
FunctionGraph

Developer Guide

Issue 01

Date 2026-01-08

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2026. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 Overview..1
1.1 Function Development.. 1
1.2 Supported Event Sources.. 3
1.3 Function Project Packaging Rules.. 9
1.4 Referencing DLLs in Functions... 14

2 Initializer... 16
2.1 What Is Initializer?.. 17
2.2 Initializer Definition..19

3 Developing Functions... 22
3.1 Developing Functions in Node.js... 22
3.2 Developing Functions in Python.. 26
3.3 Developing Functions in Java... 29
3.3.1 Developing Functions in Java (Using Eclipse)... 29
3.4 Developing Functions in Go.. 40
3.5 Developing Functions in C#.. 43
3.5.1 C# Function Development... 43
3.5.2 JSON Serialization and Deserialization..46
3.5.2.1 Using .NET Core CLI.. 46
3.5.2.2 Using Visual Studio... 48
3.6 Developing Functions in PHP..55
3.7 Developing Functions in Cangjie... 58
3.7.1 Developing Functions in Cangjie (Using Visual Studio Code)... 58
3.7.2 Developing an Event Function.. 60

4 Developing Functions with Plug-ins... 63
4.1 Eclipse Plug-in.. 63
4.2 PyCharm Plug-in... 66

FunctionGraph
Developer Guide Contents

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

1 Overview

1.1 Function Development

Supported Runtimes

The Node.js, Java, Python, Go, C#, PHP, Cangjie, and custom runtimes are
supported. Table 1-1 lists the supported runtimes.

NO TE

You are advised to use the latest runtime version.

Table 1-1 Runtime description

Runtime Supported Version SDK Download Link

Node.js 6.10, 8.10, 10.16, 12.13,
14.18, 16.17, 18.15, 20.15

-

Python 2.7, 3.6, 3.9, 3.10, 3.12 -

Java 8, 11, 17, 21 Java SDK
NOTE

The Java runtime has
integrated with Object
Storage Service (OBS)
SDKs.

Go 1.x Go1.8.3 SDK

C# .NET Core 2.1, .NET Core
3.1, .NET Core 6.0, .NET
Core 8.0

CsharpSDK

PHP 7.3, 8.3 -

Custom - -

Cangjie 1.0 -

FunctionGraph
Developer Guide 1 Overview

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

https://functionstage-sdk.obs.myhuaweicloud.com/java-sdk/fss-java-sdk-1.1.2.zip
https://functionstage-sdk.obs.myhuaweicloud.com/go-sdk/fss-go-sdk.zip
https://functionstage-sdk.obs.myhuaweicloud.com/csharp-sdk/fssCsharp2.0-1.0.1.zip

Third-Party Components Integrated with the Node.js Runtime

Table 1-2 Third-party components integrated with the Node.js runtime

Name Usage Version

q Asynchronous method
encapsulation

1.5.1

co Asynchronous process
control

4.6.0

lodash Common tool and
method library

4.17.10

esdk-obs-nodejs OBS SDK 2.1.5

express Simplified web-based
application development
framework

4.16.4

fgs-express Uses the Node.js
application framework to
run serverless
applications and REST
APIs in FunctionGraph
and API Gateway. This
component provides an
example of using the
Express framework to
build serverless web
applications or services
and RESTful APIs.

1.0.1

request Simplifies HTTP
invocation and supports
HTTPS and redirection.

2.88.0

Non-Standard Libraries Integrated with the Python Runtime

Table 1-3 Non-standard libraries integrated with the Python Runtime

Library Usage Version

dateutil Date and time
processing

2.6.0

requests HTTP library 2.7.0

httplib2 HTTP client 0.10.3

FunctionGraph
Developer Guide 1 Overview

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

Library Usage Version

numpy Mathematical
computation

1.13.1

redis Redis client 2.10.5

obsclient OBS client -

smnsdk Simple Message
Notification (SMN)
access

1.0.1

Sample Project Packages
Table 1-4 provides the links for downloading the sample project packages
mentioned in this document. You can download the project packages to a local
path and upload them when creating functions.

Table 1-4 Download links of the sample project packages

Function Project Package

Node.js function fss_examples_nodejs6.10.zip

Python function fss_examples_python2.7.zip

Java function fss_example_java8.jar

Go function fss_examples_go1.8.zip

C# function fss_example_csharp2.0 and
fss_example_csharp2.1

PHP function fss_examples_php7.3.zip

1.2 Supported Event Sources
This section describes the cloud services that can be configured as event sources
for your FunctionGraph functions. After you preconfigure the event source
mapping, these event sources automatically invoke the relevant function when
detecting events.

SMN
Simple Message Notification (SMN) sends messages to email addresses, mobile
phones, or HTTP/HTTPS URLs. If you create a function with an SMN trigger,
messages published to a specified topic will be passed as a parameter (SMN
example event) to invoke the function. Then, the function processes the event,
for example, publishing messages to other SMN topics or sending them to other

FunctionGraph
Developer Guide 1 Overview

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_nodejs6.10.zip
https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_python2.7.zip
https://functionstage-examples.obs.myhuaweicloud.com/fss_example_java8.jar
https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_go1.8.zip
https://functionstage-examples.obs.myhuaweicloud.com/fss_example_csharp2.0.zip
https://functionstage-examples.obs.myhuaweicloud.com/fss_example_csharp2.1.zip
https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_php7.3.zip

cloud services. For details, see section "Using an SMN Trigger" in the
FunctionGraph User Guide.

API Gateway

API Gateway is an API hosting service that helps enterprises to build, manage, and
deploy APIs at any scale. With API Gateway, your function can be invoked through
HTTPS by using a custom REST API and a specified backend. You can map each
API operation (such as, GET and PUT) to a specific function. API Gateway invokes
the relevant function when an HTTPS request (API Gateway example event) is
sent to the API backend. For details, see section "Using an APIG Trigger" in the
FunctionGraph User Guide.

OBS

Object Storage Service (OBS) is a stable, secure, efficient, and easy-to-use cloud
storage service. You can create a function to process OBS bucket events, for
example, creating and deleting objects. When an image is uploaded to a specified
bucket, OBS invokes the function to read the image and create a thumbnail. For
details, see section "Using an OBS Trigger" in the FunctionGraph User Guide.

Table 1-5 Event types supported by OBS

Event Description

ObjectCreated All kinds of object creation operations, including PUT,
POST, and COPY of objects, as well as the merging of
parts.

Put Use the PUT method to upload objects.

Post Use the POST method to upload objects.

Copy Use the COPY method to replicate objects.

CompleteMultipartUp-
load

Merge parts of multi-part tasks.

ObjectRemoved Delete objects.

Delete Delete objects by versions.

DeleteMarkerCreated Delete objects without specifying versions.

NO TE

Multiple event types can be used on the same object. For example, if you have selected Put,
Copy, and Delete in an event notification rule, a notification message will be sent to you
when the specified object is uploaded to, copied to, or deleted from the bucket.
ObjectCreated contains Put, Post, Copy, and CompleteMultipartUpload. If you select
ObjectCreated, the others are automatically selected and cannot be selected again.
Similarly, if you select ObjectRemoved, Delete and DeleteMarkerCreated are
automatically selected and cannot be selected again.

FunctionGraph
Developer Guide 1 Overview

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

Timer
You can schedule a timer (timer example event) to invoke your code based on a
fixed rate of minutes, hours, or days or a cron expression. For details, see section
"Using a Timer Trigger" in the FunctionGraph User Guide.

LTS
Log Tank Service (LTS) collects and stores logs, allowing you to query them in real
time. If you create a function with an LTS trigger, subscribed logs collected by LTS
will be passed as a parameter (LTS example event) to invoke the function. Then,
the function processes or analyzes the logs, or loads the logs to other systems. For
details, see section "Using an LTS Trigger" in the FunctionGraph User Guide.

CTS
Cloud Trace Service (CTS) collects operation records of subscribed cloud resources.
If you create a function with a CTS trigger, collected operation records of specified
cloud services will be passed as a parameter (CTS example event) to invoke the
function. Then, the function analyzes and processes key information in the
operation records, automatically recovers system or network modules, or reports
alarms to service personnel by SMS or email. For details, see section "Using a CTS
Trigger" in the FunctionGraph User Guide.

DMS for Kafka
DMS for Kafka is a message queuing service that provides Kafka premium
instances. If you create a Kafka trigger for a function, when a message is sent to a
Kafka instance topic, FunctionGraph will retrieve the message and trigger the
function to perform other operations. For details, see section "Using a Kafka
Trigger" in the FunctionGraph User Guide.

Cloud Eye
Cloud Eye is a multi-dimensional resource monitoring platform. FunctionGraph is
interconnected with Cloud Eye to report metrics, allowing you to view function
metrics and alarm messages through Cloud Eye. For more information about
metrics, see section "Viewing Function Metrics" in the FunctionGraph User Guide.

DMS for RabbitMQ
When a DMS (for RabbitMQ) trigger is used, FunctionGraph periodically polls for
new messages in a specific topic bound to the exchange of a RabbitMQ instance
and passes the messages as input parameters to invoke functions.

Example Events
● SMN example event

In the following example, the function name is test and the topic name is
serverless_Test. subject is the message header, and message is the message
body.
{
 "record": [{

FunctionGraph
Developer Guide 1 Overview

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

 "event_version": "1.0",
 "smn": {
 "message_attributes": null,
 "subject": "This is the message title of smn trigger",
 "message_id": "a5dbd701d70d4ac2a153e7dd6dd9b601",
 "topic_urn": "urn:smn:xx-xxxxx-
x:bb8695913bb74682b9ca82a8803b60d8:serverless_Test",
 "type": "notification",
 "message": "This is the message body of smn trigger",
 "timestamp": "2017-11-15T04:02:24Z"
 },
 "event_source": "smn",
 "event_subscription_urn": "urn:fss:xx-xxxxx-
xxx:bb8695913bb74682b9ca82a8803b60d8:function:default:obsTrigger-Test1:latest"
 }],
 "functionname": "test",
 "requestId": "7c307f6a-cf68-4e65-8be0-4c77405a1b2c",
 "timestamp": "Wed Nov 15 2017 12:00:00 GMT+0800 (CST)"
}

● API Gateway example event

NO TE

When a function is invoked due to an API Gateway event, the request body is
encrypted by default.

{
 "httpMethod": "GET", //Request method
 "path": "/test/hello", //Request path
 "pathParameters": { //Path parameters
 "proxy": "hello"
 },
 "queryStringParameters": { //Query parameters
 "name": "me"
 },
 "headers": { //Request header
 "x-stage": "RELEASE",
 "Host": "3f96e175-d5e4-4d4b-ae7e-f6d264e63b23-apigw.xx-xxx-x.xxx.com",
 "User-Agent": "lua-resty-http/0.10 (Lua) ngx_lua/10008",
 ...
 },
 "body": "...", //Request body
 "isBase64Encoded":false/true, //Indicates whether the request body is encoded using
Base64.
 "requestContext": {
 "stage": "test", //Environment name
 "requestId": "dd4337362c02c7d77299e78781beb4b1",
 "apiId": "41b45ea3-70b5-11e6-b7bd-69b5aaebc7d9"
 },
}

The function returns characters strings by using the following structure.
{
 "isBase64Encoded": true|false,
 "statusCode": httpStatusCode,
 "headers": {"headerName":"headerValue",...},
 "body": "..."
}

● DIS example event
In the following example, the stream name is dis-swtest. This example shows
the format of a request received by a function associated with the DIS trigger.

FunctionGraph
Developer Guide 1 Overview

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

{
 "ShardID": "shardId-0000000000",
 "Message": {
 "next_partition_cursor":
"eyJnZXRJdGVyYXRvclBhcmFtIjp7InN0cmVhbS1uYW1lIjoiZGlzLXN3dGVzdCIsInBhcnRpdGlvbi
1pZCI6InNoYXJkSWQtMDAwMDAwMDAwMCIsImN1cnNvci10eXBlIjoiVFJJTV9IT1JJWk9OIiwi
c3RhcnRpbmctc2VxdWVuY2UtbnVtYmVyIjoiNCJ9LCJnZW5lcmF0ZVRpbWVzdGFtcCI6MTUw
OTYwNjM5MjE5MX0",
 "records": [{
 "partition_key": "shardId_0000000000",
 "data": "PEJ1ZmZlcj48L0J1ZmZlcj4=",
 "sequence_number": "0"
 },
 {
 "partition_key": "shardId_0000000000",
 "data": "PEJ1ZmZlcj48L0J1ZmZlcj4=",
 "sequence_number": "1"
 },
 {
 "partition_key": "shardId_0000000000",
 "data": "PEJ1ZmZlcj48L0J1ZmZlcj4=",
 "sequence_number": "2"
 },
 {
 "partition_key": "shardId_0000000000",
 "data": "PEJ1ZmZlcj48L0J1ZmZlcj4=",
 "sequence_number": "3"
 }],
 "millis_behind_latest": ""
 },
 "Tag": "latest",
 "StreamName": "dis-swtest"
}

● Timer example event
{
 "version": "v1.0",
 "time": "2006-01-02T15:04:05-07:00", // Local time
 "trigger_type": "TIMER", // Trigger type
 "trigger_name": "Trigger name"
 "user_event": "User-defined event" //Event configured when the timer trigger is created
}

● LTS example event
{
 "lts": {
 "data":
"eyJsb2dzIjpbIntcIm1lc3NhZ2VcIjpcIjIwMTgtMDYtMjYvMTg6NDA6NTMgW0lORl0gW2Nvbm
ZpZy5nbzo3Ml0gU3VjY2Vzc2Z1bGx5IGxvYWRlZCBnZW5lcmFsIGNvbmZpZ3VyYXRpb24gZml
sZVxcclxcblwiLFwidGltZVwiOjE1MzAwMDk2NTMwNTksXCJob3N0X25hbWVcIjpcImVjcy10Z
XN0YWdlbnQubm92YWxvY2FsXCIsXCJpcFwiOlwiMTkyLjE2OC4xLjk4XCIsXCJwYXRoXCI6XCIv
dXNyL2xvY2FsL3RlbGVzY29wZS9sb2cvY29tbW9uLmxvZ1wiLFwibG9nX3VpZFwiOlwiNjYzZD
Y5MzAtNzkyZC0xMWU4LThiMDgtMjg2ZWQ0ODhjZTcwXCIsXCJsaW5lX25vXCI6NjE1fSIsIntcI
m1lc3NhZ2VcIjpcIjIwMTgtMDYtMjYvMTg6NDA6NTMgW1dSTl0gW2NvbmZpZy5nbzo4Ml0g
VGhlIHByb2plY3RJZCBvciBpbnN0YW5jZUlkIG9mIGNvbmZpZy5qc29uIGlzIG5vdCBjb25zaXN0
ZW50IHdpdGggbWV0YWRhdGEsIHVzZSBtZXRhZGF0YS5cXG5cIixcInRpbWVcIjoxNTMwMDA
5NjUzMDU5LFwiaG9zdF9uYW1lXCI6XCJlY3MtdGVzdGFnZW50Lm5vdmFsb2NhbFwiLFwiaXB
cIjpcIjE5Mi4xNjguMS45OFwiLFwicGF0aFwiOlwiL3Vzci9sb2NhbC90ZWxlc2NvcGUvbG9nL2N
vbW1vbi5sb2dcIixcImxvZ191aWRcIjpcIjY2M2Q2OTMwLTc5MmQtMTFlOC04YjA5LTI4NmVk
NDg4Y2U3MFwiLFwibGluZV9ub1wiOjYxNn0iLCJ7XCJtZXNzYWdlXCI6XCIgSW4gY29uZi5qc29
uLCBwcm9qZWN0SWQgaXMgW10sIGluc3RhbmNlSWQgaXMgW10uIE1ldGFEYXRhIGlzIHs0
NTQzMjkzYS01YjJjLTQ0YzQtYjdhMC1kZTIxOGY3ZjJmYTYgNjI4MGUxNzBiZDkzNGY2MGE0Z
Dg1MWNmNWNhMDUxMjkgIH1cXHJcXG5cIixcInRpbWVcIjoxNTMwMDA5NjUzMDU5LFwia

FunctionGraph
Developer Guide 1 Overview

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

G9zdF9uYW1lXCI6XCJlY3MtdGVzdGFnZW50Lm5vdmFsb2NhbFwiLFwiaXBcIjpcIjE5Mi4xNjgu
MS45OFwiLFwicGF0aFwiOlwiL3Vzci9sb2NhbC90ZWxlc2NvcGUvbG9nL2NvbW1vbi5sb2dcIix
cImxvZ191aWRcIjpcIjY2M2Q2OTMwLTc5MmQtMTFlOC04YjBhLTI4NmVkNDg4Y2U3MFwiLF
wibGluZV9ub1wiOjYxN30iXSwib3duZXIiOiI2MjgwZTE3MGJkOTM0ZjYwYTRkODUxY2Y1Y2E
wNTEyOSIsImxvZ19ncm91cF9pZCI6Ijk3YTlkMjg0LTQ0NDgtMTFlOC04ZmE0LTI4NmVkNDg4
Y2U3MCIsImxvZ190b3BpY19pZCI6IjFhOTY3NWE3LTc4NGQtMTFlOC05ZjcwLTI4NmVkNDg4
Y2U3MCJ9"
 }
}

● CTS example event
{
 "cts": {
 "time": "2018/06/26 08:54:07 GMT+08:00", //Timestamp of the sender
 "user": { //Information about the user that initiates the request
 "name": "userName",
 "id": "5b726c4fbfd84821ba866bafaaf56aax",
 "domain": {
 "name": "domainName",
 "id": "b2b3853af40448fcb9e40dxj89505ba"
 }
 },
 "request": {}, //Content of the trace request
 "response": {}, //Content of the trace response
 "code": 204, //Trace response codes, such as, 200 or 400
 "service_type": "FunctionGraph", //Name of the sender in abbreviated form, such as
VPC and ECS
 "resource_type": "graph", //Resource type of the sender, such as VM and VPN
 "resource_name": "workflow-2be1", //Resource name, for example, the name of a
VM on Elastic Cloud Server (ECS)
 "resource_id": "urn:fgs:xx-xxx-
x:2d1d891d93054bbaa69b9e866c0971ac:graph:workflow-2be1", //Resource ID, for
example, the ID of a VM on ECS
 "trace_name": "deleteGraph", //Trace name, such as startServer and shutDown
 "trace_type": "ConsoleAction", //Type of the trace source, such as ApiCall
 "record_time": "2018/06/26 08:54:07 GMT+08:00", //Time when CTS receives the trace
 "trace_id": "69be64a7-0233-11e8-82e4-e5d37911193e", //Trace ID
 "trace_status": "normal"
 }
}

● Kafka example event
{
 "event_version": "v1.0",
 "event_time": 1576737962,
 "trigger_type": "KAFKA",
 "region": "xx-xxxx-x",
 "messages": [
 "kafka message1",
 "kafka message2",
 "kafka message3",
 "kafka message4",
 "kafka message5"
],
 "instance_id": "81335d56-b9fe-4679-ba95-7030949cc76b",
 "topic_id": "topic-test"
}

● RabbitMQ example event
{
 "event_version": "v1.0",
 "event_time": 1576737962,
 "trigger_type": "RABBITMQ",
 "region": "{region}",

FunctionGraph
Developer Guide 1 Overview

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

 "records": [
 {
 "messages": [
 "rabbitmq message1",
 "rabbitmq message2",
 "rabbitmq message3",
 "rabbitmq message4",
 "rabbitmq message5"
],
 "instance_id": "81335d56-b9fe-4679-ba95-7030949cc76b",
 "exchange": "exchange-test"
 }
]
}

Table 1-6 Parameters

Parameter Type Example Value Description

event_version String v1.0 Event version

Region String xx-xxx-x Region where
the RabbitMQ
instance is
located. Set it
based on the site
requirements.

instance_id String 81335d56-
b9fe-4679-
ba95-7030949cc
76b

RabbitMQ
instance ID

1.3 Function Project Packaging Rules

Packaging Rules
In addition to inline code editing, you can create a function by uploading a local
ZIP file or JAR file, or uploading a ZIP file from Object Storage Service (OBS).
Table 1-7 describes the rules for packaging a function project.

FunctionGraph
Developer Guide 1 Overview

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

Table 1-7 Function project packaging rules

Runtime JAR File ZIP File ZIP File on OBS

Node.js Not supported. ● If the function
project files are
saved under the
~/Code/ directory,
select and
package all files
under this
directory to ensure
that the function
handler is under
the root directory
after the ZIP file is
decompressed.

● If the function
project uses third-
party
dependencies,
package the
dependencies into
a ZIP file, and
import the ZIP file
on the function
code page.
Alternatively,
package the third-
party
dependencies and
the function
project files
together.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

FunctionGraph
Developer Guide 1 Overview

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

Runtime JAR File ZIP File ZIP File on OBS

PHP Not supported. ● If the function
project files are
saved under the
~/Code/ directory,
select and
package all files
under this
directory to ensure
that the function
handler is under
the root directory
after the ZIP file is
decompressed.

● If the function
project uses third-
party
dependencies,
package the
dependencies into
a ZIP file, and
import the ZIP file
on the function
code page.
Alternatively,
package the third-
party
dependencies and
the function
project files
together.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

FunctionGraph
Developer Guide 1 Overview

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

Runtime JAR File ZIP File ZIP File on OBS

Python Not supported. ● If the function
project files are
saved under the
~/Code/ directory,
select and
package all files
under this
directory to ensure
that the function
handler is under
the root directory
after the ZIP file is
decompressed.

● If the function
project uses third-
party
dependencies,
package the
dependencies into
a ZIP file, and
import the ZIP file
on the function
code page.
Alternatively,
package the third-
party
dependencies and
the function
project files
together.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

Java If the function
does not
reference third-
party
components,
compile only the
function project
files into a JAR
file.

If the function
references third-party
components, compile
the function project
files into a JAR file,
and compress all
third-party
components and the
function JAR file into
a ZIP file.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

FunctionGraph
Developer Guide 1 Overview

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

Runtime JAR File ZIP File ZIP File on OBS

Go 1.x Not supported. Compress project
files into a ZIP file,
and ensure that the
name of the dynamic
library file is
consistent with the
handler plugin name.
For example, if the
name of the dynamic
library file is
testplugin.so, set the
handler plugin name
to
testplugin.Handler.
Handler indicates
the function handler.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

C# Not supported. Compress project
files into a ZIP file.
The ZIP file must
contain the following
files:
Project_name.deps.js
on, Project_name.dll,
Project_name.runtim
econfig.json,
Project_name.pdb,
and
HC.Serverless.Functi
on.Common.dll.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

Custom Not supported. Compress project
files into a ZIP file.
The ZIP file must
contain a bootstrap
file.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

Cangjie Not supported. Zip the compiled file
and ensure that the
name of the binary
file is consistent with
that of the handler.
For example, if the
name of the binary
file is
libuser_func_test_su
ccess.so, set the
name of the handler
to
libuser_func_test_su
ccess.so.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

FunctionGraph
Developer Guide 1 Overview

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

Example ZIP Project Packages
● Example directory of a Nods.js project package

Example.zip Example project package
|--- lib Service file directory
|--- node_modules NPM third-party component directory
|--- index.js .js handler file (mandatory)
|--- package.json NPM project management file

● Example directory of a PHP project package
Example.zip Example project package
|--- ext Extension library directory
|--- pear PHP extension and application repository
|--- index.php PHP handler file

● Example directory of a Python project package
Example.zip Example project package
|--- com Service file directory
|--- PLI Third-party dependency PLI directory
|--- index.py .py handler file (mandatory)
|--- watermark.py .py file for image watermarking
|--- watermark.png Watermarked image

● Example directory of a Java project package
Example.zip Example project package
|--- obstest.jar Service function JAR file
|--- esdk-obs-java-3.20.2.jar Third-party dependency JAR file
|--- jackson-core-2.10.0.jar Third-party dependency JAR file
|--- jackson-databind-2.10.0.jar Third-party dependency JAR file
|--- log4j-api-2.12.0.jar Third-party dependency JAR file
|--- log4j-core-2.12.0.jar Third-party dependency JAR file
|--- okhttp-3.14.2.jar Third-party dependency JAR file
|--- okio-1.17.2.jar Third-party dependency JAR file

● Example directory of a Go project package
Example.zip Example project package
|--- testplugin.so Service function package

● Example directory of a C# project package
Example.zip Example project package
|--- fssExampleCsharp2.0.deps.json File generated after project compilation
|--- fssExampleCsharp2.0.dll File generated after project compilation
|--- fssExampleCsharp2.0.pdb File generated after project compilation
|--- fssExampleCsharp2.0.runtimeconfig.json File generated after project compilation
|--- Handler Help file, which can be directly used
|--- HC.Serverless.Function.Common.dll .dll file provided by FunctionGraph

● Example directory of a Cangjie project package
fss_example_cangjie.zip Example project package
|--- libuser_func_test_success.so Service function package

● Custom
Example.zip Example project package
|--- bootstrap Executable boot file

1.4 Referencing DLLs in Functions
● By default, the root directory and the lib folder in this directory have been

configured in the LD_LIBRARY_PATH environment variable. You only need to
add dynamic link libraries (DLLs) here.

FunctionGraph
Developer Guide 1 Overview

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

● You can directly modify the LD_LIBRARY_PATH variable in the code.
● If the dependent .so file is stored in a non-root directory, specify the directory

in the LD_LIBRARY_PATH variable on the Configuration tab page.
● If a library in a mounted file system is used, specify its directory in the

LD_LIBRARY_PATH variable on the Configuration tab page.

FunctionGraph
Developer Guide 1 Overview

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

2 Initializer

Overview
An initializer is a logic entry for initializing functions. For a function with an
initializer, FunctionGraph invokes the initializer to initialize the function and then
invokes the handler to process function requests. For a function without an
initializer, FunctionGraph only invokes the handler to process function requests.

Applicable Scenario
FunctionGraph executes a function in the following steps:

1. Allocate container resources to the function.
2. Download function code.
3. Use the runtime to load the function code.
4. Initialize the function.
5. Process the function request and return the result.

Steps 1, 2, and 3 are completed after a systematic cold start, and a stable latency
can be ensured through proper resource scheduling and process optimization. Step
4 is performed during an application-layer cold start in complex scenarios, such as
loading large models for deep learning, building database connection pools, and
loading function dependencies.

To reduce the latency caused by an application-layer cold start, FunctionGraph
provides the initializer to identify function initialization logic for proper resource
scheduling.

Benefits of the Initializer
● Isolate function initialization and request processing to enable clearer

program logic and better structured and higher-performance code.
● Ensure a smooth function upgrade to prevent performance loss during the

application layer's cold start initialization. Enable new function instances to
automatically execute initialization logic before processing requests.

● Identify the overhead of application layer initialization, and accurately
determine the time for resource scaling and the quantity of required
resources. This feature makes request latency more stable when the
application load increases and more function instances are required.

FunctionGraph
Developer Guide 2 Initializer

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

● If there are continuous requests and the function is not updated, the system
may still reclaim or update existing containers. Although no code starts on
the platform side, there are cold starts on the service side. The initializer can
be used to ensure that requests can be processed properly.

Initializer Specifications

The initializer of each runtime has the following features:

● No custom parameters

The initializer does not support custom parameters and only uses the
variables in context for logic processing.

● No return values

No values will be returned for initializer invocation.

● Initialization timeout

You can set an initialization timeout (≤ 300s) different from the timeout for
invoking the handler.

● Time for execution

Function instances are processes that execute function logic in a container
and automatically scale if the number of requests changes. When a new
function instance is generated, the system invokes the initializer and then
executes the handler logic if the invocation is successful.

● One-time execution

After each function instance starts, the initializer can only be executed once. If
an instance fails to execute the initializer, the instance is abandoned and
another instance starts to execute the initializer. A maximum of three
attempts are allowed. If the initializer is executed successfully, the instance
will only process requests upon invocation and will no longer execute the
initializer again within its lifecycle.

● Naming rule

For all runtimes except Java, the initializer can be named in the format of
[File name].[Initializer name], which is similar with the format of a handler
name. For Java, a class needs to be defined to implement the predefined
initializer.

● Billing

The initializer execution duration will be billed at the same rate as the
function execution duration.

2.1 What Is Initializer?

Introduction

An initializer is a logic entry for initializing functions. For a function with an
initializer, FunctionGraph invokes the initializer to initialize the function and then
invokes the handler to process function requests. For a function without an
initializer, FunctionGraph only invokes the handler to process function requests.

FunctionGraph
Developer Guide 2 Initializer

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

Application Scenarios

FunctionGraph executes a function in the following steps:

1. Allocate container resources to the function.
2. Download the function code.
3. Use the runtime to load the function code.
4. Initialize the function.
5. Process the function request and return the result.

Steps 1, 2, and 3 are performed during a systematic cold start, ensuring a stable
latency through proper resource scheduling and process optimization. Step 4 is
performed during an application-layer cold start in complex scenarios, such as
loading large models for deep learning, building database connection pools, and
loading function dependencies.

To reduce the latency caused by an application-layer cold start, FunctionGraph
provides the initializer to identify function initialization logic for proper resource
scheduling.

Benefits of the Initializer
● Function initialization and request processing are isolated to enable clearer

program logic and structure better and higher-performance code.
● Smooth function upgrade prevents performance loss caused by cold start

initialization on the application layer. After new function instances are started,
FunctionGraph automatically executes the initialization logic and then
processes requests.

● The overhead of application layer initialization is identified to accurately
determine when resource scaling will be performed and how many resources
will be required. This feature makes request latency more stable when the
application load increases and more function instances are required.

● If there are continuous requests and the function is not updated, the system
may still reclaim or update existing containers. Although no code starts on
the platform side, there are cold starts on the service side. The initializer can
be used to ensure that requests can be processed properly.

Features of the Initializer

The initializer of each runtime has the following features:

● No custom parameters
The initializer does not support the definition of custom parameters, but only
uses the variables in context for logic processing.

● No return values
No values will be returned for initializer invocation.

● Initialization timeout
You can set an initialization timeout (≤ 300s) different from the timeout for
invoking the handler.

● Time for execution

FunctionGraph
Developer Guide 2 Initializer

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

Function instances are processes that execute function logic in a container
and automatically scale if the number of requests changes. When a new
function instance is generated, the system invokes the initializer and then
executes the handler logic if the invocation is successful.

● One-time execution
After each function instance starts, the initializer can only be executed once. If
an instance fails to execute the initializer, the instance is abandoned and
another instance is generated. A maximum of three attempts are allowed. If
the initializer is executed successfully, the instance will only process requests
upon invocation and will no longer execute the initializer again within its
lifecycle.

● Naming rule
For all runtimes except Java, the initializer can be named in the format of
[File name].[Initializer name], which is similar with the format of a handler
name. For Java, a class needs to be defined to implement the predefined
initializer.

● Billing
The initializer execution duration will be billed at the same rate as the
function execution duration.

2.2 Initializer Definition
This section describes how to define the initializer for the runtimes that support
inline code editing.

Node.js
FunctionGraph supports the following Node.js runtimes:

● Node.js 6.1 (runtime = Node.js6)
● Node.js 8.9 (runtime = Node.js8)
● Nodejs10.16(runtime = Node.js10)
● Nodejs12.13(runtime = Node.js12)

Initializer syntax:

[File name].[Initializer name]

For example, if the initializer is named index.initializer, FunctionGraph loads the
initializer function defined in the index.js file.

To use Node.js to build initialization logic, define a Node.js function as the
initializer. The following is a simple initializer:

exports.initializer = function(context, callback) {
 callback(null, '');
 };

● Function name
The function name exports.initializer must be the initializer function name
specified for a function.
For example, if the initializer is named index.initializer, FunctionGraph loads
the initializer function defined in the index.js file.

FunctionGraph
Developer Guide 2 Initializer

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

● context
The context parameter contains the runtime information about a function.
For example, request ID, temporary AK, and function metadata.

● callback
The callback parameter is used to return the invocation result. The signature
of this parameter is function(err, data), which is the same as that of the
common callback parameter used in Node.js. If the value of err is not null,
the function will return HandledInitializationError. The value of data is
invalid because no value will be returned for function initialization. You can
set the data parameter as null as it is set in the previous example.

Python

FunctionGraph supports the following Python runtimes:

● Python 2.7 (runtime = python2.7)
● Python 3.6 (runtime = python3)

Initializer syntax:

[File name].[Initializer name]

For example, if the initializer is named main.my_initializer, FunctionGraph loads
the my_initializer function defined in the main.py file.

To use Python to build initialization logic, define a Python function as the
initializer. The following is a simple initializer:

def my_initializer(context):
 print("hello world!")

● Function name
The function name my_initializer must be the initializer function name
specified for a function. For example, if the initializer is named
main.my_initializer, FunctionGraph loads the my_initializer function defined
in the main.py file.

● context
The context parameter contains the runtime information about a function.
For example, request ID, temporary AK, and function metadata.

PHP

FunctionGraph supports the following PHP runtime:

● Php 7.2 (runtime = Php7.2)

Initializer syntax:

[File name].[Initializer name]

For example, if the initializer is named main.my_initializer, FunctionGraph loads
the my_initializer function defined in the main.php file.

To use PHP to build initialization logic, define a PHP function as the initializer. The
following is a simple initializer:

FunctionGraph
Developer Guide 2 Initializer

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

<?php
Function my_initializer($context) {
 echo 'hello world' . PHP_EOL;
 }
?>

● Function name
The function name my_initializer must be the initializer function name
specified for a function.
For example, if the initializer is named main.my_initializer, FunctionGraph
loads the my_initializer function defined in the main.php file.

● context
The context parameter contains the runtime information about a function.
For example, request ID, temporary AK, and function metadata.

Java
FunctionGraph supports the following Java runtime:

● Java 8 (runtime = Java8)
Initializer syntax:
[Package name].[Class name].[Execution function name]
For example, if the initializer is named com.Demo.my_initializer,
FunctionGraph loads the my_initializer function defined in the com file.
To use Java to build the initialization logic, define a Java function as the
initializer. The following is a simple initializer:
public void my_initializer(Context context)
{
RuntimeLogger log = context.getLogger();
log.log(String.format("ak:%s", context.getAccessKey()));
}

● Function name
The function name my_initializer must be the initializer function name
specified for a function.
For example, if the initializer is named com.Demo.my_initializer,
FunctionGraph loads the my_initializer function defined in the com file.

● context
The context parameter contains the runtime information about a function.
For example, request ID, temporary AK, and function metadata.

FunctionGraph
Developer Guide 2 Initializer

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

3 Developing Functions

3.1 Developing Functions in Node.js

Function Syntax
● Node.js 6.10

Use the following syntax when creating a handler function in Node.js 6.10:
export.handler = function(event, context, callback)
– handler: name of the function that FunctionGraph invokes to execute

your code. The name must be consistent with that you define when
creating a function.

– event: event parameter defined for the function. The parameter is in
JSON format.

– context: runtime information provided for executing the function. For
details, see SDK APIs.

– callback: used to return the defined err and message information to the
frontend. The general syntax is callback(err, message). You can define
the error or message content, for example, a character string.

– Function handler: index.handler.
The function handler is in the format of [File name].[Function name]. For
example, if you set the handler to index.handler in your function,
FunctionGraph will load the handler function defined in the index.js file.

● Node.js 8.10 and later
Node.js 8.10 and later are compatible with the APIs of Node.js 6.10, and
supports an async handler.
exports.handler = async (event, context, callback [optional]) => { return data;}
Responses are output through return.

Node.js Initializer
FunctionGraph supports the following Node.js runtimes:

● Node.js 6.10

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

● Node.js 8.10

● Node.js 10.16

● Node.js 12.13

● Node.js 14.18

● Node.js 16.17

● Node.js 18.15

● Node.js 20.15

Initializer syntax:

[File name].[Initializer name]

For example, if the initializer is named index.initializer, FunctionGraph loads the
initializer function defined in the index.js file.

To use Node.js to build initialization logic, define a Node.js function as the
initializer. The following is a simple initializer:

exports.initializer = function(context, callback) {
 callback(null, '');
 };

● Function name

The function name exports.initializer must be the initializer function name
specified for a function.

For example, if the initializer is named index.initializer, FunctionGraph loads
the initializer function defined in the index.js file.

● context

The context parameter contains the runtime information about a function.
For example, request ID, temporary AK, and function metadata.

● callback

The callback parameter is used to return the invocation result. The signature
of this parameter is function(err, data), which is the same as that of the
common callback parameter used in Node.js. If the value of err is not null,
the function will return HandledInitializationError. The value of data is
invalid because no value will be returned for function initialization. You can
set the data parameter to null by referring to the previous example.

SDK APIs

Table 3-1 describes the context methods provided by FunctionGraph.

Table 3-1 Context methods

Method Description

getRequestID() Obtains a request ID.

getRemainingTimeInMilliSeconds () Obtains the remaining running time of
a function.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

Method Description

getAccessKey() Obtains the AK (valid for 24 hours) of
an agency. If you use this method, you
need to configure an agency for the
function.
NOTE

FunctionGraph has stopped maintaining
the getAccessKey API in the Runtime SDK.
You cannot use this API to obtain a
temporary AK.

getSecretKey() Obtains the SK (valid for 24 hours) of
an agency. If you use this method, you
need to configure an agency for the
function.
NOTE

FunctionGraph has stopped maintaining
the getSecretKey API in the Runtime SDK.
You cannot use this API to obtain a
temporary SK.

getSecurityAccessKey() Obtains the SecurityAccessKey (valid
for 24 hours) with an agency. If you
use this method, you need to configure
an agency for the function.

getSecuritySecretKey() Obtains the SecuritySecretKey (valid
for 24 hours) with an agency. If you
use this method, you need to configure
an agency for the function.

getSecurityToken() Obtains the SecurityToken (valid for 24
hours) with an agency. If you use this
method, you need to configure an
agency for the function.

getUserData(string key) Uses keys to obtain the values passed
by environment variables.

getFunctionName() Obtains the name of a function.

getRunningTimeInSeconds () Obtains the timeout of a function.

getVersion() Obtains the version of a function.

getMemorySize() Obtains the allocated memory.

getCPUNumber() Obtains CPU usage of a function.

getProjectID() Obtains a project ID.

getPackage() Obtains a function group, that is, an
app.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

Method Description

getToken() Obtains the token (valid for 24 hours)
of an agency. If you use this method,
you need to configure an agency for
the function.

getLogger() Obtains the logger method provided
by the context and returns a log
output class. Logs are output in the
format of Time-Request ID-Content by
using the info method.
For example, use the info method to
output logs:
logg = context.getLogger()
logg.info("hello")

NO TICE

Results returned by using the getToken(), getAccessKey(), and getSecretKey()
methods contain sensitive information. Exercise caution when using these
methods.

Execution Result

The execution result consists of the function output, summary, and log output.

Table 3-2 Description of the execution result

Parame
ter

Successful Execution Failed Execution

Functio
n
Output

The defined function output
information is returned.

A JSON file that contains
errorMessage and errorType is
returned. The format is as follows:
{
 "errorMessage": "",
 "errorType":"",
}

errorMessage: Error message
returned by the runtime.
errorType: Error type.

Summa
ry

Request ID, Memory
Configured, Execution
Duration, Memory Used,
and Billed Duration are
displayed.

Request ID, Memory Configured,
Execution Duration, Memory Used,
and Billed Duration are displayed.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

Parame
ter

Successful Execution Failed Execution

Log
Output

Function logs are printed. A
maximum of 4 KB logs can
be displayed.

Error information is printed. A
maximum of 4 KB logs can be
displayed.

3.2 Developing Functions in Python

Function Syntax

Syntax for creating a handler function in Python:

def handler (event, context)

● handler: name of the function that FunctionGraph invokes to execute your
code. The name must be consistent with that you define when creating a
function.

● event: event parameter defined for the function. The parameter is in JSON
format.

● Context: runtime information provided for executing the function. For details,
see SDK APIs.

Python Initializer

FunctionGraph supports the following Python runtimes:

● Python 2.7
● Python 3.6
● Python 3.9
● Python 3.10
● Python 3.12

Initializer syntax:

[File name].[Initializer name]

For example, if the initializer is named main.my_initializer, FunctionGraph loads
the my_initializer function defined in the main.py file.

To use Python to build initialization logic, define a Python function as the
initializer. The following is a simple initializer:

def my_initializer(context):
 print("hello world!")

● Function name
The function name my_initializer must be the initializer function name
specified for a function. For example, if the initializer is named
main.my_initializer, FunctionGraph loads the my_initializer function defined
in the main.py file.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

● context
The context parameter contains the runtime information about a function.
For example, request ID, temporary AK, and function metadata.

SDK APIs

Table 3-3 describes the context methods provided by FunctionGraph.

Table 3-3 Context methods

Method Description

getRequestID() Obtains a request ID.

getRemainingTimeInMilliSeconds () Obtains the remaining running time of
a function.

getAccessKey() Obtains the AK (valid for 24 hours) of
an agency. If you use this method, you
need to configure an agency for the
function.
NOTE

FunctionGraph has stopped maintaining
the getAccessKey API in the Runtime SDK.
You cannot use this API to obtain a
temporary AK.

getSecretKey() Obtains the SK (valid for 24 hours) of
an agency. If you use this method, you
need to configure an agency for the
function.
NOTE

FunctionGraph has stopped maintaining
the getSecretKey API in the Runtime SDK.
You cannot use this API to obtain a
temporary SK.

getUserData(string key) Uses keys to obtain the values passed
by environment variables.

getSecurityAccessKey() Obtains the SecurityAccessKey (valid
for 24 hours) with an agency. If you
use this method, you need to configure
an agency for the function.

getSecuritySecretKey() Obtains the SecuritySecretKey (valid
for 24 hours) with an agency. If you
use this method, you need to configure
an agency for the function.

getSecurityToken() Obtains the SecurityToken (valid for 24
hours) with an agency. If you use this
method, you need to configure an
agency for the function.

getFunctionName() Obtains the name of a function.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

Method Description

getRunningTimeInSeconds () Obtains the timeout of a function.

getVersion() Obtains the version of a function.

getMemorySize() Obtains the allocated memory.

getCPUNumber() Obtains CPU usage of a function.

getProjectID() Obtains a project ID.

getPackage() Obtains a function group, that is, an
app.

getToken() Obtains the token (valid for 24 hours)
of an agency. If you use this method,
you need to configure an agency for
the function.

getLogger() Obtains the logger method provided
by the context and returns a log
output class. Logs are output in the
format of Time-Request ID-Content by
using the info method.
For example, use the info method to
output logs:
logg = context.getLogger()
logg.info("hello")

NO TICE

Results returned by using the getToken(), getAccessKey(), and getSecretKey()
methods contain sensitive information. Exercise caution when using these
methods.

Execution Result
The execution result consists of the function output, summary, and log output.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

Table 3-4 Description of the execution result

Parame
ter

Successful Execution Failed Execution

Functio
n
Output

The defined function output
information is returned.

A JSON file that contains
errorMessage, errorType, and
stackTrace is returned. The format is
as follows:
{
 "errorMessage": "",
 "errorType": "",
 "stackTrace": []
}

errorMessage: Error message
returned by the runtime.
errorType: Error type.
stackTrace: Stack error information
returned by the runtime.

Summa
ry

Request ID, Memory
Configured, Execution
Duration, Memory Used,
and Billed Duration are
displayed.

Request ID, Memory Configured,
Execution Duration, Memory Used,
and Billed Duration are displayed.

Log
Output

Function logs are printed. A
maximum of 4 KB logs can
be displayed.

Error information is printed. A
maximum of 4 KB logs can be
displayed.

3.3 Developing Functions in Java

3.3.1 Developing Functions in Java (Using Eclipse)

Function Syntax
The following is the syntax for creating a handler function in Java:

Scope Return parameter Function name (User-defined parameter, Context)

● Scope: It must be defined as public for the function that FunctionGraph
invokes to execute your code.

● Return parameter: user-defined output, which is converted into a character
string and returned as an HTTP response. The HTTP response is a JSON string.

● Function name: user-defined function name.
● User-defined parameter: FunctionGraph supports only one user-defined

parameter. For complex parameters, define them as an object and provide
data through JSON strings. When invoking a function, FunctionGraph parses
the JSON strings as an object.

● Context: runtime information provided for executing the function. For details,
see SDK APIs.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

When creating a function in Java, define a handler in the format of [Package
name].[Class name].[Function name].

Java Initializer

FunctionGraph supports the following Java runtime:

● Java 8

● Java 11

● Java 17

● Java 21

Initializer syntax:

[Package name].[Class name].[Execution function name]

For example, if the initializer is named com.Demo.my_initializer, FunctionGraph
loads the my_initializer function defined in the com.Demo file.

To use Java to build initialization logic, define a Java function as the initializer. The
following is a simple initializer:

public void my_initializer(Context context)

{

RuntimeLogger log = context.getLogger();

log.log(String.format("ak:%s", context.getAccessKey()));

}

● Function name

The function name my_initializer must be the initializer function name
specified for a function.

For example, if the initializer is named com.Demo.my_initializer,
FunctionGraph loads the my_initializer function defined in the com.Demo file.

● context

The context parameter contains the runtime information about a function.
For example, request ID, temporary AK, and function metadata.

SDK APIs

The Java SDK provides context, and logging APIs.

● Context APIs

The context APIs are used to obtain the context, such as agency AK/SK,
current request ID, allocated memory space, and number of CPUs, required for
executing a function.

Table 3-5 describes the context APIs provided by FunctionGraph.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

https://function-community.obs.cn-north-1.myhuaweicloud.com/sdk/fss-java-sdk-1.1.3.zip

Table 3-5 Context methods

Method Description

getRequestID() Obtains a request ID.

getRemainingTimeInMilligetRun-
ningTimeInSecondsSeconds ()

Obtains the remaining running time
of a function.

getAccessKey() Obtains the AK (valid for 24 hours)
of an agency. If you use this method,
you need to configure an agency for
the function.
NOTE

FunctionGraph has stopped maintaining
the getAccessKey API in the Runtime
SDK. You cannot use this API to obtain a
temporary AK.

getSecretKey() Obtains the SK (valid for 24 hours)
of an agency. If you use this method,
you need to configure an agency for
the function.
NOTE

FunctionGraph has stopped maintaining
the getSecretKey API in the Runtime
SDK. You cannot use this API to obtain a
temporary SK.

getSecurityAccessKey() Obtains the SecurityAccessKey (valid
for 24 hours) with an agency. If you
use this method, you need to
configure an agency for the
function.

getSecuritySecretKey() Obtains the SecuritySecretKey (valid
for 24 hours) with an agency. If you
use this method, you need to
configure an agency for the
function.

getSecurityToken() Obtains the SecurityToken (valid for
24 hours) with an agency. If you use
this method, you need to configure
an agency for the function.

getUserData(string key) Uses keys to obtain the values
passed by environment variables.

getFunctionName() Obtains the name of a function.

getRunningTimeInSeconds () Obtains the timeout of a function.

getVersion() Obtains the version of a function.

getMemorySize() Obtains the allocated memory.

getCPUNumber() Obtains CPU usage of a function.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

Method Description

getProjectID() Obtains a project ID.

getPackage() Obtains a function group, that is, an
app.

getToken() Obtains the token (valid for 24
hours) of an agency. If you use this
method, you need to configure an
agency for the function.

getLogger() Obtains the logger method provided
by the context. By default,
information such as the time and
request ID is output.

NO TICE

Results returned by using the getToken(), getAccessKey(), and
getSecretKey() methods contain sensitive information. Exercise caution when
using these methods.

● Logging API
Table 3-6 describes the logging API provided in the Java SDK.

Table 3-6 Logging API

Method Description

RuntimeLogger() Records user input logs using the
method log(String string).

Developing a Java Function
The following shows the procedure of developing a Java function using Eclipse.

Step 1 Create a function project.

1. Configure Eclipse and create a Java project named JavaTest, as shown in
Figure 3-1.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

Figure 3-1 Creating a project

2. Add a dependency to the project.
Download the Java SDK to a local development environment, and
decompress the SDK package, as shown in Figure 3-2.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

https://function-community.obs.cn-north-1.myhuaweicloud.com/sdk/fss-java-sdk-1.1.3.zip

Figure 3-2 Decompressing the downloaded SDK

3. Configure the dependency.
Create a folder named lib in the project directory, copy the Runtime-1.1.3.jar
file in the SDK package to the lib folder, and add the JAR file as a dependency
of the project, as shown in Figure 3-3.

Figure 3-3 Configuring the dependency

Step 2 Create a function.

1. Create a package named com.demo, and then create a class named
TriggerTests under the package, as shown in Figure 3-4.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

Figure 3-4 Creating a package named com.demo

2. Define the function handler in TriggerTests.java.
package com.demo;

import java.io.UnsupportedEncodingException;
import java.util.HashMap;
import java.util.Map;

import com.services.runtime.Context;
import com.services.runtime.entity.smn.SMNTriggerEvent;
import com.services.runtime.entity.timer.TimerTriggerEvent;

public class TriggerTests {

 public String smnTest(SMNTriggerEvent event, Context context){
 System.out.println(event);
 return "ok";
 }

 }

 public String timerTest(TimerTriggerEvent event, Context context){
 System.out.println(event);
 return "ok";
 }

}

Step 3 Package the project files.

1. Right-click the JavaTest project and choose Export, as shown in Figure 3-5.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

Figure 3-5 Packaging the project files

2. Export the project to a directory as a JAR file, as shown in Figure 3-6 and
Figure 3-7.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

Figure 3-6 Selecting a format

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

Figure 3-7 Specifying the destination path

Step 4 Log in to the FunctionGraph console, create a Java function, and upload the code
package.

Step 5 Test the function.

1. Create a timer trigger.
2. Create a test event.

Select Timer and click Save.
3. Click Test.

The function execution result consists of three parts: function output
(returned by callback), summary, and logs (output by using the console.log
or getLogger() method).

Step 6 Use a user-defined parameter in the Java code.

Create a Person class in the project, as shown in Figure 3-8.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

Figure 3-8 Creating a Person class

Create a class named PersonTest.java, and add a handler function to the class, as
shown in Figure 3-9.

Figure 3-9 Creating a class named PersonTest.java

After exporting the new package, upload it to the function, change the function
handler to com.demo.PersonTest.personTest, and click Save.

In the Configure Test Event dialog box, select blank-template, enter a test event,
and click Save.

Click Create, and then click Test.

----End

Execution Result
The execution result consists of the function output, summary, and log output.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

Table 3-7 Description of the execution result

Parame
ter

Successful Execution Failed Execution

Functio
n
Output

The defined function output
information is returned.

A JSON file that contains
errorMessage and stackTrace is
returned. The format is as follows:
{
 "errorMessage": "",
 "stackTrace": []
}

errorMessage: Error message
returned by the runtime.
stackTrace: Stack error information
returned by the runtime.

Summa
ry

Request ID, Memory
Configured, Execution
Duration, Memory Used,
and Billed Duration are
displayed.

Request ID, Memory Configured,
Execution Duration, Memory Used,
and Billed Duration are displayed.

Log
Output

Function logs are printed. A
maximum of 4 KB logs can
be displayed.

Error information is printed. A
maximum of 4 KB logs can be
displayed.

3.4 Developing Functions in Go

Function Syntax
NO TE

You are advised to use Go 1.x.

Syntax for creating a handler function in Go:

func Handler (payload []byte, ctx context.RuntimeContext)

● Handler: name of the function that FunctionGraph invokes to execute your
code. The name must be consistent with that you define when creating a
function, and must start with an uppercase letter.

● payload: event parameter defined for the function. The parameter is in JSON
format.

● ctx: runtime information provided for executing the function. For details, see
SDK APIs.

SDK APIs
● Context APIs

The Go SDK provides multiple context APIs and a logging API. The download
link of the Go SDK is provided in Table 1-1. Table 3-8 describes the context
APIs provided by FunctionGraph.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

Table 3-8 Context methods

Method Description

GetRequestID() string Obtains a request ID.

GetRemainingTimeInMilliSeconds() Obtains the remaining running time
of a function.

GetAccessKey() string Obtains the AK (valid for 24 hours)
of an agency. If you use this method,
you need to configure an agency for
the function.
NOTE

FunctionGraph has stopped maintaining
the getAccessKey API in the Runtime
SDK. You cannot use this API to obtain a
temporary AK.

GetSecretKey() string Obtains the SK (valid for 24 hours)
of an agency. If you use this method,
you need to configure an agency for
the function.
NOTE

FunctionGraph has stopped maintaining
the getSecretKey API in the Runtime
SDK. You cannot use this API to obtain a
temporary SK.

getSecurityAccessKey() Obtains the SecurityAccessKey (valid
for 24 hours) with an agency. If you
use this method, you need to
configure an agency for the
function.

getSecuritySecretKey() Obtains the SecuritySecretKey (valid
for 24 hours) with an agency. If you
use this method, you need to
configure an agency for the
function.

getSecurityToken() Obtains the SecurityToken (valid for
24 hours) with an agency. If you use
this method, you need to configure
an agency for the function.

GetUserData(key string) string Uses keys to obtain the values
passed by environment variables.

GetFunctionName() string Obtains the name of a function.

GetRunningTimeInSeconds() int Obtains the timeout of a function.

GetVersion() string Obtains the version of a function.

GetMemorySize() int Obtains the allocated memory.

GetCPUNumber() int Obtains CPU usage of a function.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

Method Description

GetProjectID() string Obtains a project ID.

GetPackage() string Obtains a function group, that is, an
app.

GetToken() string Obtains the token (valid for 24
hours) of an agency. If you use this
method, you need to configure an
agency for the function.

GetLogger() context.RuntimeLogger Obtains the logger method provided
by the context. By default,
information such as the time and
request ID is output.

NO TICE

Results returned by using the GetToken(), GetAccessKey(), and
GetSecretKey() methods contain sensitive information. Exercise caution when
using these methods.

● Logging API
Table 3-9 describes the logging API provided in the Go SDK.

Table 3-9 Logging API

Method Description

RuntimeLogger() ● Records user input logs by using
the method Logf(format string,
args ...interface{}).

● This method outputs logs in the
format of Time-Request ID-
Output, for example,
2017-10-25T09:10:03.328Z
473d369d-101a-445e-
a7a8-315cca788f86 test log
output.

Execution Result
The execution result consists of the function output, summary, and log output.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

Table 3-10 Description of the execution result

Parame
ter

Successful Execution Failed Execution

Functio
n
Output

The defined function output
information is returned.

A JSON file that contains
errorMessage and errorType is
returned. The format is as follows:
{
 "errorMessage": "",
 "errorType":"",
}

errorMessage: Error message
returned by the runtime.
errorType: Error type.

Summa
ry

Request ID, Memory
Configured, Execution
Duration, Memory Used,
and Billed Duration are
displayed.

Request ID, Memory Configured,
Execution Duration, Memory Used,
and Billed Duration are displayed.

Log
Output

Function logs are printed. A
maximum of 4 KB logs can
be displayed.

Error information is printed. A
maximum of 4 KB logs can be
displayed.

3.5 Developing Functions in C#

3.5.1 C# Function Development

Function Syntax

FunctionGraph supports C# (.NET Core 2.1), C# (.NET Core 3.1), C# (.NET Core
6.0), and C# (.NET Core 8.0).

Scope Return parameter Function name (User-defined parameter, Context)

● Scope: It must be defined as public for the function that FunctionGraph
invokes to execute your code.

● Return parameter: user-defined output, which is converted into a character
string and returned as an HTTP response.

● Function name: user-defined function name. The name must be consistent
with that you define when creating a function.

● Event: event parameter defined for the function.
● context: runtime information provided for executing the function. For details,

see the description of SDK APIs.
The HC.Serverless.Function.Common library needs to be referenced when
you deploy a project in FunctionGraph. For details about the
IFunctionContext object, see the context description.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

When creating a C# function, you need to define a method as the handler of
the function. The method can access the function by using specified
IFunctionContext parameters. Example:
public Stream handlerName(Stream input,IFunctionContext context)
{
 // TODO
}

Function Handler
ASSEMBLY::NAMESPACE.CLASSNAME::METHODNAME

● ASSEMBLY: name of the .NET assembly file for your application, for example,
HelloCsharp.

● NAMESPACE and CLASSNAME: names of the namespace and class to which
the handler function belongs.

● METHODNAME: name of the handler function. Example:
Set the handler to HelloCsharp::Example.Hello::Handler when you create a
function.

SDK APIs
● Context APIs

Table 3-11 describes the provided context attributes.

Table 3-11 Context objects

Attribute Description

String RequestId Request ID.

String ProjectId Project Id

String PackageName Name of the group to which the function
belongs.

String FunctionName Function name.

String FunctionVersion Function version.

Int MemoryLimitInMb Allocated memory.

Int CpuNumber Obtains CPU usage of a function.

String Accesskey Obtains the AK (valid for 24 hours) of an
agency. If you use this method, you need to
configure an agency for the function.
NOTE

FunctionGraph has stopped maintaining the String
AccessKey API in the Runtime SDK. You cannot use
this API to obtain a temporary AK.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

Attribute Description

String Secretkey Obtains the SK (valid for 24 hours) of an
agency. If you use this method, you need to
configure an agency for the function.
NOTE

FunctionGraph has stopped maintaining the String
SecretKey API in the Runtime SDK. You cannot use
this API to obtain a temporary SK.

String SecurityAccessKey Obtains the SecurityAccessKey (valid for 24
hours) with an agency. If you use this method,
you need to configure an agency for the
function.

String SecuritySecretKey Obtains the SecuritySecretKey (valid for 24
hours) with an agency. If you use this method,
you need to configure an agency for the
function.

String SecurityToken Obtains the SecurityToken (valid for 24 hours)
with an agency. If you use this method, you
need to configure an agency for the function.

String Token Obtains the token (valid for 24 hours) of an
agency. If you use this method, you need to
configure an agency for the function.

Int RemainingTimeInMilli-
Seconds

Remaining running time of a function.

String GetUserData(string
key,string defvalue=" ")

Uses keys to obtain the values passed by
environment variables.

● Logging APIs

The following table describes the logging APIs provided in the C# SDK.

Table 3-12 Logging APIs

Method Description

Log(string message) Creates a logger object by using context.
var logger = context.Logger;
logger.Log("hello CSharp runtime
test(v1.0.2)");

Logf(string format,
args ...interface{})

Creates a logger object by using context.
var logger = context.Logger;
var version = "v1.0.2"
logger.Logf("hello CSharp runtime test({0})",
version);

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

Execution Result
The execution result consists of the function output, summary, and log output.

Table 3-13 Description of the execution result

Parame
ter

Successful Execution Failed Execution

Functio
n
Output

The defined function output
information is returned.

A JSON file that contains
errorMessage and errorType is
returned. The format is as follows:
{
 "errorMessage": "",
 "errorType": ""
}

errorMessage: Error message
returned by the runtime.
errorType: Error type.

Summa
ry

Request ID, Memory
Configured, Execution
Duration, Memory Used,
and Billed Duration are
displayed.

Request ID, Memory Configured,
Execution Duration, Memory Used,
and Billed Duration are displayed.

Log
Output

Function logs are printed. A
maximum of 4 KB logs can
be displayed.

Error information is printed. A
maximum of 4 KB logs can be
displayed.

3.5.2 JSON Serialization and Deserialization

3.5.2.1 Using .NET Core CLI
C# supports JSON serialization and deserialization interfaces and provides the
HC.Serverless.Function.Common.JsonSerializer.dll file.

The interfaces are as follows:

T Deserialize<T>(Stream ins): Deserializes data into objects of function
programs.

Stream Serialize<T>(T value): Serializes data to the returned response payload.

The following shows how to create a project named test based on .NET Core 2.1.
The procedure is similar for .NET Core 3.1 and .NET Core 6.0. The .NET SDK 2.1 has
been installed in the execution environment.

Creating a Project
1. Run the following command to create the /tmp/csharp/projects /tmp/

csharp/release directory:
mkdir -p /tmp/csharp/projects;mkdir -p /tmp/csharp/release

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

2. Run the following command to go to the /tmp/csharp/projects/ directory:
cd /tmp/csharp/projects/

3. Create the project file test.csproj with the following content:
<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>netcoreapp2.1</TargetFramework>
 <RootNamespace>test</RootNamespace>
 <AssemblyName>test</AssemblyName>
 </PropertyGroup>
 <ItemGroup>
 <Reference Include="HC.Serverless.Function.Common">
 <HintPath>HC.Serverless.Function.Common.dll</HintPath>
 </Reference>
 <Reference Include="HC.Serverless.Function.Common.JsonSerializer">
 <HintPath> HC.Serverless.Function.Common.JsonSerializer.dll</HintPath>
 </Reference>
 </ItemGroup>
</Project>

Generating a Code Library
1. Upload the .dll file package.

Upload the HC.Serverless.Function.Common.dll and
HC.Serverless.Function.Common.JsonSerializer.dll files in the package to
the /tmp/csharp/projects/ directory.

2. Create the Class1.cs file in the /tmp/csharp/projects/ directory. The code is
as follows:
using HC.Serverless.Function.Common;
using System;
using System.IO;

namespace test
{
 public class Class1
 {
 public Stream ContextHandlerSerializer(Stream input, IFunctionContext context)
 {
 var logger = context.Logger;
 logger.Logf("CSharp runtime test(v1.0.2)");
 JsonSerializer test = new JsonSerializer();
 TestJson Testjson = test.Deserialize<TestJson>(input);
 if (Testjson != null)
 {
 logger.Logf("json Deserialize KetTest={0}", Testjson.KetTest);

 }
 else
 {
 return null;
 }

 return test.Serialize<TestJson>(Testjson);
 }

 public class TestJson
 {
 public string KetTest { get; set; }//Define the attribute of the serialization class as KetTest.

 }
 }
}

3. Run the following command to generate a code library:

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

https://functionstage-sdk.obs.cn-north-1.myhuaweicloud.com/fssCsharp2.0-1.0.1.zip

/home/tools/dotnetcore-sdk/dotnet-sdk-2.1.302-linux-x64/dotnet build /tmp/csharp/
projects/test.csproj -c Release -o /tmp/csharp/release

NO TE

.NET directory: /home/tools/dotnetcore-sdk/dotnet-sdk-2.1.302-linux-x64/dotnet

4. Run the following command to go to the /tmp/csharp/release directory:
cd /tmp/csharp/release

5. View the compiled .dll files in the /tmp/csharp/release directory.
-rw-r--r-- 1 root root 5120 Jan 21 16:40 HC.Serverless.Function.Common.JsonSerializer.dll
-rw-r--r-- 1 root root 5120 Jan 21 16:40 HC.Serverless.Function.Common.dll
-rw-r--r-- 1 root root 232 Jan 21 17:10 test.pdb
-rw-r--r-- 1 root root 3584 Jan 21 17:10 test.dll
-rw-r--r-- 1 root root 1659 Jan 21 17:10 test.deps.json

6. Create the test.runtimeconfig.json file in the /tmp/csharp/release directory.
The file content is as follows:
{
 "runtimeOptions": {
 "framework": {
 "name": "Microsoft.NETCore.App",
 "version": "2.1.0"
 }
 }
}

NO TE

● The name of the *.runtimeconfig.json file is the name of an assembly.
● The Version parameter in the file indicates the version number of the target

framework. If the framework is .NET Core 2.0, enter 2.0.0. If the framework is .NET
Core 2.1, enter 2.1.0.

● For .NET Core 2.0, check whether Newtonsoft.Json is referenced in the *.deps.json
file. If Newtonsoft.Json is not referenced, reference it manually.
1. Reference the following content in targets:

"Newtonsoft.Json/9.0.0.0": {
 "runtime": {
 "Newtonsoft.Json.dll": {
 "assemblyVersion": "9.0.0.0",
 "fileVersion": "9.0.1.19813"
 }
 }
 }

2. Reference the following content in libraries:
"Newtonsoft.Json/9.0.0.0": {
 "type": "reference",
 "serviceable": false,
 "sha512": ""
 }

7. Run the following command to package the test.zip file in the /tmp/csharp/
release directory:
zip -r test.zip ./*

3.5.2.2 Using Visual Studio
C# supports JSON serialization and deserialization interfaces and provides the
HC.Serverless.Function.Common.JsonSerializer.dll file.

The interfaces are as follows:

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

T Deserialize<T>(Stream ins): Deserializes data into objects of function
programs.

Stream Serialize<T>(T value): Serializes data to the returned response payload.

The following describes how to create a project named test based on .NET Core
2.0 by using Visual Studio 2017. The procedure is similar for .NET Core 2.1
and .NET Core 3.1.

Creating a Project
1. On the toolbar, choose File > New > Project, select .NET Core, select Class

Library (.NET Core), and change the project name to test, as shown in
Figure 3-10.

Figure 3-10 Creating a project

2. Select the test project in the navigation pane, right-click, and then choose
Properties, as shown in Figure 3-11.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

Figure 3-11 Properties

3. Choose Application and then set Target framework to .NET Core 2.0, as
shown in Figure 3-12.

Figure 3-12 Selecting a target framework

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

Adding a Reference
1. Select the test project in Search Solution Explorer, right-click, and then

choose Add Reference to reference the downloaded .dll file package, as
shown in Figure 3-13.

Figure 3-13 Adding a reference

NO TE

Store HC.Serverless.Function.Common.dll and
HC.Serverless.Function.Common.JsonSerializer.dll in a lib file.

2. Choose Browse, click Browse(B), reference the
HC.Serverless.Function.Common.dll and
HC.Serverless.Function.Common.JsonSerializer.dll files, and click OK, as
shown in Figure 3-14.

Figure 3-14 Referencing files

3. View the references, as shown in Figure 3-15.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

https://functionstage-sdk.obs.cn-north-1.myhuaweicloud.com/fssCsharp2.0-1.0.1.zip

Figure 3-15 References

Packing Code
Sample code:

using HC.Serverless.Function.Common;
using System;
using System.IO;

namespace test
{
 public class Class1
 {
 public Stream ContextHandlerSerializer(Stream input, IFunctionContext context)
 {
 var logger = context.Logger;
 logger.Logf("CSharp runtime test(v1.0.2)");
 JsonSerializer test = new JsonSerializer();
 TestJson Testjson = test.Deserialize<TestJson>(input);
 if (Testjson != null)
 {
 logger.Logf("json Deserialize KetTest={0}", Testjson.KetTest);
 }

 return test.Serialize<TestJson>(Testjson);
 }

 public class TestJson
 {
 public string KetTest { get; set; }//Define the attribute of the serialization class as KetTest.

 }
 }
}

1. Right-click the test project and choose Build, as shown in Figure 3-16.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

Figure 3-16 Build

2. Copy the path C:\Users\xxx\source\repos\test\test\bin\Release
\netcoreapp2.0\ of the .dll files, as shown in Figure 3-17.

Figure 3-17 Path of .dll files

Figure 3-18 shows the files in the path.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

Figure 3-18 Files

3. Create a test.runtimeconfig.json file in the path, as shown in Figure 3-19.

Figure 3-19 New file

Add the following content in the file:
{

"runtimeOptions": {

"framework": {

"name": "Microsoft.NETCore.App",

"version": "2.0.0"
 }
 }
}

NO TE

● The name of the *.runtimeconfig.json file is the name of an assembly.

● The Version parameter in the file indicates the version number of the target
framework. If the framework is .NET Core 2.0, enter 2.0.0. If the framework is .NET
Core 2.1, enter 2.1.0.

4. Compress the file into netcoreapp2.0.zip.

NO TE

The package name can be customized but must be ended with .zip.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

3.6 Developing Functions in PHP

Function Syntax

Use the following syntax when creating a handler function in PHP:

function handler($event, $context)

● $handler: name of the function that FunctionGraph invokes to execute your
code. The name must be consistent with that you define when creating a
function.

● $event: event parameter defined for the function. The parameter is in JSON
format.

● $context: runtime information provided for executing the function. For
details, see SDK APIs.

● Function handler: index.handler.
● The function handler is in the format of [File name].[Function name]. For

example, if you set the handler to index.handler in your function,
FunctionGraph will load the handler function defined in the index.php file.

PHP Initializer

FunctionGraph supports the following PHP runtime:

● PHP 7.3
● PHP 8.3

Initializer syntax:

[File name].[Initializer name]

For example, if the initializer is named main.my_initializer, FunctionGraph loads
the my_initializer function defined in the main.php file.

To use PHP to build initialization logic, define a PHP function as the initializer. The
following is a simple initializer:

<?php
Function my_initializer($context) {
 echo 'hello world' . PHP_EOL;
 }
?>

● Function name
The function name my_initializer must be the initializer function name
specified for a function.
For example, if the initializer is named main.my_initializer, FunctionGraph
loads the my_initializer function defined in the main.php file.

● context
The context parameter contains the runtime information about a function.
For example, request ID, temporary AK, and function metadata.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

SDK APIs

The following table describes the context methods provided by FunctionGraph.

Table 3-14 Context methods

Method Description

getRequestID() Obtains a request ID.

getRemainingTimeIn-
MilliSeconds ()

Obtains the remaining running time of a function.

getAccessKey() Obtains the AK (valid for 24 hours) of an agency. If
you use this method, you need to configure an
agency for the function.
NOTE

FunctionGraph has stopped maintaining the getAccessKey
API in the Runtime SDK. You cannot use this API to obtain a
temporary AK.

getSecretKey() Obtains the SK (valid for 24 hours) of an agency. If
you use this method, you need to configure an
agency for the function.
NOTE

FunctionGraph has stopped maintaining the getSecretKey
API in the Runtime SDK. You cannot use this API to obtain a
temporary SK.

getSecurityAccessKey() Obtains the SecurityAccessKey (valid for 24 hours)
with an agency. If you use this method, you need to
configure an agency for the function.

getSecuritySecretKey() Obtains the SecuritySecretKey (valid for 24 hours)
with an agency. If you use this method, you need to
configure an agency for the function.

getSecurityToken() Obtains the SecurityToken (valid for 24 hours) with
an agency. If you use this method, you need to
configure an agency for the function.

getUserData(string key) Uses keys to obtain the values passed by environment
variables.

getFunctionName() Obtains the name of a function.

getRunningTimeInSec-
onds ()

Obtains the timeout of a function.

getVersion() Obtains the version of a function.

getMemorySize() Obtains the allocated memory.

getCPUNumber() Obtains CPU usage of a function.

getProjectID() Obtains a project ID.

getPackage() Obtains a function group, that is, an app.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

Method Description

getToken() Obtains the token (valid for 24 hours) of an agency. If
you use this method, you need to configure an
agency for the function.

getLogger() Obtains the logger method provided by the context
and returns a log output class. Logs are output in the
format of Time-Request ID-Content by using the info
method.
For example, use the info method to output logs:
logg = context.getLogger()$
$logg->info("hello")

NO TE

Results returned by using the getToken(), getAccessKey(), and getSecretKey() methods
contain sensitive information. Exercise caution when using these methods.

Execution Result
The execution result consists of the function output, summary, and log output.

Table 3-15 Description of the execution result

Parame
ter

Successful Execution Failed Execution

Functio
n
Output

The defined function output
information is returned.

A JSON file that contains
errorMessage, errorType, and
stackTrace is returned. The format is
as follows:
{
 "errorMessage": "",
 "errorType": "",
 "stackTrace": {}
}

errorMessage: Error message
returned by the runtime.
errorType: Error type.
stackTrace: Stack error information
returned by the runtime.

Summa
ry

Request ID, Memory
Configured, Execution
Duration, Memory Used,
and Billed Duration are
displayed.

Request ID, Memory Configured,
Execution Duration, Memory Used,
and Billed Duration are displayed.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

Parame
ter

Successful Execution Failed Execution

Log
Output

Function logs are printed. A
maximum of 4 KB logs can
be displayed.

Error information is printed. A
maximum of 4 KB logs can be
displayed.

3.7 Developing Functions in Cangjie

3.7.1 Developing Functions in Cangjie (Using Visual Studio
Code)

NO TE

● Cangjie functions can be developed only in the Linux environment.
● You can compile a function only via uploading a ZIP package with all required

dependencies.

Step 1 Create a function project.

1. Create a Cangjie project.

Figure 3-20 Creating a Cangjie project

2. Add dependencies to the project.
Download CangjieRuntime SDK to the local development environment,
decompress it, and copy libyuanrong_runtime_sdk_yuanrong_sdk.so to the
file directory.

Figure 3-21 Adding dependencies to the project

3. Configure dependencies.
In the module.json file of the user function, add the downloaded SDK on
which the file depends.
{
 "cjc_version": "0.xx.xx",

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

 "organization": "yuanrong",
 "name": "user_func_test",
 "description": "user func demo",
 "version": "1.0.0",
 "build_dir": "",
 "requires": {},
 "dev_requires": {},
 "package_requires": {
 "path_option":["./yuanrong_runtime_sdk"]
 },
 "foreign_requires": {},
 "output_type": "dynamic",
 "command_option": "",
 "condition_option": {
 "bind_now": "--link-options \"-z now\""
 },
 "link_option": "",
 "cross_compile_configuration": {},
 "scripts": {},
 "package_configuration": {}
}

Step 2 Create a function.

1. Create the funcdemo folder and create the success_invoke class in the
package.

Figure 3-22 Creating the success_invoke class

2. Define the function handler in success_invoke.cj.
package funcdemo

from yuanrong_runtime_sdk import yuanrong_sdk.Context
from yuanrong_runtime_sdk import yuanrong_sdk.APIGTriggerEvent
from yuanrong_runtime_sdk import yuanrong_sdk.APIGTriggerResponse
from yuanrong_runtime_sdk import yuanrong_sdk.FuncRegister
from yuanrong_runtime_sdk import entry_macro.Entry
from encoding import json.*
from std import collection.*
from std import os.*
from serialization import serialization.*

@Entry
public func handleRequest(args: APIGTriggerEvent, context: Context): APIGTriggerResponse {
 var contextRunningTime: String = context.getRunningTimeInSeconds().toString()
 println("args is ${args.getBody()}")
 var resp = APIGTriggerResponse()
 resp.setBody(args.getBody())
 resp.setStatusCode(200)
 resp
}

Step 3 Package the project files.

Use cjpm build to build a project.

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

Step 4 Create a Cangjie function by uploading the code package in ZIP format. For
details, see section "Creating a Function from Scratch" in the FunctionGraph User
Guide.

Compress the generated .so file and upload it to the Yuanrong environment.

----End

Testing Function Invocation
Step 1 On the function details page, choose Code > Configure Test Event. In the dialog

box that is displayed, click Create new test event > Blank Template.

The contents of the test cases are as follows:
{
 "isBase64Encoded": false,
 "httpMethod": "POST",
 "path": "",
 "body": "test_cangjie"
}

NO TE

Parameters must be transferred based on the APIGTriggerEvent class defined in the
Yuanrong SDK. Otherwise, serialization and deserialization exceptions may occur.
public open class APIGTriggerEvent {
 private var isBase64Encoded: Bool = false;
 private var httpMethod: String = "POST";
 private var path: String = "";
 private var body: String = "";
}

Step 2 After the test event is configured, click Test.

----End

3.7.2 Developing an Event Function
You can compile a function only via uploading a ZIP package with all required
dependencies.

Preparation
Obtain the Cangjie demo project package from technical support.

Compiling and Packaging
Run the cjpm build command to generate a libxxxx.so file in the build directory.
You need to compress the .so file into a .zip file, as shown in Figure 3-23.

Figure 3-23 Packaging the file into a .zip file

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

Creating a Function

Step 1 Log in to the FunctionGraph console and click Create Function in the upper right
corner. The Create Function page is displayed.

Step 2 Select Create from scratch and set the following parameters:
● Function Type: Select Event Function.
● Region: Select a region.
● Function Name: Enter a custom name.
● Enterprise Project: Select an enterprise project as required.
● Agency: Select an existing agency. For details about how to create an agency,

see section "Creating an Agency" in the FunctionGraph User Guide.
● Runtime: select Cangjie 1.0.

Step 3 Click Create Function.

----End

Configuring Functions

Step 1 Return to the FunctionGraph console, choose Functions > Function List on the
left, locate the created function, and click its name. The function details page is
displayed.

Step 2 On the Code tab page, choose Upload > Local ZIP > Select File on the right to
upload the prepared demo package. After the upload is successful, click OK.

Step 3 Choose Configuration > Basic Settings. Set the handler to the name of the .so
file in Compiling and Packaging, for example, libuser_func_test_success.so, and
click Save.

----End

Testing Function Invocation

Step 1 On the function details page, choose Code > Configure Test Event. In the dialog
box that is displayed, click Create new test event > Blank Template.

The contents of the test cases are as follows:

{
 "isBase64Encoded": false,
 "httpMethod": "POST",
 "path": "",
 "body": "test_cangjie"
}

NO TE

Parameters must be transferred based on the APIGTriggerEvent class defined in the
Yuanrong SDK. Otherwise, serialization and deserialization exceptions may occur.
public open class APIGTriggerEvent {
 private var isBase64Encoded: Bool = false;
 private var httpMethod: String = "POST";
 private var path: String = "";
 private var body: String = "";
}

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

Step 2 After the test event is configured, click Test.

----End

FunctionGraph
Developer Guide 3 Developing Functions

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

4 Developing Functions with Plug-ins

4.1 Eclipse Plug-in
Currently, FunctionGraph does not provide Java function templates and only
allows you to upload Java function packages through OBS. With the Eclipse plug-
in, you can quickly create Java function templates, package function project files,
upload function packages to OBS, and deploy functions.

Step 1 Download the Eclipse plug-in.

Step 2 Put the Eclipse plug-in package (.jar or .zip) in the plugins folder under the
Eclipse installation directory. Then restart Eclipse. Figure 4-1 shows the Eclipse
installation directory.

Figure 4-1 Installing the Eclipse plug-in

Step 3 Open Eclipse and choose File > New > Other, as shown in Figure 4-2.

FunctionGraph
Developer Guide 4 Developing Functions with Plug-ins

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/java-ide-plugin.zip

Figure 4-2 Creating a template

Step 4 Choose FunctionGraph > Default Java project, as shown in Figure 4-3.

FunctionGraph
Developer Guide 4 Developing Functions with Plug-ins

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

Figure 4-3 Selecting the default Java template

Step 5 Enter a project name, specify a project directory (or use the default directory), and
click Finish, as shown in Figure 4-4.

FunctionGraph
Developer Guide 4 Developing Functions with Plug-ins

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

Figure 4-4 Setting the project name and directory

----End

4.2 PyCharm Plug-in
With PyCharm, you can quickly generate Python templates, package project files,
and deploy Python functions.

Step 1 Obtain the PyCharm plugin (plugin.sha256).

Step 2 Run JetBrains PyCharm. Choose File > Settings, choose Plugins in the left pane,
and then click Install Plugin from Disk in the upper right corner, as shown in
Figure 4-5.

FunctionGraph
Developer Guide 4 Developing Functions with Plug-ins

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/plugin/python-ide-plugin-0.0.1.zip
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/plugin/python-ide-plugin-0.0.1.zip.sha256

Figure 4-5 Installing the plug-in

Step 3 Select the plug-in package you want to install, and click OK, as shown in Figure
4-6.

FunctionGraph
Developer Guide 4 Developing Functions with Plug-ins

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

Figure 4-6 Selecting a plug-in package

Step 4 In the plug-in list, select the desired plug-in and click Restart IDE, as shown in
Figure 4-7.

FunctionGraph
Developer Guide 4 Developing Functions with Plug-ins

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

Figure 4-7 Restarting the IDE

Step 5 Choose File > New Project, as shown in Figure 4-8.

Figure 4-8 Creating a project

FunctionGraph
Developer Guide 4 Developing Functions with Plug-ins

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

Step 6 On the displayed New Project page, choose FunctionGraph, as shown in Figure
4-9.

Figure 4-9 FunctionGraph

Step 7 Select the path in which the project will be stored in Location, and select a Python
version in Base interpreter, as shown in Figure 4-10.

Figure 4-10 Selecting a version

Step 8 Select a template you want to create in the More Settings area, as shown in
Figure 4-11.

FunctionGraph
Developer Guide 4 Developing Functions with Plug-ins

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

Figure 4-11 Selecting a template

NO TE

Currently, only the Python 2.7 context template is supported.

Step 9 Click Create.

----End

FunctionGraph
Developer Guide 4 Developing Functions with Plug-ins

Issue 01 (2026-01-08) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

	Contents
	1 Overview
	1.1 Function Development
	1.2 Supported Event Sources
	1.3 Function Project Packaging Rules
	1.4 Referencing DLLs in Functions

	2 Initializer
	2.1 What Is Initializer?
	2.2 Initializer Definition

	3 Developing Functions
	3.1 Developing Functions in Node.js
	3.2 Developing Functions in Python
	3.3 Developing Functions in Java
	3.3.1 Developing Functions in Java (Using Eclipse)

	3.4 Developing Functions in Go
	3.5 Developing Functions in C#
	3.5.1 C# Function Development
	3.5.2 JSON Serialization and Deserialization
	3.5.2.1 Using .NET Core CLI
	3.5.2.2 Using Visual Studio

	3.6 Developing Functions in PHP
	3.7 Developing Functions in Cangjie
	3.7.1 Developing Functions in Cangjie (Using Visual Studio Code)
	3.7.2 Developing an Event Function

	4 Developing Functions with Plug-ins
	4.1 Eclipse Plug-in
	4.2 PyCharm Plug-in

