
Cloud Certificate Manager

Best Practices

Issue 07

Date 2024-12-17

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Contents

1 CCM Best Practice Summary...1

2 Best Practices for SSL Certificate Manager... 2
2.1 Resolving a DNS Record on Huawei Cloud or Alibaba Cloud..2
2.2 Enabling HTTPS Encryption for Websites... 6
2.3 Deploying SSL Certificates to the Cloud in One Click.. 8
2.3.1 Scenario... 8
2.3.2 Deploying an SSL Certificate to CDN in One Click...9
2.3.3 Deploying an SSL Certificate to WAF in One Click.. 11
2.3.4 Deploying an SSL Certificate to ELB in One Click.. 14
2.4 Using FunctionGraph to Automatically Obtain and Update ECS Server Certificates....................................18

3 Best Practices for Private Certificate Management..28
3.1 Best Practices for Private Certificate Management...28
3.1.1 Managing the Private Certificate Lifecycle... 28
3.1.2 Private Certificate Statuses.. 29
3.1.3 Rotating Your Private Certificate..30
3.2 Best Practices for Private CA Management... 30
3.2.1 Designing a Private CA Hierarchy.. 30
3.2.2 Private CA Statuses... 34
3.2.3 Managing the Private CA Lifecycle..36
3.2.4 Managing a CRL.. 38
3.2.5 Rotating a Private CA... 40
3.3 Best Practices of PCA Code Examples.. 41
3.3.1 Prerequisites.. 41
3.3.2 Example Code for Managing Private CAs... 41
3.3.2.1 Creating a CA.. 41
3.3.2.2 Deleting a CA.. 43
3.3.2.3 Disabling a CA... 44
3.3.2.4 Enabling a CA.. 45
3.3.2.5 Exporting a CA.. 46
3.3.2.6 Canceling Deletion of a CA...47
3.3.2.7 Obtaining CA Details.. 48
3.3.2.8 Querying CA Quotas... 49

Cloud Certificate Manager
Best Practices Contents

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

3.3.3 Example Code for Managing Private Certificates...50
3.3.3.1 Applying for a Certificate.. 50
3.3.3.2 Deleting a Certificate.. 53
3.3.3.3 Exporting a Certificate..54
3.3.3.4 Revoking a Certificate.. 55
3.4 Building an Internal Identity Authentication System for Your Organization... 56

Cloud Certificate Manager
Best Practices Contents

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

1 CCM Best Practice Summary

This document describes the common application scenarios of CCM and provides
detailed solution description and operation guide for each scenario to help you
deploy and manage certificates in different scenarios.

Best Practices

Table 1-1 Best practices

Category Related Document

SSL Certificate Resolving a DNS Record on Huawei
Cloud or Alibaba Cloud

Enabling HTTPS Encryption for
Websites

Deploying SSL Certificates to the
Cloud in One Click

Using FunctionGraph to
Automatically Obtain and Update
ECS Server Certificates

Private Certificate Best Practices for Private Certificate
Management

Best Practices for Private CA
Management

Best Practices of PCA Code Examples

Building an Internal Identity
Authentication System for Your
Organization

Cloud Certificate Manager
Best Practices 1 CCM Best Practice Summary

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

2 Best Practices for SSL Certificate
Manager

2.1 Resolving a DNS Record on Huawei Cloud or
Alibaba Cloud

After you submit an SSL certificate application to the CA, you need to verify
domain name ownership as required by the CA. This topic describes how to verify
your domain name ownership by DNS.

Background

After you apply for an SSL certificate from a CA, you are required to verify the
domain name ownership. You need to work with the CA to complete the domain
name ownership verification. After your ownership of the domain name is verified
by you and approved by the CA, the status of your certificate will change.

If you do not complete the domain ownership verification, your certificate will
remain in the Pending domain name verification state.

Domain name ownership verification by DNS is to verify domain ownership by
resolving a specific DNS record on the platform hosting the domain name. When
you apply for a certificate and select DNS for Domain Name Verification
Method, follow the instructions in this part to complete the verification.

Procedure

Step 1 Obtain the host record and record value of a certificate. For details, see Obtaining
the Host Record and Record Value of a Certificate.

Step 2 Perform domain name ownership verification by DNS.

Domain name ownership verification by DNS is to resolve DNS records, which can
be performed only on the domain name management platform that hosts your
domain name. The following examples are for your reference.

Cloud Certificate Manager
Best Practices 2 Best Practices for SSL Certificate Manager

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

● If your domain name is hosted in the DNS service on Huawei Cloud, complete
the resolution by following the instructions in Huawei Cloud DNS TXT
Resolution.

● If your domain name is hosted in the DNS service on Alibaba Cloud, complete
the resolution by following the instructions in Alibaba Cloud DNS TXT
Resolution.

Step 3 Check whether the ownership verification takes effect. For details, see Verifying
DNS Configurations.

----End

Obtaining the Host Record and Record Value of a Certificate

Step 1 Log in to the management console.

Step 2 Click in the upper left corner of the page and choose Security & Compliance
> Cloud Certificate Management Service. The service console is displayed.

Step 3 In the navigation pane on the left, choose SSL Certificate Manager. In the row
containing the desired certificate, click Verify Domain Name in the Operation
column. The Verify Domain Name page is displayed.

Step 4 On the Verify Domain Name page, view the content for Host Record, Record
Type, and Record Value. Figure 2-1 shows an example.

If Host Record, Record Type, and Record Value are not displayed, log in to the
mailbox to view. The mailbox is the one you provide during certificate application.

Figure 2-1 Viewing a host record

----End

Huawei Cloud DNS TXT Resolution
Refer to this part if you are managing your domain name on Huawei Cloud.

Step 1 Log in to the management console.

Step 2 Choose Domain Name Service under Network to go to the Domain Name
Service page.

Step 3 In the navigation pane on the left, choose DNS Resolution > Public Zones.

Cloud Certificate Manager
Best Practices 2 Best Practices for SSL Certificate Manager

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

https://auth-intl.huaweicloud.com
https://auth-intl.huaweicloud.com

Step 4 In the domain name list on the Public Zones page, click the added domain name
(or the primary domain name for a multi-domain certificate) to go to the record
set page.

Step 5 In the upper right corner of the page, click Add Record Set. Figure 2-2 shows an
example.

NO TE

If there is a DNS record of domain name domain3.com in the domain name list, click
Modify in the Operation column. Modify the record in the displayed Modify Record Set
dialog box.

Figure 2-2 Adding a record set

Table 2-1 Parameters for adding a record set

Parameter Description

Name Host record returned by the domain name service provider on
the domain name verification page of the certificate.

Type Record type returned by the domain name service provider on
the domain name verification page.

Alias Select No.

Line Select Default.

TTL (s) Set this parameter to 5 min. A larger TTL value indicates less
frequency of DNS record synchronization and update.

Value Record value returned by the domain name service provider on
the domain name verification page of the certificate.
NOTE

Record values must be quoted with quotation marks and then pasted in
the text box.

Keep other settings unchanged.

Step 6 Click OK.

If the status of the record set is Normal, the record set is added successfully.

Cloud Certificate Manager
Best Practices 2 Best Practices for SSL Certificate Manager

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

NO TE

● DNS configuration records can be deleted only after the certificate is issued or revoked.
● Check whether the DNS record is correctly configured. If not, the certificate cannot be

issued.

Step 7 After the verification is complete, additional time is required for the CA to verify
your domain name. During this period, the certificate is in the Pending domain
name verification state.

The certificate enters the Pending organization verification state only after the
CA has confirmed your domain ownership.

----End

Alibaba Cloud DNS TXT Resolution
If your domain name is hosted in Alibaba Cloud, you need to add a record through
the Alibaba Cloud DNS console to complete the verification.

Step 1 Log in to the Alibaba Cloud DNS console.

Step 2 On the Manage DNS page, click the Domains tab and click the name of the
domain name for which you want to configure a record.

Step 3 Click Add Record and provide the following information:
● Record Type: Enter the record type obtained in Obtaining the Host Record

and Record Value of a Certificate.
● Host: Enter the prefix of the host record obtained in Obtaining the Host

Record and Record Value of a Certificate.
● ISP line: Select Default. You must specify an ISP line. Otherwise, your domain

name may become inaccessible to some users.
● Value: TXT record from the SCM console. To obtain the record, refer to

Obtaining the Host Record and Record Value of a Certificate.
● TTL: cache time. The smaller the value, the faster the modification takes

effect. The default value is 600 seconds.

Step 4 Click OK.

----End

Verifying DNS Configurations
Select a command based on the record type and OS and check whether the DNS
configuration takes effect.

Use TXT record _dnsauth.domain.com as an example.

● For TXT records
– For Windows OSs:

nslookup -q=TXT _dnsauth.domain.com

– For Linux OSs:
dig TXT _dnsauth.domain.com

– For macOS OSs:
dig TXT _dnsauth.domain.com

Cloud Certificate Manager
Best Practices 2 Best Practices for SSL Certificate Manager

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

● For CNAME records
– Windows OSs

nslookup -q=CNAME _dnsauth.domain.com

– Linux OSs
dig CNAME _dnsauth.domain.com

– macOS OSs
dig CNAME _dnsauth.domain.com

If the value recorded in the command output (value of text) is the same as that
returned by the domain name service provider, the configuration of domain name
ownership verification has taken effect.

2.2 Enabling HTTPS Encryption for Websites
An SSL certificate secures the communication between the website and the client
and authenticates the identity of the website. This topic walks you through how to
enable HTTPS-encrypted communication with SSL certificates from the scratch.

Figure 2-3 Certificate Usage Process

Procedure

Step 1 Buy an SSL certificate by referring to Purchasing an SSL Certificate.

Cloud Certificate Manager
Best Practices 2 Best Practices for SSL Certificate Manager

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://support.huaweicloud.com/intl/en-us/usermanual-ccm/ccm_01_0074.html

Figure 2-4 Certificate selection

Step 2 After you pay for your order, apply for the certificate. During this period, associate
the certificate with the domain name you want to protect, fill in application forms
with your details, and submit the application to the CA. For details, see Applying
for an SSL Certificate.

Step 3 After receives your application, the CA sends a domain ownership verification
email to the email address you provided in the application. When you receive this
email, verify your domain name ownership as instructed. For details, see Verifying
Domain Name Ownership.

Step 4 If you apply for an OV or EV certificate, the CA sends an organization verification
email after domain name ownership is verified. The CA validates your organization
identity by contacting you through the method you select. For more details, see
Verifying the Organization.

Step 5 The validation period varies depending on certificate types. For details, see
Certificate validation periods.

NO TE

Your cooperation with the CA is required during domain name and organization verification.
A timely response to the CA will get your certificate issued more quickly.

Table 2-2 Certificate approval periods

Certificate Approval Period

EV The CA manually reviews the information.
If the information is valid, the review takes 7 to 10 working
days.

OV The CA manually reviews the information.
If the information is valid, the review takes 3 to 5 working
days.

Cloud Certificate Manager
Best Practices 2 Best Practices for SSL Certificate Manager

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

https://support.huaweicloud.com/intl/en-us/usermanual-ccm/ccm_01_0075.html
https://support.huaweicloud.com/intl/en-us/usermanual-ccm/ccm_01_0075.html
https://support.huaweicloud.com/intl/en-us/usermanual-ccm/ccm_01_0076.html
https://support.huaweicloud.com/intl/en-us/usermanual-ccm/ccm_01_0076.html
https://support.huaweicloud.com/intl/en-us/usermanual-ccm/ccm_01_0089.html

Certificate Approval Period

DV No manual review is required.
The CA system automatically checks domain name
ownership. The certificate can be issued within several
hours if the CA validates your ownership. You need to
ensure that your DNS configurations are valid.

Step 6 After the certificate is issued, download the certificate to the local PC. For details,
see Downloading an SSL Certificate.

Step 7 The procedure for installing an SSL certificate varies depending on the web server.
The following describes how to install an SSL certificate on mainstream web
servers.
● Installing an SSL Certificate on a Tomcat Server
● Installing an SSL Certificate on an Nginx Server
● Installing an SSL Certificate on an Apache Server
● Installing an SSL Certificate on an IIS Server
● Installing an SSL Certificate on a WebLogic Server

----End

Helpful Links
● Differences Between SSL Certificate Types
● How Do I Enter a Domain Name for a Certificate When Applying for an

SSL Certificate?
● Why Does the SSL Certificate Remain in the Pending Domain Name

Verification State (Application Progress Is 40%) After Domain Name
Verification Is Complete?

● How Do I Handle the Email or Phone Call from the CA?

2.3 Deploying SSL Certificates to the Cloud in One
Click

2.3.1 Scenario
With CCM, you can quickly deploy an SSL certificate you obtain through CCM or a
third-party platform to your CDN, WAF, or ELB instance on Huawei Cloud,
converting your services from HTTP into HTTPS and improving data access
security.

Working Principles of an SSL Certificate
An SSL certificate is used in establishing encryption channels between the web
server and browser and between the web server and client. The HTTPS protocol is
enabled by configuring and applying SSL certificates to ensure the security of data
transmission over Internet.

Cloud Certificate Manager
Best Practices 2 Best Practices for SSL Certificate Manager

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

https://support.huaweicloud.com/intl/en-us/usermanual-ccm/ccm_01_0027.html
https://support.huaweicloud.com/intl/en-us/usermanual-ccm/ccm_01_0081.html
https://support.huaweicloud.com/intl/en-us/usermanual-ccm/ccm_01_0082.html
https://support.huaweicloud.com/intl/en-us/usermanual-ccm/ccm_01_0083.html
https://support.huaweicloud.com/intl/en-us/usermanual-ccm/ccm_01_0084.html
https://support.huaweicloud.com/intl/en-us/usermanual-ccm/ccm_01_0125.html
https://support.huaweicloud.com/intl/en-us/productdesc-ccm/ccm_01_0219.html
https://support.huaweicloud.com/intl/en-us/ccm_faq/ccm_01_0044.html
https://support.huaweicloud.com/intl/en-us/ccm_faq/ccm_01_0044.html
https://support.huaweicloud.com/intl/en-us/ccm_faq/ccm_01_0196.html
https://support.huaweicloud.com/intl/en-us/ccm_faq/ccm_01_0196.html
https://support.huaweicloud.com/intl/en-us/ccm_faq/ccm_01_0196.html
https://support.huaweicloud.com/intl/en-us/ccm_faq/ccm_01_0117.html

Figure 2-5 Working principles of an SSL certificate

2.3.2 Deploying an SSL Certificate to CDN in One Click

Prerequisites
● You have an SSL certificate that is in Issued or Hosted status in CCM.
● You have enabled Content Delivery Network (CDN).

Notes and Constraints

To deploy a certificate to an accelerated domain name in CDN, HTTPS must be
enabled for the domain name, or the certificate cannot be deployed for it.

Adding an Acceleration Domain Name

Before deploying an SSL certificate to CDN, you need to add the domain name
that will use the SSL certificate as a CDN acceleration domain name. For details,
see Adding a Domain Name.

(Optional) Upload Private Key

If you select Upload a CSR for CSR when applying for a certificate, you need to
upload the private key to the cloud to deploy the issued certificate to other cloud
services in one-click mode because the cloud does not have the private key of the
certificate. If you select System generated CSR for CSR during certificate
application, skip this step.

Step 1 Log in to the management console.

Step 2 Click in the upper left corner of the page and choose Security & Compliance
> Cloud Certificate Management Service. The service console is displayed.

Step 3 In the navigation pane on the left, choose SSL Certificate Manager > SSL
Certificates.

Step 4 In the Operation column of the target certificate, choose More > Upload Private
Key.

Figure 2-6 Uploading the private key

Cloud Certificate Manager
Best Practices 2 Best Practices for SSL Certificate Manager

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

https://support.huaweicloud.com/intl/en-us/qs-cdn/cdn_01_0059.html
https://auth-intl.huaweicloud.com

Step 5 In the displayed dialog box, click Upload and select a local private key file, or
enter the certificate private key information in the text box according to the
format.

Figure 2-7 Uploading the private key file

Step 6 Click Submit.

After the private key is uploaded successfully, the Deploy button of the certificate
becomes available.

Figure 2-8 Private key uploaded

----End

Deploying an SSL Certificate to CDN
Step 1 Log in to the management console.

Step 2 Click in the upper left corner of the page and choose Security & Compliance
> Cloud Certificate Management Service. The service console is displayed.

Step 3 In the navigation pane on the left, choose SSL Certificate Manager > SSL
Certificates.

Step 4 Locate the row containing the certificate you want to deploy on other cloud
product, and click Deploy in the Operation to go to the certificate deployment
details page.

Figure 2-9 Deploying a certificate

Cloud Certificate Manager
Best Practices 2 Best Practices for SSL Certificate Manager

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

https://auth-intl.huaweicloud.com

Step 5 On the displayed page, select CDN in the Deployment Details area.

Figure 2-10 Selecting CDN

Step 6 Select the domain name you want to deploy the certificate for and click Deploy or
Redeploy in the Operation column.

To deply the certificates for multiple domain names, select all the target domain
names and click Batch Update above the domain name list.

Step 7 In the displayed dialog box, confirm the information, and click Confirm.

After the deployment is successful, a message is displayed, indicating that the
deployment is successful. Go to the deployment record page to view the result.

----End

Replacing a Certificate Before It Expires

An SSL certificate issued by any CA around the world is valid for one year. You
need to update an SSL certificate in a timely manner. Once your new certificate is
issued, replace the old one with it by referring to Deploying an SSL Certificate to
CDN.

2.3.3 Deploying an SSL Certificate to WAF in One Click

Prerequisites
● You have an SSL certificate that is in Issued or Hosted status in CCM.

● You have enabled Web Application Firewall (WAF).

Adding a Domain Name to WAF

Before deploying an SSL certificate to WAF, you need to add the domain name
that will use the SSL certificate to WAF. For details, see:

● Adding a Domain Name to WAF (Cloud Mode)

● Adding a Domain Name to WAF (Dedicated Mode)

Cloud Certificate Manager
Best Practices 2 Best Practices for SSL Certificate Manager

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

https://support.huaweicloud.com/intl/en-us/usermanual-waf/waf_01_0002.html
https://support.huaweicloud.com/intl/en-us/usermanual-waf/waf_01_0250.html

NO TICE

When a domain name is added to WAF, HTTPS must be select for Client Protocol.

(Optional) Upload Private Key
If you select Upload a CSR for CSR when applying for a certificate, you need to
upload the private key to the cloud to deploy the issued certificate to other cloud
services in one-click mode because the cloud does not have the private key of the
certificate. If you select System generated CSR for CSR during certificate
application, skip this step.

Step 1 Log in to the management console.

Step 2 Click in the upper left corner of the page and choose Security & Compliance
> Cloud Certificate Management Service. The service console is displayed.

Step 3 In the navigation pane on the left, choose SSL Certificate Manager > SSL
Certificates.

Step 4 In the Operation column of the target certificate, choose More > Upload Private
Key.

Figure 2-11 Uploading the private key

Step 5 In the displayed dialog box, click Upload and select a local private key file, or
enter the certificate private key information in the text box according to the
format.

Cloud Certificate Manager
Best Practices 2 Best Practices for SSL Certificate Manager

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

https://auth-intl.huaweicloud.com

Figure 2-12 Uploading the private key file

Step 6 Click Submit.

After the private key is uploaded successfully, the Deploy button of the certificate
becomes available.

Figure 2-13 Private key uploaded

----End

Deploying an SSL Certificate to WAF

Step 1 Log in to the management console.

Step 2 Click in the upper left corner of the page and choose Security & Compliance
> Cloud Certificate Management Service. The service console is displayed.

Step 3 In the navigation pane on the left, choose SSL Certificate Manager > SSL
Certificates.

Step 4 Locate the row containing the certificate you want to deploy on other cloud
product, and click Deploy in the Operation to go to the certificate deployment
details page.

Figure 2-14 Deploying a certificate

Step 5 On the displayed page, select WAF in the Deployment Details area.

Cloud Certificate Manager
Best Practices 2 Best Practices for SSL Certificate Manager

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

https://auth-intl.huaweicloud.com

Figure 2-15 Selecting WAF

Step 6 Click on the right of the enterprise project or region name and select the
enterprise project or region to be deployed.

Step 7 Select the domain name you want to deploy the certificate for and click Redeploy
in the Operation column.

To deply the certificates for multiple domain names, select all the target domain
names and click Batch Update above the domain name list.

Step 8 In the displayed dialog box, confirm the information, and click Confirm.

When the certificate is deployed, the Deployment column for the domain name
reads Deployed.

----End

Replacing a Certificate Before It Expires

An SSL certificate issued by any CA around the world is valid for one year. You
need to update an SSL certificate in a timely manner. Once your new certificate is
issued, replace the old one with it by referring to Deploying an SSL Certificate to
WAF.

2.3.4 Deploying an SSL Certificate to ELB in One Click

Prerequisites
● You have an SSL certificate that is in Issued or Hosted status in CCM.
● You have enabled Elastic Load Balance (ELB).

Notes and Constraints
● You can use SCM to update the certificate deployed on listeners in ELB. If you

update an SSL certificate in SCM, the certificate content and private keys are
updated in ELB accordingly. ELB then updates the certificate content and
private keys on all listeners where the certificate is deployed for.

● If an ELB certificate is used for multiple domain names, ensure that the new
certificate you want to update in SCM for ELB must match with those domain

Cloud Certificate Manager
Best Practices 2 Best Practices for SSL Certificate Manager

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

names. If they do not match, the domain names in the new certificate will
overwrite the ones in the original certificate after the update.

For example, the primary domain name and additional domain name of the
new certificate are example01.com and example02.com, respectively, and the
domain names associated with the original certificate in ELB are
example01.com and example03.com. When you update the certificate in SCM,
the domain names associated with the certificate in ELB are updated to
example01.com and example02.com.

Creating a Listener and a Load Balancer

Before you start, you need to create a load balancer and listener in ELB. For
details, see:

● Creating a Load Balancer

– Creating a Shared Load Balancer.

– Creating a Dedicated Load Balancer

● Adding an HTTPS Listener

Configuring an SSL Certificate in ELB

If you deploy an SSL certificate on ELB for the first time, you need to configure the
certificate on ELB so that you can deploy the SSL certificate to ELB using SCM. For
details about creating a certificate in ELB, see Creating a Certificate.

NO TICE

When creating a certificate, ensure that the domain name you enter must be the
same as that included in the SSL certificate.

(Optional) Upload Private Key

If you select Upload a CSR for CSR when applying for a certificate, you need to
upload the private key to the cloud to deploy the issued certificate to other cloud
services in one-click mode because the cloud does not have the private key of the
certificate. If you select System generated CSR for CSR during certificate
application, skip this step.

Step 1 Log in to the management console.

Step 2 Click in the upper left corner of the page and choose Security & Compliance
> Cloud Certificate Management Service. The service console is displayed.

Step 3 In the navigation pane on the left, choose SSL Certificate Manager > SSL
Certificates.

Step 4 In the Operation column of the target certificate, choose More > Upload Private
Key.

Cloud Certificate Manager
Best Practices 2 Best Practices for SSL Certificate Manager

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

https://support.huaweicloud.com/intl/en-us/usermanual-elb/en-us_topic_0015479967.html
https://support.huaweicloud.com/intl/en-us/usermanual-elb/elb_lb_000006.html
https://support.huaweicloud.com/intl/en-us/usermanual-elb/elb_ug_jt_0009.html
https://support.huaweicloud.com/intl/en-us/usermanual-elb/elb_ug_zs_0004.html
https://auth-intl.huaweicloud.com

Figure 2-16 Uploading the private key

Step 5 In the displayed dialog box, click Upload and select a local private key file, or
enter the certificate private key information in the text box according to the
format.

Figure 2-17 Uploading the private key file

Step 6 Click Submit.

After the private key is uploaded successfully, the Deploy button of the certificate
becomes available.

Figure 2-18 Private key uploaded

----End

Deploying an SSL Certificate to ELB

Step 1 Log in to the management console.

Step 2 Click in the upper left corner of the page and choose Security & Compliance
> Cloud Certificate Management Service. The service console is displayed.

Step 3 In the navigation pane on the left, choose SSL Certificate Manager > SSL
Certificates.

Cloud Certificate Manager
Best Practices 2 Best Practices for SSL Certificate Manager

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

https://auth-intl.huaweicloud.com

Step 4 Locate the row containing the certificate you want to deploy on other cloud
product, and click Deploy in the Operation to go to the certificate deployment
details page.

Figure 2-19 Deploying a certificate

Step 5 On the displayed page, select ELB in the Deployment Details area.

Figure 2-20 Selecting ELB

Step 6 Click on the right of the Region drop-down list and select the region where
you want to deploy the certificate.

Step 7 Select the domain name you want to update the certificate for and click Update
Certificate in the Operation column.

To update the certificates for multiple domain names, select all the target domain
names and click Batch Update above the domain name list.

Step 8 In the displayed dialog box, confirm the information, and click Confirm.

If a message indicating that the certificate is updated successfully is displayed, the
SSL certificate is updated for ELB.

----End

Replacing a Certificate Before It Expires

An SSL certificate issued by any CA around the world is valid for one year. You
need to update an SSL certificate in a timely manner. Once your new certificate is
issued, replace the old one with it by referring to Deploying an SSL Certificate to
ELB.

Cloud Certificate Manager
Best Practices 2 Best Practices for SSL Certificate Manager

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

2.4 Using FunctionGraph to Automatically Obtain and
Update ECS Server Certificates

Scenario
This topic illustrates how to use FunctionGraph to automatically obtain and
update an ECS server certificate. For server information, see Table 2-3. This
approach helps you update new certificates issued upon renewals for your ECSs.
The entire process requires no manual operations.

Table 2-3 Example

Server Type Nginx

Programming
Language

Python 3.9

Notes and Constraints
● You have enabled an Elastic Cloud Server (ECS) and installed an SSL

certificate on the ECS.
● Your SSL certificate has been purchased and renewed through CCM.

Step 1: Creating an Agency
To use FunctionGraph to update the ECS server certificate, you need to grant the
SCM FullAccess and IAM ReadOnlyAccess permissions to FunctionGraph.

Step 1 Log in to the management console.

Step 2 Click in the upper left corner of the page and choose Management &
Governance > Identity and Access Management.

Step 3 In the navigation pane on the left, choose Agencies. In the upper right corner of
the Agencies page, click Create Agency.

Step 4 On the Create Agency page, set the agency information by referring to Table 2-4.

Cloud Certificate Manager
Best Practices 2 Best Practices for SSL Certificate Manager

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

https://console-intl.huaweicloud.com/?locale=en-us

Figure 2-21 Create Agency

Table 2-4 Parameters for creating an agency

Parameter Description

Agency Name User-defined agency name.

Agency Type Select Cloud service.

Cloud Service Choose FunctionGraph.

Validity Period Select Unlimited.

Description This parameter is optional. You can
customize the required information.

Step 5 Click Next.

Step 6 Select the SCM FullAccess and IAM ReadOnlyAccess permissions you want to
grant to FunctionGraph.

Figure 2-22 Selecting permissions

Step 7 Click Next to set the permission scope.

Cloud Certificate Manager
Best Practices 2 Best Practices for SSL Certificate Manager

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

Step 8 Click OK.

----End

Step 2. Create a Function from Scratch

Step 1 Log in to the management console.

Step 2 Click in the upper left corner of the page and choose Compute >
FunctionGraph.

Step 3 Click Create in the upper right corner of the Functions area.

Step 4 Create a function by referring to Table 2-5.

Figure 2-23 Creating a function from scratch

Table 2-5 Parameters for creating a function from scratch

Parameter Description

Function Type Select Event Function.

Region Select a region where you will deploy
your code.

Function Name Name of the custom function.

Agency Select the agency you created in Step
1: Creating an Agency.

Cloud Certificate Manager
Best Practices 2 Best Practices for SSL Certificate Manager

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

https://console-intl.huaweicloud.com/?locale=en-us

Parameter Description

Enterprise Project If you have enabled the enterprise
project function, select the enterprise
project to which you want to add a
function.
If you have not enabled the enterprise
project function yet, the parameter will
not be displayed. You can enable this
function by referring to Enabling the
Enterprise Project Function if
necessary.

Runtime Select a language for the function. In
this example, Python 3.9 is selected.

Step 5 Click Create. The Functions page is displayed, and an empty function is created.

----End

Step 3: Create a Timer Trigger
Create a timer trigger to trigger a function at a fixed interval.

Step 1 On the displayed page, choose Configuration > Triggers.

Step 2 Click Create Trigger and set the parameters by referring to Table 2-6.

Cloud Certificate Manager
Best Practices 2 Best Practices for SSL Certificate Manager

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

https://support.huaweicloud.com/intl/en-us/usermanual-em/pm_topic_0002.html
https://support.huaweicloud.com/intl/en-us/usermanual-em/pm_topic_0002.html

Figure 2-24 Create Trigger

Table 2-6 Parameters for setting a timer trigger

Parameter Description

Trigger Type Select Timer.

Timer Name Customize a name.

Rule Select Fixed rate and set a value to it based on
your needs.

Enable Trigger

Additional Information This parameter is optional. You can enter
anything for the trigger.

Step 3 Click OK.

----End

Step 4: Create and Configure a Function Dependency

The function code for deploying a certificate to an ECS depends on paramiko. You
need to create and configure the paramiko dependency for the function.

Cloud Certificate Manager
Best Practices 2 Best Practices for SSL Certificate Manager

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

This section uses Python 3.9 as an example to describe how to create and
configure a dependency for a function. For details about how to create a
dependency package in other languages, see How Do I Create Dependencies?

Creating a Dependency for a Python Function

Step 1 The Python version in the environment must be the same as the runtime version
of the corresponding function.

For example, Python 3.9.0 or later is recommended for Python 3.9, Python 2.7.12
or later is recommended for Python 2.7, and Python 3.6.3 or later is recommended
for Python 3.6.

Step 2 Install the paramiko dependency package for Python 3.9 and specify the local
installation path of the dependency package to /tmp/paramiko:
pip install paramiko --root /tmp/paramiko

Step 3 Switch to the /tmp/paramiko directory:
cd /tmp/paramiko/

Step 4 Go to the site-packages directory (generally, usr/lib64/python3.9/site-
packages/) and then run the following command:
zip -rq paramiko.zip *

The generated package is the required dependency package.

NO TE

To install the local wheel installation package, run the following command:
pip install piexif-1.1.0b0-py2.py3-none-any.whl --root /tmp/piexif
//Replace piexif-1.1.0b0-py2.py3-none-any.whl with the actual installation package name.

Configuring the Dependency Package

Step 5 Log in to the management console.

Step 6 Click in the upper left corner of the page and choose Compute >
FunctionGraph.

Step 7 In the navigation pane on the left, choose Functions > Dependencies.

Step 8 Click Create Dependency. In the Create Dependency pane sliding out from the
left, set details by referring to Configuring a dependency package.

Table 2-7 Configuring a dependency package

Parameter Description

Name Dependency name, which is used to identify different
packages.

Code Entry Mode Select Upload ZIP.

Upload File Select the dependency .zip file.

Runtime Select the function language. In this example, Python 3.9 is
selected.

Cloud Certificate Manager
Best Practices 2 Best Practices for SSL Certificate Manager

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

https://support.huaweicloud.com/intl/en-us/functiongraph_faq/functiongraph_03_0343.html
https://console-intl.huaweicloud.com/?locale=en-us

Parameter Description

Description Description of the dependency. This parameter is optional.

Step 9 Click OK.

Step 10 In the navigation pane on the left, choose Functions > Function List.

Step 11 Click the name of the desired function.

Step 12 On the displayed function details page, click the Code tab, click Add in the
Dependencies area.

Step 13 Select the private dependency package created in 8 and click OK.

----End

Step 5: Configure a Code Source in a Function

The following shows how to configure function code online. For more details, see
Creating a Deployment Package.

Step 1 In the navigation pane on the left, choose Functions > Function List.

Step 2 Click the name of the desired function.

Step 3 Choose Configuration > Environment Variables.

Step 4 Click Add and configure variables endpoint and region, as shown in Figure 2-25.

Figure 2-25 Setting Environment Variables

Environment variable 1:
● Key: endpoint
● Value: scm.ap-southeast-1.myhuaweicloud.com

Environment variable 2:

● Key: region
● Value: ap-southeast-1

Step 5 Click Save and click the Code tab.

Step 6 On the Code tab page, integrate the following two pieces of code and add them
to a code source file.

Cloud Certificate Manager
Best Practices 2 Best Practices for SSL Certificate Manager

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0152.html

Figure 2-26 Adding code

The following is an example of the application code for obtaining the SSL
certificate of the current account:

import json
import requests
import datetime
import time

def getCertHeaders(context):
 return {
 'Content-Type': 'application/json',
 'region': context.getUserData("region"),
 'X-Language': 'en-us',
 'X-Auth-Token': context.getToken()
 }

def isValidCert(cert):
TODO can be customized based on service scenarios. The following is only an example.
 certDomain = cert.get('domain')

Check whether the certificate is a renewal certificate used for the corresponding domain name.
 if (certDomain != 'XXXX'):
 return False

The following instance sorts the certificates that were issued yesterday and whose domain names meet
the requirements.
 currentTime = time.localtime()
 currentTimeStr = str(currentTime[0]) + ',' + str(currentTime[1]) + ',' + str(currentTime[2])

 certTime = datetime.datetime.strptime(cert.get('expire_time'), '%Y-%m-%d %H:%M:%S.%f')

Obtain the certificate issuing time.
 certTimeStr = str(certTime.year - int(cert.get('validity_period')/12)) + ',' + str(certTime.month) + ',' +
str(certTime.day - 1)
 return currentTimeStr == certTimeStr

def getCertList(context):
 preUrl = 'https://' + context.getUserData("endpoint")
 url = preUrl + '/v3/scm/certificates?
order_status=ISSUED&content=&sort_key=certUpdateTime&sort_dir=DESC&limit=&enterprise_project_id='
 certHeaders = getCertHeaders(context)

 rep = requests.get(url, headers = certHeaders)
 totalCount = json.loads(rep.text).get('total_count')
 discuss = int(totalCount/10)
 reminder = totalCount-discuss*10
 rep = []
 for i in range(discuss):
 tempUrl = url + '&offset=' + str(10*i)

Cloud Certificate Manager
Best Practices 2 Best Practices for SSL Certificate Manager

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

 tempRep = requests.get(tempUrl, headers = certHeaders)
 for cert in json.loads(tempRep.text).get('certificates'):
 if(isValidCert(cert)):
 rep.append(cert)
 if reminder > 0:
 tempUrl = url + '&offset=' + str(totalCount-reminder)
 tempRep = requests.get(tempUrl, headers = certHeaders)
 for cert in json.loads(tempRep.text).get('certificates'):
 if(isValidCert(cert)):
 rep.append(cert)
 return json.dumps(rep)

def exportCert(context, certId):
 preUrl = 'https://' + context.getUserData("endpoint")
 url = '/v3/scm/certificates/'+ certId + '/export'
 rep = requests.post(preUrl + url, headers = getCertHeaders(context))
 os.makedirs("/tmp/" + certId)
 entireCertificate = json.loads(rep.text).get('entire_certificate')
 entireCertFileName = '/tmp/' + certId + '/certificate.pem'
 certFile = open(entireCertFileName,'w')
 certFile.write(entireCertificate)
 privateKey = json.loads(rep.text).get('private_key')
 privateKeyFileName = '/tmp/' + certId + '/privateKey.key'
 keyFile = open(privateKeyFileName,'w')
 keyFile.write(privateKey)

def handler (event, context):
TODO needs to be invoked by the function based on the service background. The following example is for
reference only.
 totalRep = getCertList(context)
 certList = json.loads(totalRep)
 certIdList = []
 for cert in certList:
 exportCert(context, cert.get("id"))
 certIdList.append(cert.get("id"))
 for cert in certList:
 deploy('**.***.*', 22, 'root', '*.', '/tmp', '/tmp', certIdList)

The following is an example of the application code for deploying an SSL
certificate to an ECS (Nginx):
import os
import paramiko
import time

def isExists(path, function):
 path = path.replace("\\","/")
 try:
 function(path)
 except Exception as error:
 return False
 else:
 return True

def copy(ssh, sftp, local, remote):
 if isExists(remote, function=sftp.chdir):
 filename = os.path.basename(os.path.normpath(local))
 remote = os.path.join(remote, filename).replace("\\","/")
 if os.path.isdir(local):
 isExists(remote, function=sftp.mkdir)
 for file in os.listdir(local):
 localfile = os.path.join(local, file).replace("\\","/")
 copy(ssh=ssh, sftp=sftp, local=localfile, remote=remote)
 if os.path.isfile(local):
 try:
 ssh.exec_command("rm -rf %s"%(remote))
 sftp.put(local,remote)

Cloud Certificate Manager
Best Practices 2 Best Practices for SSL Certificate Manager

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

 except Exception as error:
 print('put:', local, "==>",remote, 'FAILED')
 else:
 print('put:', local, "==>",remote, 'success')

def deploy(ip, port, username, password, local, remote, certIdList):
 transport = paramiko.Transport((ip,port))
 transport.connect(username=username, password=password)
 ssh = paramiko.SSHClient()
 ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
 ssh._transport = transport
 ftp_client = paramiko.SFTPClient.from_transport(transport)

 for certId in certIdList:
 copy(ssh=ssh, sftp=ftp_client, local=local + '/' + certId, remote=remote)

#The prerequisite is that the certificate location has been written into the nginx.conf file.
 cmd="/usr/local/nginx/sbin/nginx -s reload"
 stdin,stdout,stderr = ssh.exec_command(cmd)
 ssh.close()

NO TE

● The preceding two pieces of code are examples. Modify them based on site
requirements. XXXX in the code indicates the domain name. Replace it with the actual
domain name.

● The following functions involved in the example code need to be edited based on your
service background. They must be placed at the end of the code source file:
def handler (event, context):
TODO needs to be invoked by the function based on the service background.

Step 7 Click Test to test the function.

For details, see Test Management.

Step 8 After the code source is added and tested, the function runs based on the
triggering rule set by the timer trigger. If a renewal certificate is issued, the
function automatically obtains the certificate and updates it to the ECS.

Step 9 On the function details page, choose Monitoring > Metrics to view the function
running status.

You can view metrics such as the Invocations, Duration, Errors, and Throttles.
For details, see Function Monitoring.

----End

Cloud Certificate Manager
Best Practices 2 Best Practices for SSL Certificate Manager

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0302.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0212.html

3 Best Practices for Private Certificate
Management

3.1 Best Practices for Private Certificate Management

3.1.1 Managing the Private Certificate Lifecycle
Table 3-1 describes operations during the private certificate lifecycle
management.

Table 3-1 Private certificate lifecycle management description

Operation Description Remarks

Applying for a
private
certificate

Private certificates are classified
into client certificates and server
certificates based on the role of an
entity in communications. Before
applying for a private certificate,
ensure that you have created a
private CA that can be used to issue
certificates.

● Private certificates are
billed by how many
certificates you apply
for. Once a private
certificate is issued, it
cannot be refunded.

● The common name of
a private certificate
can be duplicate. To
distinguish
certificates, you can
specify a unique
name for your private
certificates.

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

Operation Description Remarks

Exporting a
private
certificate

Export a private certificate
(including the private key) that has
been issued. You can select the
certificate format.

Keep the private keys of
private certificates
secure. If the private key
is disclosed, revoke and
replace the private
certificate in time.
NOTICE

If any CA certificate in the
certificate chain path is
permanently deleted, the
private certificate cannot
be exported.

Revoking a
private
certificate

You can revoke any private
certificate you no longer need for
any reason. Revoking private
certificates in a timely manner
prevents abuse of private
certificates.

Certificate abuse may
cause security problems.
NOTICE

If the parent CA does not
enable the CRL
configuration, the private
certificate revocation
status cannot be queried.
This means a revoked
private certificate can still
pass the validation.

Deleting a
private
certificate

You can delete a private certificate
anytime.

You can delete a private
certificate in any state.
NOTICE

This operation will
immediately delete all
information about the
private certificate from the
database. This operation is
irreversible. Exercise
caution when performing
this operation.

3.1.2 Private Certificate Statuses
Table 3-2 describes the private certificate statuses.

Table 3-2 Private certificate status description

Private Certificate
Status

Certificate Can Be
Exported

Certificate Quota Used

Issued Yes Yes

Revoked No Yes

Expired No Yes

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

3.1.3 Rotating Your Private Certificate
Private certificates (including private keys) are deployed on service nodes and are
frequently used for encrypted communications. To prevent private key leakage, the
validity period and rotation period of private certificates should be configured
based on your service security requirements. Private certificate rotation means
using a new private certificate to replace the old one. For example, if a private
certificate is used for an encrypted meeting that is highly confidential, the validity
period of the private certificate is usually at the hour level. If a private certificate is
deployed on a web server, the validity period is usually at the year level. Currently,
the validity period of SSL certificates issued by an international certificate
authority is basically one year.

The rotation period of a private certificate is set based on its expiration date. The
basic principle for certificate rotation is to replace the old private certificate with
the new one on the corresponding working node before the old one expires,
preventing communications interruption caused by the expiration of the private
certificate.

CA UTION

● To prevent service interruption caused by the expiration of the old private
certificate, enough time should be reserved to ensure that a private certificate
can be successfully rotated as a longer period may be required to re-rotate or
manually rotate an old private certificate once the first rotation fails due to
uncontrollable factors.

● If the replaced old private certificate still has a long validity period, revoke it to
prevent abuse.

● If the old and new private certificates have different root CAs, add the new root
CA to the root CA trust list.

3.2 Best Practices for Private CA Management

3.2.1 Designing a Private CA Hierarchy
With PCA, you can create a hierarchy of certificate authorities with up to seven
levels. The root CA can have any number of branches and have as many as six
levels of subordinate CAs (or child CAs or intermediate CAs) on each branch. A
well-designed CA hierarchy can:

● Keep the entire public key infrastructure (PKI) system more reasonable and
secure.

● Make fine-grained control over certificates a reality.
● Make the PKI system more suitable for your own business structure,

facilitating workloads migrations and expansion.

Table 3-3 describes each structure that you can create in the PCA service. You can
design the CA hierarchy to meet your business needs.

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

Table 3-3 CA hierarchies

CA
Hierarchy

Description Remarks

Single-
level CA
hierarchy

The root CA directly
issues private
certificates.

This structure does not comply with
security specifications and is often used
in non-production environments, such
as environments for development and
testing when a full chain of trust is not
required.
The root CA is frequently used, and the
risk of key leakage is high. Once the key
of the root CA is leaked, all certificates
issued by the root CA must be discarded,
and all terminals must quickly remove
the leaked root CA from the trusted root
certificate list, which is time- and labor-
consuming. The worst of this is that
services are severely interrupted. Figure
3-1 shows a single-level CA hierarchy.

Two-level
CA
hierarchy

The root CA issues
level-2 subordinate
CAs, and the
subordinate CAs (with
the path length set to
0) issue private
certificates.

This structure is a common CA hierarchy.
The CA hierarchy has only two levels.
The certificate chain uses less resources
during transmission and certificate
validation compared with other complex
hierarchies. The root CA is isolated from
the private certificates, and subordinate
CAs are used to issue certificates. If a
subordinate CA is compromised, you
only need to revoke and replace all
certificates below the subordinate CA.
There is no impact on other subordinate
CAs. The terminal does not need to
remove the root CA. This thereby
narrow the impact scope of leakage
events. Figure 3-2 shows a two-level CA
hierarchy.

Three-level
CA
hierarchy

The root CA issues
level-2 subordinate
CAs, and the level-2
subordinate CAs (with
the path length set to
1) issue level-3
subordinate CAs. The
level-3 subordinate CAs
(with the path length
set to 0) issue private
certificates.

This structure is also a common CA
hierarchy. It is suitable for organizations
with complex structures.
The three-level structure enables fine-
grained control over certificate
distribution and management. The PKI
system has more levels to separate the
root CA and private certificates, which
can better protect the confidentiality of
root CA keys. Figure 3-3 shows a three-
level CA hierarchy.

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

CA
Hierarchy

Description Remarks

CA
hierarchies
with four
to seven
levels

The root CA issues
level-2 subordinate CAs
(path length range: 2
to 5). Level-2 CAs issue
level-3 subordinate CAs
(path length range: 1
to 4), and level-3 CAs
issue level-4
subordinate CAs (path
length range: 0 to 3).
The bottom level
subordinate CAs are
responsible for issuing
private certificates.

This structure is seldom used.
Although the CA hierarchy is very fine-
grained, it has too many levels between
the root CA and the private certificates.
This leads to a large certificate chain
file, which uses heavy network
transmission overhead and takes long
time for certificate validation. Figure
3-4 shows the CA hierarchies with four
to seven levels.

NO TE

A path length determines how many levels of subordinate CAs the current CA can issue. It
is used to control the certificate chain length.

Figure 3-1 Single-level CA hierarchy

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

Figure 3-2 Two-level CA hierarchy

Figure 3-3 Three-level CA hierarchy

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

Figure 3-4 Four- to seven-level CA hierarchies

3.2.2 Private CA Statuses
PCA manages the private CA lifecycle by status. Figure 3-5 shows how statuses
are determined for private CAs. A private CA in different statuses has different
functions, as described in Table 3-4.

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

Figure 3-5 CA lifecycle

Table 3-4 Functions and statuses of private CAs

Status Issuing
a
Certific
ate

Revoki
ng a
Certific
ate

Exporti
ng a
Certific
ate

Importi
ng a
Certific
ate

Exporti
ng a
CSR

CA
Quota
Used

Billed

Pending
activati
on

No No No Yes Yes Yes No

Activate
d

Yes Yes Yes No No Yes Yes

Disable
d

No Yes Yes No No Yes Yes

Pending
deletion

No No No No No Yes No

Expired No No Yes No No Yes Yes

Revoke
d

No No No No No Yes No

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

CA UTION

● Only subordinate CAs can be in the Pending activation or Revoked status.
Subordinate CAs in the Pending activation status are not billed. A root CA will
never be in the Revoked status as it is a self-signed certificate.

● If you cancel the deletion of a private CA in the Pending deletion status, it will
be billed for the actual pending deletion period.

● Expired private CAs still use the quota of private CAs so they will be billed until
they are completely deleted. If you no longer use a private CA, delete it in a
timely manner to avoid money waste.

3.2.3 Managing the Private CA Lifecycle

Creating a CA

Private CAs are classified into root CAs and subordinate CAs. You can specify the
type of the CA you want to create. The root CA is directly created from the digital
signature certificate. A subordinate CA subordinates to its parent CA. Before
creating a subordinate CA, create its parent CA. With PCA, you can create:

● A root CA. After a root CA is created, it is in the Activated status by default. A
root CA. The key of a root CA is used only for digital signature, issuing
certificates, and signing certificate revocation lists (CRLs), which cannot be
customized. It means a root CA can be used only to issue certificates, revoke
certificates, and sign CRLs.

● A subordinate CA and activate it. In this manner, after a subordinate CA is
created, it is in the Activated status. By default, the key usage of a
subordinate CA is the same as that of the root CA, but you can customize the
key usage of a subordinate CA.

● A subordinate CA but do not activate it. After a subordinate CA is created, it is
in the Pending activation status. A subordinate CA in this state is not ready
for any use until it is activated, and you can delete it directly.

NO TE

The common name of a private CA can be duplicate. Identifiers are recommended for you
to distinguish CAs, for example, ROOT CA G0 and ROOT CA G1.

Activating a CA

A subordinate CA in the Pending activation status cannot be used until you
activate it. Once a subordinate CA is activated, the billing starts, and there is no
way to let it go back to the Pending activation status.

Disabling a CA

After you disable a private CA, it cannot issue certificates, but it can still revoke
certificates and sign CRLs. Only activated private CAs can be disabled. After you
disable a private CA, its status changes to Disabled.

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

Generally, if a CA is about to expire, it is disabled to ensure that new certificates
are issued by a new CA. The old CA can still revoke certificates it issued. Old
certificates can still work before they are replaced by the new ones.

Enabling a CA

You can enable a Disabledprivate CA and use it to issue certificates. After you
enable a Disabled private CA, its status changes to Activated.

Deleting a CA

You can delete a private CA. To prevent misoperations, the PCA service offers
different policies for you to respond to the deletion of CAs in different statuses.

● Disabled and Expired: Only scheduled deletion is allowed. You can schedule a
delay of 7 to 30 days for actual deletion of a CA. During the scheduled
deletion period, the CA is in the Pending deletion status. If a CA is in the
Pending deletion status, you can cancel the deletion to restore the certificate
to the Disabled or Expired status. Once the scheduled deletion time is
triggered, the CA is deleted as planned and cannot be restored.

● Pending activation or Revoked: CAs in these statuses can only be deleted
immediately. Once a CA is deleted, it is deleted immediately and cannot be
restored.

● Activated: An activated CA cannot be directly deleted. To delete it, disable it
first.

CA UTION

After a private CA is deleted permanently, all certificates under it cannot be
revoked, all private certificates issued by it or its subordinate CAs cannot be
exported, and the CRL cannot be updated. Exercise caution when performing this
operation.
● Before deleting a private CA, check whether the private CA is still in use and

whether your PKI system will be unavailable after the deletion.
● Before deleting a private CA, if the private CA is no longer used, revoke all its

certificates that have not expired and remove them from the trust list of all
terminals. (If the private CA is a subordinate CA, revoke it and then delete it.)

Canceling Deletion of A Private CA

Restore the private CA in the Pending deletion status to the state before the
deletion.

CA UTION

If you cancel a scheduled deletion, the pending deletion period of the private CA
will still be billed. Exercise caution when performing this operation.

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

Revoking a Private CA
You can revoke a subordinate CA that is no longer used or whose key material has
been leaked. A revoked subordinate CA is useless and cannot be restored. If the
CRL configuration is enabled for the parent CA, you can query the revocation
information in the CRL of the parent CA.

CA UTION

● Revoking a CA is a risky operation. Exercise caution when performing this
operation.

● During the validation, the certificate revocation list (CRL) is queried to check
whether the certificate is revoked. Otherwise, a revoked certificate may be used
during communications, which incurs security risks.

● If a private CA is revoked, all certificates issued by it or its child CAs are put into
the CRL and no longer trusted. Any validation of certificate chains containing
the revoked private CA fails.

Procedure for Handling CA Expiration
When a private CA expires, the private CA status will be changed to Expired.

3.2.4 Managing a CRL
The PCA service has the following restrictions on certificate revocation list (CRL)
management:

● The CRL is released only when the CRL configuration is enabled during the
creation of a private CA.

NO TICE

If the parent CA does not enable CRL configuration, revoked certificates will
not be put into a CRL. This means a revoked certificate can still pass
certificate chain validation, which incurs security risks. If you expect to revoke
certificates, enable the CRL configuration.

● CRLs can be released only to the OBS bucket authorized by you. Customizing
other storage paths is not allowed.

● After CRL configuration is enabled, the access policy of a signed CRL depends
on the access policies you configure for the OBS bucket that storing the CRL.
You can customize the access policy for the authorized bucket.

● Once a certificate is revoked, it cannot be restored.
● Revoked certificates are not trusted as their information is written into the

CRL.
● After a certificate is revoked, the PCA service writes the certificate information

into the CRL (if the CRL is enabled by the parent CA) within 30 minutes and
updates the CRL on the OBS bucket. If the CRL fails to be released, the system
attempts to generate the CRL again 15 minutes later.

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

● A scheduled task for releasing new CRLs will fail to be executed in any of the
following cases: The private CA has been deleted; the private CA has expired;
the OBS bucket has been deleted; or the authorization for the OBS bucket has
been canceled.

● If the private CA does not revoke any sub-certificate within the validity period
of the CRL, a new CRL is generated only after the validity period expires
(which may be delayed for about 30 minutes). The validity period of a CRL
can be 7 to 30 days.

● Appropriate revocation reasons can make the revocation information in the
CRL more accurate.
The default revocation reason in the PCA service is in the UNSPECIFIED field.
Table 3-5 describes the revocation reasons you can select.

Table 3-5 Revocation reasons and meaning

Reason for Revocation Reason Code in RFC
5280

Description

UNSPECIFIED 0 Default value. No
reason is specified for
revocation.

KEY_COMPROMISE 1 The certificate key
material has been
leaked.

CERTIFICATE_AUTHORI
TY_COMPROMISE

2 Key materials of the CA
have been leaked in
the certificate chain.

AFFILIATION_CHANGE
D

3 The subject or other
information in the
certificate has been
changed.

SUPERSEDED 4 The certificate has been
replaced.

CESSATION_OF_OPERA
TION

5 The entity in the
certificate or certificate
chain has ceased to
operate.

CERTIFICATE_HOLD 6 The certificate should
not be considered valid
currently and may take
effect in the future.

PRIVILEGE_WITHDRAW
N

9 The certificate no
longer has the right to
declare its listed
attributes.

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

Reason for Revocation Reason Code in RFC
5280

Description

ATTRIBUTE_AUTHORIT
Y_COMPROMISE

10 The authority that
warrants the attributes
of the certificate may
have been
compromised.

NO TE

The naming of revocation reasons in the PCA service is different from that in
international standards. You can use the revocation reason code to query the
description of revocation reasons in RFC 5280.

3.2.5 Rotating a Private CA
● Private CA rotation is a process of replacing a CA that is about to expire with

a new one.
● The administrator of a private CA must set a proper validity period for the

private CA.
If the validity period is too long, the risk of key material leakage increases. If
the validity period is too short, the private CA is frequently rotated, increasing
the service overhead.

● To ensure smooth service switchover, plan the rotation scheme of private CAs.

Procedure

Step 1 Create a CA, disable the old CA, and do not use the old CA to issue certificates.
Use the new CA to issue new certificates, replace the certificates issued by the old
CA with the new certificates, and deploy the certificates on the corresponding
service nodes.

NO TICE

● Before the old CA is replaced, the service system must trust both the new and
old CAs.

● If a subordinate CA is to be replaced, the service node can automatically trust
both the new and old CAs as long as the new and old subordinate CAs have
the same root CA.

● If the root CA is to be replaced, put the new root CA in the trusted root
certificate list of the service node before replacing the old one to ensure that
the newly issued certificate is trusted.

Step 2 After the new certificate is in place, revoke and delete the old certificate, including
the old CA.

----End

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

https://datatracker.ietf.org/doc/html/rfc5280#section-5.3.1

NO TE

● A proper periodic private CA rotation scheme can ensure that certificates are
continuously updated and prevent private keys from being cracked. An emergency
private CA rotation scheme can prevent service loss caused by emergencies, such as
private key leaks and CAs that become untrusted.

● The new CA should have some identifiable version tags, such as ROOT CA G0-----
>ROOT CA G1, added to the subject name so that the new and old CAs can be quickly
identified during private CA rotation.

3.3 Best Practices of PCA Code Examples

3.3.1 Prerequisites
Prepare basic authentication information.

● ACCESS_KEY: access key of the Huawei Cloud account
● SECRET_ACCESS_KEY: secret access key of the Huawei Cloud account
● DOMAIN_ID: Huawei Cloud account ID. For details, see Basic Concepts.
● CCM_ENDPOINT: CCM endpoints (PCA is included in CCM). For details, see

Regions and Endpoints.

NO TE

● Huawei Cloud provides unified SDKs. You can add dependencies or download SDKs to
call Huawei Cloud APIs to access Huawei Cloud applications, resources, and data.

● For details about the unified SDKs for the PCA service, see SDK Center.
● For details about how to use unified SDKs, see Cloud Java Software Development Kits

(Java SDK).

3.3.2 Example Code for Managing Private CAs

3.3.2.1 Creating a CA
A maximum of 1,000 CAs can be created for each user.

For details about the parameters for creating a private CA, see Parameters for
Creating a CA.

import com.huaweicloud.sdk.ccm.v1.CcmClient;
import com.huaweicloud.sdk.ccm.v1.model.CreateCertificateAuthorityRequest;
import com.huaweicloud.sdk.ccm.v1.model.CreateCertificateAuthorityRequestBody;
import com.huaweicloud.sdk.ccm.v1.model.CreateCertificateAuthorityResponse;
import com.huaweicloud.sdk.ccm.v1.model.CrlConfiguration;
import com.huaweicloud.sdk.ccm.v1.model.DistinguishedName;
import com.huaweicloud.sdk.ccm.v1.model.Validity;
import com.huaweicloud.sdk.core.auth.GlobalCredentials;

/**
* Create a CA.
 */
public class CreateCertificateAuthorityExample {
 /**
 * Basic authentication information:
 * - ACCESS_KEY: access key of the Huawei Cloud account
 * - SECRET_ACCESS_KEY: secret access key of the Huawei Cloud account

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

https://support.huaweicloud.com/intl/en-us/productdesc-iam/iam_01_0023.html
https://support.huaweicloud.com/intl/en-us/api-ccm/ccm_02_0004.html
https://sdkcenter.developer.intl.huaweicloud.com/?product=ccm
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/blob/master/README_CN.md
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/blob/master/README_CN.md
https://support.huaweicloud.com/intl/en-us/api-ccm/CreateCertificateAuthority.html
https://support.huaweicloud.com/intl/en-us/api-ccm/CreateCertificateAuthority.html

 * - DOMAIN_ID: Huawei Cloud account ID.
 * - CCM_ENDPOINT: Endpoint address for accessing Huawei Cloud CCM (PCA is included in CCM).
......*Hard-coded or plaintext AK and SK are risky. For security, encrypt your AK and SK and store them in the
configuration file or environment variables.
 * In this example, the AK and SK are stored in environment variables for identity authentication. Before
running this example, configure environment variables HUAWEICLOUD_SDK_AK and
HUAWEICLOUD_SDK_SK.
 */
 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
 private static final String DOMAIN_ID = "<DomainID>";
 private static final String CCM_ENDPOINT = "<CcmEndpoint>";

 public static void main(String[] args) {
 // 1. Prepare the credentials for accessing Huawei Cloud. PCA is a global service.
 final GlobalCredentials auth = new GlobalCredentials()
 .withAk(ACCESS_KEY)
 .withSk(SECRET_ACCESS_KEY)
 .withDomainId(DOMAIN_ID);

 // 2. Initialize the SDK and transfer the credentials and endpoint address of CCM.
 final CcmClient ccmClient = CcmClient.newBuilder()
 .withCredential(auth)
 .withEndpoint(CCM_ENDPOINT).build();

 // 3. Make request parameters.
 // (1) Type of the CA certificate you want to create. ROOT for root CAs and SUBORDINATE for
subordinate CAs
 String CAType = "ROOT";
 // (2) CA key algorithm
 String keyAlgorithm = "RSA2048";
 // Signature hash algorithm
 String signatureAlgorithm = "SHA512";

 /*
 * (4) Determining CA validity period
 * - type: time type. The options are YEAR, MONTH, DAY, and HOUR.
 * - value: corresponding value.
 */
 Validity validity = new Validity();
 validity.setType("YEAR");
 validity.setValue(20);

 /*
 * (5) Define the unique identifier of the CA.
 * - organization: organization name.
 * - organizationalUnit: department name.
 * - country: abbreviation of a country. The value can contain only two characters, for example, US for
the United States.
 * - state: province or city name.
 * - locality: city name.
 * - commonName: CA name (CN)
 */
 DistinguishedName subjectInfo = new DistinguishedName();
 subjectInfo.setOrganization("your organization");
 subjectInfo.setOrganizationalUnit("your organizational unit");
 subjectInfo.setCountry("CN");
 subjectInfo.setState("your state");
 subjectInfo.setLocality("your locality");
 subjectInfo.setCommonName("your CA name");

 /*
 * (6) CRL configuration information
 * - enabled: whether to enable the CRL configuration.
 * - obsBucketName: OBS bucket name, which is used to release the CRLs. OBS buckets must be
authorized.
 * - crlName: name of the CRL file. If this parameter is not specified, the CA ID is used as the file name
by default.
 * - validDays: CRL update period.

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

 */
 CrlConfiguration crlConfiguration = new CrlConfiguration();
 crlConfiguration.setEnabled(false);
 crlConfiguration.setObsBucketName("your OBS buck name");
 crlConfiguration.setCrlName("your CRL file name");
 crlConfiguration.setValidDays(7);

 // (7) Assign values to the attributes of the request body.
 CreateCertificateAuthorityRequestBody requestBody = new CreateCertificateAuthorityRequestBody();
 requestBody.setType(CAType);
 requestBody.setKeyAlgorithm(keyAlgorithm);
 requestBody.setSignatureAlgorithm(signatureAlgorithm);
 requestBody.setValidity(validity);
 requestBody.setDistinguishedName(subjectInfo);
 requestBody.setCrlConfiguration(crlConfiguration);

 // 4. Construct a request body.
 CreateCertificateAuthorityRequest request = new
CreateCertificateAuthorityRequest().withBody(requestBody);

 // 5. Start to send the request.
 CreateCertificateAuthorityResponse response;
 try {
 response = ccmClient.createCertificateAuthority(request);
 } catch (Exception e) {
 throw new RuntimeException(e.getMessage());
 }

 // 6. Obtain the ID of the CA that is successfully created.
 String caId = response.getCaId();

 System.out.println(caId);
 }

}

3.3.2.2 Deleting a CA
Only private CAs in the Pending activation, Revoked, Disabled, or Expired state
can be deleted.

Private CAs in the Pending activation or Revoked state can be directly deleted.
Private CAs in the Disabled or Expired state can only be deleted by scheduled
deletion tasks.

For details, see Parameters for Deleting a CA.
import com.huaweicloud.sdk.ccm.v1.CcmClient;
import com.huaweicloud.sdk.ccm.v1.model.DeleteCertificateAuthorityRequest;
import com.huaweicloud.sdk.ccm.v1.model.DeleteCertificateAuthorityResponse;
import com.huaweicloud.sdk.core.auth.GlobalCredentials;

/**
 * Delete a CA.
 * (1) Only private CAs in the Pending activation, Revoked, Disabled, or Expired state can be deleted.
 * (2) Private CAs in the PENDING or REVOKED state will be directly deleted. Private CAs in the DISABLED
or EXPIRED state can only be deleted by scheduled deletion tasks.
 */
public class DeleteCertificateAuthorityExample {
 /**
 * Basic authentication information:
 * - ACCESS_KEY: access key of the Huawei Cloud account
 * - SECRET_ACCESS_KEY: secret access key of the Huawei Cloud account
 * - DOMAIN_ID: Huawei Cloud account ID.
 * - CCM_ENDPOINT: Endpoint address for accessing Huawei Cloud CCM (PCA is included in CCM).
......*Hard-coded or plaintext AK and SK are risky. For security, encrypt your AK and SK and store them in the
configuration file or environment variables.
 * In this example, the AK and SK are stored in environment variables for identity authentication. Before

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

https://support.huaweicloud.com/intl/en-us/api-ccm/DeleteCertificateAuthority.html

running this example, configure environment variables HUAWEICLOUD_SDK_AK and
HUAWEICLOUD_SDK_SK.
 */
 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
 private static final String DOMAIN_ID = "<DomainID>";
 private static final String CCM_ENDPOINT = "<CcmEndpoint>";

 public static void main(String[] args) {
 // 1. Prepare the credentials for accessing Huawei Cloud. PCA is a global service.
 final GlobalCredentials auth = new GlobalCredentials()
 .withAk(ACCESS_KEY)
 .withSk(SECRET_ACCESS_KEY)
 .withDomainId(DOMAIN_ID);

 // 2. Initialize the SDK and transfer the credentials and endpoint address of CCM.
 final CcmClient ccmClient = CcmClient.newBuilder()
 .withCredential(auth)
 .withEndpoint(CCM_ENDPOINT).build();

 // 3. Make request parameters.
 // (1) ID of the CA to be disabled
 String caId = "3a02c7f6-d8f5-497e-9f60-18dfd3eeb4e6";
 // (2) Time for delaying the deletion. Note: This parameter is a string.
 String pendingDays = "7";

 // 4. Construct a request body.
 DeleteCertificateAuthorityRequest request = new DeleteCertificateAuthorityRequest()
 .withCaId(caId)
 .withPendingDays(pendingDays);

 // 5. Start to send the request.
 DeleteCertificateAuthorityResponse response;
 try {
 response = ccmClient.deleteCertificateAuthority(request);
 } catch (Exception e) {
 throw new RuntimeException(e.getMessage());
 }

 // 6. Obtain the response message. After the deletion succeeds, no response is returned and the
returned status code is 204.
 System.out.println(response.getHttpStatusCode());
 }

}

3.3.2.3 Disabling a CA

A disabled CA cannot be used to issue certificates, but can be used to revoke
certificates and issue CRLs.

For details, see Parameters for Disabling a CA.

import com.huaweicloud.sdk.ccm.v1.CcmClient;
import com.huaweicloud.sdk.ccm.v1.model.DisableCertificateAuthorityRequest;
import com.huaweicloud.sdk.ccm.v1.model.DisableCertificateAuthorityResponse;
import com.huaweicloud.sdk.core.auth.GlobalCredentials;

/**
 * A disabled CA cannot be used to issue certificates, but can be used to revoke certificates and issue CRLs.
 */
public class DisableCertificateAuthorityExample {
 /**
 * Basic authentication information:
 * - ACCESS_KEY: access key of the Huawei Cloud account
 * - SECRET_ACCESS_KEY: secret access key of the Huawei Cloud account
 * - DOMAIN_ID: Huawei Cloud account ID.
 * - CCM_ENDPOINT: Endpoint address for accessing Huawei Cloud CCM (PCA is included in CCM).

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

https://support.huaweicloud.com/intl/en-us/api-ccm/DisableCertificateAuthority.html

......*Hard-coded or plaintext AK and SK are risky. For security, encrypt your AK and SK and store them in the
configuration file or environment variables.
 * In this example, the AK and SK are stored in environment variables for identity authentication. Before
running this example, configure environment variables HUAWEICLOUD_SDK_AK and
HUAWEICLOUD_SDK_SK.
 */
 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
 private static final String DOMAIN_ID = "<DomainID>";
 private static final String CCM_ENDPOINT = "<CcmEndpoint>";

 public static void main(String[] args) {
 // 1. Prepare the credentials for accessing Huawei Cloud. PCA is a global service.
 final GlobalCredentials auth = new GlobalCredentials()
 .withAk(ACCESS_KEY)
 .withSk(SECRET_ACCESS_KEY)
 .withDomainId(DOMAIN_ID);

 // 2. Initialize the SDK and transfer the credentials and endpoint address of CCM.
 final CcmClient ccmClient = CcmClient.newBuilder()
 .withCredential(auth)
 .withEndpoint(CCM_ENDPOINT).build();

 // 3. Make request parameters.
 //ID of the CA certificate to be disabled
 String caId = "3a02c7f6-d8f5-497e-9f60-18dfd3eeb4e6";

 // 4. Construct a request body.
 DisableCertificateAuthorityRequest request = new DisableCertificateAuthorityRequest()
 .withCaId(caId);

 // 5. Start to send the request.
 DisableCertificateAuthorityResponse response;
 try {
 response = ccmClient.disableCertificateAuthority(request);
 } catch (Exception e) {
 throw new RuntimeException(e.getMessage());
 }

 // 6. Obtain the response message. After the CA is disabled, no response is returned and the returned
status code is 204.
 System.out.println(response.getHttpStatusCode());
 }

}

3.3.2.4 Enabling a CA

A private CA in the Disabled state can be enabled. After it is enabled, its status
changes to Activated.

For details, see Parameters for Enabling a CA.

import com.huaweicloud.sdk.ccm.v1.CcmClient;
import com.huaweicloud.sdk.ccm.v1.model.EnableCertificateAuthorityRequest;
import com.huaweicloud.sdk.ccm.v1.model.EnableCertificateAuthorityResponse;
import com.huaweicloud.sdk.core.auth.GlobalCredentials;

/**
 * Enable the CA and change the CA status from Disabled to Activated. */
public class EnableCertificateAuthorityExample {
 /**
 * Basic authentication information:
 * - ACCESS_KEY: access key of the Huawei Cloud account
 * - SECRET_ACCESS_KEY: secret access key of the Huawei Cloud account
 * - DOMAIN_ID: Huawei Cloud account ID.
 * - CCM_ENDPOINT: Endpoint address for accessing Huawei Cloud CCM (PCA is included in CCM).
......*Hard-coded or plaintext AK and SK are risky. For security, encrypt your AK and SK and store them in the

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

https://support.huaweicloud.com/intl/en-us/api-ccm/EnableCertificateAuthority.html

configuration file or environment variables.
 * In this example, the AK and SK are stored in environment variables for identity authentication. Before
running this example, configure environment variables HUAWEICLOUD_SDK_AK and
HUAWEICLOUD_SDK_SK.
 */
 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY =System.getenv("HUAWEICLOUD_SDK_SK");
 private static final String DOMAIN_ID = "<DomainID>";
 private static final String CCM_ENDPOINT = "<CcmEndpoint>";

 public static void main(String[] args) {
 // 1. Prepare the credentials for accessing Huawei Cloud. PCA is a global service.
 final GlobalCredentials auth = new GlobalCredentials()
 .withAk(ACCESS_KEY)
 .withSk(SECRET_ACCESS_KEY)
 .withDomainId(DOMAIN_ID);

 // 2. Initialize the SDK and transfer the credentials and endpoint address of CCM.
 final CcmClient ccmClient = CcmClient.newBuilder()
 .withCredential(auth)
 .withEndpoint(CCM_ENDPOINT).build();

 // 3. Make request parameters.
 // ID of the CA you want to enable.
 String caId = "3a02c7f6-d8f5-497e-9f60-18dfd3eeb4e6";

 // 4. Construct a request body.
 EnableCertificateAuthorityRequest request = new EnableCertificateAuthorityRequest()
 .withCaId(caId);

 // 5. Start to send the request.
 EnableCertificateAuthorityResponse response;
 try {
 response = ccmClient.enableCertificateAuthority(request);
 } catch (Exception e) {
 throw new RuntimeException(e.getMessage());
 }

 // 6. Obtain the response message. After the CA is enabled, no response is returned and the returned
status code is 204.
 System.out.println(response.getHttpStatusCode());
 }

}

3.3.2.5 Exporting a CA
You can export a private CA certificate, including the certificate body and
certificate chain.

NO TE

A root certificate is self-signed, and the certificate chain is null.

For details, see Parameters for Exporting a CA.

import com.huaweicloud.sdk.ccm.v1.CcmClient;
import com.huaweicloud.sdk.ccm.v1.model.ExportCertificateAuthorityCertificateRequest;
import com.huaweicloud.sdk.ccm.v1.model.ExportCertificateAuthorityCertificateResponse;
import com.huaweicloud.sdk.core.auth.GlobalCredentials;

/**
 * Export a CA certificate, including the certificate body and certificate chain. A root CA certificate is self-
signed, so the certificate chain is null.
 */
public class ExportCertificateAuthorityExample {
 /**
 * Basic authentication information:

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

https://support.huaweicloud.com/intl/en-us/api-ccm/ExportCertificateAuthorityCertificate.html

 * - ACCESS_KEY: access key of the Huawei Cloud account
 * - SECRET_ACCESS_KEY: secret access key of the Huawei Cloud account
 * - DOMAIN_ID: Huawei Cloud account ID.
 * - CCM_ENDPOINT: Endpoint address for accessing Huawei Cloud CCM (PCA is included in CCM).
......*Hard-coded or plaintext AK and SK are risky. For security, encrypt your AK and SK and store them in the
configuration file or environment variables.
 * In this example, the AK and SK are stored in environment variables for identity authentication. Before
running this example, configure environment variables HUAWEICLOUD_SDK_AK and
HUAWEICLOUD_SDK_SK.
 */
 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
 private static final String DOMAIN_ID = "<DomainID>";
 private static final String CCM_ENDPOINT = "<CcmEndpoint>";

 public static void main(String[] args) {
 // 1. Prepare the credentials for accessing Huawei Cloud. PCA is a global service.
 final GlobalCredentials auth = new GlobalCredentials()
 .withAk(ACCESS_KEY)
 .withSk(SECRET_ACCESS_KEY)
 .withDomainId(DOMAIN_ID);

 // 2. Initialize the SDK and transfer the credentials and endpoint address of CCM.
 final CcmClient ccmClient = CcmClient.newBuilder()
 .withCredential(auth)
 .withEndpoint(CCM_ENDPOINT).build();

 // 3. Make request parameters.
 //ID of the CA certificate you want to export.
 String caId = "3a02c7f6-d8f5-497e-9f60-18dfd3eeb4e6";

 // 4. Construct a request body.
 ExportCertificateAuthorityCertificateRequest request = new
ExportCertificateAuthorityCertificateRequest()
 .withCaId(caId);

 // 5. Start to send the request.
 ExportCertificateAuthorityCertificateResponse response;
 try {
 response = ccmClient.exportCertificateAuthorityCertificate(request);
 } catch (Exception e) {
 throw new RuntimeException(e.getMessage());
 }

 // 6. Obtain the response message.
 // (1) Obtain the certificate body in PEM format.
 String caCertificate = response.getCertificate();
 // (2) Obtain the certificate chain in PEM format.
 String caCertificateChain = response.getCertificateChain();

 System.out.println(response);
 }

}

3.3.2.6 Canceling Deletion of a CA

You can cancel the deletion of a private CA. The CA status will change from
Pending deletion to the status it is in before the deletion.

For details, see Parameters for Canceling the Deletion of a CA.

import com.huaweicloud.sdk.ccm.v1.CcmClient;
import com.huaweicloud.sdk.ccm.v1.model.RestoreCertificateAuthorityRequest;
import com.huaweicloud.sdk.ccm.v1.model.RestoreCertificateAuthorityResponse;
import com.huaweicloud.sdk.core.auth.GlobalCredentials;

/**

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

https://support.huaweicloud.com/intl/en-us/api-ccm/RestoreCertificateAuthority.html

 * Cancel the scheduled deletion of a CA to change the CA status from Pending deletion to Disabled.
 */
public class RestoreCertificateAuthorityExample {
 /**
 * Basic authentication information:
 * - ACCESS_KEY: access key of the Huawei Cloud account
 * - SECRET_ACCESS_KEY: secret access key of the Huawei Cloud account
 * - DOMAIN_ID: Huawei Cloud account ID.
 * - CCM_ENDPOINT: Endpoint address for accessing Huawei Cloud CCM (PCA is included in CCM).
......*Hard-coded or plaintext AK and SK are risky. For security, encrypt your AK and SK and store them in the
configuration file or environment variables.
 * In this example, the AK and SK are stored in environment variables for identity authentication. Before
running this example, configure environment variables HUAWEICLOUD_SDK_AK and
HUAWEICLOUD_SDK_SK.
 */
 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
 private static final String DOMAIN_ID = "<DomainID>";
 private static final String CCM_ENDPOINT = "<CcmEndpoint>";

 public static void main(String[] args) {
 // 1. Prepare the credentials for accessing Huawei Cloud. PCA is a global service.
 final GlobalCredentials auth = new GlobalCredentials()
 .withAk(ACCESS_KEY)
 .withSk(SECRET_ACCESS_KEY)
 .withDomainId(DOMAIN_ID);

 // 2. Initialize the SDK and transfer the credentials and endpoint address of CCM.
 final CcmClient ccmClient = CcmClient.newBuilder()
 .withCredential(auth)
 .withEndpoint(CCM_ENDPOINT).build();

 // 3. Make request parameters.
 // ID of the CA certificate you want to operate.
 String caId = "3a02c7f6-d8f5-497e-9f60-18dfd3eeb4e6";

 // 4. Construct a request body.
 RestoreCertificateAuthorityRequest request = new RestoreCertificateAuthorityRequest()
 .withCaId(caId);

 // 5. Start to send the request.
 RestoreCertificateAuthorityResponse response;
 try {
 response = ccmClient.restoreCertificateAuthority(request);
 } catch (Exception e) {
 throw new RuntimeException(e.getMessage());
 }

 // 6. Obtain the response message. After the schedule deletion is cancelled, no response is returned
and the returned status code is 204.
 System.out.println(response.getHttpStatusCode());
 }

}

3.3.2.7 Obtaining CA Details

Obtain private CA details, including the private CA name, department name, type,
and status.

For details, see Parameters for Obtaining Private CA Details.

import com.huaweicloud.sdk.ccm.v1.CcmClient;
import com.huaweicloud.sdk.ccm.v1.model.ShowCertificateAuthorityRequest;
import com.huaweicloud.sdk.ccm.v1.model.ShowCertificateAuthorityResponse;
import com.huaweicloud.sdk.core.auth.GlobalCredentials;

/**

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

https://support.huaweicloud.com/intl/en-us/api-ccm/ShowCertificateAuthority.html

 * Obtain details of a CA.
 */
public class ShowCertificateAuthorityExample {
 /**
 * Basic authentication information:
 * - ACCESS_KEY: access key of the Huawei Cloud account
 * - SECRET_ACCESS_KEY: secret access key of the Huawei Cloud account
 * - DOMAIN_ID: Huawei Cloud account ID.
 * - CCM_ENDPOINT: Endpoint address for accessing Huawei Cloud CCM (PCA is included in CCM).
......*Hard-coded or plaintext AK and SK are risky. For security, encrypt your AK and SK and store them in the
configuration file or environment variables.
 * In this example, the AK and SK are stored in environment variables for identity authentication. Before
running this example, configure environment variables HUAWEICLOUD_SDK_AK and
HUAWEICLOUD_SDK_SK.
 */
 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
 private static final String DOMAIN_ID = "<DomainID>";
 private static final String CCM_ENDPOINT = "<CcmEndpoint>";

 public static void main(String[] args) {
 // 1. Prepare the credentials for accessing Huawei Cloud. PCA is a global service.
 final GlobalCredentials auth = new GlobalCredentials()
 .withAk(ACCESS_KEY)
 .withSk(SECRET_ACCESS_KEY)
 .withDomainId(DOMAIN_ID);

 // 2. Initialize the SDK and transfer the credentials and endpoint address of CCM.
 final CcmClient ccmClient = CcmClient.newBuilder()
 .withCredential(auth)
 .withEndpoint(CCM_ENDPOINT).build();

 // 3. Make request parameters.
 // ID of the CA certificate you want to query.
 String caId = "3a02c7f6-d8f5-497e-9f60-18dfd3eeb4e6";

 // 4. Construct a request body.
 ShowCertificateAuthorityRequest request = new ShowCertificateAuthorityRequest()
 .withCaId(caId);

 // 5. Start to send the request.
 ShowCertificateAuthorityResponse response;
 try {
 response = ccmClient.showCertificateAuthority(request);
 } catch (Exception e) {
 throw new RuntimeException(e.getMessage());
 }

 // 6. Obtain the response message.
 // Obtain the certificate status. Use the corresponding Getter function to obtain the values of other
attributes.
 String caStatus = response.getStatus();

 System.out.println(response);
 }

}

3.3.2.8 Querying CA Quotas
Query the total number of CA quotas and the number of used CA quotas.

For details, see Parameters for Querying CA Quotas.

import com.huaweicloud.sdk.ccm.v1.CcmClient;
import com.huaweicloud.sdk.ccm.v1.model.Resources;
import com.huaweicloud.sdk.ccm.v1.model.ShowCertificateAuthorityQuotaRequest;
import com.huaweicloud.sdk.ccm.v1.model.ShowCertificateAuthorityQuotaResponse;
import com.huaweicloud.sdk.core.auth.GlobalCredentials;

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

https://support.huaweicloud.com/intl/en-us/api-ccm/ShowCertificateAuthorityQuota.html

import java.util.List;

/**
 * Query the CA quota.
 */
public class ShowCertificateAuthorityQuotaExample {
 /**
 * Basic authentication information:
 * - ACCESS_KEY: access key of the Huawei Cloud account
 * - SECRET_ACCESS_KEY: secret access key of the Huawei Cloud account
 * - DOMAIN_ID: Huawei Cloud account ID.
 * - CCM_ENDPOINT: Endpoint address for accessing Huawei Cloud CCM (PCA is included in CCM).
......*Hard-coded or plaintext AK and SK are risky. For security, encrypt your AK and SK and store them in the
configuration file or environment variables.
 * In this example, the AK and SK are stored in environment variables for identity authentication. Before
running this example, configure environment variables HUAWEICLOUD_SDK_AK and
HUAWEICLOUD_SDK_SK.
 */
 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
 private static final String DOMAIN_ID = "<DomainID>";
 private static final String CCM_ENDPOINT = "<CcmEndpoint>";

 public static void main(String[] args) {
 // 1. Prepare the credentials for accessing Huawei Cloud. PCA is a global service.
 final GlobalCredentials auth = new GlobalCredentials()
 .withAk(ACCESS_KEY)
 .withSk(SECRET_ACCESS_KEY)
 .withDomainId(DOMAIN_ID);

 // 2. Initialize the SDK and transfer the credentials and endpoint address of CCM.
 final CcmClient ccmClient = CcmClient.newBuilder()
 .withCredential(auth)
 .withEndpoint(CCM_ENDPOINT).build();

 // 3. Construct a request body.
 ShowCertificateAuthorityQuotaRequest request = new ShowCertificateAuthorityQuotaRequest();

 // 4. Start to send the request.
 ShowCertificateAuthorityQuotaResponse response;
 try {
 response = ccmClient.showCertificateAuthorityQuota(request);
 } catch (Exception e) {
 throw new RuntimeException(e.getMessage());
 }

 // 5. Obtain the quota usage.
 List<Resources> quotas = response.getQuotas().getResources();
 // Total quota
 int caQuota = quotas.get(0).getQuota();
 //Used quota
 int used = quotas.get(0).getUsed();

 System.out.println(response);
 }

}

3.3.3 Example Code for Managing Private Certificates

3.3.3.1 Applying for a Certificate
To apply for a private certificate, you must have a private CA that is in the
Activated state.

For details, see Parameters for Applying for a Certificate.

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

https://support.huaweicloud.com/intl/en-us/api-ccm/CreateCertificate.html

import com.huaweicloud.sdk.ccm.v1.CcmClient;
import com.huaweicloud.sdk.ccm.v1.model.CertDistinguishedName;
import com.huaweicloud.sdk.ccm.v1.model.CreateCertificateRequest;
import com.huaweicloud.sdk.ccm.v1.model.CreateCertificateRequestBody;
import com.huaweicloud.sdk.ccm.v1.model.CreateCertificateResponse;
import com.huaweicloud.sdk.ccm.v1.model.ExtendedKeyUsage;
import com.huaweicloud.sdk.ccm.v1.model.SubjectAlternativeName;
import com.huaweicloud.sdk.ccm.v1.model.Validity;
import com.huaweicloud.sdk.core.auth.GlobalCredentials;

import java.util.ArrayList;
import java.util.List;

/**
* To issue a private certificate, there is at least one private CA in the Activated state.
 */
public class createCertificateExample {
 /**
 * Basic authentication information:
 * - ACCESS_KEY: access key of the Huawei Cloud account
 * - SECRET_ACCESS_KEY: secret access key of the Huawei Cloud account
 * - DOMAIN_ID: Huawei Cloud account ID.
 * - CCM_ENDPOINT: Endpoint address for accessing Huawei Cloud CCM (PCA is included in CCM).
......*Hard-coded or plaintext AK and SK are risky. For security, encrypt your AK and SK and store them in the
configuration file or environment variables.
 * In this example, the AK and SK are stored in environment variables for identity authentication. Before
running this example, configure environment variables HUAWEICLOUD_SDK_AK and
HUAWEICLOUD_SDK_SK.
 */
 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
 private static final String DOMAIN_ID = "<DomainID>";
 private static final String CCM_ENDPOINT = "<CcmEndpoint>";

 public static void main(String[] args) {
 // 1. Prepare the credentials for accessing Huawei Cloud. PCA is a global service.
 final GlobalCredentials auth = new GlobalCredentials()
 .withAk(ACCESS_KEY)
 .withSk(SECRET_ACCESS_KEY)
 .withDomainId(DOMAIN_ID);

 // 2. Initialize the SDK and transfer the credentials and endpoint address of CCM.
 final CcmClient ccmClient = CcmClient.newBuilder()
 .withCredential(auth)
 .withEndpoint(CCM_ENDPOINT).build();

 // 3. Make request parameters.
 // (1) ID of the CA that issues the private certificates. The CA must be in the ACTIVED state.
 String issuerId = "3a02c7f6-d8f5-497e-9f60-18dfd3eeb4e6";
 // (2) Private key algorithm
 String keyAlgorithm = "RSA2048";
 // Signature hash algorithm
 String signatureAlgorithm = "SHA512";

 /*
 * (4) Determine the certificate validity period.
 * - type: time type. The options are YEAR, MONTH, DAY, and HOUR.
 * - value: corresponding value.
 */
 Validity validity = new Validity();
 validity.setType("MONTH");
 validity.setValue(2);

 /*
 * (5) Define the unique identifier of the CA certificate.
 * - organization: organization name.
 * - organizationalUnit: department name.
 * - country: abbreviation of a country. The value can contain only two characters, for example, US for
the United States.

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

 * - state: province or city name.
 * - locality: city name.
 * - commonName: CA name (CN)
 */
 CertDistinguishedName subjectInfo = new CertDistinguishedName();
 subjectInfo.setOrganization("your organization");
 subjectInfo.setOrganizationalUnit("your organizational unit");
 subjectInfo.setCountry("CN");
 subjectInfo.setState("your state");
 subjectInfo.setLocality("your locality");
 subjectInfo.setCommonName("your dns");

 /*
 * (6) Key usage. Generally, only keyAgreement and digitalSignature are specified for server
certificates, which are optional.
 * - digitalSignature: The key is used as a digital signature.
 * - nonRepudiation: The key is used for non-repudiation.
 * - keyEncipherment: The key is used to encrypt key data.
 * - dataEncipherment: The key is used to encrypt data.
 - **keyAgreement**: The key is used for key negotiation.
 * - keyCertSign: The key can issue certificates.
 * - cRLSign: The key can issue a certificate revocation list (CRL).
 * - encipherOnly: The key is used only for encryption.
 * - decipherOnly: The key is used only for decryption.
 */
 List<String> keyUsages = new ArrayList<>();
 keyUsages.add("digitalSignature");
 keyUsages.add("keyAgreement");

 /*
 * (7) Alternative name of the subject: DNS, IP address, URI, and email address are supported
currently. This parameter is optional.
 * SubjectAlternativeName:
 * type: type
 * value: corresponding value.
 */
 List<SubjectAlternativeName> subjectAlternativeName = new ArrayList<>();
 // a. Add a standby DNS server.
 SubjectAlternativeName alterNameDNS = new SubjectAlternativeName();
 alterNameDNS.setType("DNS");
 alterNameDNS.setValue("*.example.com");
 subjectAlternativeName.add(alterNameDNS);
 // b. Add a standby IP address.
 SubjectAlternativeName alterNameIP = new SubjectAlternativeName();
 alterNameIP.setType("IP");
 alterNameIP.setValue("127.0.0.1");
 subjectAlternativeName.add(alterNameIP);
 // b. Add a standby email.
 SubjectAlternativeName alterNameEmail = new SubjectAlternativeName();
 alterNameEmail.setType("EMAIL");
 alterNameEmail.setValue("myEmail@qq.com");
 subjectAlternativeName.add(alterNameEmail);
 ExtendedKeyUsage extendedKeyUsage = new ExtendedKeyUsage();
 extendedKeyUsage.setClientAuth(true);
 extendedKeyUsage.setServerAuth(true);

 // (8) Assign values to the attributes of the request body.
 // For details about the restrictions on the value of each attribute, see https://
support.huaweicloud.com/en-us/api-ccm/CreateCertificate.html.
 CreateCertificateRequestBody requestBody = new CreateCertificateRequestBody();
 requestBody.setIssuerId(issuerId);
 requestBody.setKeyAlgorithm(keyAlgorithm);
 requestBody.setSignatureAlgorithm(signatureAlgorithm);
 requestBody.setValidity(validity);
 requestBody.setDistinguishedName(subjectInfo);
 requestBody.setKeyUsages(keyUsages);
 requestBody.setSubjectAlternativeNames(subjectAlternativeName);
 requestBody.setExtendedKeyUsage(extendedKeyUsage);

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

 // 4. Construct a request body.
 CreateCertificateRequest request = new CreateCertificateRequest()
 .withBody(requestBody);

 // 5. Start to send the request.
 CreateCertificateResponse response;
 try {
 response = ccmClient.createCertificate(request);
 } catch (Exception e) {
 throw new RuntimeException(e.getMessage());
 }

 // 6. Obtain the response message.
 String certId = response.getCertificateId();
 System.out.println(certId);
 }

}

3.3.3.2 Deleting a Certificate

Private certificates cannot be deleted by scheduled deletion tasks. When you
delete a private certificate, it will be directly deleted.

For details, see Parameters for Deleting a Certificate.

import com.huaweicloud.sdk.ccm.v1.CcmClient;
import com.huaweicloud.sdk.ccm.v1.model.DeleteCertificateRequest;
import com.huaweicloud.sdk.ccm.v1.model.DeleteCertificateResponse;
import com.huaweicloud.sdk.core.auth.GlobalCredentials;

/**
 * When you delete a certificate, it will be directly deleted. Scheduled deletion is not supported for private
certificates.
 */
public class DeleteCertificateExample {
 /**
 * Basic authentication information:
 * - ACCESS_KEY: access key of the Huawei Cloud account
 * - SECRET_ACCESS_KEY: secret access key of the Huawei Cloud account
 * - DOMAIN_ID: Huawei Cloud account ID.
 * - CCM_ENDPOINT: Endpoint address for accessing Huawei Cloud CCM (PCA is included in CCM).
......*Hard-coded or plaintext AK and SK are risky. For security, encrypt your AK and SK and store them in the
configuration file or environment variables.
 * In this example, the AK and SK are stored in environment variables for identity authentication. Before
running this example, configure environment variables HUAWEICLOUD_SDK_AK and
HUAWEICLOUD_SDK_SK.
 */
 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
 private static final String DOMAIN_ID = "<DomainID>";
 private static final String CCM_ENDPOINT = "<CcmEndpoint>";

 public static void main(String[] args) {
 // 1. Prepare the credentials for accessing Huawei Cloud. PCA is a global service.
 final GlobalCredentials auth = new GlobalCredentials()
 .withAk(ACCESS_KEY)
 .withSk(SECRET_ACCESS_KEY)
 .withDomainId(DOMAIN_ID);

 // 2. Initialize the SDK and transfer the credentials and endpoint address of CCM.
 final CcmClient ccmClient = CcmClient.newBuilder()
 .withCredential(auth)
 .withEndpoint(CCM_ENDPOINT).build();

 // 3. Make request parameters.

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

https://support.huaweicloud.com/intl/en-us/api-ccm/DeleteCertificate.html

 // (1) ID of the private certificate you want to delete.
 String certId = "5554a381-af92-4336-a943-811396c87616";

 // 4. Construct a request body.
 DeleteCertificateRequest request = new DeleteCertificateRequest().withCertificateId(certId);

 // 5. Start to send the request.
 DeleteCertificateResponse response;
 try {
 response = ccmClient.deleteCertificate(request);
 } catch (Exception e) {
 throw new RuntimeException(e.getMessage());
 }

 // 6. Obtain the response message. After the deletion succeeds, no response is returned and the
returned status code is 204.
 System.out.println(response.getHttpStatusCode());
 }

}

3.3.3.3 Exporting a Certificate

You can export a private certificate, including the certificate body and certificate
chain. You can export the certificate in the format you need.

For details, see Parameters for Exporting a Certificate.

import com.huaweicloud.sdk.ccm.v1.CcmClient;
import com.huaweicloud.sdk.ccm.v1.model.ExportCertificateRequest;
import com.huaweicloud.sdk.ccm.v1.model.ExportCertificateRequestBody;
import com.huaweicloud.sdk.ccm.v1.model.ExportCertificateResponse;
import com.huaweicloud.sdk.core.auth.GlobalCredentials;

/**
 * Export the private certificate, including the certificate body and certificate chain. You can select the
certificate format.
 */
public class ExportCertificateExample {
 /**
 * Basic authentication information:
 * - ACCESS_KEY: access key of the Huawei Cloud account
 * - SECRET_ACCESS_KEY: secret access key of the Huawei Cloud account
 * - DOMAIN_ID: Huawei Cloud account ID.
 * - CCM_ENDPOINT: Endpoint address for accessing Huawei Cloud CCM (PCA is included in CCM).
......*Hard-coded or plaintext AK and SK are risky. For security, encrypt your AK and SK and store them in the
configuration file or environment variables.
 * In this example, the AK and SK are stored in environment variables for identity authentication. Before
running this example, configure environment variables HUAWEICLOUD_SDK_AK and
HUAWEICLOUD_SDK_SK.
 */
 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
 private static final String DOMAIN_ID = "<DomainID>";
 private static final String CCM_ENDPOINT = "<CcmEndpoint>";

 public static void main(String[] args) {
 // 1. Prepare the credentials for accessing Huawei Cloud. PCA is a global service.
 final GlobalCredentials auth = new GlobalCredentials()
 .withAk(ACCESS_KEY)
 .withSk(SECRET_ACCESS_KEY)
 .withDomainId(DOMAIN_ID);

 // 2. Initialize the SDK and transfer the credentials and endpoint address of CCM.
 final CcmClient ccmClient = CcmClient.newBuilder()
 .withCredential(auth)
 .withEndpoint(CCM_ENDPOINT).build();

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

https://support.huaweicloud.com/intl/en-us/api-ccm/ExportCertificate.html

 // 3. Make request parameters.
 // (1) ID of the end-entity certificate you want to export.
 String certId = "5554a381-af92-4336-a943-811396c87616";

 /*
 (2) Define the export format. (SDKs support only uncompressed files.)
 - isCompressed: whether to compress the file. The value is a string. The options are true and false.
SDKs support only false.
 - type: export format. Currently, only the following formats are supported in calling SDKs:
 APACHE: This parameter is recommended if you want to use the certificate for an Apache server.
 NGINX: This parameter is recommended if you want to use the certificate for an Nginx server.
 OTHER: This parameter is recommended if you want to download a certificate in PEM format.
 */
 ExportCertificateRequestBody requestBody = new ExportCertificateRequestBody();
 requestBody.setType("NGINX");
 requestBody.setIsCompressed("false");

 // 4. Construct a request body.
 ExportCertificateRequest request = new ExportCertificateRequest()
 .withCertificateId(certId)
 .withBody(requestBody);

 // 5. Start to send the request.
 ExportCertificateResponse response;
 try {
 response = ccmClient.exportCertificate(request);
 } catch (Exception e) {
 throw new RuntimeException(e.getMessage());
 }

 // 6. Obtain the response message.
 // (1) Obtain the certificate body in PEM format.
 String certificate = response.getCertificate();
 // (2) Obtain the certificate chain in PEM format.
 String certificateChain = response.getCertificateChain();
 System.out.println(response);
 }

}

3.3.3.4 Revoking a Certificate

All its records will be cleared and cannot be recovered, including private CA
records. Therefore, exercise caution when performing this operation.

For details, see Parameters for Revoking a Private Certificate.

import com.huaweicloud.sdk.ccm.v1.CcmClient;
import com.huaweicloud.sdk.ccm.v1.model.RevokeCertificateRequest;
import com.huaweicloud.sdk.ccm.v1.model.RevokeCertificateRequestBody;
import com.huaweicloud.sdk.ccm.v1.model.RevokeCertificateResponse;
import com.huaweicloud.sdk.core.auth.GlobalCredentials;

/**
 * Revoke a private certificate.
 */
public class RevokeCertificateExample {
 /**
 * Basic authentication information:
 * - ACCESS_KEY: access key of the Huawei Cloud account
 * - SECRET_ACCESS_KEY: secret access key of the Huawei Cloud account
 * - DOMAIN_ID: Huawei Cloud account ID.
 * - CCM_ENDPOINT: Endpoint address for accessing Huawei Cloud CCM (PCA is included in CCM).
......*Hard-coded or plaintext AK and SK are risky. For security, encrypt your AK and SK and store them in the
configuration file or environment variables.
 * In this example, the AK and SK are stored in environment variables for identity authentication. Before
running this example, configure environment variables HUAWEICLOUD_SDK_AK and
HUAWEICLOUD_SDK_SK.

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

https://support.huaweicloud.com/intl/en-us/api-ccm/RevokeCertificate.html

 */
 private static final String ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_AK");
 private static final String SECRET_ACCESS_KEY = System.getenv("HUAWEICLOUD_SDK_SK");
 private static final String DOMAIN_ID = "<DomainID>";
 private static final String CCM_ENDPOINT = "<CcmEndpoint>";

 public static void main(String[] args) {
 // 1. Prepare the credentials for accessing Huawei Cloud. PCA is a global service.
 final GlobalCredentials auth = new GlobalCredentials()
 .withAk(ACCESS_KEY)
 .withSk(SECRET_ACCESS_KEY)
 .withDomainId(DOMAIN_ID);

 // 2. Initialize the SDK and transfer the credentials and endpoint address of CCM.
 final CcmClient ccmClient = CcmClient.newBuilder()
 .withCredential(auth)
 .withEndpoint(CCM_ENDPOINT).build();

 // 3. Make request parameters.
 // (1) ID of the end-entity certificate you want to revoke.
 String certId = "5554a381-af92-4336-a943-811396c87616";

 // (2) Enter the revocation reason (an enumerated value. For details, see the corresponding parameter
in the API document). The corresponding revocation code will be written into the certificate revocation list.
 //Default value: UNSPECIFIED
 RevokeCertificateRequestBody requestBody = new RevokeCertificateRequestBody();
 requestBody.setReason("UNSPECIFIED");

 // 4. Construct a request body.
 RevokeCertificateRequest request = new RevokeCertificateRequest()
 .withCertificateId(certId)
 .withBody(requestBody);

 // 5. Start to send the request.
 RevokeCertificateResponse response;
 try {
 response = ccmClient.revokeCertificate(request);
 } catch (Exception e) {
 throw new RuntimeException(e.getMessage());
 }

 // 6. Obtain the response message. After the revocation succeeds, no response is returned and the
returned status code is 204.
 System.out.println(response.getHttpStatusCode());
 }

}

3.4 Building an Internal Identity Authentication System
for Your Organization

Scenarios
CCM can help you build a complete CA hierarchy so that you can issue and
manage self-signed private certificates within your organization.

Now, you can follow the procedure below to apply for a private certificate in CCM
and deploy it on your server.

Background
An internally-hosted complete CA hierarchy is called a self-built Public Key
Infrastructure (PKI) system.

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

When building a PKI system, we need to design its structure based on the
application scenarios to facilitate subsequent management.

● CA level design
A path length determines how many levels of subordinate CAs the current CA
can issue. It is used to control the certificate chain length.
A well-designed CA hierarchy can make fine-grained control over certificates a
reality. With PCA, you can build a CA hierarchy with up to seven levels. For
details, see Designing a Private CA Hierarchy.

● Certificate rotation
Before a certificate expires, it should be replaced by a new one to prevent
service interruption caused by certificate expiration. This process is called
certificate rotation.
The certificate validity period determines the certificate rotation interval. A
proper certificate validity period can reduce the risk of key material leakage
and certificate rotation costs. For more details, see PCA Certificate Validity
Period.

● Certificate revocation management
If the key of a certificate is disclosed or the certificate is no longer for some
reasons, the certificate should be revoked. To that end, you need to enable
the certificate revocation list (CRL) when you create a CA. Beyond that, your
service should be designed to check the certificate revocation status.

Step 1: Creating a Private Root CA or Subordinate CA
Perform the following steps to create a root CA or subordinate CA. For details
about how to create a private CA, see Creating a Private CA.

Step 1 Log in to the management console.

Step 2 Click in the upper left corner of the page and choose Security > Cloud
Certificate Management Service. In the navigation pane, choose Private
Certificate Management > Private CA.

Step 3 In the upper left corner of the private CA list, click Create CA to switch to the
Create CA page.

Step 4 Configure the CA information.

1. Configure basic information.

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

https://support.huaweicloud.com/intl/en-us/productdesc-ccm/ccm_01_0302.html#section5
https://support.huaweicloud.com/intl/en-us/productdesc-ccm/ccm_01_0302.html#section5
https://support.huaweicloud.com/intl/en-us/tg-ccm/ccm_01_0016.html
https://console-intl.huaweicloud.com/?locale=en-us

2. Configure the Distinguished Name (DN) of the certificate.

3. Configure certificate revocation details.

Step 5 Click Next.

Step 6 After confirming the information about the private CA, click Confirm and Create.

----End

Step 2: Activating a Subordinate Private CA with its Parent Private CA
A subordinate CA must be activated, or it cannot issue certificates. The following
describes how to activate a subordinate CA in a two-level CA hierarchy system by
using an internal private CA. To activate a subordinate CA by using an external
private CA, refer to Activating a Private CA

Step 1 Log in to the management console.

Step 2 Click in the upper left corner of the page and choose Security > Cloud
Certificate Management Service. In the navigation pane, choose Private
Certificate Management > Private CA.

Step 3 Locate the row of the subordinate private CA and click Activate in the Operation
column. In the Install CA Certificate and Activate CA page, configure the
required parameters. Figure 3-6 shows an example.

NO TE

The path length varies depending on how many layers of your CA hierarchy has. For details,
see Designing a Private CA Hierarchy.

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

https://support.huaweicloud.com/intl/en-us/tg-ccm/ccm_01_0017.html
https://console-intl.huaweicloud.com/?locale=en-us

Figure 3-6 A private CA

Step 4 Confirm the configuration and click OK.

----End

Step 3: Creating a Private Certificate
For details, see Applying for a Private Certificate

Step 1 Log in to the management console.

Step 2 Click in the upper left corner of the page and choose Security > Cloud
Certificate Management Service. In the navigation pane, choose Private
Certificate Management > Private Certificate.

Step 3 In the upper left corner of the private certificate list, click Apply for Certificate.

Step 4 Enter required certificate information.

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

https://support.huaweicloud.com/intl/en-us/tg-ccm/ccm_01_0025.html
https://console-intl.huaweicloud.com/?locale=en-us

Figure 3-7 System generated CSR

Step 5 Confirm the information and click OK.

After you submit your application, the system will return to the private certificate
list page. Message "Certificate xxx applied for successfully." is displayed in the
upper right corner of the page, indicating that the private certificate application is
successful.

----End

Step 4: Trusting the Root CA.
Before installing a private certificate, you need to add the root CA to the trusted
root certificate authorities of the client or server.

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

● One-way authentication
To win more trust from the client for your server, you need to add the root CA
for the server certificate to the client-end trusted CAs.

● Two-way authentication
To enable two-way authentication between a server and a client, each side
needs to add the root CA of the other side to their own trusted root CA store.

Download the private root CA certificate and obtain a root CA certificate file
named Root CA name_certificate.pem. For details, see Exporting a Private Root
CA.

Use either of the following methods to add the root CA to the trusted root CA
store based on the operating system:

NO TE

Root CA PCA TEST ROOT GO is used as an example.

● For Windows OSs

a. Change the file name extension of the root CA certificate from .pem
to .crt. and double-click the certificate file. The root CA certificate
information shows that the root certificate is untrusted.

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

https://support.huaweicloud.com/intl/en-us/tg-ccm/ccm_01_0019.html
https://support.huaweicloud.com/intl/en-us/tg-ccm/ccm_01_0019.html

Figure 3-8 Root CA not trusted

b. Click Install Certificate, select a certificate storage location based on the
certificate usage, and click Next.

c. Select Place all certificates in the following store and click Browse.
Then, select Trusted Root Certification Authorities and click OK.

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

Figure 3-9 Storing a root certificate

d. Click Next, and then click OK. A dialog box is displayed, indicating that
Windows will trust all certificates issued by the private root CA. Click Yes.

e. Double-click the root CA certificate file. If the Certificate Information
area shows that the system trusts the root CA certificate, the root CA is
added to the trusted root CAs.

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

Figure 3-10 Trusted root CA

● For Linux OSs
The path for and method of storing root CA certificates vary depending on
Linux OS versions. The following procedure use CentOS 6 as an example:

a. Copy the root CA certificate file to the /home/ directory.
b. If ca-certificates is not installed on the server, run the following

command to install ca-certificates:
yum install ca-certificates

c. Copy the root CA certificate to the /etc/pki/ca-trust/source/anchors/
directory:
cp /home/root.crt /etc/pki/ca-trust/source/anchors/

d. Add the root CA certificate to the trusted root certificate file:
update-ca-trust extract

e. Check whether the information about the newly added root CA certificate
is included in the command output:
view /etc/pki/tls/certs/ca-bundle.crt

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

Figure 3-11 Root CA certificate added to the trusted CA list

NO TE

If the OpenSSL version is too old, the configuration may not take effect. You can run
the yum update openssl -y command to update the OpenSSL version.

● macOS

a. Open the MacOS startup console and select Keychain Access.
b. Enter the password to log in to Keychain Access.
c. Drag and drop the target root CA certificate into Keychain Access. The

root CA certificate now is untrusted by the system.
d. Right-click the root CA certificate to load its details.
e. Click Trust, select Always Trust for When using this certificate, and

click Close.
f. Enter the password to make the configuration of the trusted root CA

certificate take effect.
g. View the root CA certificate on the Keychain Access window. If the

certificate is trusted by the system, the root CA is successfully added to
the trusted root CA store.

Step 5: Installing a Private Certificate
Installing a Private Certificate on a Client (Using Windows as an Example)

Step 1 Log in to the management console.

Step 2 Click in the upper left corner of the page and choose Security > Cloud
Certificate Management Service. In the navigation pane, choose Private
Certificate Management > Private Certificate.

Step 3 Locate the row containing the desired certificate. In the Operation column, click
Download.

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

https://console-intl.huaweicloud.com/?locale=en-us

Step 4 Select the IIS tab and click Download Certificate.

Step 5 Decompress the downloaded certificate file package client_iis.zip to obtain
certificate file server.pfx and private key password file keystorePass.txt.

Step 6 Double-click certificate file server.pfx, select a certificate storage location based
on its usage, and click Next.

Step 7 Confirm the name of the certificate file you want to import and click Next.

Step 8 Enter the password obtained from private key password file keystorePass.txt and
click Next.

Step 9 Select Place all certificates in the following store, click Browse, select Personal,
and click OK, as shown in Figure 3-12.

Figure 3-12 Storing a private certificate

Step 10 Click Next and Finish. The certificate is installed when a dialog box is displayed
indicating that the certificate is imported successfully.

----End

Installing a Private Certificate on a Server

The procedure for installing a private certificate on a server is the same as that for
installing an international standard SSL certificate. The following lists some
examples:

● Installing an SSL Certificate on a Tomcat Server

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

https://support.huaweicloud.com/intl/en-us/usermanual-ccm/ccm_01_0081.html

● Installing an SSL Certificate on an Nginx Server
● Installing an SSL Certificate on an Apache Server
● Installing an SSL Certificate on an IIS Server
● Installing an SSL Certificate on a WebLogic Server
● Installing an SSL Certificate on a Resin Server

Cloud Certificate Manager
Best Practices 3 Best Practices for Private Certificate Management

Issue 07 (2024-12-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

https://support.huaweicloud.com/intl/en-us/usermanual-ccm/ccm_01_0082.html
https://support.huaweicloud.com/intl/en-us/usermanual-ccm/ccm_01_0083.html
https://support.huaweicloud.com/intl/en-us/usermanual-ccm/ccm_01_0084.html
https://support.huaweicloud.com/intl/en-us/usermanual-ccm/ccm_01_0125.html
https://support.huaweicloud.com/intl/en-us/usermanual-ccm/ccm_01_0070.html

	Contents
	1 CCM Best Practice Summary
	2 Best Practices for SSL Certificate Manager
	2.1 Resolving a DNS Record on Huawei Cloud or Alibaba Cloud
	2.2 Enabling HTTPS Encryption for Websites
	2.3 Deploying SSL Certificates to the Cloud in One Click
	2.3.1 Scenario
	2.3.2 Deploying an SSL Certificate to CDN in One Click
	2.3.3 Deploying an SSL Certificate to WAF in One Click
	2.3.4 Deploying an SSL Certificate to ELB in One Click

	2.4 Using FunctionGraph to Automatically Obtain and Update ECS Server Certificates

	3 Best Practices for Private Certificate Management
	3.1 Best Practices for Private Certificate Management
	3.1.1 Managing the Private Certificate Lifecycle
	3.1.2 Private Certificate Statuses
	3.1.3 Rotating Your Private Certificate

	3.2 Best Practices for Private CA Management
	3.2.1 Designing a Private CA Hierarchy
	3.2.2 Private CA Statuses
	3.2.3 Managing the Private CA Lifecycle
	3.2.4 Managing a CRL
	3.2.5 Rotating a Private CA

	3.3 Best Practices of PCA Code Examples
	3.3.1 Prerequisites
	3.3.2 Example Code for Managing Private CAs
	3.3.2.1 Creating a CA
	3.3.2.2 Deleting a CA
	3.3.2.3 Disabling a CA
	3.3.2.4 Enabling a CA
	3.3.2.5 Exporting a CA
	3.3.2.6 Canceling Deletion of a CA
	3.3.2.7 Obtaining CA Details
	3.3.2.8 Querying CA Quotas

	3.3.3 Example Code for Managing Private Certificates
	3.3.3.1 Applying for a Certificate
	3.3.3.2 Deleting a Certificate
	3.3.3.3 Exporting a Certificate
	3.3.3.4 Revoking a Certificate

	3.4 Building an Internal Identity Authentication System for Your Organization

