
Cloud Service Engine

Best Practices

Issue 01

Date 2023-11-07

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2023. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2023-11-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 ServiceComb Engine Application Hosting... 1
1.1 Hosting a Spring Cloud Application..1
1.1.1 Introduction... 1
1.1.2 Access to a ServiceComb Engine.. 2
1.1.3 System Architecture Planning..6
1.1.4 Third-Party Software Version Management Policy.. 6
1.1.5 Development Environment Planning.. 9
1.1.6 Application Logical Isolation... 10
1.1.7 Configuration File Encryption Scheme... 11
1.1.8 Service Governance Planning.. 13
1.1.8.1 Rolling Upgrade.. 13
1.1.9 FAQs... 14
1.1.9.1 Incompatibilities During Spring Boot Upgrade from 2.0.x.RELEASE to 2.3.x.RELEASE.......................... 14
1.1.9.2 Dynamic Configuration Issues... 15
1.1.9.3 Common Spring Cloud Startup Errors.. 16
1.1.9.3.1 Incorrect Registry Center Address... 16
1.1.9.3.2 Different Services of the Same Application in the Same Environment Cannot Invoke Each Other
.. 16
1.2 Hosting a Java Chassis Application...17
1.2.1 Introduction... 17
1.2.2 System Architecture Planning... 17
1.2.3 Thread Pool Parameters Configuration... 18
1.2.4 Log Files Configuration... 19
1.2.5 Service Governance Planning.. 20
1.2.5.1 Rolling Upgrade.. 20
1.2.5.2 Hitless Upgrade.. 20
1.2.6 Java Chassis Upgrade... 21

Cloud Service Engine
Best Practices Contents

Issue 01 (2023-11-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

1 ServiceComb Engine Application Hosting

1.1 Hosting a Spring Cloud Application

1.1.1 Introduction

Scenario
Spring Boot and Spring Cloud are widely used to build microservice applications.
The main purpose of using ServiceComb engines to host Spring Cloud applications
is to replace open-source components with highly reliable commercial middleware
to better manage and maintain the application system. The reconstruction process
should minimize the impact on service logic. This operation is applicable to the
following scenarios:

● Application systems developed based on Spring Boot do not have basic
microservice capabilities. The application system integrates Spring Cloud
Huawei to provide capabilities such as service registration and discovery and
dynamic configuration management.

● Application systems developed based on the Spring Cloud open-source
technology system, for example, Eureka for registration and discovery and
Nacos for dynamic configuration, integrate Spring Cloud Huawei and use
highly reliable commercial middleware to replace open-source middleware,
reducing maintenance costs.

● Cloud native applications built based on other Spring Cloud development
systems, such as Spring Cloud Alibaba and Spring Cloud Azure, are migrated
to Huawei Cloud using Spring Cloud Huawei.

Applying Suggestions
Before using ServiceComb engines to host Spring Cloud applications, evaluate the
reconstruction risks and workload based on the following suggestions:

● The principle of reconstruction is to implement the DiscoveryClient and
PropertySource interfaces provided by Spring Cloud to provide functions such
as registration, discovery, and dynamic configuration for Spring Cloud

Cloud Service Engine
Best Practices 1 ServiceComb Engine Application Hosting

Issue 01 (2023-11-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

https://github.com/spring-projects/spring-boot
https://github.com/spring-cloud

applications. These implementations are independent of service logic
development and do not affect service logic when integrated with Spring
Cloud Huawei. Spring Cloud open-source technology system, Spring Cloud
Alibaba, and Spring Cloud Azure also comply with this design mode.
Therefore, the reconstruction can be classified into the integration and
replacement scenarios. Spring Boot applications without microservice
capabilities need to integrate with only Spring Cloud Huawei. For Spring
Cloud applications with microservice capabilities, use Spring Cloud Huawei to
replace related components.

● In the replacement scenario, if the service system does not directly depend on
APIs that implement components, you only need to remove the original
dependency and add the Spring Cloud Huawei dependency during the
replacement, which requires small workload. If the service system depends on
a large number of APIs that implement components, the replacement
workload increases. Based on the actual experience, service systems do not
directly depend on the APIs that implement components.

● The third-party software compatibility issues are the most likely to occur
during the reconstruction. When there are two different versions of third-
party software, use the later version preferentially. For Spring Boot and Spring
Cloud, use the latest version in the community and follow the version
mapping of the community. For example, if Spring Cloud Hoxton.SR8 is used,
use Spring Boot 2.3.5.RELEASE. Although Spring Cloud Hoxton.SR8 claims to
support Spring Boot 2.2.x, most components are integrated with
2.3.5.RELEASE for testing. Keeping up with the version mapping of the
community can greatly reduce compatibility issues. For the best practices of
third-party software compatibility issues, see Third-Party Software Version
Management Policy.

● Spring Cloud best matches ServiceComb engine 2.x. This best practice is based
on ServiceComb engine 2.x. The only difference between ServiceComb engine
1.x and 2.x is that 1.x uses config-center as the configuration center and 2.x
uses kie. Therefore, you can also refer to this best practice to reconstruct
ServiceComb engine 1.x.

1.1.2 Access to a ServiceComb Engine
To use Spring Cloud Huawei to access ServiceComb engines, perform the following
steps:

1. Add or modify component dependencies.
2. Add the CSE ServiceComb engine configuration to the configuration file

boostrap.yaml.

For details, see Connecting Spring Cloud Applications to CSE ServiceComb
Engines. This section describes the precautions during the reconstruction,
especially the precautions related to component dependency.

Assume that the original service systems are all Maven-based projects.

Step 1: Get Familiar with the POM Structure of the Original Service System

The POM structure of the Spring Cloud application system is classified into the
following types:

Cloud Service Engine
Best Practices 1 ServiceComb Engine Application Hosting

Issue 01 (2023-11-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

https://support.huaweicloud.com/intl/en-us/devg-cse/cse_04_0009.html
https://support.huaweicloud.com/intl/en-us/devg-cse/cse_04_0009.html

● The first method is to use the public POM provided by Spring Boot or Spring
Cloud as the parent. For example:
<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.3.5.RELEASE</version>
</parent>

Alternatively, ensure that the following dependencies are introduced to the
project:
<parent>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-build</artifactId>
 <version>2.2.3.RELEASE</version>
</parent>

● The second method is to use the parent of the project instead of the public
POM provided by Spring Boot or Spring Cloud as the parent. However,
dependency management is introduced into the project. For example:
<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

● Some application systems use both the first and second methods. They use
the public POM provided by Spring Boot or Spring Cloud as the parent, and
introduce dependency management.

Step 2: Modify Parent and Dependency Management to Avoid Conflicts with
Third-Party Software

Modifying parent and dependency management is a key step to prevent third-
party software conflicts.

1. Determine the Spring Cloud Huawei version, and then query the Spring Boot
version and Spring Cloud version corresponding to the Spring Cloud Huawei
version. You are advised to use the latest version of Spring Cloud Huawei. You
can query the mapping Spring Boot version and Spring Cloud version on the
official Spring Cloud Huawei website.

2. Compare the parent version of the current project with the Spring Boot
version and Spring Cloud version that match Spring Cloud Huawei. If the
parent version of the current project is earlier, change it to the Spring Cloud
Huawei version. Otherwise, no modification is required.

3. Independently introduce the dependency management of Spring Boot, Spring
Cloud, and Spring Cloud Huawei to the dependency management of the
current project. If the Spring Boot or Spring Cloud of the original project is of
a later version, use the version of the original project. Otherwise, use the
Spring Cloud Huawei version. Pay attention to the sequence of dependency
management. The dependency management in the front will be used first.
Spring Boot and Spring Cloud versions are the basis. You are advised not to

Cloud Service Engine
Best Practices 1 ServiceComb Engine Application Hosting

Issue 01 (2023-11-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

https://github.com/huaweicloud/spring-cloud-huawei

provide additional dependency management for the software managed by the
two dependencies. You can follow the community version to effectively reduce
conflicts. The three dependencies are introduced separately to facilitate the
upgrade of a component.
<dependencyManagement>
 <dependencies>
 <!-- configure user spring cloud / spring boot versions -->
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-dependencies</artifactId>
 <version>${spring-boot.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 <!-- configure spring cloud huawei version -->
 <dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>spring-cloud-huawei-bom</artifactId>
 <version>${spring-cloud-huawei.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

If the service system integrates dependencies such as Spring Cloud Alibaba,
delete the dependencies from dependency management. You are advised to
delete unnecessary dependencies that have been managed by Spring Boot
and Spring Cloud. Common dependencies that need to be deleted are as
follows:
<dependencyManagement>
 <dependencies>
 <!-- Dependency of third-party extension -->
 <dependency>
 <groupId>com.alibaba.cloud</groupId>
 <artifactId>spring-cloud-alibaba-dependencies</artifactId>
 <version>2.1.0.RELEASE</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 <!-- Dependency managed by Spring Cloud -->
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-feign</artifactId>
 <version>1.4.7.RELEASE</version>
 </dependency>
 </dependencies>
</dependencyManagement>

Step 3: Add or Delete Dependencies

The components related to service registration and discovery, centralized
configuration management, and service governance are added. The third-party

Cloud Service Engine
Best Practices 1 ServiceComb Engine Application Hosting

Issue 01 (2023-11-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

implementations of the components are deleted. Other components do not need
to be changed. However, after Spring Boot and Spring Cloud are upgraded, these
components may need to be upgraded accordingly. Compatibility issues are
usually found in the compilation phase or service startup phase.

Generally, you do not need to specify the version number when adding a
dependency. The version number is managed by the parent and dependency
management.

Introduce the following in microservice applications:

<dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>spring-cloud-starter-huawei-service-engine</artifactId>
</dependency>

Introduce the following to the Spring Cloud Gateway application:

<dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>spring-cloud-starter-huawei-service-engine-gateway</artifactId>
</dependency>

If the following dependencies exist, delete them:

<!-- Nacos scenario-->
<dependency>
 <groupId>com.alibaba.cloud</groupId>
 <artifactId>spring-cloud-starter-alibaba-nacos-config</artifactId>
</dependency>
<dependency>
 <groupId>com.alibaba.cloud</groupId>
 <artifactId>spring-cloud-starter-alibaba-nacos-discovery</artifactId>
</dependency>
<dependency>
 <groupId>com.alibaba.cloud</groupId>
 <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>
<dependency>
 <groupId>com.alibaba.csp</groupId>
 <artifactId>spring-cloud-gateway-starter-ahas-sentinel</artifactId>
</dependency>
<dependency>
 <groupId>com.alibaba.csp</groupId>
 <artifactId>spring-boot-starter-ahas-sentinel-client</artifactId>
</dependency>

<!-- Eureka scenario -->
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-eureka-server</artifactId>
</dependency>

Generally, the following dependencies do not need to be deleted:

<dependency>
 <groupId>com.alibaba</groupId>
 <artifactId>druid</artifactId>

Cloud Service Engine
Best Practices 1 ServiceComb Engine Application Hosting

Issue 01 (2023-11-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

 <version>1.0.28</version>
</dependency>

1.1.3 System Architecture Planning
Spring Cloud provides various components to help build a resilient cloud-native
system. Spring Cloud gateway has most capabilities of the common gateway and
integrates the service governance capabilities of Spring Cloud to implement multi-
protocol forwarding. The following figure shows a typical cloud-native Spring
Cloud architecture.

This architecture separates static pages (web applications) from services so that
static pages can be flexibly deployed in CDN or Nginx mode. Spring Cloud
gateway shields the internal microservice structure and works with service
governance policies such as rate limiting and security authentication so that
internal services can be flexibly split and combined, reducing the risks of traffic
attacks on internal services.

1.1.4 Third-Party Software Version Management Policy
During system upgrade and reconstruction, third-party software conflict is the
most common issue. With the rapid development of software iteration, the
traditional software compatibility management policy is no longer suitable for the
development of software.

This section describes the best practices of third-party software management to
help you build a continuously evolving application system.

Open-Source Software Selection
Major open-source communities, such as Spring Boot and Spring Cloud, maintain
multiple versions. For example, Spring Cloud has versions such as Hoxton,
Greenwich, and 2020.0.x, most of which are no longer maintained. Most open-
source software has two versions: one is the latest development version, and the
other is the recent maintenance version.

For open-source software selection, follow the version development pace of the
community and use the latest maintenance version. There is no strict conclusion

Cloud Service Engine
Best Practices 1 ServiceComb Engine Application Hosting

Issue 01 (2023-11-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://github.com/spring-projects/spring-boot
https://github.com/spring-cloud

on the selection of development and maintenance versions. The selection depends
on the specific product functions. For example, if the product competitiveness
depends heavily on the features of a third-party software, the development
version is preferred. If the product depends on stable features of a third-party
software and does not use new functions, the maintenance version is preferred.

You are not advised to select a version that is no longer maintained by the
community or a version that is still under maintenance but has been released for
more than half a year. Although no function issues are found in these versions, the
continuous evolution of the product will be severely affected:

1. Software security vulnerabilities cannot be handled in a timely manner. The
discovery and exploitation of security vulnerabilities take a certain period of
time. If the earlier version is used for a long time, security vulnerabilities are
more likely to be exploited, making the system more vulnerable to attacks.

2. When the system is faulty, it is more difficult to seek community support.
Versions that are no longer maintained or have been released for more than
half a year can hardly be supported.

3. System evolution becomes more difficult. When new features need to be
added to the system and new development tools need to be introduced, it is
more difficult for earlier versions to be compatible with the new development
tools.

4. Many faults may have been rectified in later versions, and the code
maintainability and performance of later versions are better than those of
earlier versions.

Therefore, the best solution to open-source software selection is to select the
development or maintenance version provided by the community for maintenance
and upgrade, drive the upgrade to the latest version based on the issue, and
periodically upgrade to the latest version every quarter.

Third-Party Software Version Management

The following uses an example to describe the principle of third-party component
conflict. Assume that project X needs to reference the components provided by
both project A and project B. Project A and project B depend on project C, but the
version numbers of the two projects are different.

● POM of project X
<dependency>
 <groupId>groupA</groupId>
 <artifactId>artifactA</artifactId>
 <version>0.1.0</version>
</dependency>
<dependency>
 <groupId>groupB</groupId>
 <artifactId>artifactB</artifactId>
 <version>0.1.0</version>
</dependency>

● POM of project A
<dependency>
 <groupId>groupC</groupId>
 <artifactId>artifactC</artifactId>
 <version>0.1.0</version>
</dependency>

Cloud Service Engine
Best Practices 1 ServiceComb Engine Application Hosting

Issue 01 (2023-11-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

● POM of project B
<dependency>
 <groupId>groupC</groupId>
 <artifactId>artifactC</artifactId>
 <version>0.2.0</version>
</dependency>

When project X is finally released, the following situations may occur:

● Version 0.2.0 of project C is used. Because project A is compiled and tested
using version 0.1.0, component A may not work properly. For example, version
0.2.0 is incompatible with version 0.1.0, and project A uses these incompatible
interfaces.

● Version 0.1.0 of project C is used. Because project B is compiled and tested
using version 0.2.0, component B may not work properly. For example, project
B uses the new interfaces provided by version 0.2.0.

If the interface of component C used by project A is incompatible with that used
by project B, project X cannot work properly no matter how the interface is
adjusted. The code of project A must be modified and tested using the same or
compatible version as that of project B. A new version must be released for project
X.

Therefore, the best policy for dependency management is to ensure the
dependency of common components and use a later version. However, there are
often a number of issues, especially when the project dependencies are very
complex.

Currently, the dependency management mechanism is used to manage the
dependency of mainstream complex projects. Dependency management has been
proved to be an effective method for managing dependencies and therefore is
widely used in open-source communities. For example, for Spring Boot, Spring
Cloud, and Spring Cloud Huawei, you can view the source code directory structure
of Spring Cloud Huawei to learn about how to use dependency management.

For a complex project, for example, the Spring Cloud Huawei project, the POM file
related to dependency management includes:

/pom.xml # Root directory of the project.
/spring-cloud-huawei-dependencies/pom.xml # Main dependency of the project . All the
statements related to the dependency management are in this file.
/spring-cloud-huawei-parents/pom.xml # parents is used by sub-modules of the project and
project developers, which is similar to the parent provided by Spring Boot
/spring-cloud-huawei-bom/pom.xml # BOM is used when project developers expect to
introduce the components provided by Spring Cloud Huawei into the dependency management
of the project instead of introducing the third-party software versions on which Spring Cloud
Huawei depends.

The POMs of Spring Cloud Huawei are relatively complete. They provide
developers with POMs that can be introduced from different perspectives and are
applicable to common development components.

Generally, a microservice development project may contain only the /pom.xml file.
The parent and dependency management of the project are declared in the /
pom.xml file. After dependency management is introduced, all dependency
statements in the project do not specify the version number. In this way, when the
third-party software version needs to be upgraded, you only need to modify
dependency management in the /pom.xml file.

Cloud Service Engine
Best Practices 1 ServiceComb Engine Application Hosting

Issue 01 (2023-11-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

You can use the Spring Cloud Huawei samples to understand the principle and
function of dependency management:

1. Run the mvn dependency:tree command to check the project dependency.
2. Modify spring-boot.version in the /pom.xml file and run the mvn

dependency:tree command to check the dependency relationship changes of
the project.

3. Adjust the positions of spring-boot-dependencies and spring-cloud-
dependencies in the /pom.xml file, and run the mvn dependency:tree
command to check the dependency relationship changes of the project.

When the number of third-party software on which a project depends increases, it
is difficult to identify the mapping between software. In this case, you can follow
the version mapping of Spring Boot and Spring Cloud. It is a good choice to use
spring-boot-dependencies and spring-cloud-dependencies as the basis for
dependency management. Because Spring Boot and Spring Cloud are widely used,
the community can fix compatibility issues in a timely manner. Developers only
need to upgrade Spring Boot and Spring Cloud versions and do not need to pay
attention to the versions of other third-party software on which Spring Boot and
Spring Cloud depend.

Upgrading third-party software can promote continuous software improvement,
but engineering capabilities, such as automatic test capabilities, need to be
improved.

1.1.5 Development Environment Planning
The purpose of planning the development environment is to ensure that
developers can better work in parallel, reduce dependencies, reduce the workload
of environment setup, and reduce the risks of bringing the production
environment online.

The purpose of managing the development environment is to better develop, test,
and deploy services.

Figure 1-1 Development environment

Based on the project experience, the development environment is planned
according to Figure 1-1:

● Set up a local development environment on the intranet. The advantage of
the local development environment is that each service or developer can set
up a minimum function set environment that meets their requirements to
facilitate log viewing and code debugging. The local development
environment greatly improves the code development efficiency and reduces
the deployment and debugging time. The disadvantage of local development
environment is the low integration. When the integration and joint
commissioning are required, it is difficult to ensure environment stability.

Cloud Service Engine
Best Practices 1 ServiceComb Engine Application Hosting

Issue 01 (2023-11-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

https://github.com/huaweicloud/spring-cloud-huawei-samples/blob/master/basic/pom.xml

● The cloud-based test environment is a relatively stable integration test
environment. After the local development and test are complete, each service
domain deploys the services in its own domain to the cloud test environment
and can invoke services in other domains for integration tests. Based on the
service scale, the cloud test environment can be further divided into the α, β,
and γ test environments. These test environments are integrated in ascending
order. Generally, the γ test environment must be managed in the same way as
the production environment to ensure environment stability.

● The production environment is a formal service environment. It needs to
support dark upgrade, online joint commissioning, and traffic diversion to
minimize the impact of upgrade faults on services.

● In the cloud-based test environment, the public IP addresses of CSE and
middleware can be opened, or network interconnection can be implemented.
In this way, the middleware on the cloud can be used to replace the local
environment, reducing the time for developers to install the environment. This
situation also belongs to the local development environment on the intranet
where microservices run in the local development environment. Microservices
deployed in containers on the cloud and those deployed on the local
development environment cannot access each other. To avoid conflicts, the
cloud-based test environment is used only as the local development
environment.

1.1.6 Application Logical Isolation
Application logical isolation is used in scenarios where different development
environments share public CSE resources to reduce cost. Logical isolation is also
used to manage the relationships between microservices. With proper isolation
policies, the accessibility and permissions between microservices can be better
controlled.

Service Discovery
Microservices in different service domains are isolated by applications.

Different service domains use different application names. Services in the same
service domain can discover each other and access each other in point-to-point
mode. Services in different service domains cannot discover each other. They need
to access each other through Spring Cloud Gateway in the service domain where
the microservice to be accessed is located.

Dynamic Configuration
Dynamic configuration is managed at the public, application, and service layers.

Application- and service-level configurations are applicable to simple scenarios.
The application-level configuration is shared by all microservices of the

Cloud Service Engine
Best Practices 1 ServiceComb Engine Application Hosting

Issue 01 (2023-11-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

application. The service-level configuration is exclusive and takes effect only for
specific microservices. In complex scenarios, custom_tag and custom_value can
be used to define configurations. For example, if some configurations are shared
by all applications, this method can be used. Add the following configurations to
the configuration file:
spring:
 cloud:
 servicecomb:
 config:
 kie:
 customLabel: public # The default value is public.
 customLabelValue: default # The default value is a null string.

If a configuration item has the public label and the label value is default, the
configuration item takes effect for the microservice. The configuration center can
be described as follows:

1. The configuration center is considered as the table tbl_configurations of the
database. The key is the primary key, and each label is an attribute.

2. The client queries the configuration based on the following search criteria:
– Custom configuration

select * from tbl_configurations where
custome_label=custome_label_value & withStrict=false

– Application-level configuration
select * from tbl_configurations where app=demo_app &
environment=demo_environment & withStrict=true

– Service-level configuration
select * from tbl_configurations where app=demo_app &
environment=demo_environment & service=demo_service &
withStrict=true

When withStrict is set to true, only the attributes specified in the condition
are available. When withStrict is set to false, all attributes except those in
the condition are allowed.
You can also specify multiple applications for label app or services for label
service. In this way, the configuration item takes effect for multiple services
and applications.

1.1.7 Configuration File Encryption Scheme
The configuration file often contains sensitive information, such as account and
passwords. In this case, the sensitive information needs to be encrypted to ensure
security.

This section describes how to use jasypt-spring-boot-starter to encrypt data. The
account names and passwords involved in RBAC authentication are used as
examples.

1. Add the dependency corresponding to the encryption component to the POM
file.
<dependency>
 <groupId>com.github.ulisesbocchio</groupId>
 <artifactId>jasypt-spring-boot-starter</artifactId>
 <version>2.1.2</version>
</dependency>

Cloud Service Engine
Best Practices 1 ServiceComb Engine Application Hosting

Issue 01 (2023-11-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

2. Configure the password.
– You can directly configure the password in the configuration file (for

example, application.properties). However, this method is not
recommended because it is insecure.
jasypt.encryptor.password=******

Set ****** to the password used for encryption.
– Set the password in the JVM startup parameter.

-D jasypt.encryptor.password=******

Set ****** to the password used for encryption.

3. Implement the encryption method.
// Set this parameter to the password of the jasypt.encryptor.password configuration item.
 public static String salt = "GXXX6" (user-defined);

 // Encryption method.
 public static String demoEncrypt(String value) {
 BasicTextEncryptor textEncryptor = new BasicTextEncryptor();
 textEncryptor.setPassword(salt);
 return textEncryptor.encrypt(value);
 }

 // Test whether the decryption is normal.
 public static String demoDecrypt(String value) {
 BasicTextEncryptor textEncryptor = new BasicTextEncryptor();
 textEncryptor.setPassword(salt);
 return textEncryptor.decrypt(value);
 }

 public static void main(String[] args) {
 String username = demoEncrypt("root");
 System.out.println(username);
 System.out.println(username);
 }

The default encryption method of jasypt is used. You can also customize
extended encryption and decryption methods. For details, see the official
jasypt document.

4. Use the encrypted configuration item.
You can use either of the following methods:
– Write the configuration file

spring:
 cloud:
 servicecomb:
 credentials:
 account:
 name: ENC (ciphertext of the account name)
 password: ENC (ciphertext of the password)

Ciphertexts of the account name and password are obtained in 3.

NO TE

This encryption mode requires the ENC() flag to identify whether encryption is
enabled. ENC() is the special mark of the encryption mode. If ENC() does not
exist, the plaintext is used.

– Enter environment variables
spring_cloud_servicecomb_credentials_account_name = ENC (ciphertext of the
account name)

Cloud Service Engine
Best Practices 1 ServiceComb Engine Application Hosting

Issue 01 (2023-11-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

https://github.com/ulisesbocchio/jasypt-spring-boot#readme
https://github.com/ulisesbocchio/jasypt-spring-boot#readme

spring_cloud_servicecomb_credentials_account_password = ENC (ciphertext of the
password)

Ciphertexts of the account name and password are obtained in 3.

1.1.8 Service Governance Planning

1.1.8.1 Rolling Upgrade

You are advised to use ServiceStage to deploy Spring Cloud applications, which
facilitates rolling upgrade.

When using ServiceStage to deploy applications, you can configure the liveness
probe and service probe of a component by referring to Configuring Health
Check to check the Liveness and Ready statuses of microservices.

Spring Boot provides out-of-the-box container probes,
LivenessStateHealthIndicator, and ReadinessStateHealthIndicator.

To configure a probe, you need to enable the spring-cloud-starter-huawei-actuator
function.

<dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>spring-cloud-starter-huawei-actuator</artifactId>
</dependency>

By default, LivenessStateHealthIndicator and ReadinessStateHealthIndicator do
not contain any other health check items. Spring Cloud Huawei provides health
check. When a service is registered successfully, true is returned. This check can be
included in ReadinessStateHealthIndicator:

management.endpoint.health.group.readiness.include=registry

Then, set the service probe of the component as Table 1-1. After configuration
and the service is successfully registered, ServiceStage displays the service ready
status. During the rolling upgrade, the old instance is stopped only after the
instance is successfully registered.

Table 1-1 Component service probes

Parameter Mandatory Description

Path Yes Request URL, for example, /actuator/
health/readiness.

Port Yes Microservice port.

Latency (s) No Detection start time. For microservices
that take a long time to start, you can
prolong the time.

Timeout Period
(s)

No After the detection starts, if the probe
status is not detected within the period
specified by this parameter, the
detection fails.

Cloud Service Engine
Best Practices 1 ServiceComb Engine Application Hosting

Issue 01 (2023-11-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0061.html
https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0061.html

NO TE

This module is provided only in Spring Cloud Huawei 1.9.0-Hoxton, 1.9.0-2020.0.x, and later
versions.

In addition to setting probes, you need to set the rolling upgrade policy. The core
parameters include the Max. Unavailable Pods. The default values of these two
parameters are both 0. If there is only one instance, the rolling upgrade will be
interrupted. You are advised to set 0 ≤ Max. Unavailable Pods.

1.1.9 FAQs

1.1.9.1 Incompatibilities During Spring Boot Upgrade from 2.0.x.RELEASE to
2.3.x.RELEASE

FeignClient Name Issue
● Description

In earlier Spring Boot versions, Bean name can be overwritten. In new
versions, this function is disabled by default and can be enabled by using the
configuration item.

● Solutions
Configure the following to enable overwriting:
spring:
 main:
 allow-bean-definition-overriding: true

Spring Data API Change
● Description

The Spring Data API fluctuates.

● Solutions
Use the new API to modify the code. For example, change new PageImpl to
PageRequest.of and new Sort to Sort.of.

JPA Change: Multiple Entities Correspond to One Table
● Description

In later versions, one entity corresponds to one table.
● Solutions

Currently, there is no solution. Alternatively, adjust the code structure to the
constraints of the new version.

Mongo Client Upgrade Change
● Description

The MongoDbFactory API has changed and needs to be adjusted to the new
version.

● Solutions

Cloud Service Engine
Best Practices 1 ServiceComb Engine Application Hosting

Issue 01 (2023-11-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

@Bean
public MappingMongoConverter mappingMongoConverter(MongoDbFactory factory,
MongoMappingContext context, BeanFactory beanFactory) {
 DbRefResolver dbRefResolver = new DefaultDbRefResolver(factory);
 MappingMongoConverter mappingConverter = new
MappingMongoConverter(dbRefResolver, context);

mappingConverter.setCustomConversions(beanFactory.getBean(MongoCustomConversions.
class));
 // other customization
 return mappingConverter;
}

@Bean
public MongoClientOptions mongoOptions() {
 return
MongoClientOptions.builder().maxConnectionIdleTime(60000).socketTimeout(60000).buil
d();
}

1.1.9.2 Dynamic Configuration Issues

Selecting Dynamic Configuration Type
Microservice engine 2.0's configuration center supports multiple formats such as
TEXT and YAML.

● Simple key-value configuration
Use TEXT format. The keys in the configuration center and code are the same.

● Many configurations
Use YAML format. Ignore the configuration center key. All key-value pairs are
defined in the YAML file.
ServiceComb engine 1.x does not support YAML, but Spring Cloud Huawei
does. Add the following configuration to the microservice Bootstrap:
spring:
 cloud:
 servicecomb:
 config:
 fileSource: consumer.yaml # List of configuration items that need to be parsed based
on YAML. Use commas (,) to separate multiple configuration items.

● Initial use of ServiceComb engine 2.x
You are advised to select the latest version of Spring Cloud Huawei, which
contains more features and has been optimized based on historical issues.

Binding List Object Configuration
Some services use the list object configuration binding. For example:

@ConfigurationProperties("example.complex")
public class ComplexConfigurationProperties {
 private List<String> stringList;
 private List<Model> modelList;

}

For the list object, Spring Cloud queries related configuration items from only one
PropertySource by default. If a PropertySource has some values of the

Cloud Service Engine
Best Practices 1 ServiceComb Engine Application Hosting

Issue 01 (2023-11-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

configuration items, Spring Cloud does not query other values. For such services,
ensure that configurations related to these list attributes have been placed in the
configuration center. Do not place some elements in the configuration file or other
elements in the configuration center.

This restriction is due to the atomicity of the list configuration – a configuration
item (stringList or modelList in the code example) cannot be separated in different
configuration files.

1.1.9.3 Common Spring Cloud Startup Errors

1.1.9.3.1 Incorrect Registry Center Address

Description
When Spring Cloud Huawei is used, the following error is displayed during
microservice startup:
send request to https://192.168.10.1:30100/v4/default/registry/microservices failed and retry to
https://192.168.10.1:30100/v4/default/registry/microservices once.
org.apache.http.conn.HttpHostConnectException: Connect to 192.168.10.1:30100 [/127.0.0.2] failed:
Connection refused: connect
at
org.apache.http.impl.conn.DefaultHttpClientConnectionOperator.connect(DefaultHttpClientConnectionOpera
tor.java:156) ~[httpclient-4.5.13.jar:4.5.13]
at
org.apache.http.impl.conn.PoolingHttpClientConnectionManager.connect(PoolingHttpClientConnectionMana
ger.java:376) ~[httpclient-4.5.13.jar:4.5.13]

Analysis
The error is reported when the microservice registry center address is unavailable.

Solutions
● Start the service and deploy it on the local host

On the local host, run the curl https://IP address of the registry
center:30100/health command to check the working status of the registry
center. Check whether information similar to the following is displayed:
curl: Failed to connect to xxx.xxx.xxx.xxx port 30100: Connection refused

If yes, check whether the network is disconnected because the IP address or
port number of the registry center is incorrect or the network is isolated.

● Start service deployment on the microservice engine on the cloud
The microservice is deployed on the microservice engine through ServiceStage.
The registry center address can be automatically injected using environment
variables. Check whether the address of the injected registry center is correct.
If no, correct it and deploy the service again.

1.1.9.3.2 Different Services of the Same Application in the Same Environment
Cannot Invoke Each Other

Description
The exclusive microservice engine with security authentication enabled is loaded in
the environment where services of the same application are deployed, however,

Cloud Service Engine
Best Practices 1 ServiceComb Engine Application Hosting

Issue 01 (2023-11-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

different services use different accounts. As a result, these services of the same
application cannot discover each other and cannot invoke each other.

Solutions
Grant the account invoking this service all permissions on this service and the
read-only permission on other services.

For details, see System Management.

1.2 Hosting a Java Chassis Application

1.2.1 Introduction
Java chassis is an open-source microservice development framework managed by
the Apache Software Foundation. It was first donated by CSE. Till now, hundreds
of developers have contributed to the project. Compared with Spring Cloud, Java
chassis provides the following functions:

● Flexible and high-performance RPC implementation. Based on open APIs, Java
chassis provides unified description of different RPC development modes,
standardizing microservice API management and retaining flexible usage
habits of developers. Based on reactive, Java chassis implements efficient
communication protocols such as REST and Highway, and is compatible with
traditional communication protocols such as Servlet.

● Rich service governance capabilities and unified governance responsibility
chain. Common microservice governance capabilities, such as load balancing,
rate limiting, and fault isolation, can be used out of the box. In addition, a
unified governance responsibility chain is provided to simplify the
development of new governance functions.

Like Spring Cloud, Java chassis can also use Spring and Spring Boot as basic
components for application development. However, Java chassis provides
independent RPC implementation. Therefore, functional components that depend
on Spring MVC are restricted, for example, Spring Security.

1.2.2 System Architecture Planning
Java chassis provides various components to help build a resilient cloud-native
system. The edge service has most capabilities of the common gateway and
integrates the service governance capabilities of Java chassis to implement multi-
protocol forwarding. The following figure shows a typical cloud-native Java chassis
architecture.

Cloud Service Engine
Best Practices 1 ServiceComb Engine Application Hosting

Issue 01 (2023-11-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_0022.html
https://servicecomb.apache.org/references/java-chassis/en_US/index.html

This architecture separates static pages (web applications) from services so that
static pages can be flexibly deployed in CDN or Nginx mode. The edge service
shields the internal microservice structure and works with service governance
policies such as rate limiting and security authentication so that internal services
can be flexibly split and combined, reducing the risks of traffic attacks on internal
services.

1.2.3 Thread Pool Parameters Configuration
Thread pools are the main service processing units of microservices. Proper thread
pools planning can maximize system performance and prevent the system from
failing to provide services for normal users due to exceptions. The optimization of
the thread pool is closely related to the service performance. The parameter
settings vary according to scenarios. The following describes two scenarios. Before
setting, you need to check the service performance, test common APIs, and check
the latency.

● The service performance is good.
That is, in non-concurrent scenarios, the average API latency is less than 10
ms.
When the service performance is good, to make the service system more
predictable and prevent the JVM garbage collection, network fluctuation, and
burst traffic from affecting the system stability, the system needs to quickly
discard requests and take measures such as retry to ensure that the system
performance is predictable in the case of fluctuation and normal service
running.
– Number of connections and timeout settings

Number of verticle instances on the server. Retain the default value. It is recommended that
this parameter be set to a value in the range of 8 to 10.
servicecomb.rest.server.verticle-count: 10
Maximum number of connections. The default value is Integer.MAX_VALUE. The maximum
value can be estimated based on the actual situation so that the system has better resilience.
servicecomb.rest.server.connection-limit: 20000
Connection idle time. The default value is 60s. Generally, you do not need to change the value.
servicecomb.rest.server.connection.idleTimeoutInSeconds: 60
Number of verticle instances on the client. Retain the default value. It is recommended that
this parameter be set to a value in the range of 8 to 10.
servicecomb.rest.client.verticle-count: 0

Cloud Service Engine
Best Practices 1 ServiceComb Engine Application Hosting

Issue 01 (2023-11-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

Maximum number of connections between a client and the server is verticle – count *
maxPoolSize, which cannot exceed the number of threads.
#In this example, the number of connections is 500 (10 x 50). If there are a large number of
instances, reduce the number of connections of a single instance.
servicecomb.rest.client.connection.maxPoolSize: 50
Connection idle time. The default value is 30s. Generally, you do not need to change the
value. The value must be shorter than the connection idle time of the server.
servicecomb.rest.client.connection.idleTimeoutInSeconds

– Service thread pool configuration
Number of thread pool groups. The recommended value is 2 to 4.
servicecomb.executor.default.group: 2
Recommended value range: 50–200
servicecomb.executor.default.thread-per-group: 100
Size of a queue in the thread pool. The default value is Integer.MAX_VALUE. Do not use the
default value in high-performance scenarios to quickly discard requests.
servicecomb.executor.default.maxQueueSize-per-group: 10000
Maximum waiting time of a queue. If the waiting time exceeds the maximum value, the
request is discarded and a response is returned. The default value is 0.
In high-performance scenarios, set the queuing timeout interval to a small value to quickly
discard requests.
servicecomb.rest.server.requestWaitInPoolTimeout: 100
Set a short timeout period to quickly discard requests. However, you are advised to set the
timeout period to a value greater than or equal to 1s. Otherwise, many problems may occur.
servicecomb.request.timeout=5000

● The service performance is not good.
That is, in non-concurrent scenarios, the average API latency is longer than
100 ms. High latency is usually caused by low CPU usage due to I/O and
resource waiting in service code. If the high latency is caused by complex
calculation, the optimization becomes complex.
When the service performance is not good, you need to increase the values of
the following parameters. Otherwise, a large number of services will be
blocked. Increasing these parameters ensures the system throughput and
avoids service failures caused by burst traffic. However, user experience will be
affected.
Server connection idle time.
servicecomb.rest.server.connection.idleTimeoutInSeconds: 120000
Client connection idle time.
servicecomb.rest.client.connection.idleTimeoutInSeconds: 90000
Number of thread pool groups.
servicecomb.executor.default.group: 4
Size of the thread pool.
servicecomb.executor.default.thread-per-group: 200
Size of the queue in the thread pool. Threads will be queued when the performance is not good.
servicecomb.executor.default.maxQueueSize-per-group: 100000
Set the timeout period to a large value.
servicecomb.rest.server.requestWaitInPoolTimeout: 10000
servicecomb.request.timeout=30000

1.2.4 Log Files Configuration
Viewing error logs is an important method for locating faults. Therefore, you need
to properly plan log output to minimize the impact on system performance.
Suggestions for planning log files:

1. Use log4j2 or logback to output logs. Output logs to a file without
depending on stdout of the container.

2. Open the metrics log, export this log to an independent file, for example,
metrics.log, and export service logs to another file, for example,
servicecomb.log. Configure metrics parameters as follows:
servicecomb:
 metrics:

Cloud Service Engine
Best Practices 1 ServiceComb Engine Application Hosting

Issue 01 (2023-11-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

 window_time: 60000
 invocation:
 latencyDistribution: 0,1,10,100,1000
 Consumer.invocation.slow:
 enabled: true
 msTime: 3000
 Provider.invocation.slow:
 enabled: true
 msTime: 3000
 publisher.defaultLog:
 enabled: true
 endpoints.client.detail.enabled: true

3. Open access log and export it to an independent log file.
4. The service log containing trace ID is printed in a formatted manner. You can

develop a handler and configure it before Provider Handler. After receiving
and processing a request, the handler prints logs respectively. This helps you
locate faults and quickly search for related logs using AOM.

1.2.5 Service Governance Planning

1.2.5.1 Rolling Upgrade
You are advised to use ServiceStage to deploy Java chassis applications, which
facilitates rolling upgrade. When using ServiceStage to deploy applications, you
can configure component service probes so that ServiceStage can correctly detect
microservice statuses. To configure the component service probe, you need to
enable the metrics function and set the component service probe path to /health.
<dependency>
 <groupId>org.apache.servicecomb</groupId>
 <artifactId>metrics-core</artifactId>
</dependency>

In addition to setting probes, you need to set the rolling upgrade policy. The core
parameters include the Max. Unavailable Pods. The default values of these two
parameters are both 0. If there is only one instance, the rolling upgrade will be
interrupted. You are advised to set Max. Unavailable Pods ≥ 2, 0 ≤ Max.
Unavailable Pods < Pods–1. That is, at least 2 instances are available.

1.2.5.2 Hitless Upgrade
To achieve a hitless upgrade, the following problems need to be solved:

1. Service interruption during stopping a service. During the process of stopping
a service, the service may be processing requests, and new requests may be
continuously sent to the service.

2. In the microservice architecture, service discovery is usually performed
through the service center. The client caches the instance address. Access
failure. This is because when the service is stopped, users may not be aware
that the instance is offline in a timely manner and continue to use the
incorrect instance for access.

3. Rolling upgrades. The old version can be stopped only after the new version is
ready.

Many measures are required to achieve a hitless upgrade, for example, Rolling
Upgrade. Therefore, you are advised to ensure that at least two instances are
available. Java chassis implements hitless upgrades:

Cloud Service Engine
Best Practices 1 ServiceComb Engine Application Hosting

Issue 01 (2023-11-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

1. Graceful shutdown: When the service is stopped, the system waits for the
request to be completed and rejects the new request.
Graceful shutdown is provided by default. Before a process exits, certain
cleanup actions are performed, including waiting for the requests that are
being processed to complete, rejecting new requests that are not in the
processing queue, and invoking the registry center API to deregister the
process. Before exiting a Java chassis process, change the instance status to
DOWN and wait for a period of time.
servicecomb:
 boot:
 turnDown:
 # Wait time after the instance status is changed to Down. The default value is 0, indicating no
waiting.
 waitInSeconds: 30

2. Retry: If the client fails to connect to the network or rejects the request, a
new server needs to be selected for retry.
Enable the retry policy.
servicecomb:
 loadbalance:
 retryEnabled: true # Whether to enable the retry policy.
 retryOnNext: 1 # Number of retry times for searching for an instance (different from a failed
instance; depending on the load balancing policy)
 retryOnSame: 0 # Number of retries on the failed instance.

3. Isolation: Service instances that fail to be processed for a specified number of
times are isolated.
Enable the instance isolation policy.
servicecomb:
 loadbalance:
 isolation:
 enabled: true
 enableRequestThreshold: 5 # Minimum number of successful and failed requests processed by the
instance in a statistical period.
 singleTestTime: 60000 # Time after which the system attempts to access the instance isolated. If
the access is successful, isolation will be canceled. Otherwise, isolation will continue.
 continuousFailureThreshold: 2 # Condition for isolating a instance: the instance fails to be isolated
for two consecutive times.

1.2.6 Java Chassis Upgrade
Continuous version upgrades can better use new functions and features of CSE, fix
known quality and security issues in a timely manner, and reduce maintenance
costs. Continuous version upgrades also bring some compatibility issues.
Therefore, you are advised to include continuous upgrades to your plan. In
addition, automatic test capabilities need to be built for continuous upgrades to
reduce the verification time and control the risks. Continuously building
automation capabilities and upgrading versions are proven best practices for
building high-quality software.

Cloud Service Engine
Best Practices 1 ServiceComb Engine Application Hosting

Issue 01 (2023-11-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

	Contents
	1 ServiceComb Engine Application Hosting
	1.1 Hosting a Spring Cloud Application
	1.1.1 Introduction
	1.1.2 Access to a ServiceComb Engine
	1.1.3 System Architecture Planning
	1.1.4 Third-Party Software Version Management Policy
	1.1.5 Development Environment Planning
	1.1.6 Application Logical Isolation
	1.1.7 Configuration File Encryption Scheme
	1.1.8 Service Governance Planning
	1.1.8.1 Rolling Upgrade

	1.1.9 FAQs
	1.1.9.1 Incompatibilities During Spring Boot Upgrade from 2.0.x.RELEASE to 2.3.x.RELEASE
	1.1.9.2 Dynamic Configuration Issues
	1.1.9.3 Common Spring Cloud Startup Errors
	1.1.9.3.1 Incorrect Registry Center Address
	1.1.9.3.2 Different Services of the Same Application in the Same Environment Cannot Invoke Each Other

	1.2 Hosting a Java Chassis Application
	1.2.1 Introduction
	1.2.2 System Architecture Planning
	1.2.3 Thread Pool Parameters Configuration
	1.2.4 Log Files Configuration
	1.2.5 Service Governance Planning
	1.2.5.1 Rolling Upgrade
	1.2.5.2 Hitless Upgrade

	1.2.6 Java Chassis Upgrade

