
Cloud Container Instance

Best Practice

Issue 01

Date 2024-05-24

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Contents

1 Auto Scaling..1
1.1 Elastic Scaling of CCE Pods to CCI...1

2 Workload Creation.. 4
2.1 Overview.. 4
2.2 Using docker run Commands to Run Containers...4
2.3 Using the CCI Console to Create Workloads... 6
2.4 Calling APIs to Create Workloads... 11
2.5 Configuring Dockerfile Parameters for CCI.. 17

3 Workload Management...20
3.1 Performing Graceful Rolling Upgrade for CCI Applications... 20
3.2 Exposing Basic Pod Information to Containers Through Environment Variables...24
3.3 Configuring Kernel Parameters.. 26
3.4 Resizing /dev/shm...27

Cloud Container Instance
Best Practice Contents

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

1 Auto Scaling

1.1 Elastic Scaling of CCE Pods to CCI
CCE Cloud Bursting Engine for CCI functions as a virtual kubelet to connect
Kubernetes clusters to APIs of other platforms. This add-on is mainly used to
extend Kubernetes APIs to serverless container services such as Huawei Cloud CCI.

With this add-on, you can scale Deployments, StatefulSets, Jobs, and CronJobs
running in CCE clusters to Cloud Container Instance (CCI) during peak hours. In
this way, you can reduce consumption caused by cluster scaling.

Installing the Add-on
1. Log in to the CCE console.
2. Click the name of the target CCE cluster to go to the cluster console.
3. In the navigation pane on the left, choose Add-ons.
4. Select the CCE Cloud Bursting Engine for CCI add-on and click Install.
5. Configure the add-on parameters.

Cloud Container Instance
Best Practice 1 Auto Scaling

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

https://support.huaweicloud.com/intl/en-us/cci/index.html

Table 1-1 Add-on parameters

Paramete
r

Description

Version Add-on version. There is a mapping between add-on versions
and CCE cluster versions. For more details, see "Change
History" in CCE Cloud Bursting Engine for CCI.

Specificati
ons

Number of pods required for a workload.

Networki
ng

If this option is enabled, pods in a CCE cluster can
communicate with the pods in CCI. For details, see
Networking.

Creating a Workload
1. Log in to the CCE console.
2. Click the name of the target CCE cluster to go to the cluster console.
3. In the navigation pane on the left, choose Workloads.
4. Click Create Workload. For details, see Creating a Workload.
5. Specify basic information. Set Burst to CCI to Force scheduling. For more

information about scheduling policies, see Scaling Pods to CCI.

6. Configure the container parameters.
7. Click Create Workload.
8. On the Workloads page, click the name of the created workload to go to the

workload details page.
9. View the node where the workload is running. If the workload is running on a

CCI node, it has been scheduled to CCI.

Uninstalling the Add-on
1. Log in to the CCE console.
2. Click the name of the target CCE cluster to go to the cluster console.
3. In the navigation pane on the left, choose Add-ons.
4. Select the CCE Cloud Bursting Engine for CCI add-on and click Uninstall.

Cloud Container Instance
Best Practice 1 Auto Scaling

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0135.html#section8
https://support.huaweicloud.com/intl/en-us/usermanual-cci/cci_01_0120.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0673.html
https://support.huaweicloud.com/intl/en-us/usermanual-cci/cci_01_0116.html

Table 1-2 Special scenarios for uninstalling the add-on

Scenario Symptom Description

There are no nodes
in the CCE cluster
that the bursting
add-on needs to be
uninstalled from.

Failed to uninstall the
bursting add-on.

If the bursting add-on is
uninstalled from the
cluster, a job for clearing
resources will be started
in the cluster. To ensure
that the job can be
started, there is at least
one node in the cluster
that can be scheduled.

The CCE cluster is
deleted, but the
bursting add-on is
not uninstalled.

There are residual
resources in the
namespace on CCI. If
the resources are not
free, additional
expenditures will be
generated.

The cluster is deleted,
but the resource clearing
job is not executed. You
can manually clear the
namespace and residual
resources.

For more information about the bursting add-on, see CCE Cloud Bursting
Engine for CCI.

Cloud Container Instance
Best Practice 1 Auto Scaling

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

https://support.huaweicloud.com/intl/en-us/usermanual-cci/cci_01_0136.html
https://support.huaweicloud.com/intl/en-us/usermanual-cci/cci_01_0136.html

2 Workload Creation

2.1 Overview
You can create workloads on the CCI console or by calling APIs. What are the
differences between the two methods and running the docker run commands?

This chapter uses the WordPress and MySQL as examples to compare the three
methods.

The WordPress is a blog platform developed in hypertext preprocessor (PHP). You
can set up your websites on the services that support PHP and MySQL databases,
or use the WordPress as a content management system. For more information
about the WordPress, visit https://wordpress.org/.

The WordPress must be used together with MySQL. The WordPress runs the
content management program while MySQL serves as a database to store data.
Generally, the WordPress and MySQL run in different containers, as shown in the
following figure.

2.2 Using docker run Commands to Run Containers
Docker is an open source engine that manages images and containers. A Docker
image includes all dependencies required for running an application. The processes
contained in the image are isolated from each other.

Cloud Container Instance
Best Practice 2 Workload Creation

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

https://wordpress.org/

Docker containers are built on Docker images.

Preparing Images
WordPress and MySQL images are general-purpose images and can be obtained
from the container registry.

You can run the docker pull command on the device where the container engine
is installed to download images.

docker pull mysql:5.7
docker pull wordpress

Run the docker images command to view the images. As shown in the following
figure, two images exist on the local host.

Running Containers
You can use the container engine to run the WordPress and MySQL containers,
and use the --link parameter to connect the two containers. In this way, the
WordPress container can access the MySQL container without code changes.

Run the following command to run the MySQL container:

docker run --name some-mysql -e MYSQL_ROOT_PASSWORD=******** -e MYSQL_DATABASE=wordpress -d
mysql:5.7

The parameters are described as follows:

● --name: specifies the container name as some-mysql.
● -e: specifies the environment variable of the container. In this example, the

value of MYSQL_ROOT_PASSWORD is ******** (replace ******** with your
password). The environment variable MYSQL_DATABASE indicates the name
of the database to be created when the image is started. Its value is
wordpress in this example.

● -d: indicates that the container runs in the backend.

Run the following command to run the WordPress container:

docker run --name some-wordpress --link some-mysql:mysql -p 8080:80 -e
WORDPRESS_DB_PASSWORD=******** -e WORDPRESS_DB_USER=root -d wordpress

The parameters are described as follows:

● --name: specifies the container name as some-wordpress.
● --link: connects the some-wordpress container to the some-mysql container

and changes the name of the some-mysql container to mysql. --link provides
an easy way to connect two containers. Alternatively, you can configure the
environment variable WORDPRESS_DB_HOST of the some-wordpress
container to access the IP address and port of the mysql container.

● -p: specifies ports for mapping. In this example, port 80 of the container is
mapped to port 8080 of the host.

● -e: specifies the environment variable of the container. In this example, the
value of WORDPRESS_DB_PASSWORD is ******** (replace ******** with your

Cloud Container Instance
Best Practice 2 Workload Creation

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

password). The value of WORDPRESS_DB_PASSWORD must be the same as
that of MYSQL_ROOT_PASSWORD because the WordPress requires a
password to access the MySQL database. WORDPRESS_DB_USER indicates
the username for accessing the MySQL database. Set it to root.

● -d: indicates that the container runs in the backend.

After the WordPress runs, you can access WordPress blogs through http://
127.0.0.1:8080.

2.3 Using the CCI Console to Create Workloads
Using docker run Commands to Run Containers describes how you can run the
WordPress workload by running the docker run commands. However, it is not
convenient to use a container engine in many scenarios, such as auto scaling and
rolling upgrade.

Cloud Container Instance
Best Practice 2 Workload Creation

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

CCI provides a serverless container engine that frees you from managing clusters
or servers. CCI delivers agility and high performance with only three steps. It
enables you to create stateless workloads (Deployments) and stateful workloads
(StatefulSets). It also enhances container security isolation and supports fast
workload deployment, elastic load balancing, auto scaling, and blue-green
deployment based on the Kubernetes workload model.

Creating a Namespace

Step 1 Log in to the CCI console. In the navigation pane, choose Namespaces.

Step 2 Click Create for the target namespace type.

Step 3 Enter a namespace name.

Step 4 Configure a VPC.

Select an existing VPC or create one. Recommended CIDR blocks for the new VPC
are 10.0.0.0/8-24, 172.16.0.0/12-24, and 192.168.0.0/16-24.

Step 5 Configure a subnet.

Ensure that there are sufficient available IP addresses in the subnet. If IP addresses
are insufficient, workload creation will fail.

Step 6 Click Create.

----End

Creating a MySQL Workload

Step 1 Log in to the CCI console. In the navigation pane, choose Workloads >
Deployments. On the page displayed, click Create from Image.

Step 2 Specify basic information.
● Workload Name: mysql
● Namespace: Select the namespace created in Creating a Namespace.
● Pods: Change the value to 1 in this example.
● Pod Specifications: Select the general-computing pod with 0.5-core CPU and

1 GiB of memory.

Cloud Container Instance
Best Practice 2 Workload Creation

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

● Container Settings

a. On the Open Source Images tab, search for the mysql image and click
Use Image.

b. Set image parameters. Specifically, set the image version to 5.7, CPU to
0.50, and memory to 1.000.

c. In the advanced settings, enter the environment variable
MYSQL_ROOT_PASSWORD and its value. The value is the password of
the MySQL database. You need to set the password by yourself.

Step 3 Click Next: Configure Access Settings. Set Access Type to Intranet access. In this
case, the workload can be accessed by other workloads in CCI by using Service
name:Port. In addition, set Service Name to mysql, and map workload access
port 3306 to container port 3306 (default access port of the MySQL image).

In this way, other workloads in CCI can access the MySQL workload by using
mysql:3306.

Cloud Container Instance
Best Practice 2 Workload Creation

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

Step 4 Click Next. On the page that is displayed, check the configurations and then click
Submit.

In the workload list, if the workload is in the Running state, the workload is
successfully created.

----End

Creating a WordPress Workload

Step 1 Log in to the CCI console. In the navigation pane, choose Workloads >
Deployments. On the page displayed, click Create from Image.

Step 2 Specify basic information.
● Workload Name: wordpress
● Namespace: Select the namespace created in Creating a Namespace.
● Pods: Change the value to 2 in this example.
● Pod Specifications: Select the general-computing pod with 0.5-core CPU and

1 GiB of memory.

● Configure Container

a. On the Open Source Images tab page, search for the wordpress image
and click Use Image.

Cloud Container Instance
Best Practice 2 Workload Creation

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

b. Set image parameters. Specifically, set the image version to php7.1, CPU
to 0.50, and memory to 1.000.

c. In the Advanced Settings area, expand Environment Variables and add
environment variables to enable the wordpress application to access the
MySQL database.

Table 2-1 Description of environment variables

Variable Name Variable Value/Variable Reference

WORDPRESS_DB_HOS
T

Address for accessing the MySQL database.
Example: 10.***.***.***:3306

WORDPRESS_DB_PAS
SWORD

Password for accessing the MySQL database.
The password must be the same as the
MySQL password set in Creating a MySQL
Workload.

Cloud Container Instance
Best Practice 2 Workload Creation

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

Step 3 Click Next: Configure Access Settings.

Set Access Type to Internet access and Service Name to wordpress, and select a
load balancer. If no load balancers are available, click Create Share Load
Balancer. Set ELB Protocol to HTTP and ELB Port to 9012. In the Workload Port
Settings area, set a mapping between workload access port 8080 and container
port 80 (default access port in the WordPress image). In the HTTP Route Settings
area, set Mapping Path to / (so http://Load balancer IP address:Port can be used
to access the WordPress) and Workload Access Port to 8080.

Step 4 Click Next. On the page that is displayed, check the configurations and then click
Submit.

In the workload list, if the workload is in the Running state, the workload is
successfully created. In this case, you can click the workload to go to its details
page.

In the Access Settings area, click Internet Access and view the access address
(Load balancer IP address:Port).

----End

2.4 Calling APIs to Create Workloads
CCI supports Kubernetes APIs. Compared with using the console to create
workloads, calling APIs is much easier.

Cloud Container Instance
Best Practice 2 Workload Creation

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

In Kubernetes, a pod is the minimum unit for container running and can
encapsulate one or more containers, storage resources, and an independent
network IP address. In practice, pods are rarely created directly. Kubernetes uses
controllers such as Deployment and StatefulSet to manage pods. In addition,
Kubernetes uses Services to define pods and their access policies, and uses
ingresses to manage external access. For more information about Kubernetes
resources, see Cloud Container Instance Developer Guide.

For the WordPress application, you can call APIs to create a series of resources, as
shown in the following figure.

● MySQL: Create a Deployment to deploy the MySQL, and create a Service to
define the access policy of the MySQL.

● WordPress: Create a Deployment to deploy the WordPress, and create a
Service and an ingress to define the access policy of the WordPress.

Cloud Container Instance
Best Practice 2 Workload Creation

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

https://support.huaweicloud.com/intl/en-us/devg-cci/cci_05_0001.html

Namespace

Step 1 Call the API described in Creating a Namespace to create a namespace and
specify a namespace type.
{
 "apiVersion": "v1",
 "kind": "Namespace",
 "metadata": {
 "name": "namespace-test",
 "annotations": {
 "namespace.kubernetes.io/flavor": "gpu-accelerated"
 }
 },
 "spec": {
 "finalizers": [
 "kubernetes"
]
 }
}

Step 2 Call the API described in Creating a Network to create a network, and associate
the network with a Virtual Private Cloud (VPC) and subnet.
{
 "apiVersion": "networking.cci.io/v1beta1",
 "kind": "Network",
 "metadata": {
 "annotations": {
 "network.alpha.kubernetes.io/default-security-group": "{{security-group-id}}",
 "network.alpha.kubernetes.io/domain-id": "{{domain-id}}",
 "network.alpha.kubernetes.io/project-id": "{{project-id}}"
 },
 "name": "test-network"
 },
 "spec": {
 "availableZone": "{{zone}}",
 "cidr": "192.168.0.0/24",
 "attachedVPC": "{{vpc-id}}",
 "networkID": "{{network-id}}",
 "networkType": "underlay_neutron",
 "subnetID": "{{subnet-id}}"
 }
}

----End

MySQL

Step 1 Call the API described in Creating a Deployment to deploy the MySQL.
● Set the Deployment name to mysql.
● Set the pod label to app:mysql.
● Use the mysql:5.7 image.
● Set the value of the environment variable MYSQL_ROOT_PASSWORD to

******** (replace ******** with your password).
{
 "apiVersion": "apps/v1",
 "kind": "Deployment",
 "metadata": {
 "name": "mysql"
 },
 "spec": {
 "replicas": 1,
 "selector": {

Cloud Container Instance
Best Practice 2 Workload Creation

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

https://support.huaweicloud.com/intl/en-us/api-cci/createCoreV1Namespace.html
https://support.huaweicloud.com/intl/en-us/api-cci/createNetworkingCciIoV1beta1NamespacedNetwork.html
https://support.huaweicloud.com/intl/en-us/api-cci/createAppsV1NamespacedDeployment.html

 "matchLabels": {
 "app": "mysql"
 }
 },
 "template": {
 "metadata": {
 "labels": {
 "app": "mysql"
 }
 },
 "spec": {
 "containers": [
 {
 "image": "mysql:5.7",
 "name": "container-0",
 "resources": {
 "limits": {
 "cpu": "500m",
 "memory": "1024Mi"
 },
 "requests": {
 "cpu": "500m",
 "memory": "1024Mi"
 }
 },
 "env": [
 {
 "name": "MYSQL_ROOT_PASSWORD",
 "value": "********"
 }
]
 }
],
 "imagePullSecrets": [
 {
 "name": "imagepull-secret"
 }
]
 }
 }
 }
}

Step 2 Call the API described in Creating a Service to create a Service, and define the
access policy for the pod created in Step 1.
● Set the Service name to mysql.
● Select the pod whose label is app:mysql to associate the pod created in Step

1.
● Map workload access port 3306 to container port 3306.
● The access type of the Service is ClusterIP, that is, ClusterIP is used to access

the Service inside the cluster.
{
 "apiVersion": "v1",
 "kind": "Service",
 "metadata": {
 "name": "mysql",
 "labels": {
 "app": "mysql"
 }
 },
 "spec": {
 "selector": {
 "app": "mysql"
 },
 "ports": [
 {

Cloud Container Instance
Best Practice 2 Workload Creation

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

https://support.huaweicloud.com/intl/en-us/api-cci/createCoreV1NamespacedService.html

 "name": "service0",
 "targetPort": 3306,
 "port": 3306,
 "protocol": "TCP"
 }
],
 "type": "ClusterIP"
 }
}

----End

WordPress
Step 1 Call the API described in Creating a Deployment to deploy the WordPress.

● Set the Deployment name to wordpress.
● Set the value of replicas to 2, indicating that two pods are created.
● Set the pod label to app:wordpress.
● Use the wordpress:latest image.
● Set the value of the environment variable WORDPRESS_DB_PASSWORD to

******** (replace ******** with your password). This password must be the same
as MYSQL_ROOT_PASSWORD set for the MySQL.

{
 "apiVersion": "apps/v1",
 "kind": "Deployment",
 "metadata": {
 "name": "wordpress"
 },
 "spec": {
 "replicas": 2,
 "selector": {
 "matchLabels": {
 "app": "wordpress"
 }
 },
 "template": {
 "metadata": {
 "labels": {
 "app": "wordpress"
 }
 },
 "spec": {
 "containers": [
 {
 "image": "wordpress:latest",
 "name": "container-0",
 "resources": {
 "limits": {
 "cpu": "500m",
 "memory": "1024Mi"
 },
 "requests": {
 "cpu": "500m",
 "memory": "1024Mi"
 }
 },
 "env": [
 {
 "name": "WORDPRESS_DB_PASSWORD",
 "value": "********"
 }
]
 }
],

Cloud Container Instance
Best Practice 2 Workload Creation

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

https://support.huaweicloud.com/intl/en-us/api-cci/createAppsV1NamespacedDeployment.html

 "imagePullSecrets": [
 {
 "name": "imagepull-secret"
 }
]
 }
 }
 }
}

Step 2 Call the API described in Creating a Service to create a Service, and define the
access policy for the pod created in Step 1.
● Set the Service name to wordpress.
● Select the pod whose label is app:wordpress to associate the pod created in

Step 1.
● Map workload access port 8080 to container port 80. For the WordPress

image, port 80 is the default externally exposed port.
● The access type of the Service is ClusterIP, that is, ClusterIP is used to access

the Service inside the cluster.
{
 "apiVersion": "v1",
 "kind": "Service",
 "metadata": {
 "name": "wordpress",
 "labels": {
 "app": "wordpress"
 }
 },
 "spec": {
 "selector": {
 "app": "wordpress"
 },
 "ports": [
 {
 "name": "service0",
 "targetPort": 80,
 "port": 8080,
 "protocol": "TCP"
 }
],
 "type": "ClusterIP"
 }
}

Step 3 Call the API described in Creating an Ingress to create an ingress to define the
external access policy of the WordPress. In this step, you need to configure a load
balancer that is in the same VPC as the WordPress.
● metadata.annotations.kubernetes.io/elb.id: ID of the load balancer
● metadata.annotations.kubernetes.io/elb.ip: IP address of the load balancer
● metadata.annotations.kubernetes.io/elb.port: Port configured for the load

balancer
● spec.rules: a set of rules for accessing the Service. path lists the paths for

accessing the Service, for example, "/". Each path is associated with a backend
(for example, wordpress:8080). A backend represents a combination of
service:port. Ingress traffic will be forwarded to the corresponding backend.

After the configuration is complete, the traffic destined for the load balancer
(Load balancer IP address:Port) is transmitted to the wordpress:8080 Service.
Because the Service is associated with the WordPress pod, the traffic finally
accesses the WordPress container deployed in Step 1.

Cloud Container Instance
Best Practice 2 Workload Creation

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

https://support.huaweicloud.com/intl/en-us/api-cci/createCoreV1NamespacedService.html
https://support.huaweicloud.com/intl/en-us/api-cci/createExtensionsV1beta1NamespacedIngress.html

{
 "apiVersion": "extensions/v1beta1",
 "kind": "Ingress",
 "metadata": {
 "name": "wordpress",
 "labels": {
 "app": "wordpress",
 "isExternal": "true",
 "zone": "data"
 },
 "annotations": {
 "kubernetes.io/elb.id": "2d48d034-6046-48db-8bb2-53c67e8148b5",
 "kubernetes.io/elb.ip": "10.10.10.10",
 "kubernetes.io/elb.port": "9012"
 }
 },
 "spec": {
 "rules": [
 {
 "http": {
 "paths": [
 {
 "path": "/",
 "backend": {
 "serviceName": "wordpress",
 "servicePort": 8080
 }
 }
]
 }
 }
]
 }
}

----End

2.5 Configuring Dockerfile Parameters for CCI

Scenario

Dockerfiles are generally used to customize images. A Dockerfile is a text file that
contains instructions, each of which builds an image layer.

This topic describes the CCI settings corresponding to the Dockerfile
configurations.

Using Dockerfile Parameters in CCI

The following uses an example to describe the relationship between them.

FROM ubuntu:16.04

ENV VERSION 1.0

VOLUME /var/lib/app

EXPOSE 80

ENTRYPOINT ["./entrypoint.sh"]
CMD ["start"]

Cloud Container Instance
Best Practice 2 Workload Creation

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

In the preceding example, the Dockerfile contains common parameters, including
ENV, VOLUME, EXPOSE, ENTRYPOINT, and CMD. These parameters can be
configured for CCI as follows:

● ENV indicates an environment variable. Corresponding to ENV VERSION 1.0
in the Dockerfile, set Environment Variables in the advanced settings as
follows when creating a workload on the CCI console.

● VOLUME indicates a container volume. Generally, this parameter is used
together with docker run -v host path:container volume path.
For CCI, Elastic Volume Service (EVS) disks can be mounted to containers. You
only need to add EVS volumes, and configure their sizes and mount paths
(that is, container volume paths) when creating workloads.

● ENTRYPOINT and CMD correspond to the startup command of the advanced
settings in CCI. For details, see Setting Container Startup Commands.

● EXPOSE indicates an exposed port. Generally, this parameter is used together
with docker run -p <host port>:<container port> when a container is
started. To set an exposed port for a CCI container, you only need to configure
the Workload access port:Container port when creating a workload. In this
way, you can access the container through the Workload domain
name:Workload access port.

Cloud Container Instance
Best Practice 2 Workload Creation

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

https://support.huaweicloud.com/intl/en-us/usermanual-cci/cci_01_0050.html

Cloud Container Instance
Best Practice 2 Workload Creation

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

3 Workload Management

3.1 Performing Graceful Rolling Upgrade for CCI
Applications

Scenario

When you deploy a workload in CCI to run an application, the application is
exposed as a LoadBalancer Service or ingress, and connected to a dedicated ELB
load balancer to allow access traffic to reach the containers directly. When rolling
upgrade or auto scaling is performed on the application, your pods may fail to
work with ELB and 5xx errors may occur. This section guides you to configure
container probes and readiness time to achieve graceful upgrade and auto scaling.

Procedure

The following uses an Nginx Deployment as an example.

Step 1 On the CCI console, choose Workloads > Deployments in the navigation pane,
and click Create from Image in the upper right corner.

Figure 3-1 Creating a Deployment

Step 2 In the Container Settings area, click Use Image to select an image.

Step 3 Click Advanced Settings of the image, click Health Check > Application
Readiness Probe, and configure the probe.

Cloud Container Instance
Best Practice 3 Workload Management

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

Figure 3-2 Configuring the application readiness probe

NO TE

The probe checks whether your container is ready. If the container is not ready, requests will
not be forwarded to the container.

Step 4 Expand Lifecycle and configure the parameters of Pre-Stop Processing for the
container.

Figure 3-3 Configuring lifecycle parameters

NO TE

This configuration ensures that the container can provide services for external systems
during its exit.

Step 5 Click Next: Configure Access Settings and configure settings as shown in Figure
3-4.

Cloud Container Instance
Best Practice 3 Workload Management

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

Figure 3-4 Configuring the access type and port

Step 6 Click Next and complete the Deployment creation.

Step 7 Configure the minimum readiness time.

A pod is considered available only when the minimum readiness time is exceeded
without any of its containers crashing.

In the upper right corner of the Deployments page, click Create YAML to
configure the minimum readiness time as below.

Cloud Container Instance
Best Practice 3 Workload Management

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

Figure 3-5 Configuring the minimum readiness time

NO TE

● The recommended value of minReadySeconds is the expected time for starting the
service container plus the duration from the time when the ELB service delivers the
member to the time when the member takes effect.

● The value of minReadySeconds must be smaller than that of sleep to ensure that the
new container is ready before the old container stops and exits.

Step 8 Test the application upgrade and auto scaling.

Prepare a client outside the cluster, and configure the detection script
detection_script.sh with the following content (100.85.125.90:7552 indicates the
public network address for accessing the Service):
#! /bin/bash
for ((; ;))
do
 curl -I 100.85.125.90:7552 | grep "200 OK"
 if [$? -ne 0]; then
 echo "response error!"
 exit 1

Cloud Container Instance
Best Practice 3 Workload Management

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

 fi
done

Step 9 Run the detection script (bash detection_script.sh) and trigger the rolling
upgrade of the application on the CCI console. You can change the specifications
of the container to trigger the rolling upgrade of the application.

Figure 3-6 Modifying container specifications

If the access to the application is not interrupted, and the returned responses are
all 200OK, the graceful upgrade is successfully triggered.

----End

3.2 Exposing Basic Pod Information to Containers
Through Environment Variables

If you want a pod to expose its basic information to containers running in the pod,
you can use the Kubernetes Downward API to inject environment variables. This
section describes how to add environment variables to the definition of a
Deployment or a pod to obtain the namespace, name, UID, IP address, region, and
AZ of the pod.

When CCI creates a pod and allocates it to a node, the region and AZ information
of the node is added to the pod's annotations.

In this case, the format of the pod's annotations is as follows:

apiVersion: v1
 kind: Pod
 metadata:
 annotations:
 topology.kubernetes.io/region: "{{region}}"
 topology.kubernetes.io/zone: "{{available-zone}}"

topology.kubernetes.io/region indicates the region of the node.

topology.kubernetes.io/zone indicates the AZ of the node.

Deployment Configuration Example
The following example shows how to use environment variables to obtain basic
pod information.

kind: Deployment
apiVersion: apps/v1
metadata:
 name: cci-downwardapi-test
 namespace: cci-test # Enter a specific namespace.

Cloud Container Instance
Best Practice 3 Workload Management

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

https://kubernetes.io/docs/tasks/inject-data-application/environment-variable-expose-pod-information/

spec:
 replicas: 2
 selector:
 matchLabels:
 app: cci-downwardapi-test
 template:
 metadata:
 labels:
 app: cci-downwardapi-test
 spec:
 containers:
 - name: container-0
 image: 'library/euleros:latest'
 command:
 - /bin/bash
 - '-c'
 - while true; do echo hello; sleep 10; done
 env:
 - name: MY_POD_UID
 valueFrom:
 fieldRef:
 fieldPath: metadata.uid
 - name: MY_POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: MY_POD_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 - name: MY_POD_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP
 - name: REGION
 valueFrom:
 fieldRef:
 fieldPath: metadata.annotations['topology.kubernetes.io/region']
 - name: ZONE
 valueFrom:
 fieldRef:
 fieldPath: metadata.annotations['topology.kubernetes.io/zone']
 resources:
 limits:
 cpu: 500m
 memory: 1Gi
 requests:
 cpu: 500m
 memory: 1Gi

When the Deployment starts, you can view the pod information exposed to the
container through environment variables.

Cloud Container Instance
Best Practice 3 Workload Management

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

Figure 3-7 Basic pod Information

3.3 Configuring Kernel Parameters
CCI uses Kata containers to build an industry-leading serverless container
platform. Kata containers are isolated from the physical machine system kernel.
They do not affect each other. kernel parameter optimization is a common
practice in advanced service deployment scenarios. In a safe situation, CCI allows
you to configure kernel parameters through a security context of a pod based on
the solution recommended by the Kubernetes community, greatly improving the
flexibility of service deployment. For details of security contexts, see Configure a
Security Context for a Pod or Container.

In Linux, kernel parameters are usually configured through the sysctl interface. In
Kubernetes, kernel parameters are configured through the sysctl security context
of the pod. For details of sysctl, see Using sysctls in a Kubernetes Cluster. The
security context is applied to all containers in the pod.

CCI allows you to modify the following kernel parameters:

kernel.shm*,
kernel.msg*,
kernel.sem,
fs.mqueue.*,
net.* (excluding net.netfilter.* and net.ipv4.vs.*)

In the following example, the pod's securityContext is used to set the sysctl
parameters net.core.somaxconn and net.ipv4.tcp_tw_reuse.

apiVersion:v1
kind:Pod
metadata:
 name: xxxxx
 namespace: auto-test-namespace
spec:
 securityContext:
 sysctls:
 - name: net.core.somaxconn

Cloud Container Instance
Best Practice 3 Workload Management

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/administer-cluster/sysctl-cluster/

 value: "65536"
 - name: net.ipv4.tcp_tw_reuse
 value: "1"
 ...
...

Go to the container to check whether the configuration takes effect.

3.4 Resizing /dev/shm

Scenario
/dev/shm is a temporary file system (tmpfs), which is a memory-based file system
implemented in Linux or Unix and has high read/write efficiency.

If you use /dev/shm for data interaction between processes or for temporary data
storage, the default size of /dev/shm (64 MB) in CCI cannot meet your
requirements. CCI allows you to modify the size.

This practice shows how to resize /dev/shm by setting memory-backed emptyDir
or running securityContext and mount commands.

Constraints
● /dev/shm uses a memory-based tmpfs to temporarily store data. Data is not

retained after the container is restarted.
● You can use either of the following methods to modify the size of /dev/shm.

However, do not use both methods in one pod.
● The emptyDir uses the memory requested by the pod and does not occupy

extra resources.
● Writing data to /dev/shm is to request memory. In this scenario, you need to

evaluate the memory usage of processes. When the sum of the memory
requested by processes in the container plus the data volume in the emptyDir
exceeds the memory limit of the container, memory overflow occurs.

● When resizing /dev/shm, set the size to 50% of the pod's memory request.

Resizing /dev/shm Using Memory-backed emptyDir
emptyDir is applicable to temporary data storage, disaster recovery, and runtime
data sharing. It will be deleted upon deletion or transfer of workload pods.

CCI supports the mounting of memory-backed emptyDir. You can specify the
memory size allocated to the emptyDir and mount it to the /dev/shm directory in
the container to resize /dev/shm.

apiVersion: v1
kind: Pod
metadata:

Cloud Container Instance
Best Practice 3 Workload Management

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

 name: pod-emptydir-name
spec:
 containers:
 - image: 'library/ubuntu:latest'
 volumeMounts:
 - name: volume-emptydir1
 mountPath: /dev/shm
 name: container-0
 resources:
 limits:
 cpu: '4'
 memory: 8Gi
 requests:
 cpu: '4'
 memory: 8Gi
 volumes:
 - emptyDir:
 medium: Memory
 sizeLimit: 4Gi
 name: volume-emptydir1

After the pod is started, run the df -h command to go to the /dev/shm directory.
If the following information is displayed, the size is successfully modified.

Figure 3-8 /dev/shm directory details

Resizing /dev/shm by Running securityContext and mount Commands
● Grant the SYS_ADMIN permission to the container.

Linux provides the SYS_ADMIN permission. To apply this permission to the
container, Kubernetes needs to add this information to pods by adding the
description of the securityContext field to the pod's description file. For example:

 "securityContext": {
 "capabilities": {
 "add": [
 "SYS_ADMIN"
]
 }
 }

Another description field CapAdd also needs to be added to the container
description.

 "CapAdd": [
 "SYS_ADMIN"
],

Cloud Container Instance
Best Practice 3 Workload Management

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

In this case, a parameter is added when the container is automatically started by
kubelet.

docker run --cap-add=SYS_ADMIN

● Insert the mount command in the startup command to resize /dev/shm.
apiVersion: v1
kind: Pod
metadata:
 name: pod-emptydir-name
spec:
 containers:
 - command:
 - /bin/sh
 - '-c'
 - mount -o size=4096M -o remount /dev/shm;bash
 securityContext:
 capabilities:
 add: ["SYS_ADMIN"]
 image: 'library/ubuntu:latest'
 name: container-0
 resources:
 limits:
 cpu: '4'
 memory: 8Gi
 requests:
 cpu: '4'
 memory: 8Gi

After the pod is started, run the df -h command to go to the /dev/shm directory.
If the following information is displayed, the size is successfully modified.

Figure 3-9 /dev/shm directory details

Cloud Container Instance
Best Practice 3 Workload Management

Issue 01 (2024-05-24) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

	Contents
	1 Auto Scaling
	1.1 Elastic Scaling of CCE Pods to CCI

	2 Workload Creation
	2.1 Overview
	2.2 Using docker run Commands to Run Containers
	2.3 Using the CCI Console to Create Workloads
	2.4 Calling APIs to Create Workloads
	2.5 Configuring Dockerfile Parameters for CCI

	3 Workload Management
	3.1 Performing Graceful Rolling Upgrade for CCI Applications
	3.2 Exposing Basic Pod Information to Containers Through Environment Variables
	3.3 Configuring Kernel Parameters
	3.4 Resizing /dev/shm

