
CodeArts Artifact

Best Practices

Issue 01

Date 2025-11-11

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. i

Security Declaration

Vulnerability

Huawei's regulations on product vulnerability management are subject to the Vul. Response Process. For
details about this process, visit the following web page:
https://www.huawei.com/en/psirt/vul-response-process
For vulnerability information, enterprise customers can visit the following web page:
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. ii

https://www.huawei.com/en/psirt/vul-response-process
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Contents

1 CodeArts Artifact Best Practices.. 1

2 Releasing a Maven Artifact to a Self-Hosted Repo via a Build Task.......................... 3

3 Releasing/Obtaining an npm Package via a Build Task...7

4 Releasing/Obtaining a Go Package via a Build Task.. 14

5 Releasing/Obtaining a PyPI Package via a Build Task... 20

6 Uploading/Obtaining an RPM Package Using Linux Commands.............................. 24

7 Uploading/Obtaining a Debian Package Using Linux Commands............................ 26

8 Migrating Repository Data from Nexus to CodeArts Artifact.................................... 30
8.1 Migration Preparations... 30
8.2 Migrating Hosted Repository Data from Nexus to CodeArts Artifact.. 31
8.3 Migrating Proxy Repository Data from Nexus to CodeArts Artifact... 38
8.4 Migrating Group Repository Data from Nexus to CodeArts Artifact.. 38

9 Migrating Local Repository Data to CodeArts Artifact.. 40
9.1 Overview.. 40
9.2 Migrating Local Maven Repository Data to CodeArts Artifact... 41
9.3 Migrating Local npm Registry Data to CodeArts Artifact...42

10 Configuring CodeArts Artifact Permissions.. 44

CodeArts Artifact
Best Practices Contents

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. iii

1 CodeArts Artifact Best Practices

This document summarizes the operation practices of CodeArts Artifact in
common application scenarios. It provides detailed solutions for each practice,
helping users easily use CodeArts Artifact in different scenarios.

Table 1-1 CodeArts Artifact best practices

Best Practice Description

Releasing a Maven
Artifact to a Self-
Hosted Repo via a
Build Task

CodeArts Artifact focuses on and manages the staging
packages (usually built by or packed from the source
code) and their lifecycle metadata. The metadata
includes basic properties such as the name and size,
repository URLs, code branch information, build tasks,
creators, and build time. Throughout the development
process, packages are continuously refined across
different versions.
The management of packages and their properties is
the basis of release management. Therefore,
developers need to regularly review the version history
of packages. This practice describes how to archive a
Maven artifact by version to a self-hosted repo via a
build task.

Releasing/Obtaining
an npm Package via
a Build Task

A self-hosted repo manages private packages (such as
Maven) corresponding to various development
languages. Different development languages use
different package formats. A self-hosted repo manages
private packages and shares them with other
developers in the same enterprise or team.
This practice describes how to release a private
package to an npm registry via a build task and obtain
a dependency from the registry for deployment.

Releasing/Obtaining
a Go Package via a
Build Task

This practice describes how to release a private
package to a Go repository via a build task and obtain
a dependency from the repository for deployment.

CodeArts Artifact
Best Practices 1 CodeArts Artifact Best Practices

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 1

https://support.huaweicloud.com/intl/en-us/bestpractice-cloudartifact/cloudartifact_06_0003.html
https://support.huaweicloud.com/intl/en-us/bestpractice-cloudartifact/cloudartifact_06_0003.html
https://support.huaweicloud.com/intl/en-us/bestpractice-cloudartifact/cloudartifact_06_0003.html
https://support.huaweicloud.com/intl/en-us/bestpractice-cloudartifact/cloudartifact_06_0003.html
https://support.huaweicloud.com/intl/en-us/bestpractice-cloudartifact/cloudartifact_06_0004.html
https://support.huaweicloud.com/intl/en-us/bestpractice-cloudartifact/cloudartifact_06_0004.html
https://support.huaweicloud.com/intl/en-us/bestpractice-cloudartifact/cloudartifact_06_0004.html
https://support.huaweicloud.com/intl/en-us/bestpractice-cloudartifact/cloudartifact_06_0005.html
https://support.huaweicloud.com/intl/en-us/bestpractice-cloudartifact/cloudartifact_06_0005.html
https://support.huaweicloud.com/intl/en-us/bestpractice-cloudartifact/cloudartifact_06_0005.html

Best Practice Description

Releasing/Obtaining
a PyPI Package via a
Build Task

This practice describes how to release a private
package to a PyPI repository via a build task and
obtain a dependency from the repository for
deployment.

Uploading/Obtaining
an RPM Package
Using Linux
Commands

This practice describes how to use Linux commands to
upload a private package to an RPM repository and
obtain a dependency from the repository.

Uploading/Obtaining
a Debian Package
Using Linux
Commands

This practice describes how to use Linux commands to
upload a private package to a Debian repository and
obtain a dependency from the repository.

Migrating
Repositories from
Nexus to CodeArts
Artifact

CodeArts Artifact provides a batch migration tool to
quickly migrate hosted, proxy, and group repositories
on Nexus to self-hosted repos. This streamlines O&M
for efficiency.

Migrating Local
Repository Data to
CodeArts Artifact

CodeArts Artifact provides a batch migration tool to
quickly migrate Maven repository and npm registry on
local disks to the Maven repository and npm registry in
self-hosted repos. This streamlines operations and
maintenance for efficiency.

Configuring CodeArts
Artifact Permissions

This practice uses self-hosted repos as an example to
describe how to quickly manage permissions for
individual repositories and by project.

CodeArts Artifact
Best Practices 1 CodeArts Artifact Best Practices

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 2

https://support.huaweicloud.com/intl/en-us/bestpractice-cloudartifact/cloudartifact_06_0006.html
https://support.huaweicloud.com/intl/en-us/bestpractice-cloudartifact/cloudartifact_06_0006.html
https://support.huaweicloud.com/intl/en-us/bestpractice-cloudartifact/cloudartifact_06_0006.html
https://support.huaweicloud.com/intl/en-us/bestpractice-cloudartifact/cloudartifact_06_0007.html
https://support.huaweicloud.com/intl/en-us/bestpractice-cloudartifact/cloudartifact_06_0007.html
https://support.huaweicloud.com/intl/en-us/bestpractice-cloudartifact/cloudartifact_06_0007.html
https://support.huaweicloud.com/intl/en-us/bestpractice-cloudartifact/cloudartifact_06_0007.html
https://support.huaweicloud.com/intl/en-us/bestpractice-cloudartifact/cloudartifact_06_0009.html
https://support.huaweicloud.com/intl/en-us/bestpractice-cloudartifact/cloudartifact_06_0009.html
https://support.huaweicloud.com/intl/en-us/bestpractice-cloudartifact/cloudartifact_06_0009.html
https://support.huaweicloud.com/intl/en-us/bestpractice-cloudartifact/cloudartifact_06_0009.html

2 Releasing a Maven Artifact to a Self-
Hosted Repo via a Build Task

Background

CodeArts Artifact focuses on and manages the staging packages (usually built by
or packed from the source code) and their lifecycle metadata. The metadata
includes basic properties such as the name and size, repository URLs, code branch
information, build tasks, creators, and build time. Throughout the development
process, packages are continuously refined across different versions.

The management of packages and their properties is the basis of release
management. Therefore, developers need to regularly review the version history of
packages.

Prerequisites
● You have purchased a CodeArts package.

● You already have a project. If no project is available, create one. For example,
create a project named project01.

● You have permissions for the current repository. For details, see Managing
Repository Permissions.

Creating a Maven Repository and Associating It with a Project

Step 1 Use your Huawei Cloud account to access self-hosted repos.

Step 2 On the Self-hosted Repos page, click Create Repository in the upper-right corner.

Step 3 Select Local Repository as the repository type, enter the repository name
maven01, and select Maven as the package type.

Step 4 Click OK. The created Maven repository is displayed in the Repo View.

Step 5 In the Repo View, click the repository name maven01 and click Settings.

Step 6 Click the Project Associations tab, click in the Operation column of the
project, and select target self-hosted repo maven01 in the displayed dialog box.

CodeArts Artifact
Best Practices

2 Releasing a Maven Artifact to a Self-Hosted Repo
via a Build Task

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 3

https://support.huaweicloud.com/intl/en-us/usermanual-devcloud/devcloud_01_0002.html
https://support.huaweicloud.com/intl/en-us/qs-projectman/projectman_06_1000.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0007.html#section0

Step 7 Click OK.

----End

Configuring Package Versions in CodeArts Repo

Step 1 Log in to the Huawei Cloud console with your Huawei Cloud account.

Step 2 Click in the upper-left corner and choose Developer Services > CodeArts
from the service list.

Step 3 Click Access Service. The homepage of CodeArts is displayed.

Step 4 Choose Services > Repo from the top menu bar.

Step 5 Click New Repository.

Step 6 Select project01 from the Project drop-down list, select Template, and click Next.

Step 7 Search for the Java Maven Demo template, and click Next.

Step 8 Enter the repository name repo01 and click OK.

Step 9 Go back to Repo and click pom.xml to view the package configuration.

Step 10 On the package configuration page, the <version> field displays the version
number of the current package. The default version number is 1.0.

Click in the upper-right corner of the page to change the version number.
Then, click OK to save the changes.

----End

Releasing a Maven Artifact to a Self-Hosted Repo Through CodeArts Build

Step 1 After configuring the package version in Repo by referring to Configuring
Package Versions in CodeArts Repo, click Create Build Task in the upper-right
corner of the page.

Step 2 Select Blank Template and click OK.

Step 3 Click Add Build Actions. Search for and add the Build with Maven action.

CodeArts Artifact
Best Practices

2 Releasing a Maven Artifact to a Self-Hosted Repo
via a Build Task

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 4

https://console-intl.huaweicloud.com/

Step 4 Edit the Build with Maven action.
● Select the desired tool version. In this example, maven3.5.3-jdk8-open is

used.
● Find the following command and delete # in front of this command:

#mvn deploy -Dmaven.test.skip=true -U -e -X -B

Find the following command and add # in front of this command:
mvn package -Dmaven.test.skip=true -U -e -X -B

● Select Configure all POMs under Release to Self-hosted Repos, and select
the Maven repository maven01 associated with the project.

Step 5 Click Save and Execute in the upper-right corner of the page to execute build
task.

----End

Viewing Packages in the Version View of the Maven Repository
Step 1 Use your Huawei Cloud account to access self-hosted repos.

Step 2 Select the self-hosted repo, locate the target maven repository, and find the
Maven artifact uploaded by build task.

Set the package version in Repo by referring to Configuring Package Versions
in CodeArts Repo and archive packages of multiple versions to self-hosted repos.

Step 3 Click the Version View tab.

In the package list, view the number of versions and the latest version of the
package obtained from the build task.

Step 4 Click a name in the Package Name column. The Overview page for the latest
version of the package is displayed.

CodeArts Artifact
Best Practices

2 Releasing a Maven Artifact to a Self-Hosted Repo
via a Build Task

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 5

https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0007.html#section0

Step 5 Click the Files tab, click in the Operation column of the target package to
download it to the localhost.

Step 6 After modifying a package and setting a new version number, click Upload in the
right of the target self-hosted repo to upload the latest version of the package.

The package list in the Version View displays the latest uploaded version of each
package and the number of archived versions.

----End

CodeArts Artifact
Best Practices

2 Releasing a Maven Artifact to a Self-Hosted Repo
via a Build Task

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 6

3 Releasing/Obtaining an npm Package
via a Build Task

This practice describes how to release a private package to an npm registry via a
build task and obtain a dependency from the registry for deployment.

Prerequisites
● You have purchased a CodeArts package.
● You already have a project. If no project is available, create one. For example,

create a project named project01.
● You have created an npm registry in the self-hosted repo.
● You have permissions for the current repository. For details, see Managing

Repository Permissions.

Releasing a Package to an npm Registry

Step 1 Download the configuration file.

1. Use your Huawei Cloud account to access self-hosted repos.
2. Select an npm registry. Click Settings in the upper-right corner and record the

paths in Include Patterns.

CodeArts Artifact
Best Practices

3 Releasing/Obtaining an npm Package via a Build
Task

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 7

https://support.huaweicloud.com/intl/en-us/usermanual-devcloud/devcloud_01_0002.html
https://support.huaweicloud.com/intl/en-us/qs-projectman/projectman_06_1000.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0008.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0007.html#section0

3. Click Cancel to return to the npm registry page. Click Tutorial on the right of
the page.

4. In the displayed dialog box, click Download Configuration File.

5. Save the downloaded npmrc file as an .npmrc file.

Step 2 Configure a repository.

1. Log in to the Huawei Cloud console with your Huawei Cloud account.

2. Click in the upper-left corner and choose Developer Services >
CodeArts from the service list.

3. Click Access Service. The homepage of CodeArts is displayed.
4. Choose Services > Repo from the top menu bar.
5. Create a Node.js repository. For details, see Creating a Repository. This

procedure uses the Nodejs Webpack Demo template.
6. Go to the repository and upload the .npmrc file to the root directory of the

repository. For details, see Uploading Code Files to CodeArts Repo.

CodeArts Artifact
Best Practices

3 Releasing/Obtaining an npm Package via a Build
Task

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 8

https://console-intl.huaweicloud.com/
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0013.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0064.html

7. Find the package.json file in the repository and open it. Add the path
recorded on the Basic Information under the Settings tab to the name field
in the file.

If the name field cannot be modified, add the path to the Include Patterns
field on the Basic Information under the Settings tab.

CodeArts Artifact
Best Practices

3 Releasing/Obtaining an npm Package via a Build
Task

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 9

Step 3 Configure and run a build task.

1. On the Repo page, select the repository and click Create Build Task in the
upper right.
Select Blank Template and click OK.

2. Add the Build with npm action.

3. Edit the Build with npm action.
– Select the desired tool version. In this example, nodejs12.7.0 is used.
– Delete the existing commands and run the following instead:

export PATH=$PATH:/root/.npm-global/bin
npm config set strict-ssl false
npm publish

CodeArts Artifact
Best Practices

3 Releasing/Obtaining an npm Package via a Build
Task

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 10

4. Click Save and Run on the right of the page to start the build task.
After the task is successfully executed, go to the self-hosted repo page and
find the uploaded npm package.

----End

Obtaining a Dependency from an npm Registry

The following procedure uses the npm package released in Releasing a Package
to an npm Registry as an example to describe how to obtain a dependency from
an npm registry.

Step 1 Configure a repository.

1. Log in to the Huawei Cloud console with your Huawei Cloud account.

2. Click in the upper-left corner and choose Developer Services >
CodeArts from the service list.

3. Click Access Service. The homepage of CodeArts is displayed.
4. Choose Services > Repo from the top menu bar.
5. Create a Node.js repository. For details, see Creating a Repository. This

procedure uses the Nodejs Webpack Demo template.
6. Obtain the .npmrc file (see Releasing a Package to an npm Registry) and

upload it to the root directory of the repository where the npm dependency is
to be used.

7. Find and open the package.json file in the repository, and configure the
dependency to the dependencies field. In this document, the value is as
follows:
"@test/vue-demo": "^1.0.0"

Step 2 Configure and run a build task.

1. On the Repo page, select the repository and click Create Build Task in the
upper right.
Select Blank Template and click OK.

2. Add the Build with npm action.

CodeArts Artifact
Best Practices

3 Releasing/Obtaining an npm Package via a Build
Task

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 11

https://console-intl.huaweicloud.com/
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0013.html

3. Edit the Build with npm action.
– Select the desired tool version. In this example, nodejs12.7.0 is used.
– Delete the existing commands and run the following instead:

export PATH=$PATH:/root/.npm-global/bin
npm config set strict-ssl false
npm install --verbose

Step 3 Click Save and Run on the right of the page to start the build task.

After the task is successfully executed, view the task details. If information similar
to the following is found in the log, the dependency has been downloaded from
the npm registry.

----End

CodeArts Artifact
Best Practices

3 Releasing/Obtaining an npm Package via a Build
Task

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 12

npm Commands
When configuring build tasks, you can also run the following npm commands as
required:

● Delete an existing package from the npm registry.
npm unpublish @scope/packageName@version

● Obtain tags.
npm dist-tag list @scope/packageName

● Add a tag.
npm dist-tag add @scope/packageName@version tagName --registry registryUrl --verbose

● Delete a tag.
npm dist-tag rm @scope/packageName@version tagName --registry registryUrl --verbose

Command parameter description:

● scope: path of a self-hosted repo. For details about how to obtain the path,
see Releasing a Package to an npm Registry.

● packageName: the part following scope in the name field of the
package.json file.

● version: value of the version field in the package.json file.
● registryUrl: URL of the self-hosted repo referenced by scope in the

configuration file.
● tagName: tag name.

The following uses the package released in Releasing a Package to an npm
Registry as an example:

● scope: test
● packageName: vue-demo
● version: 1.0.0

The command for deleting this package is as follows:

npm unpublish @test/vue-demo@1.0.0

CodeArts Artifact
Best Practices

3 Releasing/Obtaining an npm Package via a Build
Task

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 13

4 Releasing/Obtaining a Go Package via a
Build Task

This practice describes how to release a private package to a Go repository via a
build task and obtain a dependency from the repository for deployment.

Prerequisites
● You have purchased a CodeArts package.

● You already have a project. If no project is available, create one. For example,
create a project named project01.

● You have created a Go repository in the self-hosted repo.

● You have permissions for the current repository. For details, see Managing
Repository Permissions.

Releasing a Package to a Go Repository

Step 1 Download the configuration file.

1. Use your Huawei Cloud account to access self-hosted repos.

2. Select a Go repository. Click Tutorial on the right of the page.

3. In the displayed dialog box, click Download Configuration File.

Step 2 Configure a repository.

1. Go to CodeArts Repo. Create a Go repository. For details, see Creating a
Repository This procedure uses the Go web Demo template.

CodeArts Artifact
Best Practices 4 Releasing/Obtaining a Go Package via a Build Task

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 14

https://support.huaweicloud.com/intl/en-us/usermanual-devcloud/devcloud_01_0002.html
https://support.huaweicloud.com/intl/en-us/qs-projectman/projectman_06_1000.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0008.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0007.html#section0
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0013.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0013.html

2. Prepare the go.mod and upload it to the root directory of the repository. For
details, see Uploading Code Files to CodeArts Repo The following figure
shows the go.mod file used in this example.

Step 3 Configure and run a build task.

1. On the Repo page, select the repository and click Create Build Task in the
upper right.
Select Blank Template and click OK.

2. Add the Build with Go action.

3. Edit the Build with Go action.
– Select the desired tool version. In this example, go-1.13.1 is used.
– Delete the existing commands, open the configuration file downloaded in

Step 1, and copy the commands for configuring Go environment
variables in Linux to the command box.

– Copy the Go upload command segment in the configuration file to the
command box, and replace the parameters in the commands by referring
to Go Modules. (In this example, the package version is v1.0.0.)

4. Click Save and Run on the right of the page to start the build task.
When the message build successful is displayed, go to the self-hosted repo
page and find the uploaded Go package.

----End

Obtaining a Dependency from a Go Repository
The following procedure uses the Go package released in Releasing a Package to
a Go Repository as an example to describe how to obtain a dependency from a
Go repository.

Step 1 Download the configuration file by referring to Releasing a Package to a Go
Repository.

Step 2 Go to Repo and create a Go repository. For details, see Creating a Repository This
procedure uses the Go web Demo template.

Step 3 Configure and run a build task.

1. On the Repo page, select the repository and click Create Build Task in the
upper right.
Select Blank Template and click OK.

CodeArts Artifact
Best Practices 4 Releasing/Obtaining a Go Package via a Build Task

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 15

https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0064.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0013.html

2. Add the Build with Go action.
3. Edit the Build with Go action.

– Select the desired tool version. In this example, go-1.13.1 is used.
– Delete the existing commands, open the downloaded configuration file,

and copy the commands for configuring Go environment variables in
Linux to the command box.

– Copy the Go download commands in the configuration file to the
command box and replace the <modulename> parameter with the
actual value. (In this example, the parameter is set to example.com/
demo).

Step 4 Click Save and Run on the right of the page to start the build task.

When the message build successful is displayed, view the task details. If
information similar to the following is found in the log, the dependency has been
downloaded from the Go repository.

----End

Go Modules
This section describes how to build and upload Go packages through Go modules.

Perform the following steps:

1. Create a source folder in the working directory.
mkdir -p {module}@{version}

2. Copy the code source to the source folder.
cp -rf . {module}@{version}

3. Compress the package into a ZIP package.
zip -D -r [package name] [package root directory]

4. Upload the ZIP package and the go.mod file to the self-hosted repo.
curl -u {{username}}:{{password}} -X PUT {{repoUrl}}/{filePath} -T {{localFile}}

The package directory varies according to the package version. The version can be:

● Versions earlier than v2.0: The directory is the same as the path of the
go.mod file. No special directory structure is required.

● v2.0 or later:
– If the first line in the go.mod file ends with /vX, the directory must

contain /vX. For example, if the version is v2.0.1, the directory must
contain v2.

– If the first line in the go.mod file does not end with /vN, the directory
remains unchanged and the name of the file to be uploaded must
contain +incompatible.

The following are examples of package directories for different versions:

● Versions earlier than v2.0
The go.mod file is used as an example.

CodeArts Artifact
Best Practices 4 Releasing/Obtaining a Go Package via a Build Task

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 16

a. Create a source folder in the working directory.
The value of module is example.com/demo and that of version is 1.0.0.
The command is as follows:
mkdir -p ~/example.com/demo@v1.0.0

b. Copy the code source to the source folder.
The command is as follows (with the same parameter values as the
previous command):
cp -rf . ~/example.com/demo@v1.0.0/

c. Compress the package into a ZIP package.
Run the following command to go to the upper-level directory of the root
directory where the ZIP package is located:
cd ~

Then, use the zip command to compress the code into a package. In this
command, the package root directory is example.com and the package
name is v1.0.0.zip. The command is as follows:
zip -D -r v1.0.0.zip example.com/

d. Upload the ZIP package and the go.mod file to the self-hosted repo.
Parameters username, password, and repoUrl can be obtained from the
configuration file.

▪ For the ZIP package, the value of filePath is example.com/
demo/@v/v1.0.0.zip and that of localFile is v1.0.0.zip.

▪ For the go.mod file, the value of filePath is example.com/
demo/@v/v1.0.0.mod and that of localFile is example.com/
demo@v1.0.0/go.mod.

The commands are as follows (replace username, password, and repoUrl
with the actual values):
curl -u {{username}}:{{password}} -X PUT {{repoUrl}}/example.com/demo/@v/v1.0.0.zip -T
v1.0.0.zip
curl -u {{username}}:{{password}} -X PUT {{repoUrl}}/example.com/demo/@v/v1.0.0.mod -T
example.com/demo@v1.0.0/go.mod

● v2.0 and later, with the first line in go.mod ending with /vX
The go.mod file is used as an example.

a. Create a source folder in the working directory.
The value of module is example.com/demo/v2 and that of version is
2.0.0. The command is as follows:
mkdir -p ~/example.com/demo/v2@v2.0.0

b. Copy the code source to the source folder.
The command is as follows (with the same parameter values as the
previous command):
cp -rf . ~/example.com/demo/v2@v2.0.0/

c. Compress the package into a ZIP package.
Run the following command to go to the upper-level directory of the root
directory where the ZIP package is located:

CodeArts Artifact
Best Practices 4 Releasing/Obtaining a Go Package via a Build Task

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 17

cd ~

Then, use the zip command to compress the code into a package. In this
command, the package root directory is example.com and the package
name is v2.0.0.zip. The command is as follows:
zip -D -r v2.0.0.zip example.com/

d. Upload the ZIP package and the go.mod file to the self-hosted repo.
Parameters username, password, and repoUrl can be obtained from the
configuration file.

▪ For the ZIP package, the value of filePath is example.com/
demo/v2/@v/v2.0.0.zip and that of localFile is v2.0.0.zip.

▪ For the go.mod file, the value of filePath is example.com/
demo/v2/@v/v2.0.0.mod and that of localFile is example.com/
demo/v2@v2.0.0/go.mod.

The commands are as follows (replace username, password, and repoUrl
with the actual values):
curl -u {{username}}:{{password}} -X PUT {{repoUrl}}/example.com/demo/v2/@v/v2.0.0.zip -T
v2.0.0.zip
curl -u {{username}}:{{password}} -X PUT {{repoUrl}}/example.com/demo/v2/@v/v2.0.0.mod -T
example.com/demo/v2@v2.0.0/go.mod

● v2.0 and later, with the first line in go.mod not ending with /vX
The go.mod file is used as an example.

a. Create a source folder in the working directory.
The value of module is example.com/demo and that of version is 3.0.0.
The command is as follows:
mkdir -p ~/example.com/demo@v3.0.0+incompatible

b. Copy the code source to the source folder.
The command is as follows (with the same parameter values as the
previous command):
cp -rf . ~/example.com/demo@v3.0.0+incompatible/

c. Compress the package into a ZIP package.
Run the following command to go to the upper-level directory of the root
directory where the ZIP package is located:
cd ~

Then, use the zip command to compress the code into a package. In this
command, the package root directory is example.com and the package
name is v3.0.0.zip. The command is as follows:
zip -D -r v3.0.0.zip example.com/

d. Upload the ZIP package and the go.mod file to the self-hosted repo.
Parameters username, password, and repoUrl can be obtained from the
configuration file.

▪ For the ZIP package, the value of filePath is example.com/
demo/@v/v3.0.0+incompatible.zip and that of localFile is
v3.0.0.zip.

CodeArts Artifact
Best Practices 4 Releasing/Obtaining a Go Package via a Build Task

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 18

▪ For the go.mod file, the value of filePath is example.com/
demo/@v/v3.0.0+incompatible.mod and that of localFile is
example.com/demo@v3.0.0+incompatible/go.mod.

The commands are as follows (replace username, password, and repoUrl
with the actual values):
curl -u {{username}}:{{password}} -X PUT {{repoUrl}}/example.com/demo/@v/
v3.0.0+incompatible.zip -T v3.0.0.zip
curl -u {{username}}:{{password}} -X PUT {{repoUrl}}/example.com/demo/@v/
v3.0.0+incompatible.mod -T example.com/demo@v3.0.0+incompatible/go.mod

CodeArts Artifact
Best Practices 4 Releasing/Obtaining a Go Package via a Build Task

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 19

5 Releasing/Obtaining a PyPI Package via
a Build Task

This practice describes how to release a private package to a PyPI repository via a
build task and obtain a dependency from the repository for deployment.

Prerequisites
● You have purchased a CodeArts package.
● You already have a project. If no project is available, create one. For example,

create a project named project01.
● You have created a PyPI repository in the self-hosted repo.
● You have permissions for the current repository. For details, see Managing

Repository Permissions.

Releasing a Package to a PyPI Repository

Step 1 Download the configuration file.

1. Use your Huawei Cloud account to access self-hosted repos.
2. Select a PyPI repository. Click Tutorial on the right of the page.
3. In the displayed dialog box, select Publish as the purpose and click

Download Configuration File.

4. Save the downloaded PYPIRC file as a .pypirc file.

Step 2 Configure a repository.

CodeArts Artifact
Best Practices

5 Releasing/Obtaining a PyPI Package via a Build
Task

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 20

https://support.huaweicloud.com/intl/en-us/usermanual-devcloud/devcloud_01_0002.html
https://support.huaweicloud.com/intl/en-us/qs-projectman/projectman_06_1000.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0008.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0007.html#section0

1. Go to Repo and create a Python repository. For details, see Creating a
Repository. This procedure uses the Python3 Demo template.

2. Go to the repository and upload the .pypirc file to the root directory of the
repository. For details, see

Step 3 Configure and run a build task.

1. On the Repo page, select the repository and click Create Build Task in the
upper right.
Select Blank Template and click OK.

2. Add the Build with Setuptools action.

3. Edit the Build with Setuptools action.
– Select the desired tool version. In this example, python3.6 is used.
– Delete the existing commands and run the following instead:

Ensure that the setup.py file exists in the root directory of the code, and run the following
command to pack the project into a WHL package.
python setup.py bdist_wheel
Set the .pypirc file in the root directory of the current project as the configuration file.
cp -rf .pypirc ~/
Upload the package to the PyPI repository.
twine upload -r pypi dist/*

If a certificate error is reported during the upload, add the following
command to the first line of the preceding command to set environment
variables to skip certificate verification. (If the Twine version is earlier
than or equal to 3.8.0 and the request version is earlier than or equal to
2.27, ignore the following command.)
export CURL_CA_BUNDLE=""

4. Click Save and Run on the right of the page to start the build task.
After the task is successfully executed, go to the self-hosted repo page and
find the uploaded PyPI package.

----End

CodeArts Artifact
Best Practices

5 Releasing/Obtaining a PyPI Package via a Build
Task

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 21

https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0013.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0013.html

Obtaining a Dependency from a PyPI Repository
The following procedure uses the PyPI package released in Releasing a Package
to a PyPI Repository as an example to describe how to obtain a dependency from
a PyPI repository.

Step 1 Download the configuration file.

1. Use your Huawei Cloud account to access self-hosted repos.
2. Select the PyPI repository and click Tutorial on the right of the page.
3. In the displayed dialog box, select Download as the purpose and click

Download Configuration File.

4. Save the downloaded pip.ini file as a pip.conf file.

Step 2 Configure a repository.

1. Go to Repo and create a Python repository. For details, see Creating a
Repository. This procedure uses the Python3 Demo template.

2. Go to Repo, and upload the pip.conf file to the root directory of the
repository where the PyPI dependency is to be used.

3. Find the requirements.txt file in the repository and open it. If the file is not
found, create it by referring to Managing Files Add the dependency
configuration to this file, as shown in the following figure.
demo ==1.0

Step 3 Configure and run a build task.

1. On the Repo page, select the repository and click Create Build Task in the
upper right.
Select Blank Template and click OK.

2. Add the Build with Setuptools action.

CodeArts Artifact
Best Practices

5 Releasing/Obtaining a PyPI Package via a Build
Task

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 22

https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0007.html#section0
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0013.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0013.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0202.html

3. Edit the Build with Setuptools action.
– Select the desired tool version. In this example, python3.6 is used.
– Delete the existing commands and run the following instead:

Set the pip.conf file in the root directory of the current project as the configuration file.
 export PIP_CONFIG_FILE=./pip.conf
Download the PyPI package.
 pip install -r requirements.txt --no-cache-dir

Step 4 Click Save and Run on the right of the page to start the build task.

After the task is successfully executed, view the task details. If information similar
to the following is found in the log, the dependency has been downloaded from
the PyPI repository.

----End

CodeArts Artifact
Best Practices

5 Releasing/Obtaining a PyPI Package via a Build
Task

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 23

6 Uploading/Obtaining an RPM Package
Using Linux Commands

This practice describes how to use Linux commands to upload a private package
to an RPM repository and obtain a dependency from the repository.

Prerequisites
● You have an RPM package available.
● You have a Linux host that can connect to the public network available.
● You have created an RPM repository in the self-hosted repo.
● You have permissions for the current repository. For details, see Managing

Repository Permissions.

Releasing a Package to an RPM Repository

Step 1 Use your Huawei Cloud account to access self-hosted repos.

Step 2 Select an RPM repository. Click Tutorial on the right of the page.

Step 3 In the displayed dialog box, click Download Configuration File.

Step 4 On the Linux host, run the following command to upload an RPM package:
curl -u {{user}}:{{password}} -X PUT https://{{repoUrl}}/{{component}}/{{version}}/ -T {{localFile}}

In this command, user, password, and repoUrl can be obtained from the RPM
upload command in the configuration file downloaded in the previous step.

● user: character string before the colon (:) between curl -u and -X
● password: character string after the colon (:) between curl -u and -X

CodeArts Artifact
Best Practices

6 Uploading/Obtaining an RPM Package Using Linux
Commands

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 24

https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0008.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0007.html#section0

● repoUrl: character string between https:// and /{{component}}

component, version, and localFile can be obtained from the RPM package to be
uploaded. The hello-0.17.2-54.x86_64.rpm package is used as an example.

● component: software name, for example, hello.

● version: software version, for example, 0.17.2.

● localFile: RPM component, for example, hello-0.17.2-54.x86_64.rpm.

The following figure shows the complete commands.

Step 5 After the commands are successfully executed, go to the self-hosted repo page
and find the uploaded RPM package.

----End

Obtaining a Dependency from an RPM Repository

The following procedure uses the RPM package released in Releasing a Package
to an RPM Repository as an example to describe how to obtain a dependency
from an RPM repository.

Step 1 Download the configuration file of the RPM repository by referring to Releasing a
Package to an RPM Repository.

Step 2 Open the configuration file, replace all {{component}} in the file with the value of
{{component}} (hello in this file) used for uploading the RPM file, delete the RPM
upload command, and save the file.

Step 3 Save the modified configuration file to the /etc/yum.repos.d/ directory on the
Linux host.

Step 4 Run the following command to download the RPM package: Replace hello with
the actual value of component.
yum install hello

----End

CodeArts Artifact
Best Practices

6 Uploading/Obtaining an RPM Package Using Linux
Commands

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 25

7 Uploading/Obtaining a Debian Package
Using Linux Commands

This practice describes how to use Linux commands to upload a private package
to a Debian repository and obtain a dependency from the repository.

Prerequisites
● You have a Debian package available.
● You have a Linux host that can connect to the public network available.
● You have created a Debian repository in the self-hosted repo.
● You have permissions for the current repository. For details, see Managing

Repository Permissions.

Releasing a Package to a Debian Repository

Step 1 Use your Huawei Cloud account to access self-hosted repos.

Step 2 Select a Debian repository. Click Tutorial on the right of the page.

Step 3 In the displayed dialog box, click Download Guide File.

CodeArts Artifact
Best Practices

7 Uploading/Obtaining a Debian Package Using
Linux Commands

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 26

https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0008.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0007.html#section0

Step 4 On the Linux host, run the following command to upload a Debian package:
curl -u <USERNAME>:<PASSWORD> -X PUT "https:// <repoUrl>/
<DEBIAN_PACKAGE_NAME>;deb.distribution=<DISTRIBUTION>;deb.component=<COMPONENT>;deb.archite
cture=<ARCHITECTURE>" -T <PATH_TO_FILE>

In this command, USERNAME, PASSWORD, and repoUrl can be obtained from the
Debian upload command in the configuration file downloaded in Step 3.

● USERNAME: username used for uploading files, which can be obtained from
the Debian configuration file. For details, see the example figure.

● PASSWORD: password used for uploading files, which can be obtained from
the Debian configuration file. For details, see the example figure.

● repoUrl: URL used for uploading files, which can be obtained from the Debian
configuration file. For details, see the example figure.

DEBIAN_PACKAGE_NAME, DISTRIBUTION, COMPONENT, and ARCHITECTURE
can be obtained from the Debian package to be uploaded.
The a2jmidid_8_dfsg0-1_amd64.deb package is used as an example.

● DEBIAN_PACKAGE_NAME: software package name, for example,
a2jmidid_8_dfsg0-1_amd64.deb.

CodeArts Artifact
Best Practices

7 Uploading/Obtaining a Debian Package Using
Linux Commands

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 27

● DISTRIBUTION: release version, for example, trusty.
● COMPONENT: component name, for example, main.
● ARCHITECTURE: system architecture, for example, amd64.
● PATH_TO_FILE: local storage path of the Debian package, for example, /root/

a2jmidid_8_dfsg0-1_amd64.deb.
The following figure shows the complete commands.

Step 5 After the commands are successfully executed, go to the self-hosted repo page
and find the uploaded Debian package.

----End

Obtaining a Dependency from a Debian Repository

The following procedure uses the Debian package released in Releasing a
Package to a Debian Repository as an example to describe how to obtain a
dependency from a Debian repository.

Step 1 Download the public key file of the Debian repository by referring to Releasing a
Package to a Debian Repository.

Step 2 Import the gpg public key.
gpg --import <PUBLIC_KEY_PATH>

PUBLIC_KEY_PATH: local path for storing the Debian public key, for example,
artifactory.gpg.public.

Step 3 Add the public key to the list of keys used by apt to authenticate packages.
gpg --export --armor <SIG_ID> | apt-key add -

CodeArts Artifact
Best Practices

7 Uploading/Obtaining a Debian Package Using
Linux Commands

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 28

Step 4 Add the apt repository source.

Open the configuration file (for details about how to obtain the file, see
Releasing a Package to a Debian Repository), replace all DISTRIBUTION fields
with the value of COMPONENT (for example, main) used for uploading the
Debian file, and add the repository source based on the downloaded configuration
file sources.list.

Step 5 After the repository source is added, run the following command to update the
repository source:
apt-get update

Step 6 Run the following command to download the Debian package: Replace a2jmidid
with the actual value of PACKAGE.
apt download a2jmidid

To obtain <PACKAGE>, perform the following steps:

Download the Packages source data of the Debian package. The following uses
the a2jmidid package as an example.

----End

CodeArts Artifact
Best Practices

7 Uploading/Obtaining a Debian Package Using
Linux Commands

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 29

8 Migrating Repository Data from Nexus
to CodeArts Artifact

8.1 Migration Preparations
CodeArts Artifact provides a batch migration tool to quickly migrate hosted, proxy,
and group repository data on Nexus to self-hosted repos. This streamlines
operations and management for greater efficiency.

Confirming Repository and Package Types
The following uses Nexus3 as an example. Log in to Nexus3 and go to the
administration page. Confirm the repository type (in the Type column) and
package type (in the Format column) to be migrated, as shown in the following
figure.

The migration method varies depending on the repository type (in the Type
column).

● hosted repository: Perform operations in Migrating Hosted Repository Data
from Nexus to CodeArts Artifact.

● proxy repository: Perform operations in Migrating Proxy Repository Data
from Nexus to CodeArts Artifact.

● group repository: Perform operations in Migrating Group Repository Data
from Nexus to CodeArts Artifact.

CodeArts Artifact
Best Practices

8 Migrating Repository Data from Nexus to
CodeArts Artifact

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 30

Confirming CodeArts Artifact Repository Capacity

Check the number and size of files displayed in Blob Stores (as shown in the
following figure) to evaluate whether the remaining repository capacity of
CodeArts Artifact meets the requirements.

Confirming Repository Usage Scenario

Repositories are provided for all projects. You are advised to create a project
separately. For details about how to create a project, see Creating a CodeArts
Project.

If projects are planned with separate repositories, you do not need to create a
project.

8.2 Migrating Hosted Repository Data from Nexus to
CodeArts Artifact

Migrate hosted repositories from Nexus to CodeArts Artifact using migration tools.

Migration tools work as follows: Read the packages on Nexus to the input stream,
and then call the CodeArts Artifact APIs to upload the packages.

Prerequisites
● The runtime environment is JDK 8. Run the java -version command to verify

your environment. For details about how to install JDK, see https://
www.java.com/en/.

● The PC running the migration tool is connected to both Nexus and CodeArts
Artifact. That is, the PC can access the network addresses of Nexus and
CodeArts Artifact. You can use either of the following methods to verify the
connection:

– Run the following commands:
telnet Nexus domain name or IP address: Port
telnet Repository address of CodeArts Artifact (For details about how to obtain the repository
address, see Step 1.)

– Open a browser and enter the Nexus domain name or IP address:port
and the CodeArts Artifact repository address (for details about how to
obtain the repository address, see Step 1).

Step 1: Identifying the Original Repository to Migrate

Check the repository and package types of the repository to be migrated. If
the repository is hosted, perform the operations in this section.

CodeArts Artifact
Best Practices

8 Migrating Repository Data from Nexus to
CodeArts Artifact

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 31

https://support.huaweicloud.com/intl/en-us/usermanual-devcloud/codearts_01_0027.html
https://support.huaweicloud.com/intl/en-us/usermanual-devcloud/codearts_01_0027.html
https://www.java.com/en/
https://www.java.com/en/

Step 2: Creating a Local Repository in Self-Hosted Repos
Create a repository based on the repository type in Confirming Repository and
Package Types. The following describes how to create a local Maven repository.

Step 1 Use your Huawei Cloud account to access self-hosted repos.

Step 2 On the Self-hosted Repos page, click Create Repository in the upper-right corner.

Step 3 Set Repository Type to Local Repo, Package Type to Maven, and Project to an
existing project, and click OK. The created Maven repository is displayed in the
Repo View.

Step 4 Click Create Repository in the upper-right corner to create another repository as
required.

----End

Step 3: Obtaining Repository URL and Configuration File

Step 1 Obtain the repository URL.

1. Find the repository created in Step 2: Creating a Local Repository in Self-
Hosted Repos and click Repo View.

2. Click the repository name. The Repository Path is displayed on the General
tab. Click to copy the repository URL.

CodeArts Artifact
Best Practices

8 Migrating Repository Data from Nexus to
CodeArts Artifact

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 32

https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0007.html#section0

Step 2 Obtain the configuration file.

1. Click Tutorial on the right of the page.
2. In the Tutorial dialog box, click Download Configuration File to download

the settings.xml file to the localhost.

3. Open the settings.xml file on the localhost and find the username and
password in the red box shown in the following figure.

CodeArts Artifact
Best Practices

8 Migrating Repository Data from Nexus to
CodeArts Artifact

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 33

----End

Step 4: Configuring Migration Tools for Local Repository

Step 1 Use your Huawei Cloud account to access self-hosted repos.

Step 2 In the left pane, click the target Maven repository name.

Step 3 Click in the upper-right corner of the page, and select Download Migration
Tool to download the tool package (migration tool name: relocation-
jfrog-20251016.1.jar; configuration file: application-nexus.yaml) to the
localhost.

Step 4 The following is an example of the application-nexus.yaml file. The example
contains only mandatory parameters. You can directly search for the parameter
name in the file. These parameters are under relocation.

Table 8-1 Key configurations in application.yaml

Parameter Example Value Description

name nexus-to-artifact Name of the migration task (only for
display).

package_type maven Migration package type: maven, npm,
PyPI, and Go
NOTICE

Maven repositories are classified into
Release and Snapshot repositories. If the
original repositories are mixed, you need
to migrate the original repositories twice
to migrate Release and Snapshot
repositories to different Maven
repositories.

migrate_type nexus3 Migration type. The value can be
nexus3 or nexus2, depending on the
Nexus version.

save_temp_dir D:/tmp/xxx/ Cache path, which is mandatory for
migrating Maven. The path ends with
a slash (/). The last uploaded
snapshot version of the Maven is
stored in this path.

domain http://{ip}:{port} Domain name of the original
repository. The path must not end
with a slash (/).

CodeArts Artifact
Best Practices

8 Migrating Repository Data from Nexus to
CodeArts Artifact

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 34

https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0007.html#section0

Parameter Example Value Description

repo test_maven Original repository name, which is the
repository name on Nexus. You can
obtain the name of the repository to
be migrated from the NAME field on
the Nexus page.

user_name username Original repository username.

password password Original repository password.

target_domain https://{domain}/
artgalaxy
https://{domain}/
artgalaxy/api/npm

Domain name of the target
repository.
Obtain it from the repository URL on
the self-hosted repo page in Step 3:
Obtaining Repository URL and
Configuration File.
● If the repository URL is

https://{domain}/artgalaxy/xx-
north-xxx_xxxxxxxx_maven_1_388/
enter https://{domain}/artgalaxy.

● If the repository URL is
https://{domain}/
artgalaxy/api/npm/xx-north-
xx_xxxxxxx_npm_6944/
enter https://{domain}/
artgalaxy/api/npm.

target_repo xx-north-
xxx_xxxxxxxx_maven_
1_388
xx-north-
xx_xxxxxxx_npm_6944

Target registry name.
Obtain it from the repository URL in
Step 3: Obtaining Repository URL
and Configuration File.
● If the repository URL is

https://{domain}/artgalaxy/xx-
north-xxx_xxxxxxxx_maven_1_388/
enter xx-north-
xxx_xxxxxxxx_maven_1_388.

● If the repository URL is
https://{domain}/
artgalaxy/api/npm/xx-north-
xx_xxxxxxx_npm_6944/
enter xx-north-
xx_xxxxxxx_npm_6944.

target_user_na
me

username Username of the target repository,
which can be obtained from Step 3:
Obtaining Repository URL and
Configuration File.

CodeArts Artifact
Best Practices

8 Migrating Repository Data from Nexus to
CodeArts Artifact

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 35

Parameter Example Value Description

target_passwor
d

password Password of the target repository,
which can be obtained from Step 3:
Obtaining Repository URL and
Configuration File.

Simple application-nexus.yaml

spring:
 main:
 web-application-type: none
relocation:
 # Name of the migration task (only for display)
 name: nexus-to-artifact
Migration package type: maven, npm, PyPI, and Go
 package_type: maven
Migration type. Governance, JFrog, Nexus3, and Nexus2 are available.
 migrate_type: "nexus3"
Cache path, which is mandatory for migrating Maven. The path ends with a slash (/). The last uploaded
snapshot version of the Maven is stored in this path.
 save_temp_dir: "D:/tmp/xxx/"

 # Original repository parameter. It is mandatory only in the JFrog and Nexus scenarios.
 # Original repository URL. The URL must not end with a slash (/).
 domain: 'http://{domain}/artifactory'
 # Original repository name
 repo: 'test-maven'
 # Original repository username
 user_name: "username"
 # Original repository password
 password: "password"

 # Target repository parameter
 # Target repository URL. The last path cannot contain a slash (/). Obtain the path from the page.
 target_domain: 'https://{domain}/artgalaxy/xxxx/xxxx'
 # Target repository name
 target_repo: xxxxx
 # Target repository username
 target_user_name: 'username'
 # Target repository password
 target_password: 'password'

Step 5 Configure parameters in the application.yaml file.
spring:
 main:
 web-application-type: none
relocation:
 # General configuration of the migration program
 # Number of core threads of the migration program
 corePoolSize: 20
 # Maximum number of thread pools of the migration program
 maxPoolSize: 40
 # Thread pool queue size of the migration program
 queueCapacity: 99999999
 # Maximum migration speed of the migration program (MB/s). The default value is 20.
 speed_limit: 20
 # JFrog migration scenario parameter. This parameter indicates the migration packages between the time
of modifiedFrom and modifiedTo (timestamp).
 modifiedFrom:
 modifiedTo:
 # Name of the migration task (only for display)
 name: jfrog-to-artifact
 # Package type of the repository to be migrated

CodeArts Artifact
Best Practices

8 Migrating Repository Data from Nexus to
CodeArts Artifact

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 36

 package_type: pypi
 # Migration type. Governance, JFrog, and Nexus are available.
 migrate_type: "jfrog"
 # Cache path, which is mandatory for migrating Maven. The value ends with a slash (/).
 save_temp_dir: "/xxxx/"

 # Original repository parameter. It is mandatory only in the JFrog and Nexus scenarios.
 # Original repository URL. The URL must not end with a slash (/).
 domain: 'http://{domain}/artifactory'
 # Original repository name
 repo: 'test-pypi-source'
 # Original repository type. The default value is artifactory.
 repo_type: artifactory
 # Original repository username
 user_name: "username"
 # Original repository password
 password: "password"
 # In the JFrog scenario, enter the sub-path of the original repository. Sub-path migration is supported.
 source_sub_path:

 # Target repository parameter
 # Target repository URL. The last path cannot contain a slash (/). Obtain the path from the page.
 target_domain: 'https://{domain}/artgalaxy/xxxx/xxxx'
 # Target repository name
 target_repo: xxxxx
 # Target repository type. The default value is artifactory.
 target_repo_type: artifactory
 # Target repository username
 target_user_name: 'username'
 # Target repository password
 target_password: 'password'

 # Governance migration parameters (ignore for Python migration)
domain_id in the governance migration scenario
 domain_id: test009
 # Whether to call CodeArts Governance in the governance scenario. If the value is true, CodeArts
Governance is not called.
 call_governance_use_local: true
 # Package type of the governance migration repository
 governance_type: npm
 # Path for storing the CodeArts Governance entity package.
 migrate_local_path: ""
 # Governance metadata file, indicating the metadata file to be migrated
 migrate_metadata_path: ""
 # Callback governance path. An empty path needs to be set for this path.
 governance_save_path: ""
 # Callback CodeArts Governance URL
 governance_url: ""
 # User AK. It is used to call back the CodeArts Governance API.
 access_key_id: ""
 # User SK. It is used to call back the CodeArts Governance API.
 secret_access_key: ""
 # Whether to call back CodeArts Governance only through the cache information in
governance_save_path.
 only_update_governance: false
 # Maximum number of files to be migrated in the CodeArts Governance. The number is the number of
metadata records in migrate_metadata_path.
 migrate_max_num: -1

----End

Step 5: Migrating

Step 1 Run the following migration script:
java -jar relocation-jfrog-20251016.1.jar --spring.config.location=application-nexus.yaml > /log/relocation-
jfrog.log 2>&1 &

CodeArts Artifact
Best Practices

8 Migrating Repository Data from Nexus to
CodeArts Artifact

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 37

Step 2 Go to the target self-hosted repo (local repository) and check whether the
component package is successfully uploaded to the hosted repository.

----End

8.3 Migrating Proxy Repository Data from Nexus to
CodeArts Artifact

To migrate proxy repository data from Nexus to CodeArts Artifact, you only need
to configure proxy repositories on CodeArts Artifact. Then you can use the new
proxy repository.

The principle is as follows: Configure proxy settings for open-source repositories or
third-party repositories to replace proxy repositories on Nexus.

Procedure

Step 1 Add a proxy to the virtual repository in the self-hosted repo.

Step 2 Access the self-hosted repo homepage. In the left pane, select the repository
where the proxy is configured.

----End

8.4 Migrating Group Repository Data from Nexus to
CodeArts Artifact

To migrate group repository data from Nexus to CodeArts Artifact, you only need
to configure virtual repositories on CodeArts Artifact. Then you can use the new
virtual repository.

The principle is as follows: Aggregate the local and proxy repositories through
configuration to replace the group repository on Nexus.

Prerequisites
● You have created a virtual repository. For details, see Creating a Repository.
● You have configured the network for the proxy mirror repository. You can

contact the environment administrator, O&M personnel, or technical support.

Step 1: Migrating the Proxy and Hosted Repositories in the Group Repository
in the Nexus

Migrate the hosted and proxy repositories in a group repository in the Nexus by
referring to Migrating Hosted Repository Data from Nexus to CodeArts
Artifact and Migrating Proxy Repository Data from Nexus to CodeArts
Artifact.

Step 2: Configuring a Virtual Repository

Step 1 Use your Huawei Cloud account to access self-hosted repos.

CodeArts Artifact
Best Practices

8 Migrating Repository Data from Nexus to
CodeArts Artifact

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 38

https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0200.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0008.html#section2
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0007.html#section0

Step 2 In the left pane, select the target virtual repository.

Step 3 Click Proxy Settings in the upper-right corner of the page.

Step 4 Click Add Proxy and select Open Source or Custom.

You can select Third-party Repository or Huawei Local Repository from Custom.

● Third-party repository: Set a third-party repository or a repository created by
a user as the proxy source.
After selecting a third-party repository, select a custom proxy source (proxy on
Nexus) from the Proxy Name drop-down list.

● Huawei Local Repository: Set a Huawei local repository as the proxy source.
Only repositories with access permissions can be selected. The local repository
corresponds to the hosted repository in Nexus.
You can select a local repository from the Proxy Name drop-down list.

Step 5 Click OK. The proxy is added.

● In the proxy list, click in the Operation column to change the proxy name,
proxy username, and proxy password.

NO TE

You cannot edit the proxy source of the local repository.

● Click in the Operation column to delete the proxy.

----End

CodeArts Artifact
Best Practices

8 Migrating Repository Data from Nexus to
CodeArts Artifact

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 39

9 Migrating Local Repository Data to
CodeArts Artifact

9.1 Overview
A local repository is a copy of software packages or dependencies stored on your
computer. When you use Maven or npm to manage dependencies, the tools
download dependencies from remote repositories to your local repository.
However, CodeArts Artifact enforces strict permissions for storing, pushing, and
pulling dependencies and final products generated during development to support
effective team collaboration. Therefore, after migrating Maven and npm repository
data from your local disk to CodeArts Artifact, you can manage operations and
maintenance more efficiently in one place. To meet this need, CodeArts Artifact
provides a tool to help you quickly migrate Maven and npm repository data in
batches to the Maven and npm repositories in self-hosted repos.

Constraints
Only local Maven and npm repository data can be migrated to self-hosted repos in
CodeArts Artifact.

Preparations
● You already have a project. If no project is available, create one.
● You have permissions for the current self-hosted repo. For details, see

Configuring Repository Permissions.
● You have created a Maven repository and an npm registry in self-hosted

repos.
● You have the Python3 environment available.
● The local PC running the migration tool is connected to CodeArts Artifact.

CodeArts Artifact
Best Practices

9 Migrating Local Repository Data to CodeArts
Artifact

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 40

https://support.huaweicloud.com/intl/en-us/qs-projectman/projectman_06_1000.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0008.html

9.2 Migrating Local Maven Repository Data to
CodeArts Artifact

Step 1: Obtain Target Maven Repository Information from CodeArts Artifact

Step 1 Use your Huawei Cloud account to access self-hosted repos.

Step 2 In the left pane, click the target Maven repository name to go to its details page,
and view the Repository Path.

Step 3 Click next to the repository URL to copy it.

Step 4 Click Tutorial in the upper-right corner of the page. In the displayed dialog box,
click Download Configuration File to download the settings.xml file to the
localhost.

Open the file on the localhost and find the username and password.

----End

Step 2: Configure Migration Tool

Step 1 Use your Huawei Cloud account to access self-hosted repos.

Step 2 In the left pane, select the target Maven repository.

Step 3 Click the repository name. In the upper-right corner of the page, click and
select Download Migration Tool to download the MigrateTool.zip package to
the localhost. Then decompress it to obtain uploadArtifact.py (migration tool)
and artifact.conf (configuration file).

Step 4 Configure the  artifact.conf  file using the example below. Only the required
parameters are listed. Other parameters can be deleted.
artifact
packageType = Component type. Set it to Maven.
userInfo = username:password (username and password obtained in Step 4)
repoRelease = Repository URL (repository URL obtained in Step 3)
repoSnapshot = Repository URL (repository URL obtained in Step 3). This parameter is involved when the
Maven artifact type is Snapshot.
srcDir = Directory path of the local Maven repository to be migrated. The value is user-defined, for example,
C:\Users\xxxxxx\repository.

----End

CodeArts Artifact
Best Practices

9 Migrating Local Repository Data to CodeArts
Artifact

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 41

https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0007.html#section0
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0007.html#section0

Step 3: Migrate Data

Run the migration tool obtained in Step 3 by executing this command:

python uploadArtifact.py

Step 4: Verify Migration Results

Go to the target Maven repository in self-hosted repos and verify whether the
local Maven repository data was uploaded successfully.

If the migration fails, try again or contact customer service.

9.3 Migrating Local npm Registry Data to CodeArts
Artifact

Step 1: Obtain Target npm Registry Information from CodeArts Artifact

Step 1 Use your Huawei Cloud account to access self-hosted repos.

Step 2 In the left pane, click the target npm registry name to go to its details page and
view the Repository Path.

Step 3 Click next to the repository URL to copy it.

Step 4 Click Tutorial in the upper-right corner of the page. In the displayed dialog box,
click Download Configuration File to download the npmrc configuration file to
the localhost.

Step 5 Open the configuration file on the localhost, find the value of the _auth field, and
decode the value using Base64.

----End

CodeArts Artifact
Best Practices

9 Migrating Local Repository Data to CodeArts
Artifact

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 42

https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0007.html#section0

Step 2: Configure Migration Scripts

Step 1 Use your Huawei Cloud account to access self-hosted repos.

Step 2 In the left pane, select the target npm registry.

Step 3 Click the repository name. In the upper-right corner of the page, click and
select Download Migration Tool to download the MigrateTool.zip package to
the localhost. Then decompress it to obtain uploadArtifact.py (migration tool)
and artifact.conf (configuration file).

Step 4 Configure the  artifact.conf  file using the example below. Other parameters can
be deleted.
artifact
packageType = Component type. Set it to npm.
userInfo = Value of the _auth field decoded using Base64 in the npmrc configuration file of the npm
registry. (For details, see Step 5.)
repoRelease = Repository URL (repository URL obtained in step 1)
repoSnapshot = Left empty
srcDir = Directory path of the local npm registry to be migrated. The value is user-defined, for example,
C:\Users\xxxxxx\repository.

----End

Step 3: Migrate Data
Run the migration tool obtained in Step 3 by executing this command:

python uploadArtifact.py

Step 4: Verify Migration Results
Go to the target npm registry in self-hosted repos and verify whether the local
npm registry data was uploaded successfully.

If the migration fails, try again or contact customer service.

CodeArts Artifact
Best Practices

9 Migrating Local Repository Data to CodeArts
Artifact

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 43

https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0007.html#section0

10 Configuring CodeArts Artifact
Permissions

Overview

CodeArts Artifact provides two repository types: release repos and self-hosted
repos. Release repos support project-level permission management, while self-
hosted repos support project-level and repository-level permission management.
For details, see Configuring Permissions for Release Repos and Configuring
Permissions for Self-Hosted Repos.

This practice uses self-hosted repos as an example to describe how to quickly
manage permissions for individual repositories and by project.

Constraints
● By default, project administrators have all permissions and their permission

scope cannot be modified.
● Custom roles created in CodeArts Artifact do not have preset permissions.

You can contact the project administrator to configure roles and permissions
on corresponding resources.

● By default, the project administrator, project manager, and test manager can
assign permissions for other roles in self-hosted repos. If other roles can
assign permissions, they can continue to manage permissions for other roles
in self-hosted repos.

Prerequisites
● You have created a CodeArts project (Select the Scrum template and name it

Scrum.)
● You have added users to the CodeArts project Scrum and assigned roles to

them. For details, see Adding Project Members.
● To assign permissions to other roles in the self-hosted repo, you must have

the Privilege Config permission. By default, the project administrator, project
manager, and test manager roles have this permission.

● You have created a self-hosted repo named pypi_test in the Scrum project.
For details, see Creating a Repository.

CodeArts Artifact
Best Practices 10 Configuring CodeArts Artifact Permissions

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 44

https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0006.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-devcloud/devcloud_01_0018.html#section2
https://support.huaweicloud.com/intl/en-us/usermanual-devcloud/codearts_01_0027.html
https://support.huaweicloud.com/intl/en-us/usermanual-devcloud/devcloud_01_0025.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0008.html

Configuring Project-Level Permissions
CodeArts Artifact allows you to configure permissions on self-hosted repos for
each role in a project. For details, see Configuring Project-Level Permissions.

Step 1 Log in as a user with the Privilege Config permission, and access the self-hosted
repo.

Step 2 Click the Repositories tab. All self-hosted repos created are displayed.

Step 3 In the repository list, click pypi_test to go to its details page of the project, as
shown in the following figure.

Step 4 Choose Settings > General > Permissions from the navigation pane. The
Permissions page is displayed. You can configure project-level permissions in
either of the following ways:
● Method 1: In the Roles area, click the role you want to configure permissions,

select CodeArts Artifact on the right, and click Edit at the bottom of the
page. In the displayed page, select or deselect the required permissions, and
then click Save.

CodeArts Artifact
Best Practices 10 Configuring CodeArts Artifact Permissions

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 45

https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0007.html#section0
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0007.html#section0

● Method 2: Select the template to apply from the Permission Template drop-
down list on the top of the page (for details about how to create and manage
permission templates, see Managing Project Permission Templates). In the
displayed dialog box, click OK. The permissions from the template are then
applied in one click, as shown in the following figure. After a permission
template is applied, the permissions of roles with the same name in the
project will be overwritten and cannot be restored. Proceed with caution.

----End

Configuring Repository-Level Permissions

CodeArts Artifact allows you to configure permissions on all self-hosted repos in a
project. For details, see Configuring Project-Level Permissions. You can also
configure permissions for a single self-hosted repo.

● By default, new self-hosted repos inherit role permissions from Settings >
Permissions in the project. Any changes made to these role permissions in
Configuring Project-Level Permissions will be synced to the repo's
permissions.

CodeArts Artifact
Best Practices 10 Configuring CodeArts Artifact Permissions

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 46

https://support.huaweicloud.com/intl/en-us/usermanual-devcloud/devcloud_01_0018.html#section3

● If you do not change the repository permissions of a role in the self-hosted
repo, any changes made on Configuring Project-Level Permissions will be
synced to the repo's permissions as well.

● If you change the repository permissions of a role directly in the self-hosted
repo, any changes made on Configuring Project-Level Permissions will not
be synced to the repo's permissions. You need to change the permissions of
the role in the repo.

Step 1 Access the self-hosted repo.

Step 2 Select the target repository from the repository list.

Step 3 Click Settings on the right of the page.

Step 4 Click the Repository Permissions tab. The roles in the current project are
displayed.

CodeArts Artifact
Best Practices 10 Configuring CodeArts Artifact Permissions

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 47

https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0007.html#section0

Step 5 In the Roles area, select or deselect the desired permissions for the target role.
● By default, new self-hosted repos inherit role permissions from Settings >

Permissions in the project. Any changes made to these role permissions in
Configuring Project-Level Permissions will be synced to the repo's
permissions.

● If you do not change the repository permissions of a role in the self-hosted
repo, any changes made on Configuring Project-Level Permissions will be
synced to the repo's permissions as well.

● If you change the repository permissions of a role directly in the self-hosted
repo, any changes made on Configuring Project-Level Permissions will not
be synced to the repo's permissions. You need to change the permissions of
the role in the repo.

Step 6 Click Save to complete the repository-level permission configuration.

Each role can access the self-hosted repo and perform operations specified by
their permissions.

----End

CodeArts Artifact
Best Practices 10 Configuring CodeArts Artifact Permissions

Issue 01 (2025-11-11) Copyright © Huawei Technologies Co., Ltd. 48

https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0007.html#section0

	Contents
	1 CodeArts Artifact Best Practices
	2 Releasing a Maven Artifact to a Self-Hosted Repo via a Build Task
	3 Releasing/Obtaining an npm Package via a Build Task
	4 Releasing/Obtaining a Go Package via a Build Task
	5 Releasing/Obtaining a PyPI Package via a Build Task
	6 Uploading/Obtaining an RPM Package Using Linux Commands
	7 Uploading/Obtaining a Debian Package Using Linux Commands
	8 Migrating Repository Data from Nexus to CodeArts Artifact
	8.1 Migration Preparations
	8.2 Migrating Hosted Repository Data from Nexus to CodeArts Artifact
	8.3 Migrating Proxy Repository Data from Nexus to CodeArts Artifact
	8.4 Migrating Group Repository Data from Nexus to CodeArts Artifact

	9 Migrating Local Repository Data to CodeArts Artifact
	9.1 Overview
	9.2 Migrating Local Maven Repository Data to CodeArts Artifact
	9.3 Migrating Local npm Registry Data to CodeArts Artifact

	10 Configuring CodeArts Artifact Permissions

