
Data Encryption Workshop

Best Practice

Issue 07

Date 2024-05-03

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. i

Security Declaration

Vulnerability

Huawei's regulations on product vulnerability management are subject to the Vul. Response Process. For
details about this process, visit the following web page:
https://www.huawei.com/en/psirt/vul-response-process
For vulnerability information, enterprise customers can visit the following web page:
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. ii

https://www.huawei.com/en/psirt/vul-response-process
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Contents

1 Key Management Service.. 1
1.1 Using KMS to Encrypt Offline Data.. 1
1.1.1 Encrypting or Decrypting Small Volumes of Data... 1
1.1.2 Encrypting or Decrypting a Large Amount of Data...3
1.2 Using KMS to Encrypt and Decrypt Data for Cloud Services...11
1.2.1 Overview...11
1.2.2 Encrypting Data in ECS.. 13
1.2.3 Encrypting Data in OBS...14
1.2.4 Encrypting Data in EVS..16
1.2.5 Encrypting Data in IMS... 18
1.2.6 Encrypting an RDS DB Instance..20
1.2.7 Encrypting a DDS DB Instance..21
1.3 Using the Encryption SDK to Encrypt and Decrypt Local Files... 21
1.4 Encrypting and Decrypting Data Through Cross-region DR.. 25
1.5 Using KMS to Protect File Integrity.. 27

2 Cloud Secret Management Service... 32
2.1 Using CSMS to Change Hard-coded Database Account Passwords..32
2.2 Using CSMS to Prevent AK and SK Leakage... 36
2.3 Using CSMS to Automatically Rotate Security Passwords..42
2.4 Rotating Secrets.. 49
2.4.1 Overview...49
2.4.2 Rotating a Secret for a User.. 50
2.4.3 Rotating a Secret for Two Users...53
2.4.4 Rotating IAM Secrets Using FunctionGraph...57

3 General...65
3.1 Retrying Failed DEW Requests by Using Exponential Backoff.. 65

Data Encryption Workshop
Best Practice Contents

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. iii

1 Key Management Service

1.1 Using KMS to Encrypt Offline Data

1.1.1 Encrypting or Decrypting Small Volumes of Data

Scenario

You can use online tools on the Key Management Service (KMS) console or call
the necessary KMS APIs to directly encrypt or decrypt small-size data with a CMK,
such as passwords, certificates, or phone numbers.

Restrictions

Currently, a maximum of 4 KB of data can be encrypted or decrypted in this way.

Encryption and Decryption Using Online Tools
● Encrypting data

Step 1 Click the alias of the target custom key to access the key details page. The Tools
tab is displayed by default.

Step 2 Click Encrypt. In the text box on the left, enter the data to be encrypted, as shown
in Figure 1-1.

Figure 1-1 Encrypting data

Step 3 Click Execute. Ciphertext of the data is displayed in the text box on the right.

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 1

NO TE

● Use the current CMK to encrypt the data.
● You can click Clear to clear the entered data.
● You can click Copy to Clipboard to copy the ciphertext and save it in a local file.

● Decrypting data

Step 4 You can click any non-default key in Enabled status to go to the encryption and
decryption page of the online tool.

Step 5 Click Decrypt. In the text box on the left, enter the data to be decrypted. For
details, see Figure 1-2.

NO TE

● The tool will identify the original encryption CMK and use it to decrypt the data.
● If the key has been deleted, the decryption will fail.

Figure 1-2 Decrypting data

Step 6 Click Execute. Plaintext of the data is displayed in the text box on the right.

NO TE

● You can click Copy to Clipboard to copy the plaintext and save it in a local file.
● Enter the plaintext on the console, the text will be encoded to Base64 format before

encryption.
The decryption result returned via API will be in Base64 format. Perform Base64
decoding to obtain the plaintext entered on the console.

----End

Calling APIs for Encryption and Decryption
Figure 1-3 shows an example about how to call KMS APIs to encrypt and decrypt
an HTTPS certificate.

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 2

Figure 1-3 Encrypting and decrypting an HTTPS certificate

The procedure is as follows:

1. Create a CMK on KMS.
2. Call the encrypt-data interface of KMS and use the CMK to encrypt the

plaintext certificate.
3. Deploy the certificate onto a server.
4. The server uses the decrypt-data interface of KMS to decrypt the ciphertext

certificate.

NO TE

If you enter and encrypt text on the console, the text will be encoded to Base64
format before being transferred to the backend for encryption. The decryption result
returned via API will be in Base64 format. Text encrypted via API cannot be decrypted
on the console, or garbled characters will be returned.

1.1.2 Encrypting or Decrypting a Large Amount of Data

Scenario
If you want to encrypt or decrypt large volumes of data, such as pictures, videos,
and database files, you can use envelope encryption, which allows you to encrypt
and decrypt files without having to transfer a large amount of data over the
network.

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 3

Encryption and Decryption Processes
● Large-size data encryption

Figure 1-4 Encrypting a local file

The process is as follows:

a. Create a CMK on KMS.
b. Call the create-datakey API of KMS to create a DEK. A plaintext DEK and

a ciphertext DEK will be generated. The ciphertext DEK is generated when
you use a CMK to encrypt the plaintext DEK.

c. Use the plaintext DEK to encrypt a plaintext file, generating a ciphertext
file.

d. Store the ciphertext DEK and the ciphertext file together in a permanent
storage device or a storage service.

● Large-size data decryption

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 4

Figure 1-5 Decrypting a local file

The process is as follows:

a. Read the ciphertext DEK and the ciphertext file from the permanent
storage device or storage service.

b. Call the decrypt-datakey API of KMS and use the corresponding CMK
(the one used for encrypting the DEK) to decrypt the ciphertext DEK.
Then you get the plaintext DEK.
If the CMK is deleted, the decryption will fail. Properly keep your CMKs.

c. Use the plaintext DEK to decrypt the ciphertext file.

APIs Related to Envelope Encryption
You can use the following APIs to encrypt and decrypt data.

API Description

Creating a DEK Create a DEK.

Encrypting a DEK Encrypt a DEK with the specified
master key.

Decrypting a DEK Decrypt a DEK with the specified
master key.

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 5

https://support.huaweicloud.com/intl/en-us/api-dew/CreateDatakey.html
https://support.huaweicloud.com/intl/en-us/api-dew/EncryptDatakey.html
https://support.huaweicloud.com/intl/en-us/api-dew/DecryptDatakey.html

Encrypting a Local File
1. Create a CMK on the management console. For details, see Creating a CMK.
2. Prepare basic authentication information.

– ACCESS_KEY: access key of the Huawei ID
– SECRET_ACCESS_KEY: secret access key of the Huawei ID
– PROJECT_ID: project ID of a HUAWEI CLOUD site. For details, see Project.
– KMS_ENDPOINT: endpoint for accessing KMS. For details, see Endpoints.
– There will be security risks if the AK/SK used for authentication is directly

written into code. Encrypt the AK/SK in the configuration file or
environment variables for storage.

– In this example, the AK/SK stored in the environment variables are used
for identity authentication. Configure the environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local
environment first.

3. Encrypt a local file.
Example code is as follows.
– CMK is the ID of the key created on the HUAWEI CLOUD management

console.
– The plaintext data file is FirstPlainFile.jpg.
– The data file generated after encryption is SecondEncryptFile.jpg.

import com.huaweicloud.sdk.core.auth.BasicCredentials;
import com.huaweicloud.sdk.kms.v1.KmsClient;
import com.huaweicloud.sdk.kms.v1.model.CreateDatakeyRequest;
import com.huaweicloud.sdk.kms.v1.model.CreateDatakeyRequestBody;
import com.huaweicloud.sdk.kms.v1.model.CreateDatakeyResponse;
import com.huaweicloud.sdk.kms.v1.model.DecryptDatakeyRequest;
import com.huaweicloud.sdk.kms.v1.model.DecryptDatakeyRequestBody;

import javax.crypto.Cipher;
import javax.crypto.spec.GCMParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.nio.file.Files;
import java.security.SecureRandom;

/**
* Use a DEK to encrypt and decrypt files.
* To enable the assert syntax, add -ea to enable VM_OPTIONS.
 */
public class FileStreamEncryptionExample {

 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
 private static final String PROJECT_ID = "<ProjectID>";
 private static final String KMS_ENDPOINT = "<KmsEndpoint>";

//Version of the KMS interface. Currently, the value is fixed to v1.0.
 private static final String KMS_INTERFACE_VERSION = "v1.0";

 /**
 * AES algorithm flags:
 * - AES_KEY_BIT_LENGTH: bit length of the AES256 key
 * - AES_KEY_BYTE_LENGTH: byte length of the AES256 key

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 6

https://support.huaweicloud.com/intl/en-us/usermanual-dew/dew_01_0178.html
https://support.huaweicloud.com/intl/en-us/api-iam/iam_17_0002.html
https://support.huaweicloud.com/intl/en-us/api-dew/dew_02_0052.html

 * - AES_ALG: AES256 algorithm. In this example, the Group mode is GCM and the padding
mode is PKCS5Padding.
 * - AES_FLAG: AES algorithm flag
 * - GCM_TAG_LENGTH: GCM tag length
 * - GCM_IV_LENGTH: length of the GCM initial vector
 */
 private static final String AES_KEY_BIT_LENGTH = "256";
 private static final String AES_KEY_BYTE_LENGTH = "32";
 private static final String AES_ALG = "AES/GCM/PKCS5Padding";
 private static final String AES_FLAG = "AES";
 private static final int GCM_TAG_LENGTH = 16;
 private static final int GCM_IV_LENGTH = 12;

 public static void main(final String[] args) {
 // ID of the CMK you created on the HUAWEI CLOUD management console
 final String keyId = args[0];

 encryptFile(keyId);
 }

 /**
 * Using a DEK to encrypt and decrypt a file
 *
 * @param keyId: user CMK ID
 */
 static void encryptFile(String keyId) {
 // 1. Prepare the authentication information for accessing HUAWEI CLOUD.
 final BasicCredentials auth = new
BasicCredentials().withAk(ACCESS_KEY).withSk(SECRET_ACCESS_KEY)
 .withProjectId(PROJECT_ID);

 // 2. Initialize the SDK and transfer the authentication information and the address for the
KMS to access the client.
 final KmsClient kmsClient =
KmsClient.newBuilder().withCredential(auth).withEndpoint(KMS_ENDPOINT).build();

 // 3. Assemble the request message for creating a DEK.
 final CreateDatakeyRequest createDatakeyRequest = new
CreateDatakeyRequest().withVersionId(KMS_INTERFACE_VERSION)
 .withBody(new
CreateDatakeyRequestBody().withKeyId(keyId).withDatakeyLength(AES_KEY_BIT_LENGTH));

 // 4. Create a DEK.
 final CreateDatakeyResponse createDatakeyResponse =
kmsClient.createDatakey(createDatakeyRequest);

 // 5. Receive the created DEK information.
 // It is recommended that the ciphertext key and key ID be stored locally so that the
plaintext key can be easily obtained for data decryption.
 // The plaintext key should be used immediately after being created. Before using it,
convert the hexadecimal plaintext key to a byte array.
 final String cipherText = createDatakeyResponse.getCipherText();
 final byte[] plainKey = hexToBytes(createDatakeyResponse.getPlainText());

 // 6. Prepare the file to be encrypted.
 // inFile: file to be encrypted
 // outEncryptFile: file generated after encryption

 final File inFile = new File("FirstPlainFile.jpg");
 final File outEncryptFile = new File("SecondEncryptFile.jpg");

 // 7. If the AES algorithm is used for encryption, you can create an initial vector.
 final byte[] iv = new byte[GCM_IV_LENGTH];
 final SecureRandom secureRandom = new SecureRandom();
 secureRandom.nextBytes(iv);

 // 8. Encrypt the file and store the encrypted file.
 doFileFinal(Cipher.ENCRYPT_MODE, inFile, outEncryptFile, plainKey, iv);

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 7

 }

 /**
 * Encrypting and decrypting a file
 *
 * @param cipherMode: Encryption mode. It can be Cipher.ENCRYPT_MODE or
Cipher.DECRYPT_MODE.
 * @param infile: file to be encrypted or decrypted
 * @param outFile: file generated after encryption and decryption
 * @param keyPlain: plaintext key
 * @param iv: initial vector
 */
 static void doFileFinal(int cipherMode, File infile, File outFile, byte[] keyPlain, byte[] iv) {

 try (BufferedInputStream bis = new BufferedInputStream(new FileInputStream(infile));
 BufferedOutputStream bos = new BufferedOutputStream(new
FileOutputStream(outFile))) {
 final byte[] bytIn = new byte[(int) infile.length()];
 final int fileLength = bis.read(bytIn);

 assert fileLength > 0;

 final SecretKeySpec secretKeySpec = new SecretKeySpec(keyPlain, AES_FLAG);
 final Cipher cipher = Cipher.getInstance(AES_ALG);
 final GCMParameterSpec gcmParameterSpec = new
GCMParameterSpec(GCM_TAG_LENGTH * Byte.SIZE, iv);
 cipher.init(cipherMode, secretKeySpec, gcmParameterSpec);
 final byte[] bytOut = cipher.doFinal(bytIn);
 bos.write(bytOut);
 } catch (Exception e) {
 throw new RuntimeException(e.getMessage());
 }
 }

}

Decrypting a Local File
1. Prepare basic authentication information.

– ACCESS_KEY: access key of the Huawei ID
– SECRET_ACCESS_KEY: secret access key of the Huawei ID
– PROJECT_ID: project ID of a HUAWEI CLOUD site. For details, see Project.
– KMS_ENDPOINT: endpoint for accessing KMS. For details, see Endpoints.
– There will be security risks if the AK/SK used for authentication is directly

written into code. Encrypt the AK/SK in the configuration file or
environment variables for storage.

– In this example, the AK/SK stored in the environment variables are used
for identity authentication. Configure the environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local
environment first.

2. Decrypt a local file.
Example code is as follows.
– CMK is the ID of the key created on the HUAWEI CLOUD management

console.
– The data file generated after encryption is SecondEncryptFile.jpg.
– The data file generated after encryption and decryption is

ThirdDecryptFile.jpg.
import com.huaweicloud.sdk.core.auth.BasicCredentials;
import com.huaweicloud.sdk.kms.v1.KmsClient;

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 8

https://support.huaweicloud.com/intl/en-us/api-iam/iam_17_0002.html
https://support.huaweicloud.com/intl/en-us/api-dew/dew_02_0052.html

import com.huaweicloud.sdk.kms.v1.model.CreateDatakeyRequest;
import com.huaweicloud.sdk.kms.v1.model.CreateDatakeyRequestBody;
import com.huaweicloud.sdk.kms.v1.model.CreateDatakeyResponse;
import com.huaweicloud.sdk.kms.v1.model.DecryptDatakeyRequest;
import com.huaweicloud.sdk.kms.v1.model.DecryptDatakeyRequestBody;

import javax.crypto.Cipher;
import javax.crypto.spec.GCMParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.nio.file.Files;
import java.security.SecureRandom;

/**
* Use a DEK to encrypt and decrypt files.
* To enable the assert syntax, add -ea to enable VM_OPTIONS.
 */
public class FileStreamEncryptionExample {

 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
 private static final String PROJECT_ID = "<ProjectID>";
 private static final String KMS_ENDPOINT = "<KmsEndpoint>";

//Version of the KMS interface. Currently, the value is fixed to v1.0.
 private static final String KMS_INTERFACE_VERSION = "v1.0";

 /**
 * AES algorithm flags:
 * - AES_KEY_BIT_LENGTH: bit length of the AES256 key
 * - AES_KEY_BYTE_LENGTH: byte length of the AES256 key
 * - AES_ALG: AES256 algorithm. In this example, the Group mode is GCM and the padding
mode is PKCS5Padding.
 * - AES_FLAG: AES algorithm flag
 * - GCM_TAG_LENGTH: GCM tag length
 * - GCM_IV_LENGTH: length of the GCM initial vector
 */
 private static final String AES_KEY_BIT_LENGTH = "256";
 private static final String AES_KEY_BYTE_LENGTH = "32";
 private static final String AES_ALG = "AES/GCM/PKCS5Padding";
 private static final String AES_FLAG = "AES";
 private static final int GCM_TAG_LENGTH = 16;
 private static final int GCM_IV_LENGTH = 12;

 public static void main(final String[] args) {
 // ID of the CMK you created on the HUAWEI CLOUD management console
 final String keyId = args[0];
 // // Returned ciphertext DEK after DEK creation
 final String cipherText = args[1];

 decryptFile(keyId, cipherText);
 }

 /**
 * Using a DEK to encrypt and decrypt a file
 *
 * @param keyId: user CMK ID
 * @param cipherText: ciphertext data key
 */
 static void decryptFile(String keyId, String cipherText) {
 // 1. Prepare the authentication information for accessing HUAWEI CLOUD.
 final BasicCredentials auth = new
BasicCredentials().withAk(ACCESS_KEY).withSk(SECRET_ACCESS_KEY)

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 9

 .withProjectId(PROJECT_ID);

 // 2. Initialize the SDK and transfer the authentication information and the address for the
KMS to access the client.
 final KmsClient kmsClient =
KmsClient.newBuilder().withCredential(auth).withEndpoint(KMS_ENDPOINT).build();

 // 3. Prepare the file to be encrypted.
 // inFile: file to be encrypted
 // outEncryptFile: file generated after encryption
 // outDecryptFile: file generated after encryption and decryption
 final File inFile = new File("FirstPlainFile.jpg");
 final File outEncryptFile = new File("SecondEncryptFile.jpg");
 final File outDecryptFile = new File("ThirdDecryptFile.jpg");

 // 4. Use the same initial vector for AES encryption and decryption.
 final byte[] iv = new byte[GCM_IV_LENGTH];

 // 5. Assemble the request message for decrypting the DEK. cipherText is the ciphertext
DEK returned after DEK creation.
 final DecryptDatakeyRequest decryptDatakeyRequest = new DecryptDatakeyRequest()
 .withVersionId(KMS_INTERFACE_VERSION).withBody(new
DecryptDatakeyRequestBody()
 .withKeyId(keyId).withCipherText(cipherText).withDatakeyCipherLength(AES_KEY
_BYTE_LENGTH));

 // 6. Decrypt the DEK and convert the returned hexadecimal plaintext key into a byte array.
 final byte[] decryptDataKey =
hexToBytes(kmsClient.decryptDatakey(decryptDatakeyRequest).getDataKey());

 // 7. Decrypt the file and store the decrypted file.
// iv at the end of the statement is the initial vector created in the encryption example.
 doFileFinal(Cipher.DECRYPT_MODE, outEncryptFile, outDecryptFile, decryptDataKey, iv);

 // 8. Compare the original file with the decrypted file.
 assert getFileSha256Sum(inFile).equals(getFileSha256Sum(outDecryptFile));

 }

 /**
 * Encrypting and decrypting a file
 *
 * @param cipherMode: Encryption mode. It can be Cipher.ENCRYPT_MODE or
Cipher.DECRYPT_MODE.
 * @param infile: file to be encrypted or decrypted
 * @param outFile: file generated after encryption and decryption
 * @param keyPlain: plaintext key
 * @param iv: initial vector
 */
 static void doFileFinal(int cipherMode, File infile, File outFile, byte[] keyPlain, byte[] iv) {

 try (BufferedInputStream bis = new BufferedInputStream(new FileInputStream(infile));
 BufferedOutputStream bos = new BufferedOutputStream(new
FileOutputStream(outFile))) {
 final byte[] bytIn = new byte[(int) infile.length()];
 final int fileLength = bis.read(bytIn);

 assert fileLength > 0;

 final SecretKeySpec secretKeySpec = new SecretKeySpec(keyPlain, AES_FLAG);
 final Cipher cipher = Cipher.getInstance(AES_ALG);
 final GCMParameterSpec gcmParameterSpec = new
GCMParameterSpec(GCM_TAG_LENGTH * Byte.SIZE, iv);
 cipher.init(cipherMode, secretKeySpec, gcmParameterSpec);
 final byte[] bytOut = cipher.doFinal(bytIn);
 bos.write(bytOut);
 } catch (Exception e) {
 throw new RuntimeException(e.getMessage());
 }

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 10

 }

 /**
* Converting a hexadecimal string to a byte array
 *
 * @param hexString: a hexadecimal string
 * @return: byte array
 */
 static byte[] hexToBytes(String hexString) {
 final int stringLength = hexString.length();
 assert stringLength > 0;
 final byte[] result = new byte[stringLength / 2];
 int j = 0;
 for (int i = 0; i < stringLength; i += 2) {
 result[j++] = (byte) Integer.parseInt(hexString.substring(i, i + 2), 16);
 }
 return result;
 }

 /**
 * Calculate the SHA256 digest of the file.
 *
 * @param file
 * @return SHA256 digest
 */
 static String getFileSha256Sum(File file) {
 int length;
 MessageDigest sha256;
 byte[] buffer = new byte[1024];
 try {
 sha256 = MessageDigest.getInstance("SHA-256");
 } catch (NoSuchAlgorithmException e) {
 throw new RuntimeException(e.getMessage());
 }
 try (FileInputStream inputStream = new FileInputStream(file)) {
 while ((length = inputStream.read(buffer)) != -1) {
 sha256.update(buffer, 0, length);
 }
 return new BigInteger(1, sha256.digest()).toString(16);
 } catch (IOException e) {
 throw new RuntimeException(e.getMessage());
 }
 }
}

1.2 Using KMS to Encrypt and Decrypt Data for Cloud
Services

1.2.1 Overview
KMS is a secure, reliable, and easy-to-use cloud service that helps users create,
manage, and protect keys in a centralized manner.

After your cloud services are integrated with KMS, to encrypt data on cloud, you
simply need to select a CMK managed by KMS for encryption.

You can select a Default Master Key (DMK) automatically created by a cloud
service through KMS, or a key you created or imported to KMS. For details, see
Differences Between a CMK and a Default Master Key.

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 11

https://support.huaweicloud.com/intl/en-us/dew_faq/dew_01_0044.html

Table 1-1 Cloud services that use KMS encryption

Category Service Encryption Mode

Computing Elastic Cloud
Server (ECS)

You can encrypt an image or EVS disk in ECS.
● When creating an ECS, if you select an

encrypted image, the system disk of the
created ECS automatically has encryption
enabled, with its encryption mode same
as the image encryption mode.

● When creating an ECS, you can encrypt
added data disks.

Image
Management
Service (IMS)

Encrypting Data in IMS

Storage Object Storage
Service (OBS)

Encrypting Data in OBS

Elastic Volume
Service (EVS)

Encrypting Data in EVS

Volume Backup
Service (VBS)

VBS generally creates online backups for a
single EVS disk (system or data disk) of the
server. If it is encrypted, its backup data will
be stored in encrypted mode.

Cloud Server
Backup Service
(CSBS)

CSBS mainly creates consistency backups
online for all EVS disks of the server. CSBS
backups will also be displayed on the VBS
page. If it is encrypted, its backup data will
be stored in encrypted mode.

Database RDS for MySQL Encrypting an RDS DB Instance

RDS for
PostgreSQL

RDS for SQL Server

Document
Database Service
(DDS)

Encrypting a DDS DB Instance

Encryption Process
HUAWEI CLOUD services use the envelope encryption technology and call KMS
APIs to encrypt service resources. Your CMKs are under your own management.
With your grant, HUAWEI CLOUD services use a specific CMK of yours to encrypt
data.

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 12

Figure 1-6 How Huawei Cloud uses KMS for encryption

The encryption process is as follows:

1. Create a CMK on KMS.
2. A HUAWEI CLOUD service calls the create-datakey API of the KMS to create

a DEK. A plaintext DEK and a ciphertext DEK are generated.

NO TE

Ciphertext DEKs are generated when you use a CMK to encrypt the plaintext DEKs.

3. The HUAWEI CLOUD service uses the plaintext DEK to encrypt a plaintext file,
generating a ciphertext file.

4. The HUAWEI CLOUD service saves the ciphertext DEK and the ciphertext file
together in a permanent storage device or a storage service.

NO TE

When users download the data from the HUAWEI CLOUD service, the service uses the CMK
specified by KMS to decrypt the ciphertext DEK, uses the decrypted DEK to decrypt data,
and then provides the decrypted data for users to download.

1.2.2 Encrypting Data in ECS

Overview
KMS supports one-click encryption for ECS. The images and data disks of ECS can
be encrypted.

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 13

● When creating an ECS, if you select an encrypted image, the system disk of
the created ECS automatically has encryption enabled, with its encryption
mode same as the image encryption mode.

● When creating an ECS, you can encrypt added data disks.

For details about how to encrypt an image, see Encrypting Data in IMS.

For details about how to encrypt a data disk, see Encrypting Data in EVS.

1.2.3 Encrypting Data in OBS

Overview
After server-side encryption is enabled, data of an object uploaded to Object
Storage Service (OBS) is encrypted on the server before being stored. When the
object is downloaded, data is decrypted on the server first.

KMS uses a third-party hardware security module (HSM) to protect keys, enabling
you to create and manage encryption keys easily. Keys are not displayed in
plaintext outside HSMs, which prevents key disclosure. With KMS, all operations
on keys are controlled and logged, and usage records of all keys can be provided
to meet regulatory compliance requirements.

Server-side encryption with KMS-managed keys (SSE-KMS) can be implemented
for the objects to be uploaded. You need to create a key using KMS or use the
default key provided by KMS. Then you can use the key to encrypt the object on
the server when uploading the object to OBS.

Uploading Files in Server-side Encryption Mode (on the Console)

Step 1 In the bucket list on the OBS console, click a bucket to go to the Overview page.

Step 2 In the navigation tree on the left, choose Objects.

Step 3 Click Upload Object. The Upload Object dialog box is displayed.

Step 4 Click Add File, select the file to be uploaded, and click Open.

Step 5 Set Server-Side Encryption to SSE-KMS, select the default key or a custom key,
and click Upload.

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 14

Figure 1-7 Encrypting an object to be uploaded

Key name: Name of the custom key. The key is created in DEW and is used for
encrypted protection for data. OBS provides a default key obs/default. You can
use the default key or create a key in DEW.

NO TE

Generally, the AES key is used when SSE-KMS is used. SM4 encryption keys can be used
only in the CN North-Ulanqab1 region.

Step 6 After uploading the object, click it to view its encryption status.

NO TE

● The object encryption status cannot be changed.

● A key in use cannot be deleted. Otherwise, the object encrypted with this key cannot be
downloaded.

----End

Uploading Files in Server-side Encryption Mode (Through an API)

You can call the required API of OBS to upload a file in SSE-KMS mode. For
details, see Object Storage Service API Reference.

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 15

1.2.4 Encrypting Data in EVS

Overview

In case your services require encryption for the data stored on disks in Elastic
Volume Service (EVS), EVS provides you with the encryption function. You can
encrypt newly created EVS disks. Keys used by encrypted EVS disks are provided by
KMS of DEW, secure and convenient. Therefore, you do not need to establish and
maintain the key management infrastructure.

Disk encryption is used for data disks only. System disk encryption relies on the
image. For details, see Encrypting Data in IMS.

Who Can Use the Disk Encryption Function?
● Security administrators (users having Security Administrator rights) can grant

the KMS access rights to EVS for using disk encryption.

● When a common user who does not have the Security Administrator rights
needs to use the disk encryption feature, the condition varies depending on
whether the user is the first one ever in the current region or project to use
this feature.

– If the user is the first, the user must contact a user having the Security
Administrator rights to grant the KMS access rights to EVS. Then, the user
can use the disk encryption feature.

– If the user is not the first, the user can use the disk encryption function
directly.

From the perspective of a tenant, as long as the KMS access rights have been
granted to EVS in a region, all users in the same region can directly use the disk
encryption feature.

If there are multiple projects in the current region, the KMS access rights need to
be granted to each project in this region.

Keys Used for EVS Disk Encryption

The keys provided by KMS for disk encryption include a Default Master Key and
Customer Master Keys (CMKs).

● Default Master Key: A key that is automatically created by EVS through KMS
and named evs/default.

The Default Master Key cannot be disabled and does not support scheduled
deletion.

● CMKs: Keys created by users. You can use existing CMKs or create one. For
details, see Creating a CMK.

If disks are encrypted using a CMK, which is then disabled or scheduled for
deletion, the disks can no longer be read from or written to, and data on these
disks may never be restored. See Table 1-2 for more information.

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 16

https://support.huaweicloud.com/intl/en-us/usermanual-dew/dew_01_0178.html

Table 1-2 Impact on encrypted disks after a CMK becomes unavailable

CMK Status Impact on
Encrypted Disks

Restoration Method

Disabled ● If an encrypted
disk is then
attached to an
ECS, the disk can
still be used, but
normal read/write
operations are not
guaranteed
permanently.

● If an encrypted
disk is then
detached, re-
attaching the disk
will fail.

Enable the CMK. For details, see
Enabling One or More CMKs.

Pending
deletion

Cancel the scheduled deletion for the
CMK. For details, see Canceling the
Scheduled Deletion of One or More
CMKs.

Deleted Data on the disks can never be restored.

NO TICE

You will be charged for the CMKs you use. If basic keys are used, ensure that your
account balance is sufficient. If professional keys are used, renew your order
timely. Otherwise, your services may be interrupted and your data may never be
restored as the encrypted disks become unreadable and unwritable.

Using KMS to Encrypt a Disk (on the Console)

Step 1 On the EVS management console, click Buy Disk.

Step 2 Select the Encryption check box.

1. Click More. The Encryption check box is displayed.

Figure 1-8 More

2. Create an agency.
Select Encrypt. If EVS is not authorized to access KMS, the Create Agency
dialog box is displayed. In this case, click Yes to authorize it. After the
authorization, EVS can obtain KMS keys to encrypt and decrypt disks.

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 17

https://support.huaweicloud.com/intl/en-us/usermanual-dew/dew_01_0029.html
https://support.huaweicloud.com/intl/en-us/usermanual-dew/dew_01_0032.html
https://support.huaweicloud.com/intl/en-us/usermanual-dew/dew_01_0032.html
https://support.huaweicloud.com/intl/en-us/usermanual-dew/dew_01_0032.html

NO TE

Before you use the disk encryption function, KMS access rights need to be granted to
EVS. If you have the right for granting, grant the KMS access rights to EVS directly. If
you do not have the right, contact a user with the Security Administrator rights to
grant the KMS access rights to EVS, then repeat the preceding operations.

3. Set encryption parameters.
Select Encrypt. If the authorization succeeded, the encryption setting dialog
box is displayed.

Figure 1-9 Encryption settings

Select either of the following types of keys from the KMS Key Name drop-
down list:
– Default Master Key. After the KMS access rights have been granted to

EVS, the system automatically creates a Default Master Key named evs/
default.

– An existing or new CMK. For details about how to create one, see
Creating a CMK.

Step 3 Configure other parameters for the disk. For details about the parameters, see
Purchasing an EVS Disk.

----End

Using KMS to Encrypt a Disk (Through an API)

You can call the required API of EVS to purchase an encrypted EVS disk. For
details, see Elastic Volume Service API Reference.

1.2.5 Encrypting Data in IMS
You can create an encrypted image in Image Management Service (IMS) to
securely store data.

Restrictions
● DEW must be enabled.

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 18

https://support.huaweicloud.com/intl/en-us/usermanual-dew/dew_01_0178.html
https://support.huaweicloud.com/intl/en-us/usermanual-evs/en-us_topic_0021738346.html

● An encrypted image cannot be shared with other users.
● An encrypted image cannot be published in the Marketplace.
● If an ECS has an encrypted system disk, the private image created using the

ECS is also encrypted.
● The key used for encrypting an image cannot be changed.
● If the key used for encrypting an image is disabled or deleted, the image is

unavailable.
● The system disk of an ECS created using an encrypted image is also

encrypted, and its key is the same as the image key.

Using KMS to Encrypt a Private Image (on the Console)

You can create an encrypted image using an encrypted ECS or an external image
file.

● Create an encrypted image using an encrypted ECS.
When you use an ECS to create a private image, if the system disk of the ECS
is encrypted, the private image created using the ECS is also encrypted. The
key used for encrypting the image is the one used for creating the system
disk.

● Create an encrypted image using an external image file.
When you use an external image file that has been uploaded to an OBS
bucket to create a private image, you can select KMS encryption when
registering the image to encrypt the image.
When uploading an image file, you can select KMS encryption and use a key
provided by KMS to encrypt the uploaded file, as shown in Figure 1-10.

a. On the IMS management console, click Create Private Image.
b. Set Type to System disk image.
c. Set Source to Image File.
d. Select KMS encryption.

Figure 1-10 Encrypting data in IMS

Select either of the following types of keys from the Key Name drop-
down list:

▪ Default Master Key ims/default created by KMS

▪ An existing or new CMK. For details about how to create one, see
Creating a CMK.

e. Configure other parameters. For details about the parameters, see
Registering an Image.

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 19

https://support.huaweicloud.com/intl/en-us/usermanual-dew/dew_01_0178.html
https://support.huaweicloud.com/intl/en-us/usermanual-ims/ims_01_0211.html

Using KMS to Encrypt a Private Image (Through an API)

You can call the required API of IMS to encrypt the image file. For details, see
Image Management Service API Reference.

1.2.6 Encrypting an RDS DB Instance

Overview

Relational Database Service (RDS) supports MySQL and PostgreSQL engines.

After encryption is enabled, disk data will be encrypted and stored on the server
when you create a DB instance or expand disk capacity. When you download
encrypted objects, the encrypted data will be decrypted on the server and
displayed in plaintext.

Restrictions
● The KMS Administrator right must be granted to the user in the region of RDS

by using Identity and Access Management (IAM). For details about how to
assign permissions to user groups, see "How Do I Manage User Groups and
Grant Permissions to Them?" in Identity and Access Management User Guide.

● To use a user-defined key to encrypt objects to be uploaded, create a key
using DEW. For details, see Creating a CMK.

● Once the disk encryption function is enabled, you cannot disable it or change
the key after a DB instance is created. The backup data stored in OBS will not
be encrypted.

● After an RDS DB instance is created, do not disable or delete the key that is
being used. Otherwise, RDS will be unavailable and data cannot be restored.

● If you scale up a DB instance with disks encrypted, the expanded storage
space will be encrypted using the original encryption key.

Using KMS to Encrypt a DB Instance (on the Console)

When a user purchases a database instance from Relational Database Service
(RDS), the user can select Disk encryption and use the key provided by KMS to
encrypt the disk of the database instance. For more information, see Buy a
MySQL DB Instance and Buy a PostgreSQL DB Instance.

Figure 1-11 Encrypting data in RDS

Using KMS to Encrypt a DB Instance (Through an API)

You can also call the required API of RDS to purchase encrypted DB instances. For
details, see Relational Database Service API Reference.

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 20

https://support.huaweicloud.com/intl/en-us/usermanual-dew/dew_01_0178.html
https://support.huaweicloud.com/intl/en-us/qs-rds/rds_02_0008.html
https://support.huaweicloud.com/intl/en-us/qs-rds/rds_02_0008.html
https://support.huaweicloud.com/intl/en-us/qs-rds/rds_03_0065.html

1.2.7 Encrypting a DDS DB Instance

Overview
After encryption is enabled, disk data will be encrypted and stored on the server
when you create a DB instance or expand disk capacity. When you download
encrypted objects, the encrypted data will be decrypted on the server and
displayed in plaintext.

Restrictions
● The KMS Administrator right must be added in the region of RDS using IAM.

For details about how to assign permissions to user groups, see "How Do I
Manage User Groups and Grant Permissions to Them?" in Identity and Access
Management User Guide.

● To use a user-defined key to encrypt objects to be uploaded, create a key
using DEW. For details, see Creating a CMK.

● Once the disk encryption function is enabled, you cannot disable it or change
the key after a DB instance is created. The backup data stored in OBS will not
be encrypted.

● After a Document Database Service (DDS) DB instance is created, do not
disable or delete the key that is being used. Otherwise, DDS will be
unavailable and data cannot be restored.

● If you scale up a DB instance with disks encrypted, the expanded storage
space will be encrypted using the original encryption key.

Using KMS to Encrypt a DB Instance (on the Console)
When you purchase a DB instance in DDS, you can set Disk Encryption to Enable
and use the key provided by KMS to encrypt the disk of the DB instance. For more
information, see Buying a Cluster Instance.

Figure 1-12 Encrypting data in DDS

Using KMS to Encrypt a DB Instance (Through an API)
You can also call the required API of DDS to purchase encrypted DB instances. For
details, see Document Database Service API Reference.

1.3 Using the Encryption SDK to Encrypt and Decrypt
Local Files

You can use certain algorithms to encrypt your files, protecting them from being
breached or tampered with.

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 21

https://support.huaweicloud.com/intl/en-us/usermanual-dew/dew_01_0178.html
https://support.huaweicloud.com/intl/en-us/qs-dds/en-us_topic_0044018333.html

Encryption SDK is a client password library that can encrypt and decrypt data and
file streams. You can easily encrypt and decrypt massive amounts of data simply
by calling APIs. It allows you to focus on developing the core functions of your
applications without being distracted by the data encryption and decryption
processes.

NO TE

For more information, visit. For details, see Details.

Scenario
If large files and images are sent to KMS through HTTPS for encryption, a large
number of network resources will be consumed and the encryption will be slow.
This section describes how to quickly encrypt a large amount of data.

Solution
Encryption SDK performs envelope encryption on file streams segment by
segment.

Data is encrypted within the SDK by using the DEK generated by KMS. Segmented
encryption of files in the memory ensures the security and correctness of file
encryption, because it does not require file transfer over the network.

The SDK loads a file to memory and processes it segment by segment. The next
segment will not be read before the encryption or decryption of the current
segment completes.

Process

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 22

https://github.com/HuaweiCloudDeveloper/huaweicloud-encryption-sdk-java
https://github.com/HuaweiCloudDeveloper/huaweicloud-encryption-sdk-java

Procedure

Step 1 Obtain the AK and the SK.
● ACCESS_KEY: Access key of the Huawei account. For details, see How Do I

Obtain an Access Key (AK/SK)?
● SECRET_ACCESS_KEY: Secret access key of the Huawei account. For details,

see How Do I Obtain an Access Key (AK/SK)?
● There will be security risks if the AK/SK used for authentication is directly

written into code. Encrypt the AK/SK in the configuration file or environment
variables for storage.

● In this example, the AK/SK stored in the environment variables are used for
identity authentication. Configure the environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local
environment first.

Step 2 Obtain region information.

1. Log in to the management console.
2. Hover over the username in the upper right corner and choose My

Credentials from the drop-down list.
3. Obtain the Project ID and Project Name.

Figure 1-13 Obtaining the project ID and project name

4. Click . Choose Security & Compliance > Data Encryption Workshop.
5. Obtain the ID of the CMK (KEYID) to be used in the current region.

Figure 1-14 Obtaining the CMK ID

6. Obtain the endpoint (ENDPOINT) required by the current region.
An endpoint is the request address for calling an API. Endpoints vary
depending on services and regions. For the endpoints of all services, see
Regions and Endpoints.

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 23

https://support.huaweicloud.com/intl/en-us/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/intl/en-us/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/intl/en-us/iam_faq/iam_01_0618.html
https://console-intl.huaweicloud.com/console/?locale=en-us
https://developer.huaweicloud.com/intl/en-us/endpoint?DEW

Figure 1-15 Obtaining an endpoint

Step 3 Encrypt and decrypt a file.
public class KmsEncryptFileExample {

 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
 private static final String PROJECT_ID = "<projectId>";
 private static final String REGION = "<region>";
 private static final String KEYID = "<keyId>";
 public static final String ENDPOINT = "<endpoint>";

 public static void main(String[] args) throws IOException {
 // Source file path
 String encryptFileInPutPath = args[0];
 // Path of the encrypted ciphertext file
 String encryptFileOutPutPath = args[1];
 // Path of the decrypted file
 String decryptFileOutPutPath = args[2];
 // Encryption context
 Map<String, String> encryptContextMap = new HashMap<>();
 encryptContextMap.put("encryption", "context");
 encryptContextMap.put("simple", "test");
 encryptContextMap.put("caching", "encrypt");
 // Construct the encryption configuration
 HuaweiConfig config = HuaweiConfig.builder().buildSk(SECRET_ACCESS_KEY)
 .buildAk(ACCESS_KEY)
 .buildKmsConfig(Collections.singletonList(new KMSConfig(REGION, KEYID, PROJECT_ID,
ENDPOINT)))
 .buildCryptoAlgorithm(CryptoAlgorithm.AES_256_GCM_NOPADDING)
 .build();
 HuaweiCrypto huaweiCrypto = new HuaweiCrypto(config);
 // Set the key ring.
 huaweiCrypto.withKeyring(new
KmsKeyringFactory().getKeyring(KeyringTypeEnum.KMS_MULTI_REGION.getType()));
 // Encrypt the file.
 encryptFile(encryptContextMap, huaweiCrypto, encryptFileInPutPath, encryptFileOutPutPath);
 // Decrypt the file.
 decryptFile(huaweiCrypto, encryptFileOutPutPath, decryptFileOutPutPath);
 }

 private static void encryptFile(Map<String, String> encryptContextMap, HuaweiCrypto huaweiCrypto,
 String encryptFileInPutPath, String encryptFileOutPutPath) throws IOException {
 // fileInputStream: input stream corresponding to the encrypted file
 FileInputStream fileInputStream = new FileInputStream(encryptFileInPutPath);
 // fileOutputStream: output stream corresponding to the source file
 FileOutputStream fileOutputStream = new FileOutputStream(encryptFileOutPutPath);
 // Encryption
 huaweiCrypto.encrypt(fileInputStream, fileOutputStream, encryptContextMap);
 fileInputStream.close();
 fileOutputStream.close();
 }

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 24

 private static void decryptFile(HuaweiCrypto huaweiCrypto, String decryptFileInPutPath, String
decryptFileOutPutPath) throws IOException {
 // in: input stream corresponding to the source file
 FileInputStream fileInputStream = new FileInputStream(decryptFileInPutPath);
 // out: output stream corresponding to the encrypted file
 FileOutputStream fileOutputStream = new FileOutputStream(decryptFileOutPutPath);
 // Decryption
 huaweiCrypto.decrypt(fileInputStream, fileOutputStream);
 fileInputStream.close();
 fileOutputStream.close();
 }
}

----End

1.4 Encrypting and Decrypting Data Through Cross-
region DR

Scenario
If a fault occurs during encryption or decryption in a region, you can use KMS to
implement cross-region DR encryption and decryption, ensuring service continuity.

Solution
If KMS is faulty in one or multiple regions, encryption and decryption can be
completed as long as a key in the key ring is available.

A cross-region key ring can use the CMKs of multiple regions to encrypt a piece of
data and generate unique data ciphertext. To decrypt the data, you simply need to
use a key ring that contains one or more available CMKs that were used for
encrypting the data.

NO TE

For more information, see Details.

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 25

https://github.com/HuaweiCloudDeveloper/huaweicloud-encryption-sdk-java/blob/master-dev/README.md

Process

Procedure
Step 1 Obtain the AK and the SK.

● ACCESS_KEY: Access key of the Huawei account. For details, see How Do I
Obtain an Access Key (AK/SK)?

● SECRET_ACCESS_KEY: Secret access key of the Huawei account. For details,
see How Do I Obtain an Access Key (AK/SK)?

● There will be security risks if the AK/SK used for authentication is directly
written into code. Encrypt the AK/SK in the configuration file or environment
variables for storage.

● In this example, the AK/SK stored in the environment variables are used for
identity authentication. Configure the environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local
environment first.

Step 2 Obtain region information.
1. Log in to the management console.
2. Hover over the username in the upper right corner and choose My

Credentials from the drop-down list.
3. Obtain the Project ID and Project Name.

Figure 1-16 Obtaining the project ID and project name

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 26

https://support.huaweicloud.com/intl/en-us/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/intl/en-us/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/intl/en-us/iam_faq/iam_01_0618.html
https://console-intl.huaweicloud.com/console/?locale=en-us

4. Click . Choose Security & Compliance > Data Encryption Workshop.
5. Obtain the ID of the CMK (KEYID) to be used in the current region.

Figure 1-17 Obtaining the CMK ID

Step 3 Use the key ring for encryption and decryption.
public class KmsEncryptionExample {
 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");

 private static final String PROJECT_ID_1 = "<projectId1>";
 private static final String REGION_1 = "<region1>";
 private static final String KEYID_1 = "<keyId1>";

 public static final String PROJECT_ID_2 = "<projectId2>";
 public static final String REGION_2 = "<region2>";
 public static final String KEYID_2 = "<keyId2>";

 // Data to be encrypted
 private static final String PLAIN_TEXT = "Hello World!";

 public static void main(String[] args) {
 // CMK list
 List<KMSConfig> kmsConfigList = new ArrayList<>();
 kmsConfigList.add(new KMSConfig(REGION_1, KEYID_1, PROJECT_ID_1));
 kmsConfigList.add(new KMSConfig(REGION_2, KEYID_2, PROJECT_ID_2));
 // Construct encryption-related information.
 HuaweiConfig multiConfig = HuaweiConfig.builder().buildSk(SECRET_ACCESS_KEY)
 .buildAk(ACCESS_KEY)
 .buildKmsConfig(kmsConfigList)
 .buildCryptoAlgorithm(CryptoAlgorithm.AES_256_GCM_NOPADDING)
 .build();
 // Select a key ring.
 KMSKeyring keyring = new
KmsKeyringFactory().getKeyring(KeyringTypeEnum.KMS_MULTI_REGION.getType());
 HuaweiCrypto huaweiCrypto = new HuaweiCrypto(multiConfig).withKeyring(keyring);
 // Encryption context
 Map<String, String> encryptContextMap = new HashMap<>();
 encryptContextMap.put("key", "value");
 encryptContextMap.put("context", "encrypt");
 // Encryption
 CryptoResult<byte[]> encryptResult = huaweiCrypto.encrypt(new EncryptRequest(encryptContextMap,
PLAIN_TEXT.getBytes(StandardCharsets.UTF_8)));
 // Decryption
 CryptoResult<byte[]> decryptResult = huaweiCrypto.decrypt(encryptResult.getResult());
 Assert.assertEquals(PLAIN_TEXT, new String(decryptResult.getResult()));
 }
}

----End

1.5 Using KMS to Protect File Integrity

Scenario
When a large amount of files (such as images, electronic insurance policies, and
important files) need to be transmitted or stored securely, you can use KMS to

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 27

sign the file digest. When the files are used again, you can recalculate the digest
for signature verification. Ensure that files are not tampered with during
transmission or storage.

Solution
Create a CMK on KMS.

Calculate the file digest and call the sign API of KMS to sign the digest. The
signature result of the digest is obtained. Transmit or store the digest signature
result, key ID, and the file together. The following figure shows the signature
process.

Figure 1-18 Signature process

Before using a file, you need to check the integrity of the file to ensure that the
file is not tampered with.

Recalculate the file digest and call the verify API of KMS with the signature value
to verify the signature for the digest. The signature verification result is obtained.
If the signature is verified, the file has not been tampered with. The following
figure shows the signature verification process.

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 28

Figure 1-19 Signature verification process.

Procedure

Step 1 Obtain the AK and the SK.
● ACCESS_KEY: Access key of the Huawei account. For details, see How Do I

Obtain an Access Key (AK/SK)?
● SECRET_ACCESS_KEY: Secret access key of the Huawei account. For details,

see How Do I Obtain an Access Key (AK/SK)?
● There will be security risks if the AK/SK used for authentication is directly

written into code. Encrypt the AK/SK in the configuration file or environment
variables for storage.

● In this example, the AK/SK stored in the environment variables are used for
identity authentication. Configure the environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local
environment first.

Step 2 Obtain region information.
● Log in to the management console.

Step 3 Use KMS to sign the file and verify the signature.
public class FileStreamSignVerifyExample {

 /**
 * Basic authentication information:
 * - ACCESS_KEY: access key of the Huawei Cloud account
 * - SECRET_ACCESS_KEY: secret access key of the Huawei Cloud account, which is sensitive information.
Store this in ciphertext.
 * - IAM_ENDPOINT: endpoint for accessing IAM. For details, see Regions and Endpoints.
 * - KMS_REGION_ID: regions supported by KMS. For details, see Regions and Endpoints.
 * - KMS_ENDPOINT: endpoint for accessing KMS. For details, see Regions and Endpoints.
 */
 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
 private static final String IAM_ENDPOINT = "https://<IamEndpoint>";
 private static final String KMS_REGION_ID = "<RegionId>";

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 29

https://support.huaweicloud.com/intl/en-us/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/intl/en-us/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/intl/en-us/iam_faq/iam_01_0618.html
https://console-intl.huaweicloud.com/console/?locale=en-us
https://developer.huaweicloud.com/intl/en-us/endpoint?IAM
https://developer.huaweicloud.com/intl/en-us/endpoint?DEW
https://developer.huaweicloud.com/intl/en-us/endpoint?DEW

 private static final String KMS_ENDPOINT = "https://<KmsEndpoint>";

 public static void main(String[] args) {
 // CMK ID. Select a key whose usage contains SIGN_VERIFY.
 final String keyId = args[0];

 signAndVerifyFile(keyId);
 }

 /**
 * Use KMS to sign the file and verify the signature.
 *
 * @param keyId: CMK ID
 */
 static void signAndVerifyFile(String keyId) {
 // 1. Prepare the authentication information for accessing HUAWEI CLOUD.
 final BasicCredentials auth = new BasicCredentials()
 .withIamEndpoint(IAM_ENDPOINT).withAk(ACCESS_KEY).withSk(SECRET_ACCESS_KEY);

 // 2. Initialize the SDK and transfer the authentication information and the address for the KMS to
access the client.
 final KmsClient kmsClient = KmsClient.newBuilder()
 .withRegion(new Region(KMS_REGION_ID, KMS_ENDPOINT)).withCredential(auth).build();

 // 3. Prepare the file to be signed.
 // inFile File to be signed
 final File inFile = new File("FirstSignFile.iso");
 final String fileSha256Sum = getFileSha256Sum(inFile);

 // 4. Calculate the digest and select a proper signature algorithm based on the key type.
 final SignRequest signRequest = new SignRequest().withBody(
 new
SignRequestBody().withKeyId(keyId).withSigningAlgorithm(SignRequestBody.SigningAlgorithmEnum.RSASSA
_PSS_SHA_256)
 .withMessageType(SignRequestBody.MessageTypeEnum.DIGEST).withMessage(fileSha256Su
m));

 final SignResponse signResponse = kmsClient.sign(signRequest);

 // 5. Verify the digest.
 final ValidateSignatureRequest validateSignatureRequest = new ValidateSignatureRequest().withBody(
 new
VerifyRequestBody().withKeyId(keyId).withMessage(fileSha256Sum).withSignature(signResponse.getSignatur
e())
 .withSigningAlgorithm(VerifyRequestBody.SigningAlgorithmEnum.RSASSA_PSS_SHA_256)
 .withMessageType(VerifyRequestBody.MessageTypeEnum.DIGEST));
 final ValidateSignatureResponse validateSignatureResponse =
kmsClient.validateSignature(validateSignatureRequest);

 // 6. Compare the digest result.
 assert validateSignatureResponse.getSignatureValid().equalsIgnoreCase("true");

 }

 /**
 * Calculate the SHA256 digest of the file.
 *
 * @param file
 * @return SHA256 digest in Base64 format
 */
 static String getFileSha256Sum(File file) {
 int length;
 MessageDigest sha256;
 byte[] buffer = new byte[1024];
 try {
 sha256 = MessageDigest.getInstance("SHA-256");
 } catch (NoSuchAlgorithmException e) {
 throw new RuntimeException(e.getMessage());
 }

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 30

 try (FileInputStream inputStream = new FileInputStream(file)) {
 while ((length = inputStream.read(buffer)) != -1) {
 sha256.update(buffer, 0, length);
 }
 return Base64.getEncoder().encodeToString(sha256.digest());
 } catch (IOException e) {
 throw new RuntimeException(e.getMessage());
 }
 }

}

----End

Data Encryption Workshop
Best Practice 1 Key Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 31

2 Cloud Secret Management Service

2.1 Using CSMS to Change Hard-coded Database
Account Passwords

Generally, the secrets used for access are embedded in applications. To update a
secret, you need to create a new secret and spend time updating your
applications. If you have multiple applications using the same secret, you have to
update all of them, or the applications you forgot to update will be unable to use
the secret for login.

An easy-to-use, effective, and secure secret management tool will be helpful.

Cloud Secret Management Service (CSMS) has the following advantages:

● You can host your secrets instead of using hardcoded secrets, improving the
security of data and assets.

● Your services are not affected when you manually rotate secrets.
● Secure SDK access allows you to dynamically call your secrets.
● You can store many types of secrets. You can store service accounts,

passwords, and database information, including but not limited to database
names, IP addresses, and port numbers.

Logging In to a Database Using Secrets
You can create a secret and log in to your database by calling the secret via an
API.

Ensure your account has the KMS Administrator or KMS CMKFullAccess
permission. For details, see DEW Permissions Management.

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 32

https://support.huaweicloud.com/intl/en-us/productdesc-dew/dew_01_0018.html

Figure 2-1 Secret-based login process

The process is as follows:

Step 1 Create a secret on the console or via an API to store database information (such
as the database address, port, and password).

Step 2 Use an application to access the database. CSMS will query the secret created in 1.

Step 3 CSMS retrieves and decrypts the secret ciphertext and securely returns the
information stored in the secret to the application through the secret
management API.

Step 4 The application obtains the decrypted plaintext secret and uses it to access the
database.

----End

Secret Creation and Query APIs

You can call the following APIs to create secrets, save their content, and query
secret information.

API Description

Creating a Secret This API is used to create a secret and
store the secret value in the initial
secret version.

Querying a Secret This API is used to query a secret.

Creating and Querying Secrets via APIs
1. Prepare basic authentication information.

– ACCESS_KEY: Access key of the Huawei account
– SECRET_ACCESS_KEY: Secret access key of the Huawei account
– PROJECT_ID: project ID of a Huawei Cloud site. For details, see Project.
– CSMS_ENDPOINT: endpoint for accessing CSMS. For details, see

Endpoints.

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 33

https://support.huaweicloud.com/intl/en-us/usermanual-dew/dew_01_9993.html
https://support.huaweicloud.com/intl/en-us/api-dew/CreateSecret.html
https://support.huaweicloud.com/intl/en-us/api-dew/ShowSecret.html
https://support.huaweicloud.com/intl/en-us/api-iam/iam_17_0002.html
https://support.huaweicloud.com/intl/en-us/api-dew/dew_02_0052.html

– There will be security risks if the AK/SK used for authentication is directly
written into code. Encrypt the AK/SK in the configuration file or
environment variables for storage.

– In this example, the AK/SK stored in the environment variables are used
for identity authentication. Configure the environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local
environment first.

2. Create and query secret information.
Secret name: secretName
Secret value: secretString
Secret version value: LATEST_SECRET
Secret version: versionId

import com.huaweicloud.sdk.core.auth.BasicCredentials;
import com.huaweicloud.sdk.csms.v1.CsmsClient;
import com.huaweicloud.sdk.csms.v1.model.CreateSecretRequest;
import com.huaweicloud.sdk.csms.v1.model.CreateSecretRequestBody;
import com.huaweicloud.sdk.csms.v1.model.CreateSecretResponse;
import com.huaweicloud.sdk.csms.v1.model.ShowSecretVersionRequest;
import com.huaweicloud.sdk.csms.v1.model.ShowSecretVersionResponse;

public class CsmsCreateSecretExample {
 /**
 * Basic authentication information:
 * - ACCESS_KEY: Access key of the Huawei account
 * - SECRET_ACCESS_KEY: Secret access key of the Huawei account
 * - PROJECT_ID: Huawei Cloud project ID. For details, see https://support.huaweicloud.com/intl/en-us/
productdesc-iam/iam_01_0023.html
* - CSMS_ENDPOINT: endpoint address for accessing CSMS. For details, see https://
support.huaweicloud.com/intl/en-us/api-dew/dew_02_0052.html.
 * - There will be security risks if the AK/SK used for authentication is directly written into code. Encrypt
the AK/SK in the configuration file or environment variables for storage.
 * - In this example, the AK/SK stored in the environment variables are used for identity authentication.
Configure the environment variables HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local
environment first.
 */
 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
 private static final String PROJECT_ID = "<ProjectID>";
 private static final String CSMS_ENDPOINT = "<CsmsEndpoint>";

 //Version ID used to query the latest secret version details
 private static final String LATEST_SECRET = "latest";

 public static void main(String[] args) {
 String secretName = args[0];
 String secretString = args[1];

 //Create a secret.
 createSecret(secretName, secretString);

 //Query the content of the new secret based on the secret version latest or v1.
 ShowSecretVersionResponse latestVersion = showSecretVersion(secretName, LATEST_SECRET);
 ShowSecretVersionResponse firstVersion = showSecretVersion(secretName, "v1");

 assert latestVersion.equals(firstVersion);
 assert latestVersion.getVersion().getSecretString().equalsIgnoreCase(secretString);
 }

 /**
 * Create a secret.
 * @param secretName
 * @param secretString
 */

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 34

 private static void createSecret(String secretName, String secretString) {
 CreateSecretRequest secret = new CreateSecretRequest().withBody(
 new CreateSecretRequestBody().withName(secretName).withSecretString(secretString));

 CsmsClient csmsClient = getCsmsClient();

 CreateSecretResponse createdSecret = csmsClient.createSecret(secret);

 System.out.printf("Created secret success, secret detail:%s", createdSecret);
 }
 /**
 * Query secret version details based on the secret version ID.
 * @param secretName
 * @param versionId
 * @return
 */
 private static ShowSecretVersionResponse showSecretVersion(String secretName, String versionId) {
 ShowSecretVersionRequest showSecretVersionRequest = new
ShowSecretVersionRequest().withSecretName(secretName)
 .withVersionId(versionId);

 CsmsClient csmsClient = getCsmsClient();

 ShowSecretVersionResponse version = csmsClient.showSecretVersion(showSecretVersionRequest);

 System.out.printf("Query secret success. version id:%s",
version.getVersion().getVersionMetadata().getId());

 return version;
 }

 /**
 * Obtain the CSMS client.
 * @return
 */
 private static CsmsClient getCsmsClient() {
 BasicCredentials auth = new BasicCredentials()
 .withAk(ACCESS_KEY)
 .withSk(SECRET_ACCESS_KEY)
 .withProjectId(PROJECT_ID);

 return CsmsClient.newBuilder().withCredential(auth).withEndpoint(CSMS_ENDPOINT).build();
 }
}

Obtaining the Database Account Through an Application
1. Obtain the dependency statement of the CSMS SDK.

Example:
<dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>XXX</version>
 </dependency>
 <dependency>
 <groupId>com.google.code.gson</groupId>
 <artifactId>gson</artifactId>
 <version>2.8.9</version>
 </dependency>
 <dependency>
 <groupId>com.huaweicloud.sdk</groupId>
 <artifactId>huaweicloud-sdk-csms</artifactId>
 <version>3.0.79</version>
 </dependency>

2. Establish a database connection and obtain the account.
Example:

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 35

import com.google.gson.Gson;
import com.google.gson.JsonObject;
import com.huaweicloud.sdk.csms.v1.model.ShowSecretVersionRequest;
import com.huaweicloud.sdk.csms.v1.model.ShowSecretVersionResponse;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

 // Obtain the specified database account based on the secret information.
 public static Connection getMySQLConnectionBySecret(String secretName, String jdbcUrl) throws
ClassNotFoundException, SQLException{
 Class.forName(MYSQL_JDBC_DRIVER);
 ShowSecretVersionResponse latestVersionValue = getCsmsClient().showSecretVersion(new
ShowSecretVersionRequest().withSecretName(secretName).withVersionId("latest"));
 String secretString = latestVersionValue.getVersion().getSecretString();
 JsonObject jsonObject = new Gson().fromJson(secretString, JsonObject.class);
 return DriverManager.getConnection(jdbcUrl, jsonObject.get("username").getAsString(),
jsonObject.get("password").getAsString());
 }

2.2 Using CSMS to Prevent AK and SK Leakage
CSMS is a secure, reliable, and easy-to-use credential hosting service. Users or
applications can use CSMS to create, retrieve, update, and delete credentials in a
unified manner throughout the credential lifecycle. CSMS can help you eliminate
risks incurred by hardcoding, plaintext configuration, and permission abuse.

Scenario
Application secrets are stored and can be accessed temporarily to prevent AK and
SK leakage.

How It Works
You can use Identity and Access Management (IAM) to obtain temporary access
keys for Elastic Cloud Server (ECS) to protect AKs and SKs.

Access secrets can be classified into permanent secrets and temporary secrets
based on their validity periods. Permanent access secrets include usernames and
passwords. Temporary access keys have a shorter validity period, are updated
frequently, thus are more secure. You can assign an IAM agency to an ECS
instance, so that applications in the ECS instance can use the temporary AK, SK,
and security token to access CSMS. The temporary access keys are dynamically
obtained every time they are required. They can also be cached in the memory
and updated periodically.

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 36

Process Flow

Figure 2-2 ECS agency configuration process

Constraint
Only the administrator or an IAM user with the ECS permission can configure an
agency for an ECS instance.

Procedure

Step 1 Create an ECS agency on IAM.

1. Log in to the management console.

2. Click on the left of the page and choose Management & Governance >
Identity and Access Management. The Users page is displayed.

3. In the navigation pane, choose Agencies.
4. Click Create Agency in the upper right corner.
5. Configure parameters in the Create Agency dialog box. For more information,

see Agency parameters.

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 37

https://console-intl.huaweicloud.com/console/?locale=en-us

Figure 2-3 Creating an agency

Table 2-1 Agency parameters

Parameter
Name

Description

Agency
Name

Enter an agency name. Example: ECS_TO_CSMS

Agency
Type

Select Cloud service.

Cloud
Service

Select Elastic Cloud Server (ECS) and Bare Metal Server
(BMS).

Validity
Period

Select a duration. The value can be Unlimited, 1 day, or
Custom.

Description (Optional) Enter agency description.

6. Click Next to go to the authorization page.
7. Click Create Policy in the upper right corner. If you already have a policy, skip

this step.

a. Configure policy parameters. For more information, see Policy
parameters.

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 38

Figure 2-4 Creating a policy

Table 2-2 Policy parameters

Parameter
Name

Description

Policy Name Enter a policy name.

Policy View Select Visual editor.

Policy Content ▪ Allow: Select Allow.

▪ Select service: Select Cloud Secret Management
Service (CSMS).

▪ Select action: Select read and write permissions as
required.

▪ (Optional) Select resource: Select the scope of
resources.
○ Specific: Access specific secrets.

NOTE
You can select Specify resource path, and then click
Add Resource Path to specify an accessible secret.

○ All: Access all secrets.

▪ (Optional) Add request condition: Click Add
Request Condition, select a condition key and an
operator, and enter values as required.

Description (Optional) Enter policy description.

8. Select a policy for the agency. Click Next.

9. Select a scope and click OK.

– All resources: IAM users will be able to use all resources, including those
in enterprise projects, region-specific projects, and global services under
your account based on assigned permissions.

– Enterprise projects: The selected permissions will be applied to resources
in the enterprise projects you select.

– Region-specific projects: The selected permissions will be applied to
resources in the region-specific projects you select.

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 39

Step 2 Assign an agency (for example, ECS_TO_CSMS) to an ECS instance.
● To create an ECS instance, perform the operations described in Creating an

ECS. In Step 3: Configure Advanced Settings, select the new agency (for
example, ECS_TO_CSMS).

● To use an existing ECS instance, perform the following steps:

a. Click on the left of the page and choose Management &
Governance > Identity and Access Management. Go to the ECS page.

b. Click the name of an ECS instance to go to the Summary page.

c. In the Management Information area, click and select an agency
(for example, ECS_TO_CSMS).

Figure 2-5 Selecting an agency

Step 3 In an application running on the ECS instance, call an API to obtain the temporary
agency secrets, including the temporary AK, SK, and security token, to access
CSMS.

1. Obtain the temporary AK and SK (in the Security Key directory). For details,
see Obtaining Metadata.
– URI

/openstack/latest/securitykey
– Method

GET request
– The following data is returned:

{
 "credential":{
 "access": "LDHZK30XXXXXXXXXXXXV",
 "secret":"gyqcdzVXXXXXXXXXXXXXXXXXXXXXXXMl6",
 "securitytoken": "El9FI2C65qXXXXXXXXXXXXXXXXXXXXXnkcaoV",
 "expires_at": "2022-07-14T12:09:24.147000Z"
 }
}

NO TE

▪ Extract the values of access, secret, and securitytoken to access CSMS.

▪ ECS automatically rotates temporary secrets to ensure that they are secure
and valid.

2. Use the temporary AK, SK, and security token to access CSMS.
– An example of the secret list is as follows. For details, see Secret

Management APIs.

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 40

https://support.huaweicloud.com/intl/en-us/qs-ecs/en-us_topic_0021831611.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/en-us_topic_0021831611.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_02_0012.html
https://support.huaweicloud.com/intl/en-us/usermanual-ecs/ecs_03_0166.html
https://support.huaweicloud.com/intl/en-us/api-dew/dew_02_9999.html
https://support.huaweicloud.com/intl/en-us/api-dew/dew_02_9999.html

– Prepare basic authentication information.

▪ ACCESS_KEY: Access key of the Huawei account. For details, see How
Do I Obtain an Access Key (AK/SK)?

▪ SECRET_ACCESS_KEY: Secret access key of the Huawei account. For
details, see How Do I Obtain an Access Key (AK/SK)?

▪ There will be security risks if the AK/SK used for authentication is
directly written into code. Encrypt the AK/SK in the configuration file
or environment variables for storage.

▪ In this example, the AK/SK stored in the environment variables are
used for identity authentication. Configure the environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local
environment first.

package com.huaweicloud.sdk.test;

import com.huaweicloud.sdk.core.auth.ICredential;
import com.huaweicloud.sdk.core.auth.BasicCredentials;
import com.huaweicloud.sdk.core.exception.ConnectionException;
import com.huaweicloud.sdk.core.exception.RequestTimeoutException;
import com.huaweicloud.sdk.core.exception.ServiceResponseException;
import com.huaweicloud.sdk.csms.v1.region.CsmsRegion;
import com.huaweicloud.sdk.csms.v1.*;
import com.huaweicloud.sdk.csms.v1.model.*;

public class ListSecretsSolution {
 public static void main(String[] args) {
 * Basic authentication information:
 * - ACCESS_KEY: Access key of the Huawei account
 * - SECRET_ACCESS_KEY: Secret access key of the Huawei account
 * - PROJECT_ID: Huawei Cloud project ID. For details, see https://support.huaweicloud.com/
intl/en-us/productdesc-iam/iam_01_0023.html
* - CSMS_ENDPOINT: endpoint address for accessing CSMS. For details, see https://
support.huaweicloud.com/intl/en-us/api-dew/dew_02_0052.html.
 * - There will be security risks if the AK/SK used for authentication is directly written into
code. Encrypt the AK/SK in the configuration file or environment variables for storage.
 * - In this example, the AK/SK stored in the environment variables are used for identity
authentication. Configure the environment variables HUAWEICLOUD_SDK_AK and
HUAWEICLOUD_SDK_SK in the local environment first.
 */
 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
 String securitytoken = "<YOUR SecurityToken>";

 String ak = System.getenv("CLOUD_SDK_AK");
 String sk = System.getenv("CLOUD_SDK_SK");

 ICredential auth = new BasicCredentials()
 .withAk(ak)
 .withSk(sk)
 .withSecurityToken(securitytoken);

 CsmsClient client = CsmsClient.newBuilder()
 .withCredential(auth)
 .withRegion(CsmsRegion.valueOf("cn-north-1"))
 .build();
 ListSecretsRequest request = new ListSecretsRequest();
 try {
 ListSecretsResponse response = client.listSecrets(request);
 System.out.println(response.toString());
 } catch (ConnectionException e) {
 e.getMessage();
 } catch (RequestTimeoutException e) {
 e.getMessage();

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 41

https://support.huaweicloud.com/intl/en-us/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/intl/en-us/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/intl/en-us/iam_faq/iam_01_0618.html

 } catch (ServiceResponseException e) {
 e.getMessage();
 System.out.println(e.getHttpStatusCode());
 System.out.println(e.getErrorCode());
 System.out.println(e.getErrorMsg());
 }
 }
}

----End

2.3 Using CSMS to Automatically Rotate Security
Passwords

This section describes how to use FunctionGraph and CSMS to generate and rotate
strong secure passwords periodically, so that secure and compliant passwords can
be generated, hosted, and automatically rotated.

Process

Figure 2-6 Password rotation

The process is as follows:

1. When a timer expires, a scheduled triggering event is published.
2. After receiving the event, FunctionGraph replaces the placeholder in the secret

template with a new random password, and stores the password in the secret,
which is considered as a new version of the secret.

3. Applications periodically call APIs or SDKs to obtain the latest secret version.
4. CSMS retrieves and decrypts the secret ciphertext and securely returns the

information stored in the secret to the application through the secret
management API.

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 42

5. After receiving the decrypted secret, applications use the new password for
future access by using it to update the target object (such as the database or
server).

Constraints
● CSMS is available in the region.
● FunctionGraph is available in the region.

Creating an Agency

Step 1 Log in to the management console.

Step 2 Click on the left and choose Management & Governance > Identity and
Access Management to access the Users page.

Step 3 In the navigation pane one the left, choose Agencies.

Step 4 Click Create Agency and configure the parameters as shown in Figure 2-7. Table
2-3 describes the parameters.

Figure 2-7 Creating an agency

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 43

https://console-intl.huaweicloud.com/console/?locale=en-us

Table 2-3 Agency parameters

Parameter Description

Agency Name Set this parameter as required.

Agency Type Select Cloud service.

Cloud Service Choose FunctionGraph.

Validity Period Set this parameter based on the application
scenario of the function. If the function needs to
be executed for a long time, choose Unlimited.

Description Set this parameter as needed.

Step 5 Click Next.

Step 6 Select CSMS FullAccess and KMS CMKFullAccess.

Figure 2-8 Selecting permissions

Step 7 Click Next and select a scope based on your service requirements.

Figure 2-9 Selecting a scope

Step 8 Click OK.

----End

Creating a Password Rotation Function

Step 1 Log in to the management console.

Step 2 Click on the left and choose Compute > FunctionGraph.

Step 3 Click Create Function in the upper right corner and configure the parameters as
shown in Figure 2-10. Table 2-4 describes the parameters.

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 44

https://console-intl.huaweicloud.com/console/?locale=en-us

Figure 2-10 Creating a function

Table 2-4 Basic parameters

Parameter Description

Region Select the region where the function is deployed.

Project Select the project where the function is deployed.

Function Name Enter a custom function name.

Agency Enter the name set in Creating an Agency.

Enterprise Project If you have enabled enterprise projects, select one
for you to add a function to it.
If you have not enabled enterprise projects, this
parameter will not be displayed. Skip this step. For
details about how to enable an enterprise project,
see Enabling Enterprise Center.

Runtime Select a language for writing the function.
Currently, Python is supported.
NOTE

Only Python 3.6, 3.9, and 3.10 are supported.

Step 4 Click Create Function.

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 45

https://support.huaweicloud.com/intl/en-us/usermanual-em/em_am_0008.html

Step 5 Choose the Configuration tab. In the navigation pane on the left, choose
Environment Variables. Click Add and add environment variables in the variable
configuration row. Table 2-4 describes the parameters. Then, click Save.

Table 2-5 Environment variables

Parameter Description Example

region Project name which is based on the region, for
example, if the region is CN North-Beijing4, the
project name should be cn-north-4. To obtain
your region, click your username in the upper
right corner of the page, and choose My
Credentials from the drop-down list.

cn-north-4

secret_name Name of the secret to be rotated
NOTE

A secret must have been created. For details, see
Creating a Secret.

rds-
functionGraph-
rotate

secret_conte
nt

Secret template which is specified using braces
({}), for example, the secret template is
{"password":"password_placeholder"}. In this
case, password_placeholder is the placeholder,
which will be replaced by a secure password
after the function is executed. The new content
will be saved in the secret after the
replacement.
NOTE

If multiple placeholders exist in a template, more
than one password will be generated and replaced in
sequence.

{"password":"p
assword_place
holder"}

password_le
ngth

Password length. The value ranges from 8 to
128. The default value is 16.

16

password_fo
rmat

Password format. The default value is 2.
Possible values are as follows:
1. Digits and letters
2. Digits, letters, and special characters (~!@#
%^*-_=+?)
3. Only digits
4. Only letters

2

Step 6 Choose the Code tab, add the following password rotation function to the editing
window, and click Deploy.
-*- coding:utf-8 -*-
import json
import secrets
import string
import requests
import inspect

def handler (event, context):

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 46

https://support.huaweicloud.com/intl/en-us/usermanual-dew/dew_01_2002.html

 global secret_content
 global password_length
 global password_format
 global kms_endpoint
 global region
 global secret_name
 global headers
 region = context.getUserData('region')
 secret_name = context.getUserData('secret_name')
 password_length = 16 if context.getUserData('password_length') is None else
int(context.getUserData('password_length'))
 password_format = 2 if context.getUserData('password_format') is None else
int(context.getUserData('password_format'))
 secret_content = context.getUserData('secret_content')
 headers = {
 'Content-Type': 'application/json',
 'x-Auth-Token': context.getToken()
 }
 try:
 new_content = replace_old_content(secret_content)
 # check region, if pass, return kms endpoint
 kms_endpoint = check_region(region)
 return update(context, new_content)
 except Exception as e:
 print("ERROR: %s" % e)
 return 'FAILED'

replace "password_placeholder" in secret_content by new password
def replace_old_content(content):
 while content.find("password_placeholder") != -1:
 password = generate_password()
 while password.find("password_placeholder") != -1:
 password = generate_password()
 content = content.replace("password_placeholder", password, 1)
 return content

def generate_password():
 special_chars = "~!@#%^*-_=+?"
 # password format(default is 2):
 # 1.support letters and digits; 2.support letters, digits and special chars(~!@#%^*-_=+?);
 # 3.only support digits; 4.only support letters
 format_mapping = {
 1: string.ascii_letters + string.digits,
 2: string.ascii_letters + string.digits + special_chars,
 3: string.digits,
 4: string.ascii_letters
 }
 if password_length < 8 or password_length > 128:
 raise Exception("invalid password_length: %s, the password length range must be between 8-128." %
password_length)
 try:
 support_chars = format_mapping[password_format]
 password = ''.join([secrets.choice(support_chars) for _ in range(password_length)])
 return password
 except:
 raise Exception("invalid password_format: %s." % password_format)

def check_region(region):
 endpoint_mapping = {
 'cn-north-1': 'cn-north-1.myhuaweicloud.com',
 'cn-north-2': 'cn-north-2.myhuaweicloud.com',
 'cn-north-4': 'cn-north-4.myhuaweicloud.com',
 'cn-north-7': 'cn-north-7.myhuaweicloud.com',
 'cn-north-9': 'cn-north-9.myhuaweicloud.com',
 'cn-east-2': 'cn-east-2.myhuaweicloud.com',
 'cn-east-3': 'cn-east-3.myhuaweicloud.com',
 'cn-south-1': 'cn-south-1.myhuaweicloud.com',
 'cn-south-2': 'cn-south-2.myhuaweicloud.com',
 'cn-southwest-2': 'cn-southwest-2.myhuaweicloud.com',

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 47

 'ap-southeast-1': 'ap-southeast-1.myhuaweicloud.com',
 'ap-southeast-2': 'ap-southeast-2.myhuaweicloud.com',
 'ap-southeast-3': 'ap-southeast-3.myhuaweicloud.com',
 'af-south-1': 'af-south-1.myhuaweicloud.com',
 'la-north-2': 'la-north-2.myhuaweicloud.com',
 'la-south-2': 'la-south-2.myhuaweicloud.com',
 'na-mexico-1': 'na-mexico-1.myhuaweicloud.com',
 'sa-brazil-1': 'sa-brazil-1.myhuaweicloud.com'
 }
 try:
 endpoint = endpoint_mapping[region]
 kms_endpoint = '%s.%s' % ('kms', endpoint)
 return kms_endpoint
 except:
 raise Exception("invalid region: %s" % region)

def check_csms_resp(resp):
 if resp.status_code in (200, 201, 204):
 return
 caller_function_name = inspect.stack()[1].function
 json_resp = json.loads(resp.text)
 if 'error_msg' in json_resp:
 error_message = 'function:%s , reason: %s' % (
 caller_function_name, json_resp['error_msg'])
 raise Exception(error_message)
 error_message = 'function:%s , reason: %s' % (
 caller_function_name, resp.text)
 raise Exception(error_message)

def update(context, new_content):
 project_id = context.getProjectID()
 url = 'https://%s/v1/%s/secrets/%s/versions' % (kms_endpoint, project_id, secret_name)
 payload = {'secret_string': new_content}
 payload = json.dumps(payload)
 resp = requests.post(url, headers=headers, data=payload)
 check_csms_resp(resp)
 return 'SUCCESS'

----End

Debugging

Debug the created FunctionGraph. For details, see Online Debugging.

Creating a Trigger

Create a trigger. For details, see Using a Timer Trigger.

Viewing a Secret

Step 1 Log in to the management console.

Step 2 Click . Choose Security & Compliance > Data Encryption Workshop.

Step 3 In the navigation pane, choose Cloud Secret Management Service.

Step 4 Search for the secret created in Creating a Password Rotation Function.

Step 5 Click the secret to view its details, including current and historical versions.

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 48

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0302.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0207.html
https://console-intl.huaweicloud.com/console/?locale=en-us

Figure 2-11 Viewing secret details

Step 6 In the Version, locate the secret, and click View Secret in the Operation column
to view the password.

Figure 2-12 Viewing a secret value

----End

2.4 Rotating Secrets

2.4.1 Overview
If you have not updated secrets for a long time, important information (such as
important passwords, tokens, certificates, SSH keys, and API keys) protected by
these secrets are exposed to leakage risks. Periodically rotating secrets improves
the security of protected plaintext information.

HUAWEI CLOUD provides two secret rotation policies:

● Rotating a Secret for a User
● Rotating a Secret for a Two Users

You can select a rotation policy as needed.

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 49

Procedure
1. The administrator adds a secret version and updates its content on the

console or via an API.
2. The application calls a CSMS API to obtain the latest secret version or the

secret of a specified version status, and then rotate the secret.
3. Regularly repeat steps 1 and 2 to rotate secrets.

2.4.2 Rotating a Secret for a User

Overview
You can update the information of a user in a secret.

This is the most commonly used secret rotation policy.

Example:

● For database access, a database connection is not deleted during secret
rotation. After the rotation, new connections use the new secrets.

● A user can create an account, for example, using an email address as the
username. Generally, users can change passwords as needed, but cannot
create other users or change usernames.

● Temporary users are created at the moment they are needed.
● Passwords are entered by users, not retrieved from CSMS by applications.

These users do not need to change their usernames or passwords.

Constraints
Ensure your account has the KMS Administrator or KMS CMKFullAccess
permission. For details, see DEW Permissions Management.

Secret Rotation APIs
You can call the following APIs to rotate secrets locally.

API Description

Creating a Secret Version Create a secret version.

Querying the Secret Version and
Value

Query the information about a
specified secret version and the
plaintext secret value in the version.

Example of Single Account Secret Rotation
1. Create a secret on the HUAWEI CLOUD console. For details, see Creating a

Secret.
2. Prepare basic authentication information.

– ACCESS_KEY: Access key of the Huawei account

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 50

https://support.huaweicloud.com/intl/en-us/usermanual-dew/dew_01_9993.html
https://support.huaweicloud.com/intl/en-us/productdesc-dew/dew_01_0018.html
https://support.huaweicloud.com/intl/en-us/api-dew/CreateSecret.html
https://support.huaweicloud.com/intl/en-us/api-dew/CreateSecretVersion.html
https://support.huaweicloud.com/intl/en-us/api-dew/CreateSecretVersion.html
https://support.huaweicloud.com/intl/en-us/usermanual-dew/dew_01_9993.html
https://support.huaweicloud.com/intl/en-us/usermanual-dew/dew_01_9993.html

– SECRET_ACCESS_KEY: Secret access key of the Huawei account
– PROJECT_ID: project ID of a HUAWEI CLOUD site. For details, see Project.
– CSMS_ENDPOINT: endpoint for accessing CSMS. For details, see

Endpoints.
– There will be security risks if the AK/SK used for authentication is directly

written into code. Encrypt the AK/SK in the configuration file or
environment variables for storage.

– In this example, the AK/SK stored in the environment variables are used
for identity authentication. Configure the environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local
environment first.

3. Rotation the secret of a user.
In the example code,
– secretName indicates the name of the secret created on the Huawei

Cloud console.
– secretString indicates the value saved in the secret created on the

Huawei Cloud console.
– versionId indicates the secret ID automatically generated after a secret is

created on the Huawei Cloud console.
– LATEST_VERSION indicates the secret version.

import com.huaweicloud.sdk.core.auth.BasicCredentials;
import com.huaweicloud.sdk.csms.v1.CsmsClient;
import com.huaweicloud.sdk.csms.v1.model.CreateSecretVersionRequest;
import com.huaweicloud.sdk.csms.v1.model.CreateSecretVersionRequestBody;
import com.huaweicloud.sdk.csms.v1.model.CreateSecretVersionResponse;
import com.huaweicloud.sdk.csms.v1.model.ShowSecretVersionRequest;
import com.huaweicloud.sdk.csms.v1.model.ShowSecretVersionResponse;

public class CsmsSingleAccountExample {
 /**
 * Basic authentication information:
 * - ACCESS_KEY: Access key of the Huawei account
 * - SECRET_ACCESS_KEY: Secret access key of the Huawei account
 * - PROJECT_ID: Huawei Cloud project ID. For details, see https://support.huaweicloud.com/
intl/en-us/productdesc-iam/iam_01_0023.html
* - CSMS_ENDPOINT: endpoint address for accessing CSMS. For details, see https://
support.huaweicloud.com/intl/en-us/api-dew/dew_02_0052.html.
 * - There will be security risks if the AK/SK used for authentication is directly written into
code. Encrypt the AK/SK in the configuration file or environment variables for storage.
 * - In this example, the AK/SK stored in the environment variables are used for identity
authentication. Configure the environment variables HUAWEICLOUD_SDK_AK and
HUAWEICLOUD_SDK_SK in the local environment first.
 */
 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
 private static final String PROJECT_ID = "<ProjectID>";
 private static final String CSMS_ENDPOINT = "<CsmsEndpoint>";
 //Version ID used to query the latest secret version details.
 private static final String LATEST_VERSION = "latest";
 public static void main(String[] args) {
 String secretName = args[0];
 String secretString = args[1];
 singleAccountRotation(secretName, secretString);
 }

 /**
 * Example: secret rotation for a single account
 *
 * @param secretName Secret name
 * @param secretString Secret content

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 51

https://support.huaweicloud.com/intl/en-us/api-iam/iam_17_0002.html
https://support.huaweicloud.com/intl/en-us/api-dew/dew_02_0052.html

 */
 private static void singleAccountRotation(String secretName, String secretString) {
 //Host the new secret in CSMS.
 createNewSecretVersion(secretName, secretString);
 //Query the secret of the latest version based on the secret version latest.
 ShowSecretVersionResponse secretResponseByLatest =
showSecretVersionDetail(secretName, LATEST_VERSION);
 assert secretResponseByLatest.getVersion().getSecretString().equals(secretString);
 }

 /**
 * Example of creating a secret
 * If a secret version is added without version status, the program points the SYSCURRENT
version status to the version by default.
 *
 * @param secretName Secret name
 * @param secretString Secret content
 * @return
 */
 private static CreateSecretVersionResponse createNewSecretVersion(String secretName,
String secretString) {
 CsmsClient csmsClient = getCsmsClient();

 CreateSecretVersionRequest createSecretVersionRequest = new
CreateSecretVersionRequest()
 .withSecretName(secretName)
 .withBody(new CreateSecretVersionRequestBody().withSecretString(secretString));

 CreateSecretVersionResponse secretVersion =
csmsClient.createSecretVersion(createSecretVersionRequest);

 System.out.printf("Created new version success, version id:%s",
secretVersion.getVersionMetadata().getId());
 return secretVersion;
 }
 /**
 * Query the secret of a specified version.
 *
 * @param secretName Secret name
 * @param versionId Secret_version_ID
 * @return
 */
 private static ShowSecretVersionResponse showSecretVersionDetail(String secretName, String
versionId) {
 ShowSecretVersionRequest showSecretVersionRequest = new
ShowSecretVersionRequest().withSecretName(secretName)
 .withVersionId(versionId);
 CsmsClient csmsClient = getCsmsClient();
 ShowSecretVersionResponse secretDetail =
csmsClient.showSecretVersion(showSecretVersionRequest);
 System.out.printf("Query latest version success. version id:%s",
secretDetail.getVersion().getVersionMetadata().getId());
 return secretDetail;
 }
 /**
 * Obtain the CSMS client.
 *
 * @return
 */
 private static CsmsClient getCsmsClient() {
 BasicCredentials auth = new BasicCredentials()
 .withAk(ACCESS_KEY)
 .withSk(SECRET_ACCESS_KEY)
 .withProjectId(PROJECT_ID);
 return
CsmsClient.newBuilder().withCredential(auth).withEndpoint(CSMS_ENDPOINT).build();
 }
}

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 52

2.4.3 Rotating a Secret for Two Users

Overview

You can update the information of two users in a secret.

For example, if your application requires high availability and you perform single-
user rotation, you may fail to access the application when changing the user
password and updating the secret content. In this case, you need to use the multi-
user secret rotation policy.

You must have an account, for example, Admin, that has the permission to create
and change the passwords of user1 and user2. First, create a secret, create and
save the account and password of user1, and record them as user1/password1.
Then, create user2 by adding secret version v2, and save the password of user2 as
user2/password2. If you change the password of user1, you need to add secret
version v3 and record it as user1/password3. When the secret version v3 is being
created, the application uses the existing secret version v2 to obtain information.
Once v3 is ready, the temporary storage tag will be changed, and the application
can use v3 to obtain information.

Constraints

Ensure your account has the KMS Administrator or KMS CMKFullAccess
permission. For details, see DEW Permissions Management.

Secret Rotation APIs

You can call the following APIs to rotate secrets locally.

API Description

Creating a Secret Version Create a secret version.

Querying the Secret Version and
Value

Query the information about a
specified secret version and the
plaintext secret value in the version.

Updating the Version Status of a
Secret

Update the version status of a secret.

Querying the Status of a Secret
Version

Query the status of a specified secret
version.

Example of Dual-Account Secret Rotation
1. Create a secret on the HUAWEI CLOUD console as the administrator. For

details, see Creating a Secret.
2. Prepare basic authentication information.

– ACCESS_KEY: Access key of the Huawei account
– SECRET_ACCESS_KEY: Secret access key of the Huawei account

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 53

https://support.huaweicloud.com/intl/en-us/productdesc-dew/dew_01_0018.html
https://support.huaweicloud.com/intl/en-us/api-dew/CreateSecretVersion.html
https://support.huaweicloud.com/intl/en-us/api-dew/ShowSecretVersion.html
https://support.huaweicloud.com/intl/en-us/api-dew/ShowSecretVersion.html
https://support.huaweicloud.com/intl/en-us/api-dew/UpdateSecretStage.html
https://support.huaweicloud.com/intl/en-us/api-dew/UpdateSecretStage.html
https://support.huaweicloud.com/intl/en-us/api-dew/ShowSecretStage.html
https://support.huaweicloud.com/intl/en-us/api-dew/ShowSecretStage.html
https://support.huaweicloud.com/intl/en-us/usermanual-dew/dew_01_9993.html

– PROJECT_ID: project ID of a HUAWEI CLOUD site. For details, see Project.
– CSMS_ENDPOINT: endpoint for accessing CSMS. For details, see

Endpoints.
– There will be security risks if the AK/SK used for authentication is directly

written into code. Encrypt the AK/SK in the configuration file or
environment variables for storage.

– In this example, the AK/SK stored in the environment variables are used
for identity authentication. Configure the environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local
environment first.

3. Rotate the secret for two users.
In the example code,
– secretName indicates the name of the secret created on the Huawei

Cloud console.
– secretString indicates the value saved in the secret created on the

Huawei Cloud console.
– versionId indicates the secret ID automatically generated after a secret is

created on the Huawei Cloud console.
– LATEST_VERSION indicates the secret version.

import com.huaweicloud.sdk.core.auth.BasicCredentials;
import com.huaweicloud.sdk.csms.v1.CsmsClient;
import com.huaweicloud.sdk.csms.v1.model.CreateSecretVersionRequest;
import com.huaweicloud.sdk.csms.v1.model.CreateSecretVersionRequestBody;
import com.huaweicloud.sdk.csms.v1.model.CreateSecretVersionResponse;
import com.huaweicloud.sdk.csms.v1.model.ListSecretStageRequest;
import com.huaweicloud.sdk.csms.v1.model.ListSecretStageResponse;
import com.huaweicloud.sdk.csms.v1.model.ShowSecretVersionRequest;
import com.huaweicloud.sdk.csms.v1.model.ShowSecretVersionResponse;
import com.huaweicloud.sdk.csms.v1.model.UpdateSecretStageRequest;
import com.huaweicloud.sdk.csms.v1.model.UpdateSecretStageRequestBody;

import java.util.Collections;
import java.util.List;

public class CsmsDualAccountExample {
 /**
 * Basic authentication information:
 * - ACCESS_KEY: Access key of the Huawei account
 * - SECRET_ACCESS_KEY: Secret access key of the Huawei account
 * - PROJECT_ID: Huawei Cloud project ID. For details, see https://support.huaweicloud.com/
intl/en-us/productdesc-iam/iam_01_0023.html
* - CSMS_ENDPOINT: endpoint address for accessing CSMS. For details, see https://
support.huaweicloud.com/intl/en-us/api-dew/dew_02_0052.html.
 * - There will be security risks if the AK/SK used for authentication is directly written into
code. Encrypt the AK/SK in the configuration file or environment variables for storage;
 * - In this example, the AK/SK stored in the environment variables are used for identity
authentication. Configure the environment variables HUAWEICLOUD_SDK_AK and
HUAWEICLOUD_SDK_SK in the local environment first.
 */
 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
 private static final String PROJECT_ID = "<ProjectID>";
 private static final String CSMS_ENDPOINT = "<CsmsEndpoint>";

 //Version ID used to query the latest secret version details.
 private static final String LATEST_VERSION = "latest";
 private static final String HW_CURRENT_STAGE = "SYSCURRENT";
 private static final String HW_PENDING_STAGE = "HW_PENDING";

 public static void main(String[] args) {

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 54

https://support.huaweicloud.com/intl/en-us/api-iam/iam_17_0002.html
https://support.huaweicloud.com/intl/en-us/api-dew/dew_02_0052.html

 String secretName = args[0];
 String secretString = args[1];

 dualAccountRotation(secretName, secretString);
 }

 /**
 * Example: secret rotation for two accounts
 *
 * @param secretName
 * @param secretString
 */
 private static void dualAccountRotation(String secretName, String secretString) {
 // Create a new secret version with a custom version status. Assume that the secret
content is the account password of service A.
 CreateSecretVersionResponse newSecretVersion =
createNewSecretVersionWithStage(secretName,
 secretString, Collections.singletonList(HW_PENDING_STAGE));
 String versionId = newSecretVersion.getVersionMetadata().getId();

 // Before rotation, check whether the pending state is modified.
 ListSecretStageResponse listSecretStageResponse = showSecretStage(secretName,
HW_PENDING_STAGE);
 assert listSecretStageResponse.getStage().getVersionId().equals(versionId);

 // After the account and password of service A are updated, the version status of the new
secret is updated to SYSCURRENT. The old secret is still stored in the service and cannot be
accessed by specifying latest.
 updateSecretStage(secretName, versionId, HW_CURRENT_STAGE);

 // Query the secret of the latest version by specifying latest to complete the dual-account
secret rotation.
 ShowSecretVersionResponse secretResponse = showVersionDetail(secretName,
LATEST_VERSION);

 assert secretResponse.getVersion().getSecretString().equals(secretString);
 }

 /**
 * Example of creating a secret
 * If you add a secret version by customizing the version status, the program will not point
the SYSCURRENT version status to this version.
 *
 * @param secretName
 * @param newSecretVersionText
 * @param stageList
 * @return
 */
 private static CreateSecretVersionResponse createNewSecretVersionWithStage(String
secretName,
 String newSecretVersionText,
 List<String> stageList) {
 CsmsClient csmsClient = getCsmsClient();

 //Host the new secret in CSMS.
 CreateSecretVersionRequest createSecretVersionRequest = new
CreateSecretVersionRequest()
 .withSecretName(secretName)
 .withBody(new CreateSecretVersionRequestBody()
 .withSecretString(newSecretVersionText)
 .withVersionStages(stageList));

 CreateSecretVersionResponse secretVersion =
csmsClient.createSecretVersion(createSecretVersionRequest);

 System.out.printf("Created new version success, version id: %s",
secretVersion.getVersionMetadata().getId());

 return secretVersion;

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 55

 }

 /**
 * Point the input version state to the specified secret version.
 * @param secretName
 * @param versionId
 * @param newStageName
 */
 private static void updateSecretStage(String secretName, String versionId, String
newStageName) {
 UpdateSecretStageRequest updateSecretStageRequest = new
UpdateSecretStageRequest().withSecretName(secretName)
 .withStageName(newStageName).withBody(new
UpdateSecretStageRequestBody().withVersionId(versionId));

 CsmsClient csmsClient = getCsmsClient();

 csmsClient.updateSecretStage(updateSecretStageRequest);

 System.out.printf("Version stage update success. version id:%s, new stage name:%s",
versionId, newStageName);
 }

 /**
 * Query the secret of a specified version.
 * @param secretName
 * @param versionId
 * @return
 */
 private static ShowSecretVersionResponse showVersionDetail(String secretName, String
versionId) {
 ShowSecretVersionRequest showSecretVersionRequest = new
ShowSecretVersionRequest().withSecretName(secretName)
 .withVersionId(versionId);

 CsmsClient csmsClient = getCsmsClient();
 ShowSecretVersionResponse secretDetail =
csmsClient.showSecretVersion(showSecretVersionRequest);

 System.out.printf("Query latest version success. version id:%s",
 secretDetail.getVersion().getVersionMetadata().getId());
 return secretDetail;
 }

 /**
 * Query the status of a specified version.
 * @param secretName
 * @param stageName
 * @return
 */
 private static ListSecretStageResponse showSecretStage(String secretName, String
stageName) {
 ShowSecretStageRequest showSecretStageRequest = new ShowSecretStageRequest()
 .withSecretName(secretName).withStageName(stageName);
 CsmsClient csmsClient = getCsmsClient();
 return csmsClient.showSecretStage(showSecretStageRequest);
 }

 /**
 * Obtain the CSMS client.
 *
 * @return
 */
 private static CsmsClient getCsmsClient() {
 BasicCredentials auth = new BasicCredentials()
 .withAk(ACCESS_KEY)
 .withSk(SECRET_ACCESS_KEY)
 .withProjectId(PROJECT_ID);
 return

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 56

CsmsClient.newBuilder().withCredential(auth).withEndpoint(CSMS_ENDPOINT).build();
 }
}

2.4.4 Rotating IAM Secrets Using FunctionGraph

Scenario
This section describes how to rotate IAM secrets through KMS using a
FunctionGraph template.

Constraints
● Only IAM member accounts can be rotated. IAM master accounts cannot be

rotated.
● The IAM member account to be rotated must have at least one group of

secrets.
● CSMS is available in the region.

Procedure
Create an agency.

Step 1 Log in to the management console.

Step 2 Click in the upper left corner of the management console and select a region
or project.

Step 3 Click in the upper left corner of the page and choose Management &
Governance > Identity and Access Management.

Step 4 In the navigation pane one the left, choose Agencies. Click Create Agency in the
upper right corner.

Step 5 Configure the parameters, as shown in the following figure. Table 2-6 lists the
parameters.

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 57

https://console-intl.huaweicloud.com/console/?locale=en-us

Figure 2-13 Creating an agency

Table 2-6 Parameters for creating an agency

Parameter Description

Agency Name Enter a custom agency name, for
example, test.

Agency Type Select Cloud service.

Cloud Service Choose FunctionGraph.

Validity Period Set this parameter based on the actual
scenario. If the function needs to be
executed for a long time, choose
Unlimited.

Description Set this parameter as needed.

Step 6 Click Next.

Step 7 Select Security Administrator, CSMS FullAccess, and KMS CMKFullAccess, as
shown in the following figure.

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 58

Figure 2-14 Assigning permissions

Step 8 Click Next and choose an authorization scope, as shown in the following figure.

Figure 2-15 Authorization scope

Step 9 Click OK.

----End

Create a function template and a function.

Step 1 Log in to the management console.

Step 2 Click in the upper left corner of the management console and select a region
or project.

Step 3 Click in the upper left corner of the page and choose Compute >
FunctionGraph.

Step 4 Click Create Function in the upper right corner.

Step 5 Click Select template. In the Service area, click DEW, locate rotate-iam-
credentials in the below, and click Configure in the upper right corner of the box,
as shown in the following figure.

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 59

https://console-intl.huaweicloud.com/console/?locale=en-us

Figure 2-16 Creating a function

Step 6 Configure the parameters, which are described in Table 2-7.

Figure 2-17 Basic function information

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 60

Table 2-7 Basic parameters

Parameter Description

Region Select the region where the function is
to be deployed.

Project Select the project where the function is
to be deployed.

Function Name Enter a custom function name.

Agency Select an agency.

Enterprise Project If you have enabled enterprise
projects, select one for you to add a
function to it.
If you have not enabled an enterprise
project, this parameter will be
unavailable. Skip this step.

Step 7 Configure the environment variables, which are described in Table 2-8.

Figure 2-18 Environment variables

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 61

Table 2-8 Environment variables

Parameter Description

region Project, for example, if the region is
CN North-Beijing4, the project name
should be cn-north-4.
NOTE

To obtain the project, hover the mouse
over the username, and choose My
Credentials from the drop-down list. The
projects are displayed.

user_id Enter the ID of the IAM user to be
rotated.
NOTE

To obtain the IAM user ID, hover the
mouse over the username, and choose My
Credentials from the drop-down list. The
ID is displayed.

project_id Enter the project ID.
NOTE

To obtain the IAM user ID, hover the
mouse over the username, and choose My
Credentials from the drop-down list. The
IDs of the projects are displayed.

secret_name Enter the name of the secret to be
created, which cannot be the same as
an existing secret name.

Step 8 Configure trigger variables, which are described in Table 2-9.

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 62

Figure 2-19 Trigger variables

Table 2-9 Trigger variables

Parameter Description

Timer Name Custom

Rule Configured as required

Enable Trigger Configured as required

Step 9 Click Create Function.

----End

Debug.

For details about debugging a function workflow, see Online Debugging.

View the secret.

Step 1 Log in to the management console.

Step 2 Click in the upper left corner of the management console and select a region
or project.

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 63

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0302.html
https://console-intl.huaweicloud.com/console/?locale=en-us

Step 3 Click . Choose Security & Compliance > Data Encryption Workshop.

Step 4 In the navigation pane, choose Cloud Secret Management Service.

Step 5 Query the specified secret in Step 7. Click it to view the details. The current valid
secret, historical secrets, and other information are displayed.

Figure 2-20 Secret details

Step 6 Locate the latest version of the secret, click View Secret in the Operation column
to check the AK/SK.

----End

Data Encryption Workshop
Best Practice 2 Cloud Secret Management Service

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 64

3 General

3.1 Retrying Failed DEW Requests by Using Exponential
Backoff

Scenario

If you receive an error message when calling an API, you can use exponential
backoff to retry the request.

How It Works

If consecutive errors (such as traffic limiting errors) are reported by the service
side, continuous access will keep causing conflicts. Exponential backoff can help
you avoid such errors.

Constraints

The current account has an enabled key.

Example
1. Prepare basic authentication information.

– ACCESS_KEY: Access key of the Huawei account. For details, see How Do
I Obtain an Access Key (AK/SK)?

– SECRET_ACCESS_KEY: Secret access key of the Huawei account. For
details, see How Do I Obtain an Access Key (AK/SK)?

– PROJECT_ID: site project ID. For details, see Obtaining a Project ID.
– KMS_ENDPOINT: endpoint for accessing KMS. For details, see Endpoints.
– There will be security risks if the AK/SK used for authentication is directly

written into code. Encrypt the AK/SK in the configuration file or
environment variables for storage.

– In this example, the AK/SK stored in the environment variables are used
for identity authentication. Configure the environment variables

Data Encryption Workshop
Best Practice 3 General

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 65

https://support.huaweicloud.com/intl/en-us/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/intl/en-us/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/intl/en-us/iam_faq/iam_01_0618.html
https://support.huaweicloud.com/intl/en-us/api-iam/iam_17_0002.html
https://developer.huaweicloud.com/intl/en-us/endpoint?DEW

HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local
environment first.

2. Code for exponential backoff:
import com.huaweicloud.sdk.core.auth.BasicCredentials;
 import com.huaweicloud.sdk.core.auth.ICredential;
 import com.huaweicloud.sdk.core.exception.ClientRequestException;
 import com.huaweicloud.sdk.kms.v2.model.EncryptDataRequest;
 import com.huaweicloud.sdk.kms.v2.model.EncryptDataRequestBody;
 import com.huaweicloud.sdk.kms.v2.KmsClient;

 public class KmsEncryptExample {

 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");

 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");

 private static final String KMS_ENDPOINT = "xxxx";

 private static final String KEY_ID = "xxxx";

 private static final String PROJECT_ID = "xxxx";

 private static KmsClient KmsClientInit() {
 ICredential auth = new BasicCredentials()
 .withAk(ACCESS_KEY)
 .withSk(SECRET_ACCESS_KEY)
 .withProjectId(PROJECT_ID);
 return KmsClient.newBuilder()
 .withCredential(auth)
 .withEndpoint(KMS_ENDPOINT)
 .build();
 }

 public static long getWaitTime(int retryCount) {
 long initialDelay = 200L;
 return (long) (Math.pow(2, retryCount) * initialDelay);
 }

 public static void encryptData(KmsClient client, String plaintext) {
 EncryptDataRequest request = new EncryptDataRequest().withBody(
 new EncryptDataRequestBody()
 .withKeyId(KEY_ID)
 .withPlainText(plaintext));
 client.encryptData(request);
 }

 public static void main(String[] args) {
 int maxRetryTimes = 6;
 String plaintext = "plaintext";
 String errorMsg = "The throttling threshold has been reached";

 KmsClient client = KmsClientInit();
 for (int i = 0; i < maxRetryTimes; i++) {
 try {
 encryptData(client, plaintext);
 return;
 } catch (ClientRequestException e) {
 if (e.getErrorMsg().contains(errorMsg)) {
 try {
 Thread.sleep(getWaitTime(i));
 } catch (InterruptedException ex) {
 throw new RuntimeException(ex);
 }
 }
 }
 }

Data Encryption Workshop
Best Practice 3 General

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 66

 }
 }

Data Encryption Workshop
Best Practice 3 General

Issue 07 (2024-05-03) Copyright © Huawei Technologies Co., Ltd. 67

	Contents
	1 Key Management Service
	1.1 Using KMS to Encrypt Offline Data
	1.1.1 Encrypting or Decrypting Small Volumes of Data
	1.1.2 Encrypting or Decrypting a Large Amount of Data

	1.2 Using KMS to Encrypt and Decrypt Data for Cloud Services
	1.2.1 Overview
	1.2.2 Encrypting Data in ECS
	1.2.3 Encrypting Data in OBS
	1.2.4 Encrypting Data in EVS
	1.2.5 Encrypting Data in IMS
	1.2.6 Encrypting an RDS DB Instance
	1.2.7 Encrypting a DDS DB Instance

	1.3 Using the Encryption SDK to Encrypt and Decrypt Local Files
	1.4 Encrypting and Decrypting Data Through Cross-region DR
	1.5 Using KMS to Protect File Integrity

	2 Cloud Secret Management Service
	2.1 Using CSMS to Change Hard-coded Database Account Passwords
	2.2 Using CSMS to Prevent AK and SK Leakage
	2.3 Using CSMS to Automatically Rotate Security Passwords
	2.4 Rotating Secrets
	2.4.1 Overview
	2.4.2 Rotating a Secret for a User
	2.4.3 Rotating a Secret for Two Users
	2.4.4 Rotating IAM Secrets Using FunctionGraph

	3 General
	3.1 Retrying Failed DEW Requests by Using Exponential Backoff

