
CodeArts Req

Best Practices

Issue 01

Date 2024-05-31

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. i

Security Declaration

Vulnerability

Huawei's regulations on product vulnerability management are subject to the Vul. Response Process. For
details about this process, visit the following web page:
https://www.huawei.com/en/psirt/vul-response-process
For vulnerability information, enterprise customers can visit the following web page:
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. ii

https://www.huawei.com/en/psirt/vul-response-process
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Contents

1 Best Practices of Scrum Projects.. 1
1.1 Practice Overview.. 1
1.2 Requirement Management.. 1
1.2.1 Understanding the Four Keywords of Agile Requirement Management... 2
1.2.2 Making Effective Requirement Management and Planning When Software Project Requirements
Change Frequently... 7
1.2.3 Managing Requirements in a Structured Manner... 10
1.2.4 Managing Requirement Priorities.. 14
1.2.5 Avoiding Missing Important Requirements.. 17
1.3 Sprint Plan... 19
1.3.1 Properly Planning the Sprint Timebox... 19
1.3.2 Moving Task Cards in the Kanban After Requirements Change in Sprints... 22
1.4 Sprint Development... 23
1.4.1 Managing Unexpected Tasks in Software Development Teams... 24
1.4.2 How Can I Deal With Unclaimed Tasks in My R&D Team?.. 31
1.5 Agile Review... 34
1.5.1 How to Have Daily Scrums.. 35
1.6 Member Management.. 43
1.6.1 How Do I Cultivate and Manage New Members of My Project Team When the Team Members
Change Frequently?...43
1.6.2 How Do I Manage the Permissions of Project Members?...44
1.7 Appendix.. 45
1.7.1 Reference Documents.. 45

2 Best Practices of IPD-System Device Projects...46
2.1 Overview.. 46
2.2 Requirement Model... 46
2.3 RR Management... 47
2.3.1 Introduction... 47
2.3.2 Glossary.. 48
2.3.3 Examples...48
2.3.3.1 Introduction..48
2.3.3.2 Creating RRs...48
2.3.3.3 Handling RRs... 49

CodeArts Req
Best Practices Contents

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. iii

2.3.3.4 Editing RR Details.. 54
2.3.3.4.1 Related Items... 54
2.3.3.4.2 Review.. 55
2.3.3.4.3 Workloads... 56

3 Best Practices of Defect Management... 57
3.1 About Defect Management...57
3.2 Glossary.. 57
3.3 Practice Overview... 57
3.4 Examples.. 58
3.4.1 Introduction... 58
3.4.2 Creating a Bug.. 58
3.4.3 Analyzing a Bug... 60
3.4.4 Confirming a Bug.. 66
3.4.5 Fixing a Bug... 66
3.4.6 Testing a Bug.. 70
3.4.7 Accepting a Bug... 72
3.4.8 Closing a Bug.. 72
3.4.9 Activating a Bug...72
3.4.10 Collaborating on a Bug... 72

4 Huawei E2E DevOps Practice: Managing Requirements..74
4.1 Overview.. 74
4.2 Preparations.. 78
4.3 Managing Project Plans.. 80
4.4 Managing Project Configurations..84

CodeArts Req
Best Practices Contents

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. iv

1 Best Practices of Scrum Projects

1.1 Practice Overview
Scrum applies to R&D management platforms in agile development mode. It
enables short-term continuous delivery and quick response to requirements and
market changes. A complete Scrum sprint process involves four phases:
requirement planning, sprint planning, sprint development, and agile review.
Figure 1-1 shows the overall process.

Figure 1-1 Scrum sprint process

Based on the common issues identified through communication with a large
number of customers, this chapter presents the best practices for the main phases
of the Scrum process.

1.2 Requirement Management

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 1

1.2.1 Understanding the Four Keywords of Agile Requirement
Management

Background
What is the relationship between concepts related to agile development, such as
epic, feature, story, and task? How can we flexibly use these concepts to make
agile requirement management more efficient? This section analyzes these four
keywords in detail.

What Are Epic, Feature, Story, and Task?
Epic, Feature, Story, and Task indicate requirement granularities in descending
order, which are used to divide requirements. They can be regarded as requirement
placeholders. Their meanings can be used as a reference for requirement division.

● Epic: project vision and goal. It holds significant strategic value for an
enterprise, because its implementation, usually lasting several months, brings
about the corresponding market position and returns.

● Feature: a product function or feature that delivers benefits. Features are
more specific and intuitive than epics in customers experience, possessing
business value. It usually takes weeks to complete sprints.

● Story: a user story. A story is a user's detailed description of product
functions. It puts features into a product backlog for continuous planning and
adjustment. Stories with high priorities are prioritized for delivery and hold
significant user value. Stories must comply with the INVEST principle
(Independent, Negotiable, Valuable, Estimable, Small, and Testable). It takes
several days to complete stories, usually in a sprint.

● Task: a specific task to be completed by team members. At the Sprint
planning meeting, stories are assigned to members, and members break
down the stories into tasks and estimate the workload. The whole process is
usually completed within one day.

What Is the Relationship Between Epic, Feature, Story, and Task?
Epic-Feature-Story-Task manages requirements in a structured manner. It breaks
down requirements layer by layer to build bottom-up dependencies, as shown in
Figure 1-2.

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 2

Figure 1-2 Relationship between epic, feature, story, and task

Requirements change in development. We need to continuously adjust
requirements to keep them and our team on the right track towards the goal. To
this end, we must align requirements with the epic and ensure that stories and
tasks which requirements belong to are associated with their upper layers.

For more information about structured requirement management, see Managing
Requirements in a Structured Manner.

How Can We Flexibly Use These Concepts to Make Requirement
Management More Efficient?

This section splits and displays the requirements of a case based on CodeArts Req
to provide a detailed description of epic, feature, story, and task.

Case:

The turnover of a large store dropped sharply due to the impact of the Internet.

To keep its consumers and maintain the market position and share, the market
decides to build its own online store in six months.

● Step 1: Determine and create an epic.
As described above, granularity and meaning must be taken into
consideration before requirement confirmation.
Is a product an epic? Is each service module of a product an epic or feature?
These questions need to be answered.
– A product is usually of strategic significance. Therefore, it is suitable to

take a product as an epic. However, it does not apply to all products. The
product itself and its granularity matter. In this case, the online store
cycle is 6 months, and the goal is to maintain market share. In view of
granularity and strategic sense, it is suitable to take the online store as an
epic.

– Whether each service module is an epic or feature depends on the actual
situation. For example, building a smart city is a vision, which includes

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 3

large service modules, such as smart transportation, smart government,
and smart community. Therefore, it is better to use epic as a placeholder.
Create a Scrum project in CodeArts and name it "Large online store". On
the page for requirement planning page, create an epic.

Figure 1-3 Creating an epic

After the creation, click the store to go to the editing page. Fill in the
description. You can use the template provided by CodeArts.
– As: As for this epic, the user is the entire company.
– I want: The desired result is to build an online store.
– So that: The goal is to keep consumers and maintain market position and

share.
Set the start time, end time, priority, importance, and estimated workload
of this epic. The information is essential to understanding the product
and project. Therefore, you need to fill in the information in detail.

Figure 1-4 Writing an epic

● Step 2: Break down the epic into features.
The customer requires that five functional modules (promotion management,
member management, order management, delivery management, and client)

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 4

be delivered within six months. A team sprint is two weeks. Each module
requires two or three sprints. In view of granularity and meaning, it is suitable
to take five modules as features.

Figure 1-5 Splitting the epic into features

After the creation, you can edit the information on the details page. The
information items on the page are the same as those on the epic page.

● Step 3: Break down features into stories.
Agile development is gradually detailed. It is not required that all
requirements be detailed at the same time. Only the stories of the current
sprint and one or two future sprints should be detailed. The story of a future
sprint can be general. Stories in the current Sprint must comply with the
INVEST principle. The development team needs to complete delivery at the
end of the Sprint.
Member management, as a feature, has a higher customer priority. Therefore,
member management needs to be broken down into stories and added to the
product backlog in the requirement review. After the breakdown, the
following functions related to the administrator need to be included: bonus
point management, member level management, user analysis, and user
management. These specific functions can be taken as stories. Note that it is
better to deliver stories in a sprint. If the delivery fails, further break down the
stories. Only delivered stories are valuable. Stories that cannot be delivered
are a waste for the current Sprint. The stories after the breakdown are shown
in Figure 1-6.

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 5

Figure 1-6 Breaking down features into stories

● Step 4: Break down stories into tasks
At the Sprint planning meeting, the team and PO need to jointly select the
stories to be completed in the Sprint from the product backlog according to
the priority and put them into the sprint backlog. After claiming the story,
team members break down the story into tasks for further estimation.
So how can we distinguish stories from tasks?
– Story focuses on value and needs to be completed in a sprint. The

completion must comply with the INVEST principle and usually takes
several days. Story is more of a noun. For example, bonus point
management as a story can be described as follows: As an administrator,
I can manage bonus points of members to provide different value-added
services based on consumption levels.

– Task focuses on value realization. Story functions are implemented based
on tasks. Task completion usually takes 1 to 8 hours. Task is more of an
action. For example, bonus point management as a story needs to be
implemented through service logic development, bonus point rule design,
and bonus point database design. These are tasks, as shown in Figure
1-7.

Figure 1-7 Breaking down stories into tasks

In this way, the online store requirements are broken down into epics,
features, stories, and tasks.

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 6

Summary

When using "Epic-Feature-Story-Task" to manage requirements, pay attention
to the following aspects:

1. In agile development, requirements are gradually refined and broken down in
a top-down manner.

2. Epics and features are large-granularity requirements. They are users'
expectations for products and descriptions of functions and features.

3. You need to break down features into smaller stories. Future requirements
(possibly in three or more sprints) do not need to be further divided. In some
sprints, break down stories into smaller ones.

4. In a sprint, stories are broken down into tasks.
5. All the rough and detailed stories are placed in the product backlog. The

entire list must be detailed appropriately, emergent, estimated, and prioritized
(DEEP). The list must be sorted out and prioritized periodically to ensure that
high-priority requirements are implemented and delivered first.

6. Keep contact with the customer during the whole process to ensure that the
functions to be implemented are what the customer really wants.

This document uses a user scenario to help understand the meanings and usage
of "Epic-Feature-Story-Task". Every project is unique. Therefore, you need to focus
on product and service features.

1.2.2 Making Effective Requirement Management and
Planning When Software Project Requirements Change
Frequently

Overview

This section describes how to make effective management and planning for
frequent project requirement changes in terms of background, problem analysis,
and solution.

Background

Frequent requirement changes are the biggest constraint for both project-based
software and product-based software development. According to China DevOps
Status Report 2019, more than half of enterprises believe that frequent
requirement changes are the main culprit behind delayed software delivery.
Therefore, it is imperative to solve or mitigate the impact of frequent requirement
changes.

Problem Analysis

Customer collaboration models, personnel capabilities, and R&D processes vary
with enterprises. Such variation causes different symptoms and root causes of
frequent requirement changes. As a result, measures should be taken case by case.
Based on our observation and communication with enterprises, we summarize the
following scenarios:

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 7

● Requirements are disordered and frequently changed, making it difficult to
manage.

● Requirement priorities are continuously adjusted, disrupting the development
plan.

● Requirements are missing.

The following is the analysis of some scenarios:

● Scenario 1: A software project has a clear structure at its early stage, but
the requirements change frequently and in detail at the later stage. How
can the requirements be effectively managed and planned?
Project team members are troubled by unclear and incomplete requirements
at the early stage. As a result, the requirements need to be modified at the
later stage.
In this case, requirements are not correctly planned. Requirement levels are
not clearly divided and there is no standard mechanism. For example, a
customer plans a user login function, as shown in the following figure. The
customer plans to release the task of administrator login in the first version.
Later, a mobile number login requirement is added. This task is set to be
released in the second version. As a result, a story contains multiple tasks
released in different versions (or sprints), which is inconvenient for
management. In this case, the key to this problem is managing requirements
in a structured manner and root causes are:

a. Failed to distinguish fragmented requirements that are continuously
generated during project implementation and iterative system/product
functions and features

b. Misunderstood and misused the "Epic-Feature-Story" requirement
structure provided by CodeArts.

Figure 1-8 Requirement structure

● Scenario 2: Some leader wants to upgrade requirements in a software
project. How can we deal with it in the agile R&D mode?
Upgrading requirements means raising their priorities in implementation.
Therefore, this problem is about requirement priority management. To solve
this problem, we need to understand:
– Why does the leader need to upgrade requirements? If it is reasonable,

the team needs to optimize the work arrangement process to minimize
the impact on R&D and improve the response speed and capability.

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 8

– How often does this happen? Frequent requirement upgrades are a bad
norm. The team needs to consider the causes and how to adjust the
process, system, collaboration model, or personnel capabilities. For
occasional requirement upgrades, find a solution accordingly. There is no
need to adjust processes and regulations.

– Is there anything in common of the requirements to be upgraded? For
example, are they related to a customer or a function domain (such as
refund)? We can figure out solutions based on commonalities.

● Scenario 3: Some urgent requirements are often added due to external
reasons.
These requirements are unexpected and definitely important. Therefore, it is
about managing requirement priorities.
It is a problem of missing important requirements, which is caused by the
failure to predict requirements. To deal with this problem, the team needs to
know:
– What are the external causes? Check whether these causes have

something in common and take corresponding solutions.
– Is there anything in common of the added requirements? If yes, handle

them accordingly.
– How temporary is the addition? If the team can adjust and respond more

quickly so that the temporary requirements do not affect the team, this
problem is no longer a problem.

– Why does not the team adjust the process or work style? Is it unuseful, or
does not the team know how to adjust the process or work style?

Solution
Based on the root causes obtained in the preceding analysis, the problems to be
solved can be classified as follows:

1. How can we manage requirements in a structured manner?
2. How can we manage requirement priorities?
3. How can we avoid missing important requirements?

● How can we manage requirements in a structured manner?
First, we do not need structured requirement management in all
circumstances. Structured requirement management is required only when
there are a large number of interrelated requirements and implemented
requirements need to be managed and maintained. In this case, the team
needs to use the Scrum project template in CodeArts, whose "Epic-Feature-
Story" structure and requirement planning function are helpful for structured
management. So what is this structure based on? The answer is product or
system functions and features. Information such as versions, customers, and
modules that software project management focuses on can be implemented
through different attributes or even tags of requirements.
Simply speaking, perform the following steps:

a. Establish a CodeArts project for products or systems.
b. Establish an "Epic-Feature-Story" requirement structure.
c. Manage different modules and versions using the attributes of work

items.

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 9

For details, see Managing Requirements in a Structured Manner.

● How can we manage requirement priorities?

Requirement priority management helps determine the sequence of
requirement fulfillment, thereby maximizing the return and minimizing the
risk or investment. To properly manage priorities, we need to:

a. Determine the priority model, such as Kano Model. The model includes
factors to be considered and comprehensive judgment principle of the
factors.

b. Prioritize requirements based on specific factor quantification and sorting
criteria. For example, cost-benefit approach determines the requirement
sequence by revenue and profit.

c. Adjust requirement priorities.

d. Improve the priority model. Adjust the model or the implementation
details based on the feedback.

For details, see Managing Requirement Priorities.

● How can we avoid missing important requirements?

We can take measures based on different time points, that is, before, during,
and after important requirement missing. According to the Pareto principle,
we need to ensure that: (1) For general problems, there are solutions for
software project members to follow. (2) In special cases, there is an
emergency mechanism that guides on-site handling, and a troubleshooting
review.

a. In-event: Solve the problem using a common or special solution.

b. Post-event: Perform a review based on the model or approach to form a
new common practice or special handling method.

c. Pre-event: Specify how to distinguish between common and special
situations and develop corresponding handling methods or emergency
mechanisms.

For details, see Avoiding Missing Important Requirements.

1.2.3 Managing Requirements in a Structured Manner

Why Do We Need to Manage Requirements in a Structured Manner?

We do not need structured management of software project requirements in all
circumstances. If it is a transaction management requirement on the recording
and status tracking during implementation, which does not need continuous
tracking and requirement association maintenance afterwards, structured
requirement management is not required. In this case, both the Scrum and
Kanban project templates of CodeArts can be used to manage requirements and
software projects. Structured requirement management is required only when
there are a large number of interrelated requirements and implemented
requirements need to be managed and maintained. In this case, we need to use
the Scrum project template in CodeArts, whose "Epic-Feature-Story" structure and
requirement planning function are helpful for structured management.

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 10

https://en.wikipedia.org/wiki/Kano_model

What Is Structured Requirement Management Based on?
Software R&D is either project-based or product-based. In general, the former is
temporary or short-term, while the latter is long-term or requires continuous
maintenance and update of functions and features. We can achieve project
objectives and deliver the required functions and features by continuously
improving the software product or system. This means that our structured
requirement management needs to be based on product or system functions and
features. Information such as versions, customers, and modules that software
project management focuses on can be implemented through different attributes
or even tags of requirements.

Using CodeArts for Structured Requirement Management
The recommended procedure is as follows:

● Step 1: Create a CodeArts project.
Create a CodeArts project for a product or system. All requirements of the
product or system are managed in the CodeArts project.

● Step 2: Establish an "Epic-Feature-Story" requirement structure.

a. Epic needs to carry business value, that is, an epic needs to be
meaningful to the enterprise itself.
Service modules of a product or system, such as the user center, shopping
cart, and delivery management, can be an epic. For example, it is suitable
for a cloud-based freight company to take the fuel card service as an epic
so that functions related to the fuel card can be used as features.

b. Feature needs to bring benefits to users. That is, users can understand
and recognize the value of a feature. Generally, a feature can be directly
perceived and operated by users.
Features are what service modules are broken down into. Simply
speaking, a feature is a service or user process. If the user center is taken
as an epic, user information, order management, or address management
can be a feature. If the fuel card service is taken as an epic, purchasing a
fuel card or managing fuel cards can be a feature.

c. A feature is usually large and complex. Therefore, it needs to be broken
down to small-granularity stories to carry a specific user operation.
For example, viewing all orders, filtering orders, changing user aliases,
and customize profile pictures are stories.

d. Tasks, at one level lower than stories, are mainly used for work division
and collaboration. That is, stories that can be assigned to specific people
do not need to be broken down.
Tasks are specific work that engineers need to do, which are irrelevant to
the business value, user value, and single operations of users. Generally,
stories are broken down into tasks based on specific components and
modules (such as front end, background, and database) or work
processes (such as UCD, development, test, and deployment).

The following figure is an example:
– Epic: user center
– Feature: address management

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 11

– Story: address creation
– Task: [Web client] page entry and address editing form or [Database]

user address data table design and implementation

Figure 1-9 Requirement planning

● Step 3: Manage different modules and versions based on work item
attributes.
Figure 1-10 shows the attributes on the work item details page.
– Module: web client.
– Release Version: 1.0.1.2.

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 12

Figure 1-10 Attribute example

To maintain a module list, click next to the Module field on the editing
page of the work item. In the displayed window, you can add, modify, or
delete a module.

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 13

Figure 1-11 Editing a module

In the backlog view of work item management, after adding the Module field
in the Select Field window, you can easily view the modules related to the
work item and filter the modules.

1.2.4 Managing Requirement Priorities

Four-Step Management

Requirement priority management helps determine the sequence of requirement
fulfillment, thereby maximizing the return and minimizing the risk or investment.
To properly manage priorities, we need to:

1. Determine the priority model. Seemingly simple, priority is actually a value
based on comprehensive judgment of multiple factors. These factors and
judgment principles constitute the priority model.

2. Prioritize requirements. Calculate requirement priorities using the priority
model.

3. Adjust requirement priorities.
4. Improve the priority model. If requirement priorities are adjusted frequently,

analyze and improve the priority model as needed. In cases that the
requirement has been delivered or released, but its actual usage or value of
the function does not meet the expectation, review the requirement analysis
to identify whether the analysis or the priority model is incorrect, and make
corresponding adjustments.

Determining the Priority Model

Cost-benefit analysis (CBA) is the simplest priority model. The Eisenhower Matrix
and Kano model are also priority models. Simple or complex, all these models can
help determine requirement priorities. Select one as needed.

Note that the priority model should not be too complex at the beginning.
Otherwise, high costs of requirement management exert an adverse impact on
requirement development and delivery. A simple, useful model should always be
preferred. It is recommended that enterprises start with a simple model and
improve the model continuously.

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 14

● A simple model means a few factors to be considered. For example, CBA
contains only two factors, which is simpler than other models with more
factors.

● A simple model also means a narrower value range or a lower precision
requirement. For example, it is simpler to predict the profit as high, medium,
or low than in the unit of CNY10,000.

Archive the selected model and make it accessible to all or related personnel. For
example, it is a good practice to record the model in CodeArts Wiki.

Prioritizing Requirements

In CBA, the expected market revenue and R&D investment are used as the benefit
and cost respectively. Calculate the difference or ROI. For example, there are two
requirements to be prioritized. For requirement A, the estimated profit and R&D
investment are CNY100,000 and CNY30,000 RMB respectively, so the estimated
profit is CNY70,000 and ROI is 233%. For requirement B, the estimated profit and
R&D investment are CNY50,000 and CNY40,000 RMB respectively, so the
estimated profit is CNY10,000 and ROI is 25%. It is easy to see the priority of
requirement A higher than that of requirement B. Assume that there are another
two requirements. For requirement C, the estimated profit and ROI are CNY70,000
RMB and 50%, and for requirement D, the estimated profit and ROI are
CNY10,000 RMB and 500%. How can we determine the priorities of these four
requirements?

In this case, we need to introduce weights to calculate a comprehensive value, as
shown in the following table:

Req
uire
men
t

Esti
mat
ed
Reve
nue
(CN
Y10,
000)

Esti
mat
ed
Cost
(CN
Y10,
000)

Esti
mat
ed
Profi
t
(CN
Y10,
000)

Profi
t
Wei
ght

Profi
t
Wei
ghte
d
Valu
e

ROI ROI
Wei
ght

ROI
Wei
ghte
d
Valu
e

Com
preh
ensi
ve
Valu
e

Prior
ity
Sequ
ence

Requ
irem
ent
A

10 3 7 0.1 0.7 233
%

1 2.33 3.03 2

Requ
irem
ent B

5 4 1 0.1 0.1 25% 1 0.25 0.35 4

Requ
irem
ent C

21 14 7 0.1 0.7 50% 1 0.5 1.2 3

Requ
irem
ent
D

2 1 1 0.1 0.1 500
%

1 5.0 5.1 1

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 15

According to the results in the preceding table, we need to add requirements D, A,
C, and B to the development plan in sequence. In CodeArts, the Order field (1–
100) can be used to display priority.

Figure 1-12 Story priorities

Adjusting Requirement Priorities
Adjusting requirement priorities is simple. Just reset the value of the Order field in
CodeArts. More importantly, however, you need to record the priority adjustment
in CodeArts Wiki, including why the adjustment is required, how the adjustment is
performed, and any specific considerations. It can be used as a reference in
retrospective meetings after each sprint for review.

Improving the Priority Model
The priority model must change to the evolving market, users, and products. We
can review and analyze the requirement priority model to find out what can be
enhanced. The review can be conducted regularly (for example, once a month) to
go over all the requirements involved, or requirements with adjusted priorities or
problems. Also, the review can be conducted irregularly and problem-driven. For
example, if a large number of requirement priorities are adjusted in a day, a
review meeting can be scheduled for that day or the next day to analyze the
cause.

To achieve a good review effect, we must restore the situation when the problem
occurs as much as possible. Therefore, the records in CodeArts Wiki are very
important. The retrospective meeting should provide as much information as
possible to participants for a better discussion.

During the review, we need to identify the root cause. We need to find out
whether the model design (such as factors and dimensions) is incorrect, whether
the value or weight is incorrect (perhaps estimating the revenue for a specific
requirement is difficult), or whether process management is improper (such as
incorrect priorities due to premature estimation without sufficient information),
and make targeted improvements.

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 16

1.2.5 Avoiding Missing Important Requirements

Guidelines
We need to find out why these urgent and important requirements cannot be
predicted earlier. Also, we need to know:

● What are the external causes? Check whether these causes have something in
common and take corresponding solutions.

● Is there anything in common of the added requirements? If yes, handle them
accordingly.

● How temporary is the addition? If we can adjust and respond more quickly so
that the temporary requirements do not affect the team, this problem is no
longer a problem.

● Why do not we adjust the process or work style? Is it unuseful, or do not we
know how to adjust the process or work style?

Procedure
We can take measures based on different time points, that is, before, during, and
after the event.

1. In-event handling
Take the following measures as required:
– For important, non-urgent requirements, add them as usual. If they are

frequently missed, consider whether the practice of requirement analysis
and planning is correct. If yes, strengthen structured requirement
management and make a global plan.

– For important, urgent requirements, adjust the current development
sequence and prioritize these requirements. Then, conduct a review on
two aspects: requirement priority and structured requirement
management, and make improvements to avoid similar situations.

– For unimportant requirements, handle them as usual. Determine whether
to prioritize them based on their urgency and impact. If this situation
occurs repeatedly, it is recommended to perform an analysis on
structured requirement management and discuss improvement solutions.

2. Post-event handling
Post-event handling is actually a review. The key to the review is to perform
deduction and analysis based on the formulated model and specifications. We
need to find out whether there is a problem with the implementation, the
model is too simple to cover the special requirements, or the judgment
deviation is huge due to inadequate skills. Only when the correct root cause is
found can the problem be solved. Therefore, we need to conduct a careful
review.
So how do we conduct a review? There are books in the industry for our
reference. For example, the MOI model proposed by Gerald Weinberg in
Becoming a Technical Leader is a good review approach.
– M: Motivation. Are people not motivated to do it?
– O: Organization. Is it so disorganized or undisciplined that people do not

know what they should do?

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 17

– I: Idea/Innovation. Is there a lack of ideas or ideas on how to solve these
problems?

Due to limited capabilities, experience, and number of problems, we may not
be able to obtain an accurate conclusion or an effective solution. On the one
hand, we can take measures that have been clearly defined and observe the
effect for continuous improvement. On the other hand, we can take some
temporary measures.

a. Reserve time: If it is difficult to analyze why requirements are always
missed and cannot be handled in a targeted manner, we might as well
adopt a vague approach. For example, we can obtain the work records of
a past period of time, evaluate the workload consumed by the
unexpected requirements of each sprint in this period, and calculate the
average value. Reserve a certain amount of time based on the value for
unexpected requirements during subsequent sprint arrangement.

b. Break down requirements: When we need to adjust the work sequence
due to unexpected requirements, it is very likely that the impacts cannot
be avoided due to the large granularity of requirements. Therefore, we
should break down the requirements as much as possible, making it more
flexible to adjust the requirement work sequence.

To calculate the reservation time, use the "Epic-Feature-Story" structure of
CodeArts to aggregate unexpected requirements. For example, create a
special epic named "Unexpected Requirements" and features to carry the
unexpected requirements (shown as stories) in each sprint. Record the
workload. After the sprint, calculate the number of unexpected requirements
and the workload.

Figure 1-13 Sprint planning

The Module field can also be used to record and collect statistics on
unexpected requirements. For example, create a module named "Unexpected
Requirements" to mark all unexpected requirements, and filter or view reports
based on the module to calculate the workload of unexpected requirements.

Figure 1-14 Sprint content

3. Pre-event handling

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 18

After the in-event handling and post-event review, we need to think of
preventive measures. We need to perform structured requirement
management and requirement priority management, publicize related
regulations, allocate personnel, and develop capabilities. In this way, the
impact of unexpected requirements can be effectively avoided or reduced.

1.3 Sprint Plan

1.3.1 Properly Planning the Sprint Timebox

Background
A team of around seven members uses the Scrum framework. The sprint timebox
that the team currently uses is one week. The sprint goals are not always achieved
at the end of a sprint. Many work items need to be completed across sprints.

Problem Analysis
Sprint goals are not well achieved, which is currently a problem for sprints. There
are several following causes:

Team members face many exploratory work items that require learning costs for
those unfamiliar with the work content. As a result, it takes longer to complete
work items than usual. The workload of each user story is also heavy, mostly more
than 24 hours. The Product Owner (PO) has very high standards on the work item
completion, and the review is strict. Unqualified work items are often redone in
the sprint. The current team sprint is one week, and the four major events are
based on the Scrum framework. The average duration of the sprint planning and
review meetings is about 2 hours.

The main factors that affect sprint goal achievement are listed in Table 1-1.

Table 1-1 Factors affecting sprint goal achievement (1)

No. Factor Analysis

1 Many exploratory work
items

Since the status quo is difficult to change,
learning costs are mandatory. Team
members can share knowledge. As their
capabilities improve, learning costs will
gradually be reduced.

2 Members unfamiliar with
the work domain,
requiring learning costs

3 Large user stories Due to the particularity of work items, user
stories are generally large. Split them into
smaller stories or create tasks under each
user story. Achieve sprint goals at the task
level.

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 19

No. Factor Analysis

4 High completion
standards by PO

Further understand and clarify the
completion standard by PO, including
Acceptance Criteria (AC) and Definition of
Done (DoD), in the sprint planning.

5 Short sprint The team sprint is initially set to one week.
If the goal is not achieved as expected,
adjust the sprint.

6 Prolonged sprint planning
and retrospective
meetings

Generally, the sprint planning of a one-
month sprint lasts eight hours. Therefore, it
is recommended that the planning meeting
of a one-week sprint last two hours.
Similarly, the retrospective meeting of a
one-month sprint normally does not exceed
three hours. Therefore, it is a severe timeout
for a retrospective meeting of a one-week
sprint to take two hours.

Solution
On the one hand, a short sprint leaves little time for work item completion, with
team member busy preparing for planning, review, and retrospective meetings. It
is difficult to develop emergency handling capabilities and build a stable team. On
the other hand, a long sprint goes against the concept of timebox. Therefore, if
the team often fails to achieve the sprint goal in a one-week sprint, try to extend
the timebox to two weeks. At the same time, adjust the size of user stories to
improve the efficiency of the four events.

The sprint timebox extension has many favorable influences, as shown in Table
1-2.

Table 1-2 Factors affecting sprint goal achievement (2)

No. Factor Influence of Sprint Extension From One
to Two Weeks

1 Many exploratory work
items

There is sufficient time reserved for
learning, exploratory work, and
emergencies.

2 Members unfamiliar with
the work domain, requiring
learning costs

3 Large user stories The planning meeting is more
comprehensive and detailed. User stories
are broken down into smaller ones, and
tasks are created under each user story.
Sprint goals are achieved at the task level.

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 20

No. Factor Influence of Sprint Extension From One
to Two Weeks

4 High completion standards
by PO

The completion standard by PO, including
AC and DoD, are fully understood and
clarified in the planning meeting.

5 Short sprint Team members feel more confident in an
empowering atmosphere, with an increase
in the sprint goal completion rate.

6 Prolonged sprint planning
and retrospective meetings

Meetings are held more efficiently.

Sprint timebox recommendations:

● One to two weeks
R&D teams that are committed to time-sensitive products and flexible services
require prompt adjustment and regular self-check.

● Two weeks
Teams with a relatively stable pace and large stories, which require more time
for review and rectification.

● Three to four weeks
Teams with a stable pace and requirements.

More about Timebox

In Scrum, the development process is known as a sprint, which is an iteration or
cycle usually lasting a month. Sprint is set in a timebox, that is, the sprint has
fixed start and end time.

● Timebox advantages:

a. Timeboxing is used to control the number of works in progress (WIPs).
WIP is a list of work items that have been started but are not yet
completed. The development team only focuses on work items that they
think can be completed within a sprint, so timeboxing restricts the
number of WIPs for each sprint.

b. Timeboxing requires the team to prioritize the tasks so that they can
dedicate their time to quickly completing high-value work.

c. Timeboxing displays the progress by showing how many timeboxes are
required to finish the development of a complex feature. This also allows
a team to learn exactly how much remains to be done to deliver the
entire feature.

d. Timeboxing has an end date to prevent endless work.
e. A sprint has to be finished within a timebox, which means the deadline is

definite and cannot be changed. This can motivate a Scrum team to go
all out to complete the work of a sprint on time. Without this time
pressure, the Scrum team would not have a sense of urgency.

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 21

f. Timeboxing can improve predictability. The team can predict the amount
of work that can be completed in the next sprint.

● A short sprint duration features easier planning, quick feedback, limited
errors, and high return on investment (ROI). It helps maintain the enthusiasm
of team members and provides more effective checkpoints. The following
describes more details about its benefits:

a. It is easier to plan the workload for a short work period than a long one.
Plans are also more accurate and executable.

b. Fast feedback can help abandon inappropriate product paths and
development methods to avoid more cost of poor quality (COPQ). Most
importantly, it allows teams to quickly identify and leverage business
opportunities that can easily slip by.

c. Mistakes made during one to two weeks are limited. Even though an
entire sprint is a failure, the incurred loss is acceptable. Repeated short-
term sprints are good chances for frequent trial-and-error, feedback, and
adjustments.

d. Shorter duration means earlier and more frequent delivery and more
opportunities for quick production to generate more ROI.

e. Short duration helps maintain a high level of enthusiasm. The
motivations and interest of a team decline over time. If a project lasts for
too long without presenting any results, team members will gradually
lose interest. The frequent and quick delivery of runnable products can fill
team members with a sense of satisfaction and fuel them to keep
working till reaching the sprint goal.

f. In traditional waterfall development, milestones such as analysis, design,
coding, testing, and operation are often less accurate metrics. Scrum
provides more meaningful checkpoints (sprint reviews) at the end of each
sprint, where team members make judgments and decisions based on the
workable features that are demonstrated. With more checkpoints to
check and correct, teams can better cope with complex projects.

1.3.2 Moving Task Cards in the Kanban After Requirements
Change in Sprints

Background

This section describes how to move task cards in the Kanban in normal cases and
after requirements change in sprints.

Moving Task Cards in Normal Cases

One of the main purposes of using the Kanban is to control the number of WIPs.
Pull movement is required to effectively control the number of WIPs and prevent
overstock of work items.

Note that a set of moving rules should be customized before the move. The rules
are adjusted to satisfy the team.

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 22

Moving Task Cards After Requirements Change
● Rejecting the change

To keep the team going all out for the sprint goal after the sprint backlog and
goal are confirmed, requirement changes proposed by the PO are generally
not accepted. The PO is responsible for sorting out the sprint backlog. To be
specific, the PO should prepare the product backlogs for the next one to three
sprints and then develop the sprint backlog based on priority. Therefore, it is
recommended that the team reject frequent requirement changes.
Requirement rejection also strengthens the PO's control over requirements.
Therefore, it is better for the team to move cards in the Kanban normally in
this case.

● Embracing the change
It is unrealistic to completely reject requirement changes. Sometimes, high-
priority requirements are subject to changes. For example, if time-sensitive
requirements cannot be completed in this sprint, we will fail to get in on the
ground floor. However, we must comply with the "NO CHANGE" principle.
That is, after receiving a requirement change, analyze the requirement and
the impact on the current sprint instead of directly accepting or rejecting the
change. In this case, check the following items:
– Requirements with no value

Reject the requirements with no value and do not move cards on the
Kanban after negotiating with the PO. Here we will spare you the details
about where these requirements come from.

– Requirements with few changes and little impact
Accept the change of high-priority requirements with little impact on the
sprint, but evaluate workload and perform an exchange. To put it simply,
replace low-priority requirements that have not been implemented from
the Kanban and move them to the product backlog. This is a process of
product backlog refinement. Then, add cards of high-priority
requirements to the Kanban. When replacing requirements that have
been partially done, move them back to the Product Backlog column if
we seek to meet feature requirements, or move them to the Done
column if the team needs to collect statistics on the workloads on the
physical Kanban. In the second situation, if the electronic Kanban also
works, move the requirements to the Product Backlog column.

– Requirements with many changes and great impact
For changes in high-priority requirements that have great impact on the
sprint, stop the current sprint and plan a new sprint. For example, if the
requirement in the current sprint is of no value or the changed
requirement requires a large amount of workload, you should stop the
sprint. Then arrange the card on the Kanban based on the latest sprint
backlog.

1.4 Sprint Development

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 23

1.4.1 Managing Unexpected Tasks in Software Development
Teams

Background
How does the development team manage unexpected tasks?

Some software development teams often do not know how to manage
unexpected tasks, such as providing training support.

Unexpected tasks impact the progress and efficiency of the development team,
making a difference on whether the sprint goal can be achieved and even the
success of the entire project. Therefore, it is important for the team to reduce or
resolve unexpected tasks.

Problem Analysis
We can classify the scenarios into the following two types.

Scenario Analysis

Mixing support
and development
tasks, with
unexpected tasks
occurring as a
norm

Support tasks are mixed with regular development tasks,
causing developers to often switch work content. This
makes management more difficult and wastes time as
developers have to constantly switch tasks back and forth.
Therefore, the root cause is the development team mode.
In this mode, problems and risks need to be handled as
they arise.

Primary
development
work, with
unexpected
emergencies or
normal
requirement
changes

Development team members lack clear and transparent
rules on handling emergencies, leading to unpreparedness.
The root cause is backlog management. To be specific, the
team needs to figure out how to update the backlog for
unexpected work items, that is, how to deal with
requirement changes and temporary task addition.

● In the first scenario, development and support tasks need to be handled
simultaneously without clear priorities, complicating task management.

● In the second scenario, customers often submit unexpected, urgent tasks to
the development team. The extra workload adds to the risk of failing to
achieve the sprint goal.

The development team needs to find a way to handle trivial, unexpected support
work and improve work efficiency.

Solution
More and more development teams are adopting Agile, from which CodeArts is
inspired. The following solutions, including Scrum, are based on Agile:

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 24

● For the first scenario, divide developers into two groups, one for development
and the other for emergencies. The development group focuses on
development while the other group stands ready to unexpected work (also
responsible for easy, loosely coupled development). Both groups shall comply
with rules of the development team to manage work items.

● The second scenario is more common. The following describes how to deal
with work priority and requirement changes systematically.

Solutions for the second scenario:

Managing work items is essential for the development team. Therefore, before
forming work items, we need to determine who is responsible for work items (that
is, the source of work items), and make a plan for work item implementation.

1. Specify the product manager as the unique requirement source.
2. Sort out the product backlog and prioritize work items.
3. Revise the plan based on the capabilities of the development team and

update the sprint goal.
4. Review and find where enhancements are needed.
5. Analyze sprints for continuous improvement and cultivate talent to build a

cross-functional team.

The following diagram displays the solution.

Figure 1-15 Solution diagram

1. Specify the requirement owner.
Specify the requirement owner as the unique requirement source. In CodeArts,
the project manager is the requirement owner. The requirement owner needs
to:
– Have a good understanding of the requirements of stakeholders,

customers, and users in the project (including the unexpected work items
mentioned above) and their priorities. From this perspective, the product
manager acts as the requirement owner.

– Communicate with the development team about the features to be
developed and the development sequence. The requirement owner also
must ensure that there are clear feature acceptance criteria. From this
perspective, service analysts and testers act as the requirement owner.

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 25

Moreover, the requirement owner must be able to make economical decisions
for more benefits at the version, sprint, and backlog levels. In the following,
the product manager (like product owner in Scrum) is used for requirement
owner.
The following figure shows the main responsibilities of a product
manager.

Figure 1-16 Main responsibilities of the product manager

The highlighted responsibilities in Figure 1-16 are related to the unexpected
work in a sprint. The product manager needs to clearly communicate with
stakeholders to determine the priority of each unexpected task and whether it
must be completed in this sprint based on business value and management
benefits. Once it is determined that these unexpected tasks are of high
priority and must be completed in this sprint, the backlog needs to be sorted
out.

2. Sort out the backlog.
Sorting out the backlog means placing high-priority tasks in the sprint
backlog. For details about the sprint backlog, see More Details About Sprint
Backlogs.
– Backlog is a prioritized list of expected product functions.
– Work items are the to-dos in a backlog. For users and customers, most

work items are valuable features and functions. Work items also include
defect rectification, technical improvement, and knowledge acquisition,
and any work that the product owner considers valuable (even
unexpected valuable work).

– Sorting refers to three important activities: establishing and refining,
evaluating, and prioritizing work items.

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 26

Change the backlog structure by sorting out activities.

Figure 1-17 Backlog structure

Figure 1-18 shows the sorting result in CodeArts.

Figure 1-18 Requirement sorting

The red boxes in Figure 1-18 show the sorting by the product manager. The
unexpected training task is properly prioritized and the workload is evaluated.
In addition, the task of querying product names is broken down. As the final
decision-maker of sorting, the product manager is responsible for sorting out
unexpected work. A good product manager can coordinate stakeholders to
arrange enough time for sorting based on the characteristics of the
development team and project type. In addition, the development team needs
to estimate the workload of unexpected work and help the product manager
prioritize work items based on technology dependencies and resource

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 27

constraints. If an unexpected training task has a high priority, it will be added
to the backlog of the current sprint.

3. Revise the plan.
Revise the plan based on the capabilities of the development team and
update the sprint goal. Before revising the plan, we need to know what is a
plan in Agile development and what are the differences between plans in
Agile and traditional development modes.
As the Agile Manifesto advocates responding to changes instead of always
following the plan, the Agile development focuses on responding to
changes while the task-driven development tends to follow the plan.
Sequential development is plan-driven. The plan is the authoritative
information source of how and when work is done. Therefore, the plan is
always followed. In contrast, Agile prefers revising plans based on real-time
information, rather than sticking to a potentially incorrect plan.
Agile development is not about following a predetermined plan or
prediction, but revising the plan based on the valuable economic information
that emerges in the process. Therefore, you can adjust the plan after sorting
out work items. Work items in the original plan may be moved to the next
sprint. The capacity of a fixed development team remains unchanged in a
sprint. Adding unexpected work items without removing others will definitely
bring pressure to the team and disrupt the delivery pace. Therefore, the
equivalent exchange principle shall be followed, which means that the
replaced work has the same workload as the unexpected high-priority work.

Figure 1-19 Equivalent exchange principle

Figure 1-20 and Figure 1-21 show the exchange details in CodeArts.

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 28

Figure 1-20 Equivalent exchange 1

Figure 1-21 Equivalent exchange 2

Finally, move the low-priority work item with a similar workload back to the
backlog. The equivalent exchange of work items is completed in CodeArts.

4. Review the sprint for improvement.
Conduct a sprint retrospective to improve the process based on the needs of
the development team, thereby boosting morale for higher output efficiency.
Analyze the unexpected work in sprints for continuous improvement. In Agile
development, prioritizing changes over following the plan is important, but
the development team needs to go out for the sprint when there are no
interference (unexpected work). Therefore, we should think about why there
would be interference in each sprint and find a solution.
Figure 1-22 and Figure 1-23 are a good practice of CodeArts, which can
provide objective data for review. Unexpected work items added to the sprint
backlog can be managed in Modules of CodeArts. That is, create a module
for unexpected tasks before creating a user story, and then select this module
in the user story. This is to measure and analyze such unexpected work in
subsequent sprints (which can be sorted by module to facilitate measurement
and analysis) for continuous improvement.

Figure 1-22 Creating a module for unexpected work

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 29

Figure 1-23 Creating a user story

Choose Statistics > Create Report > Custom Report. On the page that is
displayed, set Analysis Dimension (X-axis/Table row values) to Sprint and
Measure (Y-axis/Table cell values) to Actual person-hour. Select Module
on the page displayed after clicking Add Filtering Criterion. Click Save to
analyze the statistics in diagrams and tables.

Figure 1-24 Diagram display

Figure 1-25 Table display

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 30

5. Cultivate talent.
At the same time, cultivate talent to build a cross-functional team. We not
only seek to handle emergencies, but achieve higher efficiency.
It is obvious that we should find the right person for each task (including
unexpected tasks). If the person is unavailable, find another to complete the
task in time. Each team member is responsible for making wise decisions
when faced with uncertainties. A development team composed of T-shaped
talent can always find someone to tackle tasks, achieving a higher efficiency.

More Details About Sprint Backlogs
The sprint backlog (called "sprint" in CodeArts) is a set of product backlog items
selected for the Sprint. Plans to deliver the product increment and achieve the
sprint goal are also included.

When a new work item emerges, the development team needs to add it to the
sprint backlog. As the work is performed or completed, the remaining workload is
estimated and updated. When a part of the plan loses development significance, it
can be removed. During a sprint, only the development team can modify the
sprint backlog. The sprint backlog shows the status of works planned by the team
during the sprint in a visible and real-time way. The development team has full
ownership of the backlog.

The sprint backlog is created in the sprint planning, where development team
members proactively claim the tasks that suit and interest them. Task completion
duration is measured in the unit of hour. It is recommended that tasks be
completed within 16 hours. A task requiring 16 hours should be further broken
down. Task information includes the owner, workload, committed completion
time, and remaining workload on any day of the sprint. Only the development
team can modify the task information.

1.4.2 How Can I Deal With Unclaimed Tasks in My R&D Team?

Background
In traditional development mode, project managers assign tasks to individuals. In
agile development, however, teams claim tasks.

During transformation, many enterprises have always found some tasks unclaimed
during sprint planning.

Problem Analysis
Compared with the traditional development mode, we need to know why tasks
are claimed in agile development. In Agile, neither the Agile Manifesto nor the
Scrum Guide has the word "assign", but uses a term "self-organizing", as follows:

● The best architectures, requirements, and designs come from self-organizing
teams (12 principles of the Agile Manifesto)

● Self-organizing teams choose how to do the work themselves, rather than
being directed by someone outside the team (Scrum Guide).

● The development team is self-organized. No one (not even the Scrum master)
tells the development team how to turn product backlog into increments of
potentially releasable functionality (Scrum Guide).

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 31

So what is self-organizing?

Literally, "self-organizing" is the act of organizing scattered individuals or objects
to create a systematic whole. The person responsible for arranging them is the
organizer themselves. In agile development, a self-organizing team is a team with
self-management, self-driving, and self-learning capabilities. Such a team has the
following characteristics:

● Team members proactively take on tasks instead of waiting for leaders to
assign tasks.

● The team is managed as a whole.
● The team still needs coaching and guidance, but not command and control.
● Team members communicate closely with one another.
● The team actively finds and addresses problems, working together to solve

them.
● The team continuously improves their skills and encourages exploration and

innovation.

For more details about "self-organizing", see Reference Documents.

According to the Agile Manifesto and Scrum Guide, when we practice agile
development, the development team takes the initiative. The team changes from
being controlled to being self-organizing, and the development task shifts from
being assigned to being claimed. Claiming tasks allows people to take initiative,
and autonomy motivates them to be creative and solve problems. Strong self-
organizing brings high performance, great results, and a positive work
environment for both teams and individuals. In addition, individuals know
themselves the best and are good at assigning tasks to themselves. Compared
with the conventional approach of assigning development tasks, this method is
more reasonable.

Then, go back to how can l deal with unclaimed tasks in the team?

Before that, it is important to clarify one thing: during the sprint planning, it is not
necessary to claim all development tasks. In the Scrum Guide, it is noted that
"tasks are claimed on demand during Sprint Planning and Sprints." A task is
claimed based on your goals during the daily scrum. In addition, Mike Cohn
advised against claiming development tasks during the sprint planning. This can
lead to a shift in focus from team collaboration to individual work, which violates
the intention of agile development and hampers flexibility.

Generally, the reasons why no one claims a development task are as follows:

● Difficult development tasks: If a task is too difficult for most team members
to handle, they may worry about working overtime and are unwilling to claim
the task.

● Development tasks beyond scope: When the content of a development task
is beyond the scope of the team members, for example, the development
members do not know how to do testing, they might feel limited in their
ability to claim the task.

● Afraid of criticizing and judging: The tasks can be challenging. Team
members are afraid to fail the task and let the whole team down.

So how should we solve this problem?

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 32

Solution

The Scrum master is crucial in an agile scrum team. One of their responsibilities is
to help the team become self-organizing, enabling them to approach sprint
development tasks with a positive mindset. In addition, when no one is willing to
claim a task, the Scrum master should help the team figure out the reasons and
then take measures accordingly. The following provides solutions based on the
three situations in the analysis.

● Difficult development tasks
If the development task is too difficult, the Scrum master should organize a
team to effectively break down the task and use the probe Spike technology
to explore solutions for making the task easier. Then a team claims the task.
Or encourage members with average technical skills and expertise to work
together through pair programming.
In CodeArts, you can split difficult user stories into child work items. In
addition, you can set Assigned To and Notify in the basic information to keep
track of pair programming partnerships.

Figure 1-26 Story content introduction

In addition, pay attention to and update the development task during the
daily scrum, assess potential risks, and help the team resolve problems
promptly. In the Sprint retrospective, analyze this type of situation, output a
list of team-based standard procedures, and record the solution in the team
Wiki. Huawei Cloud CodeArts provides the Wiki feature to sort out and record
the working methods for the team.

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 33

● Development tasks beyond scope
Agile promotes cross-functional teams, but cross-functional teams do not
mean that one person can do everything. The cross-functional teams here
usually are T-shaped talent with multiple skills (Each team member has
expertise in one area and knowledge in other areas). The Scrum master
should organize and manage the member technology matrix with the team.
They should also identify the areas where the team lacks expertise and
facilitate knowledge sharing among team members. Regular activities like
technology sharing sessions can help team members learn new skills. This
encourages team members to do other tasks during the sprint. Additionally,
members with specific expertise and those who are interested can collaborate
as a team to do tasks using pair programming. This allows for the
enhancement of individual skills and technology knowledge. By developing T-
shaped capabilities among team members, they can have more choices when
claiming tasks, back up the team, and reduce the occurrence of unclaimed
tasks. In addition, the Scrum master also needs to focus on daily risk
assessment and guide the team in reviewing tasks and updating the team
Wiki.

● Afraid of criticizing and judging
The tasks can be challenging. Team members are afraid to fail the task and
let the whole team down. The Scrum master should express the idea of
teamwork, guide and highlight Scrum values, respect the background and
experience of each team member, choose development tasks, and give credits
to team members who have the courage to try. In our workplace, we can put
slogans (such as "respect others" and "team over individual") on walls and
whiteboards. This helps shift the team's mindset and encourages them to take
on more challenging tasks over time. And the Scrum master should fully
support those who are willing to challenge difficult tasks. During Sprint
retrospective, make sure the focus is to discuss ways to improve works rather
than criticizing and judging others.

Summary
The preceding three situations where no one claims the task are common.
However, every company or team faces different circumstances in their projects.
Therefore, it is impossible to list all the situations. You need to analyze your actual
situation. For example, an agile team that has just transformed may prefer semi-
assignment and semi-claiming for their development tasks. This is like China's
economy aiming to be market-oriented with proper macro control. No matter
which strategy we choose, team members should be motivated to actively claim
tasks, arrange them as necessary, and promptly manage any risks. If needed, we
may need to seek support from other sources or leaders to ensure the iteration
goal is not affected.

1.5 Agile Review

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 34

1.5.1 How to Have Daily Scrums

Background
Some project teams of the enterprise meet daily, yet the outcome is not up to par.
Daily scrums are much of a formality. Usually after a daily scrum, members go
back to their individual tasks. They care only about their own work, and other
team members do not understand their work at all. It seems that the daily scrum
makes no difference.

How can we have a proper daily scrum? What is the point of it? Do we have to do
it? Many teams have been struggling with these questions.

Problem Analysis
There are two scenarios for daily scrum questions.

● Scenario 1: The team understands the importance of the daily scrum but is
unhappy with its current status. They want to make the most of the daily
scrum. Teams like these struggle because they are not very clear about the
core value of daily scrums and how to effectively conduct them. To have
better daily scrums, these teams need some specific measures.

● Scenario 2: The team is trying to hold a daily scrum and does not know its
value. It seems that there is no difference between having a daily scrum and
not having one. In this case, the team has no understanding of daily scrums,
not to mention any best practices and benefits.

To sum up, a deeper understanding of the value of the daily scrum, that is, why it
is necessary and what it signifies, is needed in both scenarios. Then, you need to
know how to have a good daily scrum. Finally, some best practices and key points
are needed to help teams with a good daily scrum.

Solution
How can we have a good daily scrum? Take the following steps.

Figure 1-27 Daily scrum flowchart

1. Understanding the value of daily scrums
Daily scrum is a short meeting held on each day by a team that remains
standing. It reviews daily work and make adjustment, and self-organizing in
advance.

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 35

During the daily scrum, every team member can grasp the big picture, learn
about what has happened recently, track the progress towards the sprint goal,
assess if any adjustments are required for the day's tasks, and identify
challenges or obstacles. A daily scrum is an activity that reviews, synchronizes,
and adapts to daily plans to help self-organizing teams better do their work.
Some teams think that daily scrums are used to solve problems or report
project progress to managers. However, their core significance and value are
often misinterpreted.
Daily scrums help team members stay focused on their right tasks every day.
Team members usually do not shirk responsibility because they make
commitments in front of their coworkers. Team members are motivated to
ensure they meet their daily goals. The daily scrum also ensures that the
Scrum master and team members can promptly address problems, cultivate
team culture, and make everyone feel the team spirit. Some organizations
that do not use agile methodologies sometimes do daily scrums.
The value, significance, and misunderstandings of daily scrums are
summarized as follows.

Figure 1-28 Benefits and misunderstandings

2. Getting the daily scrum right
Let us learn how to do a right daily scrum.
Team members gather around the whiteboard on time (to increase the sense
of ceremony) to plan their daily tasks.

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 36

Figure 1-29 Daily scrum illustration

Team members need to take turns speaking and answer the following three
questions during the daily scrum:

a. What did I do yesterday? (What have I done since the last daily scrum?)
b. What do l plan to do today? (What will I do before the next daily scrum?)
c. What problems and obstacles have I encountered? (What problems and

obstacles have prevented or slowed my work?)

These three simple questions can prompt team members to review their work
daily, create their own work plans, seek assistance in overcoming obstacles,
and make commitments to the team. If the team does the daily scrum
properly, they can achieve the following outcomes.

Figure 1-30 Daily scrum goals

– Sharing team pressure
Healthy agile teams are under pressure to work together. All team
members promised to work together to finish the sprint work. Therefore,
team members are interdependent and accountable to each other. Team

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 37

members cannot ignore some other member doing the same thing for
many days without any progress and motivation to move forward. Their
unfinished work will be an obstacle for other team members.

– Fine-grained collaboration

In daily scrums, team members should communicate efficiently with clear
purposes. For example, if a member shares their plan for the day, another
member can say, "Oh, so you are planning to do that today. I will need to
rearrange my work priority. That is fine. Go ahead with your plan, I will
make the necessary adjustments. I am glad you said that." This fine-
grained collaboration allows team members to know how and when to
collaborate with each other. An agile team should strive for higher
efficiency and zero waiting time.

– Prioritizing tasks

In the daily scrum, every team member can stay updated on the ongoing
and completed tasks. A healthy team needs to prioritize finishing tasks
instead of constantly having tasks in progress. In the daily scrum, the
team needs to prioritize their tasks so that they can focus on finishing
these tasks as soon as possible. In other words, getting 10 things done is
far more meaningful than doing 100 things.

– Daily commitments

At the daily scrum, team members need to make commitments to the
team. In this way, team members know what will be delivered agilely and
how to be accountable to one another.

– Asking questions

Problems can be raised at any time in Agile, but daily scrum is a golden
time for team members to reflect on "what hinders me or slows down
my work".

3. Learning best practices and key points

Summarize some key points for successful daily scrums through a large
number of practices. Maybe these key points are not fully applicable.
Therefore, it is essential to customize these points to suit the specific
circumstances. These key points are called "18 keys for daily scrums".

The "18 keys for daily scrums" are divided into people, procedures and
methods, and tools and equipment to help you learn and memorize.

Figure 1-31 18 keys for daily scrums

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 38

– Key 1: Host
The host (such as the Scrum master) holds a meeting on time and
manages the meeting duration. Team members can talk to each other
concisely. They can take turns hosting the meeting to feel the pace of the
meeting.

– Key 2: Two pizza-sized teams
In Succeeding with Agile: Software Development Using Scrum by Mike
Cohn, a good way to determine the team size is to see if two pizzas can
feed everyone on the team.
Because two pizza–sized teams are similar to the size of the family, the
goal of the daily scrum can be easily achieved. When the team is a family
size, it is easy to track what happens in the team. People can easily
remember everyone's daily commitment and their responsibility for the
team. It is also recommended to keep the team size small in Scrum,
usually 7 to 9 people.
Finally, the team does not have to do daily scrums based on the above 18
keys. These keys are simply a collection of experiences and solutions to
various problems. Each team may need to choose 18 keys according to
their own needs.

– Key 3: Restricting speech
Non-team members are welcome to join, but they are not allowed to
speak. During the daily scrum, only team members who are fully
committed to reaching the sprint goal should talk.

– Key 4: Reserved buffer time
The development team should consider having a daily scrum either 30
minutes or 1 hour after their work hours start. This leaves some buffer
time for regular tasks, such as checking emails. It can also give the
development team extra time to review the work from the day before,
such as defect reports generated by automated testing tools that were
initiated overnight.

– Key 5: Same time and place
Daily scrums ideally take place at the same time and place, with a
visualized task board in front of team members. By meeting regularly at
a fixed time and place, team members can develop the habit, saving time
and efforts to find a meeting spot or confirm schedules.

– Key 6: On-time start
All team members should arrive on time. The host should start the
meeting on time, even if someone has not arrived yet. Latecomers should
be punished, such as paying fines or doing push-ups. Team members
decide on the penalties beforehand. If the penalty is a fine, the team also
decides on how to use it. What if team members keep being late? For
more solutions, see Learn More: Solutions for Members Being Late.

– Key 7: Stand-up meetings
Team members must stand for a meeting, which is why the meeting is
called a daily scrum. Standing at a meeting is more efficient than sitting,
encouraging people to wrap up the meeting sooner and get started on
their work for the day. Sitting down is easy to relax, but difficult to stay
focused and manage time effectively.

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 39

– Key 8: Emphasizing the purpose of daily scrums
The purpose of the daily scrum is often emphasized, especially for teams
new to daily scrums. The Scrum master or other leaders (or meeting
hosts) can emphasize the purpose of daily scrums. They gather feedback
from team members about the daily scrum and the progress they have
made. Over time, team members might decide to use the goal statement
as their daily benchmark. Following each daily scrum, team members
assess their own performance. It is an effective self-management tool.

– Key 9: Focusing on three problems
During the daily scrum, team members only focus on three topics
(yesterday... today... the problems are ...) and do not talk about other
things. Only discuss work that has been finished and is about to start,
and any problems and challenges faced during that work. The purpose is
not to report work to leaders, but to communicate with each other to
understand the project progress and solve problems together.

– Key 10: Eye contact
It is a fun game in which someone is asked to speak in front of the group,
and other members are asked to maintain eye contact with the speaker.
The speaker will see who is looking away as they speak. This game keeps
speeches concise and improves members' understanding of what
speakers say, thereby accelerating the improvement of the daily schedule.

– Key 11: Strict timeboxing
The daily scrum is a 15-minute timebox for the development team. It is
recommended that the meeting not be too long. For a team of 5 to 9
members, a meeting of 15 minutes is enough.

– Key 12: Post-meeting discussion
When someone is speaking, other members should listen carefully. They
can ask concise questions for clarification, but they should not have
lengthy discussions. To learn more about a member's report or seek
assistance from other members, they are free to gather interested
individuals for a discussion right after the daily scrum.

– Key 13: Problem and risk tracking
A brief record of the problems and risks encountered by the meeting
members shall be made (avoid too many details), and saved to the
knowledge base or somewhere appropriate. The purpose is to ensure that
these problems and risks are closed (For example, problems and risks can
be discussed and tracked after the meeting until they are closed).

– Key 14: Review and improvement
The daily scrum is a basic Plan-Do-Check-Act (PDCA). Also, the team can
get feedback of the daily scrum during the retrospective meeting,
including its pros and cons for the next sprint. (The daily scrum serves as
a review point during the review meeting. If everything is going smoothly,
no additional review is necessary.)

– Key 15: Speech stick
Some small props can be used to ensure that the meeting does not time
out. I will find either a pen or a small item as a speech stick, ask a
member to answer the three questions, and then pass it on to the next
member. Only members with the speech stick can talk. If someone takes

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 40

too long, interrupt in time and ask for the speech stick to be passed on to
the next person.

– Key 16: Sprint backlog
In a daily scrum, team members can refer to the sprint backlog to check
the task progress. The sprint backlog records the progress of team
members' work and needs to be updated and tracked daily. The electronic
sprint backlog can keep local and remote teams on the same page during
daily scrums. When the speaker talks about the three topics, the sprint
backlog can be displayed to the team.
The CodeArts sprint backlog is as follows.

Figure 1-32 CodeArts sprint backlog

– Key17: Task dashboard
In the daily scrum, the task board helps the team members to stay
updated on the ongoing and completed work. The team prioritizes
finishing tasks that are ongoing. By identifying these tasks, the team can
resolve them promptly.

– Key 18: Burndown chart
The burndown chart is a powerful tool for visualizing progress and
remaining work. Generally, the vertical axis indicates the remaining
workload (hours, story points, or number of work items), and the
horizontal axis indicates the sprint duration (usually in days).

Figure 1-33 Burndown chart

Speakers can use a burndown chart to explain the progress during the
daily scrum. The burndown chart enables all team members to see the
sprint progress at a glance, including whether the work is on track and in
good condition. The progress assists the team in figuring out if they can

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 41

finish a set number of tasks and decide early in the sprint. The following
effects can be achieved by using the burndown chart:

i. High visibility, displaying progress and remaining work intuitively
ii. Rapid risk identification
iii. Helping the team develop knowledge and understand their strengths
iv. Knowing the work pace of team members
v. Understanding the team sprint plan
vi. Using together with task walls for better efficiency

You do not have to use all 18 keys in a daily scrum. These keys are just
suggestions based on successful practices. If you face problems during the
daily scrum, consider the 18 keys and choose keys that fit your team. For
example, there are four keys about tools. Do we need to use all these tools?
No. As mentioned in the Agile Manifesto, individuals and interactions are
higher than processes and tools. Tools serve the team, instead of weighing
them down or even holding them back. Therefore, it is important for the team
to choose the right keys.

Learn More: Solutions for Members Being Late
Team members can discuss reasons for lateness at the retrospective meeting,
gather opinions, or change the start time of the daily scrum. For example, why
does the meeting need to start at 9:00 a.m? Can we do another time? What are
the difficulties? They can work together to find a solution.

Emphasize the significance of team members arriving on time. The host should
start the meeting at the scheduled time and place, even if some attendees are
missing. Do not convey the meeting content again to latecomers. Otherwise,
someone would think it acceptable to be late.

There should be some punishments for those who are late. The team members
decide on the punishments beforehand. Compared with the rules given by others,
you are more willing to follow your own rules and keep your commitments.

If the punishment is not enforceable, visualize the punishment. For example, make
a specific spot on the whiteboard and pin a photo each time you are late. This
particular spot attracts people to see.

Talk to those who are often late, try to understand what problems and difficulties
they have, care about them, and help them solve the problems together.

If tardiness is prevalent, the team may not be able to solve the problem. You can
attempt to enforce the company's policies and strictly follow the attendance
system. However, this goes against the concept of agile self-management and
cannot really solve the problem.

To sum up, consider the following factors when addressing the problem of
tardiness:

● Analyze the cause, care about the members, and decide together.
● Do the daily scrum at a fixed time and place, and on time.
● If someone is late, do not convey meeting content again.
● Establish a mechanism for light punishment.

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 42

● Understand the reason for being late and whether there are difficulties.

1.6 Member Management

1.6.1 How Do I Cultivate and Manage New Members of My
Project Team When the Team Members Change Frequently?

Background

As the business grows, an enterprise often has many new employees joined. The
development team leader needs to explain knowledge, working modes, and team
information to each new employee. The workload increases sharply in a short
period of time. The core members of a project, such as the project manager and
development team leader, often face the following challenges:

● New employees need many trainings to get started with their work.

● The resignation of senior employees leads to the lack of personnel who
understand key technologies and services.

● After working for a period of time, employees have new plans for their career
and want to change their work.

So, how should the project owner address these challenges?

Problem Analysis

As a project develops, the project team continuously expands with new employees.
Since new employees are unfamiliar with the project to which they have been just
assigned, trainings are necessary for new employees.

When the project becomes stable, some senior employees resign due to various
reasons such as the business structure, salary, and physical and mental fatigue.
Some senior employees gradually become tired of their work, or they want to seek
opportunities for transformation. This results in the lack of personnel who knows
certain services and key technologies. If these problems are not solved, the project
progress will be affected and unnecessary costs will be incurred. It will also be
unfavorable to the internal growth and self-organization of the team.

The key to these problems is still the cultivation of new employees.

Solution

Generally, the joining of new employees, key employee resignation, and personal
development can be addressed by establishing an information library for
managing team information, working modes, and knowledge.

CodeArts is an R&D cloud platform built with Huawei's development practices,
cutting-edge R&D concepts, and advanced R&D tools (see Reference
Documents).

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 43

1.6.2 How Do I Manage the Permissions of Project Members?

Background
This section describes how to add customer service members and grant them
permissions.

Problem Analysis
● How do I use IAM to control permissions?

An account can create multiple software development projects. By default,
only accounts can view all projects and members, and determine whether
their Identity and Access Management (IAM) users can create projects. In
some enterprise scenarios, an account can authorize an IAM user through
fine-grained permissions management so that the user can configure settings
on behalf of the account.

● What roles can project members have?
All projects created on the project management page support independent
permission settings. This means you can configure different permissions in
each project.
Project management involves the following default roles:
– Project administrator: the creator of a project
– Project manager: project development administrator
– Test manager: project test administrator
– Product manager: requirement analysis manager of a project
– System engineer: architecture analysis manager of a project
– Committer: participant in project development
– Developer: participant in project development
– Tester: participant in project testing
– Participant: participates in specified tasks of a project
– Viewer: a member who follows or browses a project
– O&M manager: a member responsible for O&M of a project

● How do I add members to a project and assign them roles?

Solution
CodeArts Req uses IAM to manage permissions for multiple projects of a tenant.
Each project can have different permissions. There are two types of permissions
managed in CodeArts Req: cloud service and project permissions.

● Cloud service permissions are configured using IAM. IAM is a basic service for
permissions management in Huawei Cloud. It can be used free of charge. You
pay only for the resources in your account.
– For details about IAM, see IAM Service Overview.
– For details about cloud service permissions, see Cloud-Service-Level

Permissions.
● Project permissions are configured in CodeArts Req. For details about project

permissions, see Project-Level Permissions.

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 44

https://support.huaweicloud.com/intl/en-us/productdesc-iam/iam_01_0026.html
https://support.huaweicloud.com/intl/en-us/productdesc-projectman/projectman_07_0005.html#section0
https://support.huaweicloud.com/intl/en-us/productdesc-projectman/projectman_07_0005.html#section0
https://support.huaweicloud.com/intl/en-us/productdesc-projectman/projectman_07_0005.html#section1

For more information about members, see CodeArts Req User Guide >
"Managing Members".

1.7 Appendix

1.7.1 Reference Documents
● Essential Scrum by Kenneth S. Rubin
● User Stories for Agile Approach (A translation of User Stories Applied: For

Agile Software Development) by Mike Cohn
● 2019 State of DevOps Report of China by China Academy of Information and

Communications Technology (CAICT), Huawei Cloud CodeArts (formerly
"DevCloud"), and Nanjing University

● User Stories Applied: For Agile Software Development by Mike Cohn
● Becoming a Technical Leader by Gerald M. Weinberg
● Turn Your Experience into Capabilities by Qiu Zhaoliang
● The Scrum Guide. November 2017
● Essential Scrum by Kenneth S. Rubin. [M]. Beijing: Tsinghua University Press
● Scrum Guide. 2007
● Agile Project Management For Dummies by Mark C. Layton. [M]. Beijing:

Posts & Telecom Press
● Should Team Member Sign Up for Tasks During Sprint Planning?
● Coaching Agile Teams by Lyssa Adkins. [M]. Beijing: Publishing House of

Electronics Industry

CodeArts Req
Best Practices 1 Best Practices of Scrum Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 45

https://support.huaweicloud.com/intl/en-us/usermanual-projectman/devcloud_hlp_00026.html
https://support.huaweicloud.com/intl/en-us/usermanual-projectman/devcloud_hlp_00026.html
https://www.mountaingoatsoftware.com/blog/should-team-members-sign-up-for-tasks-during-sprint-planning

2 Best Practices of IPD-System Device
Projects

2.1 Overview
The IPD-system device template presets Huawei's best practices in integrated
product development. It offers a structured R&D process (see Figure 2-1) for
system devices, involving raw requirement management, product feature tree
management, R&D requirement breakdown and allocation, baseline management,
change, and cross-project collaboration.

Figure 2-1 Process of IPD-system device projects

2.2 Requirement Model
First, let's look at the work objects in this requirement model: RR, SF, IR, SR, and
AR.

CodeArts Req
Best Practices 2 Best Practices of IPD-System Device Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 46

Table 2-1 Work objects of IPD-system device projects

Work Object Description

Raw
requirement
(RR)

An original problem or demand described from the
perspective of internal and external customers. Customer
requirements are a type of RRs. This type of requirements
must be analyzed and reviewed by the Requirement
Management Team (RMT) and Requirement Analysis Team
(RAT).

System feature
(SF)

A major capability of a version that supports problems (PBs).
In principle, a system feature is a set of key selling points
(highlights) of a product package. Each feature is an E2E
solution that meets customers' specific business requirements.
Some features can be sold independently via license control.

Initial
requirement
(IR)

A requirement re-described accurately (with a complete
background and standard format) from the perspective of
internal and external customers and markets. IRs can be
produced:
● By breaking down RRs or SFs.
● From product plans.

System
requirement
(SR)

A functional or non-functional requirement described from
the R&D perspective. This type of requirements is visible to
the outside and testable. Functional requirements are
scenario-specific, while non-functional requirements are
about system costs, global quality attributes (mainly DFX),
and technical limitations.

Allocated
requirement
(AR)

A functional or non-functional requirement that an SR is
broken down into for subsystems/modules to deliver, based
on the division of responsibilities of basic-level organizations.

2.3 RR Management

2.3.1 Introduction
A successful product must meet customer needs, which are the driving force of
enterprise development. Unlike traditional requirement management tools that
only play a role in the R&D phase, CodeArts Req covers both customer and market
requirements by providing a complete process from customer requirement
collection, high-value requirement decision-making, to delivery and acceptance. It
makes real-time requirement progress transparent and improves market
requirement flow by 70%.

RRs are the original problems or demands of both internal and external
customers. They are described in the perspective of customers. Customer
requirements are a type of RRs. These requirements must be analyzed by the
corresponding recipient. The process of RRs is as follows: submit, analyze, plan,
implement, deliver, accept, and close.

CodeArts Req
Best Practices 2 Best Practices of IPD-System Device Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 47

Figure 2-2 RR status transition flowchart

2.3.2 Glossary
● This Project

A collection of RRs that are proposed to a project from either inside or outside
the project.

● Other Projects
A collection of external RRs proposed across projects or organizations.

● Create/Associate Child Requirement
An RR is analyzed, evaluated, and accepted, and then broken down into child
requirements or associated with other child requirements for smaller
granularities of R&D work.

● *Recipient
A member who undertakes an RR after key joint decision-making.

2.3.3 Examples

2.3.3.1 Introduction

A company plans to launch a smart watch. However, the R&D will take a long
period, and requires collaboration of multiple departments and teams. How can
the company transfer RRs among organizations and ensure that the RRs can be
finally closed? Now, let's look at some RR lifecycle management practices.

2.3.3.2 Creating RRs

Classify the original demands from both internal and external customers into "This
Project" and "Other Projects", and convert the demands into RRs.

Prerequisites
● The administrator has registered a HUAWEI ID and enabled CodeArts. For

details, see Registering a HUAWEI ID and Enabling Huawei Cloud Services.
● The administrator has created IAM users for the project members. For details,

see Creating an IAM User.
● An IPD-system device project has been created.

CodeArts Req
Best Practices 2 Best Practices of IPD-System Device Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 48

https://support.huaweicloud.com/intl/en-us/usermanual-account/account_id_001.html
https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_02_0001.html
https://support.huaweicloud.com/intl/en-us/usermanual-projectman/projetcman_01_8005.html

Procedure
1. On the Raw Requirements tab, click CreateRR.

Figure 2-3 Raw Requirements tab

2. Set the RR information.

When creating an RR, fill in the mandatory fields such as Title, Description,
Raised By, Responsible Project, and Recipient. The Description field is
especially important. Describe the background, value, and details so that the
RR can be analyzed accurately by owners in subsequent phases.

Figure 2-4 Creating an RR

3. Click Submit. The requirement transits to the analyzing phase.

2.3.3.3 Handling RRs

After an RR is created, the recipient needs to handle it for analysis, planning,
implementation, delivery, acceptance, and closure.

● Analyzing an RR

● Planning an RR

● Implementing an RR

● Delivering an RR

● Accepting an RR

● Closing an RR: Once accepted, an RR changes to the Closed state.

CodeArts Req
Best Practices 2 Best Practices of IPD-System Device Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 49

Analyzing an RR
The owner assesses the RR's value in the Analyzing phase, and then chooses to
accept, turn back, or suspend the RR after analysis and decision-making.

Figure 2-5 Analyzing an RR

● If the owner accepts the requirement after analysis, they must fill in the
mandatory fields and specify the subsequent work plan.

CodeArts Req
Best Practices 2 Best Practices of IPD-System Device Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 50

Figure 2-6 Accepting a requirement

● If the owner turns back the requirement after analysis, they must also fill in
the mandatory fields and reasons.

CodeArts Req
Best Practices 2 Best Practices of IPD-System Device Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 51

Figure 2-7 Turning back a requirement

● If the requirement is considered not urgent after analysis and decision-
making, you can suspend it and provide your reasons.

Figure 2-8 Suspending a requirement

Planning an RR
After an RR is analyzed and accepted, it moves into the planning phase.
Determine whether to break down the RR, associate child requirements, or directly
start the development.

CodeArts Req
Best Practices 2 Best Practices of IPD-System Device Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 52

Figure 2-9 Planning an RR

After the RR is broken down, it automatically transits to the Implementing state.

Figure 2-10 Breaking down a requirement

Implementing an RR
If needed, you can break down the RR or associate child requirements with it
anytime during the R&D process.

Figure 2-11 Implementing an RR

When all created IRs and associated child requirements are completed, the RR
automatically transits to the Delivering state.

CodeArts Req
Best Practices 2 Best Practices of IPD-System Device Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 53

Delivering an RR

The owner evaluates the delivery quality from various dimensions, and decides
whether to directly submit the requirement for acceptance or turn it back to the
corresponding phase for modification.

Figure 2-12 Delivering an RR

Accepting an RR

After the RR transits from the Delivering state to the Accepting state, the
proposer evaluates whether the requirement can be accepted on the Other
Projects tab. If the requirement is fully met, the proposer accepts it, and it then
changes to the Closed state.

Figure 2-13 Accepting an RR

You can check all the child requirements created from the RR in the RR list for
global tracing.

Figure 2-14 Viewing the RR list

2.3.3.4 Editing RR Details

2.3.3.4.1 Related Items

Once started, an RR is related to various work items. It goes through a complete
process from collection, analysis, decision-making, implementation, to acceptance.
Different parties from various organizations and teams work together in each
phase. Related items are used to record and trace operations. On the Related
Items tab, you can associate/disassociate work items, create child requirements,
and break down/allocate requirements.

CodeArts Req
Best Practices 2 Best Practices of IPD-System Device Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 54

Figure 2-15 Setting related items

2.3.3.4.2 Review

The title, description, priority, and planned completion time of an RR are
controlled fields. They cannot be modified without permission once the RR is
submitted. If you have to do so, you need to start a review process. After the
review is complete, the relevant fields will be updated with the changed values.

Figure 2-16 Modifying controlled fields

CodeArts Req
Best Practices 2 Best Practices of IPD-System Device Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 55

Figure 2-17 Creating a CR

2.3.3.4.3 Workloads

All work items require labor input to complete. The workloads need to be
recorded to provide data basis for efficiency insights. You can add, edit, and delete
the workloads of an RR on the Workload tab, where Total means the sum of the
planned or actual person-days of all child requirements.

Figure 2-18 Setting workloads

CodeArts Req
Best Practices 2 Best Practices of IPD-System Device Projects

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 56

3 Best Practices of Defect Management

3.1 About Defect Management
Defect management is a critical part in product lifecycle management. Both
hardware and software development will encounter countless defects. Poor defect
management will affect the product quality. Based on years of experience in
quality and operation management, Huawei has developed a set of effective
defect best practices. It provides a unified, efficient, and visualized defect tracking
platform to ensure that each defect can be closed with high quality and efficiency.

3.2 Glossary
● Severity

There are four severities in descending order: critical, major, minor, and info.

● Responsible Release/Sprint

The version in which a defect is found, or the release plan or sprint in which a
defect is produced.

● Environment

The environment where a defect exists. There are production, alpha, and beta
environments.

● Fix Release/Sprint

The release or sprint in which a defect is planned to be fixed.

3.3 Practice Overview
During product R&D, teams and projects often work independently. It is difficult to
control product quality and track defect rectification progress, which severely
affects product delivery efficiency. Defect management means to control the
complete process from defect submission, analysis, rectification, testing,
acceptance, to closure. It enables cross-project defect tracking and real-time
identification, assuring product delivery quality of your organization.

CodeArts Req
Best Practices 3 Best Practices of Defect Management

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 57

This chapter uses a system device project as an example to describe the best
practices in defect management.

3.4 Examples

3.4.1 Introduction
A company plans to launch a smart watch. However, the R&D will take a long
period, and requires collaboration of multiple departments and teams. How can
the company transfer defects among organizations and ensure that the defects
can be finally closed? Now, let's look at some defect lifecycle management
practices.

3.4.2 Creating a Bug
When a defect is detected, the first thing to do is record it in the defect
management system by creating a bug.

Prerequisites
● The administrator has registered a HUAWEI ID and enabled CodeArts. For

details, see Registering a HUAWEI ID and Enabling Huawei Cloud Services.
● The administrator has created IAM users for the project members. For details,

see Creating an IAM User.
● An IPD-system device project or IPD-standalone software project has been

created.

Procedure
1. On the Defects tab, click Bug.

2. Enter the bug information.
When creating a bug, fill in the mandatory fields such as Title, Owner, and
Severity. The Description field is especially important. Describe the bug
symptoms, expected fixing effect, and possible error messages in detail, so
that the bug can be analyzed and located accurately in subsequent phases.

CodeArts Req
Best Practices 3 Best Practices of Defect Management

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 58

https://support.huaweicloud.com/intl/en-us/usermanual-account/account_id_001.html
https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_02_0001.html
https://support.huaweicloud.com/intl/en-us/usermanual-projectman/projetcman_01_8005.html
https://support.huaweicloud.com/intl/en-us/usermanual-projectman/codeartsreq_01_8086.html

Figure 3-1 Creating a bug

3. Click Submit. The bug goes to the analyzing phase.

More Operations
If you find another bug of the same type or with similar information when
creating a bug, you can click Duplicate to auto fill the bug information.

Figure 3-2 Duplicating a bug

CodeArts Req
Best Practices 3 Best Practices of Defect Management

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 59

Figure 3-3 Modifying a bug

In addition, you can select a new responsible project for the duplicated bug. This
means you can copy the bugs of the current project to other projects to reduce the
workload of creating bugs. Please note that a duplicated bug is a completely
independent data object and cannot be traced back in the current project. If you
want to create an identical bug that can be traced through the current bug, you
are advised to use the function described in Collaborating on a Bug.

3.4.3 Analyzing a Bug
After a bug transits to the analyzing phase, the owner specified in the previous
step analyzes and locates the bug. They check the bug information and locate the
root cause based on the bug's environment and symptoms.

CodeArts Req
Best Practices 3 Best Practices of Defect Management

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 60

Figure 3-4 Analyzing a bug

● If the owner thinks that the bug needs fixing, click Submit to Fix and enter
the cause. Then the bug transits to the fixing phase, waiting for the
corresponding owner to fix it.

CodeArts Req
Best Practices 3 Best Practices of Defect Management

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 61

Figure 3-5 Submitting a bug to R&D for fixing

● If the owner thinks that the bug does not need fixing, click Fixing not
required and enter the reason. Then the bug transits to the testing phase,
waiting for the test owner to confirm it.

CodeArts Req
Best Practices 3 Best Practices of Defect Management

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 62

Figure 3-6 Entering the reason for needing no fixing

● If the owner thinks that the bug is unclear and cannot be located, click
Return To and enter the reason. Then the bug transits to the confirming
phase, waiting for the creator to confirm it again.

CodeArts Req
Best Practices 3 Best Practices of Defect Management

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 63

Figure 3-7 Entering the reason for turning back a bug

● If the bug cannot be analyzed and located due to some objective factors, click
Suspend and enter the reason. Then the bug is suspended.

Figure 3-8 Suspending a bug

CodeArts Req
Best Practices 3 Best Practices of Defect Management

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 64

Figure 3-9 Entering the reason for suspending a bug

Once started, the bug is related to various work items. For example, if the bug
may be introduced by a requirement, associate them to facilitate recording and
tracing. In this case, you can associate or disassociate work items on the Related
Items tab.

Figure 3-10 Related items of a bug

All work items require manpower input during the operation. The information
needs to be recorded to provide data basis for efficiency insights. You can add,
edit, and delete the workloads of a bug on the Workload tab.

CodeArts Req
Best Practices 3 Best Practices of Defect Management

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 65

Figure 3-11 Workloads of a bug

3.4.4 Confirming a Bug
If a bug is turned back in the analyzing phase, it enters the Confirming phase. In
this case, the creator can edit the bug and submit it again. If the creator finds that
the bug is not a problem, has been fixed, or cannot be managed as a bug, the
creator can click Close to close the bug.

Figure 3-12 Confirming a bug

3.4.5 Fixing a Bug
After a bug transits to the fixing phase, the owner specified in the previous step
fixes the bug. The fix owner schedules the bug based on its description and the
root cause provided by the analysis owner. Scheduling means to plan a fix release/
sprint. The fix owner can arrange the bug in a fix plan based on key information
such as the bug severity and workloads.

CodeArts Req
Best Practices 3 Best Practices of Defect Management

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 66

Figure 3-13 Fixing a bug

● After the fix owner completes the fixing and self-test, click Submit to test
and attach the fix solution. Then the bug transits to the testing phase, waiting
for the tester to perform a regression test.

CodeArts Req
Best Practices 3 Best Practices of Defect Management

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 67

Figure 3-14 Filling in a fix solution

● If the fix owner thinks that the root cause is unreasonable, they can click
Return to analysis and enter the reason to turn back the bug to the analysis
owner in the previous step for re-analysis.

CodeArts Req
Best Practices 3 Best Practices of Defect Management

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 68

Figure 3-15 Entering the reason for turning back a bug for analysis

● If the fix owner thinks that the bug cannot be fixed at present, they can click
Suspend and enter the reason to suspend the bug.

Figure 3-16 Suspending a bug

CodeArts Req
Best Practices 3 Best Practices of Defect Management

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 69

Figure 3-17 Entering the suspension reason

3.4.6 Testing a Bug
When fixed, a bug needs to be tested by a tester. After the bug transits to the
testing phase, the tester performs a regression test based on the bug description,
cause, and fix solution in the environment where the bug was discovered. Then
the tester outputs a report.

If the tester verifies that the bug has been rectified, they can click Passed and fill
in a test report.

Figure 3-18 Filling in a test report

If the regression test fails, click Return to fixing and fill in a test report. Then the
fix owner continues to fix the bug.

CodeArts Req
Best Practices 3 Best Practices of Defect Management

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 70

Figure 3-19 Entering the reason for turning back a bug for fixing

If the regression test cannot be performed for the bug at present, click Suspend to
suspend the bug.

CodeArts Req
Best Practices 3 Best Practices of Defect Management

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 71

Figure 3-20 Entering the reason for suspending a bug

3.4.7 Accepting a Bug
After the test is passed, if the tester and the bug creator are not the same person,
the bug needs to be transferred back to the creator for acceptance.

The creator performs acceptance according to the procedure for triggering the
bug. If the bug has been rectified, click Accepted to close the bug.

3.4.8 Closing a Bug
When a bug is accepted, it is closed. Now, the entire bug lifecycle ends.

3.4.9 Activating a Bug
As a product evolves, some bugs may occur again. If a bug occurs again, you can
activate it, and fix it again based on the original analysis, fixing, and testing
results. Once activated, the bug transits to the analyzing phase and starts its
handling process.

Figure 3-21 Activating a bug

3.4.10 Collaborating on a Bug
System device projects usually take a long time in R&D and involve many
departments and teams, which depend on each other. Therefore, a bug of these
projects often involves multiple departments. To fix the bug, you can assign it to
these related parties. After receiving the bug, the downstream projects start their

CodeArts Req
Best Practices 3 Best Practices of Defect Management

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 72

own bug fixing processes. All departments collaborate to promote the fixing. In
addition, you can track your upstream and downstream bugs in related items at
any time to check the fixing progress.

Figure 3-22 Collaborating on a bug

CodeArts Req
Best Practices 3 Best Practices of Defect Management

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 73

4 Huawei E2E DevOps Practice: Managing
Requirements

4.1 Overview

Background
HE2E (short for "Huawei end-to-end" DevOps implementation framework is an
operable, feasible, and agile development methodology developed based on years
of R&D experience and industry-leading practices, as shown in Figure 4-1.

Figure 4-1 HE2E DevOps implementation framework

● Planning and Design
Steps 1 and 2 in the diagram represent the process of product planning
between service personnel (even customers) and technicians to sort out the
overall product logic, implementing product planning and design, and
controlling the requirement granularity and breakdown.
– Software development solves issues and delivers value, not simply

provides functions. The impact map is used to identify user requirements
and root causes.

CodeArts Req
Best Practices

4 Huawei E2E DevOps Practice: Managing
Requirements

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 74

– During microservice design, we put objectives and requirements in user
stories to facilitate information exchanges among customers, service
personnel, and developers. If you view only separate requirement items,
you will not think from the entire solution's perspective. User stories
focus on scenarios, sort out and display stages and activities in a tree
structure. In this way, you will view both requirement items and overall
requirement scenarios.

● Planning, Tracing, and Sprint
Steps 3 to 10 are the main management practices in a Scrum framework
process.
– Scrum defines a relatively complete framework for agile process

management. CodeArts well integrates the Scrum framework with daily
activities of development teams. Main process deliverables include the
product backlog, sprint backlog, potential deliverable product increments,
and issue list. Core team activities include Sprint planning meetings, daily
Scrums, Sprint reviews, Sprint retrospective meetings, and daily team
updates.

● ContainerOps
Start from step 11 and enter the engineering practice in a CI/CD process.
– CI/CD is based on code configuration management. It covers not only

traditional security control of code assets, concurrent development, and
version and baseline management, but also reflects team collaboration
and communication.

– The pipeline connects code check (or static scanning), automated build,
automated testing in all stages, and automated deployment.

– CI/CD also covers continuous artifact management and environment
management at different levels, including development, test, quasi-
production, and production environments.

– The CI/CD pipeline manages stages, environments, activities, entry and
pass quality gates, and input and output artifacts in each stage.

Application Scenarios
We will use the sample code for an auto part e-mall named Phoenix Mall and a
DevOps full-process sample project to describe how to use CodeArts to implement
the HE2E DevOps framework. This solution is applicable to agile/Scrum R&D
projects.

Solution Architecture
● Phoenix Mall Architecture

Figure 4-2 shows the architecture of the Phoenix Mall sample project.

CodeArts Req
Best Practices

4 Huawei E2E DevOps Practice: Managing
Requirements

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 75

Figure 4-2 Technical architecture of Phoenix Mall

The sample project consists of five microservice components that can be
independently developed, tested, and deployed, as shown in Table 4-1.

Table 4-1 Microservice components of Phoenix Mall

Microservice
Component

Description

Web client
server
(correspondi
ng to the
Vote
function in
the sample
code)

● Service logic: Users can use a browser to access the web
UI of this service. When a user clicks Like on a specific
offering, the service saves the record of the selected
offering in the Redis cache.

● Technology stack: Python and Flask frameworks
● Application server: Gunicorn

Web
management
server
(correspondi
ng to the
Result
function in
the sample
code)

● Service logic: Users can use a browser to access the web
UI of this service. The statistics about Like clicked by
users on the UI are dynamically displayed. The data is
obtained from the PostgreSQL database.

● Technology stack: Node.js and Express frameworks
● Application server: server.js

CodeArts Req
Best Practices

4 Huawei E2E DevOps Practice: Managing
Requirements

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 76

Microservice
Component

Description

Background
order batch
processing
program
(correspondi
ng to the
Worker
function in
the sample
code)

● Service logic: This service is a background process. It
monitors item records in the Redis cache, obtains new
records, and saves them in the PostgreSQL database so
that the management UI can extract data for statistics
display.

● Technology stack: .net core or Java (This service provides
two technology stacks to implement the same function.
You can modify the configuration and select one as the
runtime process.)

Order cache ● Service logic: Persists data for the client UI.
● Stack: Redis

Order
database

● Service logic: Persists data for the management UI.
● Stack: PostgreSQL

● Composition of the DevOps Full-Process Sample Project

This project uses Scrum and presets some service templates. Products and
services involved in this project.

Table 4-2 List of involved products/services

Service Description

CodeArts Req Presets three planned and completed
Sprints, project module settings, and several
statistical reports.

Repo Presets the code repository phoenix-sample
to store project sample code.

Check Presets four tasks.

Build Presets five tasks.

Artifact Stores software packages generated by build
tasks.

Deploy Presets three applications.

TestPlan Presets more than 10 test cases in a
function test case library.

Pipeline Presets five pipelines.

Other
components
and services

Identity and
Access
Management
(IAM)

Manages accounts.

CodeArts Req
Best Practices

4 Huawei E2E DevOps Practice: Managing
Requirements

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 77

Service Description

SoftWare
Repository
for Container
(SWR)

Stores Docker images generated by build
tasks.

Cloud
Container
Engine (CCE)

Deploys software packages, which is
different from ECS-based deployment.

Elastic Cloud
Server (ECS)

Deploys software packages, which is
different from CCE-based deployment.

Advantages
● We provide a one-stop cloud DevOps platform to manage the entire software

development process, to address R&D pain points such as frequent
requirement changes, complex development and test environments, difficult
multi-version maintenance, and failure to effectively monitor the progress and
quality.

● This service provides visualized and customizable pipeline services for CD,
doubling the software rollout speed.

4.2 Preparations

Background

This section uses the DevOps Full-Process Sample Project as an example to
describe how to manage requirements in a project.

This sample project uses the Scrum mode for iterative development. Each Sprint
lasts for two weeks. The Phoenix Mall version has been developed in the first
three Sprints, and Sprint 4 is being planned.

According to the project plan, time-limited discount and group buying activity
management functions need to be implemented in Sprint 4.

Due to business and market changes, store network query is added as an urgent
requirement. Therefore, this function will be developed in Sprint 4.

The following four roles are involved in the project.

Table 4-3 Project role list

Project Member Project Role Responsibility

Sarah Product owner (project
creator)

Be responsible for the
overall product planning
and product team setup.

CodeArts Req
Best Practices

4 Huawei E2E DevOps Practice: Managing
Requirements

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 78

Project Member Project Role Responsibility

Maggie Project manager Manage project delivery
plans.

Chris Developer Develop, compile, deploy,
and verify project code.

Billy Tester Write and execute test
cases.

Prerequisites

You have purchased CodeArts (together with the basic edition package and
CloudTest basic package).

Creating a Project

Before starting the practice, Sarah creates a project.

Step 1 Log in to the CodeArts console.

Step 2 Click and select a region.

Step 3 Clicking Access Service.

Step 4 Click Create Project, and select DevOps Full-Process Sample Project.

Step 5 Enter the project name Phoenix Mall and click OK. The project is created.

----End

Adding Project Members

Step 1 Go to the Phoenix project, and choose Settings > General > Service Permissions
> Member.

Step 2 Click Add Members above the project member list and choose Import Users
From Enterprise from the drop-down list.

Step 3 In the dialog box that is displayed, click Create User. The Users page is displayed.

Figure 4-3 Adding members

Step 4 Click Create User and name them Maggie, Chris, and Billy in sequence.

CodeArts Req
Best Practices

4 Huawei E2E DevOps Practice: Managing
Requirements

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 79

https://support.huaweicloud.com/intl/en-us/usermanual-devcloud/devcloud_01_0002.html#section2
https://console-intl.huaweicloud.com/devcloud/?locale=en-us

Step 5 Return to the CodeArts page, refresh the browser, click Add Members above the
member list, and choose Import Users From Enterprise. Select members Maggie,
Chris, and Billy, and click Next.

Step 6 Click the Role drop-down list in each row, select Project manager for Maggie,
Developer for Chris, and Tester for Billy, and then click Save.

----End

4.3 Managing Project Plans

Managing Requirements

Step 1 Create a work item for the new requirement.

The store network query function is a new requirement. Therefore, the product
owner Sarah needs to add it to the requirement planning view.

1. Go to the Phoenix project, choose Work from the left navigation pane, and
click the Plans tab.

2. Go to the Phenix Mall mind map.

NO TE

If the Plans tab page is empty, create a mind map.

1. Click and choose Mind Map from the drop-down list.
In the dialog box that is displayed, enter the name Requirement_Planning, and
click OK. The mind map details page is displayed.

2. Click Add Epic. In the dialog box that is displayed, select Phoenix and click OK.

3. Create a feature Store Network.

a. Click under Epic Phoenix.
b. Enter the name Store Network and press Enter to save the settings.

CodeArts Req
Best Practices

4 Huawei E2E DevOps Practice: Managing
Requirements

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 80

Figure 4-4 Creating a feature

4. Use the same method to add a story User can query network of all stores
to the feature Store Network.

Step 2 Edit the story.

1. Click Story to query all store network and edit story information by referring
to the following table.

Table 4-4 Story configurations

Configuratio
n Item

Suggestion

Description Enter As a user, I want to query all stores so that I can
select a proper store to obtain the service.

Priority Select High.

Severity Select Critical.

2. Prepare a local Excel file for Store Network. For details about the file

content, see the following table.

CodeArts Req
Best Practices

4 Huawei E2E DevOps Practice: Managing
Requirements

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 81

Table 4-5 Store network list

Branch
Name

Branch Address

Branch A 123 meters to the departure floor, Terminal 1, Airport E

Branch B No. 456, Street G, Area F

Branch C No. 789, Street J, Area H

Branch D West side of Building K, Avenue L, Area K

3. Return to the story editing page, find Click to select a file, or drag and drop

a file, choose Upload from the drop-down list, and upload the list file to the
work item as an attachment.

4. Click Save. The story details are edited.

----End

Managing Sprints

Step 1 Create a Sprint.

1. Go to the Phoenix project, choose Work from the left navigation pane, and
click the Sprints tab.

2. Click next to Sprint in the upper left corner of the page. In the dialog box
that is displayed, configure Sprints by following Table 4-6. Click OK.

Table 4-6 Sprint information configurations

Configuratio
n Item

Suggestion

Sprint Name Enter Sprint4.

Planned
Duration

Set the duration to 2 weeks.

Step 2 Plan the Sprint.

1. From the left navigation pane, choose Unplanned Work Items.
2. Select the following three stories in the list as planned:

– User can query network of all stores
– Admin can add group buying activities
– Admin can add time-limited discounts

3. Click Edit at the bottom of the page.
4. Click Add Field.
5. Choose Sprint from the Field Name drop-down list box, select Sprint4 from

the Field Value drop-down list box, and click Save.

CodeArts Req
Best Practices

4 Huawei E2E DevOps Practice: Managing
Requirements

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 82

Figure 4-5 Planning the Sprint

Step 3 Assign the stories.

1. Choose Sprint4 from the left navigation pane.

2. Select all stories and set Assign To to Chris following Planning Sprint.

Step 4 Break down the stories.

1. Find the story User can query network of all stores. Click the story name.

2. In the right pane of the page, click the Child Work Items tab.

3. Click Fast Create Child. Enter the title Frontend display-add store network
menu, assign it to Chris, and click OK.

4. Use the same method to add the task Background management-Add store
network management and maintenance module.

----End

Monitoring and Tracking Project Status
● Daily Stand-ups to Track Task Progress

After the Sprint starts, the project team communicates the current progress of
each work item through daily stand-up meetings and updates the status.

You can view the status of work items in a Sprint in the card mode.

Go to the Sprints tab page and click to switch to the card mode. This page
displays work item cards in each status. You can drag a work item card to
update its status.

● Review Meeting to Accept Results

Before the expected end time of the Sprint, the project team holds a review
meeting to present work achievements of the current Sprint.

The Sprints tab page provides Sprint statistics and charts. The team can easily
collect statistics on the progress of the current Sprint, including the
requirement completion status, Sprint burndown chart, and workload.

Go to the Sprints tab page and click Statistics to display the progress view.

CodeArts Req
Best Practices

4 Huawei E2E DevOps Practice: Managing
Requirements

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 83

4.4 Managing Project Configurations

Managing Project Notifications
The project manager Maggie wants team members to be notified when assigned a
task (work item) so that the members can handle the task (work item) in time.

Step 1 Go to the Phoenix Mall project, and choose Settings > Work > Notifications
from the navigation pane.

Step 2 View default settings of the sample project displayed on the page.

We will keep default settings unchanged because they can meet requirements. If
you need, modify the settings, which will be automatically saved.

Step 3 Verify the result.

When the project manager is done with breaking down the story, the developer
Chris will receive the following two types of notifications.
● Direct messages: After Chris logs in to the homepage, he will view a number

in the upper right corner. He can click to view the notification.
● Email: The project member also receives an email if an email address has

been configured for the corresponding user and the Email Notifications
option has been enabled on the This Account Settings page.

NO TE

All members can set whether to receive email notifications. To enable email
notification, perform the following steps:
1. Click the username in the upper right corner of the page and choose This Account

Settings from the drop-down list. The Notifications page is displayed by default.
2. Find Email Notifications on the page and click Enable. You can click Edit Settings

to change the email address.

----End

Customizing a Project Workflow
In the Sprint review meeting, the team demonstrates the product to the product
owner and presents the test report. The product owner confirms whether the story
is complete. However, the current story status does not show that the test is
complete. Therefore, the tester suggests adding a status Accepting.

The project manager Maggie performs the following operations to add a status to
a story.

Step 1 Go to the Phoenix Mall project, and choose Settings > Work from the navigation
pane.

Step 2 Choose Common Statuses from the middle navigation pane. View the default
work item statuses of the sample project.

Step 3 Click Add Status. In the dialog box that is displayed, edit the status information by
referring to Table 4-7, and click Add.

CodeArts Req
Best Practices

4 Huawei E2E DevOps Practice: Managing
Requirements

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 84

Table 4-7 Status configurations

Configuratio
n Item

Suggestion

Status Enter Accepting.

Status
Category

Select Doing.

Step 4 Choose Stories > Statuses and Transitions from the middle navigation pane.
View the default story statuses of the sample project.

Step 5 Click Add Existing Status. In the displayed dialog box, select Accepting and click
OK.

Figure 4-6 Adding a story status

Step 6 Drag and place Accepting below Testing.

Step 7 Verify the configuration result.

1. Choose Work from the left navigation pane, and click the Work Items tab.
2. Click any story name in the list to view story details.
3. Click the value in the Status column. In the drop-down list, you can see that

the Accepting option is displayed.

----End

CodeArts Req
Best Practices

4 Huawei E2E DevOps Practice: Managing
Requirements

Issue 01 (2024-05-31) Copyright © Huawei Technologies Co., Ltd. 85

	Contents
	1 Best Practices of Scrum Projects
	1.1 Practice Overview
	1.2 Requirement Management
	1.2.1 Understanding the Four Keywords of Agile Requirement Management
	1.2.2 Making Effective Requirement Management and Planning When Software Project Requirements Change Frequently
	1.2.3 Managing Requirements in a Structured Manner
	1.2.4 Managing Requirement Priorities
	1.2.5 Avoiding Missing Important Requirements

	1.3 Sprint Plan
	1.3.1 Properly Planning the Sprint Timebox
	1.3.2 Moving Task Cards in the Kanban After Requirements Change in Sprints

	1.4 Sprint Development
	1.4.1 Managing Unexpected Tasks in Software Development Teams
	1.4.2 How Can I Deal With Unclaimed Tasks in My R&D Team?

	1.5 Agile Review
	1.5.1 How to Have Daily Scrums

	1.6 Member Management
	1.6.1 How Do I Cultivate and Manage New Members of My Project Team When the Team Members Change Frequently?
	1.6.2 How Do I Manage the Permissions of Project Members?

	1.7 Appendix
	1.7.1 Reference Documents

	2 Best Practices of IPD-System Device Projects
	2.1 Overview
	2.2 Requirement Model
	2.3 RR Management
	2.3.1 Introduction
	2.3.2 Glossary
	2.3.3 Examples
	2.3.3.1 Introduction
	2.3.3.2 Creating RRs
	2.3.3.3 Handling RRs
	2.3.3.4 Editing RR Details
	2.3.3.4.1 Related Items
	2.3.3.4.2 Review
	2.3.3.4.3 Workloads

	3 Best Practices of Defect Management
	3.1 About Defect Management
	3.2 Glossary
	3.3 Practice Overview
	3.4 Examples
	3.4.1 Introduction
	3.4.2 Creating a Bug
	3.4.3 Analyzing a Bug
	3.4.4 Confirming a Bug
	3.4.5 Fixing a Bug
	3.4.6 Testing a Bug
	3.4.7 Accepting a Bug
	3.4.8 Closing a Bug
	3.4.9 Activating a Bug
	3.4.10 Collaborating on a Bug

	4 Huawei E2E DevOps Practice: Managing Requirements
	4.1 Overview
	4.2 Preparations
	4.3 Managing Project Plans
	4.4 Managing Project Configurations

