
RDS for PostgreSQL

Best Practices

Issue 01

Date 2025-09-04

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Contents

1 Best Practices..1

2 Creating a Cross-Region DR Relationship for an RDS for PostgreSQL Instance.......3
2.1 Overview.. 3
2.2 Resource Planning... 5
2.3 Preparing an RDS for PostgreSQL Instance in the Production Center.. 6
2.4 Preparing an RDS for PostgreSQL Instance in the DR Center... 9
2.5 Configuring Cross-Region Network Connectivity.. 12
2.6 Creating a DR Relationship... 15
2.7 Promoting a DR Instance to Primary... 19
2.8 Removing a DR Relationship.. 20
2.9 FAQs.. 20

3 RDS for PostgreSQL Publications and Subscriptions.. 21

4 User-Defined Data Type Conversion... 25

5 Using Client Drivers to Implement Failover and Read/Write Splitting....................27

6 Other Extension Plug-Ins...31

7 Best Practices for Using PoWA... 33
7.1 Overview.. 33
7.2 Supported Performance Metrics.. 34
7.2.1 Database Performance Metrics.. 34
7.2.2 Instance Performance Metrics...37
7.3 PoWA Deployment... 40
7.3.1 Deploying PoWA for an RDS for PostgreSQL Instance...41
7.3.2 Deploying PoWA on a Self-Managed PostgreSQL Instance... 43
7.4 Viewing Metric Details on PoWA.. 46

8 Best Practices for Using pg_dump...50

9 Best Practices for Using PgBouncer.. 54

10 Database Naming Rules.. 58

11 RDS for PostgreSQL Table Design... 59

12 RDS for PostgreSQL Permissions Management... 63

RDS for PostgreSQL
Best Practices Contents

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

13 Troubleshooting WAL Accumulation..69

14 Updating, Deleting, or Inserting Data Records at a Time...71

15 Using Event Triggers to Implement the DDL Recycle Bin, Firewalls, and
Incremental Synchronization... 74

16 Creating Replication Slots to Enable CDC...78

17 Read/Write Splitting with Pgpool...85

18 User Preference Recommendation Systems... 92

19 Suggestions on RDS for PostgreSQL Metric Alarm Configurations........................ 95

20 Security Best Practices...104

RDS for PostgreSQL
Best Practices Contents

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

1 Best Practices

This chapter describes best practices for working with RDS for PostgreSQL and
provides operational guidelines that you can follow when using this service.

Table 1-1 RDS for PostgreSQL best practices

Reference Description

Creating a Cross-Region DR
Relationship for an RDS for
PostgreSQL Instance

Describes how to create a cross-region DR
relationship for an RDS for PostgreSQL instance.

RDS for PostgreSQL
Publications and
Subscriptions

Describes publications and subscriptions of RDS
for PostgreSQL.

User-Defined Data Type
Conversion

Describes how to create user-defined data type
conversion functions in RDS for PostgreSQL.

Using Client Drivers to
Implement Failover and
Read/Write Splitting

Describes how to use client drivers to enable
failover and read/write splitting.

Other Extension Plug-Ins Describes how to use the open-source
pg_waldump to parse WAL logs of RDS for
PostgreSQL.

Best Practices for Using
PoWA

Describes how to use PoWA to monitor the
performance of RDS for PostgreSQL instances.

Best Practices for Using
pg_dump

Describes how to use pg_dump to back up data.

Best Practices for Using
PgBouncer

Describes how to install, configure, and use
PgBouncer.

Database Naming Rules Describes how to create read-only users for RDS
for PostgreSQL instances.

RDS for PostgreSQL Table
Design

Describes how to design RDS for PostgreSQL
table structures to match your workloads.

RDS for PostgreSQL
Best Practices 1 Best Practices

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

Reference Description

RDS for PostgreSQL
Permissions Management

Describes how to manage user privileges for
RDS for PostgreSQL instances.

Troubleshooting WAL
Accumulation

Describes how to troubleshoot WAL
accumulation of RDS for PostgreSQL instances.

Updating, Deleting, or
Inserting Data Records at a
Time

Describes how to efficiently insert, update, and
delete data records at a time for RDS for
PostgreSQL instances.

Using Event Triggers to
Implement the DDL Recycle
Bin, Firewalls, and
Incremental
Synchronization

Describes how to use PostgreSQL event triggers
to implement the DDL recycle bin, firewalls, and
incremental synchronization.

Creating Replication Slots
to Enable CDC

Describes how to enable CDC for an RDS for
PostgreSQL instance.

Read/Write Splitting with
Pgpool

Describes how to use pgpool to implement
read/write splitting for RDS for PostgreSQL DB
instances and read replicas.

User Preference
Recommendation Systems

Describes how to design a user
recommendation system with RDS for
PostgreSQL.

Suggestions on RDS for
PostgreSQL Metric Alarm
Configurations

Describes how to configure RDS for PostgreSQL
metric alarm rules.

Security Best Practices Provides guidance on RDS for PostgreSQL
security configurations.

RDS for PostgreSQL
Best Practices 1 Best Practices

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

2 Creating a Cross-Region DR Relationship
for an RDS for PostgreSQL Instance

2.1 Overview

Scenarios

You can create a cross-region DR relationship for your DB instance. If the
production instance fails or the service system breaks down due to other force
majeure factors, the DR instance in another region ensures that the production
data is not lost and the production system continues to run without interruption.
This enhances system availability.

This practice includes the following tasks:

● Create an RDS for PostgreSQL instance.
● Create a cross-region DR relationship for the RDS for PostgreSQL instance.

Prerequisites
● You have registered with Huawei Cloud and completed real-name

authentication.
● Your account balance is greater than or equal to $0 USD.

Constraints
● The primary DB instance and DR instance are running properly and are

deployed in different clouds or regions. The primary DB instance is deployed
in primary/standby mode and the DR instance is deployed in standalone
mode.

● Before configuring disaster recovery for the DR instance, you must configure it
for the primary instance. Otherwise, the DR relationship cannot be
established.

● The specifications of the DR instance are at least equal to those of the
primary DB instance.

RDS for PostgreSQL
Best Practices

2 Creating a Cross-Region DR Relationship for an
RDS for PostgreSQL Instance

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

● Cross-cloud or cross-region DR is supported only for RDS for PostgreSQL 12
and later versions.

● The underlying architecture and major version of the DR instance must be the
same as those of the primary DB instance.

● If the DR instance's minor version differs from the primary DB instance, it will
automatically update to be the same as that of the primary DB instance after
the DR relationship is established.

● Cross-cloud or cross-region DR relationships cannot be established across
major versions.

● The DR instance can be promoted to primary and the DR replication status
can be queried only after the DR relationship between the primary DB
instance and DR instance is established.

● Ensure that the primary DB instance and DR instance are in the regions where
Cloud Connect or Virtual Private Network (VPN) has been rolled out.

● DR instances do not support point-in-time recovery (PITR) or CBR snapshot-
based backups. Perform such operations on the primary instance if needed.

How Cross-Region DR Works
Two RDS for PostgreSQL instances are deployed in two data centers, one in the
production center and the other in the DR center. RDS replicates data from the
primary instance in the production center to the DR instance in the DR center,
keeping data synchronous across the regions. Before using this function, ensure
that Cloud Connect can be used to connect the two regions.

Figure 2-1 Diagram

Service List
● Cloud Connect
● Virtual Private Cloud (VPC)
● Relational Database Service (RDS)

Notes on Usage
● The resource planning in this practice is for demonstration only. Adjust it as

needed.

RDS for PostgreSQL
Best Practices

2 Creating a Cross-Region DR Relationship for an
RDS for PostgreSQL Instance

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

● The end-to-end test data in this practice is for reference only.

2.2 Resource Planning

Table 2-1 Resource planning

Category Subcategory Planned Value Description

Production
center VPC

VPC name vpc-pg-01 Specify a name that is
easy to identify.

Region CN-Hong Kong To reduce network
latency, select the region
nearest to you.

AZ az1 -

Subnet 192.168.10.0/24 Select a subnet with
sufficient network
resources.

Subnet name subnet-2aa1 Specify a name that is
easy to identify.

DR center
VPC

VPC name vpc-pg-02 Specify a name that is
easy to identify.

Region AP-Singapore To reduce network
latency, select the region
nearest to you.

AZ az1 -

Subnet 192.168.20.0/24 Select a subnet with
sufficient network
resources.

Subnet name subnet-a388 Specify a name that is
easy to identify.

RDS for
PostgreSQ
L instance
in the
production
center

DB instance
name/ID

rds-pg-01
04**in03

Specify a name that is
easy to identify.

Region CN-Hong Kong To reduce network
latency, select the region
nearest to you.

DB engine version PostgreSQL 12 -

Private IP address 192.168.10.117 -

DB instance type Primary/Standby Select Primary/Standby
for the production
instance.

Storage type Cloud SSD -

RDS for PostgreSQL
Best Practices

2 Creating a Cross-Region DR Relationship for an
RDS for PostgreSQL Instance

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

Category Subcategory Planned Value Description

AZ az1, az3 -

Instance class Dedicated 2
vCPUs | 4 GB

-

Storage space 40 GB -

RDS for
PostgreSQ
L instance
in the DR
center

DB instance
name/ID

rds-pg-02
5f**in03

Specify a name that is
easy to identify.

Region AP-Singapore To reduce network
latency, select the region
nearest to you.

DB engine version PostgreSQL 12 -

Private IP address 192.168.20.69 -

DB instance type Single Select Single for the DR
instance.

Storage type Cloud SSD -

AZ az1 -

Instance class Dedicated, 8
vCPUs | 16 GB

The CPU and memory
specifications of the DR
instance must be greater
than or equal to those of
the primary instance.

Storage space 100 GB The storage space of the
DR instance must be
greater than or equal to
that of the primary
instance.

2.3 Preparing an RDS for PostgreSQL Instance in the
Production Center

This section describes how to create a VPC, a security group, and an RDS for
PostgreSQL instance in the production center.

● Step 1: Create a VPC and Security Group
● Step 2: Create an RDS for PostgreSQL Instance

Step 1: Create a VPC and Security Group
Step 1 Go to the Create VPC page.

Step 2 Select CN-Hong Kong for Region. Configure the basic information, subnet, and IP
address.

RDS for PostgreSQL
Best Practices

2 Creating a Cross-Region DR Relationship for an
RDS for PostgreSQL Instance

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://console-intl.huaweicloud.com/vpc/?#/vpc/vpcs/createVpc

Figure 2-2 Creating a VPC

Step 3 Click Create Now.

Step 4 In the navigation pane of Network Console, choose Access Control > Security
Groups.

Step 5 Click Create Security Group.

Figure 2-3 Creating a security group

Step 6 Click Create Now.

----End

Step 2: Create an RDS for PostgreSQL Instance

Step 1 Go to the Buy DB Instance page.

Step 2 Select CN-Hong Kong for Region. Configure the instance information and click
Buy.

RDS for PostgreSQL
Best Practices

2 Creating a Cross-Region DR Relationship for an
RDS for PostgreSQL Instance

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

https://console-intl.huaweicloud.com/rds/?#/rds/createIns

Figure 2-4 Selecting a DB engine version

Figure 2-5 Selecting an instance class

Figure 2-6 Configuring network information as planned

RDS for PostgreSQL
Best Practices

2 Creating a Cross-Region DR Relationship for an
RDS for PostgreSQL Instance

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

Figure 2-7 Setting an administrator password

Step 3 Confirm the settings.

● To modify your settings, click Previous.

● If you do not need to modify your settings, click Submit.

----End

2.4 Preparing an RDS for PostgreSQL Instance in the
DR Center

This section describes how to create a VPC, a security group, and an RDS for
PostgreSQL instance in the DR center.

NO TICE

● The VPC subnet CIDR block of the DR instance must be different from that of
the production instance. This is the prerequisite for cross-region network
connection.

● The security groups in the production center and DR center must allow access
from the database ports in the VPC subnet CIDR blocks to each other.

● Step 1: Create a VPC and Security Group

● Step 2: Create an RDS for PostgreSQL Instance

RDS for PostgreSQL
Best Practices

2 Creating a Cross-Region DR Relationship for an
RDS for PostgreSQL Instance

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

Step 1: Create a VPC and Security Group
Step 1 Go to the Create VPC page.

Step 2 Select AP-Singapore for Region. Configure the basic information, subnet, and IP
address.

Figure 2-8 Creating a VPC

Step 3 Click Create Now.

Step 4 In the navigation pane of Network Console, choose Access Control > Security
Groups.

Step 5 Click Create Security Group.

Figure 2-9 Creating a security group

Step 6 Click Create Now.

----End

Step 2: Create an RDS for PostgreSQL Instance
Step 1 Go to the Buy DB Instance page.

Step 2 Select AP-Singapore for Region. Configure the instance information and click
Buy.

RDS for PostgreSQL
Best Practices

2 Creating a Cross-Region DR Relationship for an
RDS for PostgreSQL Instance

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

https://console-intl.huaweicloud.com/vpc/?#/vpc/vpcs/createVpc
https://console-intl.huaweicloud.com/rds/?#/rds/createIns

Figure 2-10 Selecting a DB engine version

Figure 2-11 Selecting an instance class

Figure 2-12 Configuring network information as planned

RDS for PostgreSQL
Best Practices

2 Creating a Cross-Region DR Relationship for an
RDS for PostgreSQL Instance

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

Figure 2-13 Setting an administrator password

Step 3 Confirm the settings.

● To modify your settings, click Previous.

● If you do not need to modify your settings, click Submit.

----End

2.5 Configuring Cross-Region Network Connectivity
Before setting up a DR relationship, you need to configure cross-region network
connectivity. For details, see Method 1: Using Cloud Connect to Connect VPCs in
Different Regions or Method 2: Using VPN to Connect VPCs in Different
Regions.

You are advised to set a bandwidth size based on the transaction log generation
rate metric. The bandwidth must be greater than or equal to 10 times the
maximum value of this metric. This is because the unit of the network bandwidth
is Mbit/s and that of the transaction log generation rate is MB/s.

For example, if the maximum transaction log generation rate is 10 MB/s, you are
advised to set network bandwidth to 100 Mbit/s so that it is sufficient enough for
the DR instance to synchronize data from the primary instance in a timely manner.

After the network is connected, you need to configure the security groups for the
primary instance and DR instance to allow traffic from each other. For details, see
Configuring Security Groups.

RDS for PostgreSQL
Best Practices

2 Creating a Cross-Region DR Relationship for an
RDS for PostgreSQL Instance

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

Method 1: Using Cloud Connect to Connect VPCs in Different Regions
Before setting up a DR relationship, you need to configure cross-region network
connectivity.

You can use Cloud Connect to connect VPCs across regions.

Figure 2-14 Communication between VPCs in the same account but different
regions

NO TICE

Ensure that the primary and DR instances are in the regions where cloud
connections are available.
Ensure that the VPC subnets to which the primary and DR instances belong allow
access from each other.

For details about how to enable communication between VPCs in different
regions, see Using a Cloud Connection to Connect VPCs in Different Regions.

RDS for PostgreSQL
Best Practices

2 Creating a Cross-Region DR Relationship for an
RDS for PostgreSQL Instance

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

https://support.huaweicloud.com/intl/en-us/productdesc-cc/cc_01_1001.html
https://support.huaweicloud.com/intl/en-us/productdesc-cc/cc_01_0004.html
https://support.huaweicloud.com/intl/en-us/productdesc-cc/cc_01_0004.html
https://support.huaweicloud.com/intl/en-us/qs-cc/cc_02_0201.html

Figure 2-15 Flowchart

Method 2: Using VPN to Connect VPCs in Different Regions

You can use Virtual Private Network (VPN) to enable communication between
VPCs across regions.

NO TICE

Ensure that the primary and DR instances are in the regions where VPN is
available.
After configuring the VPN service, you need to contact the VPN customer service
to configure the network.
Ensure that the VPC subnets to which the primary and DR instances belong allow
access from each other.

For details about how to configure a VPN connection, see Overview.

Figure 2-16 Flowchart

RDS for PostgreSQL
Best Practices

2 Creating a Cross-Region DR Relationship for an
RDS for PostgreSQL Instance

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

https://support.huaweicloud.com/intl/en-us/vpn/index.html
https://support.huaweicloud.com/intl/en-us/qs-vpn/vpn_qs_00003.html#section0
https://support.huaweicloud.com/intl/en-us/qs-vpn/vpn_qs_00003.html#section0
https://support.huaweicloud.com/intl/en-us/qs-vpn/vpn_qs_00003.html

Configuring Security Groups

After connecting two VPCs in different regions, you need to configure security
groups for the primary and DR instances so that ports in different VPC CIDR blocks
can communicate with each other.

Suppose that there are two instances listed in Table 2-2 and they use the default
port 5432. The firewall configurations for them are as shown in Figure 2-17.

Table 2-2 CIDR block configurations

Instance VPC CIDR Block IP Address

Production instance 192.168.10.0/24 192.168.10.117

DR instance 192.168.20.0/24 192.168.20.69

Figure 2-17 Firewall configurations

2.6 Creating a DR Relationship

Scenarios

After a cross-region DR relationship is created, if the region where the primary
instance is located encounters a natural disaster and the primary instance cannot
be connected, you can promote the DR instance in another region to primary. To
connect to the new primary instance, you only need to change the connection
address on the application side.

Precautions
● Before using this function, ensure that the network between the DB instances

in two different regions is connected. You can use Cloud Connect or Virtual
Private Network (VPN) to connect the VPCs in different regions.

● Before using this function, ensure that the primary instance and DR instance
are available and are deployed in different regions. The primary instance uses
a primary/standby deployment and the DR instance uses a standalone
deployment.

● The vCPUs, memory, and storage space of the DR instance must be greater
than or equal to those of the primary instance.

RDS for PostgreSQL
Best Practices

2 Creating a Cross-Region DR Relationship for an
RDS for PostgreSQL Instance

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

https://support.huaweicloud.com/intl/en-us/qs-cc/cc_02_0201.html
https://support.huaweicloud.com/intl/en-us/vpn/index.html
https://support.huaweicloud.com/intl/en-us/vpn/index.html

● The underlying architecture and major version of the DR instance must be the
same as those of the primary DB instance.

● Cross-cloud or cross-region DR relationships cannot be established across
major versions.

● After the API for configuring DR for the primary instance is called, you cannot
change the instance class or perform a primary/standby switchover until the
DR relationship is set up.

● After a DR relationship is set up, you can change the instance class of the DR
instance. To use this function, submit a service ticket.

● After changing the database port or private IP address of the primary
instance, you need to re-establish the DR relationship.

● After a DR instance is set up, a minor version upgrade cannot be performed.
● RDS for PostgreSQL 12 and later versions support cross-region DR.
● Modifying a parameter of the primary instance does not modify that of the

DR instance. You need to modify the parameter of the DR instance separately.
● RDS for PostgreSQL DR instances do not support point-in-time recovery

(PITR) or CBR snapshot-based backups. Perform such operations on the
primary instance if needed.

Procedure

Step 1 Paste the configuration information of the DR instance to the production instance
and configure DR for the production instance.

1. Log in to the management console.

2. Click in the upper left corner and select the region where the DR instance is
located, for example, AP-Singapore.

3. Click in the upper left corner of the page and choose Databases >
Relational Database Service.

4. On the Instances page, click the DR instance name to go to the Overview
page.

5. Click DR Information.
6. In the displayed dialog box, click Copy.

RDS for PostgreSQL
Best Practices

2 Creating a Cross-Region DR Relationship for an
RDS for PostgreSQL Instance

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

https://console-intl.huaweicloud.com/ticket/?region=ap-southeast-1&locale=en-us#/ticketindex/createIndex
https://console-intl.huaweicloud.com/?locale=en-us

Figure 2-18 Copying DR instance configuration information

7. Click in the upper left corner of the management console and select the
region where the production instance is located, for example, CN-Hong Kong.

8. On the Instances page, locate the production instance and choose More >
View DR Details in the Operation column.

9. Click Create DR Relationship. In the displayed dialog box, paste the DR
information copied from Step 1.6 to the text box and click OK to configure
DR for the production instance.

RDS for PostgreSQL
Best Practices

2 Creating a Cross-Region DR Relationship for an
RDS for PostgreSQL Instance

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

Figure 2-19 Pasting DR instance information

10. On the DR Management page of the production instance, check whether the
DR is configured. If the value of DR Relationship Creation is Successful, the
DR is successfully configured for the production instance. Perform subsequent
operations only after this task is successfully executed.

Figure 2-20 Checking whether the DR is configured

Step 2 Paste the information of the production instance to the DR instance and configure
DR for the DR instance.

1. On the Instances page, click the production instance name to go to the
Overview page.

2. Click DR Information.

3. In the displayed dialog box, click Copy.

4. Click in the upper left corner and select the region where the DR instance is
located, for example, AP-Singapore.

5. On the Instances page, locate the DR instance and choose More > View DR
Details in the Operation column.

RDS for PostgreSQL
Best Practices

2 Creating a Cross-Region DR Relationship for an
RDS for PostgreSQL Instance

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

6. Click Create DR Relationship. In the displayed dialog box, paste the DR
information copied from Step 2.3 to the text box and click OK to configure
DR for the DR instance.

7. On the DR Management page, check whether the DR is configured. If the
value of DR Relationship Creation is Successful, the DR is successfully
configured for the DR instance.

8. On the DR Management page, you can view the DR replication status,
sending delay, end-to-end delay, and replay delay.

----End

2.7 Promoting a DR Instance to Primary

Scenarios

If the region where the primary instance is located suffers a natural disaster and
the primary instance cannot be connected, you can promote the DR instance in
another region to primary. To connect to the new primary instance, you only need
to change the connection address on the application side.

Precautions

After a DR instance is promoted to primary, the DR relationship between it and
the original primary instance is removed.

Procedure

Step 1 Log in to the management console.

Step 2 Click in the upper left corner and select the region where the DR instance is
located, for example, AP-Singapore.

Step 3 Click in the upper left corner of the page and choose Databases > Relational
Database Service.

Step 4 On the Instances page, click the name of the DR instance.

Step 5 In the navigation pane, choose DR Management.

Step 6 In the DR relationship list, click Promote DR Instance to Primary in the
Operation column.

Step 7 In the displayed dialog box, click OK.

Step 8 Check the task execution result on the Task Center page. If the task status is
Completed, the promotion is successful.

Step 9 Change the database connection address on the application side and manually
switch workloads over to the new primary instance.

----End

RDS for PostgreSQL
Best Practices

2 Creating a Cross-Region DR Relationship for an
RDS for PostgreSQL Instance

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

https://console-intl.huaweicloud.com/?locale=en-us

2.8 Removing a DR Relationship

Scenarios
If a DR relationship is no longer needed, you can remove it.

Precautions
Only the DR relationship that has been successfully established can be removed.
You must first remove the DR relationship of the DR instance and then that of the
primary instance. Otherwise, an alarm may be generated.

Procedure

Step 1 Log in to the management console.

Step 2 Remove the DR relationship of the DR instance.

1. On the Overview page of the primary instance, click DR Information.
2. In the displayed dialog box, click Copy.
3. On the Instances page, click the name of the DR instance.
4. In the navigation pane, choose DR Management.
5. In the DR relationship list, click Remove DR Relationship in the Operation

column.
6. Paste the copied DR information to the dialog box.
7. Check the task execution result on the DR Management page. If the list is

deleted, the task is successfully executed.

Step 3 Remove the DR relationship of the primary instance by referring to Step 2.

----End

2.9 FAQs
● Question 1: What should I do if I fail to configure DR for a DR instance?

Check whether the security groups of the production center and DR center
allow traffic from the ports of the VPC subnets each other. If a VPN
connection is used, check whether the VPCs are connected as instructed in
Method 2: Using VPN to Connect VPCs in Different Regions.

● Question 2: Why did the system display a message indicating that there is a
route conflict in the current VPC when I use Cloud Connect to connect VPCs?
Rectify the fault by referring to What Can I Do If There Is a Route Conflict
When I Load a Network Instance to a Cloud Connection?

RDS for PostgreSQL
Best Practices

2 Creating a Cross-Region DR Relationship for an
RDS for PostgreSQL Instance

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

https://console-intl.huaweicloud.com/?locale=en-us
https://support.huaweicloud.com/intl/en-us/cc_faq/cc_05_0007.html
https://support.huaweicloud.com/intl/en-us/cc_faq/cc_05_0007.html

3 RDS for PostgreSQL Publications and
Subscriptions

Logical Definition

A publication can be defined on any primary physical replication server. The node
where a publication is defined is called the publisher. A publication is a set of
changes generated from a table or a group of tables, and might also be described
as a change set or replication set. Each publication exists in only one database.

A subscription is the downstream side of logical replication. The node where a
subscription is defined is called the subscriber. A subscription defines the
connection to another database and the set of publications (one or more) to
which it wants to subscribe. The subscriber database behaves in the same way as
any other RDS for PostgreSQL instance (primary) and can be used as a publisher
for other databases by defining its own publications.

Required Permissions
● To create a publication, the publisher must have the replication permission.

● When creating a publication for ALL TABLES, ensure that the publisher uses
the root user of the initial or later versions for privilege escalation.

● When creating or deleting a subscription, ensure that the subscriber uses the
root user of the initial or later versions for privilege escalation.

● When creating a publication or subscription, ensure that the publisher and
subscriber are in the same VPC.

For details about root privilege escalation of each version, see Privileges of the
root User.

Restrictions on Publications
● Publications may currently only contain tables (indexes, sequence numbers,

and materialized views cannot be published). Each table can be added to
multiple publications if needed.

● One publication can have multiple subscribers.

● ALL TABLES can be used to publish all tables.

RDS for PostgreSQL
Best Practices 3 RDS for PostgreSQL Publications and Subscriptions

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

https://support.huaweicloud.com/intl/en-us/rds-pg_faq/rds_faq_0300.html#section2
https://support.huaweicloud.com/intl/en-us/rds-pg_faq/rds_faq_0300.html#section2

● Multiple publications can be created in a given database, but each publication
must have a unique name. The created publications can be obtained by
querying pg_publication.

● Publications can choose to limit the changes they produce to any combination
of INSERT, UPDATE, DELETE, and TRUNCATE, similar to how triggers are fired
by particular event types. By default, all operation types are replicated.

Example: To publish the UPDATE and DELETE operations on the t1 table:
CREATE PUBLICATION update_delete_only FOR TABLE t1
 WITH (publish = 'update, delete') ;

● Replica identity: A published table must have a replica identity configured in
order to be able to replicate UPDATE and DELETE operations. If nothing is set
for the replica identity, subsequent UPDATE or DELETE operations will cause
an error on the publisher.

You can obtain the replica identity of a table from pg_class.relreplident.

relreplident is of character type and identifies columns used to form "replica
identity" for rows: d = default, f = all columns, i = index, and n = nothing.

To check whether a table has an index constraint that can be used as a replica
identity, run the following:
SELECT quote_ident(nspname) || '.' || quote_ident(relname) AS name, con.ri AS keys,
 CASE relreplident WHEN 'd' THEN 'default' WHEN 'n' THEN 'nothing' WHEN 'f' THEN
'full' WHEN 'i' THEN 'index' END AS replica_identity
FROM pg_class c JOIN pg_namespace n ON c.relnamespace = n.oid, LATERAL (SELECT
array_agg(contype) AS ri FROM pg_constraint WHERE conrelid = c.oid) con
WHERE relkind = 'r' AND nspname NOT IN ('pg_catalog', 'information_schema', 'monitor',
'repack', 'pg_toast')
ORDER BY 2,3;

● Command for changing a replica identity

The replica identity of a table can be changed using ALTER TABLE.
ALTER TABLE table_name REPLICA IDENTITY
{ DEFAULT | USING INDEX index_name | FULL | NOTHING };
-- There are four forms:
ALTER TABLE t_normal REPLICA IDENTITY DEFAULT; -- The primary key is
used as the replica identity. If there is no primary key, the replica identity is set to FULL.
ALTER TABLE t_normal REPLICA IDENTITY FULL; -- The entire row is used
as the replica identity.
ALTER TABLE t_normal REPLICA IDENTITY USING INDEX t_normal_v_key; -- A unique index
is used as the replica identity.
ALTER TABLE t_normal REPLICA IDENTITY NOTHING; -- No replica identity is
set.

● Precautions for using replica identities

– If a table has a primary key, the replica identity can be set to DEFAULT.

– If a table does not have a primary key but has a non-null unique index,
the replica identity can be set to INDEX.

– If a table does not have a primary key or a non-null unique index, the
replica identity can be set to FULL. This, however, is very inefficient and
should only be used as a fallback if no other solution is possible.

– In all cases other than those mentioned above, logical replication cannot
be implemented. The output information is insufficient, and an error may
be reported.

RDS for PostgreSQL
Best Practices 3 RDS for PostgreSQL Publications and Subscriptions

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

– If a table with replica identity "nothing" is added to logical
replication, deleting or updating the table will cause an error on the
publisher.

Restrictions on Subscriptions
● To ensure that failover slots are used, failover slots must be created on the

publisher and associated with the existing replication slots using create_slot =
false.
CREATE SUBSCRIPTION sub1 CONNECTION 'host=192.168.0.1 port=5432
user=user1 dbname=db1' PUBLICATION pub_name with (create_slot =
false,slot_name = FailoverSlot_name);

● Logical replication does not replicate DDL changes, so the tables in the
publication set must already exist on the subscriber.

● Multiple subscriptions can be created in a given database. These subscriptions
can come from one or more publishers.

● A given table of a subscriber cannot accept multiple publications from the
same source.

● When creating a subscription or altering a subscription, you can use enable to
enable the subscription or disable to suspend the subscription.

● To delete a subscription, use DROP SUBSCRIPTION. Note that after a
subscription is deleted, the local table and data are not deleted, but upstream
information of the subscription is no longer received.

NO TICE

If a subscription is associated with a replication slot, DROP SUBSCRIPTION
cannot be executed inside a transaction block. You can use ALTER
SUBSCRIPTION to disassociate the subscription from the replication slot.

To completely delete a subscription, perform the following steps:

a. Query the replication slot associated with the subscription on the
subscriber.
select subname,subconninfo,subslotname from pg_subscription where
subname = 'sub2';

▪ subname indicates the subscriber name.

▪ subconninfo indicates information about the connected remote host.

▪ subslotname indicates the replication slot name of the remote host.

b. On the subscriber, disassociate the subscription from the replication slot
and delete the subscription.
ALTER SUBSCRIPTION subname SET (slot_name = NONE);
DROP SUBSCRIPTION subname;

c. Delete the associated replication slot at the publisher.
select pg_drop_replication_slot(' slot_name);

RDS for PostgreSQL
Best Practices 3 RDS for PostgreSQL Publications and Subscriptions

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

Syntax Reference
● Publications

CREATE PUBLICATION is used to create a publication, DROP PUBLICATION
is used to delete a publication, and ALTER PUBLICATION is used to modify a
publication.
After a publication is created, tables can be added or removed dynamically
using ALTER PUBLICATION. Such operations are all transactional.

● Subscriptions
CREATE SUBSCRIPTION is used to create a subscription, DROP
SUBSCRIPTION is used to delete a subscription, and ALTER SUBSCRIPTION is
used to modify a subscription.
After creating a subscription, you can use ALTER SUBSCRIPTION to suspend
or resume the subscription at any time. Deleting and recreating a subscription
results in the loss of synchronized information, which means that related data
needs to be synchronized again.

For details, see the official documentation. PostgreSQL 13 is used as an example.

● Creating a publication: https://www.postgresql.org/docs/13/sql-
createpublication.html

● Deleting a publication: https://www.postgresql.org/docs/13/sql-
droppublication.html

● Modifying a publication: https://www.postgresql.org/docs/13/sql-
alterpublication.html

RDS for PostgreSQL
Best Practices 3 RDS for PostgreSQL Publications and Subscriptions

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

https://www.postgresql.org/docs/13/sql-createpublication.html
https://www.postgresql.org/docs/13/sql-createpublication.html
https://www.postgresql.org/docs/13/sql-droppublication.html
https://www.postgresql.org/docs/13/sql-droppublication.html
https://www.postgresql.org/docs/13/sql-alterpublication.html
https://www.postgresql.org/docs/13/sql-alterpublication.html

4 User-Defined Data Type Conversion

Description
There are three data type conversion modes for PostgreSQL: implicit conversion,
assignment conversion, and explicit conversion. They correspond to i (Implicit), a
(Assignment), and e (Explicit) in the pg_cast system catalog.

● Implicit conversion: a conversion from low bytes to high bytes of the same
data type, for example, from int to bigint

● Assignment conversion: a conversion from high bytes to low bytes of the
same data type, for example, from smallint to int

● Explicit conversion: a conversion between different data types

How to Use
1. Before converting data types, you can run the following command to check

whether RDS for PostgreSQL supports data type conversion:
select * from pg_catalog.pg_cast ;
oid | castsource | casttarget | castfunc | castcontext | castmethod
-------+------------+------------+----------+-------------+------------
 11277 | 20 | 21 | 714 | a | f
 11278 | 20 | 23 | 480 | a | f
 11279 | 20 | 700 | 652 | i | f
 11280 | 20 | 701 | 482 | i | f
......

2. Run the following command to check whether int4 can be converted to text:
select * from pg_catalog.pg_cast where castsource = 'int4'::regtype and casttarget = 'bool'::regtype;
 oid | castsource | casttarget | castfunc | castcontext | castmethod
-------+------------+------------+----------+-------------+------------
 11311 | 23 | 16 | 2557 | e | f
(1 row)

The conversion is supported, and the conversion type is implicit conversion.
If no built-in conversion functions are available, customize a conversion
function to support the conversion. For details, see User-Defined Data Type
Conversion.

User-Defined Data Type Conversion
● Use double colons (::) to perform a forcible conversion.

select '10'::int,'2023-10-05'::date;
 int4 | date
------+------------

RDS for PostgreSQL
Best Practices 4 User-Defined Data Type Conversion

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

 10 | 2023-10-05
(1 row)

● Use the CAST function to convert the type.
select CAST('10' as int),CAST('2023-10-05' as date);
 int4 | date
------+------------
 10 | 2023-10-05
(1 row)

● Customize a data type conversion.
For details, see https://www.postgresql.org/docs/14/sql-createcast.html.

NO TICE

Adding a custom type conversion will affect the existing execution plans of
RDS for PostgreSQL. Therefore, customizing type conversions are not
recommended.

– Conversion between time and character types
CREATE CAST(varchar as date) WITH INOUT AS IMPLICIT;

– Conversion between boolean types and numeric types
create cast(boolean as numeric) with INOUT AS IMPLICIT;

– Conversion between numeric types and character types
create cast(varchar as numeric) with INOUT AS IMPLICIT;

Example: Convert text to date.
create or replace function public.text_to_date(text) returns date as
$$
 select to_date($1,'yyyy-mm-dd');
$$
language sql strict;

create cast (text as date) with function public.text_to_date(text) as implicit;

select text '2023-09-09' + 1;
 ?column?

 2023-09-10
(1 row)

RDS for PostgreSQL
Best Practices 4 User-Defined Data Type Conversion

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

https://www.postgresql.org/docs/14/sql-createcast.html

5 Using Client Drivers to Implement
Failover and Read/Write Splitting

Since PostgreSQL 10 (libpq.so.5.10), libpq has been supporting failover and read/
write splitting, and Java Database Connectivity (JDBC) has been supporting read/
write splitting, failover, and load balancing.

PostgreSQL client drivers are backward compatible. Even RDS for PostgreSQL 9.5
and 9.6 instances can be connected through the libpq driver of the latest version
to implement failover.

NO TE

In this section, failover refers to the failover of read-only workloads.

● libpq is a C application programming interface (API) to PostgreSQL. libpq is a
set of library functions that allow client programs to pass queries to the
PostgreSQL backend server and to receive the results of these queries.

● JDBC is an API used in Java to define how client programs access databases.
In PostgreSQL, JDBC supports failover and load balancing.

Table 5-1 Functions supported by libpq and JDBC

Driver Read/Write
Splitting

Load Balancing Failover

libpq √ × √

JDBC √ √ √

Using libpq for Failover and Read/Write Splitting

You can use libpq functions to connect to multiple databases. If one database fails,
workloads are automatically switched to another available database.

postgresql://[user[:password]@][netloc][:port][,...][/dbname][?
param1=value1&...]

RDS for PostgreSQL
Best Practices

5 Using Client Drivers to Implement Failover and
Read/Write Splitting

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

Example: Connect to one primary RDS for PostgreSQL instance and two read
replicas. Read requests will not fail as long as there is at least one available
instance.

postgres://
<instance_ip>:<instance_port>,<instance_ip>:<instance_port>,<instance_ip>:<instan
ce_port>/<database_name>?target_session_attrs=any

Table 5-2 Parameter description

Parameter Description Example Value

<instance_ip> IP address of
the DB
instance.

If you attempt to access the instance from an
ECS, set instance_ip to the floating IP address
displayed on the Overview page of the
instance.
If you attempt to access the instance through
an EIP, set instance_ip to the EIP that has been
bound to the instance.

<instance_por
t>

Database port
of the DB
instance.

Set this parameter to the database port
displayed on the Overview page. Default
value: 5432

<database_na
me>

Name of the
database to
be connected.

The default management database is
postgres. You can enter the database name
based on the site requirements.

target_session
_attrs

Type of the
database to
be connected.

● any (default): libpq can connect to any
database. If the connection is interrupted
due to a fault in the database, libpq will
attempt to connect to another database to
implement failover.

● read-write: libpq can only connect to a
database that supports both read and write.
libpq attempts a connection to the first
database you specified. If this database
supports only read or write operations,
libpq disconnects from it and attempts to
connect to the second one and so on until it
connects to a database that supports both
read and write.

● read-only: libpq can only connect to a
read-only database. libpq attempts a
connection to the first database you
specified. If this database is not a read-only
database, libpq disconnects from it and
attempts to connect to the second one and
so on until it connects to a read-only
database. This value is not supported in
RDS for PostgreSQL 13 (libpq.so.5.13) or
earlier versions.

RDS for PostgreSQL
Best Practices

5 Using Client Drivers to Implement Failover and
Read/Write Splitting

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

For details about libpq and related parameters, see Connection Strings.

You can use the pg_is_in_recovery() function in your application to determine
whether the connected database is a primary instance (indicated by f) or a read
replica to implement read/write splitting.

The following is an example of Python code (psycopg2 a wrapper for libpq):

// There will be security risks if the username and password used for authentication are directly written into
code. Store the username and password in ciphertext in the configuration file or environment variables.
// In this example, the username and password are stored in the environment variables. Before running this
example, set environment variables EXAMPLE_USERNAME_ENV and EXAMPLE_PASSWORD_ENV as needed.

import psycopg2
import os

username = os.getenv("EXAMPLE_USERNAME_ENV")
password = os.getenv("EXAMPLE_PASSWORD_ENV")
conn = psycopg2.connect(database=<database_name>,host=<instance_ip>, user=username,
password=password, port=<instance_port>, target_session_attrs="read-write")
cur = conn.cursor()
cur.execute("select pg_is_in_recovery()")
row = cur.fetchone()
print("recovery =", row[0])

Using JDBC for Failover and Read/Write Splitting
You can define multiple databases (hosts and ports) in the connection URL and
separate them with commas (,). JDBC will attempt to connect to them in sequence
until the connection is successful. If the connection fails, an error message is
displayed.

jdbc:postgresql://node1,node2,node3/${database}?
targetServerType=preferSecondary&loadBalanceHosts=true

Example:

jdbc:postgresql://
<instance_ip>:<instance_port>,<instance_ip>:<instance_port>,<instance_ip>:<instan
ce_port>/<database_name>?
targetServerType=preferSecondary&loadBalanceHosts=true

For details about the Java code, see Connecting to an RDS for PostgreSQL
Instance Through JDBC.

RDS for PostgreSQL
Best Practices

5 Using Client Drivers to Implement Failover and
Read/Write Splitting

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

https://www.postgresql.org/docs/14/libpq-connect.html#LIBPQ-CONNSTRING
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_connect_08.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_connect_08.html

Table 5-3 Parameter description

Parameter Description Example Value

targetServerT
ype

Type of the
database to
be connected.

● any: any database.
● primary: primary database (writable and

readable). For versions earlier than JDBC
42.2.0, use the parameter value master.

● secondary: secondary database (readable).
For versions earlier than JDBC 42.2.0, use
the parameter value slave.

● preferSecondary: The secondary database
is preferred. If no secondary database is
available, the primary database is
connected. For versions earlier than JDBC
42.2.0, use the parameter value
preferSlave.

loadBalanceH
osts

Sequence of
databases to
be connected.

● False (default): Databases are connected in
the sequence defined in the URL.

● True: Databases are randomly connected.

NO TE

To distinguish between the primary and secondary databases, check whether data can be
written to the database. If yes, it is a primary database. If no, it is a secondary database.
You can use the pg_is_in_recovery() function to determine whether a database is a
primary database. For details, see Using libpq for Failover and Read/Write Splitting.

To implement read/write splitting, you need to configure two data sources. For the
first data source, set targetServerType to primary to process write requests. For
the second data source:

● If there is only one read replica, set targetServerType to preferSecondary to
process read requests. Assume that the IP addresses of the primary instance
and read replica are 10.1.1.1 and 10.1.1.2, respectively.
jdbc:postgresql://10.1.1.2:5432,10.1.1.1:5432/${database}?
targetServerType=preferSecondary

● If there are two read replicas, set targetServerType to any to process read
requests. Assume that the IP addresses of the read replicas are 10.1.1.2 and
10.1.1.3, respectively.
jdbc:postgresql://10.1.1.2:5432,10.1.1.3:5432/${database}?
targetServerType=any&loadBalanceHosts=true

RDS for PostgreSQL
Best Practices

5 Using Client Drivers to Implement Failover and
Read/Write Splitting

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

6 Other Extension Plug-Ins

In addition to mandatory plug-ins pg_stat_statements, btree_gist, and PoWA, the
following plug-ins are used for collecting new performance indicators:

● pg_qualstats
● pg_stat_kcache
● pg_wait_sampling
● pg_track_settings
● hypopg

Each of the plug-ins can extend different performance metrics.

Currently, only pg_track_settings is supported on Huawei Cloud.

pg_track_settings Plug-In Extension

Step 1 Log in to the management console.

Step 2 Click in the upper left corner and select a region.

Step 3 Click in the upper left corner of the page and choose Databases > Relational
Database Service.

Step 4 On the Instances page, locate the target DB instance and click Log In in the
Operation column.

Alternatively, click the instance name on the Instances page. On the displayed
Basic Information page, click Log In in the upper right corner of the page.

Step 5 On the displayed login page, enter the correct username and password and click
Log In.

Step 6 Select the powa database and run the SQL command to create pg_track_settings.
select control_extension('create', 'pg_track_settings');

Step 7 Create a PostgreSQL database (powa-repository) on the ECS, and install and
activate pg_track_settings to collect performance metrics.
pg_track_settings
cd /home/postgres/env
wget https://github.com/rjuju/pg_track_settings/archive/refs/tags/2.0.1.tar.gz

RDS for PostgreSQL
Best Practices 6 Other Extension Plug-Ins

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

https://console-intl.huaweicloud.com/?locale=en-us

mv 2.0.1.tar.gz pg_track_settings.2.0.1.tar.gz
tar -xzvf pg_track_settings.2.0.1.tar.gz
cd pg_track_settings-2.0.1
make && make install
powa-repository
psql -d powa
powa=# create extension pg_track_settings ;
CREATE EXTENSION
Activate the pg_track_settings collection function for the target instance.
dbpowa=# select powa_activate_extension(1, 'pg_track_settings');
powa_activate_extension

t
(1 row)

Step 8 Verify the pg_track_settings plug-in extension.

Change the value of the autovacuum_analyze_threshold parameter on the target
instance to 55. The default value is 50. After about 5 minutes, you can view the
modification record on the PoWA, as shown in the following figure.

The contents in the three boxes in the preceding figure are as follows:

● The time when pg_track_settings is activated and the database parameter
value at that time.

● The time when the autovacuum_analyze_threshold parameter is modified,
its original value, and changed value.

● The time when pg_track_settings is canceled and the database parameter
value at that time.

----End

RDS for PostgreSQL
Best Practices 6 Other Extension Plug-Ins

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

7 Best Practices for Using PoWA

7.1 Overview
PoWA is an open-source system used to monitor the performance of RDS for
PostgreSQL databases. It consists of the PoWA-archivist, PoWA-collector, and
PoWA-web components and obtains performance data through other extensions
installed in the RDS for PostgreSQL databases. The key components are as follows:

● PoWA-archivist: the PostgreSQL extension for collecting performance data
obtained by other extensions.

● PoWA-collector: the daemon that gathers performance metrics from remote
PostgreSQL instances on a dedicated repository server.

● PoWA-web: the web-based user interface displaying performance metrics
collected by the PoWA-collector.

● Other extensions: the sources of performance metric data. They are installed
on the target PostgreSQL database.

● PoWA: the system name.

Security Risk Warning

The following security risks may exist during PoWA deployment and configuration.

● (Remote mode) When configuring instance performance metric information
to be collected in powa-repository, you need to enter the IP address, root
username, and connection password of the target instance. You can query
related information in the powa_servers table. The connection password is
displayed in plaintext.

● In the PoWA-collector configuration file, the powa-repository connection
information does not contain the connection password. It means that the
powa-repository connection configuration item for PoWA-collector must be
trust.

● In the PoWA-web configuration file, the root username and connection
password of powa-repository (remote mode) or DB instance (local mode) are
optional and stored in plaintext.

RDS for PostgreSQL
Best Practices 7 Best Practices for Using PoWA

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

Before using the PoWA, you need to be aware of the preceding security risks. For
details about how to harden security, see the official PoWA documentation.

Other Supported Extensions

In addition to mandatory extensions pg_stat_statements, btree_gist, and PoWA,
the following extensions are used for collecting extended performance metrics:

● pg_qualstats

● pg_stat_kcache

● pg_wait_sampling

● pg_track_settings

● hypopg

Each of the extensions can collect different extended performance metrics. For
details about the extensions supported by RDS for PostgreSQL, see Supported
Extensions.

7.2 Supported Performance Metrics

7.2.1 Database Performance Metrics

General Overview

Figure 7-1 General Overview

Table 7-1 Calls field description

Field Description

Queries per sec Number of queries executed per second

Runtime per sec Total duration of queries executed per second

Avg runtime Average query duration

RDS for PostgreSQL
Best Practices 7 Best Practices for Using PoWA

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

https://powa.readthedocs.io/en/latest/security.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_09_0045.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_09_0045.html

Table 7-2 Blocks field description

Field Description

Total shared buffers hit Amount of data found in shared buffers

Total shared buffers miss Amount of data found in OS cache or
read from disk

Database Objects

Figure 7-2 Database Objects

Table 7-3 Access pattern field description

Field Description

Index scans ratio Ratio of index scans to sequential scans

Index scans Number of index scans per second

Sequential scans Number of sequential scans per second

Table 7-4 DML activity field description

Field Description

Tuples inserted Number of tuples inserted per second

Tuples updated Number of tuples updated per second

Tuples HOT updated Number of heap-only tuples (HOT)
updated per second

Tuples deleted Number of tuples deleted per second

RDS for PostgreSQL
Best Practices 7 Best Practices for Using PoWA

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

Table 7-5 Vacuum activity field description

Field Description

Vacuum Number of vacuums per second

Autovacuum Number of autovacuums per second

Analyze Number of analyses per second

Autoanalyze Number of autoanalyses per second

Details for all databases

Figure 7-3 Details for all databases

Table 7-6 Details for all databases field description

Field Description

Query SQL statement to be executed

(Execution) # Number of times that the SQL statement is
executed

(Execution) Time Total execution time of the SQL statement

(Execution) Avg time Average time for executing the SQL statement

(I/O Time) Read Read I/O wait time

(I/O Time) Write Write I/O wait time

(Blocks) Read Number of disk read pages

(Blocks) Hit Number of hit pages in the shared buffer

(Blocks) Dirtied Number of dirty pages

(Blocks) Written Number of disk write pages

(Temp blocks) Read Number of disk temporary read pages

RDS for PostgreSQL
Best Practices 7 Best Practices for Using PoWA

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

Field Description

(Temp blocks) Write Number of disk temporary write pages

7.2.2 Instance Performance Metrics

General Overview

Figure 7-4 General Overview metrics

Table 7-7 Query runtime per second (all databases) field description

Field Description

Queries per sec Number of queries executed per second

Runtime per sec Total duration of queries executed per second

Avg runtime Average query duration

Table 7-8 Block access in Bps field description

Field Description

Total hit Amount of data found in shared buffers

Total read Amount of data found in OS cache or read
from disk

RDS for PostgreSQL
Best Practices 7 Best Practices for Using PoWA

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

Background Writer

Figure 7-5 Background Writer metrics

Table 7-9 Checkpointer scheduling field description

Field Description

of requested checkpoints Number of requested checkpoints that have
been performed

of scheduled checkpoints Number of scheduled checkpoints that have
been performed

Table 7-10 Checkpointer activity field description

Field Description

Buffers alloc Number of buffers allocated

Sync time Total amount of time that has been spent in the portion
of checkpoint processing where files are synchronized to
disk, in milliseconds

Write time Total amount of time that has been spent in the portion
of checkpoint processing where files are written to disk,
in milliseconds

Table 7-11 Background writer field description

Field Description

Maxwritten clean Number of times the background writer stopped a
cleaning scan because it had written too many buffers

Buffers clean Number of buffers written by the background writer

RDS for PostgreSQL
Best Practices 7 Best Practices for Using PoWA

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

Table 7-12 Backends field description

Field Description

Buffers backend fsync Number of times a backend had to execute its
own fsync call (normally the background writer
handles those even when the backend does its
own write)

Buffers backend Number of buffers written directly by a backend

Database Objects

Figure 7-6 Database Objects metrics

Table 7-13 Access pattern field description

Field Description

Index scans ratio Ratio of index scans to sequential scans

Index scans Number of index scans per second

Sequential scans Number of sequential scans per second

Table 7-14 DML activity field description

Field Description

Tuples inserted Number of tuples inserted per second

Tuples updated Number of tuples updated per second

Tuples HOT updated Number of heap-only tuples (HOT) updated per
second

Tuples deleted Number of tuples deleted per second

RDS for PostgreSQL
Best Practices 7 Best Practices for Using PoWA

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

Table 7-15 Vacuum activity field description

Field Description

Vacuum Number of vacuums per second

Autovacuum Number of autovacuums per second

Analyze Number of analyses per second

Autoanalyze Number of autoanalyses per second

Details for all databases

Figure 7-7 Details for all databases metrics

Table 7-16

Field Description

Database Database name

#Calls Total number of executed SQL statements

Runtime Total runtime of the SQL statement

Avg runtime Average runtime of the SQL statement

Blocks read Number of pages read from the disk

Blocks hit Number of hit pages in the shared buffer

Blocks dirtied Number of dirty pages

Blocks written Number of disk write pages

Temp Blocks written Number of disk temporary write pages

I/O time I/O wait time

7.3 PoWA Deployment

RDS for PostgreSQL
Best Practices 7 Best Practices for Using PoWA

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

7.3.1 Deploying PoWA for an RDS for PostgreSQL Instance
To remotely deploy PoWA on Huawei Cloud, there must be an ECS with PoWA-
archivist, PoWA-collector, and PoWA-web installed on it. This section describes
how to install PoWA-archivist, PoWA-collector, and PoWA-web.

Architecture

The remote deployment architecture is as follows:

Figure 7-8 Remote deployment architecture

Preparations
● An RDS for PostgreSQL 12.6 instance has been created.

● An ECS has been created and associated with an EIP. In this example, the ECS
uses the CentOS 8.2 64-bit image.

Installing Python3

PoWA-collector and PoWA-web must be installed in a Python3 environment. You
can use pip3 to install them to facilitate the installation. In this example, Python
3.6.8 is installed on the ECS by default. The latest PoWA version fails to be
installed. For details about how to install the latest version, see Installing Python
3.9.9.

Installing PoWA-archivist
1. Run the wget command to obtain the PoWA-archivist source code.

wget https://github.com/powa-team/powa-archivist/archive/refs/tags/REL_4_1_2.tar.gz

2. Decompress the downloaded REL_4_1_2.tar.gz package.

3. Install PoWA-archivist to the decompressed directory.
make && make install

RDS for PostgreSQL
Best Practices 7 Best Practices for Using PoWA

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

https://github.com/powa-team/powa-archivist/archive/refs/tags/REL_4_1_2.tar.gz

Installing PoWA-collector and PoWA-web
1. Switch to the RDS for PostgreSQL database user. Take user postgres as an

example.
su - postgres

2. Install PoWA-collector and PoWA-web. psycopg2 is mandatory for installing
them.
pip install psycopg2
pip install powa-collector
pip install powa-web

After the installation is complete, check the following path tree. If the following
information is displayed, the PoWA-collector and PoWA-web have been installed.

/home/postgres/.local/bin
├── powa-collector.py
├── powa-web
└── __pycache__

Creating the PoWA Extension

Step 1 Log in to the powa database of the RDS for PostgreSQL instance as user root. (If
the powa database does not exist, create it first.)

Step 2 Create the PoWA extension in the powa database.
select control_extension('create', 'pg_stat_statements');
select control_extension('create', 'btree_gist');
select control_extension('create', 'powa');

----End

FAQs
Q: What should I do if the error message "python setup.py build_ext --pg-config /
path/to/pg_config build" is displayed when the pip install psycopg2 command is
executed?

A: You need to add the bin and lib paths of RDS for PostgreSQL to environment
variables and run the pip install psycopg2 command.

Installing Python 3.9.9
1. Prepare the environment.

Perform the following operations in sequence. Otherwise, Python 3.9.9 may
fail to be installed (for example, SSL component dependency fails). As a
result, PoWA-collector and PoWA-web fail to be installed.
yum install readline* -y
yum install zlib* -y
yum install gcc-c++ -y
yum install sqlite* -y
yum install openssl-* -y
yum install libffi* -y

2. Install Python 3.9.9.

a. Run the following commands as user root:
mkdir env
cd env
wget https://www.python.org/ftp/python/3.9.9/Python-3.9.9.tgz
tar -xzvf Python-3.9.9.tgz

RDS for PostgreSQL
Best Practices 7 Best Practices for Using PoWA

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

https://www.python.org/ftp/python/3.9.9/Python-3.9.9.tgz

cd Python-3.9.9
./configure --prefix=/usr/local/python3.9.9
make && make install

b. Create a soft link.
ln -s /usr/local/python3.9.9/bin/python3.9 /usr/bin/python
ln -s /usr/local/python3.9.9/bin/pip3.9 /usr/bin/pip

3. Check whether the installation is successful.

a. Verify the installation, especially the SSL function.
[root@ecs-ad4d Python-3.9.9]# python
Python 3.9.9 (main, Nov 25 2021, 12:36:32)
[GCC 8.4.1 20200928 (Red Hat 8.4.1-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
import ssl
import urllib.request
context = ssl._create_unverified_context()
urllib.request.urlopen('https://www.example.com/',context=context).read()

b. If any command output is displayed, the installation is successful. Run the
following command to exit:
quit()

7.3.2 Deploying PoWA on a Self-Managed PostgreSQL
Instance

This section describes how to deploy PoWA on a self-managed PostgreSQL
database built on an ECS.

Preparations

There is a self-managed PostgreSQL instance:

● Version: PostgreSQL 12.6
● Administrator account: postgres
● PostgreSQL dedicated storage database: powa-repository
● Data path: /home/postgres/data

Deploying PoWA

Step 1 Add pg_stat_statements to shared_preload_libraries in the /home/postgres/
data/postgresql.conf file.

Step 2 Restart the database.
pg_ctl restart -D /home/postgres/data/

Step 3 Log in to the database as the postgres user, create database powa, and install
related extensions.

NO TICE

The created database must be named powa. Otherwise, an error is reported and
certain functions do not take effect while PoWA is running.

RDS for PostgreSQL
Best Practices 7 Best Practices for Using PoWA

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

[postgres@ecs-ad4d ~]$ psql -U postgres -d postgres
psql (12.6)
Type "help" for help.
postgres=# create database powa;
CREATE DATABASE
postgres=# \c powa
You are now connected to database "powa" as user "postgres".
powa=# create extension pg_stat_statements ;
CREATE EXTENSION
powa=# create extension btree_gist ;
CREATE EXTENSION
powa=# create extension powa;
CREATE EXTENSION

Step 4 Configure the instance whose performance metrics need to be collected.

1. Add the instance information.
powa=# select powa_register_server(
 hostname => '192.168.0.1',
 alias => 'myInstance',
 port => 5432,
 username => 'user1',
 password => '**********',
 frequency => 300);
 powa_register_server

 t
 (1 row)

2. Obtain the information about the target instance from the powa_servers
table.
powa=# select * from powa_servers;
id | hostname | alias | port | username | password | dbname | frequency | powa_coalesce | retention |
allow_ui_connection |version
----+---------------+------------+------+----------+------------+--------+-----------+---------------+-----------
+------------------
0 | | <local>| 0 | | | | -1 | 100 | 00:00:00 | t |
1 | 192.168.0.1 | myInstance | user1 | 5432 | ********** | powa | 300 | 100 | 1 day |
t |
(2 rows)

NO TICE

The preceding operations involve important privacy information such as the IP
address, root account, and plaintext password of the target instance.
Before using this extension, assess its security risks.

----End

Configuring PoWA-collector

Start the PoWA-collector.

cd /home/postgres/.local/bin
./powa-collector.py &

When PoWA-collector starts, it searches for configuration files in the following
sequence:

1. /etc/powa-collector.conf
2. ~/.config/powa-collector.conf

RDS for PostgreSQL
Best Practices 7 Best Practices for Using PoWA

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

3. ~/.powa-collector.conf

4. ./powa-collector.conf

The configuration files must contain the following options:

● repository.dsn: URL. It is used to notify PoWA-collector of how to connect to
the dedicated storage database (powa-repository).

● debug: Boolean type. It specifies whether to enable PoWA-collector in
debugging mode.

Take the configuration file ./powa-collector.conf as an example.

{
 "repository": {
 "dsn": "postgresql://postgres@localhost:5432/powa"
 },
 "debug": true
}

No password is configured in the PoWA-collector configuration. Therefore, you
need to set the connection policy in the pg_hba.conf file of the powa-repository
database to trust (password-free connection).

Configuring PoWA-web

Start the PoWA-web.

cd /home/postgres/.local/bin
./powa-web &

When PoWA-web starts, it searches for configuration files in the following
sequence:

1. /etc/powa-web.conf

2. ~/.config/powa-web.conf

3. ~/.powa-web.conf

4. ./powa-web.conf

Take the configuration file ./powa-web.conf as an example.

cd /home/postgres/.local/bin
vim ./powa-web.conf
Write the configuration information and save it.
servers={
 'main': {
 'host': 'localhost',
 'port': '5432',
 'database': 'powa',
 'username': 'postgres',
 'query': {'client_encoding': 'utf8'}
 }
}
cookie_secret="SECRET_STRING"

In this section, the connection policy in the pg_hab.conf file of the powa-
repository database is set to trust (password-free connection). Therefore, the
password is not configured.

RDS for PostgreSQL
Best Practices 7 Best Practices for Using PoWA

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

7.4 Viewing Metric Details on PoWA
After PoWA is deployed and PoWA-collector and PoWA-web are started, you can
log in to PoWA using a browser to view metric details of the monitored instances.

Accessing PoWA
Step 1 Use a browser to access PoWA.

NO TE

● There is no port option in the powa-web.conf file. The default value 8888 is used.
● URL: http://ECS_IP_address:8888/

Figure 7-9 Accessing PoWA

Step 2 Enter the username and password, and click Login.

Figure 7-10 PoWA home page

In this example, PoWA collects information about two PostgreSQL instances.

● <local>: PostgreSQL database built on an ECS, which is used as the powa-
repository database.

● myinstance: RDS for PostgreSQL instance, which is used as the target for
performance data collection. (myinstance is the instance alias registered in
powa-repository.)

Step 3 Click an instance to view its performance metrics.

----End

Viewing Metric Details
PoWA can collect and display various performance metrics. The following
describes how to view the slow SQL metric.

RDS for PostgreSQL
Best Practices 7 Best Practices for Using PoWA

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

Step 1 Log in to the management console.

Step 2 Click in the upper left corner and select a region.

Step 3 Click in the upper left corner of the page and choose Databases > Relational
Database Service.

Step 4 On the Instances page, locate the target DB instance and click Log In in the
Operation column.

Alternatively, click the instance name on the Instances page. On the displayed
page, click Log In in the upper right corner of the page.

Step 5 On the displayed login page, enter the username and password and click Log In.

Step 6 In the database list of the Home page, click Create Database.

Step 7 On the displayed page, enter a database name (for example, test) and select a
character set.

Step 8 Choose SQL Operations > SQL Query to execute a slow SQL statement, for
example, SELECT pg_sleep($1), in the test database.

Step 9 After about 5 minutes, on the PoWA home page, select the target DB instance and
select the test database.

Figure 7-11 PoWA home page

In Details for all queries, check that the execution time of the SELECT
pg_sleep($1) statement is 20s.

----End

Installing Other Extensions to Collect Performance Metrics

The following steps take pg_track_settings as an example.

Step 1 Log in to the management console.

RDS for PostgreSQL
Best Practices 7 Best Practices for Using PoWA

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

https://console-intl.huaweicloud.com/?locale=en-us
https://console-intl.huaweicloud.com/?locale=en-us

Step 2 Click in the upper left corner and select a region.

Step 3 Click in the upper left corner of the page and choose Databases > Relational
Database Service.

Step 4 On the Instances page, locate the target DB instance and click Log In in the
Operation column.

Alternatively, click the instance name on the Instances page. On the displayed
page, click Log In in the upper right corner of the page.

Step 5 On the displayed login page, enter the username and password and click Log In.

Step 6 Select the powa database and run the following SQL command to create
pg_track_settings:
select control_extension('create', 'pg_track_settings');

Step 7 Create a PostgreSQL database (powa-repository) on the ECS, and install and
activate pg_track_settings to collect performance metrics.
pg_track_settings
cd /home/postgres/env
wget https://github.com/rjuju/pg_track_settings/archive/refs/tags/2.0.1.tar.gz
mv 2.0.1.tar.gz pg_track_settings.2.0.1.tar.gz
tar -xzvf pg_track_settings.2.0.1.tar.gz
cd pg_track_settings-2.0.1
make && make install
powa-repository
psql -d powa
powa=# create extension pg_track_settings ;
CREATE EXTENSION
Activate pg_track_settings for the target instance.
dbpowa=# select powa_activate_extension(1, 'pg_track_settings');
powa_activate_extension

t
(1 row)

Step 8 Verify the pg_track_settings extension.

Change the value of the autovacuum_analyze_threshold parameter on the target
instance to 55. The default value is 50. After about 5 minutes, you can view the
modification record on the PoWA page, as shown in the following figure:

The contents in the three boxes in the preceding figure include:

RDS for PostgreSQL
Best Practices 7 Best Practices for Using PoWA

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

https://github.com/rjuju/pg_track_settings/archive/refs/tags/2.0.1.tar.gz

● The time when pg_track_settings was activated and the database parameter
value at that time.

● The time when the autovacuum_analyze_threshold parameter was modified,
its original value, and new value.

● The time when pg_track_settings was canceled and the database parameter
value at that time.

----End

RDS for PostgreSQL
Best Practices 7 Best Practices for Using PoWA

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

8 Best Practices for Using pg_dump

Description

pg_dump is a native tool for backing up a PostgreSQL database. The file created
by pg_dump can be a SQL script file or an archive file. For details, see pg_dump.

● SQL script file: It is a plain-text file that contains the SQL commands required
to rebuild a database to the state when it was backed up.

● Archive file: It must be used with pg_restore to rebuild a database. This
format allows pg_restore to select the data to be restored.

Precautions

pg_dump dumps a single database, schemas, or tables. Only tables, data, and
functions can be exported. Before restoration, you need to create a database and
account in the target instance in advance.

● --format=custom: The dump file is in binary format, which can be used only
by pg_restore. You can restore specific tables from a dump file.

● --format=plain: The dump file is in plain-text format. To restore from such a
plain-text file, connect to the database and execute the file.

Constraints

Before using pg_dump and pg_restore, ensure that the versions of the source and
target databases are the same to avoid compatibility issues. Incompatible versions
may cause data loss or restoration errors.

Preparing Test Data
Create a database.
create database dump_database;

Log in to the database.
\c dump_database

Create table 1 and insert data into the table.
create table dump_table(id int primary key, content char(50));
insert into dump_table values(1,'aa');
insert into dump_table values(2,'bb');

RDS for PostgreSQL
Best Practices 8 Best Practices for Using pg_dump

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

https://www.postgresql.org/docs/14/app-pgdump.html

Create table 2 and insert data into the table.
create table dump_table2(id int primary key, content char(50));
insert into dump_table2 values(1,'aaaa');
insert into dump_table2 values(2,'bbbb');

Using pg_dump to Export a Database to a SQL File
Syntax

pg_dump --username=<DB_USER> --host=<DB_IPADDRESS> --port=<DB_PORT> --format=plain --
file=<BACKUP_FILE><DB_NAME>

● DB_USER indicates the database username.
● DB_IPADDRESS indicates the database address.
● DB_PORT indicates the database port.
● BACKUP_FILE indicates the name of the file to be exported.
● DB_NAME indicates the name of the database to be exported.
● --format indicates the format of the exported file. plain (default) indicates a

plain-text file that contains SQL scripts. For details about other options, see
pg_dump.

Examples

● Export a database to a SQL file (INSERT statements).
 $ pg_dump --username=root --host=192.168.61.143 --port=5432 --format=plain --inserts --
file=backup.sql dump_database
 Password for user root:

● Export all table schemas from a database to a SQL file.
 $ pg_dump --username=root --host=192.168.61.143 --port=5432 --format=plain --schema-only --
file=backup.sql dump_database
 Password for user root:

● Export all table data from a database to a SQL file.
 $ pg_dump --username=root --host=192.168.61.143 --port=5432 --format=plain --data-only --
file=backup.sql dump_database
 Password for user root:

After the commands in any of the above examples are executed, a backup.sql file
will be generated as follows:

[rds@localhost ~]$ ll backup.sql
-rw-r----- 1 rds rds 5657 May 24 09:21 backup.sql

Using pg_dump to Export Specified Tables from a Database to a SQL File
Syntax

pg_dump --username=<DB_USER> --host=<DB_ADDRESS> --port=<DB_PORT> --format=plain --
file=<BACKUP_FILE> <DB_NAME> --table=<TABLE_NAME>

● DB_USER indicates the database username.
● DB_ADDRESS indicates the database address.
● DB_PORT indicates the database port.
● BACKUP_FILE indicates the name of the file to be exported.
● DB_NAME indicates the name of the database to be migrated.
● TABLE_NAME indicates the name of the specified table in the database to be

migrated.

RDS for PostgreSQL
Best Practices 8 Best Practices for Using pg_dump

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

https://www.postgresql.org/docs/14/app-pgdump.html

● --format indicates the format of the exported file. plain (default) indicates a
plain-text file that contains SQL scripts. For details about other options, see
pg_dump.

Examples

● Export a single table from a database to a SQL file.
 $ pg_dump --username=root --host=192.168.61.143 --port=5432 --format=plain --file=backup.sql
dump_database --table=dump_table
 Password for user root

● Export multiple tables from a database to a SQL file.
 $ pg_dump --username=root --host=192.168.61.143 --port=5432 --format=plain --file=backup.sql
dump_database --table=dump_table --table=dump_table2
 Password for user root:

● Export all tables starting with ts_ from a database to a SQL file.
 $ pg_dump --username=root --host=192.168.61.143 --port=5432 --format=plain --file=backup.sql
dump_database --table=ts_*
 Password for user root:

● Export all tables excluding those starting with ts_ from a database to a SQL
file.
 $ pg_dump --username=root --host=192.168.61.143 --port=5432 --format=plain --file=backup.sql
dump_database -T=ts_*
 Password for user root:

After the commands in any of the above examples are executed, a backup.sql file
will be generated as follows:

[rds@localhost ~]$ ll backup.sql
-rw-r----- 1 rds rds 5657 May 24 09:21 backup.sql

Using pg_dump to Export Data of a Specific Schema

Syntax

pg_dump --username=<DB_USER> --host=<DB_IPADDRESS> --port=<DB_PORT> --format=plain --
schema=<SCHEMA> <DB_NAME> --table=<BACKUP_FILE>

● DB_USER indicates the database username.

● DB_IPADDRESS indicates the database address.

● DB_PORT indicates the database port.

● BACKUP_FILE indicates the name of the file to be exported.

● DB_NAME indicates the name of the database to be exported.

● SCHEMA indicates the name of the schema to be exported.

● --format indicates the format of the exported file. plain (default) indicates a
plain-text file that contains SQL scripts. For details about other options, see
pg_dump.

Examples

● Export all data of the public schema from a database.
pg_dump --username=root --host=192.168.61.143 --port=5432 --format=plain --schema=public
dump_database > backup.sql

● Export all data except the public schema from a database in a customized
compression format.
pg_dump --username=root --host=192.168.61.143 --port=5432 --format=custom -b -v -N public
dump_database > all_sch_except_pub.backup

RDS for PostgreSQL
Best Practices 8 Best Practices for Using pg_dump

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

https://www.postgresql.org/docs/14/app-pgdump.html
https://www.postgresql.org/docs/14/app-pgdump.html

Restoring Data
To restore from a plain-text SQL script file, run the psql command. See the
following example commands:

Restore a specific database.
psql --username=root --host=192.168.61.143 --port=5432 backup_database < backup.sql

Restore a specific table.
psql --username=root --host=192.168.61.143 --port=5432 backup_database --
table=dump_table < backup.sql

Restore a specific schema.
psql --username=root --host=192.168.61.143 --port=5432 backup_database --schema=public <
backup.sql

NO TE

Before the restoration, create a database named backup_database in the target database.

To restore from other file formats, use pg_restore. pg_restore is used to restore a
PostgreSQL database in any non-plain-text format dumped by pg_dump.

pg_restore --username=root --host=192.168.61.143 --port=5432 --dbname=backup_database --
format=custom all_sch_except_pub.backup --verbose

FAQs
1. What should I do if an error about insufficient permissions is reported for

pg_dump?
Solution:
Check whether the root user is used to export data. If any other user account
is used, an error about insufficient permissions will be reported. If the root
user is used and an error is still reported, check the database version. You can
run pg_dump commands as the root user only when the kernel version
support root privilege escalation. For details about the kernel versions that
support root privilege escalation, see Privileges of the root User.

2. Why an error was reported for functions such as control_extension after I
imported a dump file to the target RDS for PostgreSQL database?
Solution:
That's because the target database contains these functions. This error can be
ignored.

RDS for PostgreSQL
Best Practices 8 Best Practices for Using pg_dump

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

https://www.postgresql.org/docs/14/app-pgrestore.html
https://support.huaweicloud.com/intl/en-us/rds-pg_faq/rds_faq_0300.html#section2

9 Best Practices for Using PgBouncer

Introduction to PgBouncer
PgBouncer is a lightweight connection pooler for PostgreSQL. It can:

● Cache connections to PostgreSQL. When a connection request is received, an
idle process is allocated. PostgreSQL does not need to fork a new process to
establish a connection. No resources need to be used for creating a new
process and establishing a connection.

● Improve the connection usage and prevent excessive invalid connections from
consuming too many database resources and causing high CPU usage.

● Restrict client connections to prevent excessive or malicious connection
requests.

It is lightweight because:

● It uses libevent for socket communication, improving the communication
efficiency.

● It uses C language and only 2 KB of memory is consumed by each connection.

PgBouncer supports the following types of connection pooling:

● Session pooling: PgBouncer does not reclaim the allocated connection until
the client session ends.

● Transaction pooling: PgBouncer reclaims the allocated connection after the
transaction is complete. The client only has exclusive access to a connection
during a transaction. Non-transaction requests do not have exclusive
connections.

● Statement pooling: PgBouncer reclaims the connection anytime a database
request completes. In this mode, the client cannot use transactions. Using
transactions in this case will cause data inconsistency.

The default pooling type for PgBouncer is session. You are advised to change it to
transaction.

Installation and Configuration
Before deploying PgBouncer on the cloud, purchase an ECS. To reduce network
latency, you are advised to select the same VPC and subnet as those of the

RDS for PostgreSQL
Best Practices 9 Best Practices for Using PgBouncer

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html

backend RDS instance for the ECS. After the purchase is complete, log in to the
ECS to set up the environment.

1. PgBouncer is based on libevent, so you need to install the libevent-devel and
openssl-devel dependencies.
yum install -y libevent-devel
yum install -y openssl-devel

2. After that, download the source code from the PgBouncer official website and
compile the code and install PgBouncer as a regular user.
su - pgbouncer
tar -zxvf pgbouncer-1.19.0.tar.gz
cd pgbouncer-1.19.0
./configure --prefix=/usr/local
make
make install

3. Create the following directories to store the files (such as logs and process
IDs) generated by PgBouncer:
mkdir -p /etc/pgbouncer/
mkdir -p /var/log/pgbouncer/
mkdir -p /var/run/pgbouncer/

4. Before starting PgBouncer, build the configuration file pgbouncer.ini.
[databases]
* = host=127.0.0.1 port=5432
[pgbouncer]
logfile = /var/log/pgbouncer/pgbouncer.log
pidfile = /var/run/pgbouncer/pgbouncer.pid
listen_addr = *
listen_port = 6432
auth_type = md5
auth_file = /etc/pgbouncer/userlist.txt
admin_users = postgres
stats_users = stats, postgres
pool_mode = transaction
server_reset_query = DISCARD ALL
max_client_conn = 100
default_pool_size = 20
;; resolve: unsupported startup parameter: extra_float_digits
;;ignore_startup_parameters = extra_float_digits

For details about the parameters in the configuration file, see the official
PgBouncer documentation.

Starting PgBouncer

PgBouncer cannot be started as root. It has to be started as a regular user.

pgbouncer -d /etc/pgbouncer/pgbouncer.ini

After it is started, run netstat -tunlp | grep pgbouncer to check the listening port
of the connection pool and then connect to the DB instance.

psql -U root -d postgres -h 127.0.0.1 -p 6432
Password for user root:
psql (12.13)
Type "help" for help.
postgres=> \l
 List of databases
 Name | Owner | Encoding | Collate | Ctype | Access privileges
-----------+-----------+----------+-------------+-------------+-------------------------
 postgres | pgbouncer | UTF8 | en_US.UTF-8 | en_US.UTF-8 |
 template0 | pgbouncer | UTF8 | en_US.UTF-8 | en_US.UTF-8 | =c/pgbouncer
 | | | | | pgbouncer=CTc/pgbouncer
 template1 | pgbouncer | UTF8 | en_US.UTF-8 | en_US.UTF-8 | =c/pgbouncer

RDS for PostgreSQL
Best Practices 9 Best Practices for Using PgBouncer

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

https://www.pgbouncer.org/config.html
https://www.pgbouncer.org/config.html

Stopping PgBouncer
You can run the kill command to stop it.

kill `cat /var/run/pgbouncer/pgbouncer.pid`
cat /var/run/pgbouncer/pgbouncer.pid | xargs kill -9

PgBouncer Management
PgBouncer provides a virtual database pgbouncer, which provides a database
operation interface like PostgreSQL. It is not a real database, but a command line
interface virtualized by PgBouncer. To log in to this virtual database, run the
following command:

psql -p 6432 -d pgbouncer

If some configuration parameters are modified, you do not need to restart
PgBouncer but run reload for the modifications to be applied.

pgbouncer=# reload;
RELOAD

After login, you can run show help to check the command help, run show clients
to check the client connection information, and run show pools to check the
connection pool information.

An Example for Read/Write Splitting
PgBouncer cannot automatically parse or split read and write requests. Read and
write requests need to be distinguished on the application side.

1. Modify the database information in the pgbouncer.ini file and add the
connection configurations of the primary instance and read replica to the file.
In this example, the parameters are set as follows:
[databases]
;; * = host=127.0.0.1 port=5432
The connection information of the read replica.
mydb_read: host=10.7.131.69 port=5432 dbname=postgres user=root password=***
The connection information of the primary instance.
mydb_write: host=10.8.115.171 port=5432 dbname=postgres user=root password=***
[pgbouncer]
logfile = /var/log/pgbouncer/pgbouncer.log
pidfile = /var/run/pgbouncer/pgbouncer.pid
listen_addr = *
listen_port = 6432
auth_type = md5
auth_file = /etc/pgbouncer/userlist.txt
admin_users = postgres
stats_users = stats, postgres
pool_mode = transaction
server_reset_query = DISCARD ALL
max_client_conn = 100
default_pool_size = 20
;; resolve: unsupported startup parameter: extra_float_digits
;;ignore_startup_parameters = extra_float_digits

2. Check whether the primary instance and read replica can be connected. The
primary instance and read replica have been connected using psql and read/
write splitting is supported.
psql -U root -d mydb_write -h 127.0.0.1 -p 6432
Password for user root:
psql (14.6)
mydb_write=> SELECT pg_is_in_recovery();

RDS for PostgreSQL
Best Practices 9 Best Practices for Using PgBouncer

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

 pg_is_in_recovery

 f
(1 row)
psql -U root -d mydb_read -h 127.0.0.1 -p 6432
Password for user root:
psql (14.6)
mydb_read=> SELECT pg_is_in_recovery();
pg_is_in_recovery

 t
(1 row)

RDS for PostgreSQL
Best Practices 9 Best Practices for Using PgBouncer

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

10 Database Naming Rules

● The keyword length of RDS for PostgreSQL is limited to 63 bytes. Therefore, it
is recommended that the length of a database name be no more than 30
characters.

● A database name can contain only lowercase letters, underscores (_), and
digits. Do not use reserved keywords in database names or begin a database
name with pg, digits, or underscores (_). For details about reserved keywords,
see the official documentation.

RDS for PostgreSQL
Best Practices 10 Database Naming Rules

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

https://www.postgresql.org/docs/12/sql-keywords-appendix.html

11 RDS for PostgreSQL Table Design

RDS for PostgreSQL excels in processing complex online transaction processing
(OLTP) transactions and supports NoSQL (JSON, XML, or hstore) and geographic
information system (GIS) data types. It has earned a reputation for reliability and
data integrity, and is widely used for websites, location-based applications, and
complex data object processing.

This topic uses an e-commerce platform as an example to describe how to design
table structures, and how to create databases and tables and process application
requests.

Scenarios

An e-commerce platform requires database table structures matching its core
workloads (online shopping, order management, and product statistics analysis)
to ensure the consistency and integrity of mission-critical business data and speed
up transaction processing when there are many concurrent requests.

Table Design
● User table (t_customers)

This table stores user information. Each user has a record in the table, and
each user has a unique user ID (cust_id).

Table 11-1 User table

Field Name Field Type Description

cust_id SERIAL User ID, which is the
primary key.

cust_nickname VARCHAR(50) User nickname, with
the NOT NULL
constraint added.

cust_gender VARCHAR(10) User gender.

cust_birthday DATE User birthday.

RDS for PostgreSQL
Best Practices 11 RDS for PostgreSQL Table Design

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

Field Name Field Type Description

cust_address TEXT User shipping address,
with the NOT NULL
constraint added.

● Offering table (t_goods)

This table stores offering information. Each offering has a record in the table,
and each offering has a unique offering ID (item_id).

Table 11-2 Offering table

Field Name Field Type Description

item_id SERIAL Offering ID, which is
the primary key.

item_name VARCHAR(100) Offering name, with
the NOT NULL
constraint added.

item_category VARCHAR(50) Offering category, with
the NOT NULL
constraint added.

item_desc TEXT Offering description.

item_price DECIMAL(10,2) Offering unit price,
with the NOT NULL
constraint added.

stock_quantity INTEGER Stock quantity, with the
NOT NULL constraint
added.

● Order table (t_orders)

This table stores order information, which is used to associate users and
offerings. Each order has a record in this table, and each order has a unique
order ID (trans_id).

Table 11-3 Order table

Field Name Field Type Description

trans_id SERIAL Order ID, which is the
primary key.

cust_id INTEGER Order user ID, which is
associated with the
user ID (cust_id) in the
user table
(t_customers).

RDS for PostgreSQL
Best Practices 11 RDS for PostgreSQL Table Design

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

Field Name Field Type Description

item_id INTEGER Order offering ID,
which is associated
with the offering ID
(item_id) in the
offering table
(t_goods).

purchase_quantity INTEGER Offering purchase
quantity, with the NOT
NULL constraint added.

total_price DECIMAL(10,2) Offering total price,
with the NOT NULL
constraint added.

order_time TIMESTAMP Order generation time,
with the DEFAULT
constraint added.

order_status VARCHAR(20) Order status, with the
NOT NULL constraint
added.

Creating Tables
1. Create tables in a database.

– Create the t_customers table.
CREATE TABLE t_customers (
 cust_id SERIAL PRIMARY KEY,
 cust_nickname VARCHAR(50) NOT NULL,
 cust_gender VARCHAR(10),
 cust_birthday DATE,
 cust_address TEXT NOT NULL
);

– Create the t_goods table.
CREATE TABLE t_goods(
 item_id SERIAL PRIMARY KEY,
 item_name VARCHAR(100) NOT NULL,
 item_category VARCHAR(50) NOT NULL,
 item_desc TEXT,
 item_price DECIMAL(10,2) NOT NULL,
 stock_quantity INTEGER NOT NULL
);

– Create the t_orders table.
CREATE TABLE t_orders (
 trans_id SERIAL PRIMARY KEY,
 cust_id INTEGER REFERENCES t_customers(cust_id),
 item_id INTEGER REFERENCES t_goods(item_id),
 purchase_quantity INTEGER NOT NULL,
 total_price DECIMAL(10,2) NOT NULL,
 order_time TIMESTAMP NOT NULL DEFAULT NOW(),
 order_status VARCHAR(20) NOT NULL
);

2. Assume that some offerings are released in the mall, users have registered
accounts on the platform and purchased some offerings, and the data has

RDS for PostgreSQL
Best Practices 11 RDS for PostgreSQL Table Design

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

been sent back to the system database. Insert the following test data into the
database:
-- User data
INSERT INTO t_customers (cust_nickname, cust_gender, cust_birthday, cust_address) VALUES
 ('Rich Man', 'Female', '1995-08-12', 'Haidian District, Beijing'),
 ('Superman', 'Male', '1998-03-25', 'Pudong New Area, Shanghai');
-- Offering data
INSERT INTO t_goods(item_name, item_category, item_desc, item_price, stock_quantity) VALUES
 ('Smartphone X', 'Electronics', 'Latest Smartphone', 5999.00, 22),
 ('Wireless Headset Pro', 'Electronics', 'Hot Products', 1299.00, 200),
('Cotton T-shirt', 'Clothing', 'Pure Cotton', 199.00, 300);
-- Order data
INSERT INTO t_orders(cust_id, item_id, purchase_quantity, total_price, order_status) VALUES
 (1, 1, 1, 5999.00, 'Paid'),
 (1, 2, 2, 2598.00, 'Shipped'),
 (2, 3, 5, 995.00, 'Completed');

Examples
● User Superman queries all of his orders (cust_id is 2).

SELECT m.item_name, t.purchase_quantity, t.total_price, t.order_time, t.order_status
FROM t_customers c
JOIN t_orders t ON c.cust_id = t.cust_id
JOIN t_goods m ON t.item_id = m.item_id
WHERE c.cust_id = 2;

The command output is as follows:
item_name | purchase_quantity | total_price | order_time | order_status
-----------+-------------------+-------------+----------------------------+--------------
 Cotton T-shirt | 5 | 995.00 | 2025-07-31 15:04:03.593379 | Completed
(1 row)

● The platform collects statistics on the sales volume of each offering.
SELECT m.item_name, SUM(t.purchase_quantity) AS total_sold
FROM t_goods m
LEFT JOIN t_orders t ON m.item_id = t.item_id
GROUP BY m.item_name
ORDER BY total_sold DESC;

The command output is as follows:
item_name | total_sold
-------------+------------
 Cotton T-shirt | 5
 Wireless headset Pro | 2
Smartphone X | 1
(3 rows)

● Query electronics whose stock quantity is less than 50.
SELECT item_name, stock_quantity
FROM t_goods
WHERE stock_quantity < 50
AND item_category = 'Electronics';

The command output is as follows:
item_name | stock_quantity
-----------+----------------
 Smartphone X | 22
(1 row)

RDS for PostgreSQL
Best Practices 11 RDS for PostgreSQL Table Design

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

12 RDS for PostgreSQL Permissions
Management

Basic Concepts
PostgreSQL manages user permissions using two concepts, role and privilege.

● Role
A role is a collection of privileges. It can be thought of as either a user or a
user group.
– A login role is a role that has the LOGIN privilege.
– A group role does not have the LOGIN privilege. It is used to manage

privileges. Other roles can be added to the group to inherit privileges.
– By default, all roles belong to a role named public (a special group role).

Pay attention to its default privileges.
● Privilege

Privileges are permissions to perform operations for database objects (such as
tables, functions, and schemas). Common privileges include:
– Table/View: SELECT (query), INSERT, UPDATE, DELETE, and TRUNCATE

(clear)
– Database: CONNECT and CREATE (create schema)
– Schema: CREATE (create object) and USAGE (access object)
– Function/Stored procedure: EXECUTE
– Sequence: USAGE (use) and UPDATE (modify)

Principles
RDS for PostgreSQL uses roles to manage user permissions. A role by itself does
not have the LOGIN privilege. You can create a user and assign a Login role to the
user. Then the user can log in to databases and inherit the privileges the role has.
If the role's privileges change, the user's privileges change as well.

RDS for PostgreSQL
Best Practices 12 RDS for PostgreSQL Permissions Management

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

Suggestions
● A privileged account root is provided for your RDS for PostgreSQL instance by

default. This account has all privileges on your instance and can be used only
by senior database administrators (DBAs).

● The project manager can create a resource account to manage roles and can
also create multiple roles to enable fine-grained permissions management.

● You can create user accounts. These accounts can be used to log in to and
perform operations on databases.

● If your project (prj) has multiple schemas, you are advised to divide role
privileges by schema, for example, {prj}_{role}_{schema}_readonly and
{prj}_{role}_{schema}_write. Do not put tables in the public schema. By
default, all users have the CREATE and USAGE privileges for this schema.

Example of Privilege Design
● Senior DBAs have the privileged account root for RDS for PostgreSQL

instances.

● The project manager has a resource account db_prj_owner. It is used to
manage accounts and roles.

● The project name is db_prj, and the new schemas are db_prj, db_prj_1, and
db_prj2.

The following table describes the privileges the resource account and roles have.

Table 12-1 Privileges

User/Role Privileges for Tables in
the Schemas

Privileges for Stored
Procedures in the
Schemas

root is a privileged
account. This account is
created by default after
an instance is created.

● DDL: CREATE, DROP,
and ALTER*

● DQL: SELECT*
● DML: UPDATE,

INSERT, and DELETE

● DDL: CREATE, DROP,
and ALTER*

● DQL: SELECT and the
privilege for calling
stored procedures

db_prj_owner is the only
resource account of a
project.

● DDL: CREATE, DROP,
and ALTER*

● DQL: SELECT*
● DML: UPDATE,

INSERT, and DELETE

● DDL: CREATE, DROP,
and ALTER*

● DQL: SELECT and the
privilege for calling
stored procedures

db_prj_role1_readwrite
(role)

● DQL: SELECT*
● DML: UPDATE,

INSERT, and DELETE

DQL: SELECT and the
privilege for calling
stored procedures. If a
stored procedure
contains DDL
statements, a permission
error is reported.

RDS for PostgreSQL
Best Practices 12 RDS for PostgreSQL Permissions Management

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

User/Role Privileges for Tables in
the Schemas

Privileges for Stored
Procedures in the
Schemas

db_prj_role2_readonly
(role)

DQL: SELECT DQL: SELECT and the
privilege for calling
stored procedures. If a
stored procedure
contains DDL or DML
statements, a permission
error is reported.

Procedure
1. Create resource account db_prj_owner and roles for your project.

DBAs use the privileged account root to perform the following operations.
---db_prj_owner is the username of the owner. The password is only an example. Change it as
required.
CREATE USER db_prj_owner WITH LOGIN PASSWORD 'XXXXXXX';

CREATE ROLE db_prj_role1_readwrite;
CREATE ROLE db_prj_role2_readonly;

---Grant the DQL SELECT privilege and DML UPDATE, INSERT, and DELETE privileges on tables
created by db_prj_owner to the role db_prj_role1_readwrite.
ALTER DEFAULT PRIVILEGES FOR ROLE db_prj_owner GRANT ALL ON TABLES TO
db_prj_role1_readwrite;

---Grant the DQL SELECT privilege and DML UPDATE, INSERT, and DELETE privileges on sequences
created by db_prj_owner to the role db_prj_role1_readwrite.
ALTER DEFAULT PRIVILEGES FOR ROLE db_prj_owner GRANT ALL ON SEQUENCES TO
db_prj_role1_readwrite;

---Grant the DQL SELECT privilege on tables created by db_prj_owner to the role
db_prj_role2_readonly.
ALTER DEFAULT PRIVILEGES FOR ROLE db_prj_owner GRANT SELECT ON TABLES TO
db_prj_role2_readonly;

2. Create users db_prj_user_readwrite and db_prj_user_readonly.
DBAs use the privileged account root to perform the following operations.
---Grant the DQL SELECT privilege and DML UPDATE, INSERT, and DELETE privileges to the user
db_prj_user_readwrite.
CREATE USER db_prj_user_readwrite WITH LOGIN PASSWORD 'XXXXXXX';
GRANT db_prj_role1_readwrite TO db_prj_user_readwrite;

---Grant the DQL SELECT privilege to the user db_prj_user_readonly.
CREATE USER db_prj_user_readonly WITH LOGIN PASSWORD 'XXXXXXXX';
GRANT db_prj_role2_readonly TO db_prj_user_readonly;

3. Create a schema and grant privileges on the schema to the project roles.
DBAs use the privileged account root to perform the following operations.
---Specify db_prj_owner as the owner of the db_prj schema.
CREATE SCHEMA db_prj AUTHORIZATION db_prj_owner;

---Grant the privileges on this schema to the project roles.
GRANT USAGE ON SCHEMA db_prj TO db_prj_role1_readwrite;
GRANT USAGE ON SCHEMA db_prj TO db_prj_role2_readonly;

RDS for PostgreSQL
Best Practices 12 RDS for PostgreSQL Permissions Management

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

NO TE

The users db_prj_user_readwrite and db_prj_user_readonly inherit the privilege
changes of their associated roles. You do not need to grant privileges to the users.

Scenarios
Scenario 1: Using the account db_prj_owner to perform DDL operations on tables
in the db_prj schema
CREATE TABLE db_prj.table1(col1 bigserial primary key, col2 int);
DROP TABLE db_prj.table1;

Scenario 2: Using the user db_prj_user_readwrite or db_prj_user_readonly for
workload development

The user that you use for workload development follows the principle of least
privilege. Use the db_prj_user_readonly user if existing data does not need to be
changed. Use the db_prj_user_readwrite user when you need to perform DML
operations (INSERT, UPDATE, and DELETE) to change data. Data operations of
different user accounts are isolated, enhancing security.

● Use db_prj_user_readwrite to add, delete, query, and modify data of tables
in the db_prj schema.
Common DML and DQL operations are not affected.
INSERT INTO db_prj.table1 (col2) VALUES(88),(99);
SELECT * FROM db_prj.table1;

---The user db_prj_user_readwrite does not have the DDL CREATE, DROP, or ALTER privilege.
CREATE TABLE db_prj.table2(id int);
ERROR: permission denied for schema db_prj
LINE 1: create table db_prj.table2(id int);

DROP TABLE db_prj.table1;
ERROR: must be owner of table test

ALTER TABLE db_prj.table1 ADD col3 int;
ERROR: must be owner of table test

CREATE INDEX idx_xxxx on db_prj.table1(col1);
ERROR: must be owner of table test

● Use db_prj_user_readonly to perform operations on tables in the db_prj
schema.
INSERT INTO db_prj.table1 (col2) VALUES(88),(99);
ERROR: permission denied for table table1

SELECT id,name FROM db_prj.table1 limit 1;
 col1 | col2
----+-------
 1 | 88
(1 row)

Scenario 3: Granting privileges of a project to a user belonging to another project

Assume that there is another project db_prj1 and you need to grant the read
privilege on tables of project db_prj to the user db_prj1_user_readwrite that
belongs to project db_prj1. DBAs use the privileged account root to perform the
following operation.
---Grant the privileges of user db_prj_role2_readonly to the user db_prj1_user_readwrite.
GRANT db_prj_role2_readonly TO db_prj1_user_readwrite;

Scenario 4: Creating a schema db_prj1 and granting privileges on this schema to
project roles

RDS for PostgreSQL
Best Practices 12 RDS for PostgreSQL Permissions Management

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

The users db_prj1_user_readwrite, db_prj1_user_readonly, and
db_prj1_user_readwrite inherit the privilege changes of their associated roles. You
do not need to grant privileges to these users. DBAs use the privileged account
root to perform the following operations.

CREATE SCHEMA db_prj1 AUTHORIZATION db_prj_owner;

---Grant the access privilege on the schema to roles.
---Grant the DDL CREATE, DROP, and ALTER privileges on tables in schema db_prj1 to the account
db_prj_owner.
GRANT USAGE ON SCHEMA db_prj1 TO db_prj_role1_readwrite;
GRANT USAGE ON SCHEMA db_prj1 TO db_prj_role2_readonly;

Querying Users and Roles
● Use a command-line tool to connect to your RDS for PostgreSQL instance.

Run the \du command to query all users and roles. The following is an
example.

Figure 12-1 Running the \du command

The command output shows that db_prj_role2_readonly,
db_prj1_role1_readwrite is displayed in the Member of column of the user
db_prj_user_readwrite.

● Run SQL statements to query users and roles.
SELECT r.rolname, r.rolsuper, r.rolinherit,
 r.rolcreaterole, r.rolcreatedb, r.rolcanlogin,
 r.rolconnlimit, r.rolvaliduntil,
 ARRAY(SELECT b.rolname
 FROM pg_catalog.pg_auth_members m
 JOIN pg_catalog.pg_roles b ON (m.roleid = b.oid)
 WHERE m.member = r.oid) as memberof
, r.rolreplication
, r.rolbypassrls
FROM pg_catalog.pg_roles r
WHERE r.rolname !~ '^pg_'
ORDER BY 1;

RDS for PostgreSQL
Best Practices 12 RDS for PostgreSQL Permissions Management

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

Figure 12-2 Running SQL statements

RDS for PostgreSQL
Best Practices 12 RDS for PostgreSQL Permissions Management

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

13 Troubleshooting WAL Accumulation

Description

PostgreSQL uses Write-Ahead Logging (WAL) to ensure data durability and
consistency. WAL logs record all changes to databases and play a key role in
primary/standby replication, crash recovery, and logical replication.

You need to pay attention to the following key metrics:

● Transaction Logs Usage (WAL logs): rds040_transaction_logs_usage
● Inactive Logical Replication Slots: inactive_logical_replication_slot
● Oldest Replication Slot Lag (WAL logs accumulated due to replication slot

problems): rds045_oldest_replication_slot_lag
● Transaction Logs Generation: rds044_transaction_logs_generations

Troubleshooting and Solution
● Check whether the WAL log size is within its allowed range. If no, rectify

the fault.
Check the rds040_transaction_logs_usage metric to see how much storage
the WAL logs occupy. Check whether the WAL log size has significantly
increased recently or whether WAL logs occupy a large proportion of the
storage space.
You can also run the SQL statement below to check the WAL log size. If there
are too many WAL logs, perform the subsequent steps to locate the fault.
select pg_size_pretty(sum(size)) from pg_ls_waldir();

● Check the replication slot statuses and the size of logs that are not
cleared in a timely manner.
Replication slots can block WAL recycling. If the value of
inactive_logical_replication_slot is not 0 and the value of
rds045_oldest_replication_slot_lag is large or even the same as that of
rds040_transaction_logs_usage, replication slots are blocking WAL recycling.
Alternatively, you can run the following SQL statement to query the slot
statuses and WAL lag:
select slot_name, active,
pg_size_pretty(pg_wal_lsn_diff(b, a.restart_lsn)) as slot_latency
from pg_replication_slots as a, pg_current_wal_lsn() as b;

RDS for PostgreSQL
Best Practices 13 Troubleshooting WAL Accumulation

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

If the query result shows that there is any slot whose active field is f and
slot_latency field is large, inactive replication slots are blocking WAL
recycling. WAL logs are accumulated and cannot be cleared.
Analyze whether this slot is still required. If not, run the following SQL
statement to delete it:
select pg_drop_replication_slot('slot_name');

● Check the WAL log retention parameters.
Check whether the wal_keep_segments, wal_keep_size, and max_wal_size
parameters are properly set.
select name, setting from pg_settings where name in ('wal_keep_segments', 'wal_keep_size',
'max_wal_size');

– For RDS for PostgreSQL 12 or earlier versions, check the value of
wal_keep_segments. For later versions, check the value of
wal_keep_size.

– The values of the WAL log retention parameters should be greater than 4
GB but less than 10% of the total storage. If they are too small, the
primary instance may clear the WAL logs required by the standby
instance, causing exceptions on the standby instance.

● Check how busy write services are.
View the rds044_transaction_logs_generations metric to determine how
busy write services are. This metric indicates the average size of transaction
logs (WAL logs) generated per second.
If the value of this metric is large (greater than 50 MB/s on average), there
are a large number of write services. In this case, the database kernel reserves
more WAL logs for recycling, and the storage usage of WAL logs increases.
You are advised to scale up storage to ensure storage redundancy.

WAL Logs Generated While Backups Are Created
If the WAL log size increases during backup creation and returns to normal
afterward, the WAL logs are generated faster than the backups.

You can adjust the backup time to avoid heavy data writes during backup creation
or scale up storage to ensure enough cache space.

RDS for PostgreSQL
Best Practices 13 Troubleshooting WAL Accumulation

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

14 Updating, Deleting, or Inserting
Data Records at a Time

This topic describes how to insert (BULK INSERT), update (BULK UPDATE), and
delete (BULK DELETE) data records at a time. These operations significantly
reduce interactions between your DB instance and applications, reducing system
overhead and increasing the overall throughput.

Creating an Example Table Structure
CREATE TABLE product_inventory (
item_id INT PRIMARY KEY,
item_name VARCHAR(100),
stock_qty INT,
last_updated TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

Inserting Data Records at a Time
● Method 1: Using the VALUES clause

Insert multiple product records at a time.
INSERT INTO product_inventory (item_id, item_name, stock_qty)
VALUES
 (101, 'Smartwatch', 50),
 (102, 'Wireless headset', 120),
 (103, 'Bluetooth speaker', 75),
 (104, 'Tablet', 30);

● Method 2: Using SELECT to generate sequence data

Generate 100 test data records at a time.
INSERT INTO product_inventory (item_id, item_name, stock_qty)
SELECT
 200 + n,
 'Test product-' || n,
 (random() * 100)::INT
FROM generate_series(1, 100) AS n;

● Method 3: Using multiple INSERT statements wrapped in a transaction
BEGIN;
INSERT INTO product_inventory VALUES (301, 'Game controller', 40);
INSERT INTO product_inventory VALUES (302, 'Mechanical keyboard', 60);
INSERT INTO product_inventory VALUES (303, 'Gaming mouse', 55);
COMMIT;

● Method 4: Using the COPY command

RDS for PostgreSQL
Best Practices

14 Updating, Deleting, or Inserting Data Records at
a Time

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

PostgreSQL provides COPY, a protocol for fast data import/export. It uses a
simpler format and transfer mechanism. This makes data import/export much
faster than using INSERT statements especially when there are large volumes
of data to handle. The following describes its advantages.
– Reducing overhead: COPY uses the binary or text format to transfer data,

avoiding the overhead caused by parsing SQL statements one by one.
– Improving performance: Using COPY to insert tens of thousands of data

records is more than 10 times faster than using INSERT.
– Applicability across diverse situations: It works for various scenarios like

initializing, migrating, or periodically importing data in batches. It can
directly read data from CSV files, binary files, or program streams.

The following is an example of using COPY to import data from a CSV file:
COPY product_inventory FROM STDIN WITH (FORMAT csv);
401, "4K monitor", 25
402, "Curved monitor", 18
403, "Portable monitor", 32
\.

NO TE

The COPY APIs vary based on the language driver you use. For more information, see
the following:
● PostgreSQL JDBC Driver - API
● PostgreSQL 9.6.2 Documentation — COPY

Updating Data Records at a Time
● Using temporary tables

Create a temporary table to perform a join-based update.
WITH update_data(item_id, new_qty) AS (
 VALUES
 (101, 45),
 (102, 110),
 (104, 28)
)
--Execute the batch update.
UPDATE product_inventory p
SET stock_qty = u.new_qty
FROM update_data u
WHERE p.item_id = u.item_id;

● Using the CASE clause
Update the inventory data at a time based on different conditions.
UPDATE product_inventory
SET stock_qty = CASE
 WHEN item_id = 201 THEN 90
 WHEN item_id = 202 THEN 65
 WHEN item_id = 203 THEN 40
 ELSE stock_qty
END
WHERE item_id IN (201, 202, 203);

Deleting Data Records at a Time
● Using the IN clause

Delete the product records with specified IDs.
DELETE FROM product_inventory
WHERE item_id IN (301, 302, 303, 304);

RDS for PostgreSQL
Best Practices

14 Updating, Deleting, or Inserting Data Records at
a Time

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

https://jdbc.postgresql.org/documentation/publicapi/index.html
https://www.postgresql.org/docs/9.6/static/libpq-copy.html

● Using sub-queries
Delete the products whose in-stock quantity is less than 20.
DELETE FROM product_inventory
WHERE stock_qty < 20;

● Using TRUNCATE
Clear all data in a table (this operation cannot be rolled back).
TRUNCATE TABLE product_inventory;

Suggestions on Performance Optimization
● Batch processing with a transaction: Wrap operations in a single

transaction.
BEGIN;
--Batch operation 1
--Batch operation 2
COMMIT;

● Batch size control: You are advised to process 1,000 to 5,000 records in each
batch.

RDS for PostgreSQL
Best Practices

14 Updating, Deleting, or Inserting Data Records at
a Time

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

15 Using Event Triggers to Implement
the DDL Recycle Bin, Firewalls, and

Incremental Synchronization

Function Description
RDS for PostgreSQL allows you to use event triggers to implement features like
the DDL recycle bin, firewalls, and incremental synchronization. Event triggers help
you lower maintenance expenses. For strong database security needs, use
PostgreSQL event triggers to implement the DDL recycle bin and firewalls to
enhance data security.

This topic describes how to use PostgreSQL event triggers to implement the DDL
recycle bin, firewalls, and incremental synchronization.

Table 15-1 Functions of event triggers

Function
Type

Effect Implementation

Pre-event
defense

Blocking risky DDL
operations, such as DROP
TABLE, DROP INDEX, and
DROP DATABASE

Use the ddl_command_start
event trigger to block
unauthorized operations.

Post-event
backtracking

Restoring tables from the
recycle bin after they are
deleted by mistake

Use the ddl_command_end and
sql_drop event triggers to
record DDL operations.

DDL Recycle Bin
Use the event triggers, pg_get_ddl_command and pg_get_ddl_drop, to collect DDL
statements and save them to the ddl_recycle.ddl_log table. The triggers help you
track DDL operations performed on your databases.

1. Create a dedicated schema and a table.
CREATE SCHEMA ddl_recycle;

RDS for PostgreSQL
Best Practices

15 Using Event Triggers to Implement the DDL
Recycle Bin, Firewalls, and Incremental

Synchronization

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

CREATE TABLE IF NOT EXISTS ddl_recycle.ddl_log (
 id SERIAL PRIMARY KEY,
 event_time TIMESTAMPTZ DEFAULT NOW(),
 username TEXT,
 database TEXT,
 client_addr INET,
 event TEXT,
 tag TEXT,
 object_type TEXT,
 schema_name TEXT,
 object_identity TEXT,
 command TEXT,
 is_dropped BOOLEAN DEFAULT FALSE
);

2. Create an event trigger function.
CREATE OR REPLACE FUNCTION ddl_recycle.log_ddl_command()
RETURNS event_trigger AS $$
DECLARE
 cmd TEXT;
 obj RECORD;
BEGIN
 SELECT query INTO cmd FROM pg_stat_activity WHERE pid = pg_backend_pid();

 IF TG_EVENT = 'ddl_command_end' THEN
 FOR obj IN SELECT * FROM pg_event_trigger_ddl_commands() LOOP
 INSERT INTO ddl_recycle.ddl_log (
 username, database, client_addr, event, tag,
 object_type, schema_name, object_identity, command
) VALUES (
 current_user, current_database(), inet_client_addr(),
 TG_EVENT, TG_TAG, obj.object_type, obj.schema_name,
 obj.object_identity, cmd
);
 END LOOP;
 ELSIF TG_EVENT = 'sql_drop' THEN
 FOR obj IN SELECT * FROM pg_event_trigger_dropped_objects() LOOP
 --The original record is marked as deleted.
 UPDATE ddl_recycle.ddl_log
 SET is_dropped = TRUE
 WHERE object_identity = obj.object_identity AND is_dropped = FALSE;

 --Insert a new record to record the deletion operation.
 INSERT INTO ddl_recycle.ddl_log (
 username, database, client_addr, event, tag,
 object_type, schema_name, object_identity, command, is_dropped
) VALUES (
 current_user, current_database(), inet_client_addr(),
 TG_EVENT, TG_TAG, obj.object_type, obj.schema_name,
 obj.object_identity, cmd, TRUE
);
 END LOOP;
 END IF;
END;
$$ LANGUAGE plpgsql;

3. Register an event trigger.
CREATE EVENT TRIGGER ddl_recycle_trigger
ON ddl_command_end
EXECUTE FUNCTION ddl_recycle.log_ddl_command();

CREATE EVENT TRIGGER ddl_drop_trigger
ON sql_drop
EXECUTE FUNCTION ddl_recycle.log_ddl_command();

After the execution is complete, the DDL statements are recorded in the
test_ddl.tb_ddl_command table.

4. Run a DDL statement and check whether changes can be recorded.
create table ddl_recycle.a(id int);
select * from ddl_recycle.ddl_log;

RDS for PostgreSQL
Best Practices

15 Using Event Triggers to Implement the DDL
Recycle Bin, Firewalls, and Incremental

Synchronization

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

Figure 15-1 Checking the execution result

DDL Firewall

You can create event triggers as needed and use the ddl_command_start event to
block the execution of specific DDL statements.

1. Create a table containing firewall rules.
CREATE SCHEMA IF NOT EXISTS ddl_firewall;

CREATE TABLE IF NOT EXISTS ddl_firewall.rules (
 id SERIAL PRIMARY KEY,
 username TEXT,
 tag TEXT,
 pattern TEXT,
 action TEXT CHECK (action IN ('BLOCK', 'LOG')),
 created_at TIMESTAMPTZ DEFAULT NOW()
);

2. Create a firewall trigger function.
RETURNS event_trigger AS $$
DECLARE
 cmd TEXT;
 rule RECORD;
 is_blocked BOOLEAN := FALSE;
BEGIN
 SELECT query INTO cmd FROM pg_stat_activity WHERE pid = pg_backend_pid();

 FOR rule IN SELECT * FROM ddl_firewall.rules
 WHERE (username = current_user OR username = '*')
 AND (tag = TG_TAG OR tag = '*')
 ORDER BY id
 LOOP
 IF cmd ~ rule.pattern THEN
 IF rule.action = 'BLOCK' THEN
 RAISE EXCEPTION 'DDL operation blocked by rule: %', rule.id;
 ELSIF rule.action = 'LOG' THEN
 INSERT INTO ddl_recycle.ddl_log (
 username, database, client_addr, event, tag, command
) VALUES (
 current_user, current_database(), inet_client_addr(),
 'FIREWALL_LOG', TG_TAG, cmd
);
 END IF;
 END IF;
 END LOOP;
END;
$$ LANGUAGE plpgsql;

3. Register an event trigger.
CREATE EVENT TRIGGER ddl_firewall_trigger
ON ddl_command_start
EXECUTE FUNCTION ddl_firewall.check_ddl();

4. Add firewall rules.
insert into ddl_firewall.rules values(1,'test', 'DROP TABLE', '', 'BLOCK');

5. When you try to delete the table as the user test, the deletion is blocked.
create table ddl_firewall.a(id int);
drop table ddl_firewall.a;

RDS for PostgreSQL
Best Practices

15 Using Event Triggers to Implement the DDL
Recycle Bin, Firewalls, and Incremental

Synchronization

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

Figure 15-2 Checking the execution result

DDL Incremental Synchronization
The publisher stores executed DDL statements in the ddl_recycle.ddl_log table. The
subscriber can read the records to synchronize data.

1. Create a publication on the publisher.
CREATE PUBLICATION my_ddl_publication FOR TABLE ONLY ddl_recycle.ddl_log;

2. Create the same table on the subscriber.
CREATE SCHEMA ddl_recycle;
CREATE TABLE IF NOT EXISTS ddl_recycle.ddl_log (
 id SERIAL PRIMARY KEY,
 event_time TIMESTAMPTZ DEFAULT NOW(),
 username TEXT,
 database TEXT,
 client_addr INET,
 event TEXT,
 tag TEXT,
 object_type TEXT,
 schema_name TEXT,
 object_identity TEXT,
 command TEXT,
 is_dropped BOOLEAN DEFAULT FALSE
);

3. Create a subscription on the subscriber.
CREATE SUBSCRIPTION my_ddl_subscriptin CONNECTION 'host=*** port=*** user=*** password=***
dbname=**' PUBLICATION my_ddl_publication;

4. Create a trigger for the ddl_recycle.ddl_log table on the subscriber to
implement incremental synchronization of DDL statements.

RDS for PostgreSQL
Best Practices

15 Using Event Triggers to Implement the DDL
Recycle Bin, Firewalls, and Incremental

Synchronization

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

16 Creating Replication Slots to Enable
CDC

Function Description

Open-source PostgreSQL uses replication slots to enable Change Data Capture
(CDC). Replication slots are the core for logical replication. They can:

1. Ensure that WAL logs of the primary database are not cleared until all logs
are consumed by secondary databases or subscribers.

2. Record subscribers' consumption positions (LSNs) to prevent data loss or
repeated consumption.

3. Parse WAL logs into readable change data (such as INSERT, UPDATE, and
DELETE operations) using logical decoding plugins (like test_decoding and
wal2json) to implement CDC.

This topic describes how to enable CDC for an RDS for PostgreSQL instance.

Prerequisites
● You have purchased an ECS. For details, see Purchasing an ECS in Custom

Config Mode. Ensure that the ECS is in the same region, VPC, and security
group as your RDS for PostgreSQL instance.

● You have purchased an RDS for PostgreSQL instance and installed a
PostgreSQL client on the ECS. For details, see Buying a DB Instance and
Connecting to It Using a PostgreSQL Client.

● You have connected to the RDS for PostgreSQL instance through the ECS. For
details, see Connecting to a DB Instance from a Linux ECS over a Private
Network.

Precautions
● You can enable CDC and consume captured data only on the primary

instance. Read replicas do not support this feature.

● RDS for PostgreSQL supports logical replication slot failover. A primary/
standby switchover does not affect CDC. For more information, see Failover
Slot for Logical Subscriptions.

RDS for PostgreSQL
Best Practices 16 Creating Replication Slots to Enable CDC

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

https://support.huaweicloud.com/intl/en-us/usermanual-ecs/ecs_03_7002.html
https://support.huaweicloud.com/intl/en-us/usermanual-ecs/ecs_03_7002.html
https://support.huaweicloud.com/intl/en-us/qs-rds-pg/rds_02_0016.html
https://support.huaweicloud.com/intl/en-us/qs-rds-pg/rds_02_0016.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_connect_05.html#section1
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_connect_05.html#section1
https://support.huaweicloud.com/intl/en-us/kerneldesc-rds-pg/rds_12_0000.html
https://support.huaweicloud.com/intl/en-us/kerneldesc-rds-pg/rds_12_0000.html

● Before enabling CDC, modify RDS for PostgreSQL instance parameters and
reboot the instance. To prevent impact on workloads, modify parameters
during off-peak hours.

Enabling CDC

Step 1: Create a Test Database
The following uses the testdb database as an example.

Step 1 Log in to the management console.

Step 2 Click in the upper left corner and select a region.

Step 3 Click in the upper left corner of the page and choose Databases > Relational
Database Service.

Step 4 On the Instances page, click the instance name.

Step 5 On the Databases page, click Create Database. In the displayed dialog box,
configure required parameters and click OK.

RDS for PostgreSQL
Best Practices 16 Creating Replication Slots to Enable CDC

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

https://console-intl.huaweicloud.com/?locale=en-us

Figure 16-1 Creating a database

----End

Step 2: Create a Test Account and Configure Permissions
The account created in this example is for reference only. You can change it as
required.

1. On the Accounts page, click Create Account.
2. In the displayed dialog box, enter the username, password, permissions, and

remarks, and click OK.
3. Create a standard account, for example, cdc_user.
4. Connect to the RDS for PostgreSQL instance using the account root.

psql -h <instance-address> -p 5432 -U root -d testdb

5. Assign the Replication role to the account cdc_user and query the result:
ALTER USER cdc_user WITH REPLICATION;
SELECT rolreplication FROM pg_roles WHERE rolname='cdc_user';

Query result:
rolreplication

 t
(1 row)

6. Grant permissions to the cdc_user account:

RDS for PostgreSQL
Best Practices 16 Creating Replication Slots to Enable CDC

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

GRANT SELECT ON ALL TABLES IN SCHEMA PUBLIC to cdc_user;

Step 3: Modify RDS for PostgreSQL Instance Parameters
1. Query the instance's parameter settings:

SELECT name,
 setting,
 short_desc,
 source
FROM pg_settings
WHERE name ='wal_level';

Query result:
name | setting | short_desc | source
-----------------------+---------+---
+--------------------
 wal_level | replica | Sets the level of information written to the WAL. |
configuration file
(1 rows)

wal_level specifies how much information is written to the WAL. It
determines the WAL's purpose (such as crash recovery, physical replication, or
logical replication). The following are three main values of wal_level, from
least to most detailed:
– minimal: The system records only the information required to recover

from a crash. No replication is supported. (This value is almost not used
in production environments.)

– replica (default): Enough data needed for physical replication is written.
This level supports physical replication (such as, primary-standby
synchronization, where the standby instance replays WAL logs to remain
synchronous with the primary instance) and allows a read replica to
function as a hot standby.

– logical: The system records the data logged at replica level and also adds
the metadata (such as row-level change data and table structure
information) necessary for logical replication. This setting supports logical
replication and CDC.

2. On the Instances page, click the instance name.
3. In the navigation pane, choose Parameters.
4. Change the value of wal_level to logical.

For details about how to modify instance parameters, see Modifying
Parameters of an RDS for PostgreSQL Instance.
To prevent impact on workloads, modify parameters during off-peak hours.

5. After changing the parameter value, reboot your RDS for PostgreSQL instance
to apply it.

Step 4: Create a Logical Replication Slot
Instance parameters have been modified in Step 3: Modify RDS for PostgreSQL
Instance Parameters, so perform the following operations after the RDS for
PostgreSQL instance is rebooted and its status changes to Available.

1. Connect to the RDS for PostgreSQL instance using the account root.
psql -h <instance-address> -p 5432 -U root -d testdb

2. Create a replication slot named cdc_replication_slot with the decoding plugin
test_decoding:

RDS for PostgreSQL
Best Practices 16 Creating Replication Slots to Enable CDC

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_configuration.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_configuration.html

SELECT * FROM pg_create_logical_replication_slot(
 'cdc_replication_slot',
 'test_decoding'
);

After the execution, the replication slot name and initial LSN are displayed in
the command output, as shown in the following:
 slot_name | lsn
 ----------------+-----------
 cdc_replication_slot | 0/16A00000
(1 row)

3. List all replication slots to verify that the replication slot is created:
SELECT slot_name, plugin, active FROM pg_replication_slots;

If slot_name is cdc_replication_slot and plugin is test_decoding, the
replication slot is created.
slot_name | plugin | slot_type | datoid | database | temporary | active | active_pid | xmin |
catalog_xmin | restart_lsn | confirmed_flush_lsn | wal_status | safe_wal_size | two_phase
----------------------+---------------+-----------+--------+----------+-----------+--------+------------+------
+--------------+-------------+---------------------+------------+----------------+-----------
 cdc_replication_slot | test_decoding | logical | 31721 | testdb | f | f | | |
25523| 2/2500A1B0 | 2/25003882 | reserved | | f
(1 row)

Step 5: Create Test Data
Create test data to simulate a production environment.

1. Create a test table for generating change data.
CREATE TABLE public.tb_tests (
 id SERIAL PRIMARY KEY,
 product_name VARCHAR(50) NOT NULL,
 price NUMERIC(10,2) NOT NULL,
 create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

2. Insert data.
INSERT INTO public.tb_tests (product_name, price) VALUES ('Laptop', 5999.99);
INSERT INTO public.tb_tests (product_name, price) VALUES ('Mechanical keyboard', 299.99);

3. Update data.
UPDATE public.tb_tests SET price = 5899.99 WHERE id = 1;

4. Delete data.
DELETE FROM public.tb_tests WHERE id = 2;

Step 6: Read Data Using the Client
1. Connect to the RDS for PostgreSQL instance as the user cdc_user.

psql -h <instance-address> -p 5432 -U cdc_user -d testdb

2. Read data from the replication slot:
SELECT * FROM pg_logical_slot_peek_changes(
 'cdc_replication_slot', --Replication slot name
 NULL, --Start LSN (NULL indicates that the data is read from the current position.)
 NULL, --Maximum number of returned records (NULL indicates that the number is not
limited.)
);

Example output:
lsn | xid | data
------------+-------+---
 0/16A01200 | 1234 | BEGIN 1234
 0/16A01200 | 1234 | table public.tb_tests: INSERT: id[integer]:1 product_name[character
varying]:'Laptop' price[numeric(10,2)]:5999.99 create_time[timestamp with time zone]:'2024-05-20
10:00:00+08'
 0/16A01350 | 1234 | table public.tb_tests: INSERT: id[integer]:2 product_name[character

RDS for PostgreSQL
Best Practices 16 Creating Replication Slots to Enable CDC

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

varying]:'Mechanical keyboard' price[numeric(10,2)]:299.99 create_time[timestamp with time
zone]:'2024-05-20 10:01:00+08'
 0/16A014A0 | 1234 | COMMIT 1234
 0/16A015F0 | 1235 | BEGIN 1235
 0/16A015F0 | 1235 | table public.tb_tests: UPDATE: id[integer]:1 price[numeric(10,2)]:5899.99
(old:5999.99)
 0/16A016E0 | 1235 | COMMIT 1235
 0/16A017D0 | 1236 | BEGIN 1236
 0/16A017D0 | 1236 | table public.tb_tests: DELETE: id[integer]:2
 0/16A01860 | 1236 | COMMIT 1236
 (8 rows)

Step 7: Consume Captured Data Using the Client
On the client, run the following command to connect to the DB instance and
consume data from the replication slot cdc_replication_slot:

pg_recvlogical \
-h <PostgreSQL-instance-address> \
 -p 5432 \
 -U cdc_user \
 -d testdb \
 --slot=cdc_replication_slot \
 --start \
 -f -

Specify the parameter values as required:

● -h: RDS for PostgreSQL instance address
● -p: port number (default: 5432)
● -U: subscriber, which must have the REPLICATION privilege
● -d: database name
● --slot: replication slot name
● --start: the position where the system begins consuming data. This parameter

can be omitted for the first consumption. By default, the first consumption
starts from the start position.

● -f: output to the console. The value - indicates standard output.

Example output:

BEGIN 1234
table public.tb_tests: INSERT: id[integer]:1 product_name[character varying]:'Laptop'
price[numeric(10,2)]:5999.99 create_time[timestamp with time zone]:'2024-05-20 10:00:00+08'
table public.tb_tests: INSERT: id[integer]:2 product_name[character varying]:'Mechanical keyboard'
price[numeric(10,2)]:299.99 create_time[timestamp with time zone]:'2024-05-20 10:01:00+08'
COMMIT 1234
BEGIN 1235
table public.tb_tests: UPDATE: id[integer]:1 price[numeric(10,2)]:5899.99 (old:5999.99)
COMMIT 1235
BEGIN 1236
table public.tb_tests: DELETE: id[integer]:2
COMMIT 1236

RDS for PostgreSQL
Best Practices 16 Creating Replication Slots to Enable CDC

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

NO TE

● After pg_recvlogical consumes data, the data is marked as processed and restart_lsn of
the replication slot is updated to the latest position. pg_recvlogical and
pg_logical_slot_peek_changes will not return these data (to prevent repeated
consumption).

● The command remains connected. If there are new changes (for example, INSERT or
UPDATE is executed again), new transaction data is generated in real time.

● To terminate the consumption, press Ctrl+C. The next execution will continue the
consumption from the last position where it is terminated (depending on restart_lsn
recorded by the replication slot).

Disabling CDC
RDS for PostgreSQL instances with CDC enabled require more space for storing
WAL logs. If CDC is no longer needed, to prevent replication slots from running
out of storage space, disable CDC by performing the following operations:

1. Connect to the RDS for PostgreSQL instance using the account root.
psql -h <instance-address> -p 5432 -U root -d testdb

2. (Optional) Check for the replication slot.
SELECT slot_name FROM pg_replication_slots WHERE slot_name = 'cdc_replication_slot';

3. Delete the replication slot. This operation cannot be undone. Exercise caution
when performing this operation.
 SELECT pg_drop_replication_slot('cdc_replication_slot');

4. Verify that CDC is disabled.
SELECT slot_name FROM pg_replication_slots;

If the query result does not contain cdc_replication_slot, the feature has
been disabled.

RDS for PostgreSQL
Best Practices 16 Creating Replication Slots to Enable CDC

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

17 Read/Write Splitting with Pgpool

Function
Pgpool is a middleware designed for PostgreSQL. It is deployed between database
servers and clients and transfers messages between the frontend and backend.
Pgpool is transparent to servers and clients. It provides features such as connection
pooling, replication, load balancing, and connection limiting to improve the
performance, availability, and scalability of database clusters.

This topic describes how to use pgpool to implement read/write splitting for RDS
for PostgreSQL DB instances and read replicas.

Prerequisites
● You have purchased an ECS that is in the same region, VPC, and security

group as your RDS for PostgreSQL DB instance. For details, see Purchasing an
ECS in Custom Config Mode.

● You have purchased an RDS for PostgreSQL DB instance and installed a
PostgreSQL client on the ECS. For details, see Buying a DB Instance and
Connecting to It Using a PostgreSQL Client.

● You have created a read replica for the RDS for PostgreSQL DB instance. For
details, see Creating a Read Replica.

● You have connected to the RDS for PostgreSQL DB instance through the ECS.
For details, see Connecting to a DB Instance from a Linux ECS over a
Private Network.

Procedure

Step 1: Install Pgpool
This step uses an ECS using CentOS 7 and PostgreSQL 12 as an example. For other
OS and database versions, adjust the parameter values in the following commands
as needed.

Log in to the ECS and run the following commands to install PostgreSQL 12 and
pgpool:

Configure a yum repository in the environment.
sudo yum install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-7-x86_64/pgdg-redhat-

RDS for PostgreSQL
Best Practices 17 Read/Write Splitting with Pgpool

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

https://support.huaweicloud.com/intl/en-us/usermanual-ecs/ecs_03_7002.html
https://support.huaweicloud.com/intl/en-us/usermanual-ecs/ecs_03_7002.html
https://support.huaweicloud.com/intl/en-us/qs-rds-pg/rds_02_0016.html
https://support.huaweicloud.com/intl/en-us/qs-rds-pg/rds_02_0016.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_add_read_replica_pg.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_connect_05.html#section1
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_connect_05.html#section1

repo-latest.noarch.rpm
Search for the postgresql package.
sudo yum search all postgresql
Search for the pgpool package.
sudo yum search all pgpool
Install PostgreSQL 12.
sudo yum install -y postgresql12-server
Install pgpool 12.
sudo yum install -y pgpool-II-12-extensions

Step 2: Configure Pgpool

Use pgpool to implement load balancing for access. Authentication occurs
between the client and pgpool. The client still needs to pass the authentication of
PostgreSQL.

1. Query the pgpool installation path.
rpm -qa | grep pgpool

Figure 17-1 Execution results

2. Run the SQL statements below on the RDS for PostgreSQL DB instance to
create a user who is authorized to manage the DB instance.
Create a user who is authorized to manage the DB instance.
create role digoal login encrypted password 'xxxxxxx';
create database digoal owner digoal;

Create a user who is authorized to log in to postgres or a specified database
and check the health heartbeats between pgpool and the read replica. With
the parameters of pgpool properly configured, this user can check the WAL
replay latency on the read replica.
create role nobody login encrypted password 'xxxxxxx';

xxxxxxx: password of the new database user
3. Modify the pgpool.conf file.

cd /etc/pgpool-II-12/

cp pgpool.conf.sample-stream pgpool.conf

vi pgpool.conf

– /etc/pgpool-II-12/: directory where pgpool is installed
– pgpool.conf.sample-stream: default configuration file template provided

by pgpool for streaming replication
– pgpool.conf: pgpool configuration file

4. Press i to enter the edit mode. Modify the following items based on logs. You
can choose to modify other configuration information according to the
comments in the pgpool.conf file.
listen_addresses = '*'

backend_hostname0 = 'IP address of the primary instance'
backend_port0 = 5432
backend_flag0 = 'ALWAYS_MASTER'

backend_hostname1 = 'IP address of the read replica'
backend_port1 = 5432
backend_flag1 = 'ALLOW_TO_FAILOVER'

RDS for PostgreSQL
Best Practices 17 Read/Write Splitting with Pgpool

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

enable_pool_hba = on

pid_file_name = '/var/run/pgpool-II-12/pgpool.pid'

– listen_addresses: IP addresses that pgpool listens on. In this example,
specify all IP addresses.

– backend_hostname: IP address of the backend PostgreSQL database
node to be connected

– backend_port: port of the backend PostgreSQL database node to be
connected

– backend_flag: used by pgpool to control node behavior
5. Use MD5 authentication to configure the pool_passwd file.

pg_md5 --md5auth --username=digoal "xxxxxxx"
pg_md5 --md5auth --username=nobody "xxxxxxx"

The passwords of the digoal and nobody users are generated and
automatically written to the pool_passwd file.

6. Check the automatically generated pool_passwd file.
cd /etc/pgpool-II-12

cat pool_passwd

pool_passwd: configuration file for pgpool to store encrypted passwords of
PostgreSQL users

Figure 17-2 Execution results

7. Configure the pgpool_hba file.
cd /etc/pgpool-II-12
cp pool_hba.conf.sample pool_hba.conf
vi pool_hba.conf

Press i to enter the edit mode.
Add the following content to the pool_hba.conf file:
host all all 0.0.0.0/0 md5

– pool_hba.conf.sample: configuration file template for client connection
authentication rules

– pool_hba.conf: authentication rule file for client connections to pgpool

Figure 17-3 Execution results

8. Configure the PCP password file.
This file is used to manage the users and passwords of pgpool, instead of
database users and passwords.
cd /etc/pgpool-II-12

RDS for PostgreSQL
Best Practices 17 Read/Write Splitting with Pgpool

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

pg_md5 abc # The password abc is used as an example.
900150983cd24fb0d6963f7d28e17f72

cp pcp.conf.sample pcp.conf

vi pcp.conf

Press i to enter the edit mode.
Add the following content to the pcp.conf file:
USERID:MD5PASSWD
manage:900150983cd24fb0d6963f7d28e17f72 # The manage user is used to manage the PCP
password file.

– pcp.conf.sample: template file used to generate the pcp.conf file
– pcp.conf: file used for authentication by the PCP interface. It defines the

username and encrypted password for an administrator to remotely
manage pgpool.

Step 3: Start Pgpool and Verify Read/Write Splitting
1. Start pgpool.

cd /etc/pgpool-II-12

pgpool -f ./pgpool.conf -a ./pool_hba.conf -F ./pcp.conf

2. Use pgpool to connect to the DB instance.
psql -h 127.0.0.1 -p 9999 -U digoal -d postgres

– 127.0.0.1: the IP address specified by listen_addresses in the
pgpool.conf file

– 9999: the default listening port configured in pgpool.conf

Figure 17-4 Execution results

3. Check the pgpool cluster status.
show pool_nodes;

Figure 17-5 Execution results

4. Run the command below on the database, disconnect from and reconnect to
the database, and query pg_is_in_recovery() again. If t and f are returned
alternately, requests are sent to the primary instance and read replica
alternately, indicating that read/write splitting is successful.
SELECT pg_is_in_recovery();

pg_is_in_recovery() is used to check whether the DB instance is in recovery
mode. If t is returned, requests are sent to the read replica. If f is returned,
requests are sent to the primary instance.

RDS for PostgreSQL
Best Practices 17 Read/Write Splitting with Pgpool

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

Figure 17-6 Execution results

FAQ

How Do I Stop Pgpool and Reload the Configuration for Pgpool?
You can run the pgpool --help command to obtain more information about the
commands used in pgpool. Example:

cd /etc/pgpool-II-12

pgpool -f ./pgpool.conf -m fast stop

How Do I Configure the pgpool.conf File If There Are Multiple Read
Replicas?

Add new configuration information according to the format of the pgpool.conf
file. Example:

backend_hostname1 = 'xx.xx.xxx.xx'
backend_port1 = 5432
backend_weight1 = 1
backend_flag1 = 'ALLOW_TO_FAILOVER'
backend_application_name1 = 'server1'

backend_hostname2 = 'xx.xx.xx.xx'
backend_port2 = 5432
backend_weight2 = 1
backend_flag2 = 'ALLOW_TO_FAILOVER'
backend_application_name1 = 'server2'

RDS for PostgreSQL
Best Practices 17 Read/Write Splitting with Pgpool

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

What Can I Do If T or F Is Always Returned When I Query
pg_is_in_recovery()?

If t is always returned, pgpool is connected only to the read replica. If f is always
returned, pgpool is connected only to the primary instance. At the same time, an
abnormal node is always displayed in the show pool_nodes; command output.

Figure 17-7 Execution results

You can clear the pgpool_status configuration file and restart pgpool. Example:

cd /etc/pgpool-II-12

Stop the service.
pgpool -f ./pgpool.conf -m fast stop

Delete the configuration file.
rm /tmp/pgpool_status

Restart the service.
pgpool -f ./pgpool.conf -a ./pool_hba.conf -F ./pcp.conf

If the fault persists, you can use the pcp_attach_node tool to register the primary
instance or read replica again. pcp_attach_node is a cluster management tool
provided by pgpool. It can re-register nodes in a cluster with the cluster.

● Check the PCP connection user.
cd /etc/pgpool-II-12

cat pcp.conf

RDS for PostgreSQL
Best Practices 17 Read/Write Splitting with Pgpool

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

Figure 17-8 Execution results

● Use pcp_attach_node to register nodes again.
pcp_attach_node -h local-IP-address -U pcp_user node_id

Example:
pcp_attach_node –h 127.0.0.1 –U manage 0

RDS for PostgreSQL
Best Practices 17 Read/Write Splitting with Pgpool

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

18 User Preference Recommendation
Systems

Scenarios

Recommendation systems are widely used on Internet platforms and in traditional
industries. They analyze user behavior, preferences, and context information to
provide personalized content recommendations. Common scenarios include:

● E-commerce and retail: Products are recommended based on users' browsing
and purchase history (for example, "You May Like").

● Streaming media and content platforms: Content (such as movies and short
videos) is recommended based on watching records and ratings.

● Travel services: Destinations are recommended based on user preferences.
● App recommendation: Apps are recommended based on users' app download

and usage habits.

This section uses movies as an example to describe how to design a
recommendation system database.

Prerequisites

You have installed the pg_trgm extension.

Design and Implementation

The pg_trgm extension of PostgreSQL provides string similarity calculation based
on trigrams. You can use this extension to build a simple user recommendation
system.

1. Connect to your RDS for PostgreSQL instance.
2. Create a test table on the instance.

CREATE TABLE movies (
 id INT, -- Movie ID
 title VARCHAR(255), -- Movie name
 description TEXT, -- Movie description
 genres VARCHAR(255)[], -- Movie genre
 year INTEGER -- Movie year
);

RDS for PostgreSQL
Best Practices 18 User Preference Recommendation Systems

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_09_0070.html

3. Search for movies whose titles are similar to a specified movie title.
-- Create a GIN index to accelerate similarity queries.
CREATE INDEX movies_title_gin_idx ON movies USING gin(title gin_trgm_ops);

SELECT
 m2.id,
 m2.title,
 similarity(m1.title, m2.title) AS similarity_score
FROM
 movies m1,
 movies m2
WHERE
 m1.id = 123 AND -- Target movie ID
 m1.id != m2.id AND
 similarity(m1.title, m2.title) > 0.3 -- Similarity threshold
ORDER BY
 similarity_score DESC
LIMIT 10;

4. Search for movies based on the similarity of movie descriptions.
-- Create a GIN index for descriptions.
CREATE INDEX movies_description_gin_idx ON movies USING gin(description gin_trgm_ops);

SELECT
 m2.id,
 m2.title,
 similarity(m1.description, m2.description) AS similarity_score
FROM
 movies m1,
 movies m2
WHERE
 m1.id = 123 AND
 m1.id != m2.id AND
 similarity(m1.description, m2.description) > 0.1 -- The description similarity threshold can be set to
a small value.
ORDER BY
 similarity_score DESC
LIMIT 10;

5. Search for movies based on multiple features such as the title, description,
and genre.
SELECT
 m2.id,
 m2.title,
 (
 0.5 * similarity(m1.title, m2.title) +
 0.3 * similarity(m1.description, m2.description) +
 0.2 * (SELECT COUNT(*) FROM unnest(m1.genres) AS g1
 JOIN unnest(m2.genres) AS g2 ON g1 = g2)::FLOAT /
 GREATEST(array_length(m1.genres, 1), array_length(m2.genres, 1))
) AS combined_similarity
FROM
 movies m1,
 movies m2
WHERE
 m1.id = 123 AND
 m1.id != m2.id
ORDER BY
 combined_similarity DESC
LIMIT 10;

6. Limit the search scope based on the user configuration. For example, run the
following SQL statements to search for only movies of the same type:
SELECT m2.id, m2.title, similarity(m1.title, m2.title) AS similarity_score
FROM movies m1, movies m2
WHERE m1.id = 123 AND
 m1.id != m2.id AND
 m1.genres && m2.genres AND -- Must have at least one same genre.
 similarity(m1.title, m2.title) > 0.3

RDS for PostgreSQL
Best Practices 18 User Preference Recommendation Systems

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

ORDER BY similarity_score DESC
LIMIT 10;

RDS for PostgreSQL
Best Practices 18 User Preference Recommendation Systems

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

19 Suggestions on RDS for PostgreSQL
Metric Alarm Configurations

You can set alarm rules on Cloud Eye to customize the monitored objects and
notification policies and keep track of the instance status. This topic describes how
to configure RDS for PostgreSQL metric alarm rules.

Creating a Metric Alarm Rule

Step 1 Log in to the management console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 Click Service List. Under Management & Governance, click Cloud Eye.

Step 4 In the navigation pane on the left, choose Cloud Service Monitoring > Relational
Database Service.

Figure 19-1 Choosing a monitored object

Step 5 Locate the DB instance for which you want to create an alarm rule and click
Create Alarm Rule in the Operation column.

RDS for PostgreSQL
Best Practices

19 Suggestions on RDS for PostgreSQL Metric Alarm
Configurations

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

https://console-intl.huaweicloud.com/?locale=en-us

Figure 19-2 Creating an alarm rule

Step 6 On the displayed page, set parameters as required.

Table 19-1 Alarm rule information

Parameter Description

Name Alarm rule name. The system generates a random name, which
you can modify.

Description Description about the rule.

Method There are three options: Associate template, Use existing
template, and Configure manually.
NOTE

If you select Associate template, after the associated template is
modified, the policies contained in this alarm rule to be created will be
modified accordingly.
You are advised to select Use existing template. The existing templates
already contain three common alarm metrics: CPU usage, memory
usage, and storage space usage.

Template Select the template to be used.
You can select a default alarm template or create a custom
template.

Alarm Policy Policy for triggering an alarm.
Whether to trigger an alarm depends on whether the metric
data in consecutive periods reaches the threshold. For example,
Cloud Eye triggers an alarm if the average CPU usage of the
monitored object is 80% or more for three consecutive 5-minute
periods.
NOTE

A maximum of 50 alarm policies can be added to an alarm rule. If any
one of these alarm policies is met, an alarm is triggered.

Alarm
Severity

The alarm severity can be Critical, Major, Minor, or
Informational.

RDS for PostgreSQL
Best Practices

19 Suggestions on RDS for PostgreSQL Metric Alarm
Configurations

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

Figure 19-3 Configuring alarm notification

Table 19-2 Alarm notification

Parameter Description

Alarm
Notification

Whether to notify users when alarms are triggered. Notifications
can be sent by email, text message, or HTTP/HTTPS message.

Notification
Recipient

You can select a notification group or topic subscription as
required.

Notification
Group

Notification group the alarm notification is to be sent to.

Notification
Object

Object the alarm notification is to be sent to. You can select the
account contact or a topic.
● The account contact is the mobile phone number and email

address of the registered account.
● A topic is used to publish messages and subscribe to

notifications.

Notification
Window

Cloud Eye sends notifications only within the notification
window specified in the alarm rule.
If Notification Window is set to 08:00-20:00, Cloud Eye sends
notifications only within 08:00-20:00.

Trigger
Condition

Condition for triggering an alarm notification. You can select
Generated alarm (when an alarm is generated), Cleared alarm
(when an alarm is cleared), or both.

Enterprise
Project

Enterprise project that the alarm rule belongs to. Only users
with the enterprise project permissions can view and manage
the alarm rule.

RDS for PostgreSQL
Best Practices

19 Suggestions on RDS for PostgreSQL Metric Alarm
Configurations

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

Parameter Description

Tag A tag is a key-value pair. Tags identify cloud resources so that
you can easily categorize and search for your resources.

Step 7 Click Create. The alarm rule is created.

For details about how to create alarm rules, see Creating an Alarm Rule in the
Cloud Eye User Guide.

----End

Metric Alarm Configuration Suggestions

Table 19-3 Suggestions on RDS for PostgreSQL metric alarm configurations

Metric ID Name Metric
Description

Threshold
in Best
Practices

Ala
rm
Sev
erit
y in
Bes
t
Pra
ctic
es

Handling
Suggestion

rds001_cpu_
util

CPU
Usage

CPU usage
of the
monitored
object

Raw data >
80% for
three
consecutive
periods

Maj
or

1. Rectify the
fault by
referring to
Troubleshooti
ng High CPU
Usage.

2. If the CPU
usage remains
high due to
increased
workloads,
upgrade the
instance
specifications.
For details, see
Changing a
DB Instance
Class.

RDS for PostgreSQL
Best Practices

19 Suggestions on RDS for PostgreSQL Metric Alarm
Configurations

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

https://support.huaweicloud.com/intl/en-us/usermanual-ces/en-us_topic_0084572213.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_10_0000.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_10_0000.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_10_0000.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_scale_rds.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_scale_rds.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_scale_rds.html

Metric ID Name Metric
Description

Threshold
in Best
Practices

Ala
rm
Sev
erit
y in
Bes
t
Pra
ctic
es

Handling
Suggestion

rds002_me
m_util

Memory
Usage

Memory
usage of the
monitored
object

Raw data >
90% for
three
consecutive
periods

Maj
or

1. Rectify the
fault by
referring to
Troubleshooti
ng High
Memory
Usage.

2. If the memory
usage remains
high due to
increased
workloads,
upgrade the
instance
specifications.
For details, see
Changing a
DB Instance
Class.

rds039_disk
_util

Storage
Space
Usage

Storage
space usage
of the
monitored
object

Raw data >
80% for
three
consecutive
periods

Maj
or

1. Rectify the
fault by
referring to
Troubleshooti
ng High
Storage Space
Usage.

2. If the storage
space usage
remains high
due to
increased
workloads,
scale up the
storage space.
For details, see
Scaling
Storage
Space.

RDS for PostgreSQL
Best Practices

19 Suggestions on RDS for PostgreSQL Metric Alarm
Configurations

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00006.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00006.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00006.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00006.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_scale_rds.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_scale_rds.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_scale_rds.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00008.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00008.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00008.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00008.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_scale_cluster.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_scale_cluster.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_scale_cluster.html

Metric ID Name Metric
Description

Threshold
in Best
Practices

Ala
rm
Sev
erit
y in
Bes
t
Pra
ctic
es

Handling
Suggestion

rds045_olde
st_replicatio
n_slot_lag

Oldest
Replicati
on Slot
Lag

Lagging size
of the most
lagging
replica in
terms of
WAL data
received

Raw data >
20,480 MB
for one
period

Maj
or

Rectify the fault
by referring to
Troubleshooting
High Oldest
Replication Slot
Lag or
Replication Lag.

rds046_repli
cation_lag

Replicati
on Lag

Replication
lag

Raw data >
600s for
three
consecutive
periods

Maj
or

rds083_con
n_usage

Connecti
on Usage

Percent of
used
PostgreSQL
connections
to the total
number of
connections

Raw data >
80% for
three
consecutive
periods

Maj
or

1. Evaluate the
impact of
increased
connections
on workloads
and release
unnecessary
connections.
For details, see
What Do I Do
If There Are
Too Many
Database
Connections?

2. Set the
maximum
number of
connections to
an appropriate
value. For
details, see
What Is the
Maximum
Number of
Connections
to an RDS for
PostgreSQL
Instance?

RDS for PostgreSQL
Best Practices

19 Suggestions on RDS for PostgreSQL Metric Alarm
Configurations

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00012.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00012.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00012.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00012.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00012.html
https://support.huaweicloud.com/intl/en-us/rds-pg_faq/rds_faq_0019.html
https://support.huaweicloud.com/intl/en-us/rds-pg_faq/rds_faq_0019.html
https://support.huaweicloud.com/intl/en-us/rds-pg_faq/rds_faq_0019.html
https://support.huaweicloud.com/intl/en-us/rds-pg_faq/rds_faq_0019.html
https://support.huaweicloud.com/intl/en-us/rds-pg_faq/rds_faq_0019.html
https://support.huaweicloud.com/intl/en-us/rds-pg_faq/rds_faq_0055.html
https://support.huaweicloud.com/intl/en-us/rds-pg_faq/rds_faq_0055.html
https://support.huaweicloud.com/intl/en-us/rds-pg_faq/rds_faq_0055.html
https://support.huaweicloud.com/intl/en-us/rds-pg_faq/rds_faq_0055.html
https://support.huaweicloud.com/intl/en-us/rds-pg_faq/rds_faq_0055.html
https://support.huaweicloud.com/intl/en-us/rds-pg_faq/rds_faq_0055.html
https://support.huaweicloud.com/intl/en-us/rds-pg_faq/rds_faq_0055.html

Metric ID Name Metric
Description

Threshold
in Best
Practices

Ala
rm
Sev
erit
y in
Bes
t
Pra
ctic
es

Handling
Suggestion

active_conn
ections

Active
Connecti
ons

Number of
active
database
connections

Raw data >
[vCPUs x 2]
for one
period

Maj
or

Rectify the fault
by referring to
Troubleshooting
Abnormal
Connections and
Active
Connections

oldest_trans
action_dura
tion

Oldest
Active
Transacti
on
Duration

Length of
time since
the start of
the
transaction
that has
been active
longer than
any other
current
transaction

Set the
threshold as
required.
Reference
value: Raw
data >
7,200,000
ms for one
period

Maj
or

Rectify the fault
by referring to
Troubleshooting
Long-Running
Transactions.

oldest_trans
action_dura
tion_2pc

Oldest
Two-
Phase
Commit
Transacti
on
Duration

Length of
time since
the start of
the
transaction
that has
been
prepared for
two-phase
commit
longer than
any other
current
transaction

Set the
threshold as
required.
Reference
value: Raw
data >
7,200,000
ms for one
period

Maj
or

RDS for PostgreSQL
Best Practices

19 Suggestions on RDS for PostgreSQL Metric Alarm
Configurations

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00009.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00009.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00009.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00009.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00009.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00010.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00010.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00010.html

Metric ID Name Metric
Description

Threshold
in Best
Practices

Ala
rm
Sev
erit
y in
Bes
t
Pra
ctic
es

Handling
Suggestion

db_max_age Maximu
m
Database
Age

Maximum
age of the
current
database,
which is the
value of
max(age(da
tfrozenxid))
in the
pg_databas
e table

Raw data >
1,000,000,0
00 for one
period

Maj
or

Rectify the fault
by referring to
Troubleshooting
Database Age
Increase
Problem.

slow_sql_thr
ee_second

Number
of SQL
Statemen
ts
Executed
for More
Than 3s

Number of
slow SQL
statements
whose
execution
time is
longer than
3s
This metric
shows an
instantaneou
s value at
the
collection
time instead
of an
accumulated
value within
1 minute.

Set the
threshold as
required.
Reference
value: Raw
data >
[vCPUs x 2]
for one
period

Maj
or

Rectify the fault
by referring to
Troubleshooting
SQL Statements
That Have Been
Executed for 3s
or 5s.

RDS for PostgreSQL
Best Practices

19 Suggestions on RDS for PostgreSQL Metric Alarm
Configurations

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00007.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00007.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00007.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00007.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00013.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00013.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00013.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00013.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00013.html

Metric ID Name Metric
Description

Threshold
in Best
Practices

Ala
rm
Sev
erit
y in
Bes
t
Pra
ctic
es

Handling
Suggestion

slow_sql_fiv
e_second

Number
of SQL
Statemen
ts
Executed
for More
Than 5s

Number of
slow SQL
statements
whose
execution
time is
longer than
5s
This metric
shows an
instantaneou
s value at
the
collection
time instead
of an
accumulated
value within
1 minute.

Set the
threshold as
required.
Reference
value: Raw
data >
[vCPUs x 2]
for one
period

Maj
or

inactive_logi
cal_replicati
on_slot

Inactive
Logical
Replicati
on Slots

Number of
inactive
logical
replication
slots

Raw data >
1 for three
consecutive
periods

Maj
or

Rectify the fault
by referring to
Troubleshooting
Inactive Logical
Replication
Slots.

RDS for PostgreSQL
Best Practices

19 Suggestions on RDS for PostgreSQL Metric Alarm
Configurations

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00011.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00011.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00011.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_00011.html

20 Security Best Practices

PostgreSQL has earned a reputation for reliability, stability, and data consistency,
and has become the preferred choice as an open-source relational database for
many enterprises. RDS for PostgreSQL is a cloud-based web service that is reliable,
scalable, easy to manage, and immediately ready for use.

Make security configurations from the following dimensions to meet your service
needs.

● Configuring the Maximum Number of Connections to the Database
● Configuring the Timeout for Client Authentication
● Configuring SSL and Encryption Algorithm
● Configuring Password Encryption
● Configuring Appropriate pg_hba Rules
● Disabling the Backslash Quote
● Periodically Checking and Deleting Roles That Are No Longer Used
● Revoking All Permissions on the public Schema
● Setting a Proper Password Validity Period for a User Role
● Configuring the Log Level to Record SQL Statements That Cause Errors
● Configuring Least-Privilege Permissions for Database Accounts
● Enabling Data Backup
● Enabling Database Audit
● Avoiding Binding an EIP to Your RDS for PostgreSQL Instance
● Updating the Database Version to the Latest
● Configuring the Delay for Account Authentication Failures

Configuring the Maximum Number of Connections to the Database

The max_connections parameter specifies the maximum concurrent connections
allowed in a database. If the value of this parameter is large, the RDS for
PostgreSQL database may request more System V shared memory or semaphore.
As a result, the requested shared memory or semaphore may exceed the default
value on the OS. Set max_connections based on service complexity. For details,
see Instance Usage Suggestions.

RDS for PostgreSQL
Best Practices 20 Security Best Practices

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_12_0002.html

Configuring the Timeout for Client Authentication
The authentication_timeout parameter specifies the maximum duration allowed
to complete client authentication, in seconds. This parameter prevents clients from
occupying a connection for a long time. The default value is 60s. If client
authentication is not complete within the specified period, the connection is
forcibly closed. Using this parameter can enhance the security of your RDS for
PostgreSQL instance.

Configuring SSL and Encryption Algorithm
SSL is recommended for TCP/IP connections because SSL ensures that all
communications between clients and servers are encrypted, preventing data
leakage and tampering and ensuring data integrity. When configuring SSL,
configure the TLS protocol and encryption algorithm on the server. TLSv1.2 and
EECDH+ECDSA+AESGCM:EECDH+aRSA+AESGCM:EDH+aRSA+AESGCM:EDH+aDSS
+AESGCM:!aNULL:!eNULL:!LOW:!3DES:!MD5:!EXP:!SRP:!RC4 are recommended. For
details, see SSL Connection.

To configure the TLS protocol and encryption algorithm, use the parameters
ssl_min_protocol_version and ssl_ciphers.

Configuring Password Encryption
Passwords must be encrypted. When you use CREATE USER or ALTER ROLE to
change a password, the password is stored in a system catalog after being
encrypted by default. scram-sha-256 is recommended for password encryption. To
change the password encryption algorithm, change the value of
password_encryption.

The MD5 option is used only for compatibility with earlier versions. New DB
instances use scram-sha-256 by default.

NO TICE

The modification of password_encryption takes effect only after the password is
reset.

Configuring Appropriate pg_hba Rules
Appropriate pg_hba rules are crucial to ensure the security of RDS for PostgreSQL
instances. You are advised to allow only necessary users and hosts to access your
DB instance from specific IP addresses or subnets, and periodically review and
update the pg_hba file to ensure that the rules meet your workload requirements.
For details, see Modifying pg_hba.conf.

Disabling the Backslash Quote
The backslash_quote parameter specifies whether a single quotation mark (') in a
string can be replaced by a backslash quote (\'). The preferred, SQL-standard way
to represent a single quotation mark is by doubling it (''). If client-side code does
escaping incorrectly then an SQL-injection attack is possible. You are advised to set

RDS for PostgreSQL
Best Practices 20 Security Best Practices

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_connect_05.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_05_0027.html

backslash_quote to safe_encoding to reject queries in which a single quotation
mark appears to be escaped by a backslash, preventing SQL injection risks.

Periodically Checking and Deleting Roles That Are No Longer Used

Check whether all roles are mandatory. Every unknown role must be reviewed to
ensure that it is used properly. If any role is no longer used, delete it. To query
roles, run the following command:

SELECT rolname FROM pg_roles;

Revoking All Permissions on the public Schema

The public schema is the default schema. All users can access objects in it,
including tables, functions, and views, which may cause security vulnerabilities.
You can run the following command as user root to revoke the permissions:

revoke all on schema public from public;

Setting a Proper Password Validity Period for a User Role

When creating a role, you can use the VALID UNTIL keyword to specify when the
password of the role becomes invalid. If this keyword is ignored, the password will
be valid permanently. You are advised to change the password periodically, for
example, every three months. To configure a password validity period, run the
following command:

CREATE ROLE name WITH PASSWORD 'password' VALID UNTIL 'timestamp';

To check whether a password validity period is configured, run the following
command:

SELECT rolname,rolvaliduntil FROM pg_roles WHERE rolsuper = false AND
rolvaliduntil IS NULL;

Configuring the Log Level to Record SQL Statements That Cause Errors

The log_min_error_statement parameter specifies which SQL statements that
cause errors can be recorded in server logs. The SQL statements of the specified
level or higher are recorded in logs. Valid values include debug5, debug4,
debug3, debug2, debug1, info, notice, warning, error, log, fatal, and panic. The
value of log_min_error_statement must be at least error. For details, see Log
Reporting.

Configuring Least-Privilege Permissions for Database Accounts

RDS for PostgreSQL allows you to grant role-based permissions to a database
account for data and command access. You are advised to create database
accounts and configure least-privilege permissions for the accounts. If any
account permission does not meet the role requirements, update the account
permission or delete the account. RDS for PostgreSQL has some built-in
accounts, which are used to provide background O&M services for DB instances
and cannot be used or deleted by users.

RDS for PostgreSQL
Best Practices 20 Security Best Practices

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_09_0040.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_0036.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_0036.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_05_0009.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_05_0009.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_05_0013.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_09_0040.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_09_0040.html

Enabling Data Backup
When you create an RDS DB instance, an automated backup policy is enabled by
default with the retention period set to seven days. You can change the backup
retention period as required. RDS for PostgreSQL DB instances support automated
backups and manual backups. You can periodically back up your instance. If the
instance fails or data is damaged, restore it using backups to ensure data
reliability. For details, see Data Backups.

Enabling Database Audit
By using the PostgreSQL Audit extension (pgAudit) with your RDS for PostgreSQL
instance, you can capture detailed records that auditors usually need to meet
compliance regulations. For example, you can use pgAudit to track changes made
to specific databases and tables, as well as record users who make such changes
and many other details. pgAudit is disabled by default. Enable it as required. For
details, see Using pgAudit.

Avoiding Binding an EIP to Your RDS for PostgreSQL Instance
Do not deploy your instance on the Internet or in a demilitarized zone (DMZ).
Instead, deploy it on a Huawei Cloud private network and use routers or firewalls
to control access to your instance. Do not bind an EIP to your instance to prohibit
unauthorized access and DDoS attacks from the Internet. If you have bound an
EIP to your instance, you are advised to unbind it. If you do need an EIP, configure
security group rules to restrict the source IP addresses that can access your
instance.

Updating the Database Version to the Latest
For PostgreSQL versions that are no longer maintained by the PostgreSQL
community, the RDS for PostgreSQL product lifecycle will be released accordingly.
Using an earlier version may pose security risks. Running the software of the latest
version can protect the system from certain attacks. You can upgrade the minor
version or the major version of your DB instance as required.

Configuring the Delay for Account Authentication Failures
By default, RDS for PostgreSQL instances have a built-in auth_delay extension.
auth_delay causes the server to stop for a short period of time before an
authentication failure message is returned, making it more difficult to crack the
database password. To configure the delay for account authentication failures,
change the value of the auth_delay.milliseconds parameter (which indicates the
number of milliseconds to wait before reporting an authentication failure) by
referring to Modifying Parameters of an RDS for PostgreSQL Instance. The
default value of this parameter is 3000.

RDS for PostgreSQL
Best Practices 20 Security Best Practices

Issue 01 (2025-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_09_0027.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_09_0027.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_09_0028.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_09_0030.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_08_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_09_0063.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0030969470.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0030969470.html
https://support.huaweicloud.com/intl/en-us/bulletin-rds-pg/rds_bulletin_0007.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_05_0003.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_05_0003.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_09_0053.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-pg/rds_pg_configuration.html

	Contents
	1 Best Practices
	2 Creating a Cross-Region DR Relationship for an RDS for PostgreSQL Instance
	2.1 Overview
	2.2 Resource Planning
	2.3 Preparing an RDS for PostgreSQL Instance in the Production Center
	2.4 Preparing an RDS for PostgreSQL Instance in the DR Center
	2.5 Configuring Cross-Region Network Connectivity
	2.6 Creating a DR Relationship
	2.7 Promoting a DR Instance to Primary
	2.8 Removing a DR Relationship
	2.9 FAQs

	3 RDS for PostgreSQL Publications and Subscriptions
	4 User-Defined Data Type Conversion
	5 Using Client Drivers to Implement Failover and Read/Write Splitting
	6 Other Extension Plug-Ins
	7 Best Practices for Using PoWA
	7.1 Overview
	7.2 Supported Performance Metrics
	7.2.1 Database Performance Metrics
	7.2.2 Instance Performance Metrics

	7.3 PoWA Deployment
	7.3.1 Deploying PoWA for an RDS for PostgreSQL Instance
	7.3.2 Deploying PoWA on a Self-Managed PostgreSQL Instance

	7.4 Viewing Metric Details on PoWA

	8 Best Practices for Using pg_dump
	9 Best Practices for Using PgBouncer
	10 Database Naming Rules
	11 RDS for PostgreSQL Table Design
	12 RDS for PostgreSQL Permissions Management
	13 Troubleshooting WAL Accumulation
	14 Updating, Deleting, or Inserting Data Records at a Time
	15 Using Event Triggers to Implement the DDL Recycle Bin, Firewalls, and Incremental Synchronization
	16 Creating Replication Slots to Enable CDC
	17 Read/Write Splitting with Pgpool
	18 User Preference Recommendation Systems
	19 Suggestions on RDS for PostgreSQL Metric Alarm Configurations
	20 Security Best Practices

