
Distributed Message Service for RabbitMQ

Best Practices

Issue 01

Date 2024-11-11

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.



 
 
Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.
 
Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.
 
Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.
  
 
 
 
 
 

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i



Contents

1 RabbitMQ Best Practices........................................................................................................1

2 Automatic Recovery of a RabbitMQ Client from Network Exceptions.......................2

3 Automatic Consumer Reconnection After a RabbitMQ Node Restart....................... 4

4 Improving RabbitMQ Performance..................................................................................... 7

5 Configuring Queue Load Balancing.................................................................................. 13

6 Deduplicating Messages Through Message Idempotence.......................................... 17

7 Suggestions on Using DMS for RabbitMQ Securely......................................................19

Distributed Message Service for RabbitMQ
Best Practices Contents

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii



1 RabbitMQ Best Practices

This section summarizes best practices of Distributed Message Service (DMS) for
RabbitMQ in common scenarios. Each practice is given a description and
procedure.

Table 1-1 RabbitMQ best practices

Best Practice Description

Automatic Recovery of a
RabbitMQ Client from
Network Exceptions

This document provides the client reconnection
sample code. Clients can be automatically
reconnected when network exceptions occur,
reducing the impact of network faults on
services.

Automatic Consumer
Reconnection After a
RabbitMQ Node Restart

This document provides the consumer
reconnection sample code after a RabbitMQ
broker restart. A channel can be created for
consumers to continue consumption after the
previous channel is closed.

Improving RabbitMQ
Performance

This document describes how to achieve high
RabbitMQ performance by setting the queue
length, cluster load balancing, priority queues,
and other parameters.

Configuring Queue Load
Balancing

This document describes how to improve cluster
utilization by configuring queue load balancing
among brokers.

Deduplicating Messages
Through Message
Idempotence

This document describes the causes of duplicate
messages production and the handling measures.

Suggestions on Using DMS
for RabbitMQ Securely

This document describes security best practices of
using RabbitMQ. It aims to provide a standard
guide for overall security capabilities.

Distributed Message Service for RabbitMQ
Best Practices 1 RabbitMQ Best Practices

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1



2 Automatic Recovery of a RabbitMQ
Client from Network Exceptions

Overview
Messages cannot be produced or consumed on the client due to server restart or
network jitter.

With a connection retry mechanism on the client, the network connection on the
client can be automatically restored. Automatic network recovery is triggered in
the following scenarios:

● An exception is thrown in a connection's I/O loop.
● Socket read times out.
● Server heartbeat is lost.

NO TE

● Java clients of version 4.0.0 or later support automatic network recovery by default.
● If an application uses the Connection.Close method to close a connection, automatic

network recovery will not be enabled or triggered.

Sample Code for Connection Retry on a RabbitMQ Client During Network
Exceptions

If the initial connection between the client and server fails, automatic recovery is
not triggered. Edit the corresponding application code on the client and retry the
connection to solve the problem.

The following example shows how to use a Java client to resolve an initial
connection failure by retrying a connection.

ConnectionFactory factory = new ConnectionFactory();
// For RabbitMQ Java clients earlier than 4.0.0, enable the automatic recovery function.
factory.setAutomaticRecoveryEnabled(true);

// Configure connection settings.
try {
  Connection conn = factory.newConnection();
} catch (java.net.ConnectException e) {
  Thread.sleep(5000);
  // apply retry logic
}

Distributed Message Service for RabbitMQ
Best Practices

2 Automatic Recovery of a RabbitMQ Client from
Network Exceptions

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2



Client Suggestions
● Producer

Set the Mandatory parameter to true on the producer client to avoid
message losses caused by network exceptions. This setting calls the
Basic.Return method to return messages to the producer when they cannot
be routed to matching queues.
The following sample enables Mandatory on a Java client:
ConnectionFactory factory = new ConnectionFactory();
factory.setAutomaticRecoveryEnabled(true);
Connection conn = factory.newConnection();
channel = connection.createChannel();
channel.confirmSelect();
channel.addReturnListener((replyCode, replyText, exchange, routingKey, properties, body) -> {
    // Process the return value.
});
// The third parameter is Mandatory.
channel.basicPublish("testExchange", "key", true, null, "test".getBytes());

● Consumer
Use idempotent messages on consumer clients to avoid repeated messages
due to network exceptions.
The following sample sets idempotence on a Java client:
Set<Long> messageStore = new HashSet<Long>();
channel.basicConsume("queue", autoAck, "a-consumer-tag",
        new DefaultConsumer(channel) {
            @Override
            public void handleDelivery(String consumerTag,
                                       Envelope envelope,
                                       AMQP.BasicProperties properties,
                                       byte[] body)
                    throws IOException
            {
                long deliveryTag = envelope.getDeliveryTag();
                if (messageStore.contains(deliveryTag)) {
        // Idempotent processing
                    channel.basicAck(deliveryTag, true);
                } else {
                    try {
                        // handle message logic
          // Process the message.
                        handleMessage(envelope);
            // Normally acknowledge the message.
                        channel.basicAck(deliveryTag, true);
                        messageStore.add(deliveryTag);
                    } catch (Exception e) {
                        channel.basicNack(deliveryTag, true, true);
                    }
                }
            }
        });

Distributed Message Service for RabbitMQ
Best Practices

2 Automatic Recovery of a RabbitMQ Client from
Network Exceptions

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3



3 Automatic Consumer Reconnection
After a RabbitMQ Node Restart

Overview
amqp-client of RabbitMQ has a built-in reconnection mechanism with only one
retry. If the reconnection fails, there will be no further retries which means that
the connection is lost, and the consumer will no longer be able to consume
messages, unless the consumer has an additional retry mechanism.

After amqp-client is disconnected from a node, different errors are generated
depending on the node that the channel is connected to.

● If the channel is connected to the node where the queue is located, the
consumer receives a shutdown signal. Then, the amqp-client reconnection
mechanism takes effect and the consumer attempts to reconnect to the
server. If the connection is successful, the channel continues to be connected
for consumption. If the connection fails, the channel.close method is used to
close the channel.

● If the channel is not connected to the node where the queue is located,
consumer closure is not triggered. Instead, the server sends a cancel
notification. This is not an exception for amqp-client, so no obvious error is
reported in the log. However, the connection will be closed eventually.

When these two errors occur, amqp-client calls back the handleShutdownSignal
and handleCancel methods. You can rewrite these methods to execute the
rewritten reconnection logic during the callback. In this way, a new channel can be
created for the consumer to continue consumption after a previous channel is
closed.

Sample Code of Automatic Consumer Reconnection After a RabbitMQ Node
Restart

The following is a Java code example which can solve the preceding two errors for
continuous consumption.

package rabbitmq;

import com.rabbitmq.client.*;
import java.io.IOException;
import java.nio.charset.StandardCharsets;

Distributed Message Service for RabbitMQ
Best Practices

3 Automatic Consumer Reconnection After a
RabbitMQ Node Restart

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4



import java.util.concurrent.TimeoutException;

public class RabbitConsumer {

    public static void main(String... args) throws IOException, TimeoutException {
        ConnectionFactory factory = new ConnectionFactory();
        // Configure the connection address and port of the instance.
        factory.setHost("192.168.0.2");
        factory.setPort(5672);

        // Configure the username and password for instance connection.
        factory.setUsername("name");
        factory.setPassword("password");
        Connection connection = factory.newConnection();

        createNewConnection(connection);
    }

    // Reconnection
    public static void createNewConnection(Connection connection) {
        try {
            Thread.sleep(1000);
            Channel channel = connection.createChannel();
            channel.basicQos(64);
            channel.basicConsume("queue-01", false, new CustomConsumer(channel, connection));
        } catch (Exception e) {
//            e.printStackTrace();
            createNewConnection(connection);
        }
    }

    static class CustomConsumer implements Consumer {

        private final Channel _channel;
        private final Connection _connection;

        public CustomConsumer(Channel channel, Connection connection) {
            _channel = channel;
            _connection = connection;
        }

        @Override
        public void handleConsumeOk(String consumerTag) {
        }

        @Override
        public void handleCancelOk(String consumerTag) {

        }

        @Override
        public void handleCancel(String consumerTag) throws IOException {
            System.out.println("handleCancel");
            System.out.println(consumerTag);
            createNewConnection(_connection);
        }

        @Override
        public void handleShutdownSignal(String consumerTag, ShutdownSignalException sig) {
            System.out.println("handleShutdownSignal");
            System.out.println(consumerTag);
            System.out.println(sig.getReason());
            createNewConnection(_connection);
        }

        @Override
        public void handleRecoverOk(String consumerTag) {

        }

Distributed Message Service for RabbitMQ
Best Practices

3 Automatic Consumer Reconnection After a
RabbitMQ Node Restart

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5



        @Override
        public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties, 
byte[] body) throws IOException {
            String message = new String(body, StandardCharsets.UTF_8);
            System.out.println(" [x] Received '" + message + "'");
            _channel.basicAck(envelope.getDeliveryTag(), false);
        }

    }
}

Distributed Message Service for RabbitMQ
Best Practices

3 Automatic Consumer Reconnection After a
RabbitMQ Node Restart

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6



4 Improving RabbitMQ Performance

This topic introduces methods to achieve high RabbitMQ performance
(considering throughput and reliability) by configuring the queue length, cluster
load balancing, priority queues, and other parameters.

Using Short Queues
If a queue has a large number of messages, memory is under heavy pressure. To
relieve pressure, RabbitMQ pages out messages to the disk. This process is time-
consuming because it involves recreating the index on the disk and restarting a
cluster that contains a large number of messages. If there are too many messages
paged out to the disk, queues will be blocked, which slows down queue
processing, and affects the performance of RabbitMQ nodes.

To achieve high performance, shorten queues as much as you can. You are advised
to keep no messages stacked in a queue.

For applications that frequently encounter message count surges or require high
throughput, you are advised to limit the queue length. The queue length can be
kept within the limit by discarding messages at the head of a queue.

The limit can be configured in a policy or a queue declaration argument.

● Configuring a policy on the RabbitMQ management UI

Distributed Message Service for RabbitMQ
Best Practices 4 Improving RabbitMQ Performance

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7



● Configuring a queue declaration argument
// Create a queue.
HashMap<String, Object> map = new HashMap<>();
// Set the maximum queue length.
map.put("x-max-length",10 );
// Set the queue overflow mode, retaining the first 10 messages.
map.put("x-overflow","reject-publish" );
channel.queueDeclare(queueName,false,false,false,map);

By default, when the queue length exceeds the limit, messages at the head of the
queue (the oldest messages) are discarded or become dead letter messages. The
queue can also be processed in other ways by specifying the overflow parameter:

● If overflow is set to drop-head, the earliest messages at the head of the
queue are discarded or made dead-letter, and the latest n messages are
retained.

● If overflow is set to reject-publish, the latest messages are discarded, and
the earliest n messages are retained.

NO TE

● If both these methods are used to set the maximum queue length, the smaller limit is
used.

● Messages beyond the maximum queue length will be discarded.

Cluster Load Balancing
Queue performance depends a single CPU core. When the message processing
capability of a RabbitMQ node reaches the bottleneck, you can expand the cluster
to improve the throughput.

If multiple nodes are used, the cluster automatically distributes queues across the
nodes. In addition to using a cluster, you can use the Consistent hash exchange
plug-in to optimize load balancing: This plug-in uses an exchange to balance
messages between queues. Messages sent to the exchange are consistently and
evenly distributed across multiple queues based on the messages' routing keys.
This plug-in creates a hash for the routing keys and distributes the messages to
queues bound with the exchange. When using this plug-in, ensure that consumers
consume messages from all queues. The following is an example:

● Route messages based on different routing keys.
public class ConsistentHashExchangeExample1 {
  private static String CONSISTENT_HASH_EXCHANGE_TYPE = "x-consistent-hash";

  public static void main(String[] argv) throws IOException, TimeoutException, InterruptedException {
    ConnectionFactory cf = new ConnectionFactory();
    Connection conn = cf.newConnection();
    Channel ch = conn.createChannel();

    for (String q : Arrays.asList("q1", "q2", "q3", "q4")) {
      ch.queueDeclare(q, true, false, false, null);
      ch.queuePurge(q);
    }

    ch.exchangeDeclare("e1", CONSISTENT_HASH_EXCHANGE_TYPE, true, false, null);

    for (String q : Arrays.asList("q1", "q2")) {
      ch.queueBind(q, "e1", "1");
    }

    for (String q : Arrays.asList("q3", "q4")) {

Distributed Message Service for RabbitMQ
Best Practices 4 Improving RabbitMQ Performance

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8



      ch.queueBind(q, "e1", "2");
    }

    ch.confirmSelect();

    AMQP.BasicProperties.Builder bldr = new AMQP.BasicProperties.Builder();
    for (int i = 0; i < 100000; i++) {
      ch.basicPublish("e1", String.valueOf(i), bldr.build(), "".getBytes("UTF-8"));
    }

    ch.waitForConfirmsOrDie(10000);

    System.out.println("Done publishing!");
    System.out.println("Evaluating results...");
    // wait for one stats emission interval so that queue counters
    // are up-to-date in the management UI
    Thread.sleep(5);

    System.out.println("Done.");
    conn.close();
  }
}

● Route messages based on headers.
In this mode, the hash-header parameter must be specified for the exchange,
and messages must contain headers. Otherwise, messages will be routed to
the same queue.
public class ConsistentHashExchangeExample2 {
  public static final String EXCHANGE = "e2";
  private static String EXCHANGE_TYPE = "x-consistent-hash";

  public static void main(String[] argv) throws IOException, TimeoutException, InterruptedException {
    ConnectionFactory cf = new ConnectionFactory();
    Connection conn = cf.newConnection();
    Channel ch = conn.createChannel();

    for (String q : Arrays.asList("q1", "q2", "q3", "q4")) {
      ch.queueDeclare(q, true, false, false, null);
      ch.queuePurge(q);
    }

    Map<String, Object> args = new HashMap<>();
    args.put("hash-header", "hash-on");
    ch.exchangeDeclare(EXCHANGE, EXCHANGE_TYPE, true, false, args);

    for (String q : Arrays.asList("q1", "q2")) {
      ch.queueBind(q, EXCHANGE, "1");
    }

    for (String q : Arrays.asList("q3", "q4")) {
      ch.queueBind(q, EXCHANGE, "2");
    }

    ch.confirmSelect();

    for (int i = 0; i < 100000; i++) {
      AMQP.BasicProperties.Builder bldr = new AMQP.BasicProperties.Builder();
      Map<String, Object> hdrs = new HashMap<>();
      hdrs.put("hash-on", String.valueOf(i));
      ch.basicPublish(EXCHANGE, "", bldr.headers(hdrs).build(), "".getBytes("UTF-8"));
    }

    ch.waitForConfirmsOrDie(10000);

    System.out.println("Done publishing!");
    System.out.println("Evaluating results...");
    // wait for one stats emission interval so that queue counters
    // are up-to-date in the management UI

Distributed Message Service for RabbitMQ
Best Practices 4 Improving RabbitMQ Performance

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9



    Thread.sleep(5);

    System.out.println("Done.");
    conn.close();
  }
}

● Route messages based on their properties, such as message_id,
correlation_id, or timestamp.
In this mode, the hash-property parameter is required to declare the
exchange, and messages must contain the specified property. Otherwise,
messages will be routed to the same queue.
public class ConsistentHashExchangeExample3 {
  public static final String EXCHANGE = "e3";
  private static String EXCHANGE_TYPE = "x-consistent-hash";

  public static void main(String[] argv) throws IOException, TimeoutException, InterruptedException {
    ConnectionFactory cf = new ConnectionFactory();
    Connection conn = cf.newConnection();
    Channel ch = conn.createChannel();

    for (String q : Arrays.asList("q1", "q2", "q3", "q4")) {
      ch.queueDeclare(q, true, false, false, null);
      ch.queuePurge(q);
    }

    Map<String, Object> args = new HashMap<>();
    args.put("hash-property", "message_id");
    ch.exchangeDeclare(EXCHANGE, EXCHANGE_TYPE, true, false, args);

    for (String q : Arrays.asList("q1", "q2")) {
      ch.queueBind(q, EXCHANGE, "1");
    }

    for (String q : Arrays.asList("q3", "q4")) {
      ch.queueBind(q, EXCHANGE, "2");
    }

    ch.confirmSelect();

    for (int i = 0; i < 100000; i++) {
      AMQP.BasicProperties.Builder bldr = new AMQP.BasicProperties.Builder();
      ch.basicPublish(EXCHANGE, "", bldr.messageId(String.valueOf(i)).build(), "".getBytes("UTF-8"));
    }

    ch.waitForConfirmsOrDie(10000);

    System.out.println("Done publishing!");
    System.out.println("Evaluating results...");
    // wait for one stats emission interval so that queue counters
    // are up-to-date in the management UI
    Thread.sleep(5);

    System.out.println("Done.");
    conn.close();
  }
}

Automatically Deleting Unused Queues
The client may fail to be connected, resulting in residual queues that affect
instance performance. RabbitMQ provides the following methods to automatically
delete a queue:

● Set a TTL policy for the queue. For example, if TTL is set to 28 days, the queue
will be deleted after staying idle for 28 days.

Distributed Message Service for RabbitMQ
Best Practices 4 Improving RabbitMQ Performance

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10



● Use an auto-delete queue. When the last consumer exits or the channel or
connection is closed (or when its TCP connection with the server is lost), the
auto-delete queue is deleted.

● Use an exclusive queue. This queue can be used only in the connection where
it is created. When the connection is closed or disappears, the exclusive queue
is deleted.

To enable the auto-delete and exclusive queues:

boolean exclusive = true;
boolean autoDelete = true;
channel.queueDeclare(QUEUENAME, durable, exclusive, autoDelete, arguments);

Limiting the Number of Priority Queues

Each priority queue starts an Erlang process. If there are too many priority queues,
performance will be affected. In most cases, you are advised to have no more than
five priority queues.

Connections and Channels

Each connection uses about 100 KB memory (or more if TLS is used). Thousands
of connections cause high RabbitMQ load and even out-of-memory in extreme
cases. The AMQP protocol introduces the concept of channels. Each connection
can have multiple channels. Connections exist for a long time. The handshake
process for an AMQP connection is complex and requires at least seven TCP data
packets (or more if TLS is used). By contrast, it is easier to open and close a
channel, and it is recommended that channels exist for a long time. For example,
the same channel should be reused for a producer thread, and should not be
opened for each production. The best practice is to reuse connections and
multiplex a connection between threads with channels.

The Spring AMQP thread pool is recommended. ConnectionFactory is defined by
Spring AMQP and is responsible for creating connections.

Do Not Share Channels Between Threads

Most clients do not implement thread safety security on channels, so do not share
channels between threads.

Do Not Open and Close Connections or Channels Frequently

Frequently opening and closing connections or channels will lead to a large
number of TCP packets being sent and received, resulting in higher latency.

Producers and Consumers Use Different Connections

This improves throughput. If a producer sends too many messages to the server
for processing, RabbitMQ transfers the pressure to the TCP connection. If
messages are consumed on the same TCP connection, the server may not receive
acknowledgments from the client, affecting the consumption performance. If
consumption is too slow, the server will be overloaded.

Distributed Message Service for RabbitMQ
Best Practices 4 Improving RabbitMQ Performance

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11



RabbitMQ Management Interface Performance Affected by Too Many
Connections and Channels

RabbitMQ collects data of each connection and channel for analysis and display. If
there are too many connections and channels, the performance of the RabbitMQ
management interface will be affected.

Disabling Unused Plug-ins
Plug-ins may consume a large number of CPU or memory resources. You are
advised to disable unused plug-ins.

Distributed Message Service for RabbitMQ
Best Practices 4 Improving RabbitMQ Performance

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12



5 Configuring Queue Load Balancing

Overview

On a RabbitMQ cluster, scaling up nodes or deleting queues cause uneven queues
on each node. Some nodes are overloaded.

However, queue load can be manually balanced among nodes for better cluster
utilization. To configure queue load balancing, use the following methods:

● Deleting and Recreating Queues

● Modifying the Master Node Using a Policy

Deleting and Recreating Queues

Step 1 Log in to the RabbitMQ management UI.

Step 2 On the Overview tab page, click Download broker definitions to export the
metadata.

Step 3 Stop producing messages, wait until all messages are consumed, and then delete
the original queues.

1. On the Overview tab page, check data consumption.

Distributed Message Service for RabbitMQ
Best Practices 5 Configuring Queue Load Balancing

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

https://support.huaweicloud.com/intl/en-us/usermanual-rabbitmq/rabbitmq-ug-180801003.html


If the number of messages that can be consumed (Ready) and the number of
messages that are not acknowledged (Unacked) are both 0, the consumption
is complete.

2. When all data is consumed, delete the original queues.
a. On the Queues tab page, click the name of the desired queue.

b. Click Delete Queue to delete the queue.

Distributed Message Service for RabbitMQ
Best Practices 5 Configuring Queue Load Balancing

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14



Step 4 On the Overview tab page, upload the exported metadata.

1. On the Overview tab page, click Choose File and select the exported
metadata.

2. Click Upload broker definitions to upload the metadata.

If the upload is successful, the following information is displayed:

The instance automatically creates queues across nodes for load balancing.
You can view the queue distribution details on the Queues tab page.

----End

Modifying the Master Node Using a Policy

Step 1 Log in to the RabbitMQ management UI.

Step 2 On the Admin > Policies page, add a policy.

Distributed Message Service for RabbitMQ
Best Practices 5 Configuring Queue Load Balancing

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

https://support.huaweicloud.com/intl/en-us/usermanual-rabbitmq/rabbitmq-ug-180801003.html


● Name: Enter a policy name.
● Pattern: queue matching mode. Enter a queue name. Queues with the same

prefix will be matched.
● Apply to: Select Queues.
● Priority: policy priority. A larger value indicates a higher priority.
● Definition: mapping definitions. Set ha-mode to nodes and ha-params to

the name of node to which the queues are to be migrated.

Step 3 Click Add policy.

NO TE

● Queue data synchronization takes a long time. To prevent message loss, the original
master node is still available before queue data synchronization is complete.

● After the queue switchover is complete, you can delete the policy added in Step 2.

----End

Distributed Message Service for RabbitMQ
Best Practices 5 Configuring Queue Load Balancing

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16



6 Deduplicating Messages Through
Message Idempotence

Overview
In RabbitMQ service processes, an idempotent message process refers to a
situation where a message is re-sent and consumed for multiple times and each
consumption result is the same, having no negative effects on services.
Idempotent messages ensure consistency in the final processing results. Services
are not affected no matter how many times a message is re-sent.

Take paying as an example. Assume that a user selects a product, makes payment,
and receives multiple bills due to unstable Internet connection. The bills are all
paid. However, the billing should take place only once and the merchant should
generate only one order placement. In this case, idempotent messages can be
used to avoid the repetition.

In actual applications, messages are re-sent because of intermittent network
disconnections and client faults during message production or consumption.
Message repetition can be classified into two scenarios.

● A producer repeatedly sends a message:
If a producer successfully sends a message to the server but does not receive
a successful response due to an intermittent network disconnection, the
producer determines that the message failed to be sent and tries resending
the message. In this case, the server receives two messages of the same
content. Consumers consume two messages of the same content.

● A consumer repeatedly consumes a message:
A message is successfully delivered to a consumer and processed. If the server
does not receive a response from the consumer due to an intermittent
network disconnection, the server determines that the message failed to be
delivered. To ensure that the message is consumed at least once, the server
retries delivering the message. As a result, the consumer consumes two
messages of the same content.

Distributed Message Service for RabbitMQ
Best Practices

6 Deduplicating Messages Through Message
Idempotence

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17



Implementation
A globally unique ID can be used to determine whether a message is consumed
repeatedly. If yes, the consumption result is returned. If no, consume the message
and record the global ID.

● Producers set a unique ID for each message. Sample code is as follows:
// The message is persisted with a globally unique ID which is randomly generated.
AMQP.BasicProperties.Builder builder = new AMQP.BasicProperties().builder();
builder.deliveryMode(2);
builder.messageId(UUID.randomUUID().toString());

// The custom message.
String message = "message content";

// Produce messages. Set exchangeName and routingKey to the actual values.
channel.basicPublish("exchangeName", "routingKey", false, builder.build(), 
message.getBytes(StandardCharsets.UTF_8));
String messageId = builder.build().getMessageId();
System.out.println("messageID: " + messageId);
System.out.println("Send message success!");
// Close the channel.
channel.close();
// Close the connection.
connection.close();

● Consumers deduplicate messages based on their IDs. Sample code is as
follows:
// Create a table with message ID as the primary key. Unique primary keys of databases can be used 
to process RabbitMQ idempotence.
// Before consumption, query the message from the database. If the message exists, it is consumed. 
Otherwise, consume it.
//queueName: Use the actual queue name.
channel.basicConsume("queueName", false, new DefaultConsumer(channel) {
    @Override
    public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties 
properties, byte[] body) throws IOException {
            //Obtain the message ID and check whether it is null.
            String messageId = properties.getMessageId();
            if (StringUtils.isBlank(messageId)){
                logger.info("messageId is null");
                return;
            }
            // Query the database by primary key "message ID". If records exist, the message is 
consumed. Otherwise, consume the message and write it into the database.
            // Database querying logic ...
            //todo

            // If no record exists, consume the message. Or notify that the message is consumed.
            if (null == "{Found in the database}"){
                // Obtain the message.
                String message = new String(body,StandardCharsets.UTF_8);
                // Manual response.
                channel.basicAck(envelope.getDeliveryTag(),false);
                logger.info("[x] received message: "  + message + "," + "messageId:" + messageId);

                // Save the message to the database table, indicating that the message has been 
consumed.
                // The database input operation ...
                //todo
            } else {
                // If the message is consumed, skip it.
                logger.error("The message is already consumed.");
            }
    }
});

Distributed Message Service for RabbitMQ
Best Practices

6 Deduplicating Messages Through Message
Idempotence

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18



7 Suggestions on Using DMS for
RabbitMQ Securely

Huawei Cloud and you share the responsibility for security. Huawei Cloud ensures
the security of cloud services for a secure cloud. As a tenant, you should utilize the
security capabilities provided by cloud services to protect data and use the cloud
securely. For details, see Shared Responsibilities.

This section guides you on how to enhance overall DMS for RabbitMQ security
through security best practices. You can improve the security of your DMS for
RabbitMQ resources by continuously monitoring their security status, combining
multiple security capabilities provided by DMS for RabbitMQ, and protecting data
stored in DMS for RabbitMQ from leakage and tampering both at rest and in
transit.

Configure security settings from the following dimensions to meet your service
needs.

● Protecting Data Through Access Control
● Transmission Encryption with SSL
● Do Not Store Sensitive Data
● Data Restoration and Disaster Recovery
● Checking for Abnormal Data Access
● Using the Latest SDKs for Better Experience and Security

Protecting Data Through Access Control
1. Set only the minimum permissions for IAM users with different roles to

prevent data leakage or misoperations caused by excessive permissions.
To better isolate and manage permissions, you are advised to configure an
independent IAM administrator and grant them the permission to manage
IAM policies. The IAM administrator can create different user groups based on
your service requirements. User groups correspond to different data access
scenarios. By adding users to user groups and binding IAM policies to user
groups, the IAM administrator can grant different data access permissions to
employees in different departments based on the principle of least privilege.
For details, see Permissions Management.

Distributed Message Service for RabbitMQ
Best Practices 7 Suggestions on Using DMS for RabbitMQ Securely

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

https://support.huaweicloud.com/intl/en-us/productdesc-rabbitmq/rabbitmq_pd_0004.html
https://support.huaweicloud.com/intl/en-us/productdesc-rabbitmq/rabbitmq-pd-190828009.html


2. Configure a security group to protect your data from abnormal reads or
other operations.

Tenants can configure inbound and outbound traffic rules for a security group
to regulate network access to an instance, and prevent unauthorized exposure
to third parties. For more information, see How Do I Select and Configure a
Security Group?. Do not set the source to 0.0.0.0/0 in the inbound rules of a
security group.

3. Configure a password for accessing your RabbitMQ instance to prevent
unauthorized clients from operating it by mistake.

RabbitMQ 3.8.35 instances are password-protected by default. RabbitMQ
AMQP-0-9-1 instances support access control using ACL. Authentication is
required in message production and consumption after ACL is enabled.

4. Enable multi-factor authentication for sensitive operations to protect
your data from accidental deletion.

DMS for RabbitMQ offers sensitive operation protection to enhance the
security of your data. With this function enabled, the system authenticates
the identity before sensitive operations such as instance deletion are
performed. For more information, see Critical Operation Protection.

Transmission Encryption with SSL

To prevent data from breaches or damage during transmission, access DMS for
RabbitMQ using SSL encryption. RabbitMQ 3.8.35 requires SSL. RabbitMQ
AMQP-0-9-1 does not support SSL.

Do Not Store Sensitive Data

Currently, DMS for RabbitMQ does not support data encryption. Do not store
sensitive data into message queues.

Data Restoration and Disaster Recovery

Build restoration and disaster recovery (DR) capabilities in advance to prevent
data from being deleted or damaged by mistake in abnormal data processing
scenarios.

1. Use cluster RabbitMQ instances to quickly restore data in abnormal
scenarios.

You are advised to use cluster RabbitMQ instances in production environment.
RabbitMQ instance services continue when an instance broker is faulty.

2. Use multiple AZs for data DR.

Cluster RabbitMQ instances can be deployed, and DR can be supported across
AZs. If a RabbitMQ instance uses multiple AZs, the instance service continues
when one AZ is faulty.

Checking for Abnormal Data Access
1. Enable Cloud Trace Service (CTS) to record all RabbitMQ access

operations for future audit.

Distributed Message Service for RabbitMQ
Best Practices 7 Suggestions on Using DMS for RabbitMQ Securely

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

https://support.huaweicloud.com/intl/en-us/rabbitmq_faq/rabbitmq-faq-180604024.html
https://support.huaweicloud.com/intl/en-us/rabbitmq_faq/rabbitmq-faq-180604024.html
https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_07_0002.html


CTS records operations on the cloud resources in your account. You can use
the logs generated by CTS to perform security analysis, track resource
changes, audit compliance, and locate faults.
After you enable CTS and configure a tracker, CTS can record management
and data traces of RabbitMQ for auditing. For more information, see Viewing
RabbitMQ Audit Logs.

2. Use Cloud Eye for real-time monitoring and alarm reporting.
To monitor RabbitMQ instances, Huawei Cloud provides Cloud Eye. Cloud Eye
supports automatic real-time monitoring, alarms, and notification for requests
and traffic in RabbitMQ instances.
Cloud Eye starts monitoring your RabbitMQ instance once it is created, so you
do not need to enable Cloud Eye. For more information, see RabbitMQ
Metrics.

Using the Latest SDKs for Better Experience and Security
Upgrade to the latest version of SDKs to enhance the protection of your data and
RabbitMQ usage. Download the latest SDK in your desired language from SDK
Overview.

Distributed Message Service for RabbitMQ
Best Practices 7 Suggestions on Using DMS for RabbitMQ Securely

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

https://support.huaweicloud.com/intl/en-us/usermanual-rabbitmq/rabbitmq-ug-180418002.html
https://support.huaweicloud.com/intl/en-us/usermanual-rabbitmq/rabbitmq-ug-180418002.html
https://support.huaweicloud.com/intl/en-us/usermanual-rabbitmq/rabbitmq-ug-180413002.html
https://support.huaweicloud.com/intl/en-us/usermanual-rabbitmq/rabbitmq-ug-180413002.html
https://support.huaweicloud.com/intl/en-us/sdkreference-rabbitmq/rabbitmq-sdk-001.html
https://support.huaweicloud.com/intl/en-us/sdkreference-rabbitmq/rabbitmq-sdk-001.html

	Contents
	1 RabbitMQ Best Practices
	2 Automatic Recovery of a RabbitMQ Client from Network Exceptions
	3 Automatic Consumer Reconnection After a RabbitMQ Node Restart
	4 Improving RabbitMQ Performance
	5 Configuring Queue Load Balancing
	6 Deduplicating Messages Through Message Idempotence
	7 Suggestions on Using DMS for RabbitMQ Securely

