as follows:
HTTP Status 403 - No valid crumb was included in the request

Downloading and Installing Related Software
● Download and install Jenkins.

Download: https://mirrors.jenkins.io/war-stable/. Install: https://
www.jenkins.io/doc/book/installing/.

● Install Git to pull code for building commands.
yum install git –y

● Download JDK.
https://www.oracle.com/java/technologies/downloads/#java11

● Download Maven.
https://maven.apache.org/download.cgi

● Install Docker to pack the image package and upload it to the image
repository.
yum install docker

Verifying the Installation
● Git

[root@ecs-jenkins ~]# git version
git version 1.8.3.1

● JDK
[root@ecs-jenkins jar]# java -version
openjdk version "1.8.0_345"
OpenJDK Runtime Environment (build 1.8.0_345-b01)
OpenJDK 64-Bit Server VM (build 25.345-b01, mixed mode)

● Maven
[root@ecs-jenkins jar]# mvn -v
Apache Maven 3.8.6 (84538c9988a25aec085021c365c560670ad80f63)
Maven home: /root/app/maven/apache-maven-3.8.6
Java version: 11.0.8, vendor: Huawei Technologies Co., LTD, runtime: /root/app/jdk11/jdk-11.0.8
Default locale: en_US, platform encoding: UTF-8
OS name: "linux", version: "3.10.0-1160.76.1.el7.x86_64", arch: "amd64", family: "unix"

● Docker
[root@ecs-jenkins jar]# docker version
Client:
 Version: 1.13.1
 API version: 1.26
 Package version: docker-1.13.1-209.git7d71120.el7.centos.x86_64
 Go version: go1.10.3
 Git commit: 7d71120/1.13.1
 Built: Wed Mar 2 15:25:43 2022
 OS/Arch: linux/amd64
Server:
 Version: 1.13.1
 API version: 1.26 (minimum version 1.12)
 Package version: docker-1.13.1-209.git7d71120.el7.centos.x86_64

ServiceStage
Best Practices

6 Using GitLab to Interconnect with Jenkins to
Automatically Build and Upgrade Components

Deployed on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

https://mirrors.jenkins.io/war-stable/
https://www.jenkins.io/doc/book/installing/
https://www.jenkins.io/doc/book/installing/
https://www.oracle.com/java/technologies/downloads/#java11
https://maven.apache.org/download.cgi

 Go version: go1.10.3
 Git commit: 7d71120/1.13.1
 Built: Wed Mar 2 15:25:43 2022
 OS/Arch: linux/amd64
 Experimental: false

6.2.2 Uploading Code to GitLab
This practice uses Java project code and uses Maven to build JAR packages.

Prerequisites
1. The Linux VM where Jenkins is located can access the GitLab code repository.
2. An account and a repository have been created on GitLab.

Procedure

Step 1 Log in to GitLab.

Step 2 Upload code to the code repository.

----End

6.2.3 Installing and Initializing obsutil
obsutil is used to upload software packages to OBS.

Prerequisites
1. You have obtained AK/SK. For details, see Access Keys.
2. You have obtained the endpoint of the region where ServiceStage is deployed.

For details, see Regions and Endpoints.
3. You have created a bucket in OBS in the same region as ServiceStage where

the component is deployed to store software packages. For details, see
Creating a Bucket .

Procedure

Step 1 Log in to the Linux VM where Jenkins is installed and install obsutil. For details,
see Download and Installation.

NO TE

Before installing obsutil, run the following command on the Linux VM where Jenkins is
located to check the VM OS type:
echo $HOSTTYPE

● If the command output is x86_64, download the obsutil software package for the AMD
64-bit OS.

● If the command output is aarch64, download the obsutil software package for the ARM
64-bit OS.

Step 2 Initialize obsutil.
{path}/obsutil config -i=ak -k=sk -e={endpoint}

Where,

ServiceStage
Best Practices

6 Using GitLab to Interconnect with Jenkins to
Automatically Build and Upgrade Components

Deployed on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://developer.huaweicloud.com/intl/en-us/endpoint
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0306.html
https://support.huaweicloud.com/intl/en-us/utiltg-obs/obs_11_0003.html

● {path} is the obsutil installation path, for example, /root/tools/obsutil/
obsutil_linux_amd64_5.4.6.

● {endpoint} is the obtained endpoint of the region where ServiceStage is
deployed.

Step 3 Check whether obsutil can be used to upload files to OBS.

1. Create a test file.
touch test.txt

2. Use obsutil to upload the file.
/root/tools/obsutil/obsutil_linux_amd64_5.4.6/obsutil cp test.txt obs://{OBS bucket name}

Replace {OBS bucket name} with the name of the OBS bucket to be used. In
this example, the bucket name is obs-mzc. Upload the test.txt file created in
the current directory to the obs-mzc bucket. If the "Upload successfully" is
displayed, the upload is successful.
[root@ecs-jenkins jar]# /root/tools/obsutil/obsutil_linux_amd64_5.4.6/obsutil cp test1.txt obs://obs-
mzc
Start at 2023-07-24 06:09:53.49127587 +0000 UTC
Parallel: 5 Jobs: 5
Threshold: 50.00MB PartSize: auto
VerifyLength: false VerifyMd5: false
CheckpointDir: /root/.obsutil_checkpoint
[---] 100.00% 138B/s
58B/58B 622ms
Upload successfully, 58B, n/a, /root/jar/test1.txt --> obs://obs-mzc/test1.txt, cost [621], status [200],
request id [000001898684BD614014A659111ABF74]

----End

6.2.4 Installing and Initializing KooCLI
KooCLI is used to call ServiceStage APIs to upgrade components.

Install and initialize KooCLI to use it.

● Install KooCLI by Method 1: Online Installation or Method 2: Using
Software Package

● Initializing KooCLI

Method 1: Online Installation

Step 1 Log in to the Linux VM where Jenkins is located.

Step 2 Run the following command:
curl -sSL https://hwcloudcli.obs.cn-north-1.myhuaweicloud.com/cli/latest/hcloud_install.sh -o ./
hcloud_install.sh && bash ./hcloud_install.sh -y

----End

Method 2: Using Software Package

Step 1 Log in to the Linux VM where Jenkins is located and run the following command
to check the VM OS type:
echo $HOSTTYPE

● If the command output is x86_64, the AMD 64-bit OS is used.
● If the command output is aarch64, the ARM 64-bit OS is used.

ServiceStage
Best Practices

6 Using GitLab to Interconnect with Jenkins to
Automatically Build and Upgrade Components

Deployed on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

Step 2 Run the following command to download the software package:

● AMD
wget "https://hwcloudcli.obs.cn-north-1.myhuaweicloud.com/cli/latest/huaweicloud-cli-linux-
amd64.tar.gz" -O huaweicloud-cli-linux-amd64.tar.gz

● ARM
wget "https://hwcloudcli.obs.cn-north-1.myhuaweicloud.com/cli/latest/huaweicloud-cli-linux-
arm64.tar.gz" -O huaweicloud-cli-linux-arm64.tar.gz

Step 3 Run the following command to decompress the software package:

● AMD
tar -zxvf huaweicloud-cli-linux-amd64.tar.gz

● ARM
tar -zxvf huaweicloud-cli-linux-arm64.tar.gz

Step 4 Run the following command in the decompressed directory to create a soft link to
the /usr/local/bin directory:
ln -s $(pwd)/hcloud /usr/local/bin/

Step 5 Run the following command to check whether the installation is successful:
hcloud version

If information similar to "KooCLI version: 3.4.1.1" is displayed, the installation is
successful.

----End

Initializing KooCLI

Step 1 Log in to the Linux VM where Jenkins is located.

Step 2 Enter the command and press Enter to enter the interactive mode, and set the
parameters as prompted. For details, see Table 6-1.
hcloud configure init

Table 6-1 Initial configurations

Parameter Description

Access Key ID Mandatory. For details, see Access Keys.

Secret Access Key Mandatory. For details, see Access Keys.

Region Optional. Region where ServiceStage is deployed. For
details, see Regions and Endpoints.

Step 3 Add configuration parameters.

The corresponding CLI upgrade command may not be found. In this case, you
need to add additional configuration.

hcloud configure set --cli-lang=cn

----End

ServiceStage
Best Practices

6 Using GitLab to Interconnect with Jenkins to
Automatically Build and Upgrade Components

Deployed on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://developer.huaweicloud.com/intl/en-us/endpoint

6.2.5 Installing the Jenkins Plug-in and Configuring Jenkins
Before using GitLab to interconnect with Jenkins to automatically build and deploy
components on ServiceStage, install the Jenkins plug-in and configure Jenkins
global parameters.

● Install the Jenkins plug-in to interconnect with Git and use scripts during
build.

● Configure Jenkins global parameters for the Jenkins pipeline packaging script
to interconnect with Git to pull and package code.

Procedure

Step 1 Enter http://{IP address of the Linux VM where Jenkins is installed}:8080 in the
address box of the browser to log in to Jenkins.

Step 2 Choose Manage Jenkins > Manage Plugins.

Step 3 Click Available, search for plug-ins in Table 6-2, and install them.

Table 6-2 Plug-in installation description

Plug-in Mandatory Description

Generic Webhook Trigger
Plugin

Yes Used to interconnect to
the webhook of GitLab.

GitLab Plugin Yes Allows GitLab to trigger
Jenkins build.

Pipeline: Basic Steps Yes Supports pipeline script
syntax.

Pipeline: Build Step Yes Supports pipeline script
syntax.

Pipeline: Stage Step Yes Supports pipeline script
syntax.

Step 4 Choose Manage Jenkins > Global Tool Configuration.

Step 5 Configure Maven.

Replace /root/app/maven/apache-maven-3.8.6 in the example with the actual
Maven installation directory.

ServiceStage
Best Practices

6 Using GitLab to Interconnect with Jenkins to
Automatically Build and Upgrade Components

Deployed on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

Step 6 Configure JDK.

Replace /root/app/jdk11/jdk-11.0.8 in the example with the actual JDK
installation directory.

Step 7 Configure Git.

Replace /usr/bin/git in the example with the actual Git installation directory.

ServiceStage
Best Practices

6 Using GitLab to Interconnect with Jenkins to
Automatically Build and Upgrade Components

Deployed on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

----End

6.3 Procedure

6.3.1 Interconnection Tests
Before the operation, test the interconnection between Jenkins and GitLab to
ensure that Jenkins can access GitLab through APIs.

Generating a GitLab Access Token

Step 1 Log in to GitLab.

Step 2 Move the cursor to the account name in the upper right corner and click Edit
profile.

Step 3 Click Access Tokens, enter Token name, select api, and click Create personal
access token.

The token will be displayed on the right of Personal Access Tokens.

NO TE

The token is displayed only when it is generated for the first time. Otherwise, you need to
create it again next time. This token is used only for GitLab interconnection tests.

----End

Testing the Interconnection Between Jenkins and GitLab

Step 1 Enter http://{IP address of the Linux VM where Jenkins is installed}:8080 in the
address box of the browser to log in to Jenkins.

Step 2 Choose Manage Jenkins > Jenkins Configuration. In Configuration, select
Gitlab.

Step 3 Configure the GitLab URL, click Add under Credentials, and select Jenkins.

Step 4 Select Username with password from the drop-down list, select Gitlab API
token, and configure the GitLab access token in Generating a GitLab Access
Token to the API token.

ServiceStage
Best Practices

6 Using GitLab to Interconnect with Jenkins to
Automatically Build and Upgrade Components

Deployed on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

Step 5 Select Gitlab API token for Credentials and click Test Connection. If Success is
displayed, the interconnection is successful.

----End

6.3.2 Configuring a Pipeline Build Task
● Scenario 1: If a software package is generated using Jenkins, for example, a

JAR package, use the software package deployment scenario in the script.
During deployment, the built software package is uploaded to the OBS bucket
and the ServiceStage component is upgraded.

● Scenario 2: If an image package is generated using Jenkins, use the image
deployment scenario in the script. During deployment, the built image
package is uploaded to the SWR image repository and the ServiceStage
component is upgraded.

This section uses the scenario where the instance in Configuring a Pipeline Script
is a JAR package as an example.

Creating a GitLab Credential

Use the account and password with the GitLab code repository permission to
create a credential in Jenkins for pulling GitLab code.

Step 1 Enter http://{IP address of the Linux VM where Jenkins is installed}:8080 in the
address box of the browser to log in to Jenkins.

Step 2 Choose Manage Jenkins > Jenkins Configuration. In Configuration, select
Gitlab.

Step 3 Click Add under Credentials and select Jenkins.

Step 4 Configure the GitLab account password and click Add to save the configuration.

Step 5 Choose Manage Jenkins > Manage Credentials to view the configured
credentials.

The unique ID is used in Configuring a Pipeline Script.

----End

Creating a Pipeline Task

Step 1 Enter http://{IP address of the Linux VM where Jenkins is installed}:8080 in the
address box of the browser to log in to Jenkins.

Step 2 Click New Item.

Step 3 Enter the task name, for example, test-upgrade, select Pipeline, and click OK.

----End

Configuring a Build Trigger

Step 1 Configure the Jenkins build trigger.

ServiceStage
Best Practices

6 Using GitLab to Interconnect with Jenkins to
Automatically Build and Upgrade Components

Deployed on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

1. Select Build when a change is pushed to GitLab, save the GitLab webhook
URL (required when configuring GitLab webhook), and click Advanced in the
lower right corner.

2. Select Filter branches by regex and configure the build task to be triggered
after the specified branch is changed. In the example, the branch name is
main. Click Generate to generate a secret token and save it. The token will
be used for configuring GitLab webhook.

Step 2 Configure GitLab webhook.

1. Log in to GitLab and go to the code repository. In the example, the repository
name is test. Select Webhooks in settings, and set URL and Secret token to
the GitLab webhook URL and secret token obtained in Step 1.

2. Deselect Enable SSL verification for SSL verification and click Add
webhook.

----End

Configuring a Pipeline Script
A pipeline script is a build command that runs during build. For details about
script parameters, see Table 6-3.

Table 6-3 Table 1 Pipeline script parameters

Parameter Manda
tory

Type Description

git_url Yes String Address of the GitLab code repository.

credentials
_id

Yes String GitLab credential ID configured using the
account password. For details, see Creating a
GitLab Credential.

branch_na
me

Yes String Name of the GitLab code repository branch.

maven Yes String Path of the executable file for Maven
installation, for example, /root/app/maven/
apache-maven-3.8.6/bin/mvn.

upgrade_s
hell

Yes String Path for storing the upgrade.sh script on the
VM where Jenkins is deployed, for example, /
root/jar/upgrade.sh. For details, see
upgrade.sh Description .

Step 1 After the build trigger is configured, select Pipeline script from the drop-down list
on the Pipeline tab.

Step 2 Configure the pipeline script. In the example, the JAR package build scenario is
used. The script is as follows:

Replace the parameters in the script with the actual parameters in your
environment.

ServiceStage
Best Practices

6 Using GitLab to Interconnect with Jenkins to
Automatically Build and Upgrade Components

Deployed on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

node {
 //Code repository address, for example, http://10.95.156.58:8090/zmg/test.git.
 def git_url = '{Code repository address}'
 //GitLab credential ID.
 def credentials_id = '{GitLab credential ID}'
 //Name of the Git code repository branch, for example, main.
 def branch_name = '{Git code repository branch name}'
 //Path of the executable file for Maven installation, for example, /root/app/maven/apache-
maven-3.8.6/bin/mvn.
 def maven = '{Path of the executable file for Maven installation}'
 //Path for storing the upgrade.sh script, for example, /root/jar/upgrade.sh.
 def upgrade_shell = '{Path for storing the upgrade.sh script}'

 stage('Clone sources') {
 git branch: branch_name, credentialsId: credentials_id, url: git_url
 }
 stage('Build') {
 //Build a JAR package.
 sh "'$maven' clean package -Dmaven.test.failure.ignore=true -Dmaven.wagon.http.ssl.insecure=true -
Dmaven.wagon.http.ssl.allowall=true"
 }
 stage('upgrade') {
 //Execute the script and use the JAR package uploaded to OBS to upgrade the ServiceStage
component. The timeout period is 5 minutes.
 sh "timeout 300s '$upgrade_shell'"
 }
}

NO TE

● During pipeline script running, upgrade.sh is invoked. For details about the script, see
upgrade.sh Description .

● Set upgrade.sh as an executable file.

----End

6.3.3 upgrade.sh Description

Script Content
Replace the parameters in the script with the actual parameters in your
environment.

#!/bin/bash
#Project ID
project_id='{Project ID}'
#Application ID
application_id='{Application ID}'
#Component ID
component_id='{Component ID}'
#Batch information
rolling_release_batches=1
#Deployment type
deploy_type="package"

Description:
1. Search for a string, as shown in key in the following code. If no string is found, defaultValue is
returned.
2. Search for the nearest colon (:). The content following the colon is the value.
3. If there are multiple keys with the same name, only the first value is printed.
###
4. params: json, key, defaultValue
function getJsonValuesByAwk() {
 awk -v json="$1" -v key="$2" -v defaultValue="$3" 'BEGIN{
 foundKeyCount = 0

ServiceStage
Best Practices

6 Using GitLab to Interconnect with Jenkins to
Automatically Build and Upgrade Components

Deployed on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

 pos = match(json, "\""key"\"[\\t]*?:[\\t]*");
 if (pos == 0) {if (foundKeyCount == 0) {print defaultValue;} exit 0;}

 ++foundKeyCount;
 start = 0; stop = 0; layer = 0;
 for (i = pos + length(key) + 1; i <= length(json); ++i) {
 lastChar = substr(json, i - 1, 1)
 currChar = substr(json, i, 1)

 if (start <= 0) {
 if (lastChar == ":") {
 start = currChar == " " ? i + 1: i;
 if (currChar == "{" || currChar == "[") {
 layer = 1;
 }
 }
 } else {
 if (currChar == "{" || currChar == "[") {
 ++layer;
 }
 if (currChar == "}" || currChar == "]") {
 --layer;
 }
 if ((currChar == "," || currChar == "}" || currChar == "]") && layer <= 0) {
 stop = currChar == "," ? i : i + 1 + layer;
 break;
 }
 }
 }

 if (start <= 0 || stop <= 0 || start > length(json) || stop > length(json) || start >= stop) {
 if (foundKeyCount == 0) {print defaultValue;} exit 0;
 } else {
 print substr(json, start, stop-start);
 }
 }'
}

#Query component information.
function getComponentInfo() {
 #Query component information.
 component_detials=`hcloud ServiceStage ShowComponentInfo/v3 --project_id="$project_id" --
application_id="$application_id" --component_id="$component_id"`

 #Print component information.
 echo "$component_detials"

 #Obtain the component name.
 test_name=`getJsonValuesByAwk "$component_detials" "name" "defaultValue"`
 lenj=${#test_name}
 component_name=${test_name:1:lenj-2}
 echo "name : $component_name"

 data_time=$(date +%Y.%m%d.%H%M)
 seconds=$(date +%S)
 component_version="${data_time}${seconds:1:1}"
 echo "version: $component_version"
}

#Image deployment scenario
function swr_image_upgrade() {

 #Image generated after project packaging: Image name:Version name
 machine_image_name='java-test:v1'
 #Path of the SWR image repository to which the image is uploaded
 swr_image_url='{Image repository address}/{Organization name}/{Image name}:{Version}'
 #AK, which is used to log in to the SWR image repository.
 AK='BMCKUPO9HZMI6BRDJGBD'

ServiceStage
Best Practices

6 Using GitLab to Interconnect with Jenkins to
Automatically Build and Upgrade Components

Deployed on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

 #SWR login key, which is used to log in to the SWR image repository
 SK='{SWR login key}'
 #SWR image repository address
 swr_url='{SWR image repository address}'
 #Region
 region="{Region}"

 echo "upload image to swr"
 docker tag "$machine_image_name" "$swr_image_url"

 login_secret=`printf "$AK" | openssl dgst -binary -sha256 -hmac "$SK" | od -An -vtx1 | sed 's/[\n]//g' |
sed 'N;s/\n//'`

 login_result=`docker login -u "$region"@"$AK" -p "$login_secret" "$swr_url"`
 #Print the result of logging in to the SWR image repository.
 echo "$login_result"
 push_result=`docker push "$swr_image_url"`
 #Print the image push result.
 #echo "$push_result"
 logout_result=`docker logout "$swr_url"`
 #Print the result of logging out of the SWR image repository.
 echo "$logout_result"
 #Clear all historical records. They may contain SWR login key information.
 #history -c

 echo "upgrade component"

 action_result=`hcloud ServiceStage ModifyComponent/v3 --project_id="$project_id" --
application_id="$application_id" --component_id="$component_id" --version="$component_version" --
runtime_stack.name="Docker" --runtime_stack.type="Docker" --source.kind="image" --
source.storage="swr" --source.url="$swr_image_url" --name="$component_name" --
deploy_strategy.rolling_release.batches=$rolling_release_batches --deploy_strategy.type="RollingRelease" `

}

#JAR package deployment scenario
function obs_jar_upgrade() {

 #Absolute path of the executable file for installing obsutil
 obsutil='/root/tools/obsutil/obsutil_linux_amd64_5.4.6/obsutil'
 #OBS bucket name
 bucket='obs://{OBS bucket name}'
 echo "upload jar to obs"
 #Upload the JAR package generated in the project to OBS.
 obs_result=`"$obsutil" cp ./target/*.jar "$bucket"`
 #Print the upload result.
 echo "$obs_result"
 #Link of the JAR package uploaded to OBS
 obs_jar_url='obs://{OBS bucket name}/{Jar package name}'

 echo "upgrade component"

 action_result=`hcloud ServiceStage ModifyComponent/v3 --project_id="$project_id" --
application_id="$application_id" --component_id="$component_id" --version="$component_version" --
runtime_stack.name="OpenJDK8" --runtime_stack.type="Java" --source.kind="package" --
source.storage="obs" --source.url="$obs_jar_url" --name="$component_name" --
deploy_strategy.rolling_release.batches=$rolling_release_batches --deploy_strategy.type="RollingRelease" `

}

#Query the job status every 15 seconds until the job is complete.
function waitDeployFinish() {
 sleep 10s
 id="$1"
 leni=${#id}
 id=${id:1:leni-2}
 echo "job_id= $id"
 job_status=""
 while [["$job_status" != "SUCCEEDED"]]; do

ServiceStage
Best Practices

6 Using GitLab to Interconnect with Jenkins to
Automatically Build and Upgrade Components

Deployed on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

 job_status_result=`hcloud ServiceStage ShowJobDetail/v2 --project_id="$project_id" --job_id="$id"`
 job_status=`getJsonValuesByAwk "$job_status_result" "EXECUTION_STATUS" "defaultValue"`
 lenj=${#job_status}
 job_status=${job_status:1:lenj-2}
 echo "$job_status"
 if [["$job_status" != "RUNNING" && "$job_status" != "SUCCEEDED"]]; then
 echo'Deployment failed.'
 echo "$job_status_result"
 return
 fi
 sleep 15s
 done
 echo'Deployment succeeded.'
}

function upgradeTask() {

 if [["$deploy_type" == "package"]]; then
 obs_jar_upgrade
 elif [["$deploy_type" == "image"]]; then
 swr_image_upgrade
 else
 return
 fi
 #Print the component upgrade result.
 echo "$action_result"
 #Obtain the job_id in the result.
 job_id=`getJsonValuesByAwk "$action_result" "job_id" "defaultValue"`
 echo "$job_id"
 #Wait until the upgrade is complete.
 waitDeployFinish "$job_id"
}
function main() {
 getComponentInfo
 upgradeTask
}
main

Script Parameters
Parameter Ma

nda
tor
y

Typ
e

Description

region Yes Stri
ng

Region name. For details, see Obtaining Values.

project_id Yes Stri
ng

Project ID. For details, see Obtaining Values.

application
_id

Yes Stri
ng

Application ID. For details, see Obtaining Values.

component
_id

Yes Stri
ng

Component ID. For details, see Obtaining Values.

rolling_rele
ase_batche
s

Yes int Deployment batches.

ServiceStage
Best Practices

6 Using GitLab to Interconnect with Jenkins to
Automatically Build and Upgrade Components

Deployed on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

Parameter Ma
nda
tor
y

Typ
e

Description

deploy_typ
e

Yes Stri
ng

Deployment type.
● package
● image

obsutil No Stri
ng

Absolute path for uploading JAR packages to OBS.
This parameter is mandatory when software
packages, such as JAR packages, are used for
deployment. For example, /root/tools/obsutil/
obsutil_linux_amd64_5.4.6/obsutil.

bucket No Stri
ng

Path of the OBS bucket to which the package is
uploaded. This parameter is mandatory when
software packages are used for deployment. The
format is obs://{Bucket name}. For example, obs://
obs-mzc.

obs_jar_url No Stri
ng

Link after the software package is uploaded to OBS.
This parameter is mandatory when software
packages are used for deployment. The format is
obs://{Bucket name}/{Software package name}. For
example: obs://obs-mzc/spring-demo-0.0.1-
SNAPSHOT.jar

machine_i
mage_nam
e

No Stri
ng

Image generated after Jenkins packaging and build.
This parameter is mandatory when images are used
for deployment. The format is {Image name}:
{Version}. For example, java-test:v1.

swr_image
_url

No Stri
ng

Path of the image package uploaded to the SWR
image repository. This parameter is mandatory when
images are used for deployment. The format is
{Image repository address}/{Organization name}/
{Image package name}:{Version}. The format of SWR
image repository address is swr.{Project name of the
region}.myhuaweicloud.com.

AK No Stri
ng

AK, which is used to log in to the SWR image
repository. This parameter is mandatory when images
are used for deployment. For details, see Access
Keys.

SK No Stri
ng

SK, which is used together with AK to log in to the
SWR image repository. This parameter is mandatory
when images are used for deployment. For details,
see Access Keys.

ServiceStage
Best Practices

6 Using GitLab to Interconnect with Jenkins to
Automatically Build and Upgrade Components

Deployed on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html

Parameter Ma
nda
tor
y

Typ
e

Description

login_secre
t

No Stri
ng

Key for logging in to the SWR image repository. This
parameter is mandatory when images are used for
deployment. Run the following command. The
returned result is the login key.
printf "{AK}" | openssl dgst -binary -sha256 -hmac
"{SK}" | od -An -vtx1 | sed 's/[\n]//g' | sed 'N;s/\n//'
Replace {AK} and {SK} with the obtained AK and SK.

swr_url No Stri
ng

SWR image repository address. This parameter is
mandatory when images are used for deployment.
The format is swr.{Project name of the
region}.myhuaweicloud.com.

Obtaining Values
● Obtain region and project_id.

a. Log in to ServiceStage.
b. Move the cursor to the username in the upper right corner and select My

Credentials from the drop-down list.
c. View the project and project ID of the region, that is, the values of region

and project_id.
● Obtain application_id and component_id.

a. Log in to ServiceStage.
b. Choose Component Management.
c. Click the corresponding component.
d. In the Configurations area of the Overview page, click Component

Configuration.
View CAS_APP_ID and CAS_APPLICATION_ID, that is, the values of
application_id and component_id.

6.4 Build Verification

6.4.1 Manual Build
Step 1 Enter http://{IP address of the Linux VM where Jenkins is installed}:8080 in the

address box of the browser to log in to Jenkins.

Step 2 Click My View.

Step 3 Click the corresponding build task to go to the details page.

Step 4 Click Build Now to generate the build task.

ServiceStage
Best Practices

6 Using GitLab to Interconnect with Jenkins to
Automatically Build and Upgrade Components

Deployed on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

The corresponding build task information is displayed in the Build History and
Stage View areas. Move the cursor to a step to display the task status and log
button. Click log to view logs.

Step 5 Log in to ServiceStage.

Step 6 Choose Component Management.

Step 7 In the Component List area, click the target component. The component overview
page is displayed.

On the Overview page, check whether the component version and component
package code source have been updated.

Step 8 Click Deployment Record to view the corresponding deployment record.

----End

6.4.2 Jenkins Build Triggered by GitLab
GitLab triggers Jenkins build in either of the following methods:

● Method 1: Use the configured webhook to push events and trigger Jenkins
build task.

● Method 2: Modify the file of the specified branch in the build configuration to
push events and trigger Jenkins build task.

This section uses method 1 as an example.

Procedure

Step 1 Log in to GitLab and go to the code repository.

Step 2 Click Settings, select Webhooks, and select Push events from the Test drop-
down list.

Step 3 Enter http://{IP address of the Linux VM where Jenkins is installed}:8080 in the
address box of the browser to log in to Jenkins.

In the build execution status on the left, you can view the build tasks that have
been triggered.

Step 4 Click the build task ID and choose Console Output to view the build output logs.

Step 5 Log in to ServiceStage.

Step 6 Choose Component Management.

Step 7 In the Component List area, click the target component. The component overview
page is displayed.

On the Overview page, check whether the component version and component
package code source have been updated.

Step 8 Click Deployment Record to view the corresponding deployment record.

----End

ServiceStage
Best Practices

6 Using GitLab to Interconnect with Jenkins to
Automatically Build and Upgrade Components

Deployed on ServiceStage

Issue 01 (2024-09-27) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

	Contents
	1 Hosting and Managing a Weather Forecast Microservice Application on ServiceStage
	1.1 Overview
	1.2 Deploying a Weather Forecast Microservice Using Source Code
	1.2.1 Preparations
	1.2.2 Deploying a Microservice Using Source Code

	1.3 Deploying a Weather Forecast Microservice Using a Software Package
	1.3.1 Preparations
	1.3.2 Deploying a Microservice Using a Software Package

	1.4 Microservice Routine O&M
	1.5 Dark Launch
	1.6 Microservice Governance
	1.7 FAQs
	1.7.1 What Should I Do If a Weather Forecast Application with the Same Name Exists in the Current Environment?

	2 Enabling Security Authentication for an Exclusive ServiceComb Engine
	3 Connecting ServiceComb Engine Dashboard Data to AOM through ServiceStage
	4 Migrating the Registered Microservice Engine Using ServiceStage Without Code Modification
	5 Hosting a Spring Boot Application on ServiceStage
	5.1 Preparations
	5.2 Deploying and Accessing Spring Boot Applications
	5.3 Upgrading Component Versions Using ELB Dark Launch

	6 Using GitLab to Interconnect with Jenkins to Automatically Build and Upgrade Components Deployed on ServiceStage
	6.1 Overview
	6.2 Preparations
	6.2.1 Preparing the Jenkins Environment
	6.2.2 Uploading Code to GitLab
	6.2.3 Installing and Initializing obsutil
	6.2.4 Installing and Initializing KooCLI
	6.2.5 Installing the Jenkins Plug-in and Configuring Jenkins

	6.3 Procedure
	6.3.1 Interconnection Tests
	6.3.2 Configuring a Pipeline Build Task
	6.3.3 upgrade.sh Description

	6.4 Build Verification
	6.4.1 Manual Build
	6.4.2 Jenkins Build Triggered by GitLab

