
ModelArts

Best Practices

Issue 01

Date 2024-01-09

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Contents

1 Official Samples... 1

2 Permissions Management... 2
2.1 Basic Concepts.. 2
2.2 Permission Management Mechanisms.. 8
2.2.1 IAM... 9
2.2.2 Agencies and Dependencies.. 17
2.2.3 Workspace..39
2.3 Configuration Practices in Typical Scenarios... 40
2.3.1 Assigning Permissions to Individual Users for Using ModelArts...40
2.3.2 Assigning Basic Permissions for Using ModelArts..43
2.3.2.1 Scenarios... 43
2.3.2.2 Step 1 Create a User Group and Add Users to the User Group...45
2.3.2.3 Step 2 Assigning Permissions for Using Cloud Services..47
2.3.2.4 Step 3 Configure Agent-based ModelArts Access Authorization for the User... 52
2.3.2.5 Step 4 Verify User Permissions.. 53
2.3.3 Separately Assigning Permissions to Administrators and Developers.. 54
2.3.4 Viewing the Notebook Instances of All IAM Users Under One Tenant Account...63
2.3.5 Logging In to a Training Container Using Cloud Shell... 65
2.3.6 Prohibiting a User from Using a Public Resource Pool.. 66
2.3.7 Granting SFS Turbo Folder Access Permissions to IAM Users..68
2.4 FAQ.. 72
2.4.1 What Do I Do If a Message Indicating Insufficient Permissions Is Displayed When I Use ModelArts?
.. 72

3 Notebook...78
3.1 Creating, Migrating, and Managing Conda Virtual Environments Based on SFS...78

4 Model Training... 82
4.1 Using a Custom Algorithm to Build a Handwritten Digit Recognition Model.. 82
4.2 Example: Creating a Custom Image for Training (PyTorch + CPU/GPU)...99
4.3 Example: Creating a Custom Image for Training (MPI + CPU/GPU).. 106
4.4 Example: Creating a Custom Image for Training (Horovod-PyTorch and GPUs)...115
4.5 Example: Creating a Custom Image for Training (MindSpore and GPUs)..127
4.6 Example: Creating a Custom Image for Training (TensorFlow and GPUs)...139

ModelArts
Best Practices Contents

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

5 Model Inference...147
5.1 Creating a Custom Image and Using It to Create an AI Application... 147
5.2 Enabling an Inference Service to Access the Internet..151
5.3 End-to-End O&M of Inference Services.. 154
5.4 Creating an AI Application Using a Custom Engine... 157
5.5 Using a Large Model to Create an AI Application and Deploying a Real-Time Service............................ 161
5.6 Migrating a Third-Party Inference Framework to a Custom Inference Engine...165
5.7 High-Speed Access to Inference Services Through VPC Peering..175
5.8 Full-Process Development of WebSocket Real-Time Services.. 179

ModelArts
Best Practices Contents

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

1 Official Samples

This document provides ModelArts samples concerning a variety of scenarios and
AI engines to help you quickly understand the process and operations of using
ModelArts for AI development.

ModelArts Permissions (Basic)
Sample Function Scenari

o
Description

Scenarios IAM
permissio
ns and
global
configura
tions

Permissi
on
assignm
ent for
IAM
users

Assign specific ModelArts operation
permissions to the IAM users under a
HUAWEI CLOUD account. This prevents
exceptions from occurring due to
permissions when the IAM users access
ModelArts.

Samples for Custom Algorithms in Model Development (Advanced)

Table 1-1 Custom algorithm samples

Sample Imag
e

Function Scena
rio

Description

Using a
Custom
Algorithm
to Build a
Handwritt
en Digit
Recogniti
on Model

PyTor
ch

Algorithm
customizati
on

Hand
writte
n digit
recogn
ition

Use your customized algorithm to
train a handwritten digit
recognition model and deploy the
model for prediction.

ModelArts
Best Practices 1 Official Samples

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

2 Permissions Management

2.1 Basic Concepts
ModelArts allows you to configure fine-grained permissions for refined
management of resources and permissions. This is commonly used by large
enterprises, but it is complex for individual users. It is recommended that
individual users configure permissions for using ModelArts by referring to
Assigning Permissions to Individual Users for Using ModelArts.

NO TE

If you meet any of the following conditions, read this document.
● You are an enterprise user, and

● There are multiple departments in your enterprise, and you need to control users'
permissions so that users in different departments can access only their dedicated
resources and functions.

● There are multiple roles (such as administrators, algorithm developers, and
application O&M personnel) in your enterprise. You need them to use only specific
functions.

● There are logically multiple environments (such as the development environment,
pre-production environment, and production environment) and are isolated from
each other. You need to control users' permissions on different environments.

● You need to control permissions of specific IAM user or user group.
● You are an individual user, and you have created multiple IAM users. You need to assign

different ModelArts permissions to different IAM users.
● You need to understand the concepts and operations of ModelArts permissions

management.

ModelArts uses Identity and Access Management (IAM) for most permissions
management functions. Before reading below, learn about Basic Concepts. This
helps you better understand this document.

To implement fine-grained permissions management, ModelArts provides
permission control, agency authorization, and workspace. The following describes
the details.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_24_0085.html
https://support.huaweicloud.com/intl/en-us/productdesc-iam/iam_01_0023.html

ModelArts Permissions and Agencies

Figure 2-1 Permissions management

Exposed ModelArts functions are controlled through IAM permissions. For
example, if you as an IAM user need to create a training job on ModelArts, you
must have the modelarts:trainJob:create permission. For details about how to
assign permissions to a user (you need to add the user to a user group and then
assign permissions to the user group), see Permissions Management.

ModelArts must access other services for AI computing. For example, ModelArts
must access OBS to read your data for training. For security purposes, ModelArts
must be authorized to access other cloud services. This is agency authorization.

The following summarizes permissions management:

● Your access to any cloud service is controlled through IAM. You must have the
permissions of the cloud service. (The required service permissions vary
depending on the functions you use.)

● To use ModelArts functions, you need to grant permissions through IAM.
● ModelArts must be authorized by you to access other cloud services for AI

computing.

ModelArts Permissions Management
By default, new IAM users do not have any permissions assigned. You need to add
the user to a user group and grant the user group with policies, so that the users
in the group can inherit the permissions. After authorization, users can perform
operations on ModelArts based on permissions.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

https://support.huaweicloud.com/intl/en-us/productdesc-iam/iam_01_0036.html

CA UTION

ModelArts is a project-level service deployed and accessed in specific physical
regions. When you authorize an agency, you can set the scope for the permissions
you select to all resources, enterprises projects, or region-specific projects. If you
specify region-specific projects, the selected permissions will be applied to
resources in these projects.
For details, see Creating a User Group and Assigning Permissions.

When assigning permissions to a user group, IAM does not directly assign specific
permissions to the user group. Instead, IAM needs to add the permissions to a
policy and then assign the policy to the user group. To facilitate user permissions
management, each cloud service provides some preset policies for you to directly
use. If the preset policies cannot meet your requirements of fine-grained
permissions management, you can customize policies.

Table 2-1 lists all the preset system-defined policies supported by ModelArts.

Table 2-1 System-defined policies supported by ModelArts

Policy Description Type

ModelArts
FullAccess

Administrator permissions for
ModelArts. Users granted these
permissions can operate and use
ModelArts.

System-defined
policy

ModelArts
CommonOperations

Common user permissions for
ModelArts. Users granted these
permissions can operate and use
ModelArts, but cannot manage
dedicated resource pools.

System-defined
policy

ModelArts
Dependency Access

Permissions on dependent services
for ModelArts

System-defined
policy

Generally, ModelArts FullAccess is assigned only to administrators. If fine-grained
management is not required, assigning ModelArts CommonOperations to all users
will meet the development requirements of most small teams. If you want to
customize policies for fine-grained permissions management, see IAM.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_03_0001.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_24_0080.html

NO TE

When you assign ModelArts permissions to a user, the system does not automatically assign
the permissions of other services to the user. This ensures security and prevents unexpected
unauthorized operations. In this case, however, you must separately assign permissions of
different services to users so that they can perform some ModelArts operations.
For example, if an IAM user needs to use OBS data for training and the ModelArts training
permission has been configured for the IAM user, the IAM user still needs to be assigned
with the OBS read, write, and list permissions. The OBS list permission allows you to select
the training data path on ModelArts. The read permission is used to preview data and read
data for training. The write permission is used to save training results and logs.
● For individual users or small organizations, it is a good practice to configure the Tenant

Administrator policy that applies to global services for IAM users. In this way, IAM users
can obtain all user permissions except IAM. However, this may cause security issues. (For
an individual user, its default IAM user belongs to the admin user group and has the
Tenant Administrator permission.)

● If you want to restrict user operations, configure the minimum permissions of OBS for
ModelArts users. For details, see OBS Permissions Management. For details about fine-
grained permissions management of other cloud services, see the corresponding cloud
service documents.

ModelArts Agency Authorization
ModelArts must be authorized by users to access other cloud services for AI
computing. In the IAM permission system, such authorization is performed
through agencies.

For details about the basic concepts and operations of agencies, see Cloud Service
Delegation.

To simplify agency authorization, ModelArts supports automatic agency
authorization configuration. You only need to configure an agency for yourself or
specified users on the Global Configuration page of the ModelArts console.

NO TE

● Only users with the IAM agency management permission can perform this operation.
Generally, members in the IAM admin user group have this permission.

● ModelArts agency authorization is region-specific, which means that you must perform
agency authorization in each region you use.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

https://support.huaweicloud.com/intl/en-us/productdesc-obs/obs_03_0045.html
https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_06_0004.html
https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_06_0004.html

Figure 2-2 Settings

On the Global Configuration page of the ModelArts console, after you click Add
Authorization, you can configure an agency for a specific user or all users.
Generally, an agency named modelarts_agency_<Username>_Random ID is
created by default. In the Permissions area, you can select the preset permission
configuration or select the required policies. If both options cannot meet your
requirements, you can create an agency on the IAM management page (you need
to delegate ModelArts to access your resources), and then use an existing agency
instead of adding an agency on the Add Authorization page.

ModelArts associates multiple users with one agency. This means that if two users
need to configure the same agency, you do not need to create an agency for each
user. Instead, you only need to configure the same agency for the two users.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

Figure 2-3 Mapping between users and agencies

NO TE

Each user can use ModelArts only after being associated with an agency. However, even if
the permissions assigned to the agency are insufficient, no error is reported when the API is
called. An error occurs only when the system uses unauthorized functions. For example, you
enable message notification when creating a training job. Message notification requires
SMN authorization. However, an error occurs only when messages need to be sent for the
training job. The system ignores some errors, and other errors may cause job failures. When
you implement permission minimization, ensure that you will still have sufficient
permissions for the required operations on ModelArts.

Strict Authorization
In strict authorization mode, explicit authorization by the account administrator is
required for IAM users to access ModelArts. The administrator can add the
required ModelArts permissions to common users through authorization policies.

In non-strict authorization mode, IAM users can use ModelArts without explicit
authorization. The administrator needs to configure the deny policy for IAM users
to prevent them from using some ModelArts functions.

The administrator can change the authorization mode on the Global
Configuration page.

NO TICE

The strict authorization mode is recommended. In this mode, IAM users must be
authorized to use ModelArts functions. In this way, the permission scope of IAM
users can be accurately controlled, minimizing permissions granted to IAM users.

Managing Resource Access Using Workspaces
Workspace enables enterprise customers to split their resources into multiple
spaces that are logically isolated and to manage access to different spaces. As an
enterprise user, you can submit the request for enabling the workspace function to
your technical support manager.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

After workspace is enabled, a default workspace is created. All resources you have
created are in this workspace. A workspace is like a ModelArts twin. You can
switch between workspaces in the upper left corner of the ModelArts console. Jobs
in different workspaces do not affect each other.

When creating a workspace, you must bind it to an enterprise project. Multiple
workspaces can be bound to the same enterprise project, but one workspace
cannot be bound to multiple enterprise projects. You can use workspaces for
refined restrictions on resource access and permissions of different users. The
restrictions are as follows:

● Users must be authorized to access specific workspaces (this must be
configured on the pages for creating and managing workspaces). This means
that access to AI assets such as datasets and algorithms can be managed
using workspaces.

● In the preceding permission authorization operations, if you set the scope to
enterprise projects, the authorization takes effect only for workspaces bound
to the selected projects.

NO TE

● Restrictions on workspaces and permission authorization take effect at the same time.
That is, a user must have both the permission to access the workspace and the
permission to create training jobs (the permission applies to this workspace) so that the
user can submit training jobs in this workspace.

● If you have enabled an enterprise project but have not enabled a workspace, all
operations are performed in the default enterprise project. Ensure that the permissions
on the required operations apply to the default enterprise project.

● The preceding restrictions do not apply to users who have not enabled any enterprise
project.

Summary
Key features of ModelArts permissions management:

● If you are an individual user, you do not need to consider fine-grained
permissions management. Your account has all permissions to use ModelArts
by default.

● All functions of ModelArts are controlled by IAM. You can use IAM
authorization to implement fine-grained permissions management for specific
users.

● All users (including individual users) can use specific functions only after
agency authorization on ModelArts (Settings > Add Authorization).
Otherwise, unexpected errors may occur.

● If you have enabled the enterprise project function, you can also enable
ModelArts workspace and use both basic authorization and workspace for
refined permissions management.

2.2 Permission Management Mechanisms

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

2.2.1 IAM
This section describes the IAM permission configurations for all ModelArts
functions.

IAM Permissions

If you need to assign different permissions to employees in your enterprise to
access your ModelArts resources, Identity and Access Management (IAM) is a
good choice for fine-grained permissions management. IAM provides identity
authentication, permissions management, and access control, helping you securely
access Huawei Cloudcloud resources. If your Huawei accountaccount can meet
your requirements and you do not need an IAM account to manage user
permissions, skip this chapter.

IAM is a free service. You only pay for the resources in your account.

With IAM, you can control access to specific Huawei Cloudcloud resources. For
example, if the software developers in your enterprise need to own permissions to
use ModelArts, yet you do not want them to own high-risk operation permissions
such as deleting ModelArts, you can grant permissions using IAM to limit their
permission on ModelArts.

For details about IAM, see What is IAM?What is IAM?.

Role/Policy-based Authorization

ModelArts supports role/policy-based authorization. By default, new IAM users do
not have any permissions. You need to add a user to one or more groups, and
assign permissions policies or roles to these groups. Users inherit permissions of
the groups to which they are added. This process is called authorization. The users
then inherit permissions from the groups and can perform specified operations on
cloud services.

ModelArts is a project-level service deployed for specific regions. When you set
Scope to Region-specific projects and select the specified projects (for example,
ap-southeast-2) in the specified regions (for example, AP-Bangkok), the users
only have permissions for APIG resources in the selected projects. If you set Scope
to All resources, the users have permissions for APIG resources in all region-
specific projects. When accessing ModelArts, the users need to switch to a region
where they have been authorized to use cloud services.

Table 2-2 lists all system-defined policies supported by ModelArts. If preset
ModelArts permissions cannot meet your requirements, create a custom policy by
referring to Policy Fields in JSON Format.

Table 2-2 System-defined policies supported by ModelArts

Policy Description Type

ModelArts
FullAccess

All permissions for ModelArts
administrators

System-defined
policy

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

https://support.huaweicloud.com/intl/en-us/productdesc-iam/iam_01_0026.html
https://support.alphaedge.tmone.com.my/en-us/usermanual/iam/iam_01_0026.html

Policy Description Type

ModelArts
CommonOperations

All operation permissions for
ModelArts common users, which
does not include managing dedicated
resource pools.

System-defined
policy

ModelArts
Dependency Access

Permissions on dependent services
for ModelArts

System-defined
policy

ModelArts depends on other cloud services. To check or view the cloud services,
configure the corresponding permissions on the ModelArts console, as shown in
the following table.

Table 2-3 Roles or policies that are required for performing operations on the
ModelArts console

Console
Function

Dependency Role/Policy Required

Data
management

Object Storage
Service (OBS)

OBS Administrator

Data Lake Insight
(DLI)

DLI FullAccess

MapReduce Service
(MRS)

MRS Administrator

GaussDB(DWS) DWS Administrator

Cloud Trace Service
(CTS)

CTS Administrator

ModelArts ModelArts CommonOperations
ModelArts Dependency Access

Development
environment

OBS OBS Administrator

Cloud Secret
Management Service
(CSMS)

CSMS ReadOnlyAccess

CTS CTS Administrator

Elastic Cloud Server
(ECS)

ECS FullAccess

Software Repository
for Container (SWR)

SWR Administrator

Scalable File Service
(SFS)

SFS Turbo FullAccess

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

Console
Function

Dependency Role/Policy Required

Application
Operations
Management (AOM)

AOM FullAccess

Key Management
Service (KMS)

KMS CMKFullAccess

ModelArts ModelArts CommonOperations
ModelArts Dependency Access

Training
management

OBS OBS Administrator

Simple Message
Notification (SMN)

SMN Administrator

CTS CTS Administrator

SFS Turbo SFS Turbo ReadOnlyAccess

SWR SWR Administrator

AOM AOM FullAccess

KMS KMS CMKFullAccess

ModelArts ModelArts CommonOperations
ModelArts Dependency Access

Workflow OBS OBS Administrator

CTS CTS Administrator

ModelArts ModelArts CommonOperations
ModelArts Dependency Access

ExeML OBS OBS Administrator

CTS CTS Administrator

ModelArts ModelArts CommonOperations
ModelArts Dependency Access

AI application
management

OBS OBS Administrator

Enterprise Project
Management Service
(EPS)

EPS FullAccess

CTS CTS Administrator

SWR SWR Administrator

ModelArts ModelArts CommonOperations
ModelArts Dependency Access

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

Console
Function

Dependency Role/Policy Required

Service
deployment

OBS OBS Administrator

Cloud Eye Service
(CES)

CES ReadOnlyAccess

SMN SMN Administrator

EPS EPS FullAccess

CTS CTS Administrator

Log Tank Service
(LTS)

LTS FullAccess

Virtual Private Cloud
(VPC)

VPC FullAccess

ModelArts ModelArts CommonOperations
ModelArts Dependency Access

AI Gallery OBS OBS Administrator

CTS CTS Administrator

SWR SWR Administrator

ModelArts ModelArts CommonOperations
ModelArts Dependency Access

Dedicated
resource pool

CTS CTS Administrator

Cloud Container
Engine (CCE)

CCE Administrator

Bare Metal Server
(BMS)

BMS FullAccess

Image Management
Service (IMS)

IMS FullAccess

Data Encryption
Workshop (DEW)

DEW KeypairReadOnlyAccess

VPC VPC FullAccess

ECS ECS FullAccess

SFS SFS Turbo FullAccess

OBS OBS Administrator

AOM AOM FullAccess

ModelArts ModelArts FullAccess

Billing Center BSS Administrator

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

If system-defined policies cannot meet your requirements, you can create a
custom policy. For details about the actions supported by custom policies, see
ModelArts Resource Permissions.

You can create custom policies in either of the following ways:

● Visual editor: Select cloud services, actions, resources, and request conditions
without the need to know policy syntax.

● JSON: Create a JSON policy or edit an existing one.

For details, see Creating a Custom Policy. The following lists examples of
common ModelArts custom policies.

● Example 1: Grant permission to manage images.
{
 "Version": "1.1",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "modelarts:image:register",
 "modelarts:image:listGroup"
]
 }
]
}

● Example 2: Grant permission to deny creating, updating, and deleting a
dedicated resource pool.
A policy with only "Deny" permissions must be used together with other
policies. If the permissions granted to an IAM user contain both "Allow" and
"Deny", the "Deny" permissions take precedence over the "Allow" permissions.
{
 "Version": "1.1",
 "Statement": [
 {
 "Action": [
 "modelarts:*:*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "swr:*:*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "smn:*:*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "modelarts:pool:create",
 "modelarts:pool:update",
 "modelarts:pool:delete"
],
 "Effect": "Deny"
 }

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_01_0605.html

]
}

● Example 3: Create a custom policy containing multiple actions.
A custom policy can contain actions of multiple services that are of the global
or project-level type. The following is an example policy containing actions of
multiple services:
{
 "Version": "1.1",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "modelarts:service:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "lts:logs:list"
]
 }
]
}

Policy Fields in JSON Format

Policy Structure

A policy consists of a version and one or more statements (indicating different
actions).

Figure 2-4 Policy structure

Policy Parameters

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

The following describes policy parameters. You can create custom policies by
specifying the parameters. For details, see Custom Policy Use Cases.

Table 2-4 Policy parameters

Parameter Description Value

Version Policy version 1.1: indicates policy-based access
control.

Statement:
authorizatio
n statement
of a policy

Effect Whether to
allow or deny
the
operations
defined in
the action

● Allow: indicates the operation is
allowed.

● Deny: indicates the operation is not
allowed.
NOTE

If the policy used to grant user
permissions contains both Allow and
Deny for the same action, Deny takes
precedence.

Action Operation to
be performed
on the
service

Format: "Service name:Resource
type:Action". Wildcard characters (*)
are supported, indicating all options.
Example:
modelarts:notebook:list: indicates the
permission to view a notebook
instance list. modelarts indicates the
service name, notebook indicates the
resource type, and list indicates the
operation.
View all actions of a service in its API
Reference.

Conditio
n

Condition for
a policy to
take effect,
including
condition
keys and
operators

Format: "Condition operator:{Condition
key:[Value 1,Value 2]}"
If you set multiple conditions, the
policy takes effect only when all the
conditions are met.
Example:
StringEndWithIfExists":
{"g:UserName":["specialCharacter"]}:
The statement is valid for users whose
names end with specialCharacter.

Resourc
e

Resources on
which a
policy takes
effect

Format: Service
name:<Region>:<Account ID>:Resource
type:Resource path. Asterisks (*) are
supported for resource type, indicating
all resources.
NOTE

ModelArts authorization does not allow
you to specify a resource path.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_01_0600.html
https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_01_0019.html#section1
https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_01_0019.html#section1
https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_01_0019.html#section1

ModelArts Resource Types

Administrators can specify the scope based on ModelArts resource types. The
following table lists the resource types supported by ModelArts:

Table 2-5 Resource types supported by ModelArts role/policy-based authorization

Resource Type Description

notebook Notebook instances in DevEnviron

exemlProject ExeML projects

exemlProjectInf ExeML-powered real-time inference
service

exemlProjectTrain ExeML-powered training jobs

exemlProjectVersion ExeML project version

workflow Workflow

pool Dedicated resource pool

network Networking of a dedicated resource
pool

trainJob Training job

trainJobLog Runtime logs of a training job

trainJobInnerModel Preset model

trainJobVersion Version of a training job (supported by
old-version training jobs that will be
discontinued soon)

trainConfig Configuration of a training job
(supported by old-version training jobs
that will be discontinued soon)

tensorboard Visualization job of training results
(supported by old-version training jobs
that will be discontinued soon)

model Models

service Real-time service

nodeservice Edge service

workspace Workspace

dataset Dataset

dataAnnotation Dataset labels

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

Resource Type Description

aiAlgorithm Algorithm for training jobs

image Image

devserver Elastic BMS

ModelArts Resource Permissions

For details, see "Permissions Policies and Supported Actions" in ModelArts API
Reference.

● Data Management Permissions

● DevEnviron Permissions

● Training Job Permissions

● Model Management Permissions

● Service Management Permissions

2.2.2 Agencies and Dependencies

Function Dependency

Function Dependency Policies

When using ModelArts to develop algorithms or manage training jobs, you are
required to use other Cloud services. For example, before submitting a training job,
select an OBS path for storing the dataset and logs, respectively. Therefore, when
configuring fine-grained authorization policies for a user, the administrator must
configure dependent permissions so that the user can use required functions.

NO TE

If you use ModelArts as the root user (default IAM user with the same name as the
account), the root user has all permissions by default.

Table 2-6 Basic configuration

Applicati
on
Scenario

Dependent
Service

Dependent
Policy

Supported Function

Global
configura
tion

IAM iam:users:listUs
ers

Obtain a user list. This action is
required by the administrator only.

Basic
function

IAM iam:tokens:ass
ume

(Mandatory) Use an agency to
obtain temporary authentication
credentials.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0161.html
https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0365.html
https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0364.html
https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0164.html
https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0165.html

Applicati
on
Scenario

Dependent
Service

Dependent
Policy

Supported Function

Basic
function

BSS bss:balance:vie
w

Show the balance of the current
account on the page after
resources are created on the
ModelArts console.

Table 2-7 Managing workspaces

Applicati
on
Scenario

Dependent
Service

Dependent
Policy

Supported Function

Workspac
e

IAM iam:users:listUs
ers

Authorize an IAM user to use a
workspace.

ModelArts modelarts:*:*de
lete*

Clear resources in a workspace
when deleting it.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

Table 2-8 Managing notebook instances

Application
Scenario

Depend
ent
Service

Dependent Policy Supported Function

Lifecycle
managemen
t of
developmen
t
environment
instances

ModelA
rts

modelarts:notebook:cr
eate
modelarts:notebook:li
st
modelarts:notebook:g
et
modelarts:notebook:u
pdate
modelarts:notebook:d
elete
modelarts:notebook:st
art
modelarts:notebook:st
op
modelarts:notebook:u
pdateStopPolicy
modelarts:image:delet
e
modelarts:image:list
modelarts:image:creat
e
modelarts:image:get
modelarts:pool:list
modelarts:tag:list
modelarts:network:ge
t
aom:metric:get
aom:metric:list
aom:alarm:list

Start, stop, create, delete, and
update an instance.

Dynamically
mounting
storage

ModelA
rts

modelarts:notebook:li
stMountedStorages
modelarts:notebook:
mountStorage
modelarts:notebook:g
etMountedStorage
modelarts:notebook:u
mountStorage

Dynamically mount storage.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

Application
Scenario

Depend
ent
Service

Dependent Policy Supported Function

OBS obs:bucket:ListAllMyB
uckets
obs:bucket:ListBucket

Image
managemen
t

ModelA
rts

modelarts:image:regis
ter
modelarts:image:listG
roup

Register and view an image
on the Image Management
page.

Saving an
image

SWR SWR Admin The SWR Admin policy
contains the maximum scope
of SWR permissions, which
can be used to:
● Save a running

development environment
instance as an image.

● Create a notebook instance
using a custom image.

Using the
SSH
function

ECS ecs:serverKeypairs:list
ecs:serverKeypairs:get
ecs:serverKeypairs:del
ete
ecs:serverKeypairs:cre
ate

Configure a login key for a
notebook instance.

Mounting
an SFS
Turbo file
system

SFS
Turbo

SFS Turbo FullAccess Read and write an SFS
directory as an IAM user.
Mount an SFS file system that
is not created by you to a
notebook instance using a
dedicated resource pool.

Viewing all
Instances

ModelA
rts

modelarts:notebook:li
stAllNotebooks

View development
environment instances of all
users on the ModelArts
management console. This
action is required by the
development environment
instance administrator.

IAM iam:users:listUsers

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

Application
Scenario

Depend
ent
Service

Dependent Policy Supported Function

Local VS
Code plug-
in or
PyCharm
Toolkit

ModelA
rts

modelarts:notebook:li
stAllNotebooks
modelarts:trainJob:cre
ate
modelarts:trainJob:list
modelarts:trainJob:up
date
modelarts:trainJobVer
sion:delete
modelarts:trainJob:get
modelarts:trainJob:log
Export
modelarts:workspace:
getQuotas (This
policy is required if
the workspace
function is enabled.)

Access a notebook instance
from local VS Code and
submit training jobs.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

Application
Scenario

Depend
ent
Service

Dependent Policy Supported Function

OBS obs:bucket:ListAllMyb
uckets
obs:bucket:HeadBucke
t
obs:bucket:ListBucket
obs:bucket:GetBucket
Location
obs:object:GetObject
obs:object:GetObjectV
ersion
obs:object:PutObject
obs:object:DeleteObje
ct
obs:object:DeleteObje
ctVersion
obs:object:ListMultipa
rtUploadParts
obs:object:AbortMulti
partUpload
obs:object:GetObjectA
cl
obs:object:GetObjectV
ersionAcl
obs:bucket:PutBucket
Acl
obs:object:PutObjectA
cl
obs:object:ModifyObje
ctMetaData

IAM iam:projects:listProject
s

Obtain an IAM project list
through local PyCharm for
access configurations.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

Table 2-9 Managing training jobs

Application
Scenario

Dependent
Service

Dependent Policy Supported
Function

Training
manageme
nt

ModelArts modelarts:trainJob:*
modelarts:trainJobLog:*
modelarts:aiAlgorithm:*
modelarts:image:list

Create a training
job and view
training logs.

modelarts:workspace:getQuot
as

Obtain a
workspace quota.
This policy is
required if the
workspace
function is
enabled.

modelarts:tag:list Use Tag
Management
Service (TMS) in a
training job.

IAM iam:credentials:listCredentials
iam:agencies:listAgencies

Use the configured
agency
authorization.

SFS Turbo sfsturbo:shares:getShare
sfsturbo:shares:getAllShares

Use SFS Turbo in a
training job.

SWR swr:repository:listTags
swr:repository:getRepository
swr:repository:listRepositories

Use a custom
image to create a
training job.

SMN smn:topic:publish
smn:topic:list

Notify training job
status changes
through SMN.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

Application
Scenario

Dependent
Service

Dependent Policy Supported
Function

OBS obs:bucket:ListAllMybuckets
obs:bucket:HeadBucket
obs:bucket:ListBucket
obs:bucket:GetBucketLocation
obs:object:GetObject
obs:object:GetObjectVersion
obs:object:PutObject
obs:object:DeleteObject
obs:object:DeleteObjectVer-
sion
obs:object:ListMultipartUpload
Parts
obs:object:AbortMultipartUp-
load
obs:object:GetObjectAcl
obs:object:GetObjectVersio-
nAcl
obs:bucket:PutBucketAcl
obs:object:PutObjectAcl
obs:object:ModifyObjectMeta-
Data

Run a training job
using a dataset in
an OBS bucket.

Table 2-10 Using workflows

Applicatio
n Scenario

Depende
nt Service

Dependent Policy Supported
Function

Using a
dataset

ModelArts modelarts:dataset:getDataset
modelarts:dataset:createDataset
modelarts:dataset:createDatasetV
ersion
modelarts:dataset:createImportTa
sk
modelarts:dataset:updateDataset
modelarts:processTask:createProc
essTask
modelarts:processTask:getProcess
Task
modelarts:dataset:listDatasets

Use ModelArts
datasets in a
workflow.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

Applicatio
n Scenario

Depende
nt Service

Dependent Policy Supported
Function

Managing
AI
application
s

ModelArts modelarts:model:list
modelarts:model:get
modelarts:model:create
modelarts:model:delete
modelarts:model:update

Manage
ModelArts AI
applications in a
workflow.

Deploying
a service

ModelArts modelarts:service:get
modelarts:service:create
modelarts:service:update
modelarts:service:delete
modelarts:service:getLogs

Manage
ModelArts real-
time services in a
workflow.

Training
jobs

ModelArts modelarts:trainJob:get
modelarts:trainJob:create
modelarts:trainJob:list
modelarts:trainJobVersion:list
modelarts:trainJobVersion:create
modelarts:trainJob:delete
modelarts:trainJobVersion:delete
modelarts:trainJobVersion:stop

Manage
ModelArts
training jobs in a
workflow.

Workspace ModelArts modelarts:workspace:get
modelarts:workspace:getQuotas

Use ModelArts
workspaces in a
workflow.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

Applicatio
n Scenario

Depende
nt Service

Dependent Policy Supported
Function

Managing
data

OBS obs:bucket:ListAllMybuckets
(Obtaining a bucket list)
obs:bucket:HeadBucket
(Obtaining bucket metadata)
obs:bucket:ListBucket (Listing
objects in a bucket)
obs:bucket:GetBucketLocation
(Obtaining the bucket location)
obs:object:GetObject (Obtaining
object content and metadata)
obs:object:GetObjectVersion
(Obtaining object content and
metadata)
obs:object:PutObject (Uploading
objects using PUT method,
uploading objects using POST
method, copying objects,
appending an object, initializing
a multipart task, uploading parts,
and merging parts)
obs:object:DeleteObject (Deleting
an object or batch deleting
objects)
obs:object:DeleteObjectVersion
(Deleting an object or batch
deleting objects)
obs:object:ListMultipartUpload-
Parts (Listing uploaded parts)
obs:object:AbortMultipartUpload
(Aborting multipart uploads)
obs:object:GetObjectAcl
(Obtaining an object ACL)
obs:object:GetObjectVersionAcl
(Obtaining an object ACL)
obs:bucket:PutBucketAcl
(Configuring a bucket ACL)
obs:object:PutObjectAcl
(Configuring an object ACL)

Use OBS data in a
workflow.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

Applicatio
n Scenario

Depende
nt Service

Dependent Policy Supported
Function

Executing
a workflow

IAM iam:users:listUsers (Obtaining
users)
iam:agencies:getAgency
(Obtaining details about a
specified agency)
iam:tokens:assume (Obtaining an
agency token)

Call other
ModelArts
services when the
workflow is
running.

Integrating
DLI

DLI dli:jobs:get (Obtaining job
details)
dli:jobs:list_all (Viewing a job list)
dli:jobs:create (Creating a job)

Integrate DLI into
a workflow.

Integrating
MRS

MRS mrs:job:get (Obtaining job
details)
mrs:job:submit (Creating and
executing a job)
mrs:job:list (Viewing a job list)
mrs:job:stop (Stopping a job)
mrs:job:batchDelete (Batch
deleting jobs)
mrs:file:list (Viewing a file list)

Integrate MRS
into a workflow.

Table 2-11 Managing AI applications

Applicatio
n Scenario

Depende
nt Service

Dependent Policy Supported
Function

Managing
AI
application
s

SWR swr:repository:deleteRepository
swr:repository:deleteTag
swr:repository:getRepository
swr:repository:listTags

Import a model
from a custom
image.
Use a custom
engine when
importing a
model from OBS.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

Applicatio
n Scenario

Depende
nt Service

Dependent Policy Supported
Function

OBS obs:bucket:ListAllMybuckets
(Obtaining a bucket list)
obs:bucket:HeadBucket
(Obtaining bucket metadata)
obs:bucket:ListBucket (Listing
objects in a bucket)
obs:bucket:GetBucketLocation
(Obtaining the bucket location)
obs:object:GetObject (Obtaining
object content and metadata)
obs:object:GetObjectVersion
(Obtaining object content and
metadata)
obs:object:PutObject (Uploading
objects using PUT method,
uploading objects using POST
method, copying objects,
appending an object, initializing
a multipart task, uploading parts,
and merging parts)
obs:object:DeleteObject (Deleting
an object or batch deleting
objects)
obs:object:DeleteObjectVersion
(Deleting an object or batch
deleting objects)
obs:object:ListMultipartUpload-
Parts (Listing uploaded parts)
obs:object:AbortMultipartUpload
(Aborting multipart uploads)
obs:object:GetObjectAcl
(Obtaining an object ACL)
obs:object:GetObjectVersionAcl
(Obtaining an object ACL)
obs:bucket:PutBucketAcl
(Configuring a bucket ACL)
obs:object:PutObjectAcl
(Configuring an object ACL)

Import a model
from a template.
Specify an OBS
path for model
conversion.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

Table 2-12 Managing service deployment

Applicatio
n Scenario

Depende
nt Service

Dependent Policy Supported
Function

Real-time
services

LTS lts:logs:list (Obtaining the log
list)

Show LTS logs.

OBS obs:bucket:GetBucketPolicy
(Obtaining a bucket policy)
obs:bucket:HeadBucket
(Obtaining bucket metadata)
obs:bucket:ListAllMyBuckets
(Obtaining a bucket list)
obs:bucket:PutBucketPolicy
(Configuring a bucket policy)
obs:bucket:DeleteBucketPolicy
(Deleting a bucket policy)

Mount external
volumes to a
container when
services are
running.

Batch
services

OBS obs:object:GetObject (Obtaining
object content and metadata)
obs:object:PutObject (Uploading
objects using PUT method,
uploading objects using POST
method, copying objects,
appending an object, initializing
a multipart task, uploading parts,
and merging parts)
obs:bucket:CreateBucket
(Creating a bucket)
obs:bucket:ListBucket (Listing
objects in a bucket)
obs:bucket:ListAllMyBuckets
(Obtaining a bucket list)

Create batch
services and
perform batch
inference.

Edge
services

CES ces:metricData:list: (Obtaining
metric data)

View monitoring
metrics.

IEF ief:deployment:delete (Deleting a
deployment)

Manage edge
services.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

Table 2-13 Managing datasets

Applicati
on
Scenario

Depende
nt Service

Dependent Policy Supported
Function

Managing
datasets
and labels

OBS obs:bucket:ListBucket (Listing
objects in a bucket)
obs:object:GetObject (Obtaining
object content and metadata)
obs:object:PutObject (Uploading
objects using PUT method,
uploading objects using POST
method, copying objects,
appending an object, initializing a
multipart task, uploading parts,
and merging parts)
obs:object:DeleteObject (Deleting
an object or batch deleting
objects)
obs:bucket:HeadBucket
(Obtaining bucket metadata)
obs:bucket:GetBucketAcl
(Obtaining a bucket ACL)
obs:bucket:PutBucketAcl
(Configuring a bucket ACL)
obs:bucket:GetBucketPolicy
(Obtaining a bucket policy)
obs:bucket:PutBucketPolicy
(Configuring a bucket policy)
obs:bucket:DeleteBucketPolicy
(Deleting a bucket policy)
obs:bucket:PutBucketCORS
(Configuring or deleting CORS
rules of a bucket)
obs:bucket:GetBucketCORS
(Obtaining the CORS rules of a
bucket)
obs:object:PutObjectAcl
(Configuring an object ACL)

Manage datasets
in OBS.
Label OBS data.
Create a data
management job.

Managing
table
datasets

DLI dli:database:displayAllDatabases
dli:database:displayAllTables
dli:table:describe_table

Manage DLI data
in a dataset.

Managing
table
datasets

DWS dws:openAPICluster:list
dws:openAPICluster:getDetail

Manage DWS
data in a dataset.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

Applicati
on
Scenario

Depende
nt Service

Dependent Policy Supported
Function

Managing
table
datasets

MRS mrs:job:submit
mrs:job:list
mrs:cluster:list
mrs:cluster:get

Manage MRS
data in a dataset.

Auto
labeling

ModelArts modelarts:service:list
modelarts:model:list
modelarts:model:get
modelarts:model:create
modelarts:trainJobInnerModel:list
modelarts:workspace:get
modelarts:workspace:list

Enable auto
labeling.

Team
labeling

IAM iam:projects:listProjects
(Obtaining tenant projects)
iam:users:listUsers (Obtaining
users)
iam:agencies:createAgency
(Creating an agency)
iam:quotas:listQuotasForProject
(Obtaining the quotas of a
project)

Manage labeling
teams.

Table 2-14 Managing resources

Applicatio
n
Scenario

Dependen
t Service

Dependent Policy Supported
Function

Managing
resource
pools

BSS bss:coupon:view
bss:order:view
bss:balance:view
bss:discount:view
bss:renewal:view
bss:bill:view
bss:contract:update
bss:order:pay
bss:unsubscribe:update
bss:renewal:update
bss:order:update

Create, renew,
and unsubscribe
from a resource
pool. Dependent
permissions must
be configured in
the IAM project
view.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

Applicatio
n
Scenario

Dependen
t Service

Dependent Policy Supported
Function

ECS ecs:availabilityZones:list Show AZs.
Dependent
permissions must
be configured in
the IAM project
view.

Network
managem
ent

VPC vpc:routes:create
vpc:routes:list
vpc:routes:get
vpc:routes:delete
vpc:peerings:create
vpc:peerings:accept
vpc:peerings:get
vpc:peerings:delete
vpc:routeTables:update
vpc:routeTables:get
vpc:routeTables:list
vpc:vpcs:create
vpc:vpcs:list
vpc:vpcs:get
vpc:vpcs:delete
vpc:subnets:create
vpc:subnets:get
vpc:subnets:delete
vpcep:endpoints:list
vpcep:endpoints:create
vpcep:endpoints:delete
vpcep:endpoints:get
vpc:ports:create
vpc:ports:get
vpc:ports:update
vpc:ports:delete
vpc:networks:create
vpc:networks:get
vpc:networks:update
vpc:networks:delete

Create and delete
ModelArts
networks, and
interconnect VPCs.
Dependent
permissions must
be configured in
the IAM project
view.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

Applicatio
n
Scenario

Dependen
t Service

Dependent Policy Supported
Function

SFS Turbo sfsturbo:shares:addShareNic
sfsturbo:shares:deleteShareNic
sfsturbo:shares:showShareNic
sfsturbo:shares:listShareNics

Interconnect your
network with SFS
Turbo. Dependent
permissions must
be configured in
the IAM project
view.

Edge
resource
pool

IEF ief:node:list
ief:group:get
ief:application:list
ief:application:get
ief:node:listNodeCert
ief:node:get
ief:IEFInstance:get
ief:deployment:list
ief:group:listGroupInstanceState
ief:IEFInstance:list
ief:deployment:get
ief:group:list

Add, delete,
modify, and
search for edge
pools

Agency authorization
To simplify operations when you use ModelArts to run jobs, certain operations are
automatically performed on the ModelArts backend, for example, downloading
the datasets in an OBS bucket to a workspace before a training job is started and
dumping training job logs to the OBS bucket.

ModelArts does not save your token authentication credentials. Before performing
operations on your resources (such as OBS buckets) in a backend asynchronous
job, you are required to explicitly authorize ModelArts through an IAM agency.
ModelArts will use the agency to obtain a temporary authentication credential for
performing operations on your resources. For details, see Adding Authorization.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

Figure 2-5 Agency authorization

As shown in Figure 2-5, after authorization is configured on ModelArts, ModelArts
uses the temporary credential to access and operate your resources, relieving you
from some complex and time-consuming operations. The agency credential will
also be synchronized to your jobs (including notebook instances and training jobs).
You can use the agency credential to access your resources in the jobs.

You can use either of the following methods to authorize ModelArts using an
agency:

One-click authorization

ModelArts provides one-click automatic authorization. You can quickly configure
agency authorization on the Global Configuration page of ModelArts. Then,
ModelArts will automatically create an agency for you and configure it in
ModelArts.

In this mode, the authorization scope is specified based on the preset system
policies of dependent services to ensure sufficient permissions for using services.
The created agency has almost all permissions of dependent services. If you want
to precisely control the scope of permissions granted to an agency, use the second
method.

Custom authorization

The administrator creates different agency authorization policies for different
users in IAM, and configures the created agency for ModelArts users. When
creating an agency for an IAM user, the administrator specifies the minimum
permissions for the agency based on the user's permissions to control the
resources that the user can access when they use ModelArts. For details, see
Assigning Basic Permissions for Using ModelArts.

Risks in Unauthorized Operations

The agency authorization of a user is independent. Theoretically, the agency
authorization scope of a user can be beyond the authorization scope of the
authorization policy configured for the user group. Any improper configuration will
result in unauthorized operations.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

To prevent unauthorized operations, only a tenant administrator is allowed to
configure agencies for users in the ModelArts global configuration to ensure the
security of agency authorization.

Minimal Agency Authorization

When configuring agency authorization, an administrator must strictly control the
authorization scope.

ModelArts asynchronously and automatically performs operations such as job
preparation and clearing. The required agency authorization is within the basic
authorization scope. If you use only some functions of ModelArts, the
administrator can filter out the basic permissions that are not used according to
the agency authorization configuration. Conversely, if you need to obtain resource
permissions beyond the basic authorization scope in a job, the administrator can
add new permissions to the agency authorization configuration. In a word, the
agency authorization scope must be minimized and customized based on service
requirements.

Basic Agency Authorization Scope

To customize the permissions for an agency, select permissions based on your
service requirements.

Table 2-15 Basic agency authorization for a development environment

Applica
tion
Scenari
o

Depende
nt Service

Agency Authorization Description Conf
igur
atio
n
Sug
gest
ion

JupyterL
ab

OBS obs:object:DeleteObject
obs:object:GetObject
obs:object:GetObjectVersion
obs:bucket:CreateBucket
obs:bucket:ListBucket
obs:bucket:ListAllMyBuckets
obs:object:PutObject
obs:bucket:GetBucketAcl
obs:bucket:PutBucketAcl
obs:bucket:PutBucketCORS

Use OBS to
upload and
download data in
JupyterLab
through
ModelArts
notebook.

Reco
mm
end
ed

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

Applica
tion
Scenari
o

Depende
nt Service

Agency Authorization Description Conf
igur
atio
n
Sug
gest
ion

Develop
ment
environ
ment
monitori
ng

AOM aom:alarm:put Call the AOM API
to obtain
monitoring data
and events of
notebook
instances and
display them in
ModelArts
notebook.

Reco
mm
end
ed

Table 2-16 Basic agency authorization for training jobs

Applicati
on
Scenario

Dependent
Service

Agency Authorization Description

Training
jobs

OBS obs:bucket:ListBucket
obs:object:GetObject
obs:object:PutObject

Download data,
models, and code
before starting a
training job.
Upload logs and
models when a
training job is
running.

Table 2-17 Basic agency authorization for deploying services

Applicat
ion
Scenari
o

Dependen
t Service

Agency Authorization Description

Real-
time
services

LTS lts:groups:create
lts:groups:list
lts:topics:create
lts:topics:delete
lts:topics:list

Configure LTS for
reporting logs of
real-time services.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

Applicat
ion
Scenari
o

Dependen
t Service

Agency Authorization Description

Batch
services

OBS obs:bucket:ListBucket
obs:object:GetObject
obs:object:PutObject

Run a batch
service.

Edge
services

IEF ief:deployment:list
ief:deployment:create
ief:deployment:update
ief:deployment:delete
ief:node:createNodeCert
ief:iefInstance:list
ief:node:list

Deploy an edge
service using IEF.

Table 2-18 Basic agency authorization for managing data

Applica
tion
Scenari
o

Dependen
t Service

Agency Authorization Description

Dataset
and
data
labeling

OBS obs:object:GetObject
obs:object:PutObject
obs:object:DeleteObject
obs:object:PutObjectAcl
obs:bucket:ListBucket
obs:bucket:HeadBucket
obs:bucket:GetBucketAcl
obs:bucket:PutBucketAcl
obs:bucket:GetBucketPolicy
obs:bucket:PutBucketPolicy
obs:bucket:DeleteBucketPolicy
obs:bucket:PutBucketCORS
obs:bucket:GetBucketCORS

Manage datasets
in an OBS bucket.

Labelin
g data

ModelArts
inference

modelarts:service:get
modelarts:service:create
modelarts:service:update

Perform auto
labeling based on
ModelArts
inference.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

Table 2-19 Basic agency authorization for managing dedicated resource pools

Applicati
on
Scenario

Depende
nt
Service

Agency Authorization Description

Network
managem
ent (New
version)

VPC vpc:routes:create
vpc:routes:list
vpc:routes:get
vpc:routes:delete
vpc:peerings:create
vpc:peerings:accept
vpc:peerings:get
vpc:peerings:delete
vpc:routeTables:update
vpc:routeTables:get
vpc:routeTables:list
vpc:vpcs:create
vpc:vpcs:list
vpc:vpcs:get
vpc:vpcs:delete
vpc:subnets:create
vpc:subnets:get
vpc:subnets:delete
vpcep:endpoints:list
vpcep:endpoints:create
vpcep:endpoints:delete
vpcep:endpoints:get
vpc:ports:create
vpc:ports:get
vpc:ports:update
vpc:ports:delete
vpc:networks:create
vpc:networks:get
vpc:networks:update
vpc:networks:delete

Create and delete
ModelArts
networks, and
interconnect VPCs.
Dependent
permissions must
be configured in
the IAM project
view.

SFS
Turbo

sfsturbo:shares:addShareNic
sfsturbo:shares:deleteShareNic
sfsturbo:shares:showShareNic
sfsturbo:shares:listShareNics

Interconnect your
network with SFS
Turbo. Dependent
permissions must
be configured in
the IAM project
view.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

Applicati
on
Scenario

Depende
nt
Service

Agency Authorization Description

Managing
resource
pools

BSS bss:coupon:view
bss:order:view
bss:balance:view
bss:discount:view
bss:renewal:view
bss:bill:view
bss:contract:update
bss:order:pay
bss:unsubscribe:update
bss:renewal:update
bss:order:update

Create, renew,
and unsubscribe
from a resource
pool. Dependent
permissions must
be configured in
the IAM project
view.

Managing
resource
pools

ECS ecs:availabilityZones:list Show AZs.
Dependent
permissions must
be configured in
the IAM project
view.

2.2.3 Workspace
ModelArts allows you to create multiple workspaces to develop algorithms and
manage and deploy models for different service objectives. In this way, the
development outputs of different applications are allocated to different
workspaces for simplified management.

Workspace supports the following types of access control:

● PUBLIC: publicly accessible to tenants (including both tenant accounts and all
their user accounts)

● PRIVATE: accessible only to the creator and tenant accounts

● INTERNAL: accessible to the creator, tenant accounts, and specified IAM user
accounts. When Authorization Type is set to INTERNAL, specify one or more
accessible IAM user accounts.

A default workspace is allocated to each IAM project of each account. The access
control of the default workspace is PUBLIC.

Workspace access control allows the access of only certain users. This function can
be used in the following scenarios:

● Education: A teacher allocates an INTERNAL workspace to each student and
allows the workspaces to be accessed only by specified students. In this way,
students can separately perform experiments on ModelArts.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

● Enterprises: An administrator creates a workspace for production tasks and
allows only O&M personnel to use the workspace, and creates a workspace
for routine debugging and allows only developers to use the workspace. In
this way, different enterprise roles can use resources only in a specified
workspace.

As an enterprise user, you can submit the request for enabling the workspace
function to your technical support.

2.3 Configuration Practices in Typical Scenarios

2.3.1 Assigning Permissions to Individual Users for Using
ModelArts

Certain ModelArts functions require access to Object Storage Service (OBS),
Software Repository for Container (SWR), and Intelligent EdgeFabric (IEF). Before
using ModelArts, your account must be authorized to access these services.
Otherwise, these functions will be unavailable.

Constraints
● Only a tenant account can perform agency authorization to authorize the

current account or all IAM users under the current account.
● Multiple IAM users or accounts can use the same agency.
● A maximum of 50 agencies can be created under an account.
● If you use ModelArts for the first time, add an agency. Generally, common

user permissions are sufficient for your requirements. You can configure
permissions for refined permissions management.

● If you have not been authorized, ModelArts will display a message indicating
that you have not been authorized when you access the Add Authorization
page. In this case, contact your administrator to add authorization.

Adding Authorization
1. Log in to the ModelArts management console. In the navigation pane on the

left, choose Settings. The Global Configuration page is displayed.
2. Click Add Authorization. On the Add Authorization page that is displayed,

configure the parameters.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

Table 2-20 Parameters

Parameter Description

Authorized User Options: IAM user, Federated user, Agency, and All users
● IAM user: You can use a tenant account to create IAM users and assign

permissions for specific resources. Each IAM user has their own identity
credentials (password and access keys) and uses cloud resources based
on assigned permissions. For details about IAM users, see IAM User.

● Federated user: A federated user is also called a virtual enterprise user.
For details about federated users, see Configuring Federated Identity
Authentication.

● Agency: You can create agencies in IAM. For details about how to
create an agency, see Creating an Agency .

● All users: If you select this option, the agency permissions will be
granted to all IAM users under the current account, including those
created in the future. For individual users, choose All users.

Authorized To This parameter is not displayed when Authorized User is set to All users.
● IAM user: Select an IAM user and configure an agency for the IAM

user.

Figure 2-6 Selecting an IAM user

● Federated user: Enter the username or user ID of the target federated
user.

Figure 2-7 Selecting a federated user

● Agency: Select an agency name. You can use account A to create an
agency and configure the agency for account B. When using account B,
you can switch the role in the upper right corner of the console to
account A and use the agency permissions of account A.

Figure 2-8 Switch Role

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

https://support.huaweicloud.com/intl/en-us/productdesc-iam/iam_01_0023.html#section1
https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_08_0002.html
https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_08_0002.html
https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_06_0002.html

Parameter Description

Agency ● Use existing: If there are agencies in the list, select an available one to
authorize the selected user. Click the drop-down arrow next to an
agency name to view its permission details.

● Add agency: If there is no available agency, create one. If you use
ModelArts for the first time, select Add agency.

Add agency >
Agency Name

The system automatically creates a changeable agency name.

Add agency >
Authorization
Method

● Role-based: A coarse-grained IAM authorization strategy to assign
permissions based on user responsibilities. Only a limited number of
service-level roles are available. When using roles to grant permissions,
assign other roles on which the permissions depend to take effect.
Roles are not ideal for fine-grained authorization and secure access
control.

● Policy-based: A fine-grained authorization tool that defines
permissions for operations on specific cloud resources under certain
conditions. This type of authorization is more flexible and ideal for
secure access control.

For details about roles and policies, see Basic Concepts.

Add agency >
Permissions >
Common User

Common User provides the permissions to use all basic ModelArts
functions. For example, you can access data, and create and manage
training jobs. Select this option generally.
Click View permissions to view common user permissions.

Add agency >
Permissions >
Custom

If you need refined permissions management, select Custom to flexibly
assign permissions to the created agency. You can select permissions from
the permission list as required.

3. Select I have read and agree to the ModelArts Service Statement. Click

Create.

Viewing Authorized Permissions
You can view the configured authorizations on the Global Configuration page.
Click View Permissions in the Authorization Content column to view the
permission details.

Figure 2-9 View Permissions

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_01_0602.html

Figure 2-10 Common user permissions

2.3.2 Assigning Basic Permissions for Using ModelArts

2.3.2.1 Scenarios
Certain ModelArts functions require the permission to access other services. This
section describes how to assign specific permissions to IAM users when they use
ModelArts.

Permissions
The permissions of IAM users are controlled by their tenant user. Logging in as a
tenant user, you can assign permissions to the target user group through IAM.
Then, the permissions are assigned to all members in the user group. The
following authorization list uses the system-defined policies of ModelArts and
other services as an example.

Table 2-21 Service authorization

Target
Service

Description IAM Permission Mandatory

ModelA
rts

Assign permissions to IAM
users for using ModelArts.
The users with the
ModelArts
CommonOperations
permission can only use
resources, but cannot
create, update, or delete
any dedicated resource
pool. You are advised to
assign this permission to
IAM users.

ModelArts
CommonOperations

Yes

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

Target
Service

Description IAM Permission Mandatory

The users with the
ModelArts FullAccess
permission have all access
permissions, including
creating, updating, and
deleting dedicated
resource pools. Exercise
caution when selecting
this option.

ModelArts FullAccess No
Select either
ModelArts
FullAccess
or
ModelArts
CommonOp
erations.

Object
Storage
Service
(OBS)

Assign permissions to IAM
users for using OBS.
ModelArts data
management,
development
environments, training
jobs, and model
deployment require OBS
for forwarding data.

OBS OperateAccess Yes

Softwar
e
Reposit
ory for
Contain
er
(SWR)

Assign permissions to IAM
users for using SWR.
ModelArts custom images
require the SWR
FullAccess permission.

SWR OperateAccess Yes

Key
Manage
ment
Service
(KMS)

To use remote SSH of
ModelArts notebook, IAM
users require KMS
authorization.

KMS CMKFullAccess No

Intellige
nt
EdgeFab
ric (IEF)

Assign permissions to IAM
users for using IEF. Tenant
administrator permissions
are required so that
ModelArts edge services
depending on IEF can be
used.

Tenant Administrator No

Cloud
Eye

Assign permissions to IAM
users for using Cloud Eye.
Using Cloud Eye, you can
view the running statuses
of ModelArts real-time
services and AI application
loads, and set monitoring
alarms.

CES FullAccess No

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

Target
Service

Description IAM Permission Mandatory

Simple
Messag
e
Notifica
tion
(SMN)

Assign permissions to IAM
users for using SMN. SMN
is used with Cloud Eye.

SMN FullAccess No

Virtual
Private
Cloud
(VPC)

During the creation of a
dedicated resource pool
for ModelArts, IAM users
require VPC permissions
so that they can
customize networks.

VPC FullAccess No

Scalable
File
Service
(SFS)

Assign permissions to IAM
users for using SFS. SFS
file systems can be
mounted to ModelArts
dedicated resource pools
to serve as storage for
development
environments or training.

SFS Turbo FullAccess
SFS FullAccess

No

2.3.2.2 Step 1 Create a User Group and Add Users to the User Group
Multiple IAM users can be created under a tenant user, and the permissions of the
IAM users are managed by group. This section describes how to create a user
group and IAM users and add the IAM users to the user group.

1. Log in to the management console as a tenant user, hover over your
username in the upper right corner, and choose Identity and Access
Management from the drop-down list to switch to the IAM management
console.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

Figure 2-11 Identity and Access Management

2. Create a user group. In the navigation pane on the left, choose User Groups.
Click Create User Group in the upper right corner. Then, set Name to
UserGroup-2 and click OK.

Figure 2-12 Creating a user group

After the user group is created, the system automatically switches to the user
group list. Then, you can add existing IAM users to the user group through
user group management. If there is no existing IAM user, create users and add
them to the user group.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

3. Create IAM users and add them to the user group. In the navigation pane on
the left, choose Users. On the displayed page, click Create User in the upper
right corner. On the Create User page, add multiple users.
Set parameters as prompted and click Next.

Figure 2-13 Creating multiple users

4. On the Add User to Group page, select UserGroup-2 and click Create.

Figure 2-14 Adding users to the target user group

The system will automatically add the two users to the target group one by
one.

2.3.2.3 Step 2 Assigning Permissions for Using Cloud Services
An IAM user can use cloud services such as ModelArts and OBS only after they are
assigned with permissions from the tenant user. This section describes how to
assign the permissions to use cloud services to all IAM users in a user group.

1. On the user group list page of IAM, click Authorize of the target user group.
The Authorize User Group page is displayed.

Figure 2-15 Authorize

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

Figure 2-16 Authorize User Group

2. Before assigning permissions, learn about minimum permissions requirements
of each ModelArts module, as shown in Table 2-21.

3. Assign permissions for using ModelArts. Search for ModelArts. Select either
ModelArts FullAccess or ModelArts CommonOperations.
The differences between the options are as follows:
– The users with the ModelArts CommonOperations permission can only

use resources, but cannot create, update, or delete any dedicated
resource pool. You are advised to assign this permission to IAM users.

– The users with the ModelArts FullAccess permission have all access
permissions, including creating, updating, and deleting dedicated resource
pools. Exercise caution when selecting this option.

Figure 2-17 Assigning permissions for using ModelArts

4. Assign permissions for using OBS. Search for OBS and select OBS
Administrator. ModelArts training jobs use OBS for forwarding data.
Therefore, the permissions for using OBS are required.

Figure 2-18 Assigning permissions for using OBS

5. Assign permissions for using SWR. Search for SWR and select SWR
FullAccess. ModelArts custom images require the SWR FullAccess permission.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

Figure 2-19 Assigning permissions for using SWR

6. (Optional) Assign the key management permission. Remote SSH of ModelArts
notebook requires the key management permission. Search for DEW and
select DEW KeypairFullAccess.
DEW key management permission is configured in the following regions: CN
North-Beijing1, CN North-Beijing4, CN East-Shanghai1, CN East-
Shanghai2, CN South-Guangzhou, CN Southwest-Guiyang1, CN-Hong
Kong, and AP-Singapore. In other regions, the KMS key management
permission is configured. In this example, the CN-Hong Kong region is used.
Therefore, the DEW key management permission is to be configured.

Figure 2-20 DEW key management permission

Figure 2-21 KMS key management permission

7. (Optional) Assign permissions for using IEF. ModelArts requires the Tenant
Administrator permission so that edge services depending on IEF can be used.
Tenant Administrator has the permission to manage all cloud services, not
only the ModelArts service. Exercise caution when assigning the Tenant
Administrator permission.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

Figure 2-22 Assigning permissions for using IEF

8. (Optional) Assign permissions for using Cloud Eye and SMN. On the details
page of a ModelArts real-time service deployed for inference, the number of
calls is available. Click View Details to obtain more information. If you want
to view the overall running status of ModelArts real-time services and AI
application loads on Cloud Eye, assign Cloud Eye permissions to IAM users.
To view monitoring data only, select CES ReadOnlyAccess.

Figure 2-23 CES ReadOnlyAccess

To set alarm monitoring on Cloud Eye, you also need to add CES FullAccess
and SMN permissions.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

Figure 2-24 Assigning alarm monitoring permissions

Figure 2-25 Assigning permissions for using SMN

9. (Optional) Assign permissions for using VPC. To enable custom network
configuration when creating a dedicated resource pool, assign permissions for
using VPC.

Figure 2-26 Assigning permissions for using VPC

10. (Optional) Assign permissions for using SFS and SFS Turbo. To mount an SFS
system to a dedicated resource pool as the storage for the development
environment or training, assign the permission to use the SFS system.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

Figure 2-27 Assigning permissions for using SFS and SFS Turbo

11. Click View Selected in the upper left corner and confirm the selected
permissions.

Figure 2-28 Viewing selected permissions

12. Click Next and set the minimum authorization scope. Select Region-specific
projects, select the region to be authorized, and click OK.

13. A message is displayed, indicating that the authorization is successful. View
the authorization information and click Finish. It takes 15 to 30 minutes for
the authorization to take effect.

2.3.2.4 Step 3 Configure Agent-based ModelArts Access Authorization for
the User

After assigning IAM permissions, configure ModelArts access authorization for IAM
users on the ModelArts page so that ModelArts can access dependent services
such as OBS, SWR, and IEF.

In agent-based ModelArts access authorization, only tenant users are allowed to
configure for their IAM users. Therefore, in this example, the administrator needs
to configure access authorization for all the IAM users.

1. Use the tenant account to log in to the ModelArts management console.
Select your region in the upper left corner.

2. In the navigation pane on the left, choose Settings. The Global
Configuration page is displayed.

3. Click Add Authorization. On the Add Authorization page, set Authorized
User to All users and click Add agency to configure the agency-based
authorization for all IAM users under the account.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

– Common User: You can use basic ModelArts functions, for example,
accessing data and creating and managing training jobs, but not to
manage resources. Select this option generally.

– Custom: You can flexibly assign permissions to the created agency. Select
this option for refined permissions management. You can select
permissions from the permission list as required.

Figure 2-29 Common user permissions

4. Select I have read and agree to the ModelArts Service Statement. Click
Create.

Figure 2-30 Configured agency authorization

2.3.2.5 Step 4 Verify User Permissions

It takes 15 to 30 minutes for the permissions configured in 4 to take effect.
Therefore, wait for 30 minutes after the configuration and then verify the
configuration.

1. Log in to the ModelArts management console as an IAM in UserGroup-2. On
the login page, ensure that IAM User Login is selected.

Change the password as prompted upon the first login.

2. Check ModelArts permissions.

a. Select the target region in the upper left corner, which must be the same
as that in the authorization configuration.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

b. In the navigation pane on the left of the ModelArts management
console, choose DevEnviron > Notebook. The ModelArts permissions and
agency authorization are configured correctly if no message shows
insufficient permissions.
If the information shown in the following figure is displayed, the
ModelArts agency authorization has not been configured. In this case,
follow the instructions provided in Step 3 Configure Agent-based
ModelArts Access Authorization for the User to configure the
authorization.

Figure 2-31 Insufficient permissions

c. In the navigation pane on the left of the ModelArts management
console, choose DevEnviron > Notebook and click Create. If this
operation is successful, you have obtained ModelArts operation
permissions.
Alternatively, you can try other functions, such as Training Management
> Training Jobs. If the operation is successful, you can use ModelArts
properly.

3. Verify OBS permissions.

a. In the service list in the upper left corner, select OBS. The OBS
management console is displayed.

b. Click Create Bucket in the upper right corner. If this operation is
successful, you have obtained OBS operation permissions.

4. Verify SWR permissions.

a. In the service list in the upper left corner, select SWR. The SWR
management console is displayed.

b. If an SWR page can be properly displayed, you have obtained SWR
operation permissions.

5. Verify other optional permissions.
6. Experience ModelArts.

2.3.3 Separately Assigning Permissions to Administrators and
Developers

In small- and medium-sized teams, administrators need to globally control
ModelArts resources, and developers only need to focus on their own instances. By
default, a developer account does not have the te_admin permission. The tenant

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

account must configure the required permissions. This section uses notebook as an
example to describe how to assign different permissions to administrators and
developers through custom policies.

Scenarios
To develop a project using notebook, administrators need full control permissions
for using ModelArts dedicated resource pools, and access and operation
permissions on all notebook instances.

To use development environments, developers only need operation permissions for
using their own instances and dependent services. They do not need to perform
operations on ModelArts dedicated resource pools or view notebook instances of
other users.

Figure 2-32 Account relationships

Configuring Permissions for an Administrator
Assign full control permissions to administrators for using ModelArts dedicated
resource pools and all notebook instances. The procedure is as follows:

Step 1 Use a tenant account to create an administrator user group
ModelArts_admin_group and add administrator accounts to
ModelArts_admin_group. For details, see Step 1 Create a User Group and Add
Users to the User Group.

Step 2 Create a custom policy.

1. Log in to the management console using an administrator account, hover
over your username in the upper right corner, and click Identity and Access
Management from the drop-down list to switch to the IAM management
console.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

Figure 2-33 Identity and Access Management

2. Create custom policy 1 and assign IAM and OBS permissions to the user. In
the navigation pane of the IAM console, choose Permissions > Policies/Roles.
Click Create Custom Policy in the upper right corner. On the displayed page,
enter Policy1_IAM_OBS for Policy Name, select JSON for Policy View,
configure the policy content, and click OK.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

Figure 2-34 Custom policy 1

The custom policy Policy1_IAM_OBS is as follows, which grants IAM and OBS
operation permissions to the user. You can directly copy and paste the
content.
{
 "Version": "1.1",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:users:listUsers",
 "iam:projects:listProjects",
 "obs:object:PutObject",
 "obs:object:GetObject",
 "obs:object:GetObjectVersion",
 "obs:bucket:HeadBucket",
 "obs:object:DeleteObject",
 "obs:bucket:CreateBucket",
 "obs:bucket:ListBucket"
]
 }
]
}

3. Repeat Step 2.2 to create custom policy 2 and grant the user the permissions
to perform operations on dependent services ECS, SWR, MRS, and SMN as
well as ModelArts. Set Policy Name to Policy2_AllowOperation and Policy
View to JSON, configure the policy content, and click OK.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

The custom policy Policy2_AllowOperation is as follows, which grants the
user the permissions to perform operations on dependent services ECS, SWR,
MRS, and SMN as well as ModelArts. You can directly copy and paste the
content.
{
 "Version": "1.1",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:serverKeypairs:list",
 "ecs:serverKeypairs:get",
 "ecs:serverKeypairs:delete",
 "ecs:serverKeypairs:create",
 "swr:repository:getNamespace",
 "swr:repository:listNamespaces",
 "swr:repository:deleteTag",
 "swr:repository:getRepository",
 "swr:repository:listTags",
 "swr:instance:createTempCredential",
 "mrs:cluster:get",
 "modelarts:*:*"
]
 }
]
}

Step 3 Grant the policy created in Step 2 to the administrator group
ModelArts_admin_group.

1. In the navigation pane of the IAM console, choose User Groups. On the User
Groups page, locate the row that contains ModelArts_admin_group, click
Authorize in the Operation column, and select Policy1_IAM_OBS and
Policy2_AllowOperation. Click Next.

Figure 2-35 Select Policy/Role

2. Specify the scope as All resources and click OK.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

Figure 2-36 Select Scope

Step 4 Configure agent-based ModelArts access authorization for an administrator to
allow ModelArts to access dependent services such as OBS.

1. Log in to the ModelArts management console using a tenant account. In the
navigation pane, choose Settings. The Global Configuration page is
displayed.

2. Click Add Authorization. On the Add Authorization page, set Authorized
User to IAM user, select an administrator account for Authorized To, click
Add agency, and select Common User for Permissions. Permissions control is
not required for administrators, so use default setting Common User.

Figure 2-37 Configuring authorization for an administrator

3. Select I have read and agree to the ModelArts Service Statement. Click
Create.

Step 5 Test administrator permissions.

1. Log in to the ModelArts management console as the administrator. On the
login page, ensure that IAM User Login is selected.
Change the password as prompted upon the first login.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

2. In the navigation pane of the ModelArts management console, choose
Dedicated Resource Pools and click Create. If the console does not display a
message indicating insufficient permissions, the permissions have been
assigned to the administrator.

----End

Configuring Permissions for a Developer
Use IAM for fine-grained control of developer permissions. The procedure is as
follows:

Step 1 Use a tenant account to create a developer user group user_group and add
developer accounts to user_group. For details, see Step 1 Create a User Group
and Add Users to the User Group.

Step 2 Create a custom policy.

1. Log in to the management console using a tenant account, hover over your
username in the upper right corner, and click Identity and Access
Management from the drop-down list to switch to the IAM management
console.

Figure 2-38 Identity and Access Management

2. Create custom policy 3 to prevent users from performing operations on
ModelArts dedicated resource pools and viewing notebook instances of other
users.
In the navigation pane of the IAM console, choose Permissions > Policies/
Roles. Click Create Custom Policy in the upper right corner. On the displayed
page, enter Policy3_DenyOperation for Policy Name, select JSON for Policy
View, configure the policy content, and click OK.
The custom policy Policy3_DenyOperation is as follows. You can copy and
paste the content.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

{
 "Version": "1.1",
 "Statement": [
 {
 "Effect": "deny",
 "Action": [
 "modelarts:pool:create",
 "modelarts:pool:update",
 "modelarts:pool:delete",
 "modelarts:notebook:listAllNotebooks"
]

 }
]
}

Step 3 Grant the custom policy to the developer user group user_group.

1. In the navigation pane of the IAM console, choose User Groups. On the User
Groups page, locate the row that contains user_group, click Authorize in the
Operation column, and select Policy1_IAM_OBS, Policy2_AllowOperation,
and Policy3_DenyOperation. Click Next.

Figure 2-39 Select Policy/Role

2. Specify the scope as All resources and click OK.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

Figure 2-40 Select Scope

Step 4 Configure agent-based ModelArts access authorization for a developer to allow
ModelArts to access dependent services such as OBS.

1. Log in to the ModelArts management console using a tenant account. In the
navigation pane, choose Settings. The Global Configuration page is
displayed.

2. Click Add Authorization. On the Add Authorization page, set Authorized
User to IAM user, select a developer account for Authorized To, add a new
agency, name it ma_agency_develop_user, set Permissions to Custom, and
select OBS Administrator. Developers only need OBS authorization to allow
developers to access OBS when using notebook.

Figure 2-41 Configuring authorization for a developer

3. Click Create.
4. On the Global Configuration page, click Add Authorization again. On the

Add Authorization page that is displayed, configure an agency for other
developer users.
On the Add Authorization page, set Authorized User to IAM user, select a
developer account for Authorized To, and select the existing agency
ma_agency_develop_user created before.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

Step 5 Test developer permissions.

1. Log in to the ModelArts management console as an IAM user in user_group.
On the login page, ensure that IAM User Login is selected.
Change the password as prompted upon the first login.

2. In the navigation pane of the ModelArts management console, choose
Dedicated Resource Pools and click Create. If the console does not display a
message indicating insufficient permissions, the permissions have been
assigned to the developer.

Figure 2-42 Insufficient permissions

----End

2.3.4 Viewing the Notebook Instances of All IAM Users Under
One Tenant Account

Any IAM user granted with the listAllNotebooks and listUsers permissions can
click View all on the notebook page to view the instances of all users in the
current IAM project.

NO TE

Users granted with these permissions can also access OBS and SWR of all users in the
current IAM project.

Assigning the Required Permissions
1. Log in to the management console as a tenant user, hover the cursor over

your username in the upper right corner, and choose Identity and Access
Management from the drop-down list to switch to the IAM management
console.

2. On the IAM console, choose Permissions > Policies/Roles from the
navigation pane, click Create Custom Policy in the upper right corner, and
create two policies.
Policy 1: Create a policy that allows users to view all notebook instances of an
IAM project, as shown in Figure 2-43.
– Policy Name: Enter a custom policy name, for example, Viewing all

notebook instances.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

– Policy View: Select Visual editor.
– Policy Content: Select Allow, ModelArts Service,

modelarts:notebook:listAllNotebooks, and default resources.

Figure 2-43 Creating a custom policy

Policy 2: Create a policy that allows users to view all users of an IAM project.
– Policy Name: Enter a custom policy name, for example, Viewing all

users of the current IAM project.
– Policy View: Select Visual editor.
– Policy Content: Select Allow, Identity and Access Management,

iam:users:listUsers, and default resources.
3. In the navigation pane, choose User Groups. On the User Groups page,

locate the row containing the target user group and click Authorize in the
Operation column. On the Authorize User Group page, select the custom
policy created in 2 and click Next. Then, select the scope and click OK.
After the configuration, all users in the user group have the permission to
view all notebook instances created by users in the user group.
If no user group is available, create one, add users to it through user group
management, and configure authorization for the user group. If the target
user is not in a user group, add the user to a user group through user group
management.

Enabling an IAM User to Start Other User's Notebook Instance
If an IAM user wants to access another IAM user's notebook instance through
remote SSH, they need to update the SSH key pair to their own. Otherwise, error
ModelArts.6786 will be reported. For details about how to update a key pair, see
Modifying the SSH Configuration for a Notebook Instance.

ModelArts.6789: Failed to find SSH key pair KeyPair-xxx on the ECS key pair page.
Update the key pair and try again later.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

https://support.huaweicloud.com/intl/en-us/devtool-modelarts/modelarts_05_0369.html

2.3.5 Logging In to a Training Container Using Cloud Shell

Application Scenario

You can use Cloud Shell provided by the ModelArts console to log in to a running
training container.

Constraints

You can use Cloud Shell to log in to a running training container using a dedicated
resource pool.

Preparation: Assigning the Cloud Shell Permission to an IAM User
1. Log in to the Huawei Cloud management console as a tenant user, hover the

cursor over your username in the upper right corner, and choose Identity and
Access Management from the drop-down list to switch to the IAM
management console.

2. On the IAM console, choose Permissions > Policies/Roles from the
navigation pane, click Create Custom Policy in the upper right corner, and
configure the following parameters.
– Policy Name: Enter a custom policy name, for example, Using Cloud

Shell to access a running job.
– Policy View: Select Visual editor.
– Policy Content: Select Allow, ModelArts Service,

modelarts:trainJob:exec, and default resources.

Figure 2-44 Creating a custom policy

3. In the navigation pane, choose User Groups. Then, click Authorize in the
Operation column of the target user group. On the Authorize User Group
page, select the custom policies created in 2, and click Next. Then, select the
scope and click OK.
After the configuration, all users in the user group have the permission to use
Cloud Shell to log in to a running training container.
If no user group is available, create a user group, add users using the user
group management function, and configure authorization. If the target user is

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

not in a user group, you can add the user to a user group through the user
group management function.

Using Cloud Shell
1. Configure parameters based on Preparation: Assigning the Cloud Shell

Permission to an IAM User.
2. On the ModelArts console, choose Training Management > Training Jobs.

Go to the details page of the target training job and log in to the training
container on the Cloud Shell tab.
Verify that the login is successful, as shown in the following figure.

Figure 2-45 Cloud Shell

If the job is not running or the permission is insufficient, CloudShell cannot be
used. Locate the fault as prompted.

Figure 2-46 Error message

2.3.6 Prohibiting a User from Using a Public Resource Pool
This section describes how to control the ModelArts permissions of a user so that
the user is not allowed to use a public resource pool to create training jobs, create
notebook instances, or deploy inference services.

Context
Through permission control, ModelArts dedicated resource pool users can be
prohibited from using a public resource pool to create training jobs, create
notebook instances, or deploy inference services.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

To control the permissions, configure the following permission policy items:

● modelarts:notebook:create: allows you to create a notebook instance.
● modelarts:trainJob:create: allows you to create a training job.
● modelarts:service:create: allows you to create an inference service.

Procedure
1. Log in to the management console as a tenant user, hover the cursor over

your username in the upper right corner, and choose Identity and Access
Management from the drop-down list to switch to the IAM management
console.

2. In the navigation pane, choose Permissions > Policies/Roles. On the Policies/
Roles page, click Create Custom Policy in the upper right corner, configure
parameters, and click OK.
– Policy Name: Configure the policy name.
– Policy View: Select Visual editor or JSON.
– Policy Content: Select Deny. In Select service, search for ModelArts and

select it. In ReadWrite under Actions, search for
modelarts:trainJob:create, modelarts:notebook:create, and
modelarts:service:create and select them. All: Retain the default setting.
In Add request condition, click Add Request Condition. In the displayed
dialog box, set Condition Key to modelarts:poolType, Operator to
StringEquals, and Value to public.
The policy content in JSON view is as follows:
{
 "Version": "1.1",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "modelarts:trainJob:create",
 "modelarts:notebook:create",
 "modelarts:service:create"
],
 "Condition": {
 "StringEquals": {
 "modelarts:poolType": [
 "public"
]
 }
 }
 }
]
}

3. In the navigation pane, choose User Groups. On the User Groups page,
locate the row containing the target user group and click Authorize in the
Operation column. On the Authorize User Group page, select the custom
policy created in 2 and click Next. Then, select the scope and click OK.
After the configuration, all users in the user group have the permission to
view all notebook instances created by users in the user group.
If no user group is available, create one, add users to it through user group
management, and configure authorization for the user group. If the target
user is not in a user group, add the user to a user group through user group
management.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

4. Add the policy to the user's agency authorization. This prevents the user from
breaking the permission scope through a token on the tenant plane.
In the navigation pane, choose Agencies. Locate the agency used by the user
group on ModelArts and click Modify in the Operation column. On the
Permissions tab page, click Authorize, select the created custom policy, and
click Next. Select the scope for authorization and click OK.

Verification
Log in to the ModelArts console as an IAM user, choose Training Management >
Training Jobs, and click Create Training Job. On the page for creating a training
job, only a dedicated resource pool can be selected for Resource Pool.

Log in to the ModelArts console as an IAM user, choose DevEnviron > Notebook,
and click Create. On the page for creating a notebook instance, only a dedicated
resource pool can be selected for Resource Pool.

Log in to the ModelArts console as an IAM user, choose Service Deployment >
Real-Time Services, and click Deploy. On the page for service deployment, only a
dedicated resource pool can be selected for Resource Pool.

2.3.7 Granting SFS Turbo Folder Access Permissions to IAM
Users

Scenarios
Grant access permission of specific SFS Turbo folders to IAM users.

Constraints
● Ensure that you have enabled strict authorization. Log in to the ModelArts

console and choose Settings from the navigation pane on the left. On the
Global Configuration page, click Enable strict authorization.

● If ModelArts permissions have not been granted to IAM users, the IAM users
may fail to use ModelArts after the strict authorization is enabled. Grant the
permission to IAM users by referring to Assigning Permissions to Individual
Users for Using ModelArts.

Procedure

Step 1 Log in to the management console using the main account, hover the cursor over
your username in the upper right corner, and choose Identity and Access
Management from the drop-down list to switch to the IAM management console.

Step 2 On the IAM console, choose Permissions > Policies/Roles from the navigation
pane on the left, click Create Custom Policy in the upper right corner, and
configure the policy as follows:
● Policy Name: Enter a policy name, for example, ma_sfs_turbo.
● Policy View: Select JSON.
● Policy Content: Enter the following information:

{
 "Version": "1.1",
 "Statement": [

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

 {
 "Effect": "Allow",
 "Action": [
 "<modelarts_action>"
],
 "Condition": {
 "StringEquals": {
 "modelarts:sfsId": [
 "<your_ssf_id>"
],
 "modelarts:sfsPath": [
 "<sfs_path>"
],
 "modelarts:sfsOption": [
 "<sfs_option>"
]
 }
 }
 }
]
}

Replace <modelarts_action>, <your_ssf_id>, <sfs_path>, and <sfs_option> with
actual parameters as you need. The following table describes the parameters.

Table 2-22 Parameter description

Parameter Description

Action Scenario in which the SFS Turbo folder access permission is
granted.
● modelarts:trainJob:create indicates that the permission is

granted during development environment instance creation.
● modelarts:notebook:create indicates that the permission is

granted during training job creation.
Multiple actions are supported, the following shows an
example:
"Action": [
 "modelarts:trainJob:create",
 "modelarts:notebook:create"
],

modelarts:sfsI
d

SFS Turbo ID, which can be obtained on the SFS Turbo details
page. You can enter multiple IDs, the following shows an
example:
"modelarts:sfsId": [
 "0e51c7d5-d90e-475a-b5d0-ecf896da3b0d",
 "2a70da1e-ea87-4ee4-ae1e-55df846e7f41"
],

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

Parameter Description

modelarts:sfs
Path

Path of the SFS Turbo folder whose permissions need to be
configured. You can enter multiple paths, the following shows
an example:
"modelarts:sfsPath": [
 "/path1",
 "/path2/path2-1"
],

If there are multiple SFS IDs, the SFS paths will apply to all SFS
IDs. As shown in the following example, permission to access /
path1 and /path2/path2-1 of both 0e51c7d5-d90e-475a-
b5d0-ecf896da3b0d and 2a70da1e-ea87-4ee4-
ae1e-55df846e7f41 are configured.
"modelarts:sfsId": [
 "0e51c7d5-d90e-475a-b5d0-ecf896da3b0d",
 "2a70da1e-ea87-4ee4-ae1e-55df846e7f41"
],
"modelarts:sfsPath": [
 "/path1",
 "/path2/path2-1"
],

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

Parameter Description

modelarts:sfs
Option

Type of the access permission. The following parameters are
supported:
● readonly: Read-only permission
● readwrite: Read and write permission
To add multiple SFS options to a custom policy, add a JSON
structure to Statement, the following shows an example:
{
 "Version": "1.1",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "modelarts:notebook:create"
],
 "Condition": {
 "StringEquals": {
 "modelarts:sfsId": [
 "0e51c7d5-d90e-475a-b5d0-ecf896da3b0d"
],
 "modelarts:sfsPath": [
 "/path1"
],
 "modelarts:sfsOption": [
 "readonly"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "modelarts:notebook:create"
],
 "Condition": {
 "StringEquals": {
 "modelarts:sfsId": [
 "0e51c7d5-d90e-475a-b5d0-ecf896da3b0d"
],
 "modelarts:sfsPath": [
 "/path2"
],
 "modelarts:sfsOption": [
 "readwrite"
]
 }
 }
 }
]
}

Step 3 Create a user group and add the user to the user group. For details, see Step 1
Create a User Group and Add Users to the User Group.

Step 4 Grant a policy to the user group. On the user group list page of IAM, click
Authorize of the target user group. The Authorize User Group page is displayed.
Select the ma_sfs_turbo policy created in Step 2. Click Next and then OK.

Step 5 Add the IAM ReadOnlyAccess permission to an existing ModelArts agency.
1. On the ModelArts management console, choose Settings from the navigation

pane on the left. On the displayed page, locate the target agency, choose

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

View Permissions in the Operation column, and click Modify permission in
IAM.

Figure 2-47 Modifying permissions in IAM

2. On the IAM console, choose Agencies from the navigation pane on the left,
and choose Permissions > Authorize. Search for IAM ReadOnlyAccess,
enable it, and click Next and OK.

Figure 2-48 IAM ReadOnlyAccess

Step 6 Verify that the permission is granted.

Log in to ModelArts as the IAM user, only the configured SFS Turbo folders are
displayed during training job creation and notebook creation.

----End

2.4 FAQ

2.4.1 What Do I Do If a Message Indicating Insufficient
Permissions Is Displayed When I Use ModelArts?

If a message indicating insufficient permissions is displayed when you use
ModelArts, perform the operations described in this section to grant permissions
for related services as needed.

The permissions to use ModelArts depend on OBS authorization. Therefore,
ModelArts users require OBS system permissions as well.

● For details about how to grant a user full permissions for OBS and common
operations permissions for ModelArts, see Configuring Common Operations
Permissions.

● For details about how to manage user permissions on OBS and ModelArts in
a refined manner and configure custom policies, see Creating a Custom
Policy for ModelArts.

Configuring Common Operations Permissions
To use the basic functions of ModelArts, assign the ModelArts
CommonOperations permission on project-level services to users. Since

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

ModelArts depends on OBS permissions, assign the OBS Administrator permission
on global services to users.

The procedure is as follows:

Step 1 Create a user group.

Log in to the IAM console and choose User Groups > Create User Group. Enter a
user group name, and click OK.

Step 2 Configure permissions for the user group.

In the user group list, locate the user group created in step 1, click Authorize ,
and perform the following operations.

1. Assign the ModelArts CommonOperations permission on project-level
services to the user group and click OK.

Figure 2-49 Assigning the ModelArts CommonOperations permission

Figure 2-50 Setting Scope to Region-specific projects

NO TE

The permission takes effect only in assigned regions. Assign permissions in all regions
if the permission is required in all regions.

2. Assign the OBS Administrator permission on global services to the user
group and click OK.

Figure 2-51 Assigning the OBS Administrator permission

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

Figure 2-52 Setting Scope to Global services

Step 3 Create a user and add it to the user group.

Create a user on the IAM console and add the user to the user group created in
step 1.

Step 4 Log in and verify permissions.

Log in to the ModelArts console as the created user, switch to the authorized
region, and verify the ModelArts CommonOperations and Tenant Administrator
policies are in effect.

● Choose Service List > ModelArts. Choose Dedicated Resource Pools. On the
page that is displayed, select a resource pool type and click Create. You
should not be able to create a new resource pool.

● Choose any other service in Service List. (Assume that the current policy
contains only ModelArts CommonOperations.) If a message appears
indicating that you have insufficient permissions to access the service, the
ModelArts CommonOperations policy has already taken effect.

● Choose Service List > ModelArts. On the ModelArts console, choose Data
Management > Datasets > Create Dataset. You should be able to access the
corresponding OBS path.

----End

Creating a Custom Policy for ModelArts

In addition to the default system policies of ModelArts, you can create custom
policies, which can address OBS permissions as well. For more information, see
Creating a Custom Policy.

You can create custom policies using either the visual editor or JSON views. This
section describes how to use a JSON view to create a custom policy to grant
permissions required to use development environments and the minimum
permissions required by ModelArts to access OBS.

NO TE

A custom policy can contain actions for multiple services that are accessible globally or only
for region-specific projects.

ModelArts is a project-level service, but OBS is a global service, so you need to create
separate policies for the two services and then apply these policies to the users.

1. Create a custom policy for minimizing permissions for OBS that ModelArts
depends on. See Figure 2-53.
Log in to the IAM console, choose Permissions > Policies/Roles, and click
Create Custom Policy. Configure the parameters as follows:

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_02_0001.html
https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_01_0552.html
https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_01_0605.html

– Policy Name: Choose a custom policy name.
– Policy View: JSON
– Policy Content: Follow the instructions in Example Custom Policies of

OBS. For more information about OBS system permissions, see OBS
Permissions Management.

Figure 2-53 Minimum permissions for OBS

2. Create a custom policy for the permission to use the ModelArts development
environment. See Figure 2-54. Configure the parameters as follows:
– Policy Name: Choose a custom policy name.
– Policy View: JSON
– Policy Content: Follow the instructions in Example Custom Policies for

Using the ModelArts Development Environment. For the actions that
can be added for custom policies, see ModelArts API Reference >
Permissions Policies and Supported Actions.

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

https://support.huaweicloud.com/intl/en-us/productdesc-obs/obs_03_0045.html
https://support.huaweicloud.com/intl/en-us/productdesc-obs/obs_03_0045.html
https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0146.html
https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0146.html

Figure 2-54 Permission to use the development environment

– For the system policies of other services, see System Permissions.
3. On the IAM console, create a user group and grant required permissions.

After creating a user group on the IAM console, grant the custom policy
created in 1 to the user group.

4. Create a user and add it to the user group.
Create a user on the IAM console and add the user to the group created in 3.

5. Log in and verify permissions.
Log in to the ModelArts console as the created user, switch to the authorized
region, and verify the ModelArts CommonOperations and Tenant
Administrator policies are in effect.
– Choose Service List > ModelArts. On the ModelArts console, choose

Data Management > Datasets. If you cannot create a dataset, the
permissions (for using the development environment) granted only to
ModelArts users have taken effect.

– Choose Service List > ModelArts. On the ModelArts console, choose
DevEnviron > Notebooks > Create. You should be able to access the
OBS path specified in Storage Path.

Example Custom Policies of OBS
The permissions to use ModelArts require OBS authorization. The following
example shows the minimum OBS required, including the permissions for OBS
buckets and objects. After being granted the minimum permissions for OBS, users
can access OBS from ModelArts without restrictions.

{
 "Version": "1.1",
 "Statement": [
 {

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

https://support.huaweicloud.com/intl/en-us/usermanual-permissions/iam_01_0001.html
https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_03_0001.html
https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_02_0001.html
https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_01_0552.html

 "Action": [
 "obs:bucket:ListAllMybuckets",
 "obs:bucket:HeadBucket",
 "obs:bucket:ListBucket",
 "obs:bucket:GetBucketLocation",
 "obs:object:GetObject",
 "obs:object:GetObjectVersion",
 "obs:object:PutObject",
 "obs:object:DeleteObject",
 "obs:object:DeleteObjectVersion",
 "obs:object:ListMultipartUploadParts",
 "obs:object:AbortMultipartUpload",
 "obs:object:GetObjectAcl",
 "obs:object:GetObjectVersionAcl",
 "obs:bucket:PutBucketAcl",
 "obs:object:PutObjectAcl"
],
 "Effect": "Allow"
 }
]
}

Example Custom Policies for Using the ModelArts Development Environment
{
 "Version": "1.1",
 "Statement": [

 {
 "Effect": "Allow",
 "Action": [
 "modelarts:notebook:list",
 "modelarts:notebook:create" ,
 "modelarts:notebook:get" ,
 "modelarts:notebook:update" ,
 "modelarts:notebook:delete" ,
 "modelarts:notebook:action" ,
 "modelarts:notebook:access"
]
 }
]
}

ModelArts
Best Practices 2 Permissions Management

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

3 Notebook

3.1 Creating, Migrating, and Managing Conda Virtual
Environments Based on SFS

This topic describes how to migrate the Conda environment on a notebook
instance to an SFS disk. In this way, the Conda environment will not be lost after
the notebook instance is restarted.

The procedure is as follows:

1. Creating a Virtual Environment and Saving It to the SFS Directory
2. Cloning the Existing Virtual Environments to the SFS Disk
3. Restarting the Image to Activate the Virtual Environment in the SFS Disk
4. Saving and Sharing the Virtual Environment

Prerequisites

You have created a notebook instance by setting Resource Type to Dedicated
resource pool and Storage to SFS and opened the terminal.

Creating a Virtual Environment and Saving It to the SFS Directory

Create a conda virtual environment.

shell
conda create --prefix /home/ma-user/work/envs/user_conda/sfs-new-env python=3.7.10 -y

View the existing conda virtual environments. The name of the newly created
virtual environment may be empty in the output.

shell
conda env list
conda environments:
#
base /home/ma-user/anaconda3
PyTorch-1.8 /home/ma-user/anaconda3/envs/PyTorch-1.8
python-3.7.10 * /home/ma-user/anaconda3/envs/python-3.7.10
 /home/ma-user/work/envs/user_conda/sfs-new-env

ModelArts
Best Practices 3 Notebook

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

Append the new virtual environment to conda envs.

shell
conda config --append envs_dirs /home/ma-user/work/envs/user_conda/

View the existing conda virtual environments. The new virtual environment is
properly displayed, and you can switch to it by name.

shell
conda env list
conda activate sfs-new-env
conda environments:
#
base /home/ma-user/anaconda3
PyTorch-1.8 /home/ma-user/anaconda3/envs/PyTorch-1.8
python-3.7.10 * /home/ma-user/anaconda3/envs/python-3.7.10
sfs-new-env /home/ma-user/work/envs/user_conda/sfs-new-env

(Optional) Register the new virtual environment with the JupyterLab kernel, so
that you can directly use it in JupyterLab.

shell
pip install ipykernel
ipython kernel install --user --name=sfs-new-env
rm -rf /home/ma-user/.local/share/jupyter/kernels/sfs-new-env/logo-*

Note: .local/share/jupyter/kernels/sfs-new-env is used as an example only.
Replace it with the actual installation path.

Refresh the JupyterLab page. The new kernel is displayed.

NO TE

After the notebook instance is restarted, the kernel needs to be registered again.

Cloning the Existing Virtual Environments to the SFS Disk
shell
conda create --prefix /home/ma-user/work/envs/user_conda/sfs-clone-env --clone PyTorch-1.8 -
y
Source: /home/ma-user/anaconda3/envs/PyTorch-1.8
Destination: /home/ma-user/work/envs/user_conda/sfs-clone-env
Packages: 20
Files: 39687
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
To activate this environment, use
#
$ conda activate /home/ma-user/work/envs/user_conda/sfs-clone-env
#
To deactivate an active environment, use
#
$ conda deactivate

ModelArts
Best Practices 3 Notebook

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

View the cloned virtual environments. If the name of the newly created virtual
environment is empty, handle the issue according to Append the new virtual
environment to conda envs.

shell
conda env list
conda environments:
#
base /home/ma-user/anaconda3
PyTorch-1.8 /home/ma-user/anaconda3/envs/PyTorch-1.8
python-3.7.10 /home/ma-user/anaconda3/envs/python-3.7.10
sfs-clone-env /home/ma-user/work/envs/user_conda/sfs-clone-env
sfs-new-env * /home/ma-user/work/envs/user_conda/sfs-new-env

(Optional) Register the new virtual environment with the JupyterLab kernel, so
that you can directly use it in JupyterLab.

shell
pip install ipykernel
ipython kernel install --user --name=sfs-clone-env
rm -rf /home/ma-user/.local/share/jupyter/kernels/sfs-clone-env/logo-*

Note: .local/share/jupyter/kernels/sfs-clone-env is used as an example only.
Replace it with the actual installation path.

Refresh the JupyterLab page. The new kernel is displayed.

Restarting the Image to Activate the Virtual Environment in the SFS Disk
Method 1: Use the complete conda env path.

shell
conda activate /home/ma-user/work/envs/user_conda/sfs-new-env

Method 2: Append the virtual environment to conda envs and activate it using its
name.

shell
conda config --append envs_dirs /home/ma-user/work/envs/user_conda/
conda activate sfs-new-env

Method 3: Use Python or pip in the virtual environment.

shell
/home/ma-user/work/envs/user_conda/sfs-new-env/bin/pip list
/home/ma-user/work/envs/user_conda/sfs-new-env/bin/python -V

Saving and Sharing the Virtual Environment
Package the virtual environment to be migrated.

shell
pip install conda-pack
conda pack -n sfs-clone-env -o sfs-clone-env.tar.gz --ignore-editable-packages
Collecting packages...
Packing environment at '/home/ma-user/work/envs/user_conda/sfs-clone-env' to 'sfs-clone-env.tar.gz'
[##] | 100% Completed | 3min 33.9s

Decompress the package to the SFS directory.

shell

ModelArts
Best Practices 3 Notebook

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

mkdir /home/ma-user/work/envs/user_conda/sfs-tar-env
tar -zxvf sfs-clone-env.tar.gz -C /home/ma-user/work/envs/user_conda/sfs-tar-env

View the existing conda virtual environments.

shell
conda env list
conda environments:
#
base /home/ma-user/anaconda3
PyTorch-1.8 * /home/ma-user/anaconda3/envs/PyTorch-1.8
python-3.7.10 /home/ma-user/anaconda3/envs/python-3.7.10
sfs-clone-env /home/ma-user/work/envs/user_conda/sfs-clone-env
sfs-new-env /home/ma-user/work/envs/user_conda/sfs-new-env
sfs-tar-env /home/ma-user/work/envs/user_conda/sfs-tar-env
test-env /home/ma-user/work/envs/user_conda/test-env

ModelArts
Best Practices 3 Notebook

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

4 Model Training

4.1 Using a Custom Algorithm to Build a Handwritten
Digit Recognition Model

This section describes how to modify a local custom algorithm to train and deploy
models on ModelArts.

Scenarios

This case describes how to use PyTorch 1.8 to recognize handwritten digit images.
An official MNIST dataset is used in this case.

Through this case, you can learn how to train jobs, deploy an inference model, and
perform prediction on ModelArts.

Step 1: Making Preparations
● You have registered a Huawei ID and enabled Huawei Cloud services, and the

account is not in arrears or frozen.

● You have configured the agency-based authorization.

Certain ModelArts functions require access to OBS, SWR, and IEF. Before using
ModelArts, ensure your account has been authorized to access these services.

a. Log in to the ModelArts console using your Huawei Cloud account. In
the navigation pane on the left, choose Settings. On the Global
Configuration page, click Add Authorization.

b. On the Add Authorization page that is displayed, set required
parameters as follows:

Authorized User: Select All users.

Agency: Select Add agency.

Permissions: Select Common User.

Select "I have read and agree to the ModelArts Service Statement", and
click Create.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

https://console-intl.huaweicloud.com/modelarts/?locale=en-us

Figure 4-1 Configuring the agency-based authorization

c. After the configuration, view the agency configurations of your account
on the Global Configuration page.

Figure 4-2 Viewing agency configurations

Step 2: Preparing Training Data
An MNIST dataset downloaded from the MNIST official website is used in this
case. Ensure that the four files are all downloaded.

Figure 4-3 MNIST dataset

● train-images-idx3-ubyte.gz: compressed package of the training set, which
contains 60,000 samples.

● train-labels-idx1-ubyte.gz: compressed package of the training set labels,
which contains the labels of the 60,000 samples

● t10k-images-idx3-ubyte.gz: compressed package of the validation set, which
contains 10,000 samples.

● t10k-labels-idx1-ubyte.gz: compressed package of the validation set labels,
which contains the labels of the 10,000 samples

NO TE

If you are asked to enter the login information after you click the MNIST official website
link, copy and paste this link in the address box of your browser: http://yann.lecun.com/
exdb/mnist/
The login information is required when you open the link in HTTPS mode, which is not
required if you open the link in HTTP mode.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

http://yann.lecun.com/exdb/mnist/

Step 3: Preparing Training Files and Inference Files
In this case, ModelArts provides the training script, inference script, and inference
configuration file.

NO TE

When pasting code from a .py file, create a .py file. Otherwise, the error message
"SyntaxError: 'gbk' codec can't decode byte 0xa4 in position 324: illegal multibyte sequence"
may be displayed.

Create the training script train.py on the local host. The content is as follows:

base on https://github.com/pytorch/examples/blob/main/mnist/main.py

from __future__ import print_function

import os
import gzip
import codecs
import argparse
from typing import IO, Union

import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR

import shutil

Define a network model.
class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = nn.Conv2d(1, 32, 3, 1)
 self.conv2 = nn.Conv2d(32, 64, 3, 1)
 self.dropout1 = nn.Dropout(0.25)
 self.dropout2 = nn.Dropout(0.5)
 self.fc1 = nn.Linear(9216, 128)
 self.fc2 = nn.Linear(128, 10)

 def forward(self, x):
 x = self.conv1(x)
 x = F.relu(x)
 x = self.conv2(x)
 x = F.relu(x)
 x = F.max_pool2d(x, 2)
 x = self.dropout1(x)
 x = torch.flatten(x, 1)
 x = self.fc1(x)
 x = F.relu(x)
 x = self.dropout2(x)
 x = self.fc2(x)
 output = F.log_softmax(x, dim=1)
 return output

Train the model. Set the model to the training mode, load the training data, calculate the loss function,
and perform gradient descent.
def train(args, model, device, train_loader, optimizer, epoch):
 model.train()
 for batch_idx, (data, target) in enumerate(train_loader):
 data, target = data.to(device), target.to(device)

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

 optimizer.zero_grad()
 output = model(data)
 loss = F.nll_loss(output, target)
 loss.backward()
 optimizer.step()
 if batch_idx % args.log_interval == 0:
 print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
 epoch, batch_idx * len(data), len(train_loader.dataset),
 100. * batch_idx / len(train_loader), loss.item()))
 if args.dry_run:
 break

Validate the model. Set the model to the validation mode, load the validation data, and calculate the loss
function and accuracy.
def test(model, device, test_loader):
 model.eval()
 test_loss = 0
 correct = 0
 with torch.no_grad():
 for data, target in test_loader:
 data, target = data.to(device), target.to(device)
 output = model(data)
 test_loss += F.nll_loss(output, target, reduction='sum').item()
 pred = output.argmax(dim=1, keepdim=True)
 correct += pred.eq(target.view_as(pred)).sum().item()

 test_loss /= len(test_loader.dataset)

 print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
 test_loss, correct, len(test_loader.dataset),
 100. * correct / len(test_loader.dataset)))

The following is PyTorch MNIST.
https://github.com/pytorch/vision/blob/v0.9.0/torchvision/datasets/mnist.py
def get_int(b: bytes) -> int:
 return int(codecs.encode(b, 'hex'), 16)

def open_maybe_compressed_file(path: Union[str, IO]) -> Union[IO, gzip.GzipFile]:
 """Return a file object that possibly decompresses 'path' on the fly.
 Decompression occurs when argument `path` is a string and ends with '.gz' or '.xz'.
 """
 if not isinstance(path, torch._six.string_classes):
 return path
 if path.endswith('.gz'):
 return gzip.open(path, 'rb')
 if path.endswith('.xz'):
 return lzma.open(path, 'rb')
 return open(path, 'rb')

SN3_PASCALVINCENT_TYPEMAP = {
 8: (torch.uint8, np.uint8, np.uint8),
 9: (torch.int8, np.int8, np.int8),
 11: (torch.int16, np.dtype('>i2'), 'i2'),
 12: (torch.int32, np.dtype('>i4'), 'i4'),
 13: (torch.float32, np.dtype('>f4'), 'f4'),
 14: (torch.float64, np.dtype('>f8'), 'f8')
}

def read_sn3_pascalvincent_tensor(path: Union[str, IO], strict: bool = True) -> torch.Tensor:
 """Read a SN3 file in "Pascal Vincent" format (Lush file 'libidx/idx-io.lsh').
 Argument may be a filename, compressed filename, or file object.
 """
 # read
 with open_maybe_compressed_file(path) as f:

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

 data = f.read()
 # parse
 magic = get_int(data[0:4])
 nd = magic % 256
 ty = magic // 256
 assert 1 <= nd <= 3
 assert 8 <= ty <= 14
 m = SN3_PASCALVINCENT_TYPEMAP[ty]
 s = [get_int(data[4 * (i + 1): 4 * (i + 2)]) for i in range(nd)]
 parsed = np.frombuffer(data, dtype=m[1], offset=(4 * (nd + 1)))
 assert parsed.shape[0] == np.prod(s) or not strict
 return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s)

def read_label_file(path: str) -> torch.Tensor:
 with open(path, 'rb') as f:
 x = read_sn3_pascalvincent_tensor(f, strict=False)
 assert(x.dtype == torch.uint8)
 assert(x.ndimension() == 1)
 return x.long()

def read_image_file(path: str) -> torch.Tensor:
 with open(path, 'rb') as f:
 x = read_sn3_pascalvincent_tensor(f, strict=False)
 assert(x.dtype == torch.uint8)
 assert(x.ndimension() == 3)
 return x

def extract_archive(from_path, to_path):
 to_path = os.path.join(to_path, os.path.splitext(os.path.basename(from_path))[0])
 with open(to_path, "wb") as out_f, gzip.GzipFile(from_path) as zip_f:
 out_f.write(zip_f.read())
The above is pytorch mnist.
--- end

Raw MNIST dataset processing
def convert_raw_mnist_dataset_to_pytorch_mnist_dataset(data_url):
 """
 raw

 {data_url}/
 train-images-idx3-ubyte.gz
 train-labels-idx1-ubyte.gz
 t10k-images-idx3-ubyte.gz
 t10k-labels-idx1-ubyte.gz

 processed

 {data_url}/
 train-images-idx3-ubyte.gz
 train-labels-idx1-ubyte.gz
 t10k-images-idx3-ubyte.gz
 t10k-labels-idx1-ubyte.gz
 MNIST/raw
 train-images-idx3-ubyte
 train-labels-idx1-ubyte
 t10k-images-idx3-ubyte
 t10k-labels-idx1-ubyte
 MNIST/processed
 training.pt
 test.pt
 """
 resources = [
 "train-images-idx3-ubyte.gz",
 "train-labels-idx1-ubyte.gz",
 "t10k-images-idx3-ubyte.gz",

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

 "t10k-labels-idx1-ubyte.gz"
]

 pytorch_mnist_dataset = os.path.join(data_url, 'MNIST')

 raw_folder = os.path.join(pytorch_mnist_dataset, 'raw')
 processed_folder = os.path.join(pytorch_mnist_dataset, 'processed')

 os.makedirs(raw_folder, exist_ok=True)
 os.makedirs(processed_folder, exist_ok=True)

 print('Processing...')

 for f in resources:
 extract_archive(os.path.join(data_url, f), raw_folder)

 training_set = (
 read_image_file(os.path.join(raw_folder, 'train-images-idx3-ubyte')),
 read_label_file(os.path.join(raw_folder, 'train-labels-idx1-ubyte'))
)
 test_set = (
 read_image_file(os.path.join(raw_folder, 't10k-images-idx3-ubyte')),
 read_label_file(os.path.join(raw_folder, 't10k-labels-idx1-ubyte'))
)
 with open(os.path.join(processed_folder, 'training.pt'), 'wb') as f:
 torch.save(training_set, f)
 with open(os.path.join(processed_folder, 'test.pt'), 'wb') as f:
 torch.save(test_set, f)

 print('Done!')

def main():
 # Define the preset running parameters of the training job.
 parser = argparse.ArgumentParser(description='PyTorch MNIST Example')

 parser.add_argument('--data_url', type=str, default=False,
 help='mnist dataset path')
 parser.add_argument('--train_url', type=str, default=False,
 help='mnist model path')

 parser.add_argument('--batch-size', type=int, default=64, metavar='N',
 help='input batch size for training (default: 64)')
 parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
 help='input batch size for testing (default: 1000)')
 parser.add_argument('--epochs', type=int, default=14, metavar='N',
 help='number of epochs to train (default: 14)')
 parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
 help='learning rate (default: 1.0)')
 parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
 help='Learning rate step gamma (default: 0.7)')
 parser.add_argument('--no-cuda', action='store_true', default=False,
 help='disables CUDA training')
 parser.add_argument('--dry-run', action='store_true', default=False,
 help='quickly check a single pass')
 parser.add_argument('--seed', type=int, default=1, metavar='S',
 help='random seed (default: 1)')
 parser.add_argument('--log-interval', type=int, default=10, metavar='N',
 help='how many batches to wait before logging training status')
 parser.add_argument('--save-model', action='store_true', default=True,
 help='For Saving the current Model')
 args = parser.parse_args()

 use_cuda = not args.no_cuda and torch.cuda.is_available()

 torch.manual_seed(args.seed)

 # Set whether to use GPU or CPU to run the algorithm.
 device = torch.device("cuda" if use_cuda else "cpu")

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

 train_kwargs = {'batch_size': args.batch_size}
 test_kwargs = {'batch_size': args.test_batch_size}
 if use_cuda:
 cuda_kwargs = {'num_workers': 1,
 'pin_memory': True,
 'shuffle': True}
 train_kwargs.update(cuda_kwargs)
 test_kwargs.update(cuda_kwargs)

 # Define the data preprocessing method.
 transform=transforms.Compose([
 transforms.ToTensor(),
 transforms.Normalize((0.1307,), (0.3081,))
])

 # Convert the raw MNIST dataset to a PyTorch MNIST dataset.
 convert_raw_mnist_dataset_to_pytorch_mnist_dataset(args.data_url)

 # Create a training dataset and a validation dataset.
 dataset1 = datasets.MNIST(args.data_url, train=True, download=False,
 transform=transform)
 dataset2 = datasets.MNIST(args.data_url, train=False, download=False,
 transform=transform)

 # Create iterators for the training dataset and the validation dataset.
 train_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs)
 test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)

 # Initialize the neural network model and copy the model to the compute device.
 model = Net().to(device)
 # Define the training optimizer and learning rate for gradient descent calculation.
 optimizer = optim.Adadelta(model.parameters(), lr=args.lr)
 scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)

 # Train the neural network and perform validation in each epoch.
 for epoch in range(1, args.epochs + 1):
 train(args, model, device, train_loader, optimizer, epoch)
 test(model, device, test_loader)
 scheduler.step()

 # Save the model and make it adapted to the ModelArts inference model package specifications.
 if args.save_model:

 # Create the model directory in the path specified in train_url.
 model_path = os.path.join(args.train_url, 'model')
 os.makedirs(model_path, exist_ok = True)

 # Save the model to the model directory based on the ModelArts inference model package
specifications.
 torch.save(model.state_dict(), os.path.join(model_path, 'mnist_cnn.pt'))

 # Copy the inference code and configuration file to the model directory.
 the_path_of_current_file = os.path.dirname(__file__)
 shutil.copyfile(os.path.join(the_path_of_current_file, 'infer/customize_service.py'),
os.path.join(model_path, 'customize_service.py'))
 shutil.copyfile(os.path.join(the_path_of_current_file, 'infer/config.json'), os.path.join(model_path,
'config.json'))

if __name__ == '__main__':
 main()

Create the inference script customize_service.py on the local host. The content is
as follows:
import os
import log
import json

import torch.nn.functional as F

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

import torch.nn as nn
import torch
import torchvision.transforms as transforms

import numpy as np
from PIL import Image

from model_service.pytorch_model_service import PTServingBaseService

logger = log.getLogger(__name__)

Define model preprocessing.
infer_transformation = transforms.Compose([
 transforms.Resize(28),
 transforms.CenterCrop(28),
 transforms.ToTensor(),
 transforms.Normalize((0.1307,), (0.3081,))
])

Model inference service
class PTVisionService(PTServingBaseService):

 def __init__(self, model_name, model_path):
 # Call the constructor of the parent class.
 super(PTVisionService, self).__init__(model_name, model_path)

 # Call the customized function to load the model.
 self.model = Mnist(model_path)

 # Load labels.
 self.label = [0,1,2,3,4,5,6,7,8,9]

 # Receive the request data and convert it to the input format acceptable to the model.
 def _preprocess(self, data):
 preprocessed_data = {}
 for k, v in data.items():
 input_batch = []
 for file_name, file_content in v.items():
 with Image.open(file_content) as image1:
 # Gray processing
 image1 = image1.convert("L")
 if torch.cuda.is_available():
 input_batch.append(infer_transformation(image1).cuda())
 else:
 input_batch.append(infer_transformation(image1))
 input_batch_var = torch.autograd.Variable(torch.stack(input_batch, dim=0), volatile=True)
 print(input_batch_var.shape)
 preprocessed_data[k] = input_batch_var

 return preprocessed_data

 # Post-process the inference result to obtain the expected output format. The result is the returned value.
 def _postprocess(self, data):
 results = []
 for k, v in data.items():
 result = torch.argmax(v[0])
 result = {k: self.label[result]}
 results.append(result)
 return results

 # Perform forward inference on the input data to obtain the inference result.
 def _inference(self, data):

 result = {}
 for k, v in data.items():
 result[k] = self.model(v)

 return result

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

Define a network.
class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = nn.Conv2d(1, 32, 3, 1)
 self.conv2 = nn.Conv2d(32, 64, 3, 1)
 self.dropout1 = nn.Dropout(0.25)
 self.dropout2 = nn.Dropout(0.5)
 self.fc1 = nn.Linear(9216, 128)
 self.fc2 = nn.Linear(128, 10)

 def forward(self, x):
 x = self.conv1(x)
 x = F.relu(x)
 x = self.conv2(x)
 x = F.relu(x)
 x = F.max_pool2d(x, 2)
 x = self.dropout1(x)
 x = torch.flatten(x, 1)
 x = self.fc1(x)
 x = F.relu(x)
 x = self.dropout2(x)
 x = self.fc2(x)
 output = F.log_softmax(x, dim=1)
 return output

def Mnist(model_path, **kwargs):
 # Generate a network.
 model = Net()

 # Load the model.
 if torch.cuda.is_available():
 device = torch.device('cuda')
 model.load_state_dict(torch.load(model_path, map_location="cuda:0"))
 else:
 device = torch.device('cpu')
 model.load_state_dict(torch.load(model_path, map_location=device))

 # CPU or GPU mapping
 model.to(device)

 # Turn the model to inference mode.
 model.eval()

 return model

Infer the configuration file config.json on the local host. The content is as follows:

{
 "model_algorithm": "image_classification",
 "model_type": "PyTorch",
 "runtime": "pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64"
}

Step 4: Creating an OBS Bucket and Upload Files to OBS

Upload the data, code file, inference code file, and inference configuration file
obtained in the previous step to an OBS bucket. When running a training job on
ModelArts, read data and code files from the OBS bucket.

1. Log in to the OBS console and create an OBS bucket and folder. Figure 4-4
shows an example of the created objects. For details, see Creating a Bucket
and Creating a Folder.
{OBS bucket} # OBS bucket name, which is customizable, for example, test-modelarts-
xx
 -{OBS folder} # OBS folder name, which is customizable, for example, pytorch

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0306.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0316.html

 - mnist-data # OBS folder, which is used to store the training dataset. The folder name is
customizable, for example, mnist-data.
 - mnist-code # OBS folder, which is used to store training script train.py. The folder name is
customizable, for example, mnist-code.
 - infer # OBS folder, which is used to store inference script customize_service.py and
configuration file config.json
 - mnist-output # OBS folder, which is used to store trained models. The folder name is
customizable, for example, mnist-output.

CA UTION

● The region where the created OBS bucket resides must be the same as that
where ModelArts is used. Otherwise, the OBS bucket will be unavailable for
training. For details, see Check whether the OBS bucket and ModelArts
are in the same region.

● When creating an OBS bucket, do not set the archive storage class.
Otherwise, training models will fail.

Figure 4-4 OBS file directory

2. Upload the MNIST dataset package obtained in Step 2: Preparing Training
Data to OBS. For details, see Uploading an Object.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0157.html#section2
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0157.html#section2
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0307.html

CA UTION

● When uploading data to OBS, do not encrypt the data. Otherwise, the
training will fail.

● Files do not need to be decompressed. Directly upload compressed
packages to OBS.

Figure 4-5 Uploading a dataset to the mnist-data folder

3. Upload the training script train.py to the mnist-code folder.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

Figure 4-6 Uploading the training script train.py to the mnist-code folder

4. Upload the inference script customize_service.py and inference configuration
file config.json to the infer folder.

Figure 4-7 Uploading customize_service.py and config.json to the infer
folder

Step 5: Creating a Training Job
1. Log in to the ModelArts management console and select the same region as

the OBS bucket.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

2. In the navigation pane on the left, choose Settings and check whether access
authorization has been configured for the current account. For details, see
Configuring Access Authorization. If you have been authorized using access
keys, clear the authorization and configure agency authorization.

3. In the navigation pane, choose Training Management > Training Jobs. On
the Training Jobs page that appears, click Create Training Job.

4. Set parameters.
– Algorithm Type: Select Custom algorithm.
– Boot Mode: Select Preset image and then select PyTorch and

pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 from the drop-
down lists.

– Code Directory: Select the created OBS code directory, for example, /
test-modelarts-xx/pytorch/mnist-code/ (replace test-modelarts-xx
with your OBS bucket name).

– Boot File: Select the training script train.py uploaded to the code
directory.

– Input: Add one input and set its name to data_url. Set the data path to
your OBS directory, for example, /test-modelarts-xx/pytorch/mnist-
data/ (replace test-modelarts-xx with your OBS bucket name).

– Output: Add one output and set its name to train_url. Set the data path
to your OBS directory, for example, /test-modelarts-xx/pytorch/mnist-
output/ (replace test-modelarts-xx with your OBS bucket name). Do not
pre-download to a local directory.

– Resource Type: Select GPU and then GPU: 1*NVIDIA-V100(16GB) | CPU:
8 vCPUs 64GB (example). If there are free GPU specifications, you can
select them for training.

– Retain default settings for other parameters.

NO TE

The sample code runs on a single node with a single card. If you select a flavor
with multiple GPUs, the training will fail.

Figure 4-8 Training job settings

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

https://support.huaweicloud.com/intl/en-us/prepare-modelarts/modelarts_08_0007.html

Figure 4-9 Setting training input and output

Figure 4-10 Configuring the resource type

5. Click Submit, confirm parameter settings for the training job, and click Yes.
The system automatically switches back to the Training Jobs page. When the
training job status changes to Completed, the model training is completed.

NO TE

In this case, the training job will take about 10 minutes.

6. Click the training job name. On the job details page that is displayed, check
whether there are error messages in logs. If so, the training failed. Identify the
cause and locate the fault based on the logs.

7. In the lower left corner of the training details page, click the training output
path to go to OBS (as shown in Figure 4-11). Then, check whether the model
folder is available and whether there are any trained models in the folder (as
shown in Figure 4-12). If there is no model folder or trained model, the
training input may be incomplete. In this case, completely upload the training
data and train the model again.

Figure 4-11 Output path

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

Figure 4-12 Trained model

Step 6: Deploying an Inference Service
After the model training is complete, create an AI application and deploy it as a
real-time service.

1. Log in to the ModelArts management console. In the navigation pane on the
left, choose AI Application Management > AI Applications. On the My AI
Applications page, click Create.

2. On the Create page, configure parameters and click Create now.
Choose Training Job for Meta Model Source. Select the training job
completed in Step 5: Creating a Training Job from the drop-down list and
select Dynamic loading. The values of AI Engine will be automatically
configured.

Figure 4-13 Meta Model Source

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

NO TE

If you have used Training Jobs of an old version, you can see both Training Jobs and
Training Jobs New below Training job. In this case, select Training Jobs New.

3. On the AI Applications page, if the application status changes to Normal, it
has been created. Click the option button on the left of the AI application
name to display the version list at the bottom of the list page, and choose
Deploy > Real-Time Services in the Operation column to deploy the AI
application as a real-time service.

Figure 4-14 Deploying a real-time service

4. On the Deploy page, configure parameters and create a real-time service as
prompted. In this example, use CPU specifications. If there are free CPU
specifications, you can select them for deployment. (Each user can deploy
only one real-time service for free. If you have deployed one, delete it first
before deploying a new one for free.)

Figure 4-15 Deploying a model

After you submit the service deployment request, the system automatically
switches to the Real-Time Services page. When the service status changes to
Running, the service has been deployed.

Figure 4-16 Deployed service

Step 7: Performing Prediction
1. On the Real-Time Services page, click the name of the real-time service. The

real-time service details page is displayed.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

2. Click the Prediction tab, set Request Type to multipart/form-data, Request
Parameter to image, click Upload to upload a sample image, and click
Predict.
After the prediction is complete, the prediction result is displayed in the Test
Result pane. According to the prediction result, the digit on the image is 2.

NO TE

The MNIST used in this case is a simple dataset used for demonstration, and its
algorithms are also simple neural network algorithms used for teaching. The models
generated using such data and algorithms are applicable only to teaching but not to
complex prediction scenarios. The prediction is accurate only if the image used for
prediction is similar to the image in the training dataset (white characters on black
background).

Figure 4-17 Example

Figure 4-18 Prediction results

Step 8: Releasing Resources

If you do not need to use this model and real-time service anymore, release the
resources to stop billing.
● On the Real-Time Services page, locate the row containing the target service

and click Stop or Delete in the Operation column.
● On the AI Applications page in AI Application Management, locate the row

containing the target service and click Delete in the Operation column.
● On the Training Jobs page, click Delete in the Operation column to delete

the finished training job.
● Go to OBS and delete the OBS bucket, folders, and files used in this example.

FAQs
● Why Is a Training Job Always Queuing?

If the training job is always queuing, the selected resources are limited in the
resource pool, and the job needs to be queued. In this case, wait for resources.
For details, see Why Is a Training Job Always Queuing.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0363.html

● Why Can't I Find My Created OBS Bucket After I Select an OBS Path in
ModelArts?

Ensure that the created bucket is in the same region as ModelArts. For details,
see Incorrect OBS Path on ModelArts.

4.2 Example: Creating a Custom Image for Training
(PyTorch + CPU/GPU)

This section describes how to create an image and use the image for training on
the ModelArts platform. The AI engine used for training is PyTorch, and the
resources are CPUs or GPUs.

NO TE

This section applies only to training jobs of the new version.

Scenarios

In this example, create a custom image by writing a Dockerfile on a Linux x86_64
host running the Ubuntu 18.04 operating system.

Objective: Build and install container images of the following software and use the
images and CPUs/GPUs for training on ModelArts.

● ubuntu-18.04

● cuda-11.1

● python-3.7.13

● pytorch-1.8.1

Procedure

Before using a custom image to create a training job, you need to be familiar with
Docker and have development experience. The following is the detailed procedure:

1. Prerequisites

2. Step 1 Creating an OBS Bucket and Folder

3. Step 2 Preparing the Training Script and Uploading It to OBS

4. Step 3 Preparing a Host

5. Step 4 Creating a Custom Image

6. Step 5 Uploading an Image to SWR

7. Step 6 Creating a Training Job on ModelArts

Prerequisites

You have registered a Huawei ID and enabled Huawei Cloud services, and the
account is not in arrears or frozen.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0157.html#section2

Step 1 Creating an OBS Bucket and Folder
Create a bucket and folders in OBS for storing the sample dataset and training
code. Table 4-1 lists the folders to be created. Replace the bucket name and folder
names in the example with actual names.

For details about how to create an OBS bucket and folder, see Creating a Bucket
and Creating a Folder.

Ensure that the OBS directory you use and ModelArts are in the same region.

Table 4-1 Folder to create

Name Description

obs://test-modelarts/pytorch/
demo-code/

Stores the training script.

obs://test-modelarts/pytorch/log/ Stores training log files.

Step 2 Preparing the Training Script and Uploading It to OBS
Prepare the training script pytorch-verification.py and upload it to the obs://test-
modelarts/pytorch/demo-code/ folder of the OBS bucket.

The pytorch-verification.py file contains the following information:

import torch
import torch.nn as nn

x = torch.randn(5, 3)
print(x)

available_dev = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
y = torch.randn(5, 3).to(available_dev)
print(y)

Step 3 Preparing a Host
Obtain a Linux x86_64 server running Ubuntu 18.04. Either an ECS or your local PC
will do.

For details about how to purchase an ECS, see Purchasing and Logging In to a
Linux ECS. Select a public image. An Ubuntu 18.04 image is recommended.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0306.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0316.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html

Figure 4-19 Creating an ECS using a public image (x86)

Step 4 Creating a Custom Image

Create a container image with the following configurations and use the image to
create a training job on ModelArts:

● ubuntu-18.04
● cuda-11.1
● python-3.7.13
● pytorch-1.8.1

This section describes how to write a Dockerfile to create a custom image.

1. Install Docker.
The following uses the Linux x86_64 OS as an example to describe how to
obtain the Docker installation package. For more details about how to install
Docker, see official Docker documents.
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh

If the docker images command is executed, Docker has been installed. In this
case, skip this step.

2. Run the following command to check the Docker Engine version:
docker version | grep -A 1 Engine

The following information is displayed:
...
Engine:
 Version: 18.09.0

NO TE

Use the Docker engine of the preceding version or later to create a custom image.

3. Create a folder named context.
mkdir -p context

4. Obtain the pip.conf file. In this example, the pip source provided by Huawei
Mirrors is used, which is as follows:
[global]
index-url = https://repo.huaweicloud.com/repository/pypi/simple
trusted-host = repo.huaweicloud.com
timeout = 120

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

https://docs.docker.com/engine/install/binaries/#install-static-binaries

NO TE

In Huawei Mirrors https://mirrors.huaweicloud.com/home, search for pypi to obtain
the pip.conf file.

5. Download the following .whl files from https://download.pytorch.org/whl/
torch_stable.html:
– torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl
– torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl
– torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl

NO TE

The URL code of the + symbol is %2B. When searching for a file in the above website,
replace the + symbol in the file name with %2B.
For example, torch-1.8.1%2Bcu111-cp37-cp37m-linux_x86_64.whl.

6. Download the Miniconda3-py37_4.12.0-Linux-x86_64.sh installation file
(Python 3.7.13) from https://repo.anaconda.com/miniconda/Miniconda3-
py37_4.12.0-Linux-x86_64.sh.

7. Store the pip source file, torch*.whl file, and Miniconda3 installation file in the
context folder, which is as follows:
context
├── Miniconda3-py37_4.12.0-Linux-x86_64.sh
├── pip.conf
├── torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl
├── torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl
└── torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl

8. Write the container image Dockerfile.
Create an empty file named Dockerfile in the context folder and copy the
following content to the file:
The host must be connected to the public network for creating a container image.

Base container image at https://github.com/NVIDIA/nvidia-docker/wiki/CUDA

https://docs.docker.com/develop/develop-images/multistage-build/#use-multi-stage-builds
require Docker Engine >= 17.05
#
builder stage
FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04 AS builder

The default user of the base container image is root.
USER root

Use the PyPI configuration provided by Huawei Mirrors.
RUN mkdir -p /root/.pip/
COPY pip.conf /root/.pip/pip.conf

Copy the installation files to the /tmp directory in the base container image.
COPY Miniconda3-py37_4.12.0-Linux-x86_64.sh /tmp
COPY torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl /tmp
COPY torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl /tmp
COPY torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl /tmp

https://conda.io/projects/conda/en/latest/user-guide/install/linux.html#installing-on-linux
Install Miniconda3 to the /home/ma-user/miniconda3 directory of the base container image.
RUN bash /tmp/Miniconda3-py37_4.12.0-Linux-x86_64.sh -b -p /home/ma-user/miniconda3

Install torch*.whl using the default Miniconda3 Python environment in /home/ma-user/
miniconda3/bin/pip.
RUN cd /tmp && \
 /home/ma-user/miniconda3/bin/pip install --no-cache-dir \
 /tmp/torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl \

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

 /tmp/torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl \
 /tmp/torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl

Create the final container image.
FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04

Install vim and cURL in Huawei Mirrors.
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 apt-get update && \
 apt-get install -y vim curl && \
 apt-get clean && \
 mv /etc/apt/sources.list.bak /etc/apt/sources.list

Add user ma-user (UID = 1000, GID = 100).
A user group whose GID is 100 of the base container image exists. User ma-user can directly use it.
RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user

Copy the /home/ma-user/miniconda3 directory from the builder stage to the directory with the
same name in the current container image.
COPY --chown=ma-user:100 --from=builder /home/ma-user/miniconda3 /home/ma-user/miniconda3

Configure the preset environment variables of the container image.
Set PYTHONUNBUFFERED to 1 to avoid log loss.
ENV PATH=$PATH:/home/ma-user/miniconda3/bin \
 PYTHONUNBUFFERED=1

Set the default user and working directory of the container image.
USER ma-user
WORKDIR /home/ma-user

For details about how to write a Dockerfile, see official Docker documents.
9. Verify that the Dockerfile has been created. The following shows the context

folder:
context
├── Dockerfile
├── Miniconda3-py37_4.12.0-Linux-x86_64.sh
├── pip.conf
├── torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl
├── torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl
└── torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl

10. Create the container image. Run the following command in the directory
where the Dockerfile is stored to build the container image pytorch:1.8.1-
cuda11.1:
docker build . -t pytorch:1.8.1-cuda11.1

The following log information displayed during image creation indicates that
the image has been created.
Successfully tagged pytorch:1.8.1-cuda11.1

Step 5 Uploading an Image to SWR
1. Log in to the SWR console and select the target region.

Figure 4-20 SWR console

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

2. Click Create Organization in the upper right corner and enter an
organization name to create an organization. Customize the organization
name. Replace the organization name deep-learning in subsequent
commands with the actual organization name.

Figure 4-21 Creating an organization

3. Click Generate Login Command in the upper right corner to obtain a login
command.

Figure 4-22 Login Command

4. Log in to the local environment as the root user and enter the login
command.

5. Upload the image to SWR.

a. Run the following command to tag the uploaded image:
#Replace the region and domain information with the actual values, and replace the
organization name deep-learning with your custom value.
sudo docker tag pytorch:1.8.1-cuda11.1 swr.{region-id}.{domain}/deep-learning/pytorch:1.8.1-
cuda11.1

b. Run the following command to upload the image:
#Replace the region and domain information with the actual values, and replace the
organization name deep-learning with your custom value.
sudo docker push swr.{region-id}.{domain}/deep-learning/pytorch:1.8.1-cuda11.1

6. After the image is uploaded, choose My Images in navigation pane on the
left of the SWR console to view the uploaded custom images.

Step 6 Creating a Training Job on ModelArts
1. Log in to the ModelArts management console and check whether access

authorization has been configured for your account. For details, see

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

Configuring Agency Authorization. If you have been authorized using access
keys, clear the authorization and configure agency authorization.

2. In the navigation pane, choose Training Management > Training Jobs. The
training job list is displayed by default.

3. On the Create Training Job page, set required parameters and click Submit.
– Created By: Custom algorithms
– Boot Mode: Custom images
– Image path: image created in Step 5 Uploading an Image to SWR.
– Code Directory: directory where the boot script file is stored in OBS, for

example, obs://test-modelarts/pytorch/demo-code/. The training code
is automatically downloaded to the ${MA_JOB_DIR}/demo-code
directory of the training container. demo-code (customizable) is the last-
level directory of the OBS path.

– Boot Command: /home/ma-user/miniconda3/bin/python $
{MA_JOB_DIR}/demo-code/pytorch-verification.py. demo-code
(customizable) is the last-level directory of the OBS path.

– Resource Pool: Public resource pools
– Resource Type: Select CPU or GPU.
– Persistent Log Saving: enabled
– Job Log Path: Set this parameter to the OBS path for storing training

logs, for example, obs://test-modelarts/pytorch/log/.
4. Check the parameters of the training job and click Submit.
5. Wait until the training job is completed.

After a training job is created, the operations such as container image
downloading, code directory downloading, and boot command execution are
automatically performed in the backend. Generally, the training duration
ranges from dozens of minutes to several hours, depending on the training
procedure and selected resources. After the training job is executed, the log
similar to the following is output.

Figure 4-23 Run logs of training jobs with GPU specifications

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

https://support.huaweicloud.com/intl/en-us/prepare-modelarts/modelarts_08_0007.html

4.3 Example: Creating a Custom Image for Training
(MPI + CPU/GPU)

This section describes how to create an image and use the image for training on
the ModelArts platform. The AI engine used for training is MPI, and the resources
are CPUs or GPUs.

NO TE

This section applies only to training jobs of the new version.

Scenarios
In this example, create a custom image by writing a Dockerfile on a Linux x86_64
host running the Ubuntu 18.04 operating system.

Objective: Build and install container images of the following software and use the
images and CPUs/GPUs for training on ModelArts.

● ubuntu-18.04
● cuda-11.1
● python-3.7.13
● openmpi-3.0.0

Procedure
Before using a custom image to create a training job, get familiar with Docker and
have development experience. The following is the detailed procedure:

1. Prerequisites
2. Step 1 Creating an OBS Bucket and Folder
3. Step 2 Preparing Script Files and Uploading Them to OBS
4. Step 3 Preparing an Image Server
5. Step 4 Creating a Custom Image
6. Step 5 Uploading an Image to SWR
7. Step 6 Creating a Training Job on ModelArts

Prerequisites
You have registered a Huawei ID and enabled Huawei Cloud services, and the
account is not in arrears or frozen.

Step 1 Creating an OBS Bucket and Folder
Create a bucket and folders in OBS for storing the sample dataset and training
code. Table 4-2 lists the folders to be created. Replace the bucket name and folder
names in the example with actual names.

For details about how to create an OBS bucket and folder, see Creating a Bucket
and Creating a Folder.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0306.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0316.html

Ensure that the OBS directory you use and ModelArts are in the same region.

Table 4-2 Folder to create

Name Description

obs://test-modelarts/mpi/demo-
code/

Stores the MPI boot script and training
script file.

obs://test-modelarts/mpi/log/ Stores training log files.

Step 2 Preparing Script Files and Uploading Them to OBS
Prepare the MPI boot script run_mpi.sh and training script mpi-verification.py
and upload them to the obs://test-modelarts/mpi/demo-code/ folder of the OBS
bucket.

● The content of the MPI boot script run_mpi.sh is as follows:
#!/bin/bash
MY_HOME=/home/ma-user

MY_SSHD_PORT=${MY_SSHD_PORT:-"38888"}

MY_TASK_INDEX=${MA_TASK_INDEX:-${VC_TASK_INDEX:-${VK_TASK_INDEX}}}

MY_MPI_SLOTS=${MY_MPI_SLOTS:-"${MA_NUM_GPUS}"}

MY_MPI_TUNE_FILE="${MY_HOME}/env_for_user_process"

if [-z ${MY_MPI_SLOTS}]; then
 echo "[run_mpi] MY_MPI_SLOTS is empty, set it be 1"
 MY_MPI_SLOTS="1"
fi

printf "MY_HOME: ${MY_HOME}\nMY_SSHD_PORT: ${MY_SSHD_PORT}\nMY_MPI_BTL_TCP_IF: $
{MY_MPI_BTL_TCP_IF}\nMY_TASK_INDEX: ${MY_TASK_INDEX}\nMY_MPI_SLOTS: ${MY_MPI_SLOTS}\n"

env | grep -E '^MA_|SHARED_|^S3_|^PATH|^VC_WORKER_|^SCC|^CRED' | grep -v '=$' > $
{MY_MPI_TUNE_FILE}
add -x to each line
sed -i 's/^/-x /' ${MY_MPI_TUNE_FILE}

sed -i "s|{{MY_SSHD_PORT}}|${MY_SSHD_PORT}|g" ${MY_HOME}/etc/ssh/sshd_config

start sshd service
bash -c "$(which sshd) -f ${MY_HOME}/etc/ssh/sshd_config"

confirm the sshd is up
netstat -anp | grep LIS | grep ${MY_SSHD_PORT}

if [$MY_TASK_INDEX -eq 0]; then
 # generate the hostfile of mpi
 for ((i=0; i<$MA_NUM_HOSTS; i++))
 do
 eval hostname=${MA_VJ_NAME}-${MA_TASK_NAME}-${i}.${MA_VJ_NAME}
 echo "[run_mpi] hostname: ${hostname}"

 ip=""
 while [-z "$ip"]; do
 ip=$(ping -c 1 ${hostname} | grep "PING" | sed -E 's/PING .* .([0-9.]+). .*/\1/g')
 sleep 1
 done
 echo "[run_mpi] resolved ip: ${ip}"

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

 # test the sshd is up
 while :
 do
 if [cat < /dev/null >/dev/tcp/${ip}/${MY_SSHD_PORT}]; then
 break
 fi
 sleep 1
 done

 echo "[run_mpi] the sshd of ip ${ip} is up"

 echo "${ip} slots=$MY_MPI_SLOTS" >> ${MY_HOME}/hostfile
 done

 printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n"
fi

RET_CODE=0

if [$MY_TASK_INDEX -eq 0]; then

 echo "[run_mpi] start exec command time: "$(date +"%Y-%m-%d-%H:%M:%S")

 np=$((${MA_NUM_HOSTS} * ${MY_MPI_SLOTS}))

 echo "[run_mpi] command: mpirun -np ${np} -hostfile ${MY_HOME}/hostfile -mca plm_rsh_args \"-
p ${MY_SSHD_PORT}\" -tune ${MY_MPI_TUNE_FILE} ... $@"

 # execute mpirun at worker-0
 # mpirun
 mpirun \
 -np ${np} \
 -hostfile ${MY_HOME}/hostfile \
 -mca plm_rsh_args "-p ${MY_SSHD_PORT}" \
 -tune ${MY_MPI_TUNE_FILE} \
 -bind-to none -map-by slot \
 -x NCCL_DEBUG -x NCCL_SOCKET_IFNAME -x NCCL_IB_HCA -x NCCL_IB_TIMEOUT -x
NCCL_IB_GID_INDEX -x NCCL_IB_TC \
 -x HOROVOD_MPI_THREADS_DISABLE=1 \
 -x PATH -x LD_LIBRARY_PATH \
 -mca pml ob1 -mca btl ^openib -mca plm_rsh_no_tree_spawn true \
 "$@"

 RET_CODE=$?

 if [$RET_CODE -ne 0]; then
 echo "[run_mpi] exec command failed, exited with $RET_CODE"
 else
 echo "[run_mpi] exec command successfully, exited with $RET_CODE"
 fi

 # stop 1...N worker by killing the sleep proc
 sed -i '1d' ${MY_HOME}/hostfile
 if [`cat ${MY_HOME}/hostfile | wc -l` -ne 0]; then
 echo "[run_mpi] stop 1 to (N - 1) worker by killing the sleep proc"

 sed -i 's/${MY_MPI_SLOTS}/1/g' ${MY_HOME}/hostfile
 printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n"

 mpirun \
 --hostfile ${MY_HOME}/hostfile \
 --mca plm_rsh_args "-p ${MY_SSHD_PORT}" \
 -x PATH -x LD_LIBRARY_PATH \
 pkill sleep \
 > /dev/null 2>&1
 fi

 echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S")

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

else
 echo "[run_mpi] the training log is in worker-0"
 sleep 365d
 echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S")
fi

exit $RET_CODE

NO TE

The script run_mpi.sh uses LF line endings. If CRLF line endings are used, executing
the training job will fail, and the error "$'\r': command not found" will be displayed in
logs.

● The content of the training script mpi-verification.py is as follows:
import os
import socket

if __name__ == '__main__':
 print(socket.gethostname())

 # https://www.open-mpi.org/faq/?category=running#mpi-environmental-variables
 print('OMPI_COMM_WORLD_SIZE: ' + os.environ['OMPI_COMM_WORLD_SIZE'])
 print('OMPI_COMM_WORLD_RANK: ' + os.environ['OMPI_COMM_WORLD_RANK'])
 print('OMPI_COMM_WORLD_LOCAL_RANK: ' + os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])

Step 3 Preparing an Image Server

Obtain a Linux x86_64 server running Ubuntu 18.04. Either an ECS or your local PC
will do.

For details about how to purchase an ECS, see Purchasing and Logging In to a
Linux ECS. Select a public image. An Ubuntu 18.04 image is recommended.

Figure 4-24 Creating an ECS using a public image (x86)

Step 4 Creating a Custom Image

Objective: Build and install container images of the following software and use the
ModelArts training service to run the images.

● ubuntu-18.04
● cuda-11.1
● python-3.7.13

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html

● openmpi-3.0.0

The following describes how to create a custom image by writing a Dockerfile.

1. Install Docker.
The following uses the Linux x86_64 OS as an example to describe how to
obtain a Docker installation package. For more details, see Docker official
documents. Run the following commands to install Docker:
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh

If the docker images command is executed, Docker has been installed. In this
case, skip this step.

2. Check the Docker engine version. Run the following command:
docker version | grep -A 1 Engine

The following information is displayed:
 Engine:
 Version: 18.09.0

NO TE

You are advised to use Docker Engine of this version or later to create a custom
image.

3. Create a folder named context.
mkdir -p context

4. Download the Miniconda3 installation file.
Download the Miniconda3 py37 4.12.0 installation file (Python 3.7.13) from
https://repo.anaconda.com/miniconda/Miniconda3-py37_4.12.0-Linux-
x86_64.sh.

5. Download the openmpi 3.0.0 installation file.
Download the openmpi 3.0.0 file edited using Horovod v0.22.1 from https://
github.com/horovod/horovod/files/1596799/openmpi-3.0.0-bin.tar.gz.

6. Store the Miniconda3 and openmpi 3.0.0 files in the context folder. The
following shows the context folder:
context
├── Miniconda3-py37_4.12.0-Linux-x86_64.sh
└── openmpi-3.0.0-bin.tar.gz

7. Write the Dockerfile of the container image.
Create an empty file named Dockerfile in the context folder and write the
following content to the file:
The host must be connected to the public network for creating a container image.

Basic container image at https://github.com/NVIDIA/nvidia-docker/wiki/CUDA
#
https://docs.docker.com/develop/develop-images/multistage-build/#use-multi-stage-builds
require Docker Engine >= 17.05
#
builder stage
FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04 AS builder

The default user of the basic container image is root.
USER root

Copy the Miniconda3 (Python 3.7.13) installation files to the /tmp directory of the basic container
image.
COPY Miniconda3-py37_4.12.0-Linux-x86_64.sh /tmp

Install Miniconda3 to the /home/ma-user/miniconda3 directory of the basic container image.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

https://docs.docker.com/engine/install/binaries/#install-static-binaries
https://docs.docker.com/engine/install/binaries/#install-static-binaries

https://conda.io/projects/conda/en/latest/user-guide/install/linux.html#installing-on-linux
RUN bash /tmp/Miniconda3-py37_4.12.0-Linux-x86_64.sh -b -p /home/ma-user/miniconda3

Create the final container image.
FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04

Install vim, cURL, net-tools, and the SSH tool in Huawei Mirrors.
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \
 apt-get update && \
 apt-get install -y vim curl net-tools iputils-ping \
 openssh-client openssh-server && \
 ssh -V && \
 mkdir -p /run/sshd && \
 apt-get clean && \
 mv /etc/apt/sources.list.bak /etc/apt/sources.list && \
 rm /etc/apt/apt.conf.d/00skip-verify-peer.conf

Install the Open MPI 3.0.0 file written using Horovod v0.22.1.
https://github.com/horovod/horovod/blob/v0.22.1/docker/horovod/Dockerfile
https://github.com/horovod/horovod/files/1596799/openmpi-3.0.0-bin.tar.gz
COPY openmpi-3.0.0-bin.tar.gz /tmp
RUN cd /usr/local && \
 tar -zxf /tmp/openmpi-3.0.0-bin.tar.gz && \
 ldconfig && \
 mpirun --version

Add user ma-user (UID = 1000, GID = 100).
A user group whose GID is 100 of the basic container image exists. User ma-user can directly use it.
RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user

Copy the /home/ma-user/miniconda3 directory from the builder stage to the directory with the
same name in the current container image.
COPY --chown=ma-user:100 --from=builder /home/ma-user/miniconda3 /home/ma-user/miniconda3

Configure the preset environment variables of the container image.
Set PYTHONUNBUFFERED to 1 to avoid log loss.
ENV PATH=$PATH:/home/ma-user/miniconda3/bin \
 PYTHONUNBUFFERED=1

Set the default user and working directory of the container image.
USER ma-user
WORKDIR /home/ma-user

Configure sshd to support SSH password-free login.
RUN MA_HOME=/home/ma-user && \
 # setup sshd dir
 mkdir -p ${MA_HOME}/etc && \
 ssh-keygen -f ${MA_HOME}/etc/ssh_host_rsa_key -N '' -t rsa && \
 mkdir -p ${MA_HOME}/etc/ssh ${MA_HOME}/var/run && \
 # setup sshd config (listen at {{MY_SSHD_PORT}} port)
 echo "Port {{MY_SSHD_PORT}}\n\
HostKey ${MA_HOME}/etc/ssh_host_rsa_key\n\
AuthorizedKeysFile ${MA_HOME}/.ssh/authorized_keys\n\
PidFile ${MA_HOME}/var/run/sshd.pid\n\
StrictModes no\n\
UsePAM no" > ${MA_HOME}/etc/ssh/sshd_config && \
 # generate ssh key
 ssh-keygen -t rsa -f ${MA_HOME}/.ssh/id_rsa -P '' && \
 cat ${MA_HOME}/.ssh/id_rsa.pub >> ${MA_HOME}/.ssh/authorized_keys && \
 # disable ssh host key checking for all hosts
 echo "Host *\n\
 StrictHostKeyChecking no" > ${MA_HOME}/.ssh/config

For details about how to write a Dockerfile, see Docker official documents.

8. Verify that the Dockerfile has been created. The following shows the context
folder:

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

context
├── Dockerfile
├── Miniconda3-py37_4.12.0-Linux-x86_64.sh
└── openmpi-3.0.0-bin.tar.gz

9. Create the container image. Run the following command in the directory
where the Dockerfile is stored to build the container image mpi:3.0.0-
cuda11.1:
docker build . -t mpi:3.0.0-cuda11.1

The following log information displayed during image creation indicates that
the image has been created.
naming to docker.io/library/mpi:3.0.0-cuda11.1

Step 5 Uploading an Image to SWR
1. Log in to the SWR console and select the target region.

Figure 4-25 SWR console

2. Click Create Organization in the upper right corner and enter an
organization name to create an organization. Customize the organization
name. Replace the organization name deep-learning in subsequent
commands with the actual organization name.

Figure 4-26 Creating an organization

3. Click Generate Login Command in the upper right corner to obtain a login
command.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

Figure 4-27 Login Command

4. Log in to the local environment as the root user and enter the login
command.

5. Upload the image to SWR.

a. Run the following command to tag the uploaded image:
#Replace the region and domain information with the actual values, and replace the
organization name deep-learning with your custom value.
sudo docker tag mpi:3.0.0-cuda11.1 swr.cn-north-4.myhuaweicloud.com/deep-learning/mpi:3.0.0-
cuda11.1

b. Run the following command to upload the image:
#Replace the region and domain information with the actual values, and replace the
organization name deep-learning with your custom value.
sudo docker push swr.cn-north-4.myhuaweicloud.com/deep-learning/mpi:3.0.0-cuda11.1

6. After the image is uploaded, choose My Images on the left navigation pane
of the SWR console to view the uploaded custom images.
swr.cn-north-4.myhuaweicloud.com/deep-learning/mpi:3.0.0-cuda11.1 is
the SWR URL of the custom image.

Step 6 Creating a Training Job on ModelArts
1. Log in to the ModelArts management console, check whether access

authorization has been configured for your account. For details, see
Configuring Agency Authorization. If you have been authorized using access
keys, clear the authorization and configure agency authorization.

2. Log in to the ModelArts management console. In the left navigation pane,
choose Training Management > Training Jobs (New).

3. On the Create Training Job page, configure parameters and click Submit.
– Created By: Custom algorithms
– Boot Mode: Custom images
– Image path: swr.cn-north-4.myhuaweicloud.com/deep-learning/

mpi:3.0.0-cuda11.1
– Code Directory: OBS path to the boot script, for example, obs://test-

modelarts/mpi/demo-code/.
– Boot Command: bash ${MA_JOB_DIR}/demo-code/run_mpi.sh python

${MA_JOB_DIR}/demo-code/mpi-verification.py
– Environment Variable: Add MY_SSHD_PORT = 38888.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 113

https://support.huaweicloud.com/intl/en-us/prepare-modelarts/modelarts_08_0007.html

Figure 4-28 Adding an environment variable

– Resource Pool: Public resource pools
– Resource Type: Select GPU.
– Compute Nodes: Enter 1 or 2.
– Persistent Log Saving: enabled
– Job Log Path: Set this parameter to the OBS path for storing training

logs, for example, obs://test-modelarts/mpi/log/.
4. Check the parameters of the training job and click Submit.
5. Wait until the training job is completed.

After a training job is created, the operations such as container image
downloading, code directory downloading, and boot command execution are
automatically performed in the backend. Generally, the training duration
ranges from dozens of minutes to several hours, depending on the training
procedure and selected resources. After the training job is executed, the log
similar to the following is output.

Figure 4-29 Run logs of worker-0 with one compute node and GPU
specifications

Set Compute Nodes to 2 and run the training job. Figure 4-30 and Figure
4-31 show the log information.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 114

Figure 4-30 Run logs of worker-0 with two compute nodes and GPU
specifications

Figure 4-31 Run logs of worker-1 with two compute nodes and GPU
specifications

4.4 Example: Creating a Custom Image for Training
(Horovod-PyTorch and GPUs)

This section describes how to create an image and use it for training on
ModelArts. The AI engine used in the image is horovod_0.22.1-pytorch_1.8.1, and
the resources used for training are GPUs.

NO TE

This section applies only to training jobs of the new version.

Scenario

In this example, write a Dockerfile to create a custom image on a Linux x86_64
server running Ubuntu 18.04.

Create a container image with the following configurations and use the image to
create a CPU- or GPU-powered training job on ModelArts:

● ubuntu-18.04
● cuda-11.1
● python-3.7.13
● mlnx ofed-5.4
● pytorch-1.8.1

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 115

● horovod-0.22.1

Procedure
Before using a custom image to create a training job, you need to be familiar with
Docker and have development experience.

1. Prerequisites
2. Step 1 Creating an OBS Bucket and Folder
3. Step 2 Preparing the Training Script and Uploading It to OBS
4. Step 3 Preparing a Server
5. Step 4 Creating a Custom Image
6. Step 5 Uploading the Image to SWR
7. Step 6 Creating a Training Job on ModelArts

Prerequisites
You have registered a Huawei Cloud account. The account is not in arrears or
frozen.

Step 1 Creating an OBS Bucket and Folder
Create a bucket and folders in OBS for storing the sample dataset and training
code. Table 4-3 lists the folders to be created. Replace the bucket name and folder
names in the example with actual names.

For details about how to create an OBS bucket and folder, see Creating a Bucket
and Creating a Folder.

Ensure that the OBS directory you use and ModelArts are in the same region.

Table 4-3 Folder to create

Name Description

obs://test-modelarts/pytorch/
demo-code/

Stores the training script.

obs://test-modelarts/pytorch/log/ Stores training log files.

Step 2 Preparing the Training Script and Uploading It to OBS
Obtain training scripts pytorch_synthetic_benchmark.py and run_mpi.sh and
upload them to obs://test-modelarts/horovod/demo-code/ in the OBS bucket.

pytorch_synthetic_benchmark.py is as follows:

import argparse
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data.distributed
from torchvision import models

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 116

https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0306.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0316.html

import horovod.torch as hvd
import timeit
import numpy as np

Benchmark settings
parser = argparse.ArgumentParser(description='PyTorch Synthetic Benchmark',
 formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--fp16-allreduce', action='store_true', default=False,
 help='use fp16 compression during allreduce')

parser.add_argument('--model', type=str, default='resnet50',
 help='model to benchmark')
parser.add_argument('--batch-size', type=int, default=32,
 help='input batch size')

parser.add_argument('--num-warmup-batches', type=int, default=10,
 help='number of warm-up batches that don\'t count towards benchmark')
parser.add_argument('--num-batches-per-iter', type=int, default=10,
 help='number of batches per benchmark iteration')
parser.add_argument('--num-iters', type=int, default=10,
 help='number of benchmark iterations')

parser.add_argument('--no-cuda', action='store_true', default=False,
 help='disables CUDA training')

parser.add_argument('--use-adasum', action='store_true', default=False,
 help='use adasum algorithm to do reduction')

args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()

hvd.init()

if args.cuda:
 # Horovod: pin GPU to local rank.
 torch.cuda.set_device(hvd.local_rank())

cudnn.benchmark = True

Set up standard model.
model = getattr(models, args.model)()

By default, Adasum doesn't need scaling up learning rate.
lr_scaler = hvd.size() if not args.use_adasum else 1

if args.cuda:
 # Move model to GPU.
 model.cuda()
 # If using GPU Adasum allreduce, scale learning rate by local_size.
 if args.use_adasum and hvd.nccl_built():
 lr_scaler = hvd.local_size()

optimizer = optim.SGD(model.parameters(), lr=0.01 * lr_scaler)

Horovod: (optional) compression algorithm.
compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none

Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(optimizer,
 named_parameters=model.named_parameters(),
 compression=compression,
 op=hvd.Adasum if args.use_adasum else hvd.Average)

Horovod: broadcast parameters & optimizer state.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(optimizer, root_rank=0)

Set up fixed fake data
data = torch.randn(args.batch_size, 3, 224, 224)

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 117

target = torch.LongTensor(args.batch_size).random_() % 1000
if args.cuda:
 data, target = data.cuda(), target.cuda()

def benchmark_step():
 optimizer.zero_grad()
 output = model(data)
 loss = F.cross_entropy(output, target)
 loss.backward()
 optimizer.step()

def log(s, nl=True):
 if hvd.rank() != 0:
 return
 print(s, end='\n' if nl else '')

log('Model: %s' % args.model)
log('Batch size: %d' % args.batch_size)
device = 'GPU' if args.cuda else 'CPU'
log('Number of %ss: %d' % (device, hvd.size()))

Warm-up
log('Running warmup...')
timeit.timeit(benchmark_step, number=args.num_warmup_batches)

Benchmark
log('Running benchmark...')
img_secs = []
for x in range(args.num_iters):
 time = timeit.timeit(benchmark_step, number=args.num_batches_per_iter)
 img_sec = args.batch_size * args.num_batches_per_iter / time
 log('Iter #%d: %.1f img/sec per %s' % (x, img_sec, device))
 img_secs.append(img_sec)

Results
img_sec_mean = np.mean(img_secs)
img_sec_conf = 1.96 * np.std(img_secs)
log('Img/sec per %s: %.1f +-%.1f' % (device, img_sec_mean, img_sec_conf))
log('Total img/sec on %d %s(s): %.1f +-%.1f' %
 (hvd.size(), device, hvd.size() * img_sec_mean, hvd.size() * img_sec_conf))

run_mpi.sh is as follows:

#!/bin/bash
MY_HOME=/home/ma-user

MY_SSHD_PORT=${MY_SSHD_PORT:-"36666"}

MY_MPI_BTL_TCP_IF=${MY_MPI_BTL_TCP_IF:-"eth0,bond0"}

MY_TASK_INDEX=${MA_TASK_INDEX:-${VC_TASK_INDEX:-${VK_TASK_INDEX}}}

MY_MPI_SLOTS=${MY_MPI_SLOTS:-"${MA_NUM_GPUS}"}

MY_MPI_TUNE_FILE="${MY_HOME}/env_for_user_process"

if [-z ${MY_MPI_SLOTS}]; then
 echo "[run_mpi] MY_MPI_SLOTS is empty, set it be 1"
 MY_MPI_SLOTS="1"
fi

printf "MY_HOME: ${MY_HOME}\nMY_SSHD_PORT: ${MY_SSHD_PORT}\nMY_MPI_BTL_TCP_IF: $
{MY_MPI_BTL_TCP_IF}\nMY_TASK_INDEX: ${MY_TASK_INDEX}\nMY_MPI_SLOTS: ${MY_MPI_SLOTS}\n"

env | grep -E '^MA_|SHARED_|^S3_|^PATH|^VC_WORKER_|^SCC|^CRED' | grep -v '=$' > $
{MY_MPI_TUNE_FILE}
add -x to each line

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 118

sed -i 's/^/-x /' ${MY_MPI_TUNE_FILE}

sed -i "s|{{MY_SSHD_PORT}}|${MY_SSHD_PORT}|g" ${MY_HOME}/etc/ssh/sshd_config

start sshd service
bash -c "$(which sshd) -f ${MY_HOME}/etc/ssh/sshd_config"

confirm the sshd is up
netstat -anp | grep LIS | grep ${MY_SSHD_PORT}

if [$MY_TASK_INDEX -eq 0]; then
 # generate the hostfile of mpi
 for ((i=0; i<$MA_NUM_HOSTS; i++))
 do
 eval hostname=${MA_VJ_NAME}-${MA_TASK_NAME}-${i}.${MA_VJ_NAME}
 echo "[run_mpi] hostname: ${hostname}"

 ip=""
 while [-z "$ip"]; do
 ip=$(ping -c 1 ${hostname} | grep "PING" | sed -E 's/PING .* .([0-9.]+). .*/\1/g')
 sleep 1
 done
 echo "[run_mpi] resolved ip: ${ip}"

 # test the sshd is up
 while :
 do
 if [cat < /dev/null >/dev/tcp/${ip}/${MY_SSHD_PORT}]; then
 break
 fi
 sleep 1
 done

 echo "[run_mpi] the sshd of ip ${ip} is up"

 echo "${ip} slots=$MY_MPI_SLOTS" >> ${MY_HOME}/hostfile
 done

 printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n"
fi

RET_CODE=0

if [$MY_TASK_INDEX -eq 0]; then

 echo "[run_mpi] start exec command time: "$(date +"%Y-%m-%d-%H:%M:%S")

 np=$((${MA_NUM_HOSTS} * ${MY_MPI_SLOTS}))

 echo "[run_mpi] command: mpirun -np ${np} -hostfile ${MY_HOME}/hostfile -mca plm_rsh_args \"-p $
{MY_SSHD_PORT}\" -tune ${MY_MPI_TUNE_FILE} ... $@"

 # execute mpirun at worker-0
 # mpirun
 mpirun \
 -np ${np} \
 -hostfile ${MY_HOME}/hostfile \
 -mca plm_rsh_args "-p ${MY_SSHD_PORT}" \
 -tune ${MY_MPI_TUNE_FILE} \
 -bind-to none -map-by slot \
 -x NCCL_DEBUG=INFO -x NCCL_SOCKET_IFNAME=${MY_MPI_BTL_TCP_IF} -x
NCCL_SOCKET_FAMILY=AF_INET \
 -x HOROVOD_MPI_THREADS_DISABLE=1 \
 -x LD_LIBRARY_PATH \
 -mca pml ob1 -mca btl ^openib -mca plm_rsh_no_tree_spawn true \
 "$@"

 RET_CODE=$?

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 119

 if [$RET_CODE -ne 0]; then
 echo "[run_mpi] exec command failed, exited with $RET_CODE"
 else
 echo "[run_mpi] exec command successfully, exited with $RET_CODE"
 fi

 # stop 1...N worker by killing the sleep proc
 sed -i '1d' ${MY_HOME}/hostfile
 if [`cat ${MY_HOME}/hostfile | wc -l` -ne 0]; then
 echo "[run_mpi] stop 1 to (N - 1) worker by killing the sleep proc"

 sed -i 's/${MY_MPI_SLOTS}/1/g' ${MY_HOME}/hostfile
 printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n"

 mpirun \
 --hostfile ${MY_HOME}/hostfile \
 --mca btl_tcp_if_include ${MY_MPI_BTL_TCP_IF} \
 --mca plm_rsh_args "-p ${MY_SSHD_PORT}" \
 -x PATH -x LD_LIBRARY_PATH \
 pkill sleep \
 > /dev/null 2>&1
 fi

 echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S")
else
 echo "[run_mpi] the training log is in worker-0"
 sleep 365d
 echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S")
fi

exit $RET_CODE

Step 3 Preparing a Server

Obtain a Linux x86_64 server running Ubuntu 18.04. Either an ECS or your local PC
will do.

For details about how to purchase an ECS, see Purchasing and Logging In to a
Linux ECS. Select a public image. An Ubuntu 18.04 image is recommended.

Figure 4-32 Creating an ECS using a public image (x86)

Step 4 Creating a Custom Image

Create a container image with the following configurations and use the image to
create a training job on ModelArts:

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 120

https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html

● ubuntu-18.04
● cuda-11.1
● python-3.7.13
● mlnx ofed-5.4
● pytorch-1.8.1
● horovod-0.22.1

This section describes how to write a Dockerfile to create a custom image.

1. Install Docker.
The following uses Linux x86_64 as an example to describe how to obtain a
Docker installation package. For more details about how to install Docker, see
official Docker documents. Run the following command to install Docker:
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh

If the docker images command can be executed, Docker has been installed.
In this case, skip this step.

2. Check the Docker Engine version. Run the following command:
docker version | grep -A 1 Engine

The following information is displayed:
 Engine:
 Version: 18.09.0

NO TE

Use the Docker engine of the preceding version or later to create a custom image.

3. Create a folder named context.
mkdir -p context

4. Obtain the pip.conf file. In this example, the pip source provided by Huawei
Mirrors is used, which is as follows:
[global]
index-url = https://repo.huaweicloud.com/repository/pypi/simple
trusted-host = repo.huaweicloud.com
timeout = 120

NO TE

To obtain pip.conf, switch to Huawei Mirrors https://mirrors.huaweicloud.com/home
and search for pypi.

5. Download the source Horovod code file.
Download horovod-0.22.1.tar.gz from https://pypi.org/project/horovod/
0.22.1/#files.

6. Download .whl files.
Download the following .whl files from https://download.pytorch.org/whl/
torch_stable.html.
– torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl
– torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl
– torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl

NO TE

The URL code of the plus sign (+) is %2B. When searching for files in the preceding
websites, replace the plus sign (+) in the file name with %2B, for example,
torch-1.8.1%2Bcu111-cp37-cp37m-linux_x86_64.whl.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 121

https://docs.docker.com/engine/install/binaries/#install-static-binaries

7. Download the Miniconda3 installation file.

Download the Miniconda3 py37 4.12.0 installation file (Python 3.7.13) from
https://repo.anaconda.com/miniconda/Miniconda3-py37_4.12.0-Linux-
x86_64.sh.

8. Write the container image Dockerfile.

Create an empty file named Dockerfile in the context folder and copy the
following content to the file:
The server on which the container image is created must access the Internet.

Base container image at https://github.com/NVIDIA/nvidia-docker/wiki/CUDA
#
https://docs.docker.com/develop/develop-images/multistage-build/#use-multi-stage-builds
require Docker Engine >= 17.05
#
builder stage
FROM nvidia/cuda:11.1.1-devel-ubuntu18.04 AS builder

Install CMake obtained from Huawei Mirrors.
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \
 apt-get update && \
 apt-get install -y build-essential cmake g++-7 && \
 apt-get clean && \
 mv /etc/apt/sources.list.bak /etc/apt/sources.list && \
 rm /etc/apt/apt.conf.d/00skip-verify-peer.conf

The default user of the base container image is root.
USER root

Use the PyPI configuration obtained from Huawei Mirrors.
RUN mkdir -p /root/.pip/
COPY pip.conf /root/.pip/pip.conf

Copy the installation files to the /tmp directory in the base container image.
COPY Miniconda3-py37_4.12.0-Linux-x86_64.sh /tmp
COPY torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl /tmp
COPY torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl /tmp
COPY torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl /tmp
COPY openmpi-3.0.0-bin.tar.gz /tmp
COPY horovod-0.22.1.tar.gz /tmp

https://conda.io/projects/conda/en/latest/user-guide/install/linux.html#installing-on-linux
Install Miniconda3 in the /home/ma-user/miniconda3 directory of the base container image.
RUN bash /tmp/Miniconda3-py37_4.12.0-Linux-x86_64.sh -b -p /home/ma-user/miniconda3

Install the Open MPI 3.0.0 file obtained from Horovod v0.22.1.
https://github.com/horovod/horovod/blob/v0.22.1/docker/horovod/Dockerfile
https://github.com/horovod/horovod/files/1596799/openmpi-3.0.0-bin.tar.gz
RUN cd /usr/local && \
 tar -zxf /tmp/openmpi-3.0.0-bin.tar.gz && \
 ldconfig && \
 mpirun --version

Environment variables required for building Horovod with PyTorch
ENV HOROVOD_NCCL_INCLUDE=/usr/include \
 HOROVOD_NCCL_LIB=/usr/lib/x86_64-linux-gnu \
 HOROVOD_MPICXX_SHOW="/usr/local/openmpi/bin/mpicxx -show" \
 HOROVOD_GPU_OPERATIONS=NCCL \
 HOROVOD_WITH_PYTORCH=1

Install the .whl files using default Miniconda3 Python environment /home/ma-user/
miniconda3/bin/pip.
RUN cd /tmp && \
 /home/ma-user/miniconda3/bin/pip install --no-cache-dir \

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 122

 /tmp/torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl \
 /tmp/torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl \
 /tmp/torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl

Build and install horovod-0.22.1.tar.gz using default Miniconda3 Python environment /home/ma-
user/miniconda3/bin/pip.
RUN cd /tmp && \
 /home/ma-user/miniconda3/bin/pip install --no-cache-dir \
 /tmp/horovod-0.22.1.tar.gz

Create the container image.
FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04

COPY MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz /tmp

Install the vim, cURL, net-tools, MLNX_OFED, and SSH tools obtained from Huawei Mirrors.
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \
 apt-get update && \
 apt-get install -y vim curl net-tools iputils-ping libfile-find-rule-perl-perl \
 openssh-client openssh-server && \
 ssh -V && \
 mkdir -p /run/sshd && \
 # mlnx ofed
 apt-get install -y python libfuse2 dpatch libnl-3-dev autoconf libnl-route-3-dev pciutils libnuma1
libpci3 m4 libelf1 debhelper automake graphviz bison lsof kmod libusb-1.0-0 swig libmnl0 autotools-
dev flex chrpath libltdl-dev && \
 cd /tmp && \
 tar -xvf MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz && \
 MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64/mlnxofedinstall --user-space-only --basic --
without-fw-update -q && \
 cd - && \
 rm -rf /tmp/* && \
 apt-get clean && \
 mv /etc/apt/sources.list.bak /etc/apt/sources.list && \
 rm /etc/apt/apt.conf.d/00skip-verify-peer.conf

Install the Open MPI 3.0.0 file obtained from Horovod v0.22.1.
https://github.com/horovod/horovod/blob/v0.22.1/docker/horovod/Dockerfile
https://github.com/horovod/horovod/files/1596799/openmpi-3.0.0-bin.tar.gz
COPY openmpi-3.0.0-bin.tar.gz /tmp
RUN cd /usr/local && \
 tar -zxf /tmp/openmpi-3.0.0-bin.tar.gz && \
 ldconfig && \
 mpirun --version

Add user ma-user (UID = 1000, GID = 100).
A user group whose GID is 100 exists in the basic container image. User ma-user can directly run
the following command:
RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user

Copy the /home/ma-user/miniconda3 directory from the builder stage to the directory with the
same name in the current container image.
COPY --chown=ma-user:100 --from=builder /home/ma-user/miniconda3 /home/ma-user/miniconda3

Configure the default user and working directory of the container image.
USER ma-user
WORKDIR /home/ma-user

Configure sshd to support SSH password-free login.
RUN MA_HOME=/home/ma-user && \
 # setup sshd dir
 mkdir -p ${MA_HOME}/etc && \
 ssh-keygen -f ${MA_HOME}/etc/ssh_host_rsa_key -N '' -t rsa && \
 mkdir -p ${MA_HOME}/etc/ssh ${MA_HOME}/var/run && \
 # setup sshd config (listen at {{MY_SSHD_PORT}} port)
 echo "Port {{MY_SSHD_PORT}}\n\

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 123

HostKey ${MA_HOME}/etc/ssh_host_rsa_key\n\
AuthorizedKeysFile ${MA_HOME}/.ssh/authorized_keys\n\
PidFile ${MA_HOME}/var/run/sshd.pid\n\
StrictModes no\n\
UsePAM no" > ${MA_HOME}/etc/ssh/sshd_config && \
 # generate ssh key
 ssh-keygen -t rsa -f ${MA_HOME}/.ssh/id_rsa -P '' && \
 cat ${MA_HOME}/.ssh/id_rsa.pub >> ${MA_HOME}/.ssh/authorized_keys && \
 # disable ssh host key checking for all hosts
 echo "Host *\n\
 StrictHostKeyChecking no" > ${MA_HOME}/.ssh/config

Configure the preset environment variables of the container image.
Set PYTHONUNBUFFERED to 1 to prevent log loss.
ENV PATH=/home/ma-user/miniconda3/bin:$PATH \
 PYTHONUNBUFFERED=1

For details about how to write a Dockerfile, see official Docker documents.
9. Download the MLNX_OFED installation package.

Go to https://network.nvidia.com/products/infiniband-drivers/linux/
mlnx_ofed/, in the Download tab, select a proper installation package from
Current Versions or Archive Versions. In this example, choose Archive
Versions, set Version to 5.4-3.5.8.0-LTS, OS Distribution to Ubuntu, OS
Distribution Version to Ubuntu 18.04, Architecture to x86_64, and
download the MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz
installation package.

10. Download openmpi-3.0.0-bin.tar.gz.
Download openmpi-3.0.0-bin.tar.gz from https://github.com/horovod/
horovod/files/1596799/openmpi-3.0.0-bin.tar.gz.

11. Store the pip source file, .whl files, and Miniconda3 installation file in the
context folder, which is as follows:
context
├── Dockerfile
├── MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz
├── Miniconda3-py37_4.12.0-Linux-x86_64.sh
├── horovod-0.22.1.tar.gz
├── openmpi-3.0.0-bin.tar.gz
├── pip.conf
├── torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl
├── torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl
└── torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl

12. Create the container image. Run the following command in the directory
where the Dockerfile is stored to build the container image horovod-
pytorch:0.22.1-1.8.1-ofed-cuda11.1:
docker build . -t horovod-pytorch:0.22.1-1.8.1-ofed-cuda11.1

The following log shows that the image has been created.
Successfully tagged horovod-pytorch:0.22.1-1.8.1-ofed-cuda11.1

Step 5 Uploading the Image to SWR
1. Log in to the SWR console and select the target region.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 124

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

Figure 4-33 SWR console

2. Click Create Organization in the upper right corner and enter an
organization name to create an organization. Customize the organization
name. Replace the organization name deep-learning in subsequent
commands with the actual organization name.

Figure 4-34 Creating an organization

3. Click Generate Login Command in the upper right corner to obtain a login
command.

Figure 4-35 Login Command

4. Log in to the local environment as the root user and enter the login
command.

5. Upload the image to SWR.

a. Tag the uploaded image.
Replace the region, domain, as well as organization name deep-learning with the actual
values.
sudo docker tag horovod-pytorch:0.22.1-1.8.1-ofed-cuda11.1 swr.{region-id}.{domain}/deep-
learning/horovod-pytorch:0.22.1-1.8.1-ofed-cuda11.1

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 125

b. Run the following command to upload the image:
Replace the region, domain, as well as organization name deep-learning with the actual
values.
sudo docker push swr.{region-id}.{domain}/deep-learning/horovod-pytorch:0.22.1-1.8.1-ofed-
cuda11.1

6. After the image is uploaded, choose My Images in navigation pane on the
left of the SWR console to view the uploaded custom images.

Step 6 Creating a Training Job on ModelArts
1. Log in to the ModelArts management console, check whether access

authorization has been configured for your account. For details, see
Configuring Agency Authorization. If you have been authorized using access
keys, clear the authorization and configure agency authorization.

2. In the navigation pane, choose Training Management > Training Jobs. The
training job list is displayed by default.

3. Click Create Training Job. On the page that is displayed, configure
parameters and click Next.

– Created By: Custom algorithms

– Boot Mode: Custom images

– Image path: image created in Step 5 Uploading the Image to SWR.

– Code Directory: directory where the boot script file is stored in OBS, for
example, obs://test-modelarts/pytorch/demo-code/. The training code
is automatically downloaded to the ${MA_JOB_DIR}/demo-code
directory of the training container. demo-code (customizable) is the last-
level directory of the OBS path.

– Boot Command: bash ${MA_JOB_DIR}/demo-code/run_mpi.sh python
${MA_JOB_DIR}/demo-code/pytorch_synthetic_benchmark.py. demo-
code (customizable) is the last-level directory of the OBS path.

– Environment Variable: Click Add Environment Variable and add the
environment variable MY_SSHD_PORT=38888.

– Resource Pool: Select Public resource pools.

– Resource Type: Select GPU.

– Compute Nodes: 1 or 2

– Persistent Log Saving: enabled

– Job Log Path: OBS path to stored training logs, for example, obs://test-
modelarts/pytorch/log/

4. Confirm the configurations of the training job and click Submit.

5. Wait until the training job is created.

After you submit the job creation request, the system will automatically
perform operations on the backend, such as downloading the container image
and code directory and running the boot command. A training job requires a
certain period of time for running. The duration ranges from dozens of
minutes to several hours, varying depending on the service logic and selected
resources. After the training job is executed, the log similar to the following is
output.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 126

https://support.huaweicloud.com/intl/en-us/prepare-modelarts/modelarts_08_0007.html

Figure 4-36 Run logs of training jobs with GPU specifications (one compute
node)

Figure 4-37 Run logs of training jobs with GPU specifications (two compute
nodes)

4.5 Example: Creating a Custom Image for Training
(MindSpore and GPUs)

This section describes how to create an image and use it for training on
ModelArts. The AI engine used in the image is MindSpore, and the resources used
for training are GPUs.

NO TE

This section applies only to training jobs of the new version.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 127

Scenario

In this example, write a Dockerfile to create a custom image on a Linux x86_64
server running Ubuntu 18.04.

Create a container image with the following configurations and use the image to
create a GPU-powered training job on ModelArts:

● ubuntu-18.04
● cuda-11.1
● python-3.7.13
● mlnx ofed-5.4
● mindspore gpu-1.8.1

Procedure

Before using a custom image to create a training job, you need to be familiar with
Docker and have development experience.

● Prerequisites
● Step 1 Creating an OBS Bucket and Folder
● Step 2 Creating a Dataset and Uploading It to OBS
● Step 3 Preparing the Training Script and Uploading It to OBS
● Step 4 Preparing a Server
● Step 5 Creating a Custom Image
● Step 6 Uploading the Image to SWR
● Step 7 Creating a Training Job on ModelArts

Prerequisites

You have registered a Huawei Cloud account. The account is not in arrears or
frozen.

Step 1 Creating an OBS Bucket and Folder

Create a bucket and folders in OBS for storing the sample dataset and training
code. Table 4-4 lists the folders to be created. Replace the bucket name and folder
names in the example with actual names.

For details, see Creating a Bucket and Creating a Folder.

Ensure that the OBS and ModelArts are in the same region.

Table 4-4 Required OBS folders

Folder Description

obs://test-modelarts/mindspore-
gpu/resnet/

Stores the training script.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 128

https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0306.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0316.html

Folder Description

obs://test-modelarts/mindspore-
gpu/cifar-10-batches-bin/

Stores dataset files.

obs://test-modelarts/mindspore-
gpu/output/

Stores training output files.

obs://test-modelarts/mindspore-
gpu/log/

Store training log files.

Step 2 Creating a Dataset and Uploading It to OBS

Go to http://www.cs.toronto.edu/~kriz/cifar.html, download CIFAR-10 binary
version (suitable for C programs), decompress it, and upload the decompressed
data to obs://test-modelarts/mindspore-gpu/cifar-10-batches-bin/ in the OBS
bucket, which is as follows.

Figure 4-38 Datasets

Step 3 Preparing the Training Script and Uploading It to OBS

Obtain the ResNet file and script run_mpi.sh and upload them to obs://test-
modelarts/mindspore-gpu/resnet/ in the OBS bucket.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 129

Download the ResNet file from https://gitee.com/mindspore/models/tree/r1.8/
official/cv/resnet.

run_mpi.sh is as follows:

#!/bin/bash
MY_HOME=/home/ma-user

MY_SSHD_PORT=${MY_SSHD_PORT:-"36666"}

MY_MPI_BTL_TCP_IF=${MY_MPI_BTL_TCP_IF:-"eth0,bond0"}

MY_TASK_INDEX=${MA_TASK_INDEX:-${VC_TASK_INDEX:-${VK_TASK_INDEX}}}

MY_MPI_SLOTS=${MY_MPI_SLOTS:-"${MA_NUM_GPUS}"}

MY_MPI_TUNE_FILE="${MY_HOME}/env_for_user_process"

if [-z ${MY_MPI_SLOTS}]; then
 echo "[run_mpi] MY_MPI_SLOTS is empty, set it be 1"
 MY_MPI_SLOTS="1"
fi

printf "MY_HOME: ${MY_HOME}\nMY_SSHD_PORT: ${MY_SSHD_PORT}\nMY_MPI_BTL_TCP_IF: $
{MY_MPI_BTL_TCP_IF}\nMY_TASK_INDEX: ${MY_TASK_INDEX}\nMY_MPI_SLOTS: ${MY_MPI_SLOTS}\n"

env | grep -E '^MA_|^SHARED_|^S3_|^PATH|^VC_WORKER_|^SCC|^CRED' | grep -v '=$' > $
{MY_MPI_TUNE_FILE}
add -x to each line
sed -i 's/^/-x /' ${MY_MPI_TUNE_FILE}

sed -i "s|{{MY_SSHD_PORT}}|${MY_SSHD_PORT}|g" ${MY_HOME}/etc/ssh/sshd_config

start sshd service
bash -c "$(which sshd) -f ${MY_HOME}/etc/ssh/sshd_config"

confirm the sshd is up
netstat -anp | grep LIS | grep ${MY_SSHD_PORT}

if [$MY_TASK_INDEX -eq 0]; then
 # generate the hostfile of mpi
 for ((i=0; i<$MA_NUM_HOSTS; i++))
 do
 eval hostname=${MA_VJ_NAME}-${MA_TASK_NAME}-${i}.${MA_VJ_NAME}
 echo "[run_mpi] hostname: ${hostname}"

 ip=""
 while [-z "$ip"]; do
 ip=$(ping -c 1 ${hostname} | grep "PING" | sed -E 's/PING .* .([0-9.]+). .*/\1/g')
 sleep 1
 done
 echo "[run_mpi] resolved ip: ${ip}"

 # test the sshd is up
 while :
 do
 if [cat < /dev/null >/dev/tcp/${ip}/${MY_SSHD_PORT}]; then
 break
 fi
 sleep 1
 done

 echo "[run_mpi] the sshd of ip ${ip} is up"

 echo "${ip} slots=$MY_MPI_SLOTS" >> ${MY_HOME}/hostfile
 done

 printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n"
fi

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 130

https://gitee.com/mindspore/models/tree/r1.8/official/cv/resnet
https://gitee.com/mindspore/models/tree/r1.8/official/cv/resnet

RET_CODE=0

if [$MY_TASK_INDEX -eq 0]; then

 echo "[run_mpi] start exec command time: "$(date +"%Y-%m-%d-%H:%M:%S")

 np=$((${MA_NUM_HOSTS} * ${MY_MPI_SLOTS}))

 echo "[run_mpi] command: mpirun -np ${np} -hostfile ${MY_HOME}/hostfile -mca plm_rsh_args \"-p $
{MY_SSHD_PORT}\" -tune ${MY_MPI_TUNE_FILE} ... $@"

 # execute mpirun at worker-0
 # mpirun
 mpirun \
 -np ${np} \
 -hostfile ${MY_HOME}/hostfile \
 -mca plm_rsh_args "-p ${MY_SSHD_PORT}" \
 -tune ${MY_MPI_TUNE_FILE} \
 -bind-to none -map-by slot \
 -x NCCL_DEBUG=INFO -x NCCL_SOCKET_IFNAME=${MY_MPI_BTL_TCP_IF} -x
NCCL_SOCKET_FAMILY=AF_INET \
 -x HOROVOD_MPI_THREADS_DISABLE=1 \
 -x LD_LIBRARY_PATH \
 -mca pml ob1 -mca btl ^openib -mca plm_rsh_no_tree_spawn true \
 "$@"

 RET_CODE=$?

 if [$RET_CODE -ne 0]; then
 echo "[run_mpi] exec command failed, exited with $RET_CODE"
 else
 echo "[run_mpi] exec command successfully, exited with $RET_CODE"
 fi

 # stop 1...N worker by killing the sleep proc
 sed -i '1d' ${MY_HOME}/hostfile
 if [`cat ${MY_HOME}/hostfile | wc -l` -ne 0]; then
 echo "[run_mpi] stop 1 to (N - 1) worker by killing the sleep proc"

 sed -i 's/${MY_MPI_SLOTS}/1/g' ${MY_HOME}/hostfile
 printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n"

 mpirun \
 --hostfile ${MY_HOME}/hostfile \
 --mca btl_tcp_if_include ${MY_MPI_BTL_TCP_IF} \
 --mca plm_rsh_args "-p ${MY_SSHD_PORT}" \
 -x PATH -x LD_LIBRARY_PATH \
 pkill sleep \
 > /dev/null 2>&1
 fi

 echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S")
else
 echo "[run_mpi] the training log is in worker-0"
 sleep 365d
 echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S")
fi

exit $RET_CODE

The following figure shows obs://test-modelarts/mindspore-gpu/resnet/,
including the ResNet file and run_mpi.sh.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 131

Figure 4-39 ResNet file and run_mpi.sh

Step 4 Preparing a Server
Obtain a Linux x86_64 server running Ubuntu 18.04. Either an ECS or your local PC
will do.

For details about how to purchase an ECS, see Purchasing and Logging In to a
Linux ECS. Select a public image. An Ubuntu 18.04 image is recommended.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 132

https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html

Figure 4-40 Creating an ECS using a public image (x86)

Step 5 Creating a Custom Image
Create a container image with the following configurations and use the image to
create a training job on ModelArts:

● ubuntu-18.04
● cuda-11.1
● python-3.7.13
● mlnx ofed-5.4
● mindspore gpu-1.8.1

This section describes how to write a Dockerfile to create a custom image.

1. Install Docker.
The following uses Linux x86_64 as an example to describe how to obtain a
Docker installation package. For more details about how to install Docker, see
official Docker documents. Run the following command to install Docker:
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh

If the docker images command can be executed, Docker has been installed.
In this case, skip this step.

2. Check the Docker Engine version. Run the following command:
docker version | grep -A 1 Engine

The following information is displayed:
 Engine:
 Version: 18.09.0

NO TE

Use the Docker engine of the preceding version or later to create a custom image.

3. Create a folder named context.
mkdir -p context

4. Obtain the pip.conf file. In this example, the pip source provided by Huawei
Mirrors is used, which is as follows:
[global]
index-url = https://repo.huaweicloud.com/repository/pypi/simple
trusted-host = repo.huaweicloud.com
timeout = 120

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 133

https://docs.docker.com/engine/install/binaries/#install-static-binaries

NO TE

To obtain pip.conf, switch to Huawei Mirrors https://mirrors.huaweicloud.com/home
and search for pypi.

5. Download mindspore_gpu-1.8.1-cp37-cp37m-linux_x86_64.whl from
https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/
MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.8.1-cp37-cp37m-
linux_x86_64.whl.

6. Download the Miniconda3 installation file.
Download the Miniconda3 py37 4.12.0 installation file (Python 3.7.13) from
https://repo.anaconda.com/miniconda/Miniconda3-py37_4.12.0-Linux-
x86_64.sh.

7. Write the container image Dockerfile.
Create an empty file named Dockerfile in the context folder and copy the
following content to the file:
The server on which the container image is created must access the Internet.

Base container image at https://github.com/NVIDIA/nvidia-docker/wiki/CUDA
#
https://docs.docker.com/develop/develop-images/multistage-build/#use-multi-stage-builds
require Docker Engine >= 17.05
#
builder stage
FROM nvidia/cuda:11.1.1-devel-ubuntu18.04 AS builder

The default user of the base container image is root.
USER root

Use the PyPI configuration obtained from Huawei Mirrors.
RUN mkdir -p /root/.pip/
COPY pip.conf /root/.pip/pip.conf

Copy the installation files to the /tmp directory in the base container image.
COPY Miniconda3-py37_4.12.0-Linux-x86_64.sh /tmp
COPY mindspore_gpu-1.8.1-cp37-cp37m-linux_x86_64.whl /tmp

https://conda.io/projects/conda/en/latest/user-guide/install/linux.html#installing-on-linux
Install Miniconda3 in the /home/ma-user/miniconda3 directory of the base container image.
RUN bash /tmp/Miniconda3-py37_4.12.0-Linux-x86_64.sh -b -p /home/ma-user/miniconda3

Install the whl file using default Miniconda3 Python environment /home/ma-user/miniconda3/bin/
pip.
RUN cd /tmp && \
 /home/ma-user/miniconda3/bin/pip install --no-cache-dir \
 /tmp/mindspore_gpu-1.8.1-cp37-cp37m-linux_x86_64.whl \
 easydict PyYAML

Create the container image.
FROM nvidia/cuda:11.1.1-cudnn8-runtime-ubuntu18.04

COPY MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz /tmp

Install the vim, cURL, net-tools, MLNX_OFED, and SSH tools obtained from Huawei Mirrors.
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \
 apt-get update && \
 apt-get install -y vim curl net-tools iputils-ping libfile-find-rule-perl-perl \
 openssh-client openssh-server && \
 ssh -V && \
 mkdir -p /run/sshd && \
 # mlnx ofed
 apt-get install -y python libfuse2 dpatch libnl-3-dev autoconf libnl-route-3-dev pciutils libnuma1

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 134

https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.8.1-cp37-cp37m-linux_x86_64.whl
https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.8.1-cp37-cp37m-linux_x86_64.whl
https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/gpu/x86_64/cuda-11.1/mindspore_gpu-1.8.1-cp37-cp37m-linux_x86_64.whl

libpci3 m4 libelf1 debhelper automake graphviz bison lsof kmod libusb-1.0-0 swig libmnl0 autotools-
dev flex chrpath libltdl-dev && \
 cd /tmp && \
 tar -xvf MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz && \
 MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64/mlnxofedinstall --user-space-only --basic --
without-fw-update -q && \
 cd - && \
 rm -rf /tmp/* && \
 apt-get clean && \
 mv /etc/apt/sources.list.bak /etc/apt/sources.list && \
 rm /etc/apt/apt.conf.d/00skip-verify-peer.conf

Install the Open MPI 3.0.0 file obtained from Horovod v0.22.1.
https://github.com/horovod/horovod/blob/v0.22.1/docker/horovod/Dockerfile
https://github.com/horovod/horovod/files/1596799/openmpi-3.0.0-bin.tar.gz
COPY openmpi-3.0.0-bin.tar.gz /tmp
RUN cd /usr/local && \
 tar -zxf /tmp/openmpi-3.0.0-bin.tar.gz && \
 ldconfig && \
 mpirun --version

Add user ma-user (UID = 1000, GID = 100).
A user group whose GID is 100 exists in the basic container image. User ma-user can directly run
the following command:
RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user

Copy the /home/ma-user/miniconda3 directory from the builder stage to the directory with the
same name in the current container image.
COPY --chown=ma-user:100 --from=builder /home/ma-user/miniconda3 /home/ma-user/miniconda3

Configure the default user and working directory of the container image.
USER ma-user
WORKDIR /home/ma-user

Configure sshd to support SSH password-free login.
RUN MA_HOME=/home/ma-user && \
 # setup sshd dir
 mkdir -p ${MA_HOME}/etc && \
 ssh-keygen -f ${MA_HOME}/etc/ssh_host_rsa_key -N '' -t rsa && \
 mkdir -p ${MA_HOME}/etc/ssh ${MA_HOME}/var/run && \
 # setup sshd config (listen at {{MY_SSHD_PORT}} port)
 echo "Port {{MY_SSHD_PORT}}\n\
HostKey ${MA_HOME}/etc/ssh_host_rsa_key\n\
AuthorizedKeysFile ${MA_HOME}/.ssh/authorized_keys\n\
PidFile ${MA_HOME}/var/run/sshd.pid\n\
StrictModes no\n\
UsePAM no" > ${MA_HOME}/etc/ssh/sshd_config && \
 # generate ssh key
 ssh-keygen -t rsa -f ${MA_HOME}/.ssh/id_rsa -P '' && \
 cat ${MA_HOME}/.ssh/id_rsa.pub >> ${MA_HOME}/.ssh/authorized_keys && \
 # disable ssh host key checking for all hosts
 echo "Host *\n\
 StrictHostKeyChecking no" > ${MA_HOME}/.ssh/config

Configure the preset environment variables of the container image.
Set PYTHONUNBUFFERED to 1 to prevent log loss.
ENV PATH=/home/ma-user/miniconda3/bin:$PATH \
 LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH \
 PYTHONUNBUFFERED=1

For details about how to write a Dockerfile, see official Docker documents.
8. Download MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz.

Go to https://network.nvidia.com/products/infiniband-drivers/linux/
mlnx_ofed/, click Download, set Version to 5.4-3.5.8.0-LTS,
OSDistributionVersion to Ubuntu 18.04, and Architecture to x86_64, and
download MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz.

9. Download openmpi-3.0.0-bin.tar.gz.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 135

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

Download openmpi-3.0.0-bin.tar.gz from https://github.com/horovod/
horovod/files/1596799/openmpi-3.0.0-bin.tar.gz.

10. Store the Dockerfile and Miniconda3 installation file in the context folder,
which is as follows:
context
├── Dockerfile
├── MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz
├── Miniconda3-py37_4.12.0-Linux-x86_64.sh
├── mindspore_gpu-1.8.1-cp37-cp37m-linux_x86_64.whl
├── openmpi-3.0.0-bin.tar.gz
└── pip.conf

11. Create the container image. Run the following command in the directory
where the Dockerfile is stored to build the container image mindspore:1.8.1-
ofed-cuda11.1:
docker build . -t mindspore:1.8.1-ofed-cuda11.1

The following log shows that the image has been created.
Successfully tagged mindspore:1.8.1-ofed-cuda11.1

Step 6 Uploading the Image to SWR
1. Log in to the SWR console and select the target region.

Figure 4-41 SWR console

2. Click Create Organization in the upper right corner and enter an
organization name to create an organization. Customize the organization
name. Replace the organization name deep-learning in subsequent
commands with the actual organization name.

Figure 4-42 Creating an organization

3. Click Generate Login Command in the upper right corner to obtain a login
command.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 136

Figure 4-43 Login Command

4. Log in to the local environment as the root user and enter the login
command.

5. Upload the image to SWR.

a. Tag the uploaded image.
Replace the region, domain, as well as organization name deep-learning with the actual
values.
sudo docker tag mindspore:1.8.1-ofed-cuda11.1 swr.{region-id}.{domain}/deep-learning/
mindspore:1.8.1-ofed-cuda11.1

b. Run the following command to upload the image:
Replace the region, domain, as well as organization name deep-learning with the actual
values.
sudo docker push swr.{region-id}.{domain}/deep-learning/mindspore:1.8.1-ofed-cuda11.1

6. After the image is uploaded, choose My Images in navigation pane on the
left of the SWR console to view the uploaded custom images.

Step 7 Creating a Training Job on ModelArts
1. Log in to the ModelArts management console, check whether access

authorization has been configured for your account. For details, see
Configuring Agency Authorization. If you have been authorized using access
keys, clear the authorization and configure agency authorization.

2. In the navigation pane, choose Training Management > Training Jobs. The
training job list is displayed by default.

3. Click Create Training Job. On the page that is displayed, configure
parameters and click Next.
– Created By: Custom algorithms
– Boot Mode: Custom images
– Image path: image created in Step 6 Uploading the Image to SWR.
– Code Directory: directory where the boot script file is stored in OBS, for

example, obs://test-modelarts/mindspore-gpu/resnet/. The training
code is automatically downloaded to the ${MA_JOB_DIR}/resnet
directory of the training container. resnet (customizable) is the last-level
directory of the OBS path.

– Boot Command: bash ${MA_JOB_DIR}/resnet/run_mpi.sh python $
{MA_JOB_DIR}/resnet/train.py. resnet (customizable) is the last-level
directory of the OBS path.

– Training Input: Click Add Training Input. Enter data_path for the name,
select the OBS path to the target dataset, for example, obs://test-
modelarts/mindspore-gpu/cifar-10-batches-bin/, and set Obtained
from to Hyperparameters.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 137

https://support.huaweicloud.com/intl/en-us/prepare-modelarts/modelarts_08_0007.html

– Training Output: Click Add Training Output. Enter output_path for the
name, select an OBS path for storing training outputs, for example, obs://
test-modelarts/mindspore-gpu/output/, and set Obtained from to
Hyperparameters and Predownload to No.

– Hyperparameters: Click Add Hyperparameter and add the following
hyperparameters:

▪ run_distribute=True

▪ device_num=1 (Set this parameter based on the number of GPUs in
the instance flavors.)

▪ device_target=GPU

▪ epoch_size=2

– Environment Variable: Click Add Environment Variable and add the
environment variable MY_SSHD_PORT=38888.

– Resource Pool: Select Public resource pools.
– Resource Type: Select GPU.
– Compute Nodes: 1 or 2
– Persistent Log Saving: enabled
– Job Log Path: OBS path to stored training logs, for example, obs://test-

modelarts/mindspore-gpu/log/
4. Confirm the configurations of the training job and click Submit.
5. Wait until the training job is created.

After you submit the job creation request, the system will automatically
perform operations on the backend, such as downloading the container image
and code directory and running the boot command. A training job requires a
certain period of time for running. The duration ranges from dozens of
minutes to several hours, varying depending on the service logic and selected
resources. After the training job is executed, the log similar to the following is
output.

Figure 4-44 Run logs of training jobs with GPU specifications (one compute
node)

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 138

Figure 4-45 Run logs of training jobs with GPU specifications (two compute
nodes)

4.6 Example: Creating a Custom Image for Training
(TensorFlow and GPUs)

This section describes how to create an image and use it for training on
ModelArts. The AI engine used in the image is TensorFlow, and the resources used
for training are GPUs.

NO TE

This section applies only to training jobs of the new version.

Scenario
In this example, write a Dockerfile to create a custom image on a Linux x86_64
server running Ubuntu 18.04.

Create a container image with the following configurations and use the image to
create a GPU-powered training job on ModelArts:

● ubuntu-18.04
● cuda-11.2
● python-3.7.13
● mlnx ofed-5.4
● tensorflow gpu-2.10.0

Procedure
Before using a custom image to create a training job, you need to be familiar with
Docker and have development experience.

1. Prerequisites
2. Step 1 Creating an OBS Bucket and Folder
3. Step 2 Creating a Dataset and Uploading It to OBS
4. Step 3 Preparing the Training Script and Uploading It to OBS
5. Step 4 Preparing a Server
6. Step 5 Creating a Custom Image
7. Step 6 Uploading the Image to SWR

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 139

8. Step 7 Creating a Training Job on ModelArts

Prerequisites
You have registered a Huawei Cloud account. The account is not in arrears or
frozen.

Step 1 Creating an OBS Bucket and Folder
Create a bucket and folders in OBS for storing the sample dataset and training
code. Table 4-5 lists the folders to be created. Replace the bucket name and folder
names in the example with actual names.

For details, see Creating a Bucket and Creating a Folder.

Ensure that the OBS and ModelArts are in the same region.

Table 4-5 Required OBS folders

Folder Description

obs://test-modelarts/tensorflow/
code/

Stores the training script.

obs://test-modelarts/tensorflow/
data/

Stores dataset files.

obs://test-modelarts/
tensorflow/log/

Store training log files.

Step 2 Creating a Dataset and Uploading It to OBS
Download mnist.npz from https://storage.googleapis.com/tensorflow/tf-keras-
datasets/mnist.npz, and upload it to obs://test-modelarts/tensorflow/data/ in
the OBS bucket.

Step 3 Preparing the Training Script and Uploading It to OBS
Obtain the training script mnist.py and upload it to obs://test-modelarts/
tensorflow/code/ in the OBS bucket.

mnist.py is as follows:

import argparse
import tensorflow as tf

parser = argparse.ArgumentParser(description='TensorFlow quick start')
parser.add_argument('--data_url', type=str, default="./Data", help='path where the dataset is saved')
args = parser.parse_args()

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data(args.data_url)
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 140

https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0306.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0316.html
https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz

 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10)
])

loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

model.compile(optimizer='adam',
 loss=loss_fn,
 metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)

Step 4 Preparing a Server
Obtain a Linux x86_64 server running Ubuntu 18.04. Either an ECS or your local PC
will do.

For details about how to purchase an ECS, see Purchasing and Logging In to a
Linux ECS. Select a public image. An Ubuntu 18.04 image is recommended.

Figure 4-46 Creating an ECS using a public image (x86)

Step 5 Creating a Custom Image
Create a container image with the following configurations and use the image to
create a training job on ModelArts:

● ubuntu-18.04
● cuda-11.1
● python-3.7.13
● mlnx ofed-5.4
● mindspore gpu-1.8.1

This section describes how to write a Dockerfile to create a custom image.

1. Install Docker.
The following uses Linux x86_64 as an example to describe how to obtain a
Docker installation package. For more details about how to install Docker, see
official Docker documents. Run the following command to install Docker:
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 141

https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://docs.docker.com/engine/install/binaries/#install-static-binaries

If the docker images command can be executed, Docker has been installed.
In this case, skip this step.

2. Check the Docker Engine version. Run the following command:
docker version | grep -A 1 Engine

The following information is displayed:
 Engine:
 Version: 18.09.0

NO TE

Use the Docker engine of the preceding version or later to create a custom image.

3. Create a folder named context.
mkdir -p context

4. Obtain the pip.conf file. In this example, the pip source provided by Huawei
Mirrors is used, which is as follows:
[global]
index-url = https://repo.huaweicloud.com/repository/pypi/simple
trusted-host = repo.huaweicloud.com
timeout = 120

NO TE

To obtain pip.conf, switch to Huawei Mirrors https://mirrors.huaweicloud.com/home
and search for pypi.

5. Download tensorflow_gpu-2.10.0-cp37-cp37m-
manylinux_2_17_x86_64.manylinux2014_x86_64.whl.
Download tensorflow_gpu-2.10.0-cp37-cp37m-
manylinux_2_17_x86_64.manylinux2014_x86_64.whl from https://pypi.org/
project/tensorflow-gpu/2.10.0/#files.

6. Download the Miniconda3 installation file.
Download the Miniconda3 py37 4.12.0 installation file (Python 3.7.13) from
https://repo.anaconda.com/miniconda/Miniconda3-py37_4.12.0-Linux-
x86_64.sh.

7. Write the container image Dockerfile.
Create an empty file named Dockerfile in the context folder and copy the
following content to the file:
The server on which the container image is created must access the Internet.

Base container image at https://github.com/NVIDIA/nvidia-docker/wiki/CUDA
#
https://docs.docker.com/develop/develop-images/multistage-build/#use-multi-stage-builds
require Docker Engine >= 17.05
#
builder stage
FROM nvidia/cuda:11.2.2-cudnn8-runtime-ubuntu18.04 AS builder

The default user of the base container image is root.
USER root

Use the PyPI configuration obtained from Huawei Mirrors.
RUN mkdir -p /root/.pip/
COPY pip.conf /root/.pip/pip.conf

Copy the installation files to the /tmp directory in the base container image.
COPY Miniconda3-py37_4.12.0-Linux-x86_64.sh /tmp
COPY tensorflow_gpu-2.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl /tmp

https://conda.io/projects/conda/en/latest/user-guide/install/linux.html#installing-on-linux
Install Miniconda3 in the /home/ma-user/miniconda3 directory of the base container image.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 142

RUN bash /tmp/Miniconda3-py37_4.12.0-Linux-x86_64.sh -b -p /home/ma-user/miniconda3

Install the TensorFlow .whl file using default Miniconda3 Python environment /home/ma-user/
miniconda3/bin/pip.
RUN cd /tmp && \
 /home/ma-user/miniconda3/bin/pip install --no-cache-dir \
 /tmp/tensorflow_gpu-2.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl

RUN cd /tmp && \
 /home/ma-user/miniconda3/bin/pip install --no-cache-dir keras==2.10.0

Create the container image.
FROM nvidia/cuda:11.2.2-cudnn8-runtime-ubuntu18.04

COPY MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz /tmp

Install the vim, cURL, net-tools, and MLNX_OFED tools obtained from Huawei Mirrors.
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \
 apt-get update && \
 apt-get install -y vim curl net-tools iputils-ping && \
 # mlnx ofed
 apt-get install -y python libfuse2 dpatch libnl-3-dev autoconf libnl-route-3-dev pciutils libnuma1
libpci3 m4 libelf1 debhelper automake graphviz bison lsof kmod libusb-1.0-0 swig libmnl0 autotools-
dev flex chrpath libltdl-dev && \
 cd /tmp && \
 tar -xvf MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz && \
 MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64/mlnxofedinstall --user-space-only --basic --
without-fw-update -q && \
 cd - && \
 rm -rf /tmp/* && \
 apt-get clean && \
 mv /etc/apt/sources.list.bak /etc/apt/sources.list && \
 rm /etc/apt/apt.conf.d/00skip-verify-peer.conf

Add user ma-user (UID = 1000, GID = 100).
A user group whose GID is 100 exists in the base container image. User ma-user can directly run
the following command:
RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user

Copy the /home/ma-user/miniconda3 directory from the builder stage to the directory with the
same name in the current container image.
COPY --chown=ma-user:100 --from=builder /home/ma-user/miniconda3 /home/ma-user/miniconda3

Configure the default user and working directory of the container image.
USER ma-user
WORKDIR /home/ma-user

Configure the preset environment variables of the container image.
Set PYTHONUNBUFFERED to 1 to prevent log loss.
ENV PATH=/home/ma-user/miniconda3/bin:$PATH \
 LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH \
 PYTHONUNBUFFERED=1

For details about how to write a Dockerfile, see official Docker documents.
8. Download MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz.

Go to https://network.nvidia.com/products/infiniband-drivers/linux/
mlnx_ofed/, click Download, set Version to 5.4-3.5.8.0-LTS,
OSDistributionVersion to Ubuntu 18.04, and Architecture to x86_64, and
download MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz.

9. Store the Dockerfile and Miniconda3 installation file in the context folder,
which is as follows:
context
├── Dockerfile
├── MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 143

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

├── Miniconda3-py37_4.12.0-Linux-x86_64.sh
├── pip.conf
└── tensorflow_gpu-2.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl

10. Create the container image. Run the following command in the directory
where the Dockerfile is stored to build the container image
tensorflow:2.10.0-ofed-cuda11.2:
docker build . -t tensorflow:2.10.0-ofed-cuda11.2

The following log shows that the image has been created.
Successfully tagged tensorflow:2.10.0-ofed-cuda11.2

Step 6 Uploading the Image to SWR
1. Log in to the SWR console and select the target region.

Figure 4-47 SWR console

2. Click Create Organization in the upper right corner and enter an
organization name to create an organization. Customize the organization
name. Replace the organization name deep-learning in subsequent
commands with the actual organization name.

Figure 4-48 Creating an organization

3. Click Generate Login Command in the upper right corner to obtain a login
command.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 144

Figure 4-49 Login Command

4. Log in to the local environment as the root user and enter the login
command.

5. Upload the image to SWR.

a. Tag the uploaded image.
Replace the region, domain, as well as organization name deep-learning with the actual
values.
sudo docker tag tensorflow:2.10.0-ofed-cuda11.2 swr.{region-id}.{domain}/deep-learning/
tensorflow:2.10.0-ofed-cuda11.2

b. Run the following command to upload the image:
Replace the region, domain, as well as organization name deep-learning with the actual
values.
sudo docker push swr.{region-id}.{domain}/deep-learning/tensorflow:2.10.0-ofed-cuda11.2

6. After the image is uploaded, choose My Images in navigation pane on the
left of the SWR console to view the uploaded custom images.

Step 7 Creating a Training Job on ModelArts
1. Log in to the ModelArts management console, check whether access

authorization has been configured for your account. For details, see
Configuring Agency Authorization. If you have been authorized using access
keys, clear the authorization and configure agency authorization.

2. In the navigation pane, choose Training Management > Training Jobs. The
training job list is displayed by default.

3. Click Create Training Job. On the page that is displayed, configure
parameters and click Next.
– Created By: Custom algorithms
– Boot Mode: Custom images
– Image path: image created in Step 5 Creating a Custom Image.
– Code Directory: directory where the boot script file is stored in OBS, for

example, obs://test-modelarts/tensorflow/code/. The training code is
automatically downloaded to the ${MA_JOB_DIR}/code directory of the
training container. code (customizable) is the last-level directory of the
OBS path.

– Boot Command: python ${MA_JOB_DIR}/code/mnist.py. code
(customizable) is the last-level directory of the OBS path.

– Training Input: Click Add Training Input. Enter data_path for the name,
select the OBS path to mnist.npz, for example, obs://test-modelarts/
tensorflow/data/mnist.npz, and set Obtained from to
Hyperparameters.

– Resource Pool: Select Public resource pools.

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 145

https://support.huaweicloud.com/intl/en-us/prepare-modelarts/modelarts_08_0007.html

– Resource Type: Select GPU.
– Compute Nodes: Enter 1.
– Persistent Log Saving: enabled
– Job Log Path: OBS path to stored training logs, for example, obs://test-

modelarts/mindspore-gpu/log/
4. Confirm the configurations of the training job and click Submit.
5. Wait until the training job is created.

After you submit the job creation request, the system will automatically
perform operations on the backend, such as downloading the container image
and code directory and running the boot command. A training job requires a
certain period of time for running. The duration ranges from dozens of
minutes to several hours, varying depending on the service logic and selected
resources. After the training job is executed, the log similar to the following is
output.

Figure 4-50 Run logs of training jobs with GPU specifications

ModelArts
Best Practices 4 Model Training

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 146

5 Model Inference

5.1 Creating a Custom Image and Using It to Create an
AI Application

If you want to use an AI engine that is not supported by ModelArts, create a
custom image for the engine, import the image to ModelArts, and use the image
to create AI applications. This section describes how to use a custom image to
create an AI application and deploy the application as a real-time service.

The process is as follows:

1. Building an Image Locally: Create a custom image package locally. For
details, see Custom Image Specifications for Creating AI Applications.

2. Verifying the Image Locally and Uploading It to SWR: Verify the APIs of the
custom image and upload the custom image to SWR.

3. Using the Custom Image to Create an AI Application: Import the image to
ModelArts AI application management.

4. Deploying the AI Application as a Real-Time Service: Deploy the model as
a real-time service.

Building an Image Locally
This section uses a Linux x86_x64 host as an example. You can purchase an ECS of
the same specifications or use an existing local host to create a custom image.

For details about how to purchase an ECS, see Purchasing and Logging In to a
Linux ECS. When creating the ECS, select an Ubuntu 18.04 public image.

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 147

https://support.huaweicloud.com/intl/en-us/docker-modelarts/modelarts_23_0219.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html

Figure 5-1 Creating an ECS using an x86 public image

1. After logging in to the host, install Docker. For details, see Docker official
documents. Alternatively, run the following commands to install Docker:
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh

2. Obtain the base image. Ubuntu 18.04 is used in this example.
docker pull ubuntu:18.04

3. Create the self-define-images folder, and edit Dockerfile and test_app.py in
the folder for the custom image. In the sample code, the application code
runs on the Flask framework.
The file structure is as follows:
self-define-images/
 --Dockerfile
 --test_app.py

– Dockerfile
From ubuntu:18.04
Configure the HUAWEI CLOUD source and install Python, Python3-PIP, and Flask.
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list
&& \
 sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list
&& \
 apt-get update && \
 apt-get install -y python3 python3-pip && \
 pip3 install --trusted-host https://repo.huaweicloud.com -i https://repo.huaweicloud.com/
repository/pypi/simple Flask

Copy the application code to the image.
COPY test_app.py /opt/test_app.py

Specify the boot command of the image.
CMD python3 /opt/test_app.py

– test_app.py
from flask import Flask, request
import json
app = Flask(__name__)

@app.route('/greet', methods=['POST'])
def say_hello_func():
 print("----------- in hello func ----------")
 data = json.loads(request.get_data(as_text=True))
 print(data)
 username = data['name']
 rsp_msg = 'Hello, {}!'.format(username)
 return json.dumps({"response":rsp_msg}, indent=4)

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 148

https://docs.docker.com/engine/install/binaries/#install-static-binaries
https://docs.docker.com/engine/install/binaries/#install-static-binaries

@app.route('/goodbye', methods=['GET'])
def say_goodbye_func():
 print("----------- in goodbye func ----------")
 return '\nGoodbye!\n'

@app.route('/', methods=['POST'])
def default_func():
 print("----------- in default func ----------")
 data = json.loads(request.get_data(as_text=True))
 return '\n called default func !\n {} \n'.format(str(data))

host must be "0.0.0.0", port must be 8080
if __name__ == '__main__':
 app.run(host="0.0.0.0", port=8080)

4. Switch to the self-define-images folder and run the following command to
create custom image test:v1:
docker build -t test:v1 .

5. Run docker images to view the custom image you have created.

Verifying the Image Locally and Uploading It to SWR
1. Run the following command in the local environment to start the custom

image:
docker run -it -p 8080:8080 test:v1

Figure 5-2 Starting a custom image

2. Open another terminal and run the following commands to test the functions
of the three APIs of the custom image:
curl -X POST -H "Content-Type: application/json" --data '{"name":"Tom"}' 127.0.0.1:8080/
curl -X POST -H "Content-Type: application/json" --data '{"name":"Tom"}' 127.0.0.1:8080/greet
curl -X GET 127.0.0.1:8080/goodbye

If information similar to the following is displayed, the function verification is
successful.

Figure 5-3 Testing API functions

3. Upload the custom image to SWR. For details, see How Can I Upload Images
to SWR?

4. View the uploaded image on the My Images > Private Images page of the
SWR console.

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 149

https://support.huaweicloud.com/intl/en-us/docker-modelarts/docker-modelarts_0018.html
https://support.huaweicloud.com/intl/en-us/docker-modelarts/docker-modelarts_0018.html

Figure 5-4 Uploaded images

Using the Custom Image to Create an AI Application
Import a meta model. For details, see Creating and Importing a Model Image.
Key parameters are as follows:
● Meta Model Source: Select Container image.

– Container Image Path: Select the created private image.

Figure 5-5 Created private image

– Container API: Protocol and port number for starting a model. Ensure
that the protocol and port number are the same as those provided in the
custom image.

– Image Replication: indicates whether to copy the model image in the
container image to ModelArts. This parameter is optional.

– Health Check: checks health status of a model. This parameter is
optional. This parameter is configurable only when the health check API
is configured in the custom image. Otherwise, creating the AI application
will fail.

● APIs: APIs of a custom image. This parameter is optional. The model APIs
must comply with ModelArts specifications. For details, see Specifications for
Editing a Model Configuration File.
The configuration file is as follows:
[{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "application/json"
 },
 "response": {
 "Content-type": "application/json"
 }
 },
{
 "url": "/greet",
 "method": "post",
 "request": {
 "Content-type": "application/json"
 },
 "response": {
 "Content-type": "application/json"

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 150

https://support.huaweicloud.com/intl/en-us/inference-modelarts/inference-modelarts-0009.html
https://support.huaweicloud.com/intl/en-us/inference-modelarts/inference-modelarts-0056.html
https://support.huaweicloud.com/intl/en-us/inference-modelarts/inference-modelarts-0056.html

 }
 },
{
 "url": "/goodbye",
 "method": "get",
 "request": {
 "Content-type": "application/json"
 },
 "response": {
 "Content-type": "application/json"
 }
 }
]

Deploying the AI Application as a Real-Time Service
1. Deploy the AI application as a real-time service. For details, see Deploying as

a Real-Time Service.
2. View the details about the real-time service.

Figure 5-6 Usage Guides

3. Access the real-time service on the Prediction tab page.

Figure 5-7 Accessing a real-time service

5.2 Enabling an Inference Service to Access the
Internet

This section describes how to enable an inference service to access the Internet.

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 151

https://support.huaweicloud.com/intl/en-us/inference-modelarts/inference-modelarts-0018.html
https://support.huaweicloud.com/intl/en-us/inference-modelarts/inference-modelarts-0018.html

Application Scenarios
An inference service accesses the Internet in the following scenarios:

● After an image is input, the inference service calls OCR on the Internet and
then processes data using NLP.

● The inference service downloads files from the Internet and analyzes the files.
● The inference service sends back the analysis result to the terminal on the

Internet.

Solution Design
Use the algorithm on the instance where the inference service is deployed to
access the Internet.

Figure 5-8 Networking for an inference service to access the Internet

Procedure
● Configure the network for the ModelArts resource pool.
● Install and configure a forward proxy for your VPC.
● Configure the DNS proxy and Internet access URL in the algorithm image.

Step 1 Configure the network for the ModelArts resource pool.

When purchasing a dedicated resource pool, you can select inference services in
Job Type. In this case, the selected network must be accessible to the target VPC.

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 152

Figure 5-9 Purchasing a dedicated resource pool

Figure 5-10 Interconnecting the VPC

Interconnecting a VPC enables the ModelArts resource pool to exchange data with
your VPC.

Step 2 Install and configure a forward proxy for your VPC.

Before installing a forward proxy, purchase an ECS with the latest Ubuntu image
and bind an EIP to the ECS. Then, log in to the ECS, and install and configure a
squid forward proxy.

1. If Docker is not installed, run the following command to install it:
curl -sSL https://get.daocloud.io/docker | sh

2. Pull the squid image.
docker pull ubuntu/squid

3. Create a host directory and configure whitelist.conf and squid.conf.
Create a host directory:
mkdir –p /etc/squid/

Add the whitelist.conf configuration file. The content is the addresses that
can be accessed. For example:
.apig.cn-east-3.huaweicloudapis.com

Add the squid.conf configuration file, which includes the following:
An ACL named 'whitelist'
acl whitelist dstdomain '/etc/squid/whitelist.conf'

Allow whitelisted URLs through
http_access allow whitelist

Block the rest

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 153

http_access deny all

Default port
http_port 3128

Set the permissions on the host directory and configuration files:
chmod 640 -R /etc/squid

4. Start a squid instance.
docker run -d --name squid -e TZ=UTC -v /etc/squid:/etc/squid -p 3128:3128 ubuntu/squid:latest

5. If whitelist.conf or squid.conf is updated, go to the container and update the
squid.
docker exec –it squid bash
root@{container_id}:/# squid -k reconfigure

Step 3 Configure the DNS proxy and Internet access URL in the algorithm image.

1. Set the proxy.
In the code, specify the private IP address and port of the proxy server, as
shown in the following:
proxies = {
 "http": "http://{proxy_server_private_ip}:3128",
 "https": "http://{proxy_server_private_ip}:3128"
}

The following figure shows how to obtain the private IP address of a server.

Figure 5-11 Private IP address

2. Configure the Internet access URL.
In the inference code, use the service URL to send a service request, for
example:
https://e8a048ce25136addbbac23ce6132a.apig.cn-east-3.huaweicloudapis.com

----End

5.3 End-to-End O&M of Inference Services
The end-to-end O&M of ModelArts inference services involves the entire AI
process including algorithm development, service O&M, and service running.

Overview

End-to-End O&M Process

● During algorithm development, store service data in Object Storage Service
(OBS), and then label and manage the data using ModelArts data
management. After the data is trained, obtain an AI model and create AI
application images using a development environment.

● During service O&M, use an image to create an AI application and deploy the
AI application as a real-time service. You can obtain the monitoring data of
the ModelArts real-time service on the Cloud Eye management console.
Configure alarm rules so that you can be notified of alarms in real time.

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 154

● During service running, access real-time service requests into the service
system and then configure service logic and monitoring.

Figure 5-12 End-to-end O&M process for inference services

During the entire O&M process, service request failures and high resource usage
are monitored. When the resource usage threshold is reached, the system will
send an alarm notification to you.

Figure 5-13 Alarming process

Advantages

End-to-end service O&M enables you to easily check service running at both peak
and off-peak hours and detect the health status of real-time services in real time.

Constraints

End-to-end service O&M applies only to real-time services because Cloud Eye does
not monitor batch or edge inference services.

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 155

Procedure

This section uses an occupant safety algorithm in travel as an example to describe
how to use ModelArts for process-based service deployment and update, as well
as automatic service O&M and monitoring.

Figure 5-14 Occupant safety algorithm implementation

Step 1 Use a locally developed model to create a custom image and use the image to
create an AI application on ModelArts. For details, see Creating a Custom Image
and Using It to Create an AI Application.

Step 2 On the ModelArts management console, deploy the created AI application as a
real-time service.

Step 3 Log in to the Cloud Eye management console, configure ModelArts alarm rules
and enable notifications with a topic subscribed to. For details, see Setting Alarm
Rules.

After the configuration, choose Cloud Service Monitoring > ModelArts in the
navigation pane on the left to view the requests and resource usage of the real-
time service.

Figure 5-15 Viewing service monitoring metrics

When an alarm is triggered based on the monitored data, the object who has
subscribed to the target topic will receive a message notification.

----End

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 156

https://support.huaweicloud.com/intl/en-us/docker-modelarts/modelarts_23_0270.html
https://support.huaweicloud.com/intl/en-us/docker-modelarts/modelarts_23_0270.html
https://support.huaweicloud.com/intl/en-us/inference-modelarts/modelarts_23_0188.html
https://support.huaweicloud.com/intl/en-us/inference-modelarts/modelarts_23_0188.html

5.4 Creating an AI Application Using a Custom Engine
When you use a custom engine to create an AI application, you can select your
image stored in SWR as the engine and specify a file directory in OBS as the
model package. In this way, bring-your-own images can be used to meet your
dedicated requirements.

Before deploying such an AI application as a service, ModelArts downloads the
SWR image to the cluster and starts the image as a container as the user whose
UID is 1000 and GID is 100. Then, ModelArts downloads the OBS file to the /
home/mind/model directory in the container and runs the boot command preset
in the SWR image. The service available to port 8080 in the container is
automatically registered with APIG. You can access the service through the APIG
URL.

Specifications for Using a Custom Engine to Create an AI Application

To use a custom engine to create an AI application, ensure the SWR image, OBS
model package, and file size comply with the following requirements:

● SWR image specifications

– A common user named ma-user in group ma-group must be built in the
SWR image. Additionally, the UID and GID of the user must be 1000 and
100, respectively. The following is the dockerfile command for the built-in
user:
groupadd -g 100 ma-group && useradd -d /home/ma-user -m -u 1000 -g 100 -s /bin/bash ma-
user

– Specify a command for starting the image. In the dockerfile, specify cmd.
The following shows an example:
CMD sh /home/mind/run.sh

Customize the startup entry file run.sh. The following is an example.
#!/bin/bash

User-defined script content
...

run.sh calls app.py to start the server. For details about app.py, see "HTTPS Example".
python app.py

– The service must be HTTPS enabled, and it is available on port 8080. For
details, see the HTTPS example.

– (Optional) On port 8080, enable health check with URL /health. (The
health check URL must be /health.)

● OBS model package specifications

The name of the model package must be model. For details about model
package specifications, see Introduction to Model Package Specifications.

● File size specifications

When a public resource pool is used, the total size of the downloaded SWR
image (not the compressed image displayed on the SWR page) and the OBS
model package cannot exceed 30 GB.

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 157

https://support.huaweicloud.com/intl/en-us/inference-modelarts/inference-modelarts-0055.html

HTTPS Example
Use Flask to start HTTPS. The following is an example of the web server code:

from flask import Flask, request
import json

app = Flask(__name__)

@app.route('/greet', methods=['POST'])
def say_hello_func():
 print("----------- in hello func ----------")
 data = json.loads(request.get_data(as_text=True))
 print(data)
 username = data['name']
 rsp_msg = 'Hello, {}!'.format(username)
 return json.dumps({"response":rsp_msg}, indent=4)

@app.route('/goodbye', methods=['GET'])
def say_goodbye_func():
 print("----------- in goodbye func ----------")
 return '\nGoodbye!\n'

@app.route('/', methods=['POST'])
def default_func():
 print("----------- in default func ----------")
 data = json.loads(request.get_data(as_text=True))
 return '\n called default func !\n {} \n'.format(str(data))

@app.route('/health', methods=['GET'])
def healthy():
 return "{\"status\": \"OK\"}"

host must be "0.0.0.0", port must be 8080
if __name__ == '__main__':
 app.run(host="0.0.0.0", port=8080, ssl_context='adhoc')

Debugging on a Local Computer
Perform the following operations on a local computer with Docker installed to
check whether a custom engine complies with specifications:

1. Download the custom image, for example, custom_engine:v1 to the local
computer.

2. Copy the model package folder model to the local computer.
3. Run the following command in the same directory as the model package

folder to start the service:
docker run --user 1000:100 -p 8080:8080 -v model:/home/mind/model custom_engine:v1

NO TE

This command is used for simulation only because the directory mounted to -v is
assigned the root permission. In the cloud environment, after the model file is
downloaded from OBS to /home/mind/model, the file owner will be changed to ma-
user.

4. Start another terminal on the local computer and run the following command
to obtain the expected inference result:
curl https://127.0.0.1:8080/${Request path to the inference service}

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 158

https://docs.docker.com/engine/reference/commandline/run/

Deployment Example
The following section describes how to use a custom engine to create an AI
application.

1. Create an AI application and viewing its details.
Log in to the ModelArts console, choose AI Application Management > AI
Applications, and click Create. On the page that is displayed, configure the
following parameters:
– Meta Model Source: OBS
– Meta Model: a model package selected from OBS
– AI Engine: Custom
– Engine Package: an SWR image

Retain the default settings for other parameters.
Click Create Now. In the AI application list that is displayed, check the AI
application status. When its status changes to Normal, the AI application has
been created.

Figure 5-16 Creating an AI application

Click the AI application name. On the page that is displayed, view details
about the AI application.

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 159

Figure 5-17 Viewing details about an AI application

2. Deploy the AI application as a service and view service details.
On the AI application details page, choose Deploy > Real-Time Services in
the upper right corner. On the Deploy page, select a proper compute node
specification, retain the default settings for other parameters, and click Next.
When the service status changes to Running, the service has been deployed.

Figure 5-18 Deploying a service

Click the service name. On the page that is displayed, view the service details.
Click the Logs tab to view the service logs.

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 160

Figure 5-19 Logs

3. Use the service for prediction.
On the service details page, click the Prediction tab to use the service for
prediction.

Figure 5-20 Prediction

5.5 Using a Large Model to Create an AI Application
and Deploying a Real-Time Service

Context
Currently, a large model can have hundreds of billions or even trillions of
parameters, and its size becomes larger and larger. A large model with hundreds
of billions of parameters exceeds 200 GB, and poses new requirements for version
management and production deployment of the platform. For example, importing
AI applications requires dynamic adjustment of the tenant storage quota. Slow
model loading and startup requires a flexible timeout configuration in the
deployment. The service recovery time needs to be shortened in the event that the
model needs to be reloaded upon a restart caused by a load exception.

To address the preceding requirements, the ModelArts inference platform provides
a solution to AI application management and service deployment in large model
application scenarios.

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 161

Constraints
● You need to apply for the size quota of an AI application and add the

whitelist cached using the local storage of the node.

● You need to use the custom engine Custom to configure dynamic loading.

● A dedicated resource pool is required to deploy the service.

● The disk space of the dedicated resource pool must be greater than 1 TB.

Procedure
1. Applying for Increasing the Size Quota of an AI Application and Using the

Local Storage of the Node to Cache the Whitelist

2. Uploading Model Data and Verifying the Consistency of Uploaded Objects

3. Creating a Dedicated Resource Pool

4. Creating an AI Application

5. Deploying a Real-Time Service

Applying for Increasing the Size Quota of an AI Application and Using the
Local Storage of the Node to Cache the Whitelist

During service deployment, the dynamically loaded model package is stored in the
temporary disk space by default. When the service is stopped, the loaded files are
deleted, and they need to be reloaded when the service is restarted. To avoid
repeated loading, the platform allows the model package to be loaded from the
local storage space of the node in the resource pool and keeps the loaded files
valid even when the service is stopped or restarted (using the hash value to ensure
data consistency).

To use a large model, you need to use a custom engine and enable dynamic
loading when importing the model. In this regard, you need to perform the
following operations:

● If the model size exceeds the default quota, submit a service ticket to increase
the size quota of a single AI application. The default size quota of an AI
application is 20 GB.

● Submit a service ticket to add the whitelist cached using the local storage of
the node.

Uploading Model Data and Verifying the Consistency of Uploaded Objects

To ensure data integrity during dynamic loading, you need to verify the
consistency of uploaded objects when uploading model data to OBS. obsutil, OBS
Browser+, and OBS SDKs support verification of data consistency during upload.
You can select a method that meets your requirements. For details, see Verifying
Data Consistency During Upload.

For example, if you upload data via OBS Browser+, enable MD5 verification, as
shown in Figure 5-21. When dynamic loading is enabled and the local persistent
storage of the node is used, OBS Browser+ checks data consistency during data
upload.

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 162

https://support.huaweicloud.com/intl/en-us/bestpractice-obs/obs_05_0802.html
https://support.huaweicloud.com/intl/en-us/bestpractice-obs/obs_05_0802.html

Figure 5-21 Configuring MD5 verification for OBS Browser+

Creating a Dedicated Resource Pool
To use the local persistent storage, you need to create a dedicated resource pool
whose disk space is greater than 1 TB. You can view the disk information on the
Specifications tab of the Basic Information page of the dedicated resource pool.
If a service fails to be deployed and the system displays a message indicating that
the disk space is insufficient, see What Do I Do If Resources Are Insufficient
When a Real-Time Service Is Deployed, Started, Upgraded, or Modified.

Figure 5-22 Viewing the disk information of the dedicated resource pool

Creating an AI Application
If you use a large model to create an AI application and import the model from
OBS, complete the following configurations:

1. Use a custom engine and enable dynamic loading.
To use a large model, you need to use a custom engine and enable dynamic
loading when importing the model. You can create a custom engine to meet
special requirements for image dependency packages and inference
frameworks in large model scenarios. For details about how to create a
custom engine, see Creating an AI Application Using a Custom Engine.
When you use a custom engine, dynamic loading is enabled by default. The
model package is separated from the image, and the model is dynamically
loaded to the service load during service deployment.

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 163

https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_05_3155.html
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_05_3155.html

2. Configure health check.
Health check is mandatory for the AI applications imported using a large
model to identify unavailable services that are displayed as started.

Figure 5-23 Using a custom engine, enabling dynamic loading, and
configuring health check

Deploying a Real-Time Service

When deploying the service, complete the following configurations:

1. Customize the deployment timeout interval.
Generally, the time for loading and starting a large model is longer than that
for a common model. Set Timeout to a proper value. Otherwise, the timeout
may elapse prior to the completion of the model startup, and the deployment
may fail.

2. Add an environment variable.
During service deployment, add the following environment variable to set the
service traffic load balancing policy to cluster affinity, preventing unready
service instances from affecting the prediction success rate:
MODELARTS_SERVICE_TRAFFIC_POLICY: cluster

Figure 5-24 Customizing the deployment timeout interval and adding an
environment variable

You are advised to deploy multiple instances to improve service reliability.

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 164

5.6 Migrating a Third-Party Inference Framework to a
Custom Inference Engine

Context
ModelArts allows the deployment of third-party inference frameworks. This
section describes how to migrate TF Serving and Triton to a custom inference
engine.

● TensorFlow Serving (TF Serving) is a flexible, high-performance model
deployment system for machine learning. It provides model version
management and service rollback capabilities. By configuring parameters such
as the model path, model port, and model name, native TF Serving images
can quickly start providing services which can be accessed through gRPC and
HTTP RESTful APIs.

● Triton is a high-performance inference service framework developed by
NVIDIA. It supports multiple service protocols, including HTTP and gRPC.
Additionally, Triton is compatible with various inference engine backends such
as TensorFlow, TensorRT, PyTorch, and ONNX Runtime. Notably, it enables
multi-model concurrency and dynamic batching, effectively optimizing GPU
utilization and enhancing inference service performance.

The migration of a third-party framework to a ModelArts inference framework
requires reconstruction of the native third-party framework image. After that,
ModelArts model version management and dynamic model loading can be used.
This section shows how to complete such a reconstruction. After an image of the
custom engine is created, you can use it to create an AI application version and
deploy and manage services using the AI application.

The following figure shows the reconstruction items.

Figure 5-25 Reconstruction items

The reconstruction process may differ for images from various frameworks. For
details, see the migration procedure specific to the target framework.

● Migrating TF Serving
● Migrating Triton

Migrating TF Serving
Step 1 Add user ma-user.

The image is built based on the native tensorflow/serving:2.8.0 image. The user
group 100 exists in the image by default. Run the following command in the
Dockerfile to add user ma-user:

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 165

RUN useradd -d /home/ma-user -m -u 1000 -g 100 -s /bin/bash ma-user

Step 2 Set up an Nginx proxy to support HTTPS.

After the protocol is converted to HTTPS, the exposed port changes from 8501 of
TF Serving to 8080.

1. Run the following commands in the Dockerfile to install and configure Nginx:
RUN apt-get update && apt-get -y --no-install-recommends install nginx && apt-get clean
RUN mkdir /home/mind && \
 mkdir -p /etc/nginx/keys && \
 mkfifo /etc/nginx/keys/fifo && \
 chown -R ma-user:100 /home/mind && \
 rm -rf /etc/nginx/conf.d/default.conf && \
 chown -R ma-user:100 /etc/nginx/ && \
 chown -R ma-user:100 /var/log/nginx && \
 chown -R ma-user:100 /var/lib/nginx && \
 sed -i "s#/var/run/nginx.pid#/home/ma-user/nginx.pid#g" /etc/init.d/nginx
ADD nginx /etc/nginx
ADD run.sh /home/mind/
ENTRYPOINT []
CMD /bin/bash /home/mind/run.sh

2. Create the Nginx directory.
nginx
├──nginx.conf
└──conf.d
 ├── modelarts-model-server.conf

3. Write the nginx.conf file.
user ma-user 100;
worker_processes 2;
pid /home/ma-user/nginx.pid;
include /etc/nginx/modules-enabled/*.conf;
events {
 worker_connections 768;
}
http {
 ##
 # Basic Settings
 ##
 sendfile on;
 tcp_nopush on;
 tcp_nodelay on;
 types_hash_max_size 2048;
 fastcgi_hide_header X-Powered-By;
 port_in_redirect off;
 server_tokens off;
 client_body_timeout 65s;
 client_header_timeout 65s;
 keepalive_timeout 65s;
 send_timeout 65s;
 # server_names_hash_bucket_size 64;
 # server_name_in_redirect off;
 include /etc/nginx/mime.types;
 default_type application/octet-stream;
 ##
 # SSL Settings
 ##
 ssl_protocols TLSv1.2;
 ssl_prefer_server_ciphers on;
 ssl_ciphers ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES128-GCM-SHA256;
 ##
 # Logging Settings
 ##
 access_log /var/log/nginx/access.log;
 error_log /var/log/nginx/error.log;
 ##
 # Gzip Settings
 ##

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 166

 gzip on;
 ##
 # Virtual Host Configs
 ##
 include /etc/nginx/conf.d/modelarts-model-server.conf;
}

4. Write the modelarts-model-server.conf configuration file.
server {
 client_max_body_size 15M;
 large_client_header_buffers 4 64k;
 client_header_buffer_size 1k;
 client_body_buffer_size 16k;
 ssl_certificate /etc/nginx/ssl/server/server.crt;
 ssl_password_file /etc/nginx/keys/fifo;
 ssl_certificate_key /etc/nginx/ssl/server/server.key;
 # setting for mutual ssl with client
 ##
 # header Settings
 ##
 add_header X-XSS-Protection "1; mode=block";
 add_header X-Frame-Options SAMEORIGIN;
 add_header X-Content-Type-Options nosniff;
 add_header Strict-Transport-Security "max-age=31536000; includeSubdomains;";
 add_header Content-Security-Policy "default-src 'self'";
 add_header Cache-Control "max-age=0, no-cache, no-store, must-revalidate";
 add_header Pragma "no-cache";
 add_header Expires "-1";
 server_tokens off;
 port_in_redirect off;
 fastcgi_hide_header X-Powered-By;
 ssl_session_timeout 2m;
 ##
 # SSL Settings
 ##
 ssl_protocols TLSv1.2;
 ssl_prefer_server_ciphers on;
 ssl_ciphers ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES128-GCM-SHA256;
 listen 0.0.0.0:8080 ssl;
 error_page 502 503 /503.html;
 location /503.html {
 return 503 '{"error_code": "ModelArts.4503","error_msg": "Failed to connect to backend service,
please confirm your service is connectable. "}';
 }
 location / {
limit_req zone=mylimit;
limit_req_status 429;
 proxy_pass http://127.0.0.1:8501;
 }
}

5. Create a startup script.

NO TE

Before executing the TF Serving startup script, you must create an SSL certificate.

The sample code of the startup script run.sh is as follows:
#!/bin/bash
mkdir -p /etc/nginx/ssl/server && cd /etc/nginx/ssl/server
cipherText=$(openssl rand -base64 32)
openssl genrsa -aes256 -passout pass:"${cipherText}" -out server.key 2048
openssl rsa -in server.key -passin pass:"${cipherText}" -pubout -out rsa_public.key
openssl req -new -key server.key -passin pass:"${cipherText}" -out server.csr -subj "/C=CN/ST=GD/L=SZ/
O=Huawei/OU=ops/CN=*.huawei.com"
openssl genrsa -out ca.key 2048
openssl req -new -x509 -days 3650 -key ca.key -out ca-crt.pem -subj "/C=CN/ST=GD/L=SZ/O=Huawei/
OU=dev/CN=ca"
openssl x509 -req -days 3650 -in server.csr -CA ca-crt.pem -CAkey ca.key -CAcreateserial -out server.crt
service nginx start &

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 167

echo ${cipherText} > /etc/nginx/keys/fifo
unset cipherText
sh /usr/bin/tf_serving_entrypoint.sh

Step 3 Modify the default model path to support ModelArts model dynamic loading.

Run the following commands in the Dockerfile to change the default model path:

ENV MODEL_BASE_PATH /home/mind
ENV MODEL_NAME model

----End

Dockerfile example:

FROM tensorflow/serving:2.8.0
RUN useradd -d /home/ma-user -m -u 1000 -g 100 -s /bin/bash ma-user
RUN apt-get update && apt-get -y --no-install-recommends install nginx && apt-get clean
RUN mkdir /home/mind && \
 mkdir -p /etc/nginx/keys && \
 mkfifo /etc/nginx/keys/fifo && \
 chown -R ma-user:100 /home/mind && \
 rm -rf /etc/nginx/conf.d/default.conf && \
 chown -R ma-user:100 /etc/nginx/ && \
 chown -R ma-user:100 /var/log/nginx && \
 chown -R ma-user:100 /var/lib/nginx && \
 sed -i "s#/var/run/nginx.pid#/home/ma-user/nginx.pid#g" /etc/init.d/nginx
ADD nginx /etc/nginx
ADD run.sh /home/mind/
ENV MODEL_BASE_PATH /home/mind
ENV MODEL_NAME model
ENTRYPOINT []
CMD /bin/bash /home/mind/run.sh

Migrating Triton
This section uses the nvcr.io/nvidia/tritonserver:23.03-py3 image provided by
NVIDIA for adaptation and the open-source foundation model LLaMA 7B for
inference.

Step 1 Add user ma-user.

The triton-server user, whose ID is 1000, exists in the Triton image by default.
Change the triton-server user ID and add the ma-user user by running this
command in the Dockerfile.

RUN usermod -u 1001 triton-server && useradd -d /home/ma-user -m -u 1000 -g 100 -s /bin/bash ma-user

Step 2 Set up an Nginx proxy to support HTTPS.

1. Run the following commands in the Dockerfile to install and configure Nginx:
RUN apt-get update && apt-get -y --no-install-recommends install nginx && apt-get clean && \
 mkdir /home/mind && \
 mkdir -p /etc/nginx/keys && \
 mkfifo /etc/nginx/keys/fifo && \
 chown -R ma-user:100 /home/mind && \
 rm -rf /etc/nginx/conf.d/default.conf && \
 chown -R ma-user:100 /etc/nginx/ && \
 chown -R ma-user:100 /var/log/nginx && \
 chown -R ma-user:100 /var/lib/nginx && \
 sed -i "s#/var/run/nginx.pid#/home/ma-user/nginx.pid#g" /etc/init.d/nginx

2. Create the Nginx directory as follows:
nginx
├──nginx.conf
└──conf.d
 ├── modelarts-model-server.conf

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 168

3. Write the nginx.conf file.
user ma-user 100;
worker_processes 2;
pid /home/ma-user/nginx.pid;
include /etc/nginx/modules-enabled/*.conf;
events {
 worker_connections 768;
}
http {
 ##
 # Basic Settings
 ##
 sendfile on;
 tcp_nopush on;
 tcp_nodelay on;
 types_hash_max_size 2048;
 fastcgi_hide_header X-Powered-By;
 port_in_redirect off;
 server_tokens off;
 client_body_timeout 65s;
 client_header_timeout 65s;
 keepalive_timeout 65s;
 send_timeout 65s;
 # server_names_hash_bucket_size 64;
 # server_name_in_redirect off;
 include /etc/nginx/mime.types;
 default_type application/octet-stream;
 ##
 # SSL Settings
 ##
 ssl_protocols TLSv1.2;
 ssl_prefer_server_ciphers on;
 ssl_ciphers ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES128-GCM-SHA256;
 ##
 # Logging Settings
 ##
 access_log /var/log/nginx/access.log;
 error_log /var/log/nginx/error.log;
 ##
 # Gzip Settings
 ##
 gzip on;
 ##
 # Virtual Host Configs
 ##
 include /etc/nginx/conf.d/modelarts-model-server.conf;
}

4. Write the modelarts-model-server.conf configuration file.
server {
 client_max_body_size 15M;
 large_client_header_buffers 4 64k;
 client_header_buffer_size 1k;
 client_body_buffer_size 16k;
 ssl_certificate /etc/nginx/ssl/server/server.crt;
 ssl_password_file /etc/nginx/keys/fifo;
 ssl_certificate_key /etc/nginx/ssl/server/server.key;
 # setting for mutual ssl with client
 ##
 # header Settings
 ##
 add_header X-XSS-Protection "1; mode=block";
 add_header X-Frame-Options SAMEORIGIN;
 add_header X-Content-Type-Options nosniff;
 add_header Strict-Transport-Security "max-age=31536000; includeSubdomains;";
 add_header Content-Security-Policy "default-src 'self'";
 add_header Cache-Control "max-age=0, no-cache, no-store, must-revalidate";
 add_header Pragma "no-cache";
 add_header Expires "-1";
 server_tokens off;

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 169

 port_in_redirect off;
 fastcgi_hide_header X-Powered-By;
 ssl_session_timeout 2m;
 ##
 # SSL Settings
 ##
 ssl_protocols TLSv1.2;
 ssl_prefer_server_ciphers on;
 ssl_ciphers ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES128-GCM-SHA256;
 listen 0.0.0.0:8080 ssl;
 error_page 502 503 /503.html;
 location /503.html {
 return 503 '{"error_code": "ModelArts.4503","error_msg": "Failed to connect to backend service,
please confirm your service is connectable. "}';
 }
 location / {
limit_req zone=mylimit;
limit_req_status 429;
 proxy_pass http://127.0.0.1:8000;
 }
}

5. Create a startup script run.sh.

NO TE

Before executing the Triton startup script, you must create an SSL certificate.
#!/bin/bash
mkdir -p /etc/nginx/ssl/server && cd /etc/nginx/ssl/server
cipherText=$(openssl rand -base64 32)
openssl genrsa -aes256 -passout pass:"${cipherText}" -out server.key 2048
openssl rsa -in server.key -passin pass:"${cipherText}" -pubout -out rsa_public.key
openssl req -new -key server.key -passin pass:"${cipherText}" -out server.csr -subj "/C=CN/ST=GD/L=SZ/
O=Huawei/OU=ops/CN=*.huawei.com"
openssl genrsa -out ca.key 2048
openssl req -new -x509 -days 3650 -key ca.key -out ca-crt.pem -subj "/C=CN/ST=GD/L=SZ/O=Huawei/
OU=dev/CN=ca"
openssl x509 -req -days 3650 -in server.csr -CA ca-crt.pem -CAkey ca.key -CAcreateserial -out server.crt
service nginx start &
echo ${cipherText} > /etc/nginx/keys/fifo
unset cipherText

bash /home/mind/model/triton_serving.sh

Step 3 Set up tensorrtllm_backend.

1. Obtain the source code of tensorrtllm_backend; install dependencies
(TensorRT, CMake, and PyTorch); compile and install.
get tensortllm_backend source code
WORKDIR /opt/tritonserver
RUN apt-get install -y --no-install-recommends rapidjson-dev python-is-python3 git-lfs && \
 git config --global http.sslVerify false && \
 git config --global http.postBuffer 1048576000 && \
 git clone -b v0.5.0 https://github.com/triton-inference-server/tensorrtllm_backend.git --depth 1 && \
 cd tensorrtllm_backend && git lfs install && \
 git config submodule.tensorrt_llm.url https://github.com/NVIDIA/TensorRT-LLM.git && \
 git submodule update --init --recursive --depth 1 && \
 pip3 install -r requirements.txt

build tensorrtllm_backend
WORKDIR /opt/tritonserver/tensorrtllm_backend/tensorrt_llm
RUN sed -i "s/wget/wget --no-check-certificate/g" docker/common/install_tensorrt.sh && \
 bash docker/common/install_tensorrt.sh && \
 export LD_LIBRARY_PATH=/usr/local/tensorrt/lib:${LD_LIBRARY_PATH} && \
 sed -i "s/wget/wget --no-check-certificate/g" docker/common/install_cmake.sh && \
 bash docker/common/install_cmake.sh && \
 export PATH=/usr/local/cmake/bin:$PATH && \
 bash docker/common/install_pytorch.sh pypi && \
 python3 ./scripts/build_wheel.py --trt_root /usr/local/tensorrt && \

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 170

 pip install ./build/tensorrt_llm-0.5.0-py3-none-any.whl && \
 rm -f ./build/tensorrt_llm-0.5.0-py3-none-any.whl && \
 cd ../inflight_batcher_llm && bash scripts/build.sh && \
 mkdir /opt/tritonserver/backends/tensorrtllm && \
 cp ./build/libtriton_tensorrtllm.so /opt/tritonserver/backends/tensorrtllm/ && \
 chown -R ma-user:100 /opt/tritonserver

2. Create the startup script triton_serving.sh of Triton serving. The following is
an example for the LLaMA model:
MODEL_NAME=llama_7b
MODEL_DIR=/home/mind/model/${MODEL_NAME}
OUTPUT_DIR=/tmp/llama/7B/trt_engines/fp16/1-gpu/
MAX_BATCH_SIZE=1
export LD_LIBRARY_PATH=/usr/local/tensorrt/lib:${LD_LIBRARY_PATH}

build tensorrt_llm engine
cd /opt/tritonserver/tensorrtllm_backend/tensorrt_llm/examples/llama
python build.py --model_dir ${MODEL_DIR} \
 --dtype float16 \
 --remove_input_padding \
 --use_gpt_attention_plugin float16 \
 --enable_context_fmha \
 --use_weight_only \
 --use_gemm_plugin float16 \
 --output_dir ${OUTPUT_DIR} \
 --paged_kv_cache \
 --max_batch_size ${MAX_BATCH_SIZE}

set config parameters
cd /opt/tritonserver/tensorrtllm_backend
mkdir triton_model_repo
cp all_models/inflight_batcher_llm/* triton_model_repo/ -r

python3 tools/fill_template.py -i triton_model_repo/preprocessing/config.pbtxt tokenizer_dir:$
{MODEL_DIR},tokenizer_type:llama,triton_max_batch_size:$
{MAX_BATCH_SIZE},preprocessing_instance_count:1
python3 tools/fill_template.py -i triton_model_repo/postprocessing/config.pbtxt tokenizer_dir:$
{MODEL_DIR},tokenizer_type:llama,triton_max_batch_size:$
{MAX_BATCH_SIZE},postprocessing_instance_count:1
python3 tools/fill_template.py -i triton_model_repo/ensemble/config.pbtxt triton_max_batch_size:$
{MAX_BATCH_SIZE}
python3 tools/fill_template.py -i triton_model_repo/tensorrt_llm/config.pbtxt triton_max_batch_size:$
{MAX_BATCH_SIZE},decoupled_mode:False,max_beam_width:1,engine_dir:$
{OUTPUT_DIR},max_tokens_in_paged_kv_cache:2560,max_attention_window_size:2560,kv_cache_free_
gpu_mem_fraction:0.5,exclude_input_in_output:True,enable_kv_cache_reuse:False,batching_strategy:V1,
max_queue_delay_microseconds:600

launch tritonserver
python3 scripts/launch_triton_server.py --world_size 1 --model_repo=triton_model_repo/
while true; do sleep 10000; done

Description of some parameters:
– MODEL_NAME: name of the OBS folder where the model weight file in

Hugging Face format is stored.
– OUTPUT_DIR: path to the model file converted by TensorRT-LLM in the

container.
The complete Dockerfile is as follows:
FROM nvcr.io/nvidia/tritonserver:23.03-py3

add ma-user and install nginx
RUN usermod -u 1001 triton-server && useradd -d /home/ma-user -m -u 1000 -g 100 -s /bin/bash
ma-user && \
 apt-get update && apt-get -y --no-install-recommends install nginx && apt-get clean && \
 mkdir /home/mind && \
 mkdir -p /etc/nginx/keys && \
 mkfifo /etc/nginx/keys/fifo && \
 chown -R ma-user:100 /home/mind && \

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 171

 rm -rf /etc/nginx/conf.d/default.conf && \
 chown -R ma-user:100 /etc/nginx/ && \
 chown -R ma-user:100 /var/log/nginx && \
 chown -R ma-user:100 /var/lib/nginx && \
 sed -i "s#/var/run/nginx.pid#/home/ma-user/nginx.pid#g" /etc/init.d/nginx

get tensortllm_backend source code
WORKDIR /opt/tritonserver
RUN apt-get install -y --no-install-recommends rapidjson-dev python-is-python3 git-lfs && \
 git config --global http.sslVerify false && \
 git config --global http.postBuffer 1048576000 && \
 git clone -b v0.5.0 https://github.com/triton-inference-server/tensorrtllm_backend.git --depth 1 && \
 cd tensorrtllm_backend && git lfs install && \
 git config submodule.tensorrt_llm.url https://github.com/NVIDIA/TensorRT-LLM.git && \
 git submodule update --init --recursive --depth 1 && \
 pip3 install -r requirements.txt

build tensorrtllm_backend
WORKDIR /opt/tritonserver/tensorrtllm_backend/tensorrt_llm
RUN sed -i "s/wget/wget --no-check-certificate/g" docker/common/install_tensorrt.sh && \
 bash docker/common/install_tensorrt.sh && \
 export LD_LIBRARY_PATH=/usr/local/tensorrt/lib:${LD_LIBRARY_PATH} && \
 sed -i "s/wget/wget --no-check-certificate/g" docker/common/install_cmake.sh && \
 bash docker/common/install_cmake.sh && \
 export PATH=/usr/local/cmake/bin:$PATH && \
 bash docker/common/install_pytorch.sh pypi && \
 python3 ./scripts/build_wheel.py --trt_root /usr/local/tensorrt && \
 pip install ./build/tensorrt_llm-0.5.0-py3-none-any.whl && \
 rm -f ./build/tensorrt_llm-0.5.0-py3-none-any.whl && \
 cd ../inflight_batcher_llm && bash scripts/build.sh && \
 mkdir /opt/tritonserver/backends/tensorrtllm && \
 cp ./build/libtriton_tensorrtllm.so /opt/tritonserver/backends/tensorrtllm/ && \
 chown -R ma-user:100 /opt/tritonserver

ADD nginx /etc/nginx
ADD run.sh /home/mind/
CMD /bin/bash /home/mind/run.sh

After the image is created, register the image with Huawei Cloud SWR for
deploying inference services on ModelArts.

Step 4 Use the adapted image to deploy a real-time inference service on ModelArts.

1. Create a model directory in OBS and upload the triton_serving.sh file and
llama_7b folder to the model directory.

Figure 5-26 Uploading files to the model directory

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 172

2. Create an AI application. Set Meta Model Source to OBS and select the meta
model from the model directory. Set AI Engine to Custom. Set Engine
Package to the image created in Step 3.

Figure 5-27 Creating an AI application

3. Deploy the created AI application as a real-time service. Generally, the time
for loading and starting a large model is longer than that for a common
model. Set Timeout to a proper value. Otherwise, the timeout may elapse
prior to the completion of the model startup, and the deployment may fail.

Figure 5-28 Deploying a real-time service

4. Call the real-time service for foundation model inference. Set the request path
to /v2/models/ensemble/infer. The following is an example call:
{
 "inputs": [
 {
 "name": "text_input",
 "shape": [1, 1],
 "datatype": "BYTES",
 "data": ["what is machine learning"]
 },
 {
 "name": "max_tokens",
 "shape": [1, 1],
 "datatype": "UINT32",
 "data": [64]
 },
 {

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 173

 "name": "bad_words",
 "shape": [1, 1],
 "datatype": "BYTES",
 "data": [""]
 },
 {
 "name": "stop_words",
 "shape": [1, 1],
 "datatype": "BYTES",
 "data": [""]
 },
 {
 "name": "pad_id",
 "shape": [1, 1],
 "datatype": "UINT32",
 "data": [2]
 },
 {
 "name": "end_id",
 "shape": [1, 1],
 "datatype": "UINT32",
 "data": [2]
 }
],
 "outputs": [
 {
 "name": "text_output"
 }
]
}

NO TE

– In "inputs", the element with the "name" "text_input" represents the input, and its
"data" field specifies a specific input statement. In this example, the input
statement is "what is machine learning".

– The element with the "name" "max_tokens" indicates the maximum number of
output tokens. In this case, the value is 64.

Figure 5-29 Calling a real-time service

----End

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 174

5.7 High-Speed Access to Inference Services Through
VPC Peering

Context

When accessing a real-time service, you may require:

● High throughput and low latency

● TCP or RPC requests

To meet these requirements, ModelArts enables high-speed access through VPC
peering.

In high-speed access through VPC peering, your service requests are directly sent
to instances through VPC peering but not through the inference platform. This
accelerates service access.

NO TE

The following functions that are available through the inference platform will be
unavailable if you use high-speed access:

● Authentication

● Traffic distribution by configuration

● Load balancing

● Alarm, monitoring, and statistics

Figure 5-30 High-speed access through VPC peering

Preparations

Deploy a real-time service in a dedicated resource pool and ensure the service is
running.

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 175

NO TICE

● For details about how to deploy services in new-version dedicated resource
pools, see Comprehensive Upgrades to ModelArts Resource Pool
Management Functions.

● Only the services deployed in a dedicated resource pool support high-speed
access through VPC peering.

● High-speed access through VPC peering is available only for real-time services.
● Due to traffic control, there is a limit on how often you can get the IP address

and port number of a real-time service. The number of calls of each tenant
account cannot exceed 2000 per minute, and that of each IAM user account
cannot exceed 20 per minute.

● High-speed access through VPC peering is available only for the services
deployed using the AI applications imported from custom images.

Procedure
To enable high-speed access to a real-time service through VPC peering, perform
the following operations:

1. Interconnect the dedicated resource pool to the VPC.
2. Create an ECS in the VPC.
3. Obtain the IP address and port number of the real-time service.
4. Access the service through the IP address and port number.

Step 1 Interconnect the dedicated resource pool to the VPC.

Log in to the ModelArts management console, choose Dedicated Resource Pools
> Elastic Cluster, locate the dedicated resource pool used for service deployment,
and click its name/ID to go to the resource pool details page. Obtain the network
configuration. Switch back to the dedicated resource pool list, click the Network
tab, locate the network associated with the dedicated resource pool, and
interconnect it with the VPC. After the VPC is accessed, the VPC will be displayed
on the network list and resource pool details pages. Click the VPC to go to the
details page.

Figure 5-31 Locating the target dedicated resource pool

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 176

https://support.huaweicloud.com/intl/en-us/resmgmt-modelarts/resmgmt-modelarts_0002.html
https://support.huaweicloud.com/intl/en-us/resmgmt-modelarts/resmgmt-modelarts_0002.html

Figure 5-32 Obtaining the network configuration

Figure 5-33 Interconnecting the VPC

Step 2 Create an ECS in the VPC.

Log in to the ECS management console and click Buy ECS in the upper right
corner. On the Buy ECS page, configure basic settings and click Next: Configure
Network. On the Configure Network page, select the VPC connected in Step 1,
configure other parameters, confirm the settings, and click Submit. When the ECS
status changes to Running, the ECS has been created. Click its name/ID to go to
the server details page and view the VPC configuration.

Figure 5-34 Selecting a VPC when purchasing an ECS

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 177

Step 3 Obtain the IP address and port number of the real-time service.

GUI software, for example, Postman can be used to obtain the IP address and port
number. Alternatively, log in to the ECS, create a Python environment, and execute
code to obtain the service IP address and port number.

API:

GET /v1/{project_id}/services/{service_id}/predict/endpoints?type=host_endpoints

● Method 1: Obtain the IP address and port number using GUI software.

Figure 5-35 Example response

● Method 2: Obtain the IP address and port number using Python.
The following parameters in the Python code below need to be modified:
– project_id: your project ID. To obtain it, see Obtaining a Project ID and

Name.
– service_id: service ID, which can be viewed on the service details page.

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 178

https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0147.html
https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0147.html

– REGION_ENDPOINT: service endpoint. To obtain it, see Endpoint.
def get_app_info(project_id, service_id):
 list_host_endpoints_url = "{}/v1/{}/services/{}/predict/endpoints?type=host_endpoints"
 url = list_host_endpoints_url.format(REGION_ENDPOINT, project_id, service_id)
 headers = {'X-Auth-Token': X_Auth_Token}
 response = requests.get(url, headers=headers)
 print(response.content)

Step 4 Access the service through the IP address and port number.

Log in to the ECS and access the real-time service either by running Linux
commands or by creating a Python environment and executing Python code.
Obtain the values of schema, ip, and port from Step 3.
● Run the following command to access the real-time service:

curl --location --request POST 'http://192.168.205.58:31997' \
--header 'Content-Type: application/json' \
--data-raw '{"a":"a"}'

Figure 5-36 Accessing a real-time service

● Create a Python environment and execute Python code to access the real-
time service.
def vpc_infer(schema, ip, port, body):
 infer_url = "{}://{}:{}"
 url = infer_url.format(schema, ip, port)
 response = requests.post(url, data=body)
 print(response.content)

NO TE

High-speed access does not support load balancing. You need to customize load balancing
policies when you deploy multiple instances.

----End

5.8 Full-Process Development of WebSocket Real-Time
Services

Context

WebSocket is a network transmission protocol that supports full-duplex
communication over a single TCP connection. It is located at the application layer
in an OSI model. The WebSocket communication protocol was established by IETF
in 2011 as standard RFC 6455 and supplemented by RFC 7936. The WebSocket API
in the Web IDL is standardized by W3C.

WebSocket simplifies data exchange between the client and the server and allows
the server to proactively push data to the client. In the WebSocket API, if the
initial handshake between the client and the server is successful, a persistent
connection will be established between them and data can be transferred
bidirectionally.

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 179

https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0141.html

Prerequisites
● You are experienced in developing Java and familiar with JAR packaging.
● You have basic knowledge and calling methods of WebSocket.
● You are familiar with the method of creating an image using Docker.

Constraints
● WebSocket supports only the deployment of real-time services.
● WebSocket supports only real-time services deployed using AI applications

imported from custom images.

Preparations

Before using WebSocket in ModelArts for inference, bring your own custom image.
The custom image must be able to provide complete WebSocket services in a
standalone environment, for example, completing WebSocket handshakes and
exchanging data between the client to the server. The model inference is
implemented in the custom image, including downloading the model, loading the
model, performing preprocessing, completing inference, and assembling the
response body.

Procedure

To develop a WebSocket real-time service, perform the following operations:

● Uploading the Image to SWR
● Creating an AI Application Using the Image
● Deploying the AI Application as a Real-Time Service
● Calling the WebSocket Real-Time Service

Uploading the Image to SWR

Upload the local image to SWR. For details, see How Can I Log In to SWR and
Upload Images to It?

Creating an AI Application Using the Image
1. Log in to the ModelArts management console, choose AI Application

Management > AI Applications, and click Create under My AI Applications.
The page for creating an AI application is displayed.

2. Configure the AI application.
– Meta Model Source: Select Container image.
– Container Image Path: Select the path specified in Uploading the

Image to SWR.
– Container API: Configure this parameter based on site requirements.
– Health Check: Retain default settings. If health check has been

configured in the image, configure the health check parameters based on
those configured in the image.

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 180

https://support.huaweicloud.com/intl/en-us/docker-modelarts/docker-modelarts_0018.html
https://support.huaweicloud.com/intl/en-us/docker-modelarts/docker-modelarts_0018.html

Figure 5-37 AI application parameters

3. Click Create now. In the AI application list that is displayed, check the AI
application status. When it changes to Normal, the AI application has been
created.

Deploying the AI Application as a Real-Time Service
1. Log in to the ModelArts management console, choose Service Deployment >

Real-Time Services, and click Deploy.
2. Configure the service.

– AI Application and Version: Select the AI application and version created
in Creating an AI Application Using the Image.

– WebSocket: Enable this function.

Figure 5-38 WebSocket

3. Click Next, confirm the configuration, and click Submit. In the real-time
service list you will be redirected to, check the service status. When it changes
to Running, the real-time service has been deployed.

Calling a WebSocket Real-Time Service

WebSocket itself does not require additional authentication. ModelArts WebSocket
is WebSocket Secure-compliant, regardless of whether WebSocket or WebSocket
Secure is enabled in the custom image. WebSocket Secure supports only one-way
authentication, from the client to the server.

You can use one of the following authentication methods provided by ModelArts:

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 181

● Access Authenticated Using a Token

● Access Authenticated Using an AK/SK

● Access Authenticated Using an Application

The following section uses GUI software Postman for prediction and token
authentication as an example to describe how to call WebSocket.

1. Establish a WebSocket connection.

2. Exchange data between the WebSocket client and the server.

Step 1 Establish a WebSocket connection.

1. Open Postman of a version later than 8.5, for example, 10.12.0. Click in
the upper left corner and choose File > New. In the displayed dialog box,
select WebSocket Request (beta version currently).

Figure 5-39 WebSocket Request

2. Configure parameters for the WebSocket connection.

Select Raw in the upper left corner. Do not select Socket.IO (a type of
WebSocket implementation, which requires that both the client and the server
run on Socket.IO). In the address box, enter the API Address obtained on the
Usage Guides tab on the service details page. If there is a finer-grained URL
in the custom image, add the URL to the end of the address. If queryString is
available, add this parameter in the params column. Add authentication
information into the header. The header varies depending on the
authentication mode, which is the same as that in the HTTPS-compliant
inference service. Click Connect in the upper right corner to establish a
WebSocket connection.

Figure 5-40 Obtaining the API address

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 182

https://support.huaweicloud.com/intl/en-us/inference-modelarts/inference-modelarts-0023.html
https://support.huaweicloud.com/intl/en-us/inference-modelarts/inference-modelarts-0024.html
https://support.huaweicloud.com/intl/en-us/inference-modelarts/inference-modelarts-0025.html

NO TE

– If the information is correct, CONNECTED will be displayed in the lower right
corner.

– If establishing the connection failed and the status code is 401, check the
authentication.

– If a keyword such as WRONG_VERSION_NUMBER is displayed, check whether the
port configured in the custom image is the same as that configured in WebSocket
or WebSocket Secure.

The following shows an established WebSocket connection.

Figure 5-41 Connection established

NO TICE

Preferentially check the WebSocket service provided by the custom image. The
type of implementing WebSocket varies depending on the tool you used.
Possible issues are as follows: A WebSocket connection can be established but
cannot be maintained, or the connection is interrupted after one request and
needs to be reconnected. ModelArts only ensures that it will not affect the
WebSocket status in a custom image (the API address and authentication
mode may be changed on ModelArts).

Step 2 Exchange data between the WebSocket client and the server.

After the connection is established, WebSocket uses TCP for full-duplex
communication. The WebSocket client sends data to the server. The
implementation types vary depending on the client, and the lib package may also
be different for the same language. Different implementation types are not
considered here.

The format of the data sent by the client is not limited by the protocol. Postman
supports text, JSON, XML, HTML, and Binary data. Take text as an example. Enter
the text data in the text box and click Send on the right to send the request to the
server. If the text is oversized, Postman may be suspended.

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 183

Figure 5-42 Sending data

----End

ModelArts
Best Practices 5 Model Inference

Issue 01 (2024-01-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 184

	Contents
	1 Official Samples
	2 Permissions Management
	2.1 Basic Concepts
	2.2 Permission Management Mechanisms
	2.2.1 IAM
	2.2.2 Agencies and Dependencies
	2.2.3 Workspace

	2.3 Configuration Practices in Typical Scenarios
	2.3.1 Assigning Permissions to Individual Users for Using ModelArts
	2.3.2 Assigning Basic Permissions for Using ModelArts
	2.3.2.1 Scenarios
	2.3.2.2 Step 1 Create a User Group and Add Users to the User Group
	2.3.2.3 Step 2 Assigning Permissions for Using Cloud Services
	2.3.2.4 Step 3 Configure Agent-based ModelArts Access Authorization for the User
	2.3.2.5 Step 4 Verify User Permissions

	2.3.3 Separately Assigning Permissions to Administrators and Developers
	2.3.4 Viewing the Notebook Instances of All IAM Users Under One Tenant Account
	2.3.5 Logging In to a Training Container Using Cloud Shell
	2.3.6 Prohibiting a User from Using a Public Resource Pool
	2.3.7 Granting SFS Turbo Folder Access Permissions to IAM Users

	2.4 FAQ
	2.4.1 What Do I Do If a Message Indicating Insufficient Permissions Is Displayed When I Use ModelArts?

	3 Notebook
	3.1 Creating, Migrating, and Managing Conda Virtual Environments Based on SFS

	4 Model Training
	4.1 Using a Custom Algorithm to Build a Handwritten Digit Recognition Model
	4.2 Example: Creating a Custom Image for Training (PyTorch + CPU/GPU)
	4.3 Example: Creating a Custom Image for Training (MPI + CPU/GPU)
	4.4 Example: Creating a Custom Image for Training (Horovod-PyTorch and GPUs)
	4.5 Example: Creating a Custom Image for Training (MindSpore and GPUs)
	4.6 Example: Creating a Custom Image for Training (TensorFlow and GPUs)

	5 Model Inference
	5.1 Creating a Custom Image and Using It to Create an AI Application
	5.2 Enabling an Inference Service to Access the Internet
	5.3 End-to-End O&M of Inference Services
	5.4 Creating an AI Application Using a Custom Engine
	5.5 Using a Large Model to Create an AI Application and Deploying a Real-Time Service
	5.6 Migrating a Third-Party Inference Framework to a Custom Inference Engine
	5.7 High-Speed Access to Inference Services Through VPC Peering
	5.8 Full-Process Development of WebSocket Real-Time Services

