
Cloud Container Engine

Kubernetes Basics

Issue 01

Date 2025-02-11

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 Overview..1

2 Basic Concepts.. 3

3 Containers and Kubernetes...12
3.1 Containers... 12
3.2 Kubernetes.. 17
3.3 Using kubectl to Operate a Cluster.. 23

4 Pods, Labels, and Namespaces...31
4.1 Pod: the Smallest Scheduling Unit in Kubernetes... 31
4.2 Liveness Probes.. 35
4.3 Label for Managing Pods... 39
4.4 Namespace for Grouping Resources.. 41

5 Pod Orchestration and Scheduling... 43
5.1 Deployments...43
5.2 StatefulSets... 47
5.3 Jobs and CronJobs...52
5.4 DaemonSets.. 54
5.5 Affinity and Anti-Affinity Scheduling... 56

6 Configuration Management... 65
6.1 ConfigMaps... 65
6.2 Secrets... 66

7 Kubernetes Networking...69
7.1 Container Networking... 69
7.2 Services... 71
7.3 Ingresses... 79
7.4 Readiness Probes...82
7.5 Network Policies..86

8 Persistent Storage... 91
8.1 Volumes.. 91
8.2 PersistentVolumes, PersistentVolumeClaims, and StorageClasses...93

9 Authentication and Authorization..98

Cloud Container Engine
Kubernetes Basics Contents

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

9.1 Service Accounts..98
9.2 RBAC... 104

10 Auto Scaling... 109

Cloud Container Engine
Kubernetes Basics Contents

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

1 Overview

Kubernetes is an open-source container orchestration platform that automates the
deployment, scaling, and management of containerized applications across in-
cloud hosts.

For application developers, Kubernetes can be regarded as a cluster operating
system. Kubernetes provides functions such as service discovery, scaling, load
balancing, self-healing, and even leader election, freeing developers from
infrastructure-related configurations.

You can access CCE, a hosted Kubernetes service, using the CCE console, kubectl,
or Kubernetes APIs. Before using CCE, learn about the following Kubernetes
concepts.

Containers and Kubernetes
● Containers

● Kubernetes

● Using kubectl to Operate a Cluster

Pods, Labels, and Namespaces
● Pod: the Smallest Scheduling Unit in Kubernetes

● Liveness Probes

● Label for Managing Pods

● Namespace for Grouping Resources

Pod Orchestration and Scheduling
● Deployments

● StatefulSets

● Jobs and CronJobs

● DaemonSets

● Affinity and Anti-Affinity Scheduling

Cloud Container Engine
Kubernetes Basics 1 Overview

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

Configuration Management
● ConfigMaps
● Secrets

Kubernetes Networking
● Container Networking
● Services
● Ingresses
● Readiness Probes
● Network Policies

Persistent Storage
● Volumes
● PersistentVolumes, PersistentVolumeClaims, and StorageClasses

Authentication and Authorization
● Service Accounts
● RBAC

Auto Scaling
● Auto Scaling

Cloud Container Engine
Kubernetes Basics 1 Overview

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

2 Basic Concepts

CCE is a scalable, enterprise-class hosted Kubernetes service. With CCE, you can
easily deploy, manage, and scale containerized applications in the cloud.

The graphical CCE console enables E2E user experiences. In addition, CCE supports
native Kubernetes APIs and kubectl. Before using CCE, understand related basic
concepts.

Cluster
A cluster is a group of one or more cloud servers (also known as nodes) in the
same subnet. It has all the cloud resources (including VPCs and compute
resources) required for running containers.

CCE supports the following cluster types.

Cluster Type Description

CCE standard
cluster

CCE standard clusters are for commercial use, which fully
support the standard features of open-source Kubernetes
clusters.
CCE standard clusters offer a simple, cost-effective, highly
available solution. There is no need to manage and maintain
master nodes. You can choose between the container tunnel
network model or VPC network model depending on your
service needs. CCE standard clusters are ideal for typical
scenarios that do not require special performance or cluster
scale requirements.

Cloud Container Engine
Kubernetes Basics 2 Basic Concepts

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

Cluster Type Description

CCE Turbo
cluster

CCE Turbo clusters run on the Cloud Native 2.0 infrastructure.
They feature hardware and software synergy, zero network
performance loss, high security and reliability, and intelligent
scheduling, offering you a one-stop and cost-effective
container service.
The Cloud Native 2.0 networks are available for large-scale,
high-performance scenarios. In CCE Turbo clusters, container
IP addresses are assigned from VPC CIDR blocks, and
containers and nodes can be in different subnets. External
networks in a VPC can directly access container IP addresses
for high performance.

CCE Autopilot
cluster

CCE Autopilot allows you to create serverless clusters that
offer optimized Kubernetes compatibility and free you from
O&M.
CCE Autopilot clusters can be deployed without user nodes,
simplifying the application deployment. There is no need to
purchase nodes or maintain the deployment, management,
and security of nodes. You only need to focus on the
implementation of application service logic, which greatly
reduces your O&M costs and improves the reliability and
scalability of applications.

Node
A node is a cloud server (virtual or physical machine) running an instance of the
Docker Engine. Containers are deployed, run, and managed on nodes. The node
agent (kubelet) runs on each node to manage container instances on the node.
The number of nodes in a cluster can be scaled.

Node Pool
A node pool contains one node or a group of nodes with identical configuration in
a cluster.

VPC
A VPC is a logically isolated virtual network that facilitates secure internal network
management and configurations. Resources in the same VPC can communicate
with each other, but those in different VPCs cannot communicate with each other
by default. VPCs provide the same network functions as physical networks and
also advanced network services, such as elastic IP addresses and security groups.

Security Group
A security group is a collection of access control rules for ECSs that have the same
security protection requirements and are mutually trusted in a VPC. After a
security group is created, you can create different access rules for the security
group to protect the ECSs that are added to this security group.

Cloud Container Engine
Kubernetes Basics 2 Basic Concepts

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

Relationship Between Clusters, VPCs, Security Groups, and Nodes

As shown in Figure 2-1, a region may include multiple VPCs. A VPC consists of one
or more subnets. The subnets communicate with each other through a subnet
gateway. A cluster is created in a subnet. There are three scenarios:
● Different clusters are created in different VPCs.
● Different clusters are created in the same subnet.
● Different clusters are created in different subnets.

Figure 2-1 Relationship between clusters, VPCs, security groups, and nodes

Pod
A pod in Kubernetes is the smallest, basic unit for deploying applications or
services. It can contain one or more containers, which typically share storage and
networks. Each pod has its own IP address, allowing the containers within the pod
to communicate with each other and be accessed by other pods in the same
cluster. Kubernetes also offers various policies to manage container execution.
These policies include restart policies, resource requests and limits, and lifecycle
hooks.

Figure 2-2 Pod

Cloud Container Engine
Kubernetes Basics 2 Basic Concepts

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

Container
A container is a running instance that is created using a Docker image. Multiple
containers can run on a node (host). Containers are essentially processes, but they
run in their own separate namespaces, unlike processes that directly run on the
host machine. These namespaces provide isolation, allowing each container to
have its own file system, network API, process ID, and more. This enables OS-level
isolation for containers.

Figure 2-3 Relationships between pods, containers, and nodes

Workload
A workload is an application running on Kubernetes. No matter how many
components are there in your workload, you can run it in a group of Kubernetes
pods. A workload is an abstract model of a group of pods in Kubernetes.
Workloads in Kubernetes are classified as Deployments, StatefulSets, DaemonSets,
jobs, and cron jobs.

● Deployment: Pods are completely independent of each other and functionally
identical. They feature auto scaling and rolling upgrade. Typical examples
include web applications like Nginx and blog platforms like WordPress.

● StatefulSet : A StatefulSet in Kubernetes allows for the organized
deployment and removal of pods. Each pod in a StatefulSet has a unique
identifier and can communicate with other pods. StatefulSets are ideal for
applications that need persistent storage and communication between pods,
like etcd, the distributed key-value store, or MySQL High Availability, the high-
availability databases.

● DaemonSet: A DaemonSet in Kubernetes guarantees that all or specific
nodes have a DaemonSet pod running and automatically deploys DaemonSet
pods on newly added nodes in a cluster. It is used for services that need to run
on every node, like log collection (Fluentd) and monitoring agent
(Prometheus Node Exporter) services.

● Job: A job in Kubernetes is a task that ensures a specific number of pods are
successfully executed. It is used for one-off tasks that need to be performed in
a cluster, such as data backup and batch processing.

Cloud Container Engine
Kubernetes Basics 2 Basic Concepts

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

● Cron job: A cron job in Kubernetes is a task that runs at a specific time and is
used for recurring tasks that need to be executed periodically. It is commonly
used for scheduled data synchronization and generating reports on a regular
basis.

Figure 2-4 Relationship between workloads and pods

Image

An image is a standardized format used to package containerized applications and
create containers. Essentially, an image is a specialized file system that includes all
the necessary programs, libraries, resources, and configuration files for container
runtimes. It also contains configuration parameters like anonymous volumes,
environment variables, and users that are required for runtimes. An image does
not contain any dynamic data. Its content remains unchanged after being built.
When deploying containerized applications, you have the option to use images
from Docker Hub, SoftWare Repository for Container (SWR), or your own private
image registries. For instance, you can create an image that includes a specific
application and all its dependencies, ensuring consistent execution across different
environments.

Images become containers at runtime, that is, containers are created from images.
Containers can be created, started, stopped, deleted, and suspended.

Figure 2-5 Relationship between images, containers, and workloads

Cloud Container Engine
Kubernetes Basics 2 Basic Concepts

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

Namespace
A namespace in Kubernetes is a way to group and organize related resources and
objects, such as pods, Services, and Deployments. It provides a logical grouping
mechanism where data within different namespaces is isolated from each other,
while still allowing them to share basic resources like CPUs, memory, and storage
within the same cluster. By deploying different environments in separate
namespaces, such as development, testing, and production, you can ensure
environment isolation and simplify management and maintenance tasks.

In Kubernetes, most resource objects are associated with a specific namespace
(default), including pods, Services, ReplicationControllers, and Deployments.
However, there are also cluster-level resources like nodes and PersistentVolumes
(PVs) that are not tied to any specific namespace and provide services to resources
across all namespaces.

Service
In Kubernetes, a Service is used to define access policies for pods. There are
different types of Services with their respective values and behaviors:

● ClusterIP: This is the default Service type. It assigns a unique IP address to the
Service within the cluster. This IP address is only accessible within the cluster
and cannot be directly accessed from external networks. ClusterIP Services are
typically used for internal communication within a cluster.

● NodePort: A NodePort Service opens a static port (NodePort) on all nodes in
a cluster. You can access the Service through this port. This type of Service
allows external traffic to reach the Service by using the Elastic IP (EIP)
associated with the node and the specified port.

● LoadBalancer: This type of Service uses the load balancer provided by cloud
service providers to expose the Service to the Internet. An external load
balancer can distribute traffic to the NodePort and ClusterIP Services within
the cluster.

● DNAT: DNAT translates IP addresses for cluster nodes and enables multiple
nodes to share an EIP. This enhances reliability as an EIP does not need to be
bound to a single node. Any node failure does not affect access to the cluster.

Layer-7 Load Balancing (Ingress)
An ingress is a set of routing rules for requests entering a cluster. It provides
Services with URLs, load balancing, SSL termination, and HTTP routing for external
access to the cluster.

Network Policy
Network policies provide policy-based network control to isolate applications and
reduce the attack surface. A network policy uses label selectors to simulate
traditional segmented networks and controls traffic between them and traffic
from outside.

Cloud Container Engine
Kubernetes Basics 2 Basic Concepts

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

ConfigMap
A ConfigMap is used to store configuration data or configuration files as key-value
pairs. ConfigMaps are similar to secrets, but they are specifically designed to
handle non-sensitive string data in a more convenient manner.

Secret
A secret manages sensitive data like passwords, tokens, and keys without exposing
them in images or pod specifications. Secrets can be mounted to pods as volumes
or injected to pods as environment variables.

Label
In Kubernetes, a label is a key-value pair that is associated with a resource object
like a pod, Service, or Deployment. Labels are used to add extra, semantic
metadata to objects, enabling users and systems to effortlessly identify, organize,
and manage resources.

Label Selector
Label selectors in Kubernetes simplify resource management and operations by
allowing users to group and select resource objects based on their labels. This
enables batch operations on the selected resource groups, such as traffic
distribution, scaling, configuration updates, and monitoring.

Annotation
Annotations are defined as key-value pairs and are similar to labels. However, they
serve a different purpose and have different constraints.

Labels are used for selecting and managing resources, following strict naming
rules and defining metadata for Kubernetes objects. Label selectors use labels to
select resources for users.

On the other hand, annotations provide additional information defined by users.
While Kubernetes does not directly use annotations to control resource behavior,
external tools can access the information stored in annotations to extend
Kubernetes functions.

PersistentVolume
A PV is a storage resource in a cluster that can be either a local disk or network
storage. It exists independently of pods, so even if a pod using a PV is deleted, the
data stored in the PV will not be lost.

PersistentVolumeClaim
A PersistentVolumeClaim (PVC) is a request for PVs. It specifies the desired storage
size and access mode. Kubernetes will automatically find a suitable PV that meets
these requirements.

The relationship between PVs and PVCs is similar to that between pods and nodes.
Just as pods consume resources from nodes, PVCs consume resources from PVs.

Cloud Container Engine
Kubernetes Basics 2 Basic Concepts

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

Auto Scaling - HPA

Horizontal Pod Autoscaling (HPA) is a function that implements horizontal scaling
of pods in Kubernetes. HPA enables a Kubernetes cluster to automatically scale in
or out the number of pods based on CPU usage, memory usage, or other specified
metrics. By setting thresholds for target metrics, HPA dynamically adjusts the pod
count to ensure the best application performance.

Affinity and Anti-Affinity

If an application is not containerized, multiple components of the application may
run on the same virtual machine and processes communicate with each other.
However, in the case of containerization, software processes are packed into
different containers and each container has its own lifecycle. For example, the
transaction process is packed into a container while the monitoring/logging
process and local storage process are packed into other containers. If closely
related container processes run on distant nodes, routing between them will be
costly and slow.

● Affinity: Containers are scheduled onto the nearest node. For instance, when
application A and application B have frequent interactions, it is important to
use affinity to ensure that these two applications are placed in close proximity
or even on the same node. By doing so, any potential performance
degradation caused by slow routing can be avoided.

● Anti-affinity: Instances of the same application spread across different nodes
to achieve higher availability. Once a node is down, instances on other nodes
are not affected. For example, if an application has multiple replicas, it is
necessary to use the anti-affinity feature to deploy the replicas on different
nodes. In this way, no single point of failure will occur.

Node Affinity

By selecting labels, you can schedule pods to specific nodes.

Pod Affinity

You can deploy pods onto the same node to reduce consumption of network
resources.

Pod Anti-Affinity

You can deploy pods onto different nodes to reduce the impact of system
breakdowns. Anti-affinity deployment is also recommended for workloads that
may interfere with each other.

Resource Quota

Resource quotas enable administrators to set limits on the overall usage of
resources, such as CPU, memory, disk space, and network bandwidth, within
namespaces.

Cloud Container Engine
Kubernetes Basics 2 Basic Concepts

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

Resource Limit (LimitRange)
By default, all containers in Kubernetes have no CPU or memory limit. LimitRange
is a feature used to apply resource limits to objects, like pods, within a namespace.

It offers several capabilities, including:

● Restricts the minimum and maximum resource usage for each pod or
container in a namespace.

● Sets limits on the storage space that each PVC can request within a
namespace.

● Controls the ratio between the request and limit for a resource within a
namespace.

● Sets default requests and limits for compute resources within a namespace
and automatically applies them to multiple containers during container
execution.

Environment Variable
An environment variable is a variable whose value can affect the way a running
container will behave. A maximum of 30 environment variables can be defined at
container creation time. You can modify environment variables even after
workloads are deployed, increasing flexibility in workload configuration.

The function of setting environment variables on CCE is the same as that of
specifying ENV in a Dockerfile.

Chart
For your Kubernetes clusters, you can use Helm to manage software packages,
which are called charts. Helm is to Kubernetes what the apt command is to
Ubuntu or what the yum command is to CentOS. Helm can quickly search for,
download, and install charts.

Charts are a Helm packaging format. It describes only a group of related cluster
resource definitions, not a real container image package. A Helm chart contains
only a series of YAML files used to deploy Kubernetes applications. You can
customize some parameter settings in a Helm chart. When installing a chart,
Helm deploys resources in the cluster based on the YAML files defined in the
chart. Related container images are not included in the chart but are pulled from
the image repository defined in the YAML files.

Application developers need to push container image packages to the image
repository, use Helm charts to package dependencies, and preset some key
parameters to simplify application deployment.

Helm directly installs applications and their dependencies in the cluster based on
the YAML files in a chart. Application users can search for, install, upgrade, roll
back, and uninstall applications without defining complex deployment files.

Cloud Container Engine
Kubernetes Basics 2 Basic Concepts

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

https://helm.sh/

3 Containers and Kubernetes

3.1 Containers

Overview

Containers are a kernel virtualization technology originating with Linux. They
provide lightweight virtualization to isolate processes and resources. Containers
have become popular since the emergence of Docker. Docker is the first system
that allows containers to be portable on different machines. It simplifies the
packaging of both applications and the applications' repository and dependencies.
Even an OS file system can be packaged into a simple portable package that can
be used on any other machine that runs Docker.

Containers use similar resource isolation and allocation modes as VMs. The
difference between containers and VMs lies in that containers virtualize OSs but
not hardware, which makes containers more portable and efficient.

Figure 3-1 Containers vs VMs

Containers have the following advantages over VMs:

Cloud Container Engine
Kubernetes Basics 3 Containers and Kubernetes

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

● Higher system resource utilization
With no overhead for virtualizing hardware and running a complete OS,
containers outperform VMs in application execution speed, memory loss, and
file storage speed. Therefore, with same configurations, containers can run
more applications than VMs.

● Faster startup
Traditional VMs usually take several minutes to start an application. However,
Docker containerized applications run directly on the host kernel with no need
to start the entire OS, so they can start within seconds or even milliseconds,
greatly saving your time in development, testing, and deployment.

● Consistent running environments
Inconsistent development, test, and production environments are a common
issue in development. As a result, some issues cannot be detected prior to
rollout. A Docker container image includes everything (code, runtime, system
tools, system libraries, and settings) needed to run an application to ensure
consistency in application running environments.

● Easier migration
Docker provides a consistent execution environment across many platforms,
both physical and virtual. Regardless of what platform Docker is running on,
the applications run the same, which makes migrating them much easier.
With Docker, you do not have to worry that an application running fine on
one platform will fail in a different environment.

● Easier maintenance and extension
A Docker image is built up from a series of layers and these layers are
stacked. When you create a new container, you add a container layer on top
of image layers. In this way, duplicate layers are reused, which simplify
application maintenance and update as well as further image extension on
base images. In addition, Docker collaborates with open-source project teams
to maintain a large number of high-quality official images. You can directly
use them in production environments or custom your images based on these
images. This greatly improves the efficiency in creating images for
applications.

Typical Process of Using Docker Containers
Before using a Docker container, you should know the core components in Docker.

● Image: A Docker image is an executable package of software that includes
the data needed to run an application, such as code, runtime, file systems,
and executable file path of the runtime.

● Image repository: A Docker image repository stores Docker images and
entities to create and share container images. You can run an image on the
computer where it is edited, or you can upload it to an image repository,
download it to another computer, and then run it. Some repositories are
public, which allow everyone to pull images from them. Some are private,
which are accessible only to some users and machines.

● Container: A Docker container is usually a Linux container created from a
Docker image. A running container is a process running on the Docker host,
but it is isolated from the host and all other processes running on the host.
The process is also resource-limited, and it can access and use only resources
(such as CPUs and memory) allocated to it.

Cloud Container Engine
Kubernetes Basics 3 Containers and Kubernetes

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

Figure 3-2 shows the typical process of using containers.

Figure 3-2 Typical process of using Docker containers

1. A developer develops an application and creates an image on the
development machine.
Docker creates the image and stores it on the machine.

2. The developer sends a command to Docker for uploading the image.
After receiving the command, Docker uploads the local image to the image
repository.

3. The developer sends an image running command to the production machine.
After the command is received, Docker pulls the image from the image
repository to the machine and then runs a container based on the image.

Example
In the following example, Docker packages a container image based on an Nginx
image, runs an application based on the container image, and pushes the
container image to an image repository.

Installing Docker

Docker is compatible with almost all operating systems. Select a Docker version
that best suits your needs.

The following uses CentOS 7.5 64bit (40 GiB) as an example to describe how to
quickly install Docker using a Huawei Cloud image.

1. Add a yum repository:
yum install epel-release -y
yum clean all

2. Install the required software packages:

Cloud Container Engine
Kubernetes Basics 3 Containers and Kubernetes

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

yum install -y yum-utils device-mapper-persistent-data lvm2

3. Configure the Docker yum repository:
yum-config-manager --add-repo https://mirrors.huaweicloud.com/docker-ce/linux/centos/docker-
ce.repo
sed -i 's+download.docker.com+mirrors.huaweicloud.com/docker-ce+' /etc/yum.repos.d/docker-ce.repo

4. Check the available Docker version:
yum list docker-ce --showduplicates | sort -r

Information similar to the following is displayed:
Loading mirror speeds from cached hostfile
Loaded plugins: fastestmirror
docker-ce.x86_64 3:26.1.4-1.el7 docker-ce-stable
docker-ce.x86_64 3:26.1.3-1.el7 docker-ce-stable
docker-ce.x86_64 3:26.1.2-1.el7 docker-ce-stable
...

5. Install Docker of the specified version. You are advised to install Docker
18.06.0 to 24.0.9 to facilitate the configuration of the image accelerator..
sudo yum install docker-ce-24.0.9 docker-ce-cli-24.0.9 containerd.io

Docker 24.0.9 is being used as an example. If you choose a different version,
simply substitute 24.0.9 with the specific version number.

6. Start Docker:
systemctl enable docker # Set Docker to start automatically upon system startup.
systemctl start docker # Start Docker.

7. Check the installation result.
docker --version

Information similar to the following is displayed:
Docker version 24.0.9, build 2936816

Packaging a Docker Image

Docker provides a convenient way to package your application as a Dockerfile.
Dockerfile allows you to customize a simple Nginx image.

1. To configure an image accelerator, perform the following operations. (Image
accelerators can speed up the download of popular open source images,
addressing issues with slow or failed downloads from third-party repositories
like Docker Hub caused by network problems. These accelerators are available
in certain regions.)

a. Log in to the SWR console.
b. In the navigation pane, choose Image Resources > Image Center. Ensure

that the Image Center is available in the current region. For details, see
Notes and Constraints.

c. Click Image Accelerator. In the displayed dialog box, click to copy the
accelerator address.

Cloud Container Engine
Kubernetes Basics 3 Containers and Kubernetes

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

https://console-intl.huaweicloud.com/swr/?locale=en-us#/swr/dashboard
https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_0022.html#section1

Figure 3-3 Copying an accelerator address

d. Modify the /etc/docker/daemon.json file:
vim /etc/docker/daemon.json

Add the following content to the file:
{
 "registry-mirrors": ["Accelerator address"]
}

e. After the configuration is complete, restart the container engine:
systemctl restart docker

If the restart fails, check whether the registry-mirrors parameter is
configured in other locations within the OS, such as /etc/sysconfig/
docker and /etc/default/docker. If it is, delete the parameter and restart
the container engine.

f. View the Docker details:
docker info

If the value of the Registry Mirrors field is the accelerator address, the
accelerator has been configured.
...
Registry Mirrors:
 https://xxx.mirror.swr.myhuaweicloud.com/
...

2. Create a file named Dockerfile in the mynginx directory.
mkdir mynginx
cd mynginx
touch Dockerfile

3. Edit the Dockerfile file:
vim Dockerfile

Add the following content to the Dockerfile:
Use the Nginx image as the base image.
FROM nginx:latest

Run a command to modify index.html of the Nginx image.
RUN echo "hello world" > /usr/share/nginx/html/index.html

Permit external access to port 80 of the container.
EXPOSE 80

4. Package the image:
docker build -t hello .

In the preceding command, -t is used to add a tag to the image to name it. In
this example, the image name is hello. The period . indicates that the
packaging command is executed in the current directory.

5. Check whether the image has been built.

Cloud Container Engine
Kubernetes Basics 3 Containers and Kubernetes

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

docker images

If information similar to the following is displayed, the image has been built:
REPOSITORY TAG IMAGE ID CREATED SIZE
hello latest 1ff61881be30 10 seconds ago 236MB

Pushing the Image to an Image Repository

1. Log in to the SWR console. In the navigation pane, choose My Images. On
the page displayed, click Upload Through Client. In the dialog box displayed,
click Generate a temporary login command. Then, copy the command and
run it on the local host to log in to SWR.

2. Before uploading an image, specify a complete name for the image.
docker tag hello swr.cn-east-3.myhuaweicloud.com/container/hello:v1

In the preceding command, the parameters are as follows:

– swr.cn-east-3.myhuaweicloud.com is the repository address, which
varies with the region.

– container is the organization name. An organization is typically created
in SWR. If no organization is available, an organization will be
automatically created when an image is uploaded to SWR for the first
time. Each organization name is unique in a single region.

– v1 is the version allocated to the hello image.

3. Push the image to SWR:
docker push swr.cn-east-3.myhuaweicloud.com/container/hello:v1

4. Pull the image:
docker pull swr.cn-east-3.myhuaweicloud.com/container/hello:v1

3.2 Kubernetes

What Is Kubernetes?

Kubernetes is a containerized application software system that can be easily
deployed and managed. It facilitates container scheduling and orchestration.

For application developers, Kubernetes can be regarded as a cluster operating
system. Kubernetes provides functions such as service discovery, scaling, load
balancing, self-healing, and even leader election, freeing developers from
infrastructure-related configurations.

Cloud Container Engine
Kubernetes Basics 3 Containers and Kubernetes

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

https://kubernetes.io/

When you use Kubernetes, it is like you run a large number of servers as one on
which your applications run. Kubernetes enables you to deploy applications always
using the same method, regardless of the number of servers in a cluster.

Figure 3-4 Running applications in a Kubernetes cluster

Kubernetes Cluster Architecture
A Kubernetes cluster consists of master nodes (Masters) and worker nodes
(Nodes). Applications are deployed on worker nodes, and you can specify the
nodes for deployment.

NO TE

For CCE clusters, master nodes are hosted by CCE. You only need to create worker nodes.

The following figure shows the architecture of a Kubernetes cluster.

Figure 3-5 Kubernetes cluster architecture

Master node

A master node is the machine where the control plane components run, including
API server, scheduler, controller manager, and etcd.

● API server: a transit station for components to communicate with each other.
It receives external requests and writes data into etcd.

Cloud Container Engine
Kubernetes Basics 3 Containers and Kubernetes

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

● Controller manager: carries out cluster-level functions, such as component
replication, node tracing, and node fault fixing.

● Scheduler: schedules containers to nodes based on various conditions (such as
available resources and node affinity).

● etcd: provides distributed data storage for cluster configurations.

In a production environment, multiple master nodes are deployed to ensure high
cluster availability. For example, you can deploy three master nodes for your CCE
cluster.

Worker node

A worker node is a compute node for running containerized applications in a
cluster. A worker node consists of the following components:

● kubelet: communicates with the container runtime, interacts with the API
server, and manages containers on the node.

● kube-proxy: an access proxy between application components.
● Container runtime: an engine such as Docker software for downloading

images and running containers.

Kubernetes Scalability
Kubernetes makes the Container Runtime Interface (CRI), Container Network
Interface (CNI), and Container Storage Interface (CSI) open sourced. These
interfaces maximize Kubernetes scalability and allow Kubernetes to focus on
container scheduling.

● CRI: provides computing resources for a container runtime. It shields
differences between container engines and interacts with each container
engine through a unified interface.

● CNI: enables Kubernetes to support different networking implementations. For
example, the custom CNI add-on of CCE allows your Kubernetes clusters to
run in VPCs.

● CSI: enables Kubernetes to support various classes of storage. For example,
CCE can be interconnected with block storage (EVS), file storage (SFS), and
object storage (OBS) services.

Basic Objects in Kubernetes
The following figure describes the basic objects in Kubernetes and the
relationships between them.

Cloud Container Engine
Kubernetes Basics 3 Containers and Kubernetes

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

Figure 3-6 Basic Kubernetes objects

● Pod
Pods are the smallest deployable units of computing that you can create and
manage in Kubernetes. A pod is a group of one or more containers, with
shared storage and network resources, and a specification for how to run the
containers. Each pod has a separate IP address.

● Deployment
A Deployment manages a set of pods to run an application workload. It can
contain one or more pods. Each pod has the same role, and the system
automatically distributes requests to the pods of a Deployment.

● StatefulSet
A StatefulSet is used to manage stateful applications. Like Deployments,
StatefulSets manage a group of pods based on an identical container spec.
Where they differ is that StatefulSets maintain a fixed ID for each of their
pods. These pods are created based on the same declaration but cannot
replace each other. Each pod has a permanent ID regardless of how it is
scheduled.

● Job
A job is used to control batch tasks. Jobs are different from long-term servo
tasks (such as Deployments). The former can be started and terminated at
specific time, while the latter runs unceasingly unless it is terminated. The
pods managed by a job will be automatically removed after successfully
completing tasks based on user configurations.

● Cron job
A cron job is a time-based job. Similar to the crontab of Linux, it runs a
specified job in a specified time range.

● DaemonSet
A DaemonSet runs only one pod on each node in a cluster. This works well for
certain system-level applications such as log collection and resource

Cloud Container Engine
Kubernetes Basics 3 Containers and Kubernetes

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

monitoring since they must run on each node and need only a few pods. A
good example is kube-proxy.

● Service
A Service is used for pod access. With a fixed IP address, a Service forwards
access traffic to pods and balances load for these pods.

● Ingress
Services forward requests based on Layer 4 TCP and UDP protocols. Ingresses
can forward requests based on Layer 7 HTTPS and HTTPS protocols and make
forwarding more targeted by domain names and paths.

● ConfigMap
A ConfigMap stores configurations in key-value pairs required by applications.
ConfigMaps allow for the separation of configurations, enabling different
environments to have their own unique configurations.

● Secret
A secret lets you store and manage sensitive information, such as
authentication information, certificates, and private keys. Storing confidential
information in a secret is safer and more flexible than putting it verbatim in a
pod definition or in a container image.

● PersistentVolume (PV)
A PV describes a persistent data storage volume. It defines a directory for
persistent storage on a host machine, for example, a mount directory of a
network file system (NFS).

● PersistentVolumeClaim
Kubernetes provides PVCs to apply for persistent storage. With PVCs, you only
need to specify the type and capacity of storage without concerning about
how to create and release underlying storage resources.

Setting Up a Kubernetes Cluster
Kubernetes introduces multiple methods for setting up a Kubernetes cluster, such
as minikube and kubeadm.

If you do not want to create a Kubernetes cluster by coding, you can create one
on the CCE console. The following sections use clusters created on the CCE console
as examples.

Kubernetes Objects
Resources in Kubernetes can be described in YAML or JSON format. An object
consists of the following parts:

● typeMeta: metadata of the object type, specifying the API version and type of
the object.

● objectMeta: metadata of the object, including the object name and used
labels.

● spec: expected status of the object, for example, which image the object uses
and how many replicas the object has.

● status: actual status of the object, which can be viewed only after the object is
created. You do not need to specify the status when creating an object.

Cloud Container Engine
Kubernetes Basics 3 Containers and Kubernetes

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

https://kubernetes.io/docs/setup/

Figure 3-7 YAML description file

Running Applications on Kubernetes

Delete status from the content in Figure 3-7 and save it as the nginx-
deployment.yaml file, as shown below:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
 labels:
 app: nginx
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 3
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:alpine
 resources:

Cloud Container Engine
Kubernetes Basics 3 Containers and Kubernetes

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

 requests:
 cpu: 100m
 memory: 200Mi
 limits:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret

Use kubectl to access the cluster and run the following command:

kubectl create -f nginx-deployment.yaml
deployment.apps/nginx created

After the command is executed, three pods are created in the Kubernetes cluster.
You can run the following command to obtain the Deployment and pods:

kubectl get deploy
NAME READY UP-TO-DATE AVAILABLE AGE
nginx 3/3 3 3 9s

kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-685898579b-qrt4d 1/1 Running 0 15s
nginx-685898579b-t9zd2 1/1 Running 0 15s
nginx-685898579b-w59jn 1/1 Running 0 15s

By now, we have walked you through the Kubernetes basics of containers and
clusters, and provided you an example of how to use kubectl. The following
sections will go deeper into Kubernetes objects, such as how they are used and
related.

3.3 Using kubectl to Operate a Cluster

kubectl
kubectl is a command line tool for Kubernetes clusters. You can install kubectl on
any node and run kubectl commands to operate your Kubernetes clusters.

For details about how to install kubectl, see Connecting to a Cluster Using
kubectl. After connection, run the kubectl cluster-info command to view the
cluster information. The following shows an example:

kubectl cluster-info
Kubernetes master is running at https://*.*.*.*:5443
CoreDNS is running at https://*.*.*.*:5443/api/v1/namespaces/kube-system/services/coredns:dns/proxy

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.

Run the kubectl get nodes command to view information about nodes in the
cluster.

kubectl get nodes
NAME STATUS ROLES AGE VERSION
192.168.0.153 Ready <none> 7m v1.15.6-r1-20.3.0.2.B001-15.30.2
192.168.0.207 Ready <none> 7m v1.15.6-r1-20.3.0.2.B001-15.30.2
192.168.0.221 Ready <none> 7m v1.15.6-r1-20.3.0.2.B001-15.30.2

For more kubectl commands, see kubectl Quick Reference.

Getting Started
get

Cloud Container Engine
Kubernetes Basics 3 Containers and Kubernetes

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html#section1
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0107.html#section1
https://kubernetes.io/docs/reference/kubectl/quick-reference/

The get command is used to obtain details about one or more resources in a
cluster.

This command prints a table of the most important information about all
resources, including cluster nodes, running pods, Deployments, and Services.

NO TICE

Many namespaces can be created in a cluster. If no namespace is specified in the
command, --namespace=default is used by default, which means, resources in
the default namespace are obtained.

Examples:

To obtain all pods with detailed information:

kubectl get pod -o wide

To obtain all pods running in all namespaces:

kubectl get pod --all-namespaces

To obtain the labels of all pods running in all namespaces:

kubectl get pod --show-labels

To list all namespaces of the node:

kubectl get namespace

NO TE

Similarly, you can run the kubectl get svc, kubectl get nodes, and kubectl get deploy
commands to obtain information about other resources.

To obtain the information of pods in the YAML format:

kubectl get pod <podname> -o yaml

To obtain the information of pods in the JSON format:

kubectl get pod <podname> -o json
kubectl get pod rc-nginx-2-btv4j -o=custom-columns=LABELS:.metadata.labels.app

NO TE

LABELS indicates a comma-separated list of user-defined column titles.
metadata.labels.app indicates the data to be listed in either YAML or JSON format.

create

The create command is used to create cluster resources based on files or input.

If you have a YAML or JSON file that defines the desired resource, you can use the
following command to create the resource specified in the file:

kubectl create -f <filename>

expose

The expose command exposes a resource as a new Kubernetes service. Possible
resources include a pod, Service, and Deployment.

Cloud Container Engine
Kubernetes Basics 3 Containers and Kubernetes

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

kubectl expose deployment <deployname> --port=81 --type=NodePort --target-port=80 --name=<service-
name>

NO TE

The command above creates a Service for the Deployment. The --port parameter specifies
the port that the Service will expose, the --type parameter determines the type of the
Service, and the --target-port parameter specifies the port of the backend pod associated
with the Service. Visiting ClusterIP:port allows you to access the applications in the cluster.

run

The run command runs a particular image in the cluster.

Example:

kubectl run <deployname> --image=nginx:latest

To run a particular image using a specified command:

kubectl run <deployname> --image=busybox --command -- ping example.com

set

The set command configures object resources.

Example:

To update the container image of a Deployment to version 1.0 in rolling mode:

kubectl set image deployment/<deployname> <containername>=<containername>:1.0

edit

The edit command edits a resource from the default editor.

Example:

To update a pod:

kubectl edit pod po-nginx-btv4j

The example command yields the same effect as the following command:

kubectl get pod po-nginx-btv4j -o yaml >> /tmp/nginx-tmp.yaml
vim /tmp/nginx-tmp.yaml
/*do some changes here */
kubectl replace -f /tmp/nginx-tmp.yaml

explain

The explain command views documents or reference documents.

Example:

To get documentation of pods:

kubectl explain pod

delete

The delete command deletes resources by resource name or label.

Example:

To delete a pod with minimal delay:

kubectl delete pod <podname> --now

Cloud Container Engine
Kubernetes Basics 3 Containers and Kubernetes

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

kubectl delete -f nginx.yaml
kubectl delete deployment <deployname>

Deployment Commands
rollout

The rollout command manages the rollout of a resource.

Examples:

To check the rollout status of a particular deployment:

kubectl rollout status deployment/<deployname>

To view the rollout history of a particular deployment:

kubectl rollout history deployment/<deployname>

To roll back to the previous deployment: (by default, a resource is rolled back to
the previous version)

kubectl rollout undo deployment/test-nginx

scale

The scale command sets a new size for a resource by adjusting the number of
resource replicas.

kubectl scale deployment <deployname> --replicas=<newnumber>

autoscale

The autoscale command automatically adjusts the number of replicas based on
the CPU usage of workloads. The autoscale command allows you to define a
range of replicas for a workload (such as Deployment, ReplicaSet, StatefulSet, or
ReplicationController). During running, the pods will be automatically scaled in or
out within this range based on the average CPU usage of all pods. If the target
usage is not specified or the parameter is set to a negative value, the default auto
scaling policy will be applied.

kubectl autoscale deployment <deployname> --min=<minnumber> --max=<maxnumber> --cpu-
percent=<cpu>

Cluster Management Commands
cordon, drain, uncordon*

If you need to upgrade a node or if a node becomes unavailable due to a
breakdown, you can use these commands to reschedule the pods running on that
node to other nodes. The procedure is as follows:

Step 1 Run the cordon command to mark a node as unschedulable. This means that new
pods will not be scheduled to that node.
kubectl cordon <nodename>

The <nodename> in CCE specifies the private network IP address of a node by
default.

Step 2 Run the drain command to evict pods on the node and smoothly migrate these
pods to other nodes:
kubectl drain <nodename> --ignore-daemonsets --delete-emptydir-data

Cloud Container Engine
Kubernetes Basics 3 Containers and Kubernetes

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

By using --ignore-daemonsets, the DaemonSet pods will be ignored. Additionally,
--delete-emptydir-data ensures that if there are pods using emptyDir, the node
will continue to be drained, and any local data associated with the node will be
deleted.

Step 3 Perform maintenance operations on the node, such as resetting the node.

Step 4 After node maintenance is completed, run the uncordon command to mark the
node as schedulable.
kubectl uncordon <nodename>

----End

cluster-info

To display the add-ons running in the cluster:

kubectl cluster-info

To dump current cluster information to stdout:

kubectl cluster-info dump

top*

The top command shows the usage of resources like CPU, memory, and storage in
a cluster. Ensure that the Kubernetes Metrics Server is running properly for this
command to work.

taint*

The taint command updates the taints on one or more nodes.

certificate*

The certificate command modifies the certificate resources.

Fault Diagnosis and Debugging Commands
describe

The describe command is similar to the get command. The main distinction is
that the get command provides detailed information about a resource, while the
describe command provides status information about a resource in a cluster. The
describe command is similar to the get command, but it does not support the -o
option. For resources of the same type, the describe command provides the same
output format and content.

NO TE

If you need specific information about a resource, you can use the get command for more
detailed information. On the other hand, if you want to check the status of a resource, such
as a pod that is not in the running state, you can use the describe command to obtain
more detailed status information.
kubectl describe pod <podname>

logs

The logs command prints the standard output of programs running inside a
container during pod execution. To display logs in the tail -f mode, run this
command with the -f flag.

Cloud Container Engine
Kubernetes Basics 3 Containers and Kubernetes

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

kubectl logs -f <podname>

exec

The kubectl exec command functions similarly to the Docker exec usage. When
handling multiple containers within a pod, you can use the -c option to specify the
desired container.

kubectl exec -it <podname> -- bash
kubectl exec -it <podname> -c <containername> -- bash

port-forward*

The port-forward command forwards one or more local ports to a pod.

Example:

To listen to local port 5000 and forward it to port 6000 in a pod created in <my-
deployment>:

kubectl port-forward deploy/my-deployment 5000:6000

cp

To copy files or directories and paste them to a container:

kubectl cp /tmp/foo <podname>:/tmp/bar -c <containername>

The local files in /tmp/foo are copied and pasted to the /tmp/bar directory of a
specific container in a remote pod.

auth*

The auth command inspects authorization.

attach*

The attach command is similar to the logs -f command and attaches to a process
that is already running inside an existing container. To exit, run the ctrl-c
command. If a pod contains multiple containers, to view the output of a specific
container, use -c <containername> following <podname> to specify a container.

kubectl attach <podname> -c <containername>

Advanced Commands
replace

The replace command updates or replaces an existing resource. If you need to
modify certain attributes of a resource, you can directly edit the original YAML file
and use the replace command to make changes such as adjusting the number of
replicas, adding or modifying labels, changing the image version, or modifying the
port.

kubectl replace -f <filename>

NO TICE

Resource names cannot be updated.

apply*

Cloud Container Engine
Kubernetes Basics 3 Containers and Kubernetes

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

The apply command offers stricter control over resource updates compared to the
patch and edit commands. It allows you to maintain resource configurations in
source control. When an update occurs, the configuration file is pushed to the
server, and the kubectl apply command applies the latest configuration to the
resource. Kubernetes compares the current configuration file with the applied
configuration before applying the update, updating only the changed parts. The
apply command works similarly to the replace command, but it does not delete
the original resources and recreate new ones. Instead, it updates the existing
resources. Additionally, kubectl apply adds a comment to the resource, marking
the current apply operation, similar to a Git operation.

kubectl apply -f <filename>

patch

If you want to modify attributes of a running container without first deleting the
container or using the replace command, the patch command is to the rescue.
The patch command updates field(s) of a resource using strategic merge patch, a
JSON merge patch, or a JSON patch. For example, to change a pod label from
app=nginx1 to app=nginx2 while the pod is running:

kubectl patch pod <podname> -p '{"metadata":{"labels":{"app":"nginx2"}}}'

convert*

The convert command converts configuration files between different API versions.

Configuration Commands

label

The label command update labels on a resource.

kubectl label pods my-pod new-label=newlabel

annotate

The annotate command update annotations on a resource.

kubectl annotate pods my-pod icon-url=http://*****

completion

The completion command provides autocompletion for shell.

Other Commands

api-versions

The api-versions command prints the supported API versions.

kubectl api-versions

api-resources

The api-resources command prints the supported API resources.

kubectl api-resources

config*

Cloud Container Engine
Kubernetes Basics 3 Containers and Kubernetes

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

The config command modifies kubeconfig files. An example use case of this
command is to configure authentication information in API calls.

help

The help command gets all command references.

version

The version command prints the client and server version information for the
current context.

kubectl version

Cloud Container Engine
Kubernetes Basics 3 Containers and Kubernetes

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

4 Pods, Labels, and Namespaces

4.1 Pod: the Smallest Scheduling Unit in Kubernetes

Overview of Pod
A pod is the smallest, simplest unit in the Kubernetes object model that you create
or deploy. A pod is a group of one or more containers, with shared storage and
network resources, and a specification for how to run the containers. Each pod has
a separate IP address.

Pods can be used in either of the following ways:

● A pod runs only one container. This is the most common usage of pods in
Kubernetes. You can consider a pod as a container, but Kubernetes directly
manages pods instead of containers.

● A pod runs multiple containers that need to be tightly coupled. In this
scenario, a pod contains a main container and several sidecar containers, as
shown in Figure 4-1. For example, the main container is a web server that
provides file services from a fixed directory, and sidecar containers periodically
download files to this fixed directory.

Cloud Container Engine
Kubernetes Basics 4 Pods, Labels, and Namespaces

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

Figure 4-1 Pod running multiple containers

In Kubernetes, pods are rarely created directly. Instead, Kubernetes controller
manages pods through pod instances such as Deployments and jobs. A controller
typically uses a pod template to create pods. The controller can also manage
multiple pods and provide functions such as replica management, rolling upgrade,
and self-healing.

Creating a Pod

Kubernetes resources can be described using YAML or JSON files. The following
example YAML file describes a pod named nginx. This pod contains a container
named container-0 that uses the nginx:alpine image with 100m CPUs and 200
MiB of memory.

apiVersion: v1 # Kubernetes API version
kind: Pod # Kubernetes resource type
metadata:
 name: nginx # Pod name
spec: # A pod specification
 containers:
 - image: nginx:alpine # Image nginx:alpine
 name: container-0 # Container name
 resources: # Resources required for this container
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets: # Secret used to pull the image, which must be default-secret on CCE
 - name: default-secret

As shown in the YAML comments, the YAML file includes:

● metadata: information such as name, label, and namespace
● spec: a pod specification such as image and volume used

If you check a Kubernetes resource, you can also see the status field, which
indicates the status of the Kubernetes resource. This field does not need to be set

Cloud Container Engine
Kubernetes Basics 4 Pods, Labels, and Namespaces

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

when the resource is created. This example is a minimum set of parameters. Other
parameters will be described later.

After defining the pod, you can use kubectl to create the pod. Assume that the
preceding YAML file is named nginx.yaml, run the following command to create
the pod. -f indicates that you will create the pod from a file.

$ kubectl create -f nginx.yaml
pod/nginx created

After the pod is created, you can run the kubectl get pods command to obtain
the pod status.

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx 1/1 Running 0 40s

The preceding command output indicates that the nginx pod is in the Running
state. READY is 1/1, indicating that this pod has one container that is in the
Ready state.

You can run the kubectl get command to obtain the information of a pod. -o
yaml indicates that the information is returned in YAML format, and -o json
indicates that the information is returned in JSON format.

$ kubectl get pod nginx -o yaml

You can also run the kubectl describe command to view the pod details.

$ kubectl describe pod nginx

Before deleting a pod, Kubernetes terminates all the containers that are part of
that pod. Kubernetes sends a SIGTERM signal to the containers' main process and
waits a period (30 by default) for it to shut down gracefully. If the process is not
shut down during this period, Kubernetes will send a SIGKILL signal to stop the
process.

You can stop and delete a pod in multiple methods. For example, you can delete a
pod by name, as shown below:

$ kubectl delete po nginx
pod "nginx" deleted

Delete multiple pods at one time:

$ kubectl delete po pod1 pod2

Delete all pods:

$ kubectl delete po --all
pod "nginx" deleted

Delete pods by labels. For details about labels, see Label for Managing Pods.

$ kubectl delete po -l app=nginx
pod "nginx" deleted

Environment Variables
You can use environment variables to set up a container runtime environment.

Environment variables add flexibility to configuration. The custom environment
variables will take effect when the container is running. This frees you from
rebuilding the container image.

Cloud Container Engine
Kubernetes Basics 4 Pods, Labels, and Namespaces

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

In the following shows example, you only need to configure the environment
variable spec.containers.env.

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - image: nginx:alpine
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 env: # Environment variable
 - name: env_key
 value: env_value
 imagePullSecrets:
 - name: default-secret

Run the following command to check the environment variables in the container.
The value of the env_key environment variable is env_value.

$ kubectl exec -it nginx -- env
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=nginx
TERM=xterm
env_key=env_value

Pods can use ConfigMap and secret as environment variables. For details, see
Referencing a ConfigMap as an Environment Variable and Referencing a
Secret as an Environment Variable.

Setting Container Startup Commands
Starting a container is to start its main process. You need to make some
preparations before starting a main process. For example, you may need to
configure or initialize MySQL databases before running MySQL servers. All of
these operations can be performed by configuring ENTRYPOINT or CMD in a
Dockerfile during image creation. As shown in the following example, configure
the ENTRYPOINT ["top", "-b"] command in the Dockerfile. Then, the system will
automatically perform the preparation operations during container startup.

FROM ubuntu
ENTRYPOINT ["top", "-b"]

When calling an API, you only need to configure pods' containers.command field
to define the command and their arguments. The first parameter is the command
and the following parameters are arguments.

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - image: nginx:alpine
 name: container-0
 resources:
 limits:
 cpu: 100m

Cloud Container Engine
Kubernetes Basics 4 Pods, Labels, and Namespaces

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 command: # Boot command
 - top
 - "-b"
 imagePullSecrets:
 - name: default-secret

Container Lifecycle
Kubernetes provides container lifecycle hooks to enable containers to be aware
of events in their management lifecycle and run code implemented in a handler
when the corresponding lifecycle hook is executed. For example, if you want a
container to perform a certain operation before it is stopped, you can register a
hook. The following lifecycle hooks are provided:

● postStart: triggered immediately after a pod is started
● preStop: triggered immediately before a pod is stopped

You only need to set the lifecycle.postStart or lifecycle.preStop parameter of a
pod, as shown in the following example:
apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - image: nginx:alpine
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 lifecycle:
 postStart: # Post-start processing
 exec:
 command:
 - "/postStart.sh"
 preStop: # Pre-stop processing
 exec:
 command:
 - "/preStop.sh"
 imagePullSecrets:
 - name: default-secret

4.2 Liveness Probes
Overview

Kubernetes applications have the self-healing capability, that is, when an
application container crashes, the container can be detected and restarted
automatically. However, this rule does not work for deadlocks. Assume that a Java
program is having a memory leak. The program is unable to make any progress,
while the JVM process is running. To address this issue, Kubernetes introduces
liveness probes to check whether containers response normally and determine
whether to restart containers. This is a good health check rule.

Cloud Container Engine
Kubernetes Basics 4 Pods, Labels, and Namespaces

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/

It is advised to define the liveness probe for every pod to gain a better
understanding of pods' running statuses.

Supported detection rules are as follows:

● HTTP GET: The kubelet sends an HTTP GET request to the container. Any 2XX
or 3XX code indicates success. Any other code returned indicates failure.

● TCP Socket: The kubelet attempts to open a socket to your container on the
specified port. If it can establish a connection, the container is considered
healthy. If it fails to establish a connection, the container is considered a
failure.

● Exec: kubelet executes a command in the target container. If the command
succeeds, it returns 0, and kubelet considers the container to be alive and
healthy. If the command returns a non-zero value, kubelet kills the container
and restarts it.

In addition to liveness probes, readiness probes are also available for you to detect
pod status. For details, see Readiness Probes.

HTTP GET
HTTP GET is the most common detection method. An HTTP GET request is sent to
a container. Any 2xx or 3xx code returned indicates that the container is healthy.
The following example shows how to define such a request:

apiVersion: v1
kind: Pod
metadata:
 name: liveness-http
spec:
 containers:
 - name: liveness
 image: nginx:alpine
 livenessProbe: # Liveness probe
 httpGet: # HTTP GET definition
 path: /
 port: 80
 imagePullSecrets:
 - name: default-secret

Create pod liveness-http.

$ kubectl create -f liveness-http.yaml
pod/liveness-http created

The probe sends an HTTP Get request to port 80 of the container. If the request
fails, Kubernetes restarts the container.

View details of pod liveness-http.

$ kubectl describe po liveness-http
Name: liveness-http
......
Containers:
 liveness:

 State: Running
 Started: Mon, 03 Aug 2020 03:08:55 +0000
 Ready: True
 Restart Count: 0
 Liveness: http-get http://:80/ delay=0s timeout=1s period=10s #success=1 #failure=3
 Environment: <none>
 Mounts:

Cloud Container Engine
Kubernetes Basics 4 Pods, Labels, and Namespaces

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

 /var/run/secrets/kubernetes.io/serviceaccount from default-token-vssmw (ro)
......

The preceding output reports that the pod is Running with Restart Count being
0, which indicates that the container is normal and no restarts have been
triggered. If the value of Restart Count is not 0, the container has been restarted.

TCP Socket
TCP Socket: The kubelet attempts to open a socket to your container on the
specified port. If it can establish a connection, the container is considered healthy.
If it fails to establish a connection, the container is considered a failure. For
detailed defining method, see the following example.

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: liveness
 name: liveness-tcp
spec:
 containers:
 - name: liveness
 image: nginx:alpine
 livenessProbe: # Liveness probe
 tcpSocket:
 port: 80
 imagePullSecrets:
 - name: default-secret

Exec
kubelet executes a command in the target container. If the command succeeds, it
returns 0, and kubelet considers the container to be alive and healthy. The
following example shows how to define the command.

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: liveness
 name: liveness-exec
spec:
 containers:
 - name: liveness
 image: nginx:alpine
 args:
 - /bin/sh
 - -c
 - touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600
 livenessProbe: # Liveness probe
 exec: # Exec definition
 command:
 - cat
 - /tmp/healthy
 imagePullSecrets:
 - name: default-secret

In the preceding configuration file, kubelet executes the command cat /tmp/
healthy in the container. If the command succeeds and returns 0, the container is
considered healthy. For the first 30 seconds, there is a /tmp/healthy file. So
during the first 30 seconds, the command cat /tmp/healthy returns a success
code. After 30 seconds, the /tmp/healthy file is deleted. The probe will then
consider the pod to be unhealthy and restart it.

Cloud Container Engine
Kubernetes Basics 4 Pods, Labels, and Namespaces

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

Advanced Settings of a Liveness Probe

The describe command of liveness-http returns the following information:

Liveness: http-get http://:80/ delay=0s timeout=1s period=10s #success=1 #failure=3

This is the detailed configuration of the liveness probe.

● delay=0s indicates that the probe starts immediately after the container is
started.

● timeout=1 indicates that the container must respond within one second.
Otherwise, the health check is recorded as failed.

● period=10s indicates that the probe checks containers every 10 seconds.
● #success=1 indicates that the operation is recorded as successful if it is

successful for once.
● #failure=3 indicates that a container will be restarted after three consecutive

failures.

The preceding liveness probe indicates that the probe checks containers
immediately after they are started. If a container does not respond within one
second, the check is recorded as failed. The health check is performed every 10
seconds. If the check fails for three consecutive times, the container is restarted.

These are the default configurations when the probe is created. You can customize
them as follows:
apiVersion: v1
kind: Pod
metadata:
 name: liveness-http
spec:
 containers:
 - name: liveness
 image: nginx:alpine
 livenessProbe:
 httpGet:
 path: /
 port: 80
 initialDelaySeconds: 10 # Liveness probes are initiated 10s after a container starts.
 timeoutSeconds: 2 # The container must respond within 2s. Otherwise, it is considered failed.
 periodSeconds: 30 # The probe is performed every 30s.
 successThreshold: 1 # The container is considered healthy as long as the probe succeeds once.
 failureThreshold: 3 # The container is considered unhealthy after three consecutive failures.

Normally, the value of initialDelaySeconds must be greater than 0, because it
takes a while for the application to be ready. The probe often fails if the probe is
initiated before the application is ready.

In addition, you can set the value of failureThreshold to be greater than 1. In this
way, the kubelet checks the container for multiple times in one probe rather than
performing the probe for multiple times.

Configuring a Liveness Probe
● What to check

An effective liveness probe should check all the key parts of an application
and use a dedicated URL, such as /health. When the URL is accessed, the
probe is triggered and a result is returned. Note that no authentication should
be involved. Otherwise, the probe keeps failing and restarting the container.

Cloud Container Engine
Kubernetes Basics 4 Pods, Labels, and Namespaces

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

In addition, a probe must not check parts that have external dependencies.
For example, if a frontend web server cannot connect to a database, the web
server should not be considered unhealthy for the connection failure.

● To be lightweight
A liveness probe must not occupy too many resources or certain resources for
too long. Otherwise, resource shortage may affect service running. For
example, the HTTP GET method is recommended for a Java application. If the
Exec method is used, the JVM startup process occupies too many resources.

4.3 Label for Managing Pods

Overview
As resources increase, managing resources becomes essential. Labels allow you to
easily and efficiently manage almost all the resources in Kubernetes.

A label is a key-value pair. It can be set either during or after resource creation.
You can easily modify it when needed at any time.

The following figures show how labels work. Assume that you have multiple pods
of various kinds. It could be challenging when you manage them.

Figure 4-2 Pods without classification

After we add labels to them. It is much clearer.

Cloud Container Engine
Kubernetes Basics 4 Pods, Labels, and Namespaces

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

Figure 4-3 Pods classified using labels

Adding a Label

The following example shows how to add labels when you are creating a pod.

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels: # Add two labels to the pod.
 app: nginx
 env: prod
spec:
 containers:
 - image: nginx:alpine
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret

After you add labels to a pod, you can view the labels by adding --show-labels
when querying the pod.

$ kubectl get pod --show-labels
NAME READY STATUS RESTARTS AGE LABELS
nginx 1/1 Running 0 50s app=nginx,env=prod

You can also use -L to query only certain labels.

$ kubectl get pod -L app,env
NAME READY STATUS RESTARTS AGE APP ENV
nginx 1/1 Running 0 1m nginx prod

For an existing pod, you can run the kubectl label command to add labels.

$ kubectl label pod nginx creation_method=manual
pod/nginx labeled

$ kubectl get pod --show-labels
NAME READY STATUS RESTARTS AGE LABELS
nginx 1/1 Running 0 50s app=nginx, creation_method=manual,env=prod

Cloud Container Engine
Kubernetes Basics 4 Pods, Labels, and Namespaces

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

Modifying a Label

Add --overwrite to the command to modify a label.

$ kubectl label pod nginx env=debug --overwrite
pod/nginx labeled

$ kubectl get pod --show-labels
NAME READY STATUS RESTARTS AGE LABELS
nginx 1/1 Running 0 50s app=nginx,creation_method=manual,env=debug

4.4 Namespace for Grouping Resources

Overview

Although labels are simple and efficient, too many labels can cause chaos and
make querying inconvenient. Labels can overlap with each other, which is not
suitable for certain scenarios. This is where namespace comes in. Namespaces
allow you to isolate and manage resources in a more systematic way. Multiple
namespaces can divide systems that contain multiple components into different
non-overlapped groups. Namespaces also enable you to divide cluster resources
between users. In this way, multiple teams can share one cluster.

Resources can share the same name as long as they are in different namespaces.
Unlike most resources in Kubernetes can be managed by namespace, global
resources such as worker nodes and PVs do not belong to a specific namespace.
Later sections will discuss this topic in detail.

Run the following command to query namespaces in the current cluster:

$ kubectl get ns
NAME STATUS AGE
default Active 36m
kube-node-realease Active 36m
kube-public Active 36m
kube-system Active 36m

By now, we are performing operations in the default namespace. When kubectl
get is used but no namespace is specified, the default namespace is used by
default.

You can run the following command to view resources in namespace kube-
system.

$ kubectl get po --namespace=kube-system
NAME READY STATUS RESTARTS AGE
coredns-7689f8bdf-295rk 1/1 Running 0 9m11s
coredns-7689f8bdf-h7n68 1/1 Running 0 11m
everest-csi-controller-6d796fb9c5-v22df 2/2 Running 0 9m11s
everest-csi-driver-snzrr 1/1 Running 0 12m
everest-csi-driver-ttj28 1/1 Running 0 12m
everest-csi-driver-wtrk6 1/1 Running 0 12m
icagent-2kz8g 1/1 Running 0 12m
icagent-hjz4h 1/1 Running 0 12m
icagent-m4bbl 1/1 Running 0 12m

You can see that there are many pods in kube-system. coredns is used for service
discovery, everest-csi for connecting to storage services, and icagent for
connecting to the monitoring system.

Cloud Container Engine
Kubernetes Basics 4 Pods, Labels, and Namespaces

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

These general, must-have applications are put in the kube-system namespace to
isolate them from other pods. They are invisible to and free from being affected
by resources in other namespaces.

Creating a Namespace
Define a namespace.

apiVersion: v1
kind: Namespace
metadata:
 name: custom-namespace

Run the kubectl command to create it.

$ kubectl create -f custom-namespace.yaml
namespace/custom-namespace created

You can also run the kubectl create namespace command to create a
namespace.

$ kubectl create namespace custom-namespace
namespace/custom-namespace created

Create resources in the namespace.

$ kubectl create -f nginx.yaml -n custom-namespace
pod/nginx created

By now, custom-namespace has a pod named nginx.

The Isolation function of Namespaces
Namespaces are used to group resources only for organization purposes. Running
objects in different namespaces are not essentially isolated. For example, if pods in
two namespaces know the IP address of each other and the underlying network
on which Kubernetes depends does not provide network isolation between
namespaces, the two pods can access each other.

Cloud Container Engine
Kubernetes Basics 4 Pods, Labels, and Namespaces

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

5 Pod Orchestration and Scheduling

5.1 Deployments

Overview of Deployment
A pod is the smallest and simplest unit that you create or deploy in Kubernetes. It
is designed to be an ephemeral, one-off entity. A pod can be evicted when node
resources are insufficient and disappears along with a cluster node failure.
Kubernetes provides controllers to manage pods. Controllers can create and
manage pods, and provide replica management, rolling upgrade, and self-healing
capabilities. The most commonly used controller is Deployment.

Figure 5-1 Relationship between a Deployment and pods

A Deployment can contain one or more pods. These pods have the same role.
Therefore, the system automatically distributes requests to multiple pods of a
Deployment.

A Deployment integrates a lot of functions, including online deployment, rolling
upgrade, replica creation, and restoration of online jobs. To some extent,
Deployments can be used to realize unattended rollout, which greatly reduces
difficulties and operation risks in the rollout process.

Cloud Container Engine
Kubernetes Basics 5 Pod Orchestration and Scheduling

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

Creating a Deployment
In the following example, a Deployment named nginx is created, and two pods
are created from the nginx:latest image. Each pod occupies 100m CPUs and 200
MiB of memory.

apiVersion: apps/v1 # Note the difference with a pod. It is apps/v1 instead of v1 for a Deployment.
kind: Deployment # The resource type is Deployment.
metadata:
 name: nginx # Name of the Deployment
spec:
 replicas: 2 # Number of pods. There are always two running pods for the Deployment.
 selector: # Label selector
 matchLabels:
 app: nginx
 template: # Definition of a pod, which is used to create pods. It is also known as pod template.
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - image: nginx:latest
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret

In this definition, the name of the Deployment is nginx, and spec.replicas defines
the number of pods (the Deployment controls two pods). spec.selector is a label
selector, indicating that the Deployment selects the pod whose label is app=nginx.
spec.template is the definition of the pod and is the same as that defined in
Pods.

Save the definition of the Deployment to deployment.yaml and use kubectl to
create the Deployment.

Run kubectl get to view the Deployment and pods. In the following example, the
value of READY is 2/2. The first 2 indicates that two pods are running, and the
second 2 indicates that two pods are expected in this Deployment. The value 2 of
AVAILABLE indicates that two pods are available.

$ kubectl create -f deployment.yaml
deployment.apps/nginx created

$ kubectl get deploy
NAME READY UP-TO-DATE AVAILABLE AGE
nginx 2/2 2 2 4m5s

How Does the Deployment Control Pods?
Obtain pods, shown as below:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-7f98958cdf-tdmqk 1/1 Running 0 13s
nginx-7f98958cdf-txckx 1/1 Running 0 13s

If you delete a pod, a new pod is immediately created. As mentioned above, the
Deployment ensures that there are two pods running. If a pod is deleted, the

Cloud Container Engine
Kubernetes Basics 5 Pod Orchestration and Scheduling

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

Deployment creates a new pod. If a pod becomes faulty, the Deployment
automatically restarts the pod.
$ kubectl delete pod nginx-7f98958cdf-txckx

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-7f98958cdf-tdmqk 1/1 Running 0 21s
nginx-7f98958cdf-tesqr 1/1 Running 0 1s

You see two pods, nginx-7f98958cdf-tdmqk and nginx-7f98958cdf-tesqr. nginx
is the name of the Deployment. -7f98958cdf-tdmqk and -7f98958cdf-tesqr are
the suffixes randomly generated by Kubernetes.

You may notice that the two suffixes share the same content 7f98958cdf in the
first part. This is because the Deployment does not control the pods directly, but
through a controller named ReplicaSet. You can run the following command to
obtain the ReplicaSet, where rs is the abbreviation of ReplicaSet:
$ kubectl get rs
NAME DESIRED CURRENT READY AGE
nginx-7f98958cdf 2 2 2 1m

The ReplicaSet is named nginx-7f98958cdf, in which the suffix -7f98958cdf is
generated randomly.

As shown in Figure 5-2, the Deployment controls the ReplicaSet, which then
controls pods.

Figure 5-2 How does the Deployment control a pod

If you run the kubectl describe command to view the details of the Deployment,
you can see the ReplicaSet (NewReplicaSet: nginx-7f98958cdf (2/2 replicas
created)). In Events, the number of pods of the ReplicaSet is scaled out to 2. In
practice, you may not operate ReplicaSet directly, but understanding that a
Deployment controls a pod by controlling a ReplicaSet helps you locate problems.
$ kubectl describe deploy nginx
Name: nginx

Cloud Container Engine
Kubernetes Basics 5 Pod Orchestration and Scheduling

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

Namespace: default
CreationTimestamp: Sun, 16 Dec 2018 19:21:58 +0800
Labels: app=nginx

...

NewReplicaSet: nginx-7f98958cdf (2/2 replicas created)
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal ScalingReplicaSet 5m deployment-controller Scaled up replica set nginx-7f98958cdf to 2

Upgrade
In real-world applications, upgrading is a common occurrence. Deployment
effortlessly facilitates application upgrades.

You can set different upgrade policies for a Deployment:

● RollingUpdate: New pods are created gradually and then old pods are
deleted. This is the default policy.

● Recreate: The current pods are deleted and then new pods are created.

The Deployment can be upgraded in a declarative mode. You only need to modify
the YAML definition of the Deployment. For example, run the kubectl edit
command to change the Deployment image to nginx:alpine. After the
modification, check the ReplicaSet and pods. The query result shows that a new
ReplicaSet is created and the pods are re-created.

$ kubectl edit deploy nginx

$ kubectl get rs
NAME DESIRED CURRENT READY AGE
nginx-6f9f58dffd 2 2 2 1m
nginx-7f98958cdf 0 0 0 48m

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-6f9f58dffd-tdmqk 1/1 Running 0 1m
nginx-6f9f58dffd-tesqr 1/1 Running 0 1m

The Deployment can use the maxSurge and maxUnavailable parameters to
control the proportion of pods to be re-created during the upgrade, which is useful
in many scenarios. The configuration is as follows:

spec:
 strategy:
 rollingUpdate:
 maxSurge: 1
 maxUnavailable: 0
 type: RollingUpdate

● maxSurge specifies the maximum number of pods that can exist over
spec.replicas in the Deployment. The default value is 25%. For example, if
spec.replicas is set to 4, no more than 5 pods can exist during the upgrade
process, where the upgrade step is 1. The absolute number is calculated from
the percentage by rounding up. The value can also be set to an absolute
number.

● maxUnavailable specifies the maximum number of pods that can be
unavailable during the update process. The default value is 25%. For example,
if spec.replicas is set to 4, at least 3 pods exist during the upgrade process,
where the deletion step is 1. The value can also be set to an absolute number.

Cloud Container Engine
Kubernetes Basics 5 Pod Orchestration and Scheduling

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

In the preceding example, the value of spec.replicas is 2. If both maxSurge and
maxUnavailable are the default value 25%, maxSurge allows a maximum of
three pods to exist (2 x 1.25 = 2.5, rounded up to 3), and maxUnavailable does
not allow a maximum of two pods to be unavailable (2 x 0.75 = 1.5, rounded up
to 2). During the upgrade process, there will always be two pods running. Each
time a new pod is created, an old pod is deleted, until all pods are new.

Rollback
Rollback is to roll an application back to the earlier version when a fault occurs
during the upgrade. Applications that run in Deployments can be easily rolled
back to the earlier version.

For example, if the image of an upgraded Deployment is faulty, run the kubectl
rollout undo command to roll back the Deployment.

$ kubectl rollout undo deployment nginx
deployment.apps/nginx rolled back

A Deployment can be easily rolled back because it uses a ReplicaSet to control a
pod. After the upgrade, the previous ReplicaSet still exists. The Deployment is
rolled back by using the previous ReplicaSet to re-create the pod. The number of
ReplicaSets stored in a Deployment can be restricted by the revisionHistoryLimit
parameter. The default value is 10.

5.2 StatefulSets

Overview of StatefulSet
All pods under a Deployment have the same characteristics except for the name
and IP address. If required, a Deployment can use a pod template to create new
pods. If not required, the Deployment can delete any one of the pods.

However, Deployments cannot meet the requirements in some distributed
scenarios when each pod requires its own status or in a distributed database
where each pod requires independent storage.

Distributed stateful applications involve different roles for different responsibilities.
For example, databases work in active/standby mode, and pods depend on each
other. To deploy stateful applications in Kubernetes, ensure pods meet the
following requirements:

● Each pod must have a fixed identifier so that it can be recognized by other
pods.

● Separate storage resources must be configured for each pod. In this way, the
original data can be retrieved after a pod is deleted and restored. Otherwise,
the pod status will be changed after the pod is rebuilt.

To address the preceding requirements, Kubernetes provides StatefulSets.

1. StatefulSets provide a fixed name for each pod following a fixed number
ranging from 0 to N. After a pod is rescheduled, the pod name and the
hostname remain unchanged.

2. StatefulSets use a headless Service to allocate a fixed domain name for each
pod.

Cloud Container Engine
Kubernetes Basics 5 Pod Orchestration and Scheduling

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

3. StatefulSets create PVCs with fixed identifiers to ensure that pods can access
the same persistent data after being rescheduled.

Figure 5-3 StatefulSet

Creating a Headless Service

A headless Service is required by a StatefulSet for accessing pods.

Use the following file to describe the headless Service:

● spec.clusterIP: must be set to None to indicate a headless Service.
● spec.ports.port: number of the port for communication between pods.
● spec.ports.name: name of the port for communication between pods.
apiVersion: v1
kind: Service # The object type is Service.
metadata:
 name: nginx
 labels:
 app: nginx
spec:
 ports:
 - name: nginx # Name of the port for communication between pods
 port: 80 # Number of the port for communication between pods
 selector:
 app: nginx # Select the pod labeled with app:nginx.
 clusterIP: None # Set this parameter to None, indicating a headless Service.

Run the following command to create a headless Service:

kubectl create -f headless.yaml
service/nginx created

After the Service is created, check the Service information.

kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nginx ClusterIP None <none> 80/TCP 5s

Creating a StatefulSet

The YAML definition of StatefulSets is basically the same as that of other objects.
The differences are as follows:

Cloud Container Engine
Kubernetes Basics 5 Pod Orchestration and Scheduling

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

● serviceName specifies the headless Service used by a StatefulSet. You are
required to configure this parameter.

● volumeClaimTemplates is used to apply for a PVC. A template named data
is defined, which will create a PVC for each pod. storageClassName specifies
the persistent StorageClass. For details, see PersistentVolumes,
PersistentVolumeClaims, and StorageClasses. volumeMounts specifies
storage to mount to pods. If no storage is required, you can delete the
volumeClaimTemplates and volumeMounts fields.

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: nginx
spec:
 serviceName: nginx # Name of the headless Service
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: container-0
 image: nginx:alpine
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 volumeMounts: # Storage to be mounted to the pod
 - name: data
 mountPath: /usr/share/nginx/html # Mount storage to /usr/share/nginx/html.
 imagePullSecrets:
 - name: default-secret
 volumeClaimTemplates:
 - metadata:
 name: data
 spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi
 storageClassName: csi-nas # Persistent StorageClass

Run the following command to create the StatefulSet:

kubectl create -f statefulset.yaml
statefulset.apps/nginx created

After the command is executed, check the StatefulSet and pods. The suffix of the
pod names starts from 0 and increases to 2.

kubectl get statefulset
NAME READY AGE
nginx 3/3 107s

kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-0 1/1 Running 0 112s
nginx-1 1/1 Running 0 69s
nginx-2 1/1 Running 0 39s

Cloud Container Engine
Kubernetes Basics 5 Pod Orchestration and Scheduling

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

Manually delete the nginx-1 pod and check the pods again. It is found that a pod
with the same name is created. According to 5s under AGE, the nginx-1 pod is
newly created.

kubectl delete pod nginx-1
pod "nginx-1" deleted

kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-0 1/1 Running 0 3m4s
nginx-1 1/1 Running 0 5s
nginx-2 1/1 Running 0 1m10s

Access pods and check their hostnames, which are nginx-0, nginx-1, and nginx-2.

kubectl exec nginx-0 -- sh -c 'hostname'
nginx-0
kubectl exec nginx-1 -- sh -c 'hostname'
nginx-1
kubectl exec nginx-2 -- sh -c 'hostname'
nginx-2

Check the PVCs created by the StatefulSet. These PVCs are named in the format of
"PVC name-StatefulSet name-No." and are in the Bound state.

kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS
AGE
data-nginx-0 Bound pvc-f58bc1a9-6a52-4664-a587-a9a1c904ba29 1Gi RWX csi-nas
2m24s
data-nginx-1 Bound pvc-066e3a3a-fd65-4e65-87cd-6c3fd0ae6485 1Gi RWX csi-nas
101s
data-nginx-2 Bound pvc-a18cf1ce-708b-4e94-af83-766007250b0c 1Gi RWX csi-nas 71s

Network Identifier of a StatefulSet
After a StatefulSet is created, you can see that each pod has a fixed name. The
headless Service provides a fixed domain name for each pod by using DNS. In this
way, pods can be accessed using the domain names. Even if the IP address of a
pod changes when the pod is re-built, the domain name remains unchanged.

After a headless Service is created, it allocates a domain name in the following
format to each pod:

<Pod name>.<SVC name>.<Namespace>.svc.cluster.local

For example, the domain names of the preceding three pods are as follows:

● nginx-0.nginx.default.svc.cluster.local
● nginx-1.nginx.default.svc.cluster.local
● nginx-2.nginx.default.svc.cluster.local

In actual access, .<namespace>.svc.cluster.local can be omitted.

Create a pod from the tutum/dnsutils image. Then, access the container of the
pod and run the nslookup command to view the domain name of the pod. The IP
address of the pod can be parsed. The IP address of the DNS server is 10.247.3.10.
When a CCE cluster is created, the CoreDNS add-on is installed by default to
provide the DNS service. For details, see Kubernetes Networking.

$ kubectl run -i --tty --image tutum/dnsutils dnsutils --restart=Never --rm /bin/sh
If you don't see a command prompt, try pressing enter.
/ # nslookup nginx-0.nginx

Cloud Container Engine
Kubernetes Basics 5 Pod Orchestration and Scheduling

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

Server: 10.247.3.10
Address: 10.247.3.10#53
Name: nginx-0.nginx.default.svc.cluster.local
Address: 172.16.0.31

/ # nslookup nginx-1.nginx
Server: 10.247.3.10
Address: 10.247.3.10#53
Name: nginx-1.nginx.default.svc.cluster.local
Address: 172.16.0.18

/ # nslookup nginx-2.nginx
Server: 10.247.3.10
Address: 10.247.3.10#53
Name: nginx-2.nginx.default.svc.cluster.local
Address: 172.16.0.19

Manually delete the two pods, check the IP addresses of the pods re-created by
the StatefulSet, and run the nslookup command to resolve the domain names of
the pods. You can still get nginx-0.nginx and nginx-1.nginx. This ensures that the
network identifier of the StatefulSet remains unchanged.

StatefulSet Storage Status
As mentioned above, StatefulSets can use PVCs for persistent storage to ensure
that the same persistent data can be accessed after pods are rescheduled. When
pods are deleted, PVCs are not deleted.

Figure 5-4 Process for a StatefulSet to re-create a pod

Write data into the /usr/share/nginx/html directory of nginx-1, for example,
modify the content of index.html to hello world by running the following
command:

kubectl exec nginx-1 -- sh -c 'echo hello world > /usr/share/nginx/html/index.html'

After the modification, if you access https://localhost, hello world will be
returned.

kubectl exec -it nginx-1 -- curl localhost
hello world

Manually delete the nginx-1 pod and check the pods again. It is found that a pod
with the same name is created. According to 4s under AGE, the nginx-1 pod is
newly created.

kubectl delete pod nginx-1
pod "nginx-1" deleted

kubectl get pods
NAME READY STATUS RESTARTS AGE

Cloud Container Engine
Kubernetes Basics 5 Pod Orchestration and Scheduling

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

nginx-0 1/1 Running 0 14m
nginx-1 1/1 Running 0 4s
nginx-2 1/1 Running 0 13m

Access the index.html page of the pod again. hello world is still returned, which
indicates that the same storage is accessed.

kubectl exec -it nginx-1 -- curl localhost
hello world

5.3 Jobs and CronJobs

Overview of Job and CronJob
Jobs and CronJobs allow you to run short lived, one-off tasks in batch. They ensure
the task pods run to completion.

● A job is a resource object used by Kubernetes to control batch tasks. Jobs are
different from long-term servo tasks (such as Deployments and StatefulSets).
The former is started and terminated at specific times, while the latter runs
unceasingly unless being terminated. The pods managed by a job will be
automatically removed after successfully completing tasks based on user
configurations.

● A CronJob runs a job periodically on a specified schedule. A CronJob object is
similar to a line of a crontab file in Linux.

This run-to-completion feature of jobs is especially suitable for one-off tasks, such
as continuous integration (CI).

Creating a Job
The following is an example job, which calculates π till the 2000th digit and prints
the output. 50 pods need to be run before the job is ended. In this example, print
π calculation results for 50 times, and run five pods concurrently. If a pod fails to
be run, a maximum of five retries are supported.
apiVersion: batch/v1
kind: Job
metadata:
 name: pi-with-timeout
spec:
 completions: 50 # Number of pods that need to run successfully to end the job
 parallelism: 5 # Number of pods that run concurrently. The default value is 1.
 backoffLimit: 5 # Maximum number of retries performed if a pod fails. When the limit is reached,
it will not try again.
 activeDeadlineSeconds: 100 # Timeout interval of pods. Once the time is reached, all pods of the job are
terminated.
 template: # Pod definition
 spec:
 containers:
 - name: pi
 image: perl
 command:
 - perl
 - "-Mbignum=bpi"
 - "-wle"
 - print bpi(2000)
 restartPolicy: Never

Based on the completions and Parallelism settings, jobs can be classified as
follows:

Cloud Container Engine
Kubernetes Basics 5 Pod Orchestration and Scheduling

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

Table 5-1 Job types

Job Type Description Example

One-off job One pod runs until it is
successfully ends.

Database migration

Jobs with a
fixed
completion
count

One pod runs until the
specified completion count is
reached.

Pod for processing work
queues

Parallel jobs
with a fixed
completion
count

Multiple pods run until the
specified completion count is
reached.

Multiple pods for processing
work queues concurrently

Parallel jobs One or more pods run until
one pod is successfully ended.

Multiple pods for processing
work queues concurrently

Creating a CronJob

Compared with a job, a CronJob is a scheduled job. A CronJob runs a job
periodically on a specified schedule, and the job creates pods.

apiVersion: batch/v1
kind: CronJob
metadata:
 name: cronjob-example
spec:
 schedule: "0,15,30,45 * * * *" # Configuration of a scheduled job
 jobTemplate: # Job definition
 spec:
 template:
 spec:
 restartPolicy: OnFailure
 containers:
 - name: pi
 image: perl
 command:
 - perl
 - "-Mbignum=bpi"
 - "-wle"
 - print bpi(2000)

The format of the CronJob is as follows:

● Minute

● Hour

● Day of month

● Month

● Day of week

For example, in 0,15,30,45 * * * *, commas separate minutes, the first asterisk (*)
indicates the hour, the second asterisk indicates the day of the month, the third
asterisk indicates the month, and the fourth asterisk indicates the day of the week.

Cloud Container Engine
Kubernetes Basics 5 Pod Orchestration and Scheduling

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

If you want to run the job every half an hour on the first day of each month, set
this parameter to 0,30 * 1 * *. If you want to run the job on 3:00 a.m. every
Sunday, set this parameter to 0 3 * * 0.

For details about the CronJob format, visit https://en.wikipedia.org/wiki/Cron.

5.4 DaemonSets

Overview of DaemonSet
A DaemonSet runs a pod on each node in a cluster and ensures that there is only
one pod. This works well for certain system-level applications such as log
collection and resource monitoring since they must run on each node and need
only a few pods. A good example is kube-proxy.

DaemonSets are closely related to nodes. If a node becomes faulty, the
DaemonSet will not create the same pods on other nodes.

Figure 5-5 DaemonSet

Creating a DaemonSet
The following is an example of a DaemonSet:

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: nginx-daemonset
 labels:
 app: nginx-daemonset
spec:
 selector:
 matchLabels:
 app: nginx-daemonset
 template:
 metadata:
 labels:

Cloud Container Engine
Kubernetes Basics 5 Pod Orchestration and Scheduling

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

https://en.wikipedia.org/wiki/Cron

 app: nginx-daemonset
 spec:
 nodeSelector: # Node selection. A pod is created on a node only when the node meets
daemon=need.
 daemon: need
 containers:
 - name: nginx-daemonset
 image: nginx:alpine
 resources:
 limits:
 cpu: 250m
 memory: 512Mi
 requests:
 cpu: 250m
 memory: 512Mi
 imagePullSecrets:
 - name: default-secret

The replicas parameter used in defining a Deployment or StatefulSet does not
exist in the above configuration for a DaemonSet, because each node has only
one DaemonSet pod.

The nodeSelector in the preceding pod template specifies that a pod is created
only on the nodes that meet daemon=need, as shown in the following figure. If
you want to create a pod on each node, delete the label.

Figure 5-6 DaemonSet creating a pod on nodes with a specified label

Create a DaemonSet.

$ kubectl create -f daemonset.yaml
daemonset.apps/nginx-daemonset created

Run the following command. The output shows that nginx-daemonset creates no
pods on nodes.

$ kubectl get ds
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
nginx-daemonset 0 0 0 0 0 daemon=need 16s

$ kubectl get pods
No resources found in default namespace.

Cloud Container Engine
Kubernetes Basics 5 Pod Orchestration and Scheduling

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

This is because no nodes have the daemon=need label. Run the following
command to query the labels of nodes:

$ kubectl get node --show-labels
NAME STATUS ROLES AGE VERSION LABELS
192.168.0.212 Ready <none> 83m v1.15.6-r1-20.3.0.2.B001-15.30.2 beta.kubernetes.io/arch=amd64 ...
192.168.0.94 Ready <none> 83m v1.15.6-r1-20.3.0.2.B001-15.30.2 beta.kubernetes.io/arch=amd64 ...
192.168.0.97 Ready <none> 83m v1.15.6-r1-20.3.0.2.B001-15.30.2 beta.kubernetes.io/arch=amd64 ...

Add the daemon=need label to node 192.168.0.212, and then query the pods of
nginx-daemonset again. It is found that a pod has been created on node
192.168.0.212.

$ kubectl label node 192.168.0.212 daemon=need
node/192.168.0.212 labeled

$ kubectl get ds
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
nginx-daemonset 1 1 0 1 0 daemon=need 116s

$ kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE
nginx-daemonset-g9b7j 1/1 Running 0 18s 172.16.3.0 192.168.0.212

Add the daemon=need label to node 192.168.0.94. You can find that a pod is
created on this node as well.

$ kubectl label node 192.168.0.94 daemon=need
node/192.168.0.94 labeled

$ kubectl get ds
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
nginx-daemonset 2 2 1 2 1 daemon=need 2m29s

$ kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE
nginx-daemonset-6jjxz 0/1 ContainerCreating 0 8s <none> 192.168.0.94
nginx-daemonset-g9b7j 1/1 Running 0 42s 172.16.3.0 192.168.0.212

Modify the daemon=need label of node 192.168.0.94. You can find the
DaemonSet deletes its pod from the node.

$ kubectl label node 192.168.0.94 daemon=no --overwrite
node/192.168.0.94 labeled

$ kubectl get ds
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
nginx-daemonset 1 1 1 1 1 daemon=need 4m5s

$ kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE
nginx-daemonset-g9b7j 1/1 Running 0 2m23s 172.16.3.0 192.168.0.212

5.5 Affinity and Anti-Affinity Scheduling
A nodeSelector provides a very simple way to constrain pods to nodes with specific
labels, as mentioned in DaemonSets. Affinity and anti-affinity expands the types
of constraints you can define.

Kubernetes supports node-level and pod-level affinity and anti-affinity. You can
configure custom rules for affinity and anti-affinity scheduling. For example, you
can deploy frontend pods and backend pods together, deploy the same type of
applications onto specific nodes, or deploy applications onto different nodes.

Cloud Container Engine
Kubernetes Basics 5 Pod Orchestration and Scheduling

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

Node Affinity
Node affinity is conceptually similar to a nodeSelector as it allows you to constrain
which nodes your pod is eligible to be scheduled on, based on labels of the node.
The following output lists the labels of a node.

$ kubectl describe node 192.168.0.212
Name: 192.168.0.212
Roles: <none>
Labels: beta.kubernetes.io/arch=amd64
 beta.kubernetes.io/os=linux
 failure-domain.beta.kubernetes.io/is-baremetal=false
 failure-domain.beta.kubernetes.io/region=cn-east-3
 failure-domain.beta.kubernetes.io/zone=cn-east-3a
 kubernetes.io/arch=amd64
 kubernetes.io/availablezone=cn-east-3a
 kubernetes.io/eniquota=12
 kubernetes.io/hostname=192.168.0.212
 kubernetes.io/os=linux
 node.kubernetes.io/subnetid=fd43acad-33e7-48b2-a85a-24833f362e0e
 os.architecture=amd64
 os.name=EulerOS_2.0_SP5
 os.version=3.10.0-862.14.1.5.h328.eulerosv2r7.x86_64

These labels are automatically added by CCE during node creation. The following
describes a few that are frequently used during scheduling.

● failure-domain.beta.kubernetes.io/region: region where the node is located.
In the preceding output, the label value is cn-east-3, which indicates that the
node is located in the CN East-Shanghai1 region.

● failure-domain.beta.kubernetes.io/zone: availability zone to which the node
belongs.

● kubernetes.io/hostname: hostname of the node.

In addition to these automatically added labels, you can tailor labels to your
service requirements, as introduced in Label for Managing Pods. Generally, large
Kubernetes clusters have various kinds of labels.

When you deploy pods, you can use a nodeSelector, as described in DaemonSets,
to constrain pods to nodes with specific labels. The following example shows how
to use a nodeSelector to deploy pods only on the nodes with the gpu=true label.

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 nodeSelector: # Node selection. A pod is deployed on a node only when the node is labeled
with gpu=true.
 gpu: true
...

Node affinity rules can achieve the same results, as shown in the following
example.
apiVersion: apps/v1
kind: Deployment
metadata:
 name: gpu
 labels:
 app: gpu
spec:
 selector:
 matchLabels:
 app: gpu

Cloud Container Engine
Kubernetes Basics 5 Pod Orchestration and Scheduling

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

 replicas: 3
 template:
 metadata:
 labels:
 app: gpu
 spec:
 containers:
 - image: nginx:alpine
 name: gpu
 resources:
 requests:
 cpu: 100m
 memory: 200Mi
 limits:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: gpu
 operator: In
 values:
 - "true"

Even though the node affinity rules require more lines of code, they are more
expressive, which will be further described later.

requiredDuringSchedulingIgnoredDuringExecution seems to be complex, but it
can be easily understood as a combination of two parts.

● requiredDuringScheduling indicates that pods can be scheduled to the node
only when all the defined rules are met (required).

● IgnoredDuringExecution indicates that pods already running on the node do
not need to meet the defined rules. If a label removed from the node, the
pods that require the node to contain that label will not be re-scheduled.

In addition, the value of operator is In, indicating that the label value must be in
the values list. Other available operator values are as follows:

● NotIn: The label value is not in a list.
● Exists: A specific label exists.
● DoesNotExist: A specific label does not exist.
● Gt: The label value is greater than a specified value (string comparison).
● Lt: The label value is less than a specified value (string comparison).

Note that there is no such a thing as nodeAntiAffinity because operators NotIn
and DoesNotExist provide the same function.

Now, check whether the node affinity rule takes effect. Add the gpu=true label to
the 192.168.0.212 node.

$ kubectl label node 192.168.0.212 gpu=true
node/192.168.0.212 labeled

$ kubectl get node -L gpu
NAME STATUS ROLES AGE VERSION GPU
192.168.0.212 Ready <none> 13m v1.15.6-r1-20.3.0.2.B001-15.30.2 true
192.168.0.94 Ready <none> 13m v1.15.6-r1-20.3.0.2.B001-15.30.2
192.168.0.97 Ready <none> 13m v1.15.6-r1-20.3.0.2.B001-15.30.2

Cloud Container Engine
Kubernetes Basics 5 Pod Orchestration and Scheduling

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

Create a Deployment. You can find that all pods are deployed on the
192.168.0.212 node.

$ kubectl create -f affinity.yaml
deployment.apps/gpu created

$ kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE
gpu-6df65c44cf-42xw4 1/1 Running 0 15s 172.16.0.37 192.168.0.212
gpu-6df65c44cf-jzjvs 1/1 Running 0 15s 172.16.0.36 192.168.0.212
gpu-6df65c44cf-zv5cl 1/1 Running 0 15s 172.16.0.38 192.168.0.212

Node Preference Rule
The preceding requiredDuringSchedulingIgnoredDuringExecution rule is a hard
selection rule. There is another type of selection rule
preferredDuringSchedulingIgnoredDuringExecution. It is used to specify which
nodes are preferred during scheduling.

To demonstrate its effect, add a node in a different AZ from other nodes to the
cluster. Then, check the AZ of the node. As shown in the following output, the
newly added node is in cn-east-3c.

$ kubectl get node -L failure-domain.beta.kubernetes.io/zone,gpu
NAME STATUS ROLES AGE VERSION ZONE GPU
192.168.0.100 Ready <none> 7h23m v1.15.6-r1-20.3.0.2.B001-15.30.2 cn-east-3c
192.168.0.212 Ready <none> 8h v1.15.6-r1-20.3.0.2.B001-15.30.2 cn-east-3a true
192.168.0.94 Ready <none> 8h v1.15.6-r1-20.3.0.2.B001-15.30.2 cn-east-3a
192.168.0.97 Ready <none> 8h v1.15.6-r1-20.3.0.2.B001-15.30.2 cn-east-3a

Define a Deployment. Use the
preferredDuringSchedulingIgnoredDuringExecution rule to set the weight of
nodes in cn-east-3a to 80 and nodes with the gpu=true label to 20. In this way,
pods are preferentially deployed onto the nodes in cn-east-3a.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: gpu
 labels:
 app: gpu
spec:
 selector:
 matchLabels:
 app: gpu
 replicas: 10
 template:
 metadata:
 labels:
 app: gpu
 spec:
 containers:
 - image: nginx:alpine
 name: gpu
 resources:
 requests:
 cpu: 100m
 memory: 200Mi
 limits:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret
 affinity:
 nodeAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:

Cloud Container Engine
Kubernetes Basics 5 Pod Orchestration and Scheduling

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

 - weight: 80
 preference:
 matchExpressions:
 - key: failure-domain.beta.kubernetes.io/zone
 operator: In
 values:
 - cn-east-3a
 - weight: 20
 preference:
 matchExpressions:
 - key: gpu
 operator: In
 values:
 - "true"

After the Deployment is created, you can find that five pods are deployed on the
192.168.0.212 node, and two pods are deployed on the 192.168.0.100 node.

$ kubectl create -f affinity2.yaml
deployment.apps/gpu created

$ kubectl get po -o wide
NAME READY STATUS RESTARTS AGE IP NODE
gpu-585455d466-5bmcz 1/1 Running 0 2m29s 172.16.0.44 192.168.0.212
gpu-585455d466-cg2l6 1/1 Running 0 2m29s 172.16.0.63 192.168.0.97
gpu-585455d466-f2bt2 1/1 Running 0 2m29s 172.16.0.79 192.168.0.100
gpu-585455d466-hdb5n 1/1 Running 0 2m29s 172.16.0.42 192.168.0.212
gpu-585455d466-hkgvz 1/1 Running 0 2m29s 172.16.0.43 192.168.0.212
gpu-585455d466-mngvn 1/1 Running 0 2m29s 172.16.0.48 192.168.0.97
gpu-585455d466-s26qs 1/1 Running 0 2m29s 172.16.0.62 192.168.0.97
gpu-585455d466-sxtzm 1/1 Running 0 2m29s 172.16.0.45 192.168.0.212
gpu-585455d466-t56cm 1/1 Running 0 2m29s 172.16.0.64 192.168.0.100
gpu-585455d466-t5w5x 1/1 Running 0 2m29s 172.16.0.41 192.168.0.212

In the preceding example, the node with both cn-east-3a and gpu=true labels has
the first (highest) priority, the node with only the cn-east-3a label has the second
priority (weight: 80), the node with only the gpu=true label has the third priority,
and the node without any of these two labels have the fourth (lowest) priority.

Figure 5-7 Scheduling priority

According to the preceding output, you can find that no pods of the Deployment
are scheduled to node 192.168.0.94. This is because the node already has many
pods on it and its resource usage is high. This also indicates that the
preferredDuringSchedulingIgnoredDuringExecution rule defines a preference
rather than a hard requirement.

Workload Affinity (podAffinity)
Node affinity rules affect only the affinity between pods and nodes. Kubernetes
also supports configuring inter-pod affinity rules. For example, the frontend and
backend of an application can be deployed together on one node to reduce access
latency. There are also two types of inter-pod affinity rules:

Cloud Container Engine
Kubernetes Basics 5 Pod Orchestration and Scheduling

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

requiredDuringSchedulingIgnoredDuringExecution and
preferredDuringSchedulingIgnoredDuringExecution.

NO TE

For workload affinity, topologyKey cannot be left blank when
requiredDuringSchedulingIgnoredDuringExecution and
preferredDuringSchedulingIgnoredDuringExecution are used.

Assume that the backend of an application has been created and has the
app=backend label.

$ kubectl get po -o wide
NAME READY STATUS RESTARTS AGE IP NODE
backend-658f6cb858-dlrz8 1/1 Running 0 2m36s 172.16.0.67 192.168.0.100

You can configure the following pod affinity rule to deploy the frontend pods of
the application to the same node as the backend pods.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: frontend
 labels:
 app: frontend
spec:
 selector:
 matchLabels:
 app: frontend
 replicas: 3
 template:
 metadata:
 labels:
 app: frontend
 spec:
 containers:
 - image: nginx:alpine
 name: frontend
 resources:
 requests:
 cpu: 100m
 memory: 200Mi
 limits:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - topologyKey: kubernetes.io/hostname
 labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - backend

Deploy the frontend and you can find that the frontend is deployed on the same
node as the backend.

$ kubectl create -f affinity3.yaml
deployment.apps/frontend created

$ kubectl get po -o wide
NAME READY STATUS RESTARTS AGE IP NODE
backend-658f6cb858-dlrz8 1/1 Running 0 5m38s 172.16.0.67 192.168.0.100
frontend-67ff9b7b97-dsqzn 1/1 Running 0 6s 172.16.0.70 192.168.0.100

Cloud Container Engine
Kubernetes Basics 5 Pod Orchestration and Scheduling

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

frontend-67ff9b7b97-hxm5t 1/1 Running 0 6s 172.16.0.71 192.168.0.100
frontend-67ff9b7b97-z8pdb 1/1 Running 0 6s 172.16.0.72 192.168.0.100

The topologyKey field is used to divide topology keys to specify the selection
range. If the label keys and values of nodes are the same, the nodes are
considered to be in the same topology key. Then, the contents defined in the
following rules are selected. The effect of topologyKey is not fully demonstrated
in the preceding example because all the nodes have the kubernetes.io/
hostname label, that is, all the nodes are within the range.

To see how topologyKey works, assume that the backend of the application has
two pods, which are running on different nodes.
$ kubectl get po -o wide
NAME READY STATUS RESTARTS AGE IP NODE
backend-658f6cb858-5bpd6 1/1 Running 0 23m 172.16.0.40 192.168.0.97
backend-658f6cb858-dlrz8 1/1 Running 0 2m36s 172.16.0.67 192.168.0.100

Add the prefer=true label to nodes 192.168.0.97 and 192.168.0.94.
$ kubectl label node 192.168.0.97 prefer=true
node/192.168.0.97 labeled
$ kubectl label node 192.168.0.94 prefer=true
node/192.168.0.94 labeled

$ kubectl get node -L prefer
NAME STATUS ROLES AGE VERSION PREFER
192.168.0.100 Ready <none> 44m v1.15.6-r1-20.3.0.2.B001-15.30.2
192.168.0.212 Ready <none> 91m v1.15.6-r1-20.3.0.2.B001-15.30.2
192.168.0.94 Ready <none> 91m v1.15.6-r1-20.3.0.2.B001-15.30.2 true
192.168.0.97 Ready <none> 91m v1.15.6-r1-20.3.0.2.B001-15.30.2 true

If the topologyKey of podAffinity is set to prefer, the node topology keys are
divided as shown in Figure 5-8.
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - topologyKey: prefer
 labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - backend

Figure 5-8 Topology keys

Cloud Container Engine
Kubernetes Basics 5 Pod Orchestration and Scheduling

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

During scheduling, node topology keys are divided based on the prefer label. In
this example, 192.168.0.97 and 192.168.0.94 are divided into the same topology
key. If a pod with the app=backend label runs in the topology key, even if not all
nodes in the topology key run the pod with the app=backend label (in this
example, only the 192.168.0.97 node has such a pod), frontend is also deployed
in this topology key (192.168.0.97 or 192.168.0.94).

$ kubectl create -f affinity3.yaml
deployment.apps/frontend created

$ kubectl get po -o wide
NAME READY STATUS RESTARTS AGE IP NODE
backend-658f6cb858-5bpd6 1/1 Running 0 26m 172.16.0.40 192.168.0.97
backend-658f6cb858-dlrz8 1/1 Running 0 5m38s 172.16.0.67 192.168.0.100
frontend-67ff9b7b97-dsqzn 1/1 Running 0 6s 172.16.0.70 192.168.0.97
frontend-67ff9b7b97-hxm5t 1/1 Running 0 6s 172.16.0.71 192.168.0.97
frontend-67ff9b7b97-z8pdb 1/1 Running 0 6s 172.16.0.72 192.168.0.97

Workload Anti-Affinity (podAntiAffinity)

Unlike the scenarios in which pods are preferred to be scheduled onto the same
node, sometimes, it could be the exact opposite. For example, if certain pods are
deployed together, they will affect the performance.

NO TE

For workload anti-affinity, when requiredDuringSchedulingIgnoredDuringExecution is used,
the default access controller LimitPodHardAntiAffinityTopology of Kubernetes requires that
topologyKey can only be kubernetes.io/hostname. To use other custom topology logic,
modify or disable the access controller.

The following is an example of defining an anti-affinity rule. This rule divides node
topology keys by the kubernetes.io/hostname label. If a pod with the
app=frontend label already exists on a node in the topology key, pods with the
same label cannot be scheduled to other nodes in the topology key.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: frontend
 labels:
 app: frontend
spec:
 selector:
 matchLabels:
 app: frontend
 replicas: 5
 template:
 metadata:
 labels:
 app: frontend
 spec:
 containers:
 - image: nginx:alpine
 name: frontend
 resources:
 requests:
 cpu: 100m
 memory: 200Mi
 limits:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret

Cloud Container Engine
Kubernetes Basics 5 Pod Orchestration and Scheduling

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - topologyKey: kubernetes.io/hostname # Topology key of the node
 labelSelector: # Pod label matching rule
 matchExpressions:
 - key: app
 operator: In
 values:
 - frontend

Create an anti-affinity rule and view the deployment result. In the example, node
topology keys are divided by the kubernetes.io/hostname label. The label values
of nodes with the kubernetes.io/hostname label are different, so there is only
one node in a topology key. If a topology key contains only one node where a
frontend pod already exists, pods with the same label will not be scheduled to
that topology key. In this example, there are only four nodes. Therefore, there is
one pod which is in the Pending state and cannot be scheduled.

$ kubectl create -f affinity4.yaml
deployment.apps/frontend created

$ kubectl get po -o wide
NAME READY STATUS RESTARTS AGE IP NODE
frontend-6f686d8d87-8dlsc 1/1 Running 0 18s 172.16.0.76 192.168.0.100
frontend-6f686d8d87-d6l8p 0/1 Pending 0 18s <none> <none>
frontend-6f686d8d87-hgcq2 1/1 Running 0 18s 172.16.0.54 192.168.0.97
frontend-6f686d8d87-q7cfq 1/1 Running 0 18s 172.16.0.47 192.168.0.212
frontend-6f686d8d87-xl8hx 1/1 Running 0 18s 172.16.0.23 192.168.0.94

Cloud Container Engine
Kubernetes Basics 5 Pod Orchestration and Scheduling

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

6 Configuration Management

6.1 ConfigMaps
A ConfigMap is a type of resource used to store the configurations required by
applications. It is used to store configuration data or configuration files in key-
value pairs.

ConfigMaps allow for the separation of configurations, enabling different
environments to have their own unique configurations.

Creating a ConfigMap
In the following example, a ConfigMap named configmap-test is created. The
ConfigMap configuration data is defined in the data field.

apiVersion: v1
kind: ConfigMap
metadata:
 name: configmap-test
data: # Configuration data
 property_1: Hello
 property_2: World

Referencing a ConfigMap as an Environment Variable
ConfigMaps are usually referenced as environment variables and in volumes.

In the following example, property_1 of configmap-test is used as the value of
the environment variable EXAMPLE_PROPERTY_1. After the container is started, it
will reference the value of property_1 as the value of EXAMPLE_PROPERTY_1,
that is, Hello.

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - image: nginx:alpine
 name: container-0
 resources:
 limits:

Cloud Container Engine
Kubernetes Basics 6 Configuration Management

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 env:
 - name: EXAMPLE_PROPERTY_1
 valueFrom:
 configMapKeyRef: # Reference the ConfigMap.
 name: configmap-test
 key: property_1
 imagePullSecrets:
 - name: default-secret

Referencing a ConfigMap in a Volume
Referencing a ConfigMap in a volume is to fill its data in configuration files in the
volume. Each piece of data is saved in a file. The key is the file name, and the key
value is the file content.

In the following example, create a volume named vol-configmap, reference the
ConfigMap named configmap-test in the volume, and mount the volume to
the /tmp directory of the container. After the pod is created, the two files
property_1 and property_2 are generated in the /tmp directory of the container,
and the values are Hello and World.

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - image: nginx:alpine
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 volumeMounts:
 - name: vol-configmap # Mount the volume named vol-configmap.
 mountPath: "/tmp"
 imagePullSecrets:
 - name: default-secret
 volumes:
 - name: vol-configmap
 configMap: # Reference the ConfigMap.
 name: configmap-test

6.2 Secrets
A secret is a resource object that is encrypted for storing the authentication
information, certificates, and private keys. The sensitive data will not be exposed
in images or pod definitions, which is safer and more flexible.

Similar to a ConfigMap, a secret stores data in key-value pairs. The difference is
that a secret is encrypted, and is suitable for storing sensitive information.

Cloud Container Engine
Kubernetes Basics 6 Configuration Management

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

Base64 Encoding
A secret stores data in key-value pairs, the same form as that of a ConfigMap. The
difference is that the value must be encoded using Base64 when a secret is
created.

To encode a character string using Base64, run the echo -n to-be-encoded
content | base64 command. The following is an example:

root@ubuntu:~# echo -n "3306" | base64
MzMwNg==

Creating a Secret
The secret defined in the following example contains two key-value pairs.

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
data:
 key1: aGVsbG8gd29ybGQ= # hello world, a value encoded using Base64
 key2: MzMwNg== # 3306, a value encoded using Base64

Referencing a Secret as an Environment Variable
Secrets are usually injected into containers as environment variables, as shown in
the following example.

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - image: nginx:alpine
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 env:
 - name: key
 valueFrom:
 secretKeyRef:
 name: mysecret
 key: key1
 imagePullSecrets:
 - name: default-secret

Referencing a Secret in a Volume
Referencing a secret in a volume is to fill its data in configuration files in the
volume. Each piece of data is saved in a file. The key is the file name, and the key
value is the file content.

In the following example, create a volume named vol-secret, reference the secret
named mysecret in the volume, and mount the volume to the /tmp directory of
the container. After the pod is created, the two files key1 and key2 are generated
in the /tmp directory of the container.

Cloud Container Engine
Kubernetes Basics 6 Configuration Management

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - image: nginx:alpine
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 volumeMounts:
 - name: vol-secret # Mount the volume named vol-secret.
 mountPath: "/tmp"
 imagePullSecrets:
 - name: default-secret
 volumes:
 - name: vol-secret
 secret: # Reference the secret.
 secretName: mysecret

In the pod container, you can find the two files key1 and key2 in the /tmp
directory. The values in the files are the values encoded using Base64, which are
hello world and 3306.

Cloud Container Engine
Kubernetes Basics 6 Configuration Management

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

7 Kubernetes Networking

7.1 Container Networking
Kubernetes is not responsible for network communication, but it provides the
Container Networking Interface (CNI) for networking through CNI plug-ins. There
are many open-source CNI plug-ins, such as Flannel and Calico. CCE offers various
network add-ons for clusters of different network models, enabling seamless
network communication within clusters.

According to Kubernetes, cluster networking must meet the following
requirements:

● Pods in a cluster must be accessible to each other through a non-NAT
network. In this way, the source IP address of the data packets received by a
pod is the IP address of the pod from which the data packets are sent.

● Nodes can communicate with each other without NAT.

Pod Communication
Communication Between Pods on the Same Node

A pod communicates with external systems through veth devices created in
interconnected pairs. The veth devices are virtual Ethernet devices acting as
tunnels between network namespaces. The pods on the same node communicate
with each other through a Linux bridge.

Cloud Container Engine
Kubernetes Basics 7 Kubernetes Networking

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

Figure 7-1 Communication between pods on the same node

The pods on the same node connect to the bridge through veth devices. The IP
addresses of these pods are dynamically obtained through the bridge and belong
to the same CIDR block as the bridge IP address. Additionally, the default routes of
all pods on the same node point to the bridge, and the bridge forwards all traffic
with the source addresses that are not of the local network. In this way, the pods
on the same node can directly communicate with each other.

Communication Between Pods on Different Nodes

According to Kubernetes, the address of each pod in a cluster must be unique.
Each node in the cluster is allocated with a subnet to ensure that the IP addresses
of the pods are unique in the cluster. Pods running on different nodes
communicate with each other through IP addresses in overlay, routing, or underlay
networking mode based on the underlying dependency. This process is
implemented using cluster networking plug-ins.

● An overlay network is separately constructed using tunnel encapsulation on
the node network. Such a network has its own IP address space and IP
switching/routing. VXLAN is a mainstream overlay network tunneling
protocol.

● In a routing network, a VPC routing table is used with the underlying network
for convenient communication between pods and nodes. The performance of
routing surpasses that of the overlay tunnel encapsulation.

● In an underlay network, drivers expose underlying network interfaces on
nodes to pods for high-performance network communication. IP VLANs are
commonly used in underlay networking.

Cloud Container Engine
Kubernetes Basics 7 Kubernetes Networking

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

Figure 7-2 Communication between pods on different nodes

The following sections Services and Ingresses will describe how Kubernetes
provides access solutions for users based on the container networking.

7.2 Services

Direct Access to a Pod
After a pod is created, the following problems may occur if you directly access the
pod:

● The pod can be deleted and recreated at any time by a controller such as a
Deployment, and the result of accessing the pod becomes unpredictable.

● The IP address of the pod is allocated only after the pod is started. Before the
pod is started, the IP address of the pod is unknown.

● An application is usually composed of multiple pods that run the same image.
Accessing pods one by one is not efficient.

For example, an application uses Deployments to create the frontend and
backend. The frontend calls the backend for computing, as shown in Figure 7-3.
Three pods are running in the backend, which are independent and replaceable.
When a backend pod is re-created, the new pod is assigned with a new IP address,
of which the frontend pod is unaware.

Cloud Container Engine
Kubernetes Basics 7 Kubernetes Networking

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

Figure 7-3 Inter-pod access

Using Services for Pod Access
Kubernetes Services are used to solve the preceding pod access problems. A
Service has a fixed IP address. (When a CCE cluster is created, a Service CIDR block
is set, which is used to allocate IP addresses to Services.) A Service forwards
requests accessing the Service to pods based on labels, and at the same time,
perform load balancing for these pods.

In the preceding example, a Service is added for the frontend pod to access the
backend pods. In this way, the frontend pod does not need to be aware of the
changes on backend pods, as shown in Figure 7-4.

Figure 7-4 Accessing pods through a Service

Creating Backend Pods
Create a Deployment with three replicas, that is, three pods with label app: nginx.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 replicas: 3
 selector:

Cloud Container Engine
Kubernetes Basics 7 Kubernetes Networking

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - image: nginx:latest
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 imagePullSecrets:
 - name: default-secret

Creating a Service
In the following example, we create a Service named nginx, and use a selector to
select the pod with the label app:nginx. The port of the target pod is port 80
while the exposed port of the Service is port 8080.

The Service can be accessed using Service name:Exposed port. In the example,
nginx:8080 is used. In this case, other pods can access the pod associated with
nginx using nginx:8080.

apiVersion: v1
kind: Service
metadata:
 name: nginx #Service name
spec:
 selector: # Label selector, which selects pods with the label app=nginx
 app: nginx
 ports:
 - name: service0
 targetPort: 80 # Pod port
 port: 8080 # Service external port
 protocol: TCP # Forwarding protocol type. The value can be TCP or UDP.
 type: ClusterIP # Service type

Save the Service definition to nginx-svc.yaml and use kubectl to create the
Service.

$ kubectl create -f nginx-svc.yaml
service/nginx created

$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.247.0.1 <none> 443/TCP 7h19m
nginx ClusterIP 10.247.124.252 <none> 8080/TCP 5h48m

You can see that the Service has a ClusterIP, which is fixed unless the Service is
deleted. You can use this ClusterIP to access the Service inside the cluster.

Create a pod and use the ClusterIP to access the pod. Information similar to the
following is returned.

$ kubectl run -i --tty --image nginx:alpine test --rm /bin/sh
If you don't see a command prompt, try pressing enter.
/ # curl 10.247.124.252:8080
<!DOCTYPE html>
<html>

Cloud Container Engine
Kubernetes Basics 7 Kubernetes Networking

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

<head>
<title>Welcome to nginx!</title>
...

Using ServiceName to Access a Service
After the DNS resolves the domain name, you can use ServiceName:Port to
access the Service, the most common practice in Kubernetes. When you are
creating a CCE cluster, you are required to install the coredns add-on by default.
You can view the pods of CoreDNS in the kube-system namespace.

$ kubectl get po --namespace=kube-system
NAME READY STATUS RESTARTS AGE
coredns-7689f8bdf-295rk 1/1 Running 0 9m11s
coredns-7689f8bdf-h7n68 1/1 Running 0 11m

After coredns is installed, it becomes a DNS. After the Service is created, coredns
records the Service name and IP address. In this way, the pod can obtain the
Service IP address by querying the Service name from coredns.

nginx.<namespace>.svc.cluster.local is used to access the Service. nginx is the
Service name, <namespace> is the namespace, and svc.cluster.local is the
domain name suffix. In actual use, you can omit <namespace>.svc.cluster.local in
the same namespace and use the ServiceName.

For example, if the Service named nginx is created, you can access the Service
through nginx:8080 and then access backend pods.

An advantage of using ServiceName is that you can write ServiceName into the
program when developing the application. In this way, you do not need to know
the IP address of a specific Service.

Now, create a pod and access the pod. Query the IP address of the nginx Service
domain name, which is 10.247.124.252. Access the domain name of the pod and
information similar to the following is returned.

$ kubectl run -i --tty --image tutum/dnsutils dnsutils --restart=Never --rm /bin/sh
If you don't see a command prompt, try pressing enter.
/ # nslookup nginx
Server: 10.247.3.10
Address: 10.247.3.10#53

Name: nginx.default.svc.cluster.local
Address: 10.247.124.252

/ # curl nginx:8080
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
...

Using Services for Service Discovery
After a Service is deployed, it can discover the pod no matter how the pod
changes.

If you run the kubectl describe command to query the Service, information
similar to the following is displayed:

$ kubectl describe svc nginx
Name: nginx

Cloud Container Engine
Kubernetes Basics 7 Kubernetes Networking

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

......
Endpoints: 172.16.2.132:80,172.16.3.6:80,172.16.3.7:80
......

One Endpoints record is displayed. An endpoint is also a resource object in
Kubernetes. Kubernetes monitors the pod IP addresses through endpoints so that
a Service can discover pods.

$ kubectl get endpoints
NAME ENDPOINTS AGE
nginx 172.16.2.132:80,172.16.3.6:80,172.16.3.7:80 5h48m

In this example, 172.16.2.132:80 is the IP:port of the pod. You can run the
following command to view the IP address of the pod, which is the same as the
preceding IP address.

$ kubectl get po -o wide
NAME READY STATUS RESTARTS AGE IP NODE
nginx-869759589d-dnknn 1/1 Running 0 5h40m 172.16.3.7 192.168.0.212
nginx-869759589d-fcxhh 1/1 Running 0 5h40m 172.16.3.6 192.168.0.212
nginx-869759589d-r69kh 1/1 Running 0 5h40m 172.16.2.132 192.168.0.94

If a pod is deleted, the Deployment re-creates the pod and the IP address of the
new pod changes.

$ kubectl delete po nginx-869759589d-dnknn
pod "nginx-869759589d-dnknn" deleted

$ kubectl get po -o wide
NAME READY STATUS RESTARTS AGE IP NODE
nginx-869759589d-fcxhh 1/1 Running 0 5h41m 172.16.3.6 192.168.0.212
nginx-869759589d-r69kh 1/1 Running 0 5h41m 172.16.2.132 192.168.0.94
nginx-869759589d-w98wg 1/1 Running 0 7s 172.16.3.10 192.168.0.212

Check the endpoints again. You can see that the content under ENDPOINTS
changes with the pod.

$ kubectl get endpoints
NAME ENDPOINTS AGE
kubernetes 192.168.0.127:5444 7h20m
nginx 172.16.2.132:80,172.16.3.10:80,172.16.3.6:80 5h49m

Let's take a closer look at how this happens.

We have introduced kube-proxy on worker nodes in Kubernetes Cluster
Architecture. Actually, all Service-related operations are performed by kube-proxy.
When a Service is created, Kubernetes allocates an IP address to the Service and
notifies kube-proxy on all nodes of the Service creation through the API server.

Cloud Container Engine
Kubernetes Basics 7 Kubernetes Networking

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

After receiving the notification, each kube-proxy records the IP address and port
number of the Service through iptables. In this way, the Service can be obtained
on each node.

The following figure shows how a Service is accessed. Pod X accesses the Service
(10.247.124.252:8080). When pod X sends data packets, the destination IP:Port is
replaced with the IP:Port of pod 1 based on the iptables rule. In this way, the real
backend pod can be accessed through the Service.

In addition to recording the IP address and port number of a Service, kube-proxy
monitors the changes of the Service and their endpoints to ensure that pods can
still be accessed through the Service after the pods are rebuilt.

Figure 7-5 Service access process

Service Types and Application Scenarios

Services of the ClusterIP, NodePort, LoadBalancer, and Headless Service types offer
different functions.

● ClusterIP: used to make the Service only reachable within a cluster.

● NodePort: used for access from outside a cluster. A NodePort Service is
accessed through the port on the node. For details, see NodePort Services.

● LoadBalancer: used for access from outside a cluster. It is an extension of
NodePort, to which a load balancer routes, and external systems only need to
access the load balancer. For details, see LoadBalancer Services.

● Headless Service: used by pods to discover each other. No separate cluster IP
address will be allocated to this type of Service, and the cluster will not
balance loads or perform routing for it. You can create a headless Service by
setting the spec.clusterIP value to None. For details, see Headless Services.

NodePort Services

A NodePort Service enables each node in a Kubernetes cluster to reserve the same
port. External systems first access the Node IP:Port and then the NodePort Service
forwards the requests to the pod backing the Service.

Cloud Container Engine
Kubernetes Basics 7 Kubernetes Networking

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

Figure 7-6 NodePort Service

The following is an example of creating a NodePort Service. After the Service is
created, you can access backend pods through IP:Port of the node.
apiVersion: v1
kind: Service
metadata:
 name: nodeport-service
spec:
 type: NodePort
 ports:
 - port: 8080
 targetPort: 80
 nodePort: 30120
 selector:
 app: nginx

Create and view the Service. The value of PORT for the NodePort Service is
8080:30120/TCP, indicating that port 8080 of the Service is mapped to port 30120
of the node.
$ kubectl create -f nodeport.yaml
service/nodeport-service created

$ kubectl get svc -o wide
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR
kubernetes ClusterIP 10.247.0.1 <none> 443/TCP 107m <none>
nginx ClusterIP 10.247.124.252 <none> 8080/TCP 16m app=nginx
nodeport-service NodePort 10.247.210.174 <none> 8080:30120/TCP 17s app=nginx

Access the Service by using Node IP:Port number to access the pod.
$ kubectl run -i --tty --image nginx:alpine test --rm /bin/sh
If you don't see a command prompt, try pressing enter.
/ # curl 192.168.0.212:30120
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
......

LoadBalancer Services
A Service is exposed externally using a load balancer that forwards requests to the
NodePort of the node.

Cloud Container Engine
Kubernetes Basics 7 Kubernetes Networking

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

Load balancers are not a Kubernetes component. Different cloud service providers
have different implementations. For example, CCE interconnects with Elastic Load
Balance (ELB). As a result, there are different implementation methods of creating
a LoadBalancer Service.

Figure 7-7 LoadBalancer Service

The following is an example of creating a LoadBalancer Service. After the
LoadBalancer Service is created, you can access backend pods through IP:Port of
the load balancer.
apiVersion: v1
kind: Service
metadata:
 annotations:
 kubernetes.io/elb.id: 3c7caa5a-a641-4bff-801a-feace27424b6
 labels:
 app: nginx
 name: nginx
spec:
 loadBalancerIP: 10.78.42.242 # IP address of the ELB instance
 ports:
 - name: service0
 port: 80
 protocol: TCP
 targetPort: 80
 nodePort: 30120
 selector:
 app: nginx
 type: LoadBalancer # Service type (LoadBalancer)

The parameters in annotations under metadata are required for CCE
LoadBalancer Services. They specify the ELB instance to which the Service is
bound. CCE also allows you to create an ELB instance when creating a
LoadBalancer Service. For details, see LoadBalancer.

Headless Services
A Service allows a client to access a pod associated with the Service for both
internal and external network communication. However, the following problems
persist:

Cloud Container Engine
Kubernetes Basics 7 Kubernetes Networking

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0014.html

● Accessing all pods at the same time

● Allowing pods in a Service to access each other

Kubernetes provides headless Services to solve these problems. When a client
accesses a non-headless Service, only the cluster IP address of the Service is
returned for a DNS query. The pod to be accessed is determined based on the
cluster forwarding rule (IPVS or iptables). A headless Service is not allocated with
a separate cluster IP address. During a DNS query, the DNS records of all pods will
be returned. In this way, the IP address of each pod can be obtained. StatefulSets
in StatefulSets use headless Services for mutual access between pods.

apiVersion: v1
kind: Service # Object type (Service)
metadata:
 name: nginx-headless
 labels:
 app: nginx
spec:
 ports:
 - name: nginx # Name of the port for communication between pods
 port: 80 # Port number for communication between pods
 selector:
 app: nginx # Select the pod labeled with app:nginx.
 clusterIP: None # Set this parameter to None, indicating a headless Service.

Run the following command to create a headless Service:

kubectl create -f headless.yaml
service/nginx-headless created

After the Service is created, you can query the Service.

kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nginx-headless ClusterIP None <none> 80/TCP 5s

Create a pod to query the DNS. You can view the records of all pods. In this way,
all pods can be accessed.

$ kubectl run -i --tty --image tutum/dnsutils dnsutils --restart=Never --rm /bin/sh
If you don't see a command prompt, try pressing enter.
/ # nslookup nginx-headless
Server: 10.247.3.10
Address: 10.247.3.10#53

Name: nginx-headless.default.svc.cluster.local
Address: 172.16.0.31
Name: nginx-headless.default.svc.cluster.local
Address: 172.16.0.18
Name: nginx-headless.default.svc.cluster.local
Address: 172.16.0.19

7.3 Ingresses

Overview

Services forward requests using layer-4 TCP and UDP protocols. Ingresses forward
requests using layer-7 HTTP and HTTPS protocols. Domain names and paths can
be used to achieve finer granularities.

Cloud Container Engine
Kubernetes Basics 7 Kubernetes Networking

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

Figure 7-8 Ingress and Service

Ingress Working Rules
To use ingresses, you must install Ingress Controller on your Kubernetes cluster.
There are different implementations for an Ingress Controller. The most common
one is Nginx Ingress Controller maintained by Kubernetes. CCE works with Elastic
Load Balance (ELB) to implement layer-7 load balancing (ingresses).

An external request is first sent to Ingress Controller. Then, Ingress Controller
locates the corresponding Service based on the routing rule of an ingress, queries
the IP address of the pod through the Endpoint, and forwards the request to the
pod.

Figure 7-9 Ingress working rules

Creating an Ingress
In the following example, an ingress that uses the HTTP protocol, associates with
backend Service nginx:8080, and uses a load balancer (specified by
metadata.annotations) is created. After the request for accessing http://
192.168.10.155:8080/ is initiated, the traffic is forwarded to Service nginx:8080,
which in turn forwards the traffic to the corresponding pod.

The following is an example (applicable to clusters of v1.23 or later):
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

Cloud Container Engine
Kubernetes Basics 7 Kubernetes Networking

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

https://github.com/kubernetes/ingress-nginx

 name: test-ingress
 annotations:
 kubernetes.io/elb.class: union
 kubernetes.io/elb.port: '8080'
 kubernetes.io/elb.id: aa7cf5ec-7218-4c43-98d4-c36c0744667a
spec:
 rules:
 - host: ''
 http:
 paths:
 - path: /
 backend:
 service:
 name: nginx
 port:
 number: 8080
 property:
 ingress.beta.kubernetes.io/url-match-mode: STARTS_WITH
 pathType: ImplementationSpecific
 ingressClassName: cce

You can also set the external domain name in an ingress so that you can access
the load balancer through the domain name and then access backend Services.

NO TE

Domain name-based access depends on domain name resolution. You need to point the
domain name to the IP address of the load balancer. For example, you can use Domain
Name Service (DNS) to resolve domain names.

...
spec:
 rules:
 - host: www.example.com # Domain name
 http:
 paths:
 - path: /
 backend:
 service:
 name: nginx
 port:
 number: 8080
...

Accessing Multiple Services
An ingress can access multiple Services at the same time. The configuration is as
follows:

● When you access http://foo.bar.com/foo, the backend Service s1:80 is
accessed.

● When you access http://foo.bar.com/bar, the backend Service s2:80 is
accessed.

NO TICE

The path in the ingress forwarding policy must exist in the backend application.
Otherwise, the forwarding fails.
For example, the default access path of the Nginx application is /usr/share/nginx/
html. If you add /test to the ingress forwarding policy, make sure that the access
path of your Nginx application includes /usr/share/nginx/html/test. Otherwise,
you will receive an error 404.

Cloud Container Engine
Kubernetes Basics 7 Kubernetes Networking

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

https://www.huaweicloud.com/intl/en-us/product/dns.html
https://www.huaweicloud.com/intl/en-us/product/dns.html

...
spec:
 rules:
 - host: foo.bar.com # Host address
 http:
 paths:
 - path: "/foo"
 backend:
 service:
 name: s1
 port:
 number: 80
 - path: "/bar"
 backend:
 service:
 name: s2
 port:
 number: 80
...

7.4 Readiness Probes
After a pod is created, the Service can immediately select it and forward requests
to it. However, it takes time to start a pod. If the pod is not ready (it takes time to
load the configuration or data, or a preheating program may need to be
executed), the pod cannot process requests, and the requests will fail.

Kubernetes solves this problem by adding a readiness probe to pods. A pod with
containers reporting that they are not ready does not receive traffic through
Kubernetes Services.

A readiness probe periodically detects a pod and determines whether the pod is
ready based on its response. Similar to Liveness Probes, there are three types of
readiness probes.

● Exec: kubelet executes a command in the target container. If the command
succeeds, it returns 0, and kubelet considers the container to be ready.

● HTTP GET: The probe sends an HTTP GET request to IP:port of the container.
If the probe receives a 2xx or 3xx status code, the container is considered to
be ready.

● TCP Socket: The kubelet attempts to establish a TCP connection with the
container. If it succeeds, the container is considered ready.

How Readiness Probes Work
Endpoints can be used as a readiness probe. When a pod is not ready, the IP:port
of the pod is deleted from the Endpoint and is added to the Endpoint after the
pod is ready, as shown in the following figure.

Cloud Container Engine
Kubernetes Basics 7 Kubernetes Networking

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

Figure 7-10 How readiness probes work

Exec
The Exec mode is the same as the HTTP GET mode. As shown below, the probe
runs the ls /ready command. If the file exists, 0 is returned, indicating that the
pod is ready. Otherwise, a non-zero status code is returned.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - image: nginx:alpine
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 readinessProbe: # Readiness probe
 exec: # Define the ls /ready command.
 command:
 - ls
 - /ready
 imagePullSecrets:
 - name: default-secret

Save the definition of the Deployment to the deploy-ready.yaml file, delete the
previously created Deployment, and use the deploy-ready.yaml file to recreate
the Deployment.

kubectl delete deploy nginx
deployment.apps "nginx" deleted

kubectl create -f deploy-ready.yaml
deployment.apps/nginx created

Cloud Container Engine
Kubernetes Basics 7 Kubernetes Networking

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

The nginx image does not contain the /ready file. Therefore, the container is not
in the Ready status after the creation, as shown below. Note that the values in the
READY column are 0/1, indicating that the containers are not ready.

kubectl get po
NAME READY STATUS RESTARTS AGE
nginx-7955fd7786-686hp 0/1 Running 0 7s
nginx-7955fd7786-9tgwq 0/1 Running 0 7s
nginx-7955fd7786-bqsbj 0/1 Running 0 7s

Create a Service.

apiVersion: v1
kind: Service
metadata:
 name: nginx
spec:
 selector:
 app: nginx
 ports:
 - name: service0
 targetPort: 80
 port: 8080
 protocol: TCP
 type: ClusterIP

Check the Service. If there are no values in the Endpoints line, no Endpoints are
found.

$ kubectl describe svc nginx
Name: nginx
......
Endpoints:
......

If a /ready file is created in the container to make the readiness probe succeed,
the container is in the Ready status. Check the pod and endpoints. It is found that
the container for which the /ready file is created is ready and an endpoint is
added.

kubectl exec nginx-7955fd7786-686hp -- touch /ready

kubectl get po -o wide
NAME READY STATUS RESTARTS AGE IP
nginx-7955fd7786-686hp 1/1 Running 0 10m 192.168.93.169
nginx-7955fd7786-9tgwq 0/1 Running 0 10m 192.168.166.130
nginx-7955fd7786-bqsbj 0/1 Running 0 10m 192.168.252.160

kubectl get endpoints
NAME ENDPOINTS AGE
nginx 192.168.93.169:80 14d

HTTP GET
The configuration of a readiness probe is the same as that of a liveness probe,
which is also in the containers field of the pod description template. As shown
below, the readiness probe sends an HTTP request to the pod. If the probe receives
2xx or 3xx, the pod is ready.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 replicas: 3
 selector:

Cloud Container Engine
Kubernetes Basics 7 Kubernetes Networking

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - image: nginx:alpine
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 readinessProbe: # Readiness probe
 httpGet: # HTTP GET definition
 path: /read
 port: 80
 imagePullSecrets:
 - name: default-secret

TCP Socket
The following example shows how to define a TCP Socket-type probe.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - image: nginx:alpine
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 readinessProbe: # Readiness probe
 tcpSocket: # TCP socket definition
 port: 80
 imagePullSecrets:
 - name: default-secret

Advanced Settings of a Readiness Probe
Similar to a liveness probe, a readiness probe also has the same advanced
configuration items. The output of the describe command of the nginx pod is as
follows:

Readiness: exec [ls /var/ready] delay=0s timeout=1s period=10s #success=1 #failure=3

This is the detailed configuration of the readiness probe.

Cloud Container Engine
Kubernetes Basics 7 Kubernetes Networking

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

● delay=0s indicates that the probe starts immediately after the container is
started.

● timeout=1s indicates that the container must respond to the probe within 1s.
Otherwise, it is considered as a failure.

● period=10s indicates that the probe is performed every 10s.
● #success=1 indicates that the probe is considered successful as long as the

probe succeeds once.
● #failure=3 indicates that the probe is considered failed if it fails for three

consecutive times.

These are the default configurations when the probe is created. You can customize
them as follows:

 readinessProbe: # Readiness probe
 exec: # Define the ls /readiness/ready command.
 command:
 - ls
 - /readiness/ready
 initialDelaySeconds: 10 # Readiness probes are initiated 10s after a container starts.
 timeoutSeconds: 2 # The container must respond within 2s. Otherwise, it is considered failed.
 periodSeconds: 30 # The probe is performed every 30s.
 successThreshold: 1 # The container is considered ready as long as the probe succeeds once.
 failureThreshold: 3 # The container is considered to be failed after three consecutive failures.

7.5 Network Policies
Network policies are designed by Kubernetes to restrict pod access. It is equivalent
to a firewall at the application layer to enhance network security. The capabilities
of network policies are determined by the network add-ons available in the
cluster.

By default, if a namespace does not have any policy, pods in the namespace
accept traffic from any source and send traffic to any destination.

NetworkPolicy rules are classified into the following types:

● namespaceSelector: This selects particular namespaces for which all pods
should be allowed as ingress sources or egress destinations.

● podSelector: This selects particular pods in the same namespace as the
NetworkPolicy which should be allowed as ingress sources or egress
destinations.

● ipBlock: This selects particular IP CIDR ranges to allow as ingress sources or
egress destinations. (Only egress support IP address blocks.)

Using Ingress Rules Through YAML
● Scenario 1: Use a network policy to limit access to a pod to only pods

with specific labels.

Cloud Container Engine
Kubernetes Basics 7 Kubernetes Networking

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

Figure 7-11 podSelector

The pod labeled with role=db only permits access to its port 6379 from pods
labeled with role=frontend. To do so, perform the following operations:

a. Create the access-demo1.yaml file.
vim access-demo1.yaml

File content:
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: access-demo1
 namespace: default
spec:
 podSelector: # The rule takes effect for pods with the role=db label.
 matchLabels:
 role: db
 ingress: # This is an ingress rule.
 - from:
 - podSelector: # Only allow the access of the pods labeled with role=frontend.
 matchLabels:
 role: frontend
 ports: # Only TCP can be used to access port 6379.
 - protocol: TCP
 port: 6379

b. Run the following command to create the network policy based on the
access-demo1.yaml file:
kubectl apply -f access-demo1.yaml

Expected output:
networkpolicy.networking.k8s.io/access-demo1 created

● Scenario 2: Use a network policy to limit access to a pod to only pods in a
specific namespace.

Cloud Container Engine
Kubernetes Basics 7 Kubernetes Networking

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

Figure 7-12 namespaceSelector

The pod labeled with role=db only permits access to its port 6379 from pods
in the namespace labeled with project=myproject. To do so, perform the
following operations:

a. Create the access-demo2.yaml file.
vim access-demo2.yaml

File content:
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: access-demo2
spec:
 podSelector: # The rule takes effect for pods with the role=db label.
 matchLabels:
 role: db
 ingress: # This is an ingress rule.
 - from:
 - namespaceSelector: # Only allow the access of the pods in the namespace labeled
with project=myproject.
 matchLabels:
 project: myproject
 ports: # Only TCP can be used to access port 6379.
 - protocol: TCP
 port: 6379

b. Run the following command to create the network policy based on the
access-demo2.yaml file:
kubectl apply -f access-demo2.yaml

Expected output:
networkpolicy.networking.k8s.io/access-demo2 created

Using Egress Rules Through YAML
NO TE

The clusters of v1.23 or later using a tunnel network support egress rules.

● Scenario 1: Use a network policy to limit a pod's access to specific
addresses.

Cloud Container Engine
Kubernetes Basics 7 Kubernetes Networking

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

Figure 7-13 IPBlock

The pod labeled with role=db only permits access to the 172.16.0.16/16 CIDR
block, excluding 172.16.0.40/32 within it. To do so, perform the following
operations:

a. Create the access-demo3.yaml file.
vim access-demo2.yaml

File content:
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: access-demo3
 namespace: default
spec:
 policyTypes: # Must be specified for an egress rule.
 - Egress
 podSelector: # The rule takes effect for pods with the role=db label.
 matchLabels:
 role: db
 egress: # Egress rule
 - to:
 - ipBlock:
 cidr: 172.16.0.16/16 # Allow access to this CIDR block in the outbound direction.
 except:
 - 172.16.0.40/32 # Block access to this address in the CIDR block.

b. Run the following command to create the network policy based on the
access-demo3.yaml file:
kubectl apply -f access-demo3.yaml

Expected output:
networkpolicy.networking.k8s.io/access-demo3 created

● Scenario 2: Use a network policy to limit access to a pod to only pods
with specific labels and this pod can only access specific pods.

Cloud Container Engine
Kubernetes Basics 7 Kubernetes Networking

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

Figure 7-14 Using both ingress and egress

The pod labeled with role=db only permits access to its port 6379 from pods
labeled with role=frontend, and this pod can only access the pods labeled
with role=web. You can use the same rule to configure both ingress and
egress in a network policy. To do so, perform the following operations:

a. Create the access-demo4.yaml file.
vim access-demo2.yaml

File content:
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: access-demo4
 namespace: default
spec:
 policyTypes:
 - Ingress
 - Egress
 podSelector: # The rule takes effect for pods with the role=db label.
 matchLabels:
 role: db
 ingress: # This is an ingress rule.
 - from:
 - podSelector: # Only allow the access of the pods labeled with role=frontend.
 matchLabels:
 role: frontend
 ports: # Only TCP can be used to access port 6379.
 - protocol: TCP
 port: 6379
 egress: # Egress rule
 - to:
 - podSelector: # Only pods with the role=web label can be accessed.
 matchLabels:
 role: web

b. Run the following command to create the network policy based on the
access-demo4.yaml file:
kubectl apply -f access-demo4.yaml

Expected output:
networkpolicy.networking.k8s.io/access-demo4 created

Cloud Container Engine
Kubernetes Basics 7 Kubernetes Networking

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

8 Persistent Storage

8.1 Volumes
On-disk files in a container are ephemeral, which will be lost when the container
crashes and are difficult to be shared between containers running together in a
pod. The Kubernetes volume abstraction solves both of these problems. Volumes
cannot be independently created, but defined in the pod spec.

All containers in a pod can access its volumes, but the volumes must be attached
and can be attached to any directory in the container.

The following figure shows how a storage volume is used between containers in a
pod.

A volume will no longer exist if the pod to which it is attached does not exist.
However, files in the volume may outlive the volume, depending on the volume
type.

Cloud Container Engine
Kubernetes Basics 8 Persistent Storage

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

Volume Types

Kubernetes supports multiple types of volumes. The most commonly used ones
are as follows:

● emptyDir: an empty volume used for temporary storage
● hostPath: a volume that mounts a directory of the host into your pod
● ConfigMap and secret: special volumes that inject or pass information to your

pod. For details about how to mount ConfigMaps and secrets, see
ConfigMaps and Secrets.

● persistentVolumeClaim: Kubernetes persistent storage class. For details, see
PersistentVolumes, PersistentVolumeClaims, and StorageClasses.

emptyDir

emptyDir is an empty volume in which your applications can read and write the
same files. The lifetime of an emptyDir volume is the same as that of the pod it
belongs to. After the pod is deleted, data in the volume is also deleted.

Some uses of an emptyDir volume are as follows:

● Scratch space, such as for a disk-based merge sort
● Checkpointing a long computation for recovery from crashes

Example emptyDir configuration:

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - image: nginx:alpine
 name: test-container
 volumeMounts:
 - mountPath: /cache
 name: cache-volume
 volumes:
 - name: cache-volume
 emptyDir: {}

emptyDir volumes are stored on the disks of the node where the pod is located.
You can also set the storage medium to the node memory, for example, by setting
medium to Memory.

volumes:
 - name: html
 emptyDir:
 medium: Memory

HostPath

hostPath is a persistent storage volume. Data in an emptyDir volume will be
deleted when the pod is deleted, but not the case for a hostPath volume. Data in
a hostPath volume will still be stored in the node path to which the volume was
mounted. If the pod is re-created and scheduled to the same node and it is
mounted with a new hostPath volume, data written by the old pod can still be
read.

Cloud Container Engine
Kubernetes Basics 8 Persistent Storage

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

Data stored in hostPath volumes is related to the node. Therefore, hostPath is not
suitable for applications such as databases. For example, if a pod in which a
database instance runs is scheduled to another node, the read data will be totally
different.

Therefore, do not use hostPath to store cross-pod data, because after a pod is
rebuilt, it will be randomly scheduled to another node, which may cause
inconsistency when data is written.

apiVersion: v1
kind: Pod
metadata:
 name: test-hostpath
spec:
 containers:
 - image: nginx:alpine
 name: hostpath-container
 volumeMounts:
 - mountPath: /test-pd
 name: test-volume
 volumes:
 - name: test-volume
 hostPath:
 path: /data

8.2 PersistentVolumes, PersistentVolumeClaims, and
StorageClasses

hostPath volumes are used for persistent storage. However, such volumes are
node-specific. Data written into hostPath volumes may be different after a node
restart.

If you want to read the previously written data after a pod is rebuilt and
scheduled again, you can count on network storage. Typically, a cloud vendor
provides at least three classes of network storage: block, file, and object storage.
Kubernetes decouples how storage is provided from how it is consumed by
introducing two API objects: PersistentVolume (PV) and PersistentVolumeClaim
(PVC). You only need to request the storage resources you want, without being
exposed to the details of how they are implemented.

● A PV describes a persistent data storage volume. It defines a directory for
persistent storage on a host machine, for example, a mount directory of a
network file system (NFS).

● A PVC describes the attributes of the PV that a pod wants to use, such as the
volume capacity and read/write permissions.

To allow a pod to use a PV, the Kubernetes cluster administrator needs to
configure a network StorageClass and provides PV descriptors to Kubernetes. You
only need to create a PVC and bind it with the volumes in the pod so that you can
store data. The following figure shows the interaction between a PV and PVC.

Cloud Container Engine
Kubernetes Basics 8 Persistent Storage

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

Figure 8-1 Interaction between a PV and PVC

CSI
Kubernetes Container Storage Interface (CSI) can be used to develop plug-ins to
support specific storage volumes. For example, there are everest-csi-controller
and everest-csi-driver developed by CCE in the kube-system namespace in
Namespace for Grouping Resources. With these drivers, you can use cloud
storage services such as EVS, SFS, and OBS.

$ kubectl get po --namespace=kube-system
NAME READY STATUS RESTARTS AGE
everest-csi-controller-6d796fb9c5-v22df 2/2 Running 0 9m11s
everest-csi-driver-snzrr 1/1 Running 0 12m
everest-csi-driver-ttj28 1/1 Running 0 12m
everest-csi-driver-wtrk6 1/1 Running 0 12m

PV
Each PV contains the specification and status of the volume. For example, a file
system is created in SFS, with the file system ID 68e4a4fd-
d759-444b-8265-20dc66c8c502 and the mount point sfs-nas01.cn-
north-4b.myhuaweicloud.com:/share-96314776. To use this file system in CCE,
create a PV to describe the volume, as shown in the following example:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv-example
spec:
 accessModes:
 - ReadWriteMany # Read/write mode
 capacity:
 storage: 10Gi # PV capacity
 csi:
 driver: nas.csi.everest.io # Driver to be used
 fsType: nfs # StorageClass
 volumeAttributes:
 everest.io/share-export-location: sfs-nas01.cn-north-4b.myhuaweicloud.com:/share-96314776 # Mount
point
 volumeHandle: 68e4a4fd-d759-444b-8265-20dc66c8c502 # Storage ID

Fields under csi in this example are dedicated used in CCE.

Cloud Container Engine
Kubernetes Basics 8 Persistent Storage

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

Next, create the PV and view its details.

$ kubectl create -f pv.yaml
persistentvolume/pv-example created

$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS
REASON AGE
pv-example 10Gi RWX Retain Available 4s

For RECLAIM POLICY, the value Retain indicates that the PV is retained after the
PVC is released.

PVC
Each PVC can only be bound to one PV. The following is an example:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-example
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 10Gi # Storage capacity
 volumeName: pv-example # PV name

Create the PVC and view its details.

$ kubectl create -f pvc.yaml
persistentvolumeclaim/pvc-example created

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
pvc-example Bound pv-example 10Gi RWX 9s

The command output shows that the PVC is in the Bound state and the value of
VOLUME is pv-example, indicating that the PVC has been bound to a PV.

Then, check the PV status.

$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS
REASON AGE
pv-example 10Gi RWX Retain Bound default/pvc-example 50s

The status of the PV is also Bound. The value of CLAIM is default/pvc-example,
indicating that the PV is bound to the PVC named pvc-example in the default
namespace.

Note that PVs are cluster-level resources and do not belong to any namespace,
while PVCs are namespace-level resources. PVs can be bound to PVCs of any
namespace. Therefore, the namespace name default followed by the PVC name is
displayed under CLAIM in this example.

Cloud Container Engine
Kubernetes Basics 8 Persistent Storage

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

Figure 8-2 Relationship between PVs and PVCs

StorageClass
PVs and PVCs allow you to consume storage resources, but creating them is a
complex process, especially the csi field in PVs. In addition, PVs and PVCs are
generally managed by the cluster administrator. It is inconvenient for you to
configure varying attributes for them.

To solve this problem, Kubernetes supports dynamic PV provisioning to create PVs
automatically. The cluster administrator can deploy a PV provisioner and define
StorageClasses. In this way, you can select a desired StorageClass when creating a
PVC. The PVC then transfers the StorageClass to the PV provisioner, and the
provisioner automatically creates a PV. In CCE, StorageClasses such as csi-disk, csi-
nas, and csi-obs are supported. The storageClassName field is added to a PVC so
that PVs can be automatically provisioned and underlying storage resources can
be automatically created.

Run the following command to obtain the StorageClasses that CCE supports. You
can use the CSI add-ons provided by CCE to customize StorageClasses, which
function similarly as the default StorageClasses in CCE.

kubectl get sc
NAME PROVISIONER AGE
csi-disk everest-csi-provisioner 17d # StorageClass for EVS disks
csi-disk-topology everest-csi-provisioner 17d # StorageClass for EVS disks with delayed
association
csi-nas everest-csi-provisioner 17d # StorageClass for SFS file systems
csi-obs everest-csi-provisioner 17d # StorageClass for OBS buckets
csi-sfsturbo everest-csi-provisioner 17d # StorageClass for SFS Turbo file systems

Run the following command to specify a StorageClass for creating a PVC:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-sfs-auto-example
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 10Gi
 storageClassName: csi-nas # StorageClass

Cloud Container Engine
Kubernetes Basics 8 Persistent Storage

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

NO TE

PVCs cannot be directly created by using the StorageClass csi-sfsturbo. To use SFS Turbo
storage, create an SFS Turbo file system and then a PV and PVC through a static PV. For
details, see Using an Existing SFS Turbo File System Through a Static PV.

Run the following command to create the PVC and view the PVC and PV details:

$ kubectl create -f pvc2.yaml
persistentvolumeclaim/pvc-sfs-auto-example created

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
pvc-sfs-auto-example Bound pvc-1f1c1812-f85f-41a6-a3b4-785d21063ff3 10Gi RWX csi-
nas 29s

$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS
CLAIM STORAGECLASS REASON AGE
pvc-1f1c1812-f85f-41a6-a3b4-785d21063ff3 10Gi RWO Delete Bound default/pvc-sfs-
auto-example csi-nas 20s

The command output shows that after a StorageClass is specified, a PVC and a PV
are created and bound.

After a StorageClass is specified, PVs can be automatically created and
maintained. You only need to specify StorageClassName when creating a PVC,
which greatly reduces the workload.

Using a PVC in a Pod
You can directly bind an available PVC to a volume in the pod template and then
mount the volume to the pod, as shown in the following example. You can also
directly create a PVC in a StatefulSet. For details, see StatefulSets.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 2
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - image: nginx:alpine
 name: container-0
 volumeMounts:
 - mountPath: /tmp # Mount path
 name: pvc-sfs-example
 restartPolicy: Always
 volumes:
 - name: pvc-sfs-example
 persistentVolumeClaim:
 claimName: pvc-example # PVC name

Cloud Container Engine
Kubernetes Basics 8 Persistent Storage

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0625.html

9 Authentication and Authorization

9.1 Service Accounts
All access requests to Kubernetes resources are processed by the API Server,
regardless of whether the requests are from an external system. Therefore, the
requests must be authenticated and authorized before they are sent to Kubernetes
resources.

● Authentication: authenticates user identities. Kubernetes uses different
authentication rules for external and internal service accounts. For details, see
Authentication and ServiceAccounts.

● Authorization: controls users' access to resources. Role-based access control
(RBAC) is used to authorize users to access resources. For details, see RBAC.

Figure 9-1 Authentication and authorization of the API Server

Authentication and ServiceAccounts
Kubernetes users are classified as service accounts (ServiceAccounts) and common
accounts.

● A ServiceAccount is bound to a namespace and associated with a set of
credentials. When a pod is created, the token is mounted to the pod so that
the pod can be called by the API server.

● Kubernetes does not come with pre-built objects for managing common
accounts. Instead, external services are used for this purpose. For example,
CCE users are managed through Identity and Access Management (IAM).

Cloud Container Engine
Kubernetes Basics 9 Authentication and Authorization

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

ServiceAccounts in Kubernetes are resources that exist at the namespace level, just
like pods and ConfigMaps. When a namespace is created, the system
automatically generates a ServiceAccount named default in the namespace.

You can run the following command to check ServiceAccounts:

kubectl get sa

NAME SECRETS AGE
default 1 30d

NO TE

● In clusters earlier than v1.21, a token is obtained by mounting the secret of the service
account to a pod. Tokens obtained this way are permanent. This approach is no longer
recommended starting from version 1.21. Service accounts will stop auto creating
secrets in clusters from version 1.25.
In clusters of version 1.21 or later, you can use the TokenRequest API to obtain the
token and use the projected volume to mount the token to the pod. Such tokens are
valid for a fixed period. When the mounting pod is deleted, the token automatically
becomes invalid. For details, see Service Account Token Security Improvement.

● If you need a token that never expires, you can also manually manage secrets for
service accounts. Although a permanent service account token can be manually
created, you are advised to use a short-lived token by calling the TokenRequest API for
higher security.

In clusters earlier than 1.25, a secret is automatically created for each
ServiceAccount. In clusters 1.25 or later, a secret is not automatically created for
each ServiceAccount. The following describes how to check the statuses of
ServiceAccounts in clusters earlier than 1.25 and in clusters 1.25 or later.

● In a cluster earlier than 1.25, run the following command to check the status
of the default ServiceAccount.
kubectl describe sa default
If information similar to the following is displayed, the default-token-vssmw
secret is automatically created for the ServiceAccount.
Name: default
Namespace: default
Labels: <none>
Annotations: <none>
Image pull secrets: <none>
Mountable secrets: default-token-vssmw
Tokens: default-token-vssmw
Events: <none>

● In a cluster 1.25 or later, run the following command to check the status of
the default ServiceAccount.
kubectl describe sa default
According to the command output, no secret is automatically created for the
default ServiceAccount.
Name: default
Namespace: default
Labels: <none>
Annotations: <none>
Image pull secrets: <none>
Mountable secrets: <none>
Tokens: <none>
Events: <none>

When defining a pod, you can assign a ServiceAccount to it by specifying the
account name in the file. If no account name is specified, the default

Cloud Container Engine
Kubernetes Basics 9 Authentication and Authorization

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

https://kubernetes.io/docs/reference/kubernetes-api/authentication-resources/token-request-v1/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/#bound-service-account-token-volume
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/#bound-service-account-token-volume
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0477.html
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/#manual-secret-management-for-serviceaccounts
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/#manual-secret-management-for-serviceaccounts
https://kubernetes.io/docs/reference/kubernetes-api/authentication-resources/token-request-v1/

ServiceAccount will be used. When receiving a request with an authentication
token, the API Server uses the token to check whether the ServiceAccount
associated with the client that sends the request allows the request to be
executed.

Creating a ServiceAccount

Step 1 Take a cluster 1.29 as an example. Run the following command to create a
ServiceAccount in the default namespace:

kubectl create serviceaccount sa-example

serviceaccount/sa-example created

Run the following command to check whether sa-example has been created. If
sa-example is displayed in the NAME column, it has been created.

kubectl get sa

NAME SECRETS AGE
default 1 30d
sa-example 0 2s

Because the cluster version used in this case is later than 1.25, the ServiceAccount
will not have a secret created automatically. To check if a secret was created, use
the following command to view the ServiceAccount details. If the output shows
none for Mountable secrets and Tokens, then no secret was automatically
created for the ServiceAccount.

kubectl describe sa sa-example

Name: sa-example
Namespace: default
Labels: <none>
Annotations: <none>
Image pull secrets: <none>
Mountable secrets: <none>
Tokens: <none>
Events: <none>

Step 2 In this example, manually manage the secret to obtain a token that never expires.
Use the following command to manually create a secret named sa-example-
token and associate it with the sa-example ServiceAccount.
kubectl apply -f - <<EOF
apiVersion: v1
kind: Secret
metadata:
 namespace: default
 name: sa-example-token
 annotations:
 kubernetes.io/service-account.name: sa-example
type: kubernetes.io/service-account-token
EOF

Step 3 Check whether sa-example-token has been created. If sa-example-token is
present in secrets of the default namespace, then it has been created.

kubectl get secrets

NAME TYPE DATA AGE
default-secret kubernetes.io/dockerconfigjson 1 6d20h
paas.elb cfe/secure-opaque 1 6d20h
sa-example-token kubernetes.io/service-account-token 3 16s

Cloud Container Engine
Kubernetes Basics 9 Authentication and Authorization

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

Check the secret content. You can find the ca.crt, namespace, and token data.

kubectl describe secret sa-example-token
Name: sa-example-token
Namespace: default
Labels: <none>
Annotations: kubernetes.io/service-account.name: sa-example
 kubernetes.io/service-account.uid: 4b7d3e19-1dfe-4ee0-bb49-4e2e0c3c5e25

Type: kubernetes.io/service-account-token

Data
====
ca.crt: 1123 bytes
namespace: 7 bytes
token: eyJhbGciOiJSU...

Step 4 Check whether the ServiceAccount has been associated with the new secret,
meaning if the ServiceAccount has obtained the token. The command output
shows that sa-example is associated with sa-example-token.

kubectl describe sa sa-example
Name: sa-example
Namespace: default
Labels: <none>
Annotations: <none>
Image pull secrets: <none>
Mountable secrets: <none>
Tokens: sa-example-token
Events: <none>

----End

Using a ServiceAccount in a Pod
It is convenient to use a ServiceAccount in a pod. You only need to specify the
name of the ServiceAccount. The following uses nginx:latest as an example to
describe how to use a ServiceAccount in a pod.

Step 1 Create a description file named sa-pod.yaml. mysql.yaml is an example file
name. You can rename it as required.

vim sa-pod.yaml

NO TICE

To enable the pod to use the token from the manually created secret, you must
mount the secret to the container. For details about how to mount the secret, see
the code in bold in the description file.

The file content is as follows:

apiVersion: v1
kind: Pod
metadata:
 name: sa-pod
spec:
 serviceAccountName: sa-example # Specify sa-example as the ServiceAccount used by the pod.
 imagePullSecrets:
 - name: default-secret

Cloud Container Engine
Kubernetes Basics 9 Authentication and Authorization

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

 containers:
 - image: nginx:latest
 name: container-0
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi
 volumeMounts: # Mount the storage volume named secret-volume to the pod.
 - name: secret-volume
 readOnly: true # The mounted storage volume is read-only.
 mountPath: "/etc/secret-volume" # Mount path of the storage volume in the container, which
can be customized
 volumes: # Define a secret volume that can be used by the pod.
 - name: secret-volume # Name of the secret volume, which can be customized
 secret: # Set the type of the storage volume to Secret.
 secretName: sa-example-token # Mount sa-example-token to the defined storage volume.

Step 2 Create a pod and view its details. You can see that sa-example-token is mounted
to the pod. The pod uses the token for authentication.

kubectl create -f sa-pod.yaml

The command output is as follows:

pod/sa-pod created

Use the following command to check whether the pod has been created:

kubectl get pod

In the command output, if sa-pod is in the Running state, the pod has been
created.

NAME READY STATUS RESTARTS AGE
sa-pod 1/1 running 0 5s

Step 3 View the sa-pod details and check whether sa-example-token has been mounted
to the pod.

kubectl describe pod sa-pod

The command output is as follows:

...
Containers:
 container-0:
 Container ID:
 Image: nginx:latest
 Image ID:
 Port: <none>
 Host Port: <none>
 State: Waiting
 Reason: ImagePullBackOff
 Ready: False
 Restart Count: 0
 Limits:
 cpu: 100m
 memory: 200Mi
 Requests:
 cpu: 100m
 memory: 200Mi
 Environment: <none>
 Mounts:
 # The sa-example-token has been mounted to the pod, and the pod can use the token for
authentication.

Cloud Container Engine
Kubernetes Basics 9 Authentication and Authorization

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

 /etc/secret-volume from secret-volume (ro)
 # Automatically mounted TokenRequest, which can provide a short-term token
 /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-2s4sw (ro)
...

You can also run the following command to view the corresponding files in the
pod. (The path after cd is the same as the mount path of secret-volume.)

kubectl exec -it sa-pod -- /bin/sh

cd /etc/secret-volume

ls

The command output is as follows:

ca.crt namespace token

Step 4 Verify that the manually created ServiceAccount token can work.

1. In a Kubernetes cluster, a Service named kubernetes is created for the API
Server by default. Pods can be accessed through this Service. After exiting the
pod by pressing Ctrl+D, you can run the following command to view the
detailed information about the Service:
kubectl get svc
The command output is as follows:
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.247.0.1 <none> 443/TCP 34

2. Access the pod and check whether the pod can access pod resources in the
cluster through the API Server without using the token.
kubectl exec -it sa-pod -- /bin/sh
curl https://10.247.0.1:443/api/v1/namespaces/default/pods
If information similar to the following is displayed, the pod cannot directly
access pod resources in the cluster through the API Server.
curl: (60) SSL certificate problem: unable to get local issuer certificate
More details here: https://curl.se/docs/sslcerts.html

curl failed to verify the legitimacy of the server and therefore could not
establish a secure connection to it. To learn more about this situation and
how to fix it, please visit the web page mentioned above.

3. Configure the environment variables of ca.crt. Add the path of ca.crt to the
CURL_CA_BUNDLE environment variable, which instructs the curl command
to use the certificate file as the trust anchor.
export CURL_CA_BUNDLE = /etc/secret-volume/ca.crt

4. Add the token content to TOKEN.
TOKEN=$(cat /etc/secret-volume/token)
Check whether TOKEN has been configured.
echo $TOKEN
If information similar to the following is displayed, the TOKEN has been
configured as expected.
eyJhbGciOiJSUzI1NiIsImtpZCI6I...

5. Access the API Server using the configured TOKEN.
curl -H "Authorization: Bearer $TOKEN" https://10.247.0.1:443/api/v1/
namespaces/default/pods

Cloud Container Engine
Kubernetes Basics 9 Authentication and Authorization

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

If information similar to the following is displayed, it means that the pod has
passed authentication and the manually created ServiceAccount token is in
effect. (If the API Server returns cannot get path \"/api/v1/namespaces/
default/pods\"", the pod does not have the access permissions. The pod can
access the API Server only after being authorized. For details about the
authorization mechanism, see RBAC.)
"kind": "PodList",
 "apiVersion": "v1",
 "metadata": {
 "resourceVersion": "13267712"
 },
 "items": [
 {
 "metadata": {
 "name": "hpa-example-77b9b446f6-nc7b6",
...

----End

9.2 RBAC

RBAC Resources
In Kubernetes, RBAC is used for authorization. RBAC authorization uses four types
of resources for configuration.

● Role: defines a set of rules for accessing Kubernetes resources in a namespace.
● RoleBinding: defines the relationship between users and roles.
● ClusterRole: defines a set of rules for accessing Kubernetes resources in a

cluster (including all namespaces).
● ClusterRoleBinding: defines the relationship between users and cluster roles.

Role and ClusterRole specify actions that can be performed on specific resources.
RoleBinding and ClusterRoleBinding bind roles to specific users, user groups, or
ServiceAccounts. See the following figure.

Figure 9-2 Role binding

Cloud Container Engine
Kubernetes Basics 9 Authentication and Authorization

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

Creating a Role
The procedure for creating a Role is very simple. To be specific, specify a
namespace and then define rules. The rules in the following example are to allow
GET and LIST operations on pods in the default namespace.

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 namespace: default # Namespace
 name: role-example
rules:
- apiGroups: [""]
 resources: ["pods"] # The pod can be accessed.
 verbs: ["get", "list"] # The GET and LIST operations can be performed.

Creating a RoleBinding
After creating a Role, you can bind the Role to a specific user, which is called
RoleBinding. The following shows an example:

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: rolebinding-example
 namespace: default
subjects: # Specified user
- kind: User # Common user
 name: user-example
 apiGroup: rbac.authorization.k8s.io
- kind: ServiceAccount # ServiceAccount
 name: sa-example
 namespace: default
roleRef: # Specified Role
 kind: Role
 name: role-example
 apiGroup: rbac.authorization.k8s.io

The subjects is used to bind the Role to a user. The user can be an external
common user or a ServiceAccount. For details about the two user types, see
Service Accounts. The following figure shows the binding relationship.

Figure 9-3 Binding a role to a user

Then check whether the authorization takes effect.

In Using a ServiceAccount, a pod is created and the ServiceAccount sa-example
is used. The Role role-example is bound to sa-example. Access the pod and run
the curl command to access resources through the API Server to check whether
the permission takes effect.

Cloud Container Engine
Kubernetes Basics 9 Authentication and Authorization

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

Use ca.crt and token corresponding to sa-example for authentication and query
all pod resources (LIST in Creating a Role) in the default namespace.

$ kubectl exec -it sa-pod -- /bin/sh
export CURL_CA_BUNDLE=/var/run/secrets/kubernetes.io/serviceaccount/ca.crt
TOKEN=$(cat /var/run/secrets/kubernetes.io/serviceaccount/token)
curl -H "Authorization: Bearer $TOKEN" https://kubernetes/api/v1/namespaces/default/pods
{
 "kind": "PodList",
 "apiVersion": "v1",
 "metadata": {
 "selfLink": "/api/v1/namespaces/default/pods",
 "resourceVersion": "10377013"
 },
 "items": [
 {
 "metadata": {
 "name": "sa-example",
 "namespace": "default",
 "selfLink": "/api/v1/namespaces/default/pods/sa-example",
 "uid": "c969fb72-ad72-4111-a9f1-0a8b148e4a3f",
 "resourceVersion": "10362903",
 "creationTimestamp": "2020-07-15T06:19:26Z"
 },
 "spec": {
...

If the returned result is normal, sa-example has permission to list pods. Query the
Deployment again. If the following information is displayed, you do not have the
permission to access the Deployment.

curl -H "Authorization: Bearer $TOKEN" https://kubernetes/api/v1/namespaces/default/deployments
...
 "status": "Failure",
 "message": "deployments is forbidden: User \"system:serviceaccount:default:sa-example\" cannot list
resource \"deployments\" in API group \"\" in the namespace \"default\"",
...

Role and RoleBinding apply to namespaces and can isolate permissions to some
extent. As shown in the following figure, role-example defined above cannot
access resources in the kube-system namespace.

Figure 9-4 Role and RoleBinding applied to namespaces

Continue to access the pod. If the following information is displayed, you do not
have the permission.

curl -H "Authorization: Bearer $TOKEN" https://kubernetes/api/v1/namespaces/kube-system/pods
...
 "status": "Failure",

Cloud Container Engine
Kubernetes Basics 9 Authentication and Authorization

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

 "message": "pods is forbidden: User \"system:serviceaccount:default:sa-example\" cannot list resource
\"pods\" in API group \"\" in the namespace \"kube-system\"",
 "reason": "Forbidden",
...

In RoleBinding, you can also bind the ServiceAccounts of other namespaces by
adding them under the subjects field.

subjects: # Specified user
- kind: ServiceAccount # ServiceAccount
 name: kube-sa-example
 namespace: kube-system

Then the ServiceAccount kube-sa-example in kube-system can perform GET and
LIST operations on pods in the default namespace, as shown in the following
figure.

Figure 9-5 Cross-namespace access

ClusterRole and ClusterRoleBinding
Compared with Role and RoleBinding, ClusterRole and ClusterRoleBinding have
the following differences:

● ClusterRole and ClusterRoleBinding do not need to define the namespace
field.

● ClusterRole can define cluster-level resources.

You can see that ClusterRole and ClusterRoleBinding control cluster-level
permissions.

In Kubernetes, many ClusterRoles and ClusterRoleBindings are defined by default.

$ kubectl get clusterroles
NAME AGE
admin 30d
cceaddon-prometheus-kube-state-metrics 6d3h
cluster-admin 30d
coredns 30d
custom-metrics-resource-reader 6d3h
custom-metrics-server-resources 6d3h
edit 30d
prometheus 6d3h
system:aggregate-customedhorizontalpodautoscalers-admin 6d2h
system:aggregate-customedhorizontalpodautoscalers-edit 6d2h
system:aggregate-customedhorizontalpodautoscalers-view 6d2h
....
view 30d

$ kubectl get clusterrolebindings
NAME AGE

Cloud Container Engine
Kubernetes Basics 9 Authentication and Authorization

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

authenticated-access-network 30d
authenticated-packageversion 30d
auto-approve-csrs-for-group 30d
auto-approve-renewals-for-nodes 30d
auto-approve-renewals-for-nodes-server 30d
cceaddon-prometheus-kube-state-metrics 6d3h
cluster-admin 30d
cluster-creator 30d
coredns 30d
csrs-for-bootstrapping 30d
system:basic-user 30d
system:ccehpa-rolebinding 6d2h
system:cluster-autoscaler 6d1h
...

The most important and commonly used ClusterRoles are as follows:

● view: has the permission to view namespace resources.
● edit: has the permission to modify namespace resources.
● admin: has all permissions on the namespace.
● cluster-admin: has all permissions on the cluster.

Run the kubectl describe clusterrole command to view the permissions of each
rule.

Generally, the four ClusterRoles are bound to users to isolate permissions. Note
that Roles (rules and permissions) are separated from users. You can flexibly
control permissions by combining the two through RoleBinding.

Cloud Container Engine
Kubernetes Basics 9 Authentication and Authorization

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

10 Auto Scaling

In Pod Orchestration and Scheduling, we introduce controllers such as
Deployment to control the number of pod replicas. You can adjust the number of
replicas to manually scale your applications. However, manual scaling is
sometimes complex and fails to cope with unexpected traffic spikes.

Kubernetes supports auto scaling of pods and cluster nodes. You can set rules to
trigger auto scaling when certain metrics (such as CPU usage) reach the
configured threshold.

Prometheus and Metrics Server
A prerequisite for auto scaling is that your container running data can be
collected, such as number of cluster nodes/pods, and CPU and memory usage of
containers. Kubernetes does not provide such monitoring capabilities itself. You
can use extensions to monitor and collect your data.

● Prometheus is an open source monitoring and alarming framework that can
collect multiple types of metrics. Prometheus has been a standard monitoring
solution of Kubernetes.

● Metrics Server is a cluster-wide aggregator of resource utilization data.
Metrics Server collects metrics from the Summary API exposed by kubelet.
These metrics are set for core Kubernetes resources, such as pods, nodes,
containers, and Services. Metrics Server provides a set of standard APIs for
external systems to collect these metrics.

Horizontal Pod Autoscaler (HPA) can work with Metrics Server to implement auto
scaling based on the CPU and memory usage. It can also work with Prometheus to
implement auto scaling based on custom monitoring metrics.

How HPA Works
HPA is a controller that controls horizontal pod scaling. HPA periodically checks
the pod metrics, calculates the number of replicas required to meet the target
values configured for HPA resources, and then adjusts the value of the replicas
field in the target resource object (such as a Deployment).

Cloud Container Engine
Kubernetes Basics 10 Auto Scaling

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

https://prometheus.io/
https://github.com/kubernetes-sigs/metrics-server

Figure 10-1 HPA working rules

You can configure one or more metrics for the HPA. When configuring a single
metric, you only need to sum up the current pod metrics, divide the sum by the
expected target value, and then round up the result to obtain the expected
number of replicas. For example, if a Deployment controls three pods, the CPU
usage of each pod is 70%, 50%, and 90%, and the expected CPU usage configured
in the HPA is 50%, the expected number of replicas is calculated as follows: (70 +
50 + 90)/50 = 4.2. The result is rounded up to 5. That is, the expected number of
replicas is 5.

If multiple metrics are configured, the expected number of replicas of each metric
is calculated and the maximum value will be used.

Using the HPA
The following example demonstrates how to use the HPA. First, use the Nginx
image to create a Deployment with four replicas.

$ kubectl get deploy
NAME READY UP-TO-DATE AVAILABLE AGE
nginx-deployment 4/4 4 4 77s

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-deployment-7cc6fd654c-5xzlt 1/1 Running 0 82s
nginx-deployment-7cc6fd654c-cwjzg 1/1 Running 0 82s
nginx-deployment-7cc6fd654c-dffkp 1/1 Running 0 82s
nginx-deployment-7cc6fd654c-j7mp8 1/1 Running 0 82s

Create an HPA. The expected CPU usage is 70% and the number of replicas ranges
from 1 to 10.

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:

Cloud Container Engine
Kubernetes Basics 10 Auto Scaling

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

 name: scale
 namespace: default
spec:
 scaleTargetRef: # Target resource
 apiVersion: apps/v1
 kind: Deployment
 name: nginx-deployment
 minReplicas: 1 # Minimum number of replicas of the target resource
 maxReplicas: 10 # Maximum number of replicas of the target resource
 metrics: # Metric. The expected CPU usage is 70%.
 - type: Resource
 resource:
 name: cpu
 target:
 type: Utilization
 averageUtilization: 70

Query the created HPA.

$ kubectl create -f hpa.yaml
horizontalpodautoscaler.autoscaling/scale created

$ kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
scale Deployment/nginx-deployment 0%/70% 1 10 4 18s

In the command output, the expected value of TARGETS is 70%, but the actual
value is 0%. This means that the HPA will perform scale-in. The expected number
of replicas can be calculated as follows: (0 + 0 + 0 + 0)/70 = 0. However, the
minimum number of replicas has been set to 1. Therefore, the number of pods is
changed to 1. After a while, the number of pods changes to 1.

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-deployment-7cc6fd654c-5xzlt 1/1 Running 0 7m41s

Query the HPA again and a record similar to the following is displayed under
Events. In this example, the record indicates that the HPA successfully performed
a scale-in 21 seconds ago and the number of pods is changed to 1, and the scale-
in is triggered because the values of all metrics are lower than the target values.

$ kubectl describe hpa scale
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulRescale 21s horizontal-pod-autoscaler New size: 1; reason: All metrics below target

If you want to query the Deployment details, you can check the records similar to
the following under Events. In this example, the second record indicates that the
number of replicas of the Deployment is set to 1, which is the same as that in the
HPA.

$ kubectl describe deploy nginx-deployment
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal ScalingReplicaSet 7m deployment-controller Scaled up replica set nginx-
deployment-7cc6fd654c to 4
 Normal ScalingReplicaSet 1m deployment-controller Scaled down replica set nginx-
deployment-7cc6fd654c to 1

Cloud Container Engine
Kubernetes Basics 10 Auto Scaling

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

Cluster Autoscaler
The HPA is designed for pods. However, if the cluster resources are insufficient,
you can only add nodes. Scaling of cluster nodes could be laborious. Now with
clouds, you can add or delete nodes by simply calling APIs.

Cluster Autoscaler is a component provided by Kubernetes for auto scaling of
cluster nodes based on the pod scheduling status and resource usage. You can
refer to the API documentation of your cloud service provider to implement auto
scaling.

For details about the implementation in CCE, see Creating a Node Scaling Policy.

Cloud Container Engine
Kubernetes Basics 10 Auto Scaling

Issue 01 (2025-02-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0209.html

	Contents
	1 Overview
	2 Basic Concepts
	3 Containers and Kubernetes
	3.1 Containers
	3.2 Kubernetes
	3.3 Using kubectl to Operate a Cluster

	4 Pods, Labels, and Namespaces
	4.1 Pod: the Smallest Scheduling Unit in Kubernetes
	4.2 Liveness Probes
	4.3 Label for Managing Pods
	4.4 Namespace for Grouping Resources

	5 Pod Orchestration and Scheduling
	5.1 Deployments
	5.2 StatefulSets
	5.3 Jobs and CronJobs
	5.4 DaemonSets
	5.5 Affinity and Anti-Affinity Scheduling

	6 Configuration Management
	6.1 ConfigMaps
	6.2 Secrets

	7 Kubernetes Networking
	7.1 Container Networking
	7.2 Services
	7.3 Ingresses
	7.4 Readiness Probes
	7.5 Network Policies

	8 Persistent Storage
	8.1 Volumes
	8.2 PersistentVolumes, PersistentVolumeClaims, and StorageClasses

	9 Authentication and Authorization
	9.1 Service Accounts
	9.2 RBAC

	10 Auto Scaling

