
Distributed Message Service for RocketMQ

Best Practices

Issue 01

Date 2024-04-17

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2024-04-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Contents

1 Migrating RocketMQ Services.. 1

2 Deduplicating Messages Through Message Idempotence...6

3 Classifying Messages with Topic and Tag..8

4 Ensuring Subscription Consistency..11

5 Avoiding Message Accumulation.. 14

Distributed Message Service for RocketMQ
Best Practices Contents

Issue 01 (2024-04-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

1 Migrating RocketMQ Services

Scenario
RocketMQ service migration involves the following scenarios:

● Migrating RocketMQ from other vendors to DMS for RocketMQ.
● Migrating self-built RocketMQ to DMS for RocketMQ.
● Migrating one RocketMQ instance to another RocketMQ instance in the

cloud.

To migrate metadata, you can use either of the following methods as required:

● Method 1: Run the mqadmin command to export the source instance
metadata and then create a migration task in DMS for RocketMQ.

● Method 2: Export the source topics and consumer groups and then import
them to DMS for RocketMQ using scripts. (Use this method when metadata
cannot be exported using the mqadmin command.)

Prerequisites
1. Configure the network environment.

A RocketMQ instance can be accessed within a VPC or over a public network.
For public network access, the producer and consumer must have public
access permissions, and the following security group rules must be configured.

Table 1-1 Security group rules

Directi
on

Protocol Port Source Description

Inboun
d

TCP 8200 0.0.0.0/0 The port is used for public
access to metadata nodes.

Inboun
d

TCP 10100-10
199

0.0.0.0/0 The port is used for
accessing service nodes.

2. Buy a RocketMQ instance.

For details, see Buying a RocketMQ Instance.

Distributed Message Service for RocketMQ
Best Practices 1 Migrating RocketMQ Services

Issue 01 (2024-04-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

https://support.huaweicloud.com/intl/en-us/usermanual-hrm/hrm-ug-002.html

3. A Linux host is available, JDK v1.8.111 or later has been installed on the
host, and related environment variables have been configured.

Procedure (Using the mqadmin Command to Export the Metadata of the
Source Instance)

Step 1 Migrate metadata to the RocketMQ instance.

1. Obtain the RocketMQ metadata from another cloud or self-hosted RocketMQ.

a. Log in to the host and download the RocketMQ software package.
wget https://archive.apache.org/dist/rocketmq/4.9.8/rocketmq-all-4.9.8-bin-release.zip

b. Decompress the software package.
unzip rocketmq-all-4.9.8-bin-release.zip

c. (Optional) If ACL is enabled for the RocketMQ instance, authentication is
required when you run the mqadmin command.
Switch to the directory where the decompressed software package is
stored and add the following content to the conf/tools.yml file:
accessKey:*******
secretKey:*******

accessKey and secretKey are the username and secret key set on the
Users page of the console.

d. Go to the directory where the decompressed software package is stored
and run the following command to query the cluster name:
sh ./bin/mqadmin clusterList -n {nameserver address and port number}

For example, if the nameserver address and port number are
192.168.0.65:8100, run the following command:
sh ./bin/mqadmin clusterList -n 192.168.0.65:8100

e. Run the following command to export metadata:

▪ If SSL is disabled, run the following command:
sh ./bin/mqadmin exportMetadata -n {nameserver address and port number} -c
{RocketMQ cluster name} -f {Path for storing the exported metadata file}

For example, if the nameserver address and port number are
192.168.0.65:8100, the RocketMQ cluster name is DmsCluster, and
the path for storing exported metadata files is /tmp/rocketmq/
export, run the following command:
sh ./bin/mqadmin exportMetadata -n 192.168.0.65:8100 -c DmsCluster -f /tmp/rocketmq/
export

▪ If SSL is enabled, run the following command:
JAVA_OPT=-Dtls.enable=true sh ./bin/mqadmin exportMetadata -n {nameserver address
and port number} -c {RocketMQ cluster name} -f {path for storing the exported metadata
file}

For example, if the nameserver address and port number are
192.168.0.65:8100, the RocketMQ cluster name is DmsCluster, and
the path for storing exported metadata files is /tmp/rocketmq/
export, run the following command:
JAVA_OPT=-Dtls.enable=true sh ./bin/mqadmin exportMetadata -n 192.168.0.65:8100 -c
DmsCluster -f /tmp/rocketmq/export

2. Migrate metadata on the console.

a. Log in to the DMS for RocketMQ console.
b. Click a RocketMQ instance to go to the instance details page.

Distributed Message Service for RocketMQ
Best Practices 1 Migrating RocketMQ Services

Issue 01 (2024-04-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

https://www.oracle.com/java/technologies/downloads/#java8
https://console-intl.huaweicloud.com/dms/?engine=reliability&agencyId=07ce204d3a0026a31f4cc01edaf65308&locale=en-us#/queue/manager/instances

c. In the navigation pane, choose Metadata Migration.
d. Click Create Migration Task.
e. Configure the migration task by referring to Table 1-2.

Table 1-2 Migration task parameters

Parameter Description

Task Name Unique name of the migration task.

Overwrite ▪ If this option is enabled, configurations in the
metadata file with the same name as the
uploaded file will be modified.
Assume that Topic01 on the source instance
has three read queues, and Topic01 on the
DMS instance has two read queues. If
Overwrite is enabled, Topic01 on the DMS
instance will have three read queues after
migration.

▪ If this option is disabled, migration of the
metadata file with the same name as the
uploaded file will fail.
Assume that the source instance has Topic01
and Topic02, and the DMS instance has
Topic01 and Topic03. If Overwrite is disabled,
migration of the source Topic01 will fail.

Metadata Upload the RocketMQ metadata obtained
from another cloud or self-hosted RocketMQ.

f. Click OK.

After the migration is complete, view Task Status in the migration task
list.

▪ If Task Status is Complete, all metadata has been successfully
migrated.

▪ If Task Status is Failed, some or all metadata fails to be migrated.
Click the migration task name to go to the migration task details
page. In the Migration Result area, view the name of the topic or
consumer group that fails to be migrated and the failure cause.

Step 2 Migrate the production service to the RocketMQ instance.

Change the metadata connection address on the production client to the
metadata connection address of the RocketMQ instance and then restart the
production service. New messages will be sent to the RocketMQ instance.

Step 3 Migrate the consumption service to the RocketMQ instance.

After all messages in the consumer group are consumed, change the metadata
connection address of the consumer client to the metadata connection address of
the RocketMQ instance. New messages will be consumed from the RocketMQ
instance.

Distributed Message Service for RocketMQ
Best Practices 1 Migrating RocketMQ Services

Issue 01 (2024-04-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

Step 4 If there are multiple source RocketMQ instances, migrate services from them one
by one.

----End

Procedure (Metadata Cannot Be Exported Using the mqadmin Command)

Step 1 Log in to the console of another vendor and export the lists of source topics and
consumer groups.

Step 2 Create the topics.txt and groups.txt files and add the source topic list and
consumer group list to the files respectively. Each line contains a topic or
consumer group name. For example:
topic-01
topic-02
...
topic-n

Note: The groups.txt file cannot contain blank lines (for example, a newline
character at the end of a consumer group name). Otherwise, consumer groups
with empty names will be created when the lists are imported to the RocketMQ
instance.

Step 3 Log in to the host and download the RocketMQ software package.
wget https://archive.apache.org/dist/rocketmq/4.9.8/rocketmq-all-4.9.8-bin-release.zip

Step 4 Decompress the software package.
unzip rocketmq-all-4.9.8-bin-release.zip

Step 5 (Optional) If ACL is enabled for the RocketMQ instance, authentication is required
when you run the mqadmin command.

Switch to the directory where the decompressed software package is stored and
add the following content to the conf/tools.yml file:
accessKey:*******
secretKey:*******

accessKey and secretKey are the username and secret key set on the Users page
of the console.

Step 6 Go to the bin directory of the decompressed software package and upload
topics.txt and groups.txt to this directory.

Step 7 Run the following script to import the source topics and consumer groups to DMS
for RocketMQ:
#!/bin/bash

Read groups from groups.txt file
groups=()
while read -r group; do
 groups+=("$group")
done < "groups.txt"

Read topics from topic.txt file
topics=()
while read -r topic; do
 topics+=("$topic")
done < "topics.txt"

Add topics
for topic in "${topics[@]}"; do
 echo "Adding topic: $topic"

Distributed Message Service for RocketMQ
Best Practices 1 Migrating RocketMQ Services

Issue 01 (2024-04-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

 sh mqadmin updateTopic -n <namesrvIp:8100> -c DmsCluster -t "$topic"
done

Add consumer groups
for group in "${groups[@]}"; do
 echo "Adding consumer group: $group"
 sh mqadmin updateSubGroup -n <namesrvIp:8100> -c DmsCluster -g "$group"
done

namesrvIp:8100 indicates the address of the RocketMQ instance.

Step 8 Log in to DMS for RocketMQ console. Go to the Topics and Consumer Groups
pages and check whether the topics and consumer groups are successfully
imported.

Step 9 Migrate the production service to the RocketMQ instance.

Change the metadata connection address on the production client to the
metadata connection address of the RocketMQ instance and then restart the
production service. New messages will be sent to the RocketMQ instance.

Step 10 Migrate the consumption service to the RocketMQ instance.

After all messages in the consumer group are consumed, change the metadata
connection address of the consumer client to the metadata connection address of
the RocketMQ instance. New messages will be consumed from the RocketMQ
instance.

Step 11 If there are multiple source RocketMQ instances, migrate services from them one
by one.

----End

Distributed Message Service for RocketMQ
Best Practices 1 Migrating RocketMQ Services

Issue 01 (2024-04-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

2 Deduplicating Messages Through
Message Idempotence

Overview
In RocketMQ service processes, an idempotent message process refers to a
situation where a message is re-sent and consumed for multiple times and each
consumption result is the same, having no negative effects on services.
Idempotent messages ensure consistency in the final processing results. Services
are not affected no matter how many times a message is re-sent.

Message Repetition Scenarios

In actual applications, messages are re-sent because of intermittent network
disconnections and client faults during message production or consumption.
Message repetition can be classified into two scenarios.

● A producer repeatedly sends a message:
If a producer successfully sends a message to the server but does not receive
a successful response due to an intermittent network disconnection, the
producer determines that the message failed to be sent and tries resending
the message. In this case, the server receives two messages of the same
content. Consumers consume two messages of different IDs but the same
content.

● A consumer repeatedly consumes a message:
A message is successfully delivered to a consumer and processed. If the
consumer fails to commit an updated offset to the server due to an
intermittent network disconnection, the server determines that the message
failed to be delivered. To ensure that the message is consumed at least once,
the server retries delivering the message. As a result, the consumer receives
the same message (ID and content) as the previously processed one.

Take payment as an example. Assume that a customer makes payment and
receives multiple bills due to unstable Internet connection. However, the billing
should take place only once and the merchant should generate only one order
placement.

Distributed Message Service for RocketMQ
Best Practices

2 Deduplicating Messages Through Message
Idempotence

Issue 01 (2024-04-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

Procedure
Messages with different IDs may have the same content, so the ID cannot be used
as the unique identifier. RocketMQ supports idempotent messages by using the
message key (unique service identifier) to identify messages. The sample code for
configuring a message key is as follows:

Message message = new Message();
message.setKey("Order_id"); // Set the message key, which can be the unique service identifier such as
the order placement ID.
SentResult sendResult = mqProducer.send(message);

When a producer sends a message, the message has a unique key. When
consuming the message, a consumer reads the unique message identifier (such as
the order placement ID) with getKeys(). The service logic can implement
idempotence with the unique identifier.

Distributed Message Service for RocketMQ
Best Practices

2 Deduplicating Messages Through Message
Idempotence

Issue 01 (2024-04-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

3 Classifying Messages with Topic and Tag

Overview
Topics are the basic logical unit of messages in message production and
consumption. Each topic contains several messages and each message belongs to
only one topic.

Tags are used to identify message of different types. Messages for different
purposes in the same business unit can have different tags in the same topic. Tags
ensure the clarity and coherency of code and facilitate query in RocketMQ.
Consumers can implement different consumption logic for different topics based
on tags to achieve better scalability.

Messages are first classified into topics and then with tags as shown in the
following figure.

Scenario

Use topics and tags properly to ensure clear and efficient service structure. You
can decide how to use topics and tags based on your needs.

● Message type: RocketMQ messages include normal, ordered, scheduled/
delayed, and transactional messages. Different types of messages should be
classified with topics, not tags.

● Message priority: Messages of a high priority should be in topics different
from those with a low priority.

● Service relationship: Messages from unrelated services should be classified in
topics. Messages from closely related services should be sent to the same
topic, and classified with tags based on subtypes or sequence.

Procedure
Take logistics transportation as an example. Order messages of fresh goods and
other goods are of different types, so they can be classified by two topics:

Distributed Message Service for RocketMQ
Best Practices 3 Classifying Messages with Topic and Tag

Issue 01 (2024-04-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

Topic_Common and Topic_Fresh. For each message type, you can use different
tags to identify order destination provinces.

● Topic: Topic_Common
– Tag = Province_A
– Tag = Province_B

● Topic: Topic_Fresh
– Tag = Province_A
– Tag = Province_B

The following is message production sample code for a common goods order sent
to province A:

Message msg = new Message("Topic_Common", "Province_A" /* Tag */, ("Order_id " +
i).getBytes(RemotingHelper.DEFAULT_CHARSET));

The following is subscription sample code for a fresh goods order sent to province
A and province B:

consumer.subscribe("Topic_Fresh", "Province_A || Province_B");

Different Consumers Consume Different Tags
Different consumers may consume messages with different tags in the same topic.
For different tags in the same topic, improper consumer group settings lead to
chaotic consumption.

For example, there are Tags A and B in Topic A. Consumer A subscribes to Tag A.
Consumer B subscribes to Tag B.

If Consumers A and B are in the same consumer group, messages with Tag A are
evenly sent to Consumers A and B. Consumer B did not subscribe to Tag A, so it
filters out messages with Tag A. As a result, some Tag A messages are not
consumed.

Figure 3-1 Incorrect consumer group settings

To solve this problem, configure Consumers A and B with different consumer
groups.

Distributed Message Service for RocketMQ
Best Practices 3 Classifying Messages with Topic and Tag

Issue 01 (2024-04-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

Figure 3-2 Correct consumer group settings

Distributed Message Service for RocketMQ
Best Practices 3 Classifying Messages with Topic and Tag

Issue 01 (2024-04-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

4 Ensuring Subscription Consistency

Overview
A consistent subscription indicates that all topics and tags subscribed by all
consumers in the same consumer group are the same. An inconsistent subscription
causes disordered consumption logic and even message losses.

Principle

RocketMQ assigns message queues for each topic. The more queues, the higher
the consumption concurrency. In distributed application scenarios, multiple
consumers in the same consumer group jointly consume messages from all
queues in a topic. Queues are assigned by consumer group and evenly assigned to
the consumers in a consumer group, regardless of whether a consumer has
subscribed to the topic. Each consumer is assigned some queues of a topic. Each
queue is assigned to only one consumer.

Correct Subscription

In distributed application scenarios, all the consumers in a consumer group have
the same consumer group ID. They must subscribe to the same topic and tag
(consistent subscription) to ensure correct consumption logic and no message
losses.

● Consumers in the same consumer group must subscribe to the same topic.
For example, assume that Consumers A and B are in Consumer Group 1 and
Consumer A subscribes to Topics A and B. Then, Consumer B must also
subscribe to both Topics A and B, and cannot subscribe to only Topic A or B or
even Topic C.

● The tags in the topic subscribed by consumers in the same consumer group
must be the same, including the tag quantity and sequence. For example,
assume that Consumers A and B are in Consumer Group 2. Consumer A
subscribes to Tag1||Tag2 in Topic A. Then, when subscribing to Topic A,
Consumer B must also subscribe to Tag1||Tag2, and cannot subscribe only to
Tag 1 or 2 or Tag2||Tag1.

Distributed Message Service for RocketMQ
Best Practices 4 Ensuring Subscription Consistency

Issue 01 (2024-04-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

A consistent subscription ensures consumers in the same consumer group work
properly, avoiding disordered message logic or message losses. Producers should
classify messages properly for consumers to correct subscription to tags.
Consumers should ensure consistent subscriptions.

Incorrect Subscription

● Consumers in the same consumer group subscribe to different topics.
For example, assume that Consumers A and B are in Consumer Group 1.
Consumer A subscribes to Topic A but Consumer B subscribes to Topic B.
When producers send messages to Topic A, the messages are evenly sent to
Consumers A and B by queue. Consumer B has not subscribed to Topic A, so it
filters out messages from Topic A (Queue 2 in Topic A in the following figure),
leaving them unconsumed.

Figure 4-1 Incorrect topic subscriptions

● Consumers in the same consumer group subscribe to different tags of the
same topic.
For example, assume that Consumers A and B are in Consumer Group 1.
Consumer A subscribes to Tag A and Topic A. Consumer B subscribes to Tag B
and Topic A. When producers send messages to Tag A in Topic A, messages
with Tag A are evenly sent to Consumers A and B by queue. Consumer B has

Distributed Message Service for RocketMQ
Best Practices 4 Ensuring Subscription Consistency

Issue 01 (2024-04-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

not subscribed to Tag A, so it filters out messages with Tag A (Tag A in Queue
2 in the following figure), leaving them unconsumed.

Figure 4-2 Incorrect tag subscriptions

Procedure
● Subscriptions to One Tag of One Topic

Consumers 1, 2, and 3 in Consumer Group 1 all subscribe to Tag_A and
Topic_A. They have consistent subscriptions, meaning that their subscription
code is the same. The sample code is as follows:
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("Group1");
consumer.subscribe("Topic_A", "Tag_A");

● Subscriptions to Multiple Tags of One Topic
Consumers 1, 2, and 3 in Consumer Group 1 all subscribe to Tag_A and Tag_B
of Topic_A. The sequence is Tag_A||Tag_B. The consumers have consistent
subscriptions, meaning that their subscription code is the same. The sample
code is as follows:
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("Group1");
consumer.subscribe("Topic_A", "Tag_A||Tag_B");

● Subscriptions to Multiple Tags of Multiple Topics
Consumers 1, 2, and 3 in Consumer Group 1 all subscribe to Topic_A (no
specified tag) and Topic_B (Tag_A and Tag_B). The sequence is Tag_A||Tag_B.
The consumers have consistent subscriptions, meaning that their subscription
code is the same. The sample code is as follows:
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("Group1");
consumer.subscribe("Topic_A", "*");
consumer.subscribe("Topic_B", "Tag_A||Tag_B");

Distributed Message Service for RocketMQ
Best Practices 4 Ensuring Subscription Consistency

Issue 01 (2024-04-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

5 Avoiding Message Accumulation

Overview

Message accumulation is common in RocketMQ services. Unprocessed messages
accumulate if the client's consumption is slower than the server's sending.
Accumulated messages cannot be consumed in time. Service systems with high
requirements on real-time consumption cannot afford even a short message delay
caused by message accumulation. Message accumulation causes are as follows:

● Messages are not consumed in time because message production is faster
than consumption. Messages accumulate and consumption cannot be
restored automatically.

● The service system logic is time-consuming, causing low consumption
efficiency.

Message Consumption Process

The message consumption process consists of two phases:

● Message pull
Clients pull messages from servers in batches and store the messages to local
cache queues. In this phase, no messages accumulate because throughput is
high on the intranet.

● Message consumption
Clients submit the cached messages to consumption threads, wait for the
service consumption logic to process the messages, and receive the processing
result. The consumption capability in this phase depends on the consumption
duration and concurrency. The overall message throughput is affected if the
service logic is complicated and spends a long time on a single message. Low
message throughput causes local cache queues on the client to reach the

Distributed Message Service for RocketMQ
Best Practices 5 Avoiding Message Accumulation

Issue 01 (2024-04-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

upper limit. Messages are no longer pulled from the server, resulting in
accumulation.
Therefore, whether messages accumulate depends on the consumption
capability of the client, and the consumption capability depends on the
consumption duration and concurrency. Consumption time is prior to its
concurrency. Users should ensure timely consumption before considering its
concurrency.

Consumption Duration

Consumption duration is mainly affected by the service code, specially, the internal
CPU computational code and the external I/O operational code. If there is no
complex recursion or loop code, internal CPU computing duration can be ignored.
Instead, you should focus on external I/O operations.

External I/O operations are as follows:

● Read/Write operations on external databases such as remote MySQL
databases.

● Read/Write operations on external caches such as remote Redis.
● Invocations of downstream systems. For example, Dubbo invokes remote RPC

and Spring Cloud invokes downstream HTTP APIs.

Learning about the downstream invoking logic helps you understand the duration
of each invocation to determine whether the I/O operation duration in the service
logic is proper. In general, faulty services or limited capacity in downstream
systems causes longer consumption duration. Service faults can arise from
network bandwidth issues as well as system errors.

Consumption Concurrency

The consumption concurrency on the client depends on number of clients (or
consumers in a consumer group) and number of threads per client. The
consumption concurrency of normal, scheduled/delayed, transactional, and
ordered messages is calculated as follows.

Message Type Concurrency Formula

Normal Number of threads per client ×
Number of clients

Scheduled/Delayed

Transactional

Ordered Min (Number of threads per client ×
Number of clients, Number of queues)

Note: The number of threads per client should be adjusted carefully. A large
number of threads increases thread switch overhead.

An ideal calculation model for optimal number of threads per client: C ×
(T1+T2)/T1.

C indicates the number of vCPUs per broker. T1 indicates the internal CPU
computation duration. T2 indicates the external I/O operation duration. Thread

Distributed Message Service for RocketMQ
Best Practices 5 Avoiding Message Accumulation

Issue 01 (2024-04-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

switch overhead is ignored. I/O operations consume no CPU resources. A thread
should have sufficient messages and memory for processing.

The model of calculating the maximum number of threads is only an ideal
scenario. In actual scenarios, gradually increase threads based on the actual effect.

Procedure
To avoid unexpected message accumulation, the consumption duration should be
accounted for and concurrency should be set properly in the design of service
logic.

● Accounting for consumption duration
Perform pressure test to obtain the consumption duration. Analyze and
optimize time-consuming service logic code. Pay attention to:
– Whether the computation of the consumption logic is too complex, and

whether any complex recursions or loops exist in the code.
– Whether I/O operations are necessary in the consumption logic and

whether local caches can be used instead.
– Whether the complicated, time-consuming operations in the consumption

logic can be asynchronously processed.
● Setting consumption concurrency

Consumption concurrency calculation can be adjusted with the following
methods:

a. Increase threads per client gradually to find an optimal number of
consumption threads and message throughput per client.

b. Calculate the number of clients needed based on the upstream and
downstream traffic peaks: Number of clients = Traffic peak/Message
throughput per client.

Distributed Message Service for RocketMQ
Best Practices 5 Avoiding Message Accumulation

Issue 01 (2024-04-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

	Contents
	1 Migrating RocketMQ Services
	2 Deduplicating Messages Through Message Idempotence
	3 Classifying Messages with Topic and Tag
	4 Ensuring Subscription Consistency
	5 Avoiding Message Accumulation

