
CodeArts Pipeline

Best Practices

Issue 01

Date 2024-11-08

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 Fixing a Bug for Quick Release Through a Change-triggered Pipeline...................... 1

2 Configuring Pass Conditions for Automated Code Checks..6

3 Transferring CodeArts Pipeline Parameters to CodeArts Build and CodeArts
Deploy..13

4 Creating a Repository Tag Using the Pipeline Contexts.. 21

5 HE2E DevOps Practice: Configuring a Pipeline.. 24

CodeArts Pipeline
Best Practices Contents

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

1 Fixing a Bug for Quick Release Through
a Change-triggered Pipeline

Overview

CodeArts Pipeline provides the microservice model for enterprises. Each
microservice is independently developed, verified, deployed, and rolled out,
accelerating requirement release. This model also lets enterprises organize teams
by function, optimize management models, and improve operation efficiency.

Using this model, you can create change-triggered pipelines to associate them
with change resources and release changes for quick project delivery.

Procedure

The following describes how to use a change-triggered pipeline to fix a bug for
quick release.

Step 1: Create a Microservice

Step 2: Create a Change-triggered Pipeline

Step 3: Create a Change

Step 4: Execute a Change-triggered Pipeline

Table 1-1 Procedure

Step Description

Create a
microservice

Manage a specific service function.

Create a
change-
triggered
pipeline

Release a change in a microservice.

Create a
change

Associate with bug fixing work items.

CodeArts Pipeline
Best Practices

1 Fixing a Bug for Quick Release Through a Change-
triggered Pipeline

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

Step Description

Execute a
change-
triggered
pipeline

Release the updated code.

Preparations
● You have created a project. The following uses a Scrum project name

Project01 as an example.You have created a work item in the project. The
following uses a bug work item named BUGFIX as an example.

● You have created a code repository. The following uses a repository named
Repo01 (created using the Java Maven Demo template) as an example.

● You have created a CodeArts Repo HTTPS service endpoint. The following
uses an endpoint named HttpsEndpoint01 as an example.

Step 1: Create a Microservice

Step 1 Log in to the Huawei Cloud console.

Step 2 Click in the upper left corner of the page and choose Developer Services >
CodeArts Pipeline from the service list.

Step 3 Click Access Service.

Step 4 Click Homepage from the top navigation pane.Search for the project created in
Preparations and access the project.

Step 5 In the navigation pane on the left, choose CICD > Pipeline.

Step 6 Click the Microservices tab.

Step 7 Click Create Microservice. On the displayed page, configure parameters.

Table 1-2 Microservice parameters

Parameter Description

Project Keep the default value, which is the project of the
microservice.

Microservice Name Enter Microservice01.

Code Source Code source associated with the microservice. Select Repo.

Repository Select the repository Repo01 created in Preparations.

Default Branch Select master.

Language Development language for the microservice. Select Java.

Description (Optional) Enter a microservice description.

CodeArts Pipeline
Best Practices

1 Fixing a Bug for Quick Release Through a Change-
triggered Pipeline

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

https://support.huaweicloud.com/intl/en-us/qs-projectman/projectman_06_1000.html
https://support.huaweicloud.com/intl/en-us/usermanual-projectman/devcloud_hlp_00023.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0020.html
https://support.huaweicloud.com/intl/en-us/usermanual-pipeline/pipeline_01_0011.html
https://console-intl.huaweicloud.com/&locale=en-us

Step 8 Click OK.

----End

Step 2: Create a Change-triggered Pipeline

Step 1 In the microservice list, click a microservice name. The Overview page is
displayed.

Step 2 Switch to the Pipelines tab.

Step 3 Click Create Pipeline. On the displayed page, configure parameters.

Table 1-3 Pipeline parameters

Parameter Description

Project Keep the default value, which is the project of the pipeline.

Name Use the default name.

Code Source Keep the default value, which is the same as that of the
microservice.

Repository Keep the default value, which is the same as that of the
microservice.

Default Branch Keep the default value, which is the same as that of the
microservice.

Repo Endpoint This is mandatory if you enabled Change-based Trigger.
Select the authorization endpoint HttpsEndpoint01
created in Preparations.

Alias (Optional) If an alias is set, the system parameters are
generated for the repository.

Change-based
Trigger

Enable it to set current pipeline to a change-triggered one.
It is enabled in this example.

Description (Optional) Enter a pipeline description.

NO TE

Change-triggered pipelines can only be triggered by changes. A microservice can only have
one change-triggered pipeline.

Step 4 Click Next and select the Maven-Build template. Stages and jobs will be
generated. You can retain the default settings.

Step 5 Click Save.

----End

CodeArts Pipeline
Best Practices

1 Fixing a Bug for Quick Release Through a Change-
triggered Pipeline

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

Step 3: Create a Change
Step 1 Access the created microservice.

Step 2 Click the Changes tab.

Step 3 Click Create Change. On the displayed page, configure parameters.

Table 1-4 Change parameters

Parameter Description

Change Subject Enter fix-a-bug.

Repository Keep the default value, which is the same as that of the
microservice.

Branch The development branch for the change. After the change
is successfully released through the pipeline, the branch
will be automatically merged to the default branch of the
microservice. Select Pull new from default and enter the
branch name bugfix.

Associated Work
Item

Select the work item BUGFIX created in Preparations.

Step 4 Click OK.

After the change is created, the system creates a feature branch based on the
microservice default branch. You can commit code to this feature branch.

----End

Step 4: Execute a Change-triggered Pipeline
After the code is updated, you can execute the change-triggered pipeline.

Step 1 On the change list page, click the change name.

Step 2 Click Submit for Release in the upper right corner. In the displayed dialog box,
confirm the release.

Figure 1-1 Submitting for release

CodeArts Pipeline
Best Practices

1 Fixing a Bug for Quick Release Through a Change-
triggered Pipeline

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

Step 3 Click OK. The release list page is displayed.

Step 4 Click Execute in the upper right corner. In the displayed dialog box, select the
submitted change, and retain the default settings.

Figure 1-2 Execution configuration

Step 5 Click Execute.

During pipeline running, the MergeReleaseBranch and MergeDefaultBranch
stages are automatically generated. The newly pulled feature branch is merged to
the integration branch.

After the code check and build jobs are successfully executed, the pipeline
proceeds to the MergeDefaultBranch stage with a confirmation dialog box
displayed.

Step 6 Click Continue. After the MergeDefaultBranch stage is executed, the system:
● Updates the change status to Released.
● Updates the status of the BUGFIX work item to Closed.
● Merges the code on the release branch to the default branch.

A change release has been completed.

----End

CodeArts Pipeline
Best Practices

1 Fixing a Bug for Quick Release Through a Change-
triggered Pipeline

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

2 Configuring Pass Conditions for
Automated Code Checks

Overview

Traditional software quality relies mainly on manual tests, leading to low
efficiency.

CodeArts Pipeline uses pass conditions to control whether a pipeline can proceed
to the next stage. You can apply policies to pipelines as pass conditions for
efficient project management and high-quality delivery.

With CodeArts Pipeline, more than 70% issues can be intercepted through
automated code checks. This improves test efficiency and software quality.

Procedure

The following describes how to configure code check thresholds and apply pass
conditions to a stage for automated check.

Figure 2-1 Pipeline workflow

Perform the following procedure.

CodeArts Pipeline
Best Practices

2 Configuring Pass Conditions for Automated Code
Checks

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

● Step 1: Create a Rule and Configure Thresholds
● Step 2: Create a Policy and Add a Rule to the Policy
● Step 3: Configure a Pipeline
● Step 4: Execute the Pipeline

Table 2-1 Procedure

Step Description

Create a rule
and configure
thresholds

Create a rule of the code check type and configure thresholds
for the rule.

Create a policy
and add the
rule to the
policy

Add the preceding code check rule to the created policy.

Configure a
pipeline

Add the preceding policy to the pass conditions.

Execute the
pipeline

Execute the pipeline:
● If the code check job meets the pass conditions, the

pipeline will continue to run.
● If the code check job does not meet the pass conditions,

the pipeline will stop running.

Preparations
● You have created a project. The following uses a Scrum project named

Project01 as an example.
● You have created a code repository. The following uses a repository named

Repo01 (created using the Java Maven Demo template) as an example.
A code check task with the same name as the code repository is automatically
created. Change the task name to CheckTask01 by referring to Configuring
Basic Info.

● You have created a build task with the Repo01 repository. The following
uses a build task (created using the Maven template) named BuildTask01 as
an example.

● You have created a pipeline with the Repo01 repository. The following uses
a pipeline named Pipeline01 (created using the blank template) as an
example.

Step 1: Create a Rule and Configure Thresholds

Step 1 Log in to the Huawei Cloud console.

Step 2 Click in the upper left corner of the page and choose Developer Services >
CodeArts Pipeline from the service list.

CodeArts Pipeline
Best Practices

2 Configuring Pass Conditions for Automated Code
Checks

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

https://support.huaweicloud.com/intl/en-us/qs-projectman/projectman_06_1000.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0020.html
https://support.huaweicloud.com/intl/en-us/usermanual-codecheck/codecheck_01_0004.html
https://support.huaweicloud.com/intl/en-us/usermanual-codecheck/codecheck_01_0004.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeci/codeci_01_0001.html
https://support.huaweicloud.com/intl/en-us/usermanual-pipeline/pipeline_01_0015.html
https://console-intl.huaweicloud.com/&locale=en-us

Step 3 Click Access Service.

Step 4 Click the avatar icon in the upper right corner and choose All Account Settings
from the drop-down list.

Step 5 In the navigation pane on the left, choose Policy Management > Rules.

Step 6 Click Create Rule. On the displayed page, configure parameters.

Figure 2-2 Creating a rule

Table 2-2 Rule parameters

Parameter Description

Name Enter a rule name, such as Check_code.

Type Select the rule type Check.

Extension Select the extension Check.

Version Select the version 0.0.1.

Threshold
Configurati
on

The extension thresholds are automatically filled based on the
selected extension version. You can use the default values.

Step 7 Click OK.

----End

Step 2: Create a Policy and Add a Rule to the Policy
There are tenant-level policies and project-level policies. Tenant-level policies can
be applied to pipelines of all projects under the current tenant, while project-level
policies can be applied to all pipelines under the current project. The following
uses a tenant-level policy as an example.

Step 1 In the navigation pane on the left, choose Policies.

NO TE

A system policy exists by default. You can view and use the policy, but cannot edit or delete
it.

CodeArts Pipeline
Best Practices

2 Configuring Pass Conditions for Automated Code
Checks

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

Step 2 Click Create Policy. On the displayed page, enter a policy name and select the
rule created in Step 1: Create a Rule and Configure Thresholds.

Figure 2-3 Creating a policy

Step 3 Click OK.

----End

Step 3: Configure a Pipeline

Step 1 On the top navigation bar, click Homepage.

Step 2 Search for the project created in Preparations and access the project.

Step 3 In the navigation pane on the left, choose CICD > Pipeline.

Step 4 Search for the pipeline created in Preparations, click in the Operation column,
and select Edit. The Task Orchestration page is displayed.

Step 5 Click under Stage_1, add the code check job created in Preparations,
and set Check Mode to Full.

Figure 2-4 Adding a code check job

CodeArts Pipeline
Best Practices

2 Configuring Pass Conditions for Automated Code
Checks

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

Step 6 Click under Stage_1, on the displayed window, add
Pass-Conditions-of-Standard-Policies, and select the policy created in Step 2:
Create a Policy and Add a Rule to the Policy.

Figure 2-5 Adding pass conditions

Step 7 Click or to add a new stage for the pipeline, add the build
job created in Preparations, and select the associated repository for the build job.

CodeArts Pipeline
Best Practices

2 Configuring Pass Conditions for Automated Code
Checks

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

Figure 2-6 Adding a build job

----End

Step 4: Execute the Pipeline

Step 1 After configuring the pipeline, click Save and Execute.

Step 2 Check the execution result.
● If the code check job meets the pass conditions, the pipeline will proceed to

the next stage, as shown in the following figure.

Figure 2-7 Executing a pipeline

● If the code check job does not meet the pass conditions, the pipeline will stop
running, as shown in the following figure. You can click the pass conditions
card to check details.

CodeArts Pipeline
Best Practices

2 Configuring Pass Conditions for Automated Code
Checks

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

----End

CodeArts Pipeline
Best Practices

2 Configuring Pass Conditions for Automated Code
Checks

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

3 Transferring CodeArts Pipeline
Parameters to CodeArts Build and CodeArts

Deploy

Overview
Pipeline parameters can be transferred among different services (such as CodeArts
Build and CodeArts Deploy). By creating a CI/CD pipeline, you can streamline data
of build and deployment.

Procedure
The following describes how to transfer a pipeline version number parameter to a
build and a deployment job.

Step 1: Create a Build Task

Step 2: Create an application

Step 3: Create and Execute a Pipeline

Step 4: Check Build and Deployment Results

Table 3-1 Procedure

Step Description

Create a build
task

Create a build task, add the version number parameter, and
reference it in the build step.

Create an
application

Create an application, add a software package parameter,
and reference it in the deployment step.

CodeArts Pipeline
Best Practices

3 Transferring CodeArts Pipeline Parameters to
CodeArts Build and CodeArts Deploy

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

Step Description

Create and
execute a pipeline

Create a pipeline, add the version number parameter, and
add the created build task and application to the pipeline.
● In the build task, reference the pipeline version number

parameter.
● In the application, reference the pipeline version number

parameter.

Check the build
and deployment
results

Check whether:
● The build package version number is a dynamic

parameter transferred by the pipeline.
● The software package has been obtained by the

deployment job.

Preparations
● You have created a project. The following uses a Scrum project named

Project01 as an example.
● You have created a code repository. The following uses a repository named

Repo01 (created using the Java Maven Demo template) as an example.
● You need to prepare a host with an EIP. You can use an existing host or

purchase a Huawei Cloud ECS.

Step 1: Create a Build Task

Step 1 Log in to the Huawei Cloud console.

Step 2 Click in the upper left corner of the page and choose Developer Services >
CodeArts Pipeline from the service list.

Step 3 Click Access Service.

Step 4 Click Homepage from the top navigation pane.Search for the project created in
Preparations and access the project.

Step 5 In the left navigation pane, choose CICD > Build.

Step 6 Click Create Task and enter basic information.

Table 3-2 Basic information

Parameter Description

Name Build task name. Enter BuildTask01.

Project Keep the default value, which is the project of the build
task.

Code Source Code source associated with the build task. Select Repo.

CodeArts Pipeline
Best Practices

3 Transferring CodeArts Pipeline Parameters to
CodeArts Build and CodeArts Deploy

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

https://support.huaweicloud.com/intl/en-us/qs-projectman/projectman_06_1000.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0020.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_02_0009.html
https://console-intl.huaweicloud.com/&locale=en-us

Parameter Description

Repository Select the repository Repo01 created in Preparations.

Default Branch Select master.

Step 7 Click Next, select the Maven template, and then click OK.

Step 8 On the Parameters tab page, add the releaseversion parameter, set the default
value, and enable Runtime Settings.

Figure 3-1 Creating a build parameter

Step 9 On the Build Actions page, click Upload Software Package to Release
Repository. For the Version field, enter ${releaseversion}, and retain the default
values for other fields.

Figure 3-2 Configuring build actions

Step 10 Click Save.

----End

Step 2: Create an application

Step 1 In the left navigation pane, choose Settings > General > Basic Resources, create
a host cluster, and add the purchased host to the cluster.

Step 2 In the left navigation pane, choose CICD > Deploy.

Step 3 Click Create Application. On the displayed page, enter an application name
DeployTask01, click Next, select Blank Template, and click OK.

CodeArts Pipeline
Best Practices

3 Transferring CodeArts Pipeline Parameters to
CodeArts Build and CodeArts Deploy

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

Step 4 On the Parameters tab page, add the package_url parameter, set the default
value, and enable Runtime Settings.

Figure 3-3 Creating a deployment parameter

Step 5 On the Environment Management page, click Create Environment, enter the
name Environment01, and import the host in the cluster to the environment.

Step 6 On the Deployment Actions tab page, add the Select Deployment Source action
and configure the information as shown in the following table.

Figure 3-4 Configuring deployment actions

Table 3-3 Configuring deployment actions

Parameter Description

Action Name Retain the default value.

Source Software package source. Select Artifact.

Environment Environment for deployment. Select Environment01.

CodeArts Pipeline
Best Practices

3 Transferring CodeArts Pipeline Parameters to
CodeArts Build and CodeArts Deploy

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

Parameter Description

Software Package Software package to be deployed. Obtain the build package
uploaded by the build task to Release Repos. Set this
parameter to ${package_url} to reference the package_url
parameter.

Download Path Path for downloading the software package to the target
host. Enter /usr/local.

Action Control Retain the default setting.

Step 7 Click Save.

----End

Step 3: Create and Execute a Pipeline
Step 1 In the navigation pane on the left, choose CICD > Pipeline.

Step 2 Click Create Pipeline and configure pipeline information.

1. Configure the following basic information and click Next.

Table 3-4 Pipeline basic information

Parameter Description

Name Enter Pipeline01.

Code Source Code source associated with the pipeline. Select Repo.

Repository Select the repository Repo01 created in Preparations.

Default
Branch

Select master.

2. Select Blank Template and click OK.

Step 3 On the Parameter Configuration tab page, create the releaseversion parameter,
set its default value to ${TIMESTAMP}, and enable Runtime Setting.

Step 4 On the Task Orchestration page, two stages (Code Source and Stage_1) are
generated by default. Click Stage to add a new stage (Stage_2).

Figure 3-5 Task orchestration

CodeArts Pipeline
Best Practices

3 Transferring CodeArts Pipeline Parameters to
CodeArts Build and CodeArts Deploy

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

1. Add a build job

a. Click New Job under the Stage_1.
b. Click the Build type and search for the Build extension.
c. Move the cursor to the Build extension, click Add, select the created

build task, select the repository associated with build task, and set
releaseversion to ${releaseversion} to reference the releaseversion
parameter of the pipeline.

Figure 3-6 Adding a build job

2. Add an application

a. Click Job under Stage_2.
b. In the displayed dialog box, search for the Deploy extension.
c. Move the cursor to the Deploy extension, click Add, select the created

application, enter the package path for package_url, and associate with
the added build task, as shown in the following figure.

CodeArts Pipeline
Best Practices

3 Transferring CodeArts Pipeline Parameters to
CodeArts Build and CodeArts Deploy

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

Figure 3-7 Adding an application

NO TE

package_url is the relative path of the build package in Release Repos. The path
includes the build task name, version number, and package name. In this section, the
pipeline releaseversion parameter indicates the version number.

Step 5 Click Save and Execute.

----End

Step 4: Check Build and Deployment Results
After the pipeline is successfully executed, check whether the pipeline parameter
has been transferred to the build and deployment jobs.

● Check the build result

a. In the navigation pane on the left, choose Artifact > Release Repos.
b. Expand the project navigation tree on the left to check the uploaded

build package.
As shown in the following figure, the version number in the relative path
is the timestamp transferred by the pipeline releaseversion parameter.

CodeArts Pipeline
Best Practices

3 Transferring CodeArts Pipeline Parameters to
CodeArts Build and CodeArts Deploy

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

Figure 3-8 Checking the software package

● Check the deployment result

a. Click the user name in the upper right corner.
b. Click CodeArts Console.

c. Click in the upper left corner and search for Elastic Cloud Server.
Then, access the Elastic Cloud Server console.

d. Locate the ECS used for deployment, click Remote Login in the
Operation column.

e. In the Other Login Modes area, select Log in using Remote Login on
the management console and click Log In.

f. Enter the username and password for purchasing the ECS. Press Enter.
g. Enter the following command and press Enter to go to the

directory /usr/local configured during the Create an Application step.
cd /usr/local

h. Enter the following command and press Enter. The deployed build
package is displayed as shown in the following figure, which indicates
that the pipeline parameter has been successfully transferred.
ls -al

Figure 3-9 Checking the deployment result

CodeArts Pipeline
Best Practices

3 Transferring CodeArts Pipeline Parameters to
CodeArts Build and CodeArts Deploy

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

4 Creating a Repository Tag Using the
Pipeline Contexts

Overview

Contexts are a way to access information about pipeline runs, sources, variables,
and jobs. Each context is an object that contains various attributes. You can use
pipeline contexts to transfer information among jobs to streamline a pipeline.

The following describes how to create a repository tag through the pipeline
contexts.

Preparations
● You have created a project. The following uses a Scrum project named

Project01 as an example.
● You have created a code repository and created a branch. The following

uses a repository named Repo01 (created using the Java Maven Demo
template) and a branch named release-1.0.0 as an example.

Procedure

Step 1 Log in to the Huawei Cloud console.

Step 2 Click in the upper left corner of the page and choose Developer Services >
CodeArts Pipeline from the service list.

Step 3 Click Access Service.

Step 4 Click Create Pipeline and configure pipeline information.

1. Configure the following basic information and click Next.

Table 4-1 Pipeline basic information

Parameter Description

Name Enter Pipeline01.

CodeArts Pipeline
Best Practices

4 Creating a Repository Tag Using the Pipeline
Contexts

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

https://support.huaweicloud.com/intl/en-us/qs-projectman/projectman_06_1000.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0020.html
https://console-intl.huaweicloud.com/&locale=en-us

Parameter Description

Project Project to which the pipeline belongs. Select the project
Project01 created in Preparations.

Code Source Code source associated with the pipeline. Select Repo.

Repository Select the repository Repo01 created in Preparations.

Default
Branch

Select the branch release-1.0.0 created in Preparations.

2. Select Blank Template and click OK.

Step 5 Go to the Task Orchestration page. Two stages (Code Source and Stage_1) are
generated by default. Click Stage to add a new stage (Stage_2).

Step 6 Add the ExecuteShellCommand to generate a tag name.

1. Click Job under the Stage_1.
2. Search for the extension ExecuteShellCommand and add it.
3. Enter a name (here we retain the default name) and enter the following shell

commands:
branch='${{ sources.Repo01.target_branch }}' //Obtain the name of the running branch.
echo $branch //Print the branch name.
tag=${branch/release-/v} //Rename the branch. (Here we customize the branch name
release-1.0.0 as v1.0.0.)
echo $tag //Print the tag name.
echo ::set-output var=tag_name:$tag //Generate an output tag_name and set it as a context
for future use.

Figure 4-1 Generating a tag name

Step 7 Add the CreateTag extension to create a repository tag.

1. Click Job under Stage_2.

CodeArts Pipeline
Best Practices

4 Creating a Repository Tag Using the Pipeline
Contexts

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

2. Search for the CreateTag extension and add it, and set the following
information:
– Name: Extension name. Retain the default value.
– Tag Name: Enter ${{jobs.JOB_tBeer.outputs.tag_name}}, where

JOB_tBeer indicates the ID of the ExecuteShellCommand job.
– Repository: Select the code repository associated with the pipeline.

Figure 4-2 Creating a repository tag

Step 8 After the configuration, click Save and Execute.

Step 9 In the displayed dialog box, retain the default settings, and click Execute.

Step 10 After the pipeline execution is complete, choose Code > Repo from the left
navigation pane.

Step 11 Click the repository associated with the pipeline.

Step 12 On the displayed Code page, click the Tags tab. The tag v1.0.0 is displayed.

Figure 4-3 Checking a tag

----End

CodeArts Pipeline
Best Practices

4 Creating a Repository Tag Using the Pipeline
Contexts

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

5 HE2E DevOps Practice: Configuring a
Pipeline

This section describes how to connect code check, build, and deployment tasks in
DevOps Full-Process Sample Project for continuous delivery.

Before the practice, perform the deployment.

Introduction to Preset Pipelines

There are five pipeline tasks preset in the sample project. You can view and use
them as needed.

Table 5-1 Preset pipeline tasks

Preset Pipeline
Task

Description

phoenix-workflow A basic pipeline task

phoenix-
workflow-test

Pipeline task corresponding to the test environment

phoenix-
workflow-work

Pipeline task corresponding to the Worker function

phoenix-
workflow-result

Pipeline task corresponding to the Result function

phoenix-
workflow-vote

Pipeline task corresponding to the Vote function

Configuring and Executing a Pipeline

A pipeline usually consists of multiple stages. You can add multiple jobs to each
stage.

Step 1 Configure a pipeline.

CodeArts Pipeline
Best Practices 5 HE2E DevOps Practice: Configuring a Pipeline

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

https://support.huaweicloud.com/intl/en-us/bestpractice-deployman/deployman_practice_1024.html

1. Go to the Phoenix Mall project and choose CICD > Pipeline.

2. Find pipeline phoenix-workflow. Click and choose Edit.
3. Add a code check stage.

a. Click between Code Source and Build to add a stage.

b. Click next to Stage_1. In the Edit Stage window, enter the stage
name Check and click Confirm.

Figure 5-1 Editing the stage name

c. Click Job.
In the New Job window, click Add next to the Check extension.

d. Select the phoenix-codecheck-worker task and click OK.

NO TE

The check task has three modes. This procedure uses the default mode Full. You
can change the mode as required.

▪ Full: All files in the code repository are scanned.

▪ Incremental (last commit): Incremental check is performed based on the
latest commit file.

▪ Incremental (last success): Incremental check is performed based on the
changed files since the latest access control was passed.

4. Configure a deployment task.
Click the deployment task name, select the associated build task phoenix-
sample-ci, and check the values of configuration items.
– The configurations of task phoenix-sample-standalone must be the

same as those on the Parameters page of the task with the same name
in CodeArts Deploy.

– The configurations of task phoenix-cd-cce must be the same as those on
the Parameters page of the task with the same name in CodeArts
Deploy.

NO TE

Two deployment tasks are added in this example. If you selected only one deployment
mode in preceding steps, keep the corresponding task and delete the other one.

5. Click Save.

Step 2 Go to the CCE console if you have configured deployment task phoenix-cd-cce in
Step 1. Locate the target cluster and click its name to go to the Overview page.

CodeArts Pipeline
Best Practices 5 HE2E DevOps Practice: Configuring a Pipeline

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

Choose Workloads in the navigation pane, click the Deployments tab, and verify
that no record exists in the list.

If there are records in the list, select all records, click Delete, select all options, and
click Yes to clear the records in the list.

Step 3 Return to the pipeline list page. Click in the row where phoenix-workflow is
located, and click Execute in the window that is displayed to start the pipeline.

If is displayed on the page, the task is successfully executed.

If the task fails to be executed, check the failure cause in the failed task. You can
open the step details page to view the task logs and rectify the faults based on
the logs.

----End

Configuring Pass Conditions

To control the code quality, the code must be scanned and the number of errors
must be within a reasonable range before being released. By adding quality gates,
you can effectively automate the control process.

Step 1 On the details page of pipeline task phoenix-workflow, click Edit.

Step 2 In the Check stage, click Pass Conditions.

Step 3 In the Pass Conditions dialog box, click Add next to Pass-Conditions-of-
Standard-Policies.

Step 4 Select SystemPolicy and click OK.

Step 5 Click Save and Execute.

If the number of check issues does not meet the pass condition, the pipeline task
fails to be executed.

----End

Configuring Code Changes to Automatically Trigger a Pipeline

Through the following configuration, code changes can automatically trigger
pipeline execution, implementing continuous project delivery.

Step 1 On the details page of pipeline task phoenix-workflow, click Edit.

Step 2 Click the Execution Plan tab, select Code commit, select master from the Filter
Branch drop-down list box, and click Save.

Step 3 Modify the code and push it to the master branch to check whether the pipeline
task is automatically executed.

----End

CodeArts Pipeline
Best Practices 5 HE2E DevOps Practice: Configuring a Pipeline

Issue 01 (2024-11-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

	Contents
	1 Fixing a Bug for Quick Release Through a Change-triggered Pipeline
	2 Configuring Pass Conditions for Automated Code Checks
	3 Transferring CodeArts Pipeline Parameters to CodeArts Build and CodeArts Deploy
	4 Creating a Repository Tag Using the Pipeline Contexts
	5 HE2E DevOps Practice: Configuring a Pipeline

