
API Gateway

Best Practices

Date 2024-10-09

Contents

1 Selectively Exposing CCE Workloads with a Dedicated Gateway................................1
1.1 Introduction... 1
1.2 Resource Planning... 2
1.3 General Procedure...3
1.4 Implementation Procedure.. 3

2 Selectively Exposing Service Capabilities of a Data Center Using a Dedicated
Gateway.. 14

3 Developing a Custom Authorizer with FunctionGraph.. 16

4 Exposing Backend Services Across VPCs Using a Dedicated Gateway......................20
4.1 Introduction.. 20
4.2 Resource Planning.. 21
4.3 General Procedure.. 22
4.4 Implementation Procedure.. 23

5 Interconnecting a Dedicated Gateway with WAF... 31

6 Request Throttling 2.0 with a Dedicated Gateway...35
6.1 Introduction.. 35
6.2 General Procedure.. 36
6.3 Implementation Procedure.. 37

7 Two-Factor Authentication with a Dedicated Gateway.. 40
7.1 Introduction.. 40
7.2 General Procedure.. 41
7.3 Implementation Procedure.. 42

8 HTTP-to-HTTPS Auto Redirection with a Dedicated Gateway...................................46
8.1 Introduction.. 46
8.2 General Procedure.. 46
8.3 Implementation Procedure.. 47

9 Client Authentication with a Dedicated Gateway.. 49
9.1 Solution.. 49
9.2 General Procedure.. 50
9.3 Implementation Procedure.. 50

API Gateway
Best Practices Contents

2024-10-09 ii

10 Invoking an API Policy Backend via Frontend Authentication Parameters
(System Parameter)... 55
10.1 Introduction.. 55
10.2 General Procedure.. 56
10.3 Implementation Procedure..56

11 Forwarding WebSocket Services Using Dedicated Gateway.................................... 60

12 Change History.. 63

API Gateway
Best Practices Contents

2024-10-09 iii

1 Selectively Exposing CCE Workloads
with a Dedicated Gateway

1.1 Introduction

Scenario
You can use APIG to selectively expose your workloads and microservices in Cloud
Container Engine (CCE).

Expose CCE workloads using either of the following methods. Method 1 is
recommended.

● Method 1
Create a load balance channel on APIG to access pod IP addresses in CCE
workloads, dynamically monitoring the changes of these addresses. When
opening APIs of a containerized application, specify a load balance channel to
access the backend service.

● Method 2
Import a CCE workload to APIG. APIs and a load balance channel are
generated and associated with each other to dynamically monitor pod IP
address changes. Expose workloads and microservices in CCE using these APIs.

Solution Architecture

Figure 1-1 Accessing CCE workloads (composed of pods) through APIG

API Gateway
Best Practices

1 Selectively Exposing CCE Workloads with a
Dedicated Gateway

2024-10-09 1

Advantages
● You do not need to set elastic IP addresses, reducing network bandwidth

costs.
Workload addresses in CCE can be accessed through a load balance channel
that is manually created or generated by importing a workload.

● Workload pod addresses in CCE can be dynamically monitored and
automatically updated by a load balance channel that is manually created or
generated by importing a workload.

● CCE workloads can be released by tag for testing and version switching.
● Multiple authentication modes keep access secure.
● Request throttling policies ensure secure access to your backend service.

Instead of direct access to containerized applications, APIG provides request
throttling to ensure that your backend service runs stably.

● Pod load balancing improves resource utilization and system reliability.

Restrictions
● Only CCE Turbo clusters and CCE clusters using the VPC network model are

supported.
● The CCE cluster and your gateway must be in the same VPC or connected.
● If you select a CCE cluster that uses the VPC network model, add the

container CIDR block of the cluster in the Routes area of the gateway details
page.

1.2 Resource Planning

Table 1-1 Resource and cost planning

Resource Quantity

CCE 1

Dedicated gateway 1

API Gateway
Best Practices

1 Selectively Exposing CCE Workloads with a
Dedicated Gateway

2024-10-09 2

1.3 General Procedure

1. Prepare CCE workload
Before opening a container workload with APIG, create a CCE cluster that
uses the VPC network model or a Turbo cluster on the CCE console.

2. Open CCE workload
Method 1: Create a load balance channel on APIG to access pod addresses in
the CCE workload.
Method 2: Import a CCE workload to APIG. APIs and a load balance channel
are generated and associated with each other to access pod IP addresses in
the workload.

3. (Optional) Configure workload label for grayscale release
Grayscale release is a service release policy that gradually switches traffic
from an early version to a later version by specifying the traffic distribution
weight.

1.4 Implementation Procedure

Preparing a CCE Workload

Step 1 Create a cluster.

1. Log in to the CCE console and buy a CCE standard or CCE Turbo cluster on the
Clusters page. Select CCE Standard Cluster and set Network Model to VPC
network. For details, see section "Buying a CCE Standard/Turbo Cluster" in
the CCE User Guide.

2. After the cluster is created, record the container CIDR block.

API Gateway
Best Practices

1 Selectively Exposing CCE Workloads with a
Dedicated Gateway

2024-10-09 3

3. Add this CIDR block in the Routes area of a dedicated gateway.

a. Log in to the APIG console, and choose Gateways in the navigation pane.
b. Click the gateway name to go to the details page.
c. Add the container CIDR block in the Routes area.

Step 2 Create a workload.

1. On the Clusters page of the CCE console, click the cluster name to go to the
details page.

2. In the navigation pane, choose Workloads.
3. Click Create Workload. Select Deployment. For details, see the section

"Creating a Deployment" in the CCE User Guide.
In the Advanced Settings > Labels and Annotations area, set pod labels for
switching the workload and service version. In this example, set
app=deployment-demo and version=v1. If you create a workload by
importing a YAML file, add pod labels in this file. For details about pod labels,
see section "Configuring Labels and Annotations" in the CCE User Guide.
Add pod labels in a YAML file:
spec:
 replicas: 2
 selector:
 matchLabels:
 app: deployment-demo
 version: v1
 template:
 metadata:
 creationTimestamp: null
 labels:
 app: deployment-demo
 version: v1

----End

Method 1: Opening a CCE Workload by Creating a Load Balance Channel

Step 1 Create a load balance channel.

1. Go to the APIG console, and choose Gateways in the navigation pane.
2. Choose API Management > API Policies.
3. On the Load Balance Channels tab, click Create Load Balance Channel.

a. Set the basic information.

Table 1-2 Basic information parameters

Parameter Description

Name Enter a name that conforms to specific rules to
facilitate search. In this example, enter
VPC_demo.

Port Container port of a workload for opening
services. Set this parameter to 80, which is the
default HTTP port.

API Gateway
Best Practices

1 Selectively Exposing CCE Workloads with a
Dedicated Gateway

2024-10-09 4

Parameter Description

Routing Algorithm Select WRR. This algorithm will be used to
forward requests to each of the cloud servers you
select in the order of server weight.

Type Select Microservice.

b. Configure microservice information.

Table 1-3 Microservice configuration

Parameter Description

Microservice Type Cloud Container Engine (CCE) is always
selected.

Cluster Select the created cluster.

Namespace Select a namespace in the cluster. In this
example, select default.

Workload Type Select Deployment. This parameter must be the
same as the type of the created workload.

Service Label Key Select the pod label app and its value
deployment-demo of the created workload.

Service Label Value

c. Configure a server group.

Table 1-4 Server group configuration

Parameter Description

Server Group Name Enter server_group_v1.

Weight Enter 1.

Backend Service
Port

Enter 80. This must be the same as the container
port in the workload.

Description Enter "Server group with version v1".

Tag Select the pod label version=v1 of the created
workload.

d. Configure health check.

Table 1-5 Health check configuration

Parameter Description

Protocol Default: TCP.

API Gateway
Best Practices

1 Selectively Exposing CCE Workloads with a
Dedicated Gateway

2024-10-09 5

Parameter Description

Check Port Backend server port in the channel.

Healthy threshold Default: 2. This is the number of consecutive
successful checks required for a cloud server to
be considered healthy.

Unhealthy
Threshold

Default: 5. This is the number of consecutive
failed checks required for a cloud server to be
considered unhealthy.

Timeout (s) Default: 5. This is the timeout used to determine
whether a health check has failed.

Interval (s) Default: 10. This is the interval between
consecutive checks.

e. Click Finish.

In the load balance channel list, click a channel name to view details.

Step 2 Open an API.

1. Create an API group.

a. Choose API Management > API Groups.

b. Click Create API Group, and choose Create Directly.

c. Configure group information and click OK.

2. Create an API and bind the preceding load balance channel to it.

a. Click the group name to go to the details page. On the APIs tab, choose
Create API > Create API.

b. Configure frontend information and click Next.

Table 1-6 Frontend configuration

Parameter Description

API Name Enter a name that conforms to specific rules to
facilitate search.

Group Select the preceding API group.

URL Method: Request method of the API. Set this
parameter to ANY.
Protocol: Request protocol of the API. Set this
parameter to HTTPS.
Subdomain Name: The system automatically
allocates a subdomain name to each API group
for internal testing. The subdomain name can be
accessed 1000 times a day.
Path: Path for requesting the API.

API Gateway
Best Practices

1 Selectively Exposing CCE Workloads with a
Dedicated Gateway

2024-10-09 6

Parameter Description

Gateway Response Select a response to be displayed if the gateway
fails to process an API request. Default: default.

Matching Select Prefix match.

Authentication
Mode

API authentication mode. Select None. (None:
Not recommended for actual services. All users
will be granted access to the API.)

c. Configure backend information and click Next.

Table 1-7 Parameters for defining an HTTP/HTTPS backend service

Parameter Description

Load Balance
Channel

Determine whether the backend service will be
accessed using a load balance channel. For this
example, select Configure.

URL Method: Request method of the API. Set this
parameter to ANY.
Protocol: Set this parameter to HTTP.
Load Balance Channel: Select the created
channel.
Path: Path of the backend service.

d. Define the response and click Finish.

3. Debug the API.
On the APIs tab, click Debug. Click the Debug button in red background. If
the status code 200 is returned in the response result, the debugging is
successful. Then go to the next step. Otherwise, rectify the fault by following
the instructions provided in "Published API Calling" > "Error Codes" in the API
Gateway User Guide.

4. Publish the API.
On the APIs tab, click Publish Latest Version, retain the default option
RELEASE, and click OK. When the exclamation mark in the upper left of the
Publish button disappears, the publishing is successful. Then go to the next
step. Otherwise, rectify the error indicated in the error message.

Step 3 Call the API.

1. Bind independent domain names to the group of this API.
On the group details page, click the Group Information tab. The debugging
domain name is only used for development and testing and can be accessed
1000 times a day. Bind independent domain names to expose APIs in the
group.
Click Bind Independent Domain Name to bind registered public domain
names. For details about how to bind a domain name, see "Binding a Domain
Name" in the API Gateway User Guide.

API Gateway
Best Practices

1 Selectively Exposing CCE Workloads with a
Dedicated Gateway

2024-10-09 7

2. Copy the URL of the API.

On the APIs tab, copy the API URL. Open a browser and enter the URL. When
the defined success response is displayed, the invocation is successful.

Figure 1-2 Copying the URL

Now, the CCE workload is opened by creating a load balance channel.

----End

Method 2: Opening a CCE Workload by Importing It

Step 1 Import a CCE workload.

1. Go to the APIG console, and choose Gateways in the navigation pane.

2. Choose API Management > API Groups.

3. Choose Create API Group > Import CCE Workload.

a. Enter information about the CCE workload to import.

Table 1-8 Workload information

Parameter Description

Group Default: New group.

Cluster Select the created cluster.

Namespace Select a namespace in the cluster. In this
example, select default.

Workload Type Select Deployment. This parameter must be the
same as the type of the created workload.

Service Label Key Select the pod label app and its value
deployment-demo of the created workload.

Service Label Value

Tag Another pod label version=v1 of the workload is
automatically selected.

b. Configure API information.

API Gateway
Best Practices

1 Selectively Exposing CCE Workloads with a
Dedicated Gateway

2024-10-09 8

Table 1-9 API information

Parameter Description

Protocol API request protocol. HTTPS is selected by
default.

Request Path API request path for prefix match. Default: /. In
this example, retain the default value.

Port Enter 80. This must be the same as the container
port in the workload.

Authentication
Mode

Default: None. (None: Not recommended for
actual services. All users will be granted access to
the API.)

CORS Disabled by default.

Timeout (ms) Backend timeout. Default: 5000.

4. Click OK. The CCE workload is imported, with an API group, API, and load

balance channel generated.

Step 2 View the generated API and load balance channel.

1. View the generated API.

a. Click the API group name, and then view the API name, request method,
and publishing status on the APIs tab.

b. Click the Backend Configuration tab and view the bound load balance
channel.

2. View the generated load balance channel.

a. Choose API Management > API Policies.
b. On the Load Balance Channels tab, click the channel name to view

details.
3. Check that this load balance channel is the one bound to the API, and then

go to the next step. If it is not, repeat Step 1.

Step 3 Open the API.

Since importing a CCE workload already creates an API group and API, you only
need to publish the API in an environment.

1. Debug the API.
On the APIs tab, click Debug. Click the Debug button in red background. If
the status code 200 is returned in the response result, the debugging is
successful. Then go to the next step. Otherwise, rectify the fault by following
the instructions provided in "Published API Calling" > "Error Codes" in the API
Gateway User Guide.

2. Publish the API.
On the APIs tab, click Publish Latest Version, retain the default option
RELEASE, and click OK. When the exclamation mark in the upper left of the
Publish button disappears, the publishing is successful. Then go to the next
step.

API Gateway
Best Practices

1 Selectively Exposing CCE Workloads with a
Dedicated Gateway

2024-10-09 9

Step 4 Call the API.

1. Bind independent domain names to the group of this API.
On the group details page, click the Group Information tab. The debugging
domain name is only used for development and testing and can be accessed
1000 times a day. Bind independent domain names to expose APIs in the
group.
Click Bind Independent Domain Name to bind registered public domain
names. For details about how to bind a domain name, see "Binding a Domain
Name" in the API Gateway User Guide.

2. Copy the URL of the API.
On the APIs tab, copy the API URL. Open a browser and enter the URL. When
the defined success response is displayed, the invocation is successful.

Figure 1-3 Copying the URL

Now, the CCE workload has been opened by importing it.

----End

(Optional) Configuring Workload Labels for Grayscale Release

Grayscale release is a service release policy that gradually switches traffic from an
early version to a later version by specifying the traffic distribution weight.
Services are verified during release and upgrade. If a later version meets the
expectation, you can increase the traffic percentage of this version and decrease
that of the early version. Repeat this process until a later version accounts for
100% and an early version is down to 0. Then the traffic is successfully switched to
the later version.

Figure 1-4 Grayscale release principle

CCE workloads are configured using the pod label selector for grayscale release.
You can quickly roll out and verify new features, and switch servers for traffic
processing.

API Gateway
Best Practices

1 Selectively Exposing CCE Workloads with a
Dedicated Gateway

2024-10-09 10

The following describes how to smoothly switch traffic from V1 to V2 through
grayscale release.

Step 1 Create a workload, set a pod label with the same value as the app label of the
preceding workload. For details, see the preceding workload.

On the workload creation page, go to the Advanced Settings > Labels and
Annotations area, and set app=deployment-demo and version=v2. If you create
a workload by importing a YAML file, add pod labels in this file.

Step 2 For the server group with pod label version=v1, adjust the traffic weight.

1. On the APIG console, choose Gateways in the navigation pane.
2. Choose API Management > API Policies.
3. On the Load Balance Channels tab, click the name of the created channel.
4. In the Backend Server Address area, click Modify.
5. Change the weight to 100, and click OK.

Weight is the percentage of traffic to be forwarded. All traffic will be
forwarded to the pod IP addresses in server group server_group_v1.

Step 3 Create a server group with pod label version=v2, then set the traffic weight.

1. In the Backend Server Address area, click Create Server Group.

Table 1-10 Server group configuration

Parameter Description

Server Group Name Enter server_group_v2.

Weight Enter 1.

Backend Service Port Enter 80.

Tag Select pod label version=v2.

2. Click OK.

Step 4 Refresh the backend server addresses.

Refresh the page for the backend server addresses. The load balance channel
automatically monitors the pod IP addresses of the workload and dynamically
adds the addresses as backend server addresses. As shown in the following figure,
tags app=deployment-demo and version=v2 automatically match the pod IP
addresses (backend server addresses) of the workload.

API Gateway
Best Practices

1 Selectively Exposing CCE Workloads with a
Dedicated Gateway

2024-10-09 11

Figure 1-5 Pod IP addresses automatically matched

100 of 101 (server group weight of total weight) traffic is distributed to
server_group_v1, and the remaining to the later version of server_group_v2.

Figure 1-6 Click Modify in the upper right of the page.

Step 5 Check that the new features released to V2 through grayscale release are running
stably.

If the new version meets the expectation, go to Step 6. Otherwise, the new
feature release fails.

Step 6 Adjust the weights of server groups for different versions.

Gradually decrease the weight of server_group_v1 and increase that of
server_group_v2. Repeat Step 5 to Step 6 until the weight of server_group_v1
becomes 0 and that of server_group_v2 reaches 100.

As shown in the preceding figure, all requests are forwarded to server_group_v2.
New features are switched from workload deployment-demo of version=v1 to
deployment-demo2 of version=v2 through grayscale release. (You can adjust the
traffic weight to meet service requirements.)

Step 7 Delete the backend server group server_group_v1 of version=v1.

Now all traffic has been switched to the backend server group of version=v2. You
can delete the server group of version=v1.

API Gateway
Best Practices

1 Selectively Exposing CCE Workloads with a
Dedicated Gateway

2024-10-09 12

1. Go to the load balance channel details page on the APIG console, delete all IP
addresses of the server group of version=v1 in the Backend Server Address
area.

2. Click Delete on the right of this area to delete the server group of
version=v1.
The backend server group server_group_v2 of version=v2 is kept.

----End

API Gateway
Best Practices

1 Selectively Exposing CCE Workloads with a
Dedicated Gateway

2024-10-09 13

2 Selectively Exposing Service Capabilities
of a Data Center Using a Dedicated Gateway

The backend services of APIG can be deployed in the following modes:

● Deployed in a VPC and accessible only using private IP addresses.
You can create a VPC channel on APIG to enable network routing between
APIG and the VPC.

● Deployed on the public network and accessible using a public IP address.
● Deployed in an on-premises data center and not accessible using a public IP

address.
If you use a dedicated API gateway, you can set up a connection between
your on-premises data center and the gateway.

This section describes the precautions for using APIG to selectively expose APIs of
backend services deployed in a local data center.

Connecting a Data Center to APIG

Step 1 Create a VPC.

For details, see the section "Creating a VPC" in the Virtual Private Cloud User
Guide.

To allow APIG to access services in your on-premises data center, bind a VPC to
your dedicated gateway, and establish a connection between the data center and
VPC.

NO TE

● Specify a subnet for your dedicated gateway.

● A connection can be used to connect a local data center to only one VPC. You are
advised to bind the same VPC to all your cloud resources to reduce costs.

● If a VPC already exists, you do not need to create a new one.

Step 2 Create a dedicated API gateway.

For details, see section "Creating a Gateway" in the API Gateway User Guide.

API Gateway
Best Practices

2 Selectively Exposing Service Capabilities of a Data
Center Using a Dedicated Gateway

2024-10-09 14

Step 3 Enable Direct Connect by referring to the Direct Connect User Guide.

1. Create a connection.
Apply for a connection from your account manager. If you do not have an
account manager, contact technical support.

2. Create a virtual gateway.
The virtual gateway is a logical gateway for accessing the VPC bound to the
dedicated gateway.

NO TE

Select the subnet that the dedicated gateway uses, to connect to the VPC. For details
about the subnet, go to the gateway details page.

3. Create a virtual interface.
The virtual interface links the connection with the virtual gateway, enabling
connectivity between the connection and the VPC of the dedicated gateway.
Configure the remote gateway and remote subnet as the gateway and subnet
for accessing the open API of your on-premises data center. For example, if
the API calling address of your data center is http://192.168.0.25:80/{URI},
configure the remote gateway and remote subnet as those of 192.168.0.25.

Step 4 Verify the network connectivity.

Create another pay-per-use ECS and select the same VPC, subnet, and security
group as the dedicated gateway. If the data center can connect to the ECS, the
data center can also connect to the dedicated gateway.

----End

Exposing APIs with the Dedicated Gateway
After you connect the data center to the dedicated gateway, you can expose APIs
using the gateway. For details, see section "Getting Started" in the API Gateway
User Guide.

When creating an API, specify the backend address as the API calling address of
your data center.

API Gateway
Best Practices

2 Selectively Exposing Service Capabilities of a Data
Center Using a Dedicated Gateway

2024-10-09 15

3 Developing a Custom Authorizer with
FunctionGraph

Overview

In addition to IAM and app authentication, APIG also supports custom
authentication with your own authentication system, which can better adapt to
your business capabilities.

Custom authentication is implemented using the FunctionGraph service. You can
create a FunctionGraph function so that APIG can invoke it to authenticate
requests for your API. This section uses basic authentication as an example to
describe how to implement custom authentication with FunctionGraph.

Developing a Custom Authentication Function

Create a function on the FunctionGraph console by referring to section "Creating a
Function for Frontend Custom Authentication" in the API Gateway Developer
Guide.

Specify the runtime as Python 3.6.

Table 3-1 Function configuration

Parameter Description

Region Select the same region as that of APIG.

Function Type Default: Event Function

Function Name Enter a name that conforms to specific rules to
facilitate search.

Agency An agency that delegates FunctionGraph to access
other cloud services. For this example, select Use no
agency.

Enterprise Project Enterprise projects group and manage resources across
regions. Resources in enterprise projects are logically
isolated. Select default.

API Gateway
Best Practices

3 Developing a Custom Authorizer with
FunctionGraph

2024-10-09 16

Parameter Description

Runtime Select Python 3.6.

After the function is created, go to the function details page. On the Code tab
page, copy the following code to index.py (if you are using a dedicated gateway,
for which the authorizer_context_support_num_bool parameter has been
enabled, the type of value in context can be boolean or number).

-*- coding:utf-8 -*-
import json
def handler(event, context):
If the authentication information is correct, the username is returned.
 if event["headers"]["authorization"]=='Basic dXN****cmQ=':
 return {
 'statusCode': 200,
 'body': json.dumps({
 "status":"allow",
 "context":{
 "user_name":"user1"
 }
 })
 }
 else:
 return {
 'statusCode': 200,
 'body': json.dumps({
 "status":"deny",
 "context":{
 "code": "1001",
 "message":"incorrect username or password",
 "authorizer_success": "false"
 }
 })
 }

Creating a Custom Authorizer

On the APIG console, go to the Create Custom Authorizer page, set Type to
Frontend, select the function created in the preceding section, and click OK.

API Gateway
Best Practices

3 Developing a Custom Authorizer with
FunctionGraph

2024-10-09 17

Creating a Custom Authentication API

Create an API by referring to section "Creating an API" in the API Gateway User
Guide. Set the authentication mode to Custom, and select the custom authorizer
created in the preceding section. After modifying the API, publish it.

Setting the Error Response

If incorrect authentication information is carried in a request for the API, the
response is displayed as follows:

{"error_msg":"Incorrect authentication information: frontend
authorizer","error_code":"APIG.0305","request_id":"36e42b3019077c2b720b6fc847733ce9"}

To return the field in the function's context as the API response (if you are using a
dedicated gateway, for which the authorizer_context_support_num_bool
parameter has been enabled, the type of value in context can be boolean or
number), modify the gateway response template. On the details page of the
group to which the API belongs, navigate to the Gateway Responses area on the
Gateway Information tab, and click Edit. Change the status code to 401, modify
the response template with the following code, and click OK (no need to add
double quotes for variables of the boolean or number type):

{"code":"$context.authorizer.frontend.code","message":"$context.authorizer.frontend.message",
"authorizer_success": "$context.authorizer.frontend.authorizer_success"}

After the modification, if incorrect authentication is transferred when calling the
API, the status code 401 is returned and the response result is as follows:

 {"code":"1001","message":"incorrect username or password","authorizer_success": "false"}

Mapping Frontend Authentication Parameters to Backend Parameters

If the authentication is successful, the context information returned by the
function can be transferred to the backend of the API. To do this, perform the
following configurations:

On the APIs page, choose More > Edit in the row that contains the API, and go to
the Define Backend Request page. Add a system parameter, specify the
parameter type as Frontend authentication parameter, set the parameter name
to the content of the context field in the function response, and set the name and
location of the backend parameter to which you want to the map the frontend
authentication parameter.

API Gateway
Best Practices

3 Developing a Custom Authorizer with
FunctionGraph

2024-10-09 18

After modifying the API, publish it again. If the authentication information carried
in a request for the API is correct, the response result contains the X-User-Name
header field whose value is the same as that of user_name in the context field of
the authentication function.

API Gateway
Best Practices

3 Developing a Custom Authorizer with
FunctionGraph

2024-10-09 19

4 Exposing Backend Services Across VPCs
Using a Dedicated Gateway

4.1 Introduction

Scenario

If the VPC of your backend server is different from that of your gateway, how do
you configure cross-VPC interconnection? This section uses Elastic Load Balance
(ELB) as an example to describe how to expose services in a private network load
balancer using APIG.

Solution Architecture

Figure 4-1 Exposing backend services across VPCs

Advantages

Without modifying the existing network architecture, you can have all requests
directly forwarded to your backend server through flexible configuration.

API Gateway
Best Practices

4 Exposing Backend Services Across VPCs Using a
Dedicated Gateway

2024-10-09 20

Restrictions
VPC 1, VPC 2, and the VPC CIDR block of your gateway cannot overlap. For details
about the VPC CIDR block planning of the gateway, see Table 4-3.

4.2 Resource Planning

Table 4-1 Resource planning

Resource Quantity

VPC 2

Dedicated gateway 1

Load balancer 1

ECS 1

API Gateway
Best Practices

4 Exposing Backend Services Across VPCs Using a
Dedicated Gateway

2024-10-09 21

4.3 General Procedure

1. Create a VPC.
Create two VPCs, one for your gateway and the other for your backend
service.

2. Create a gateway.
Create a dedicated gateway in VPC 1.

3. Create a load balancer.
Create a load balancer in VPC 2.

4. Create a VPC peering connection.
Create a VPC peering connection to connect VPC 1 and VPC 2.

5. Configure a route.
Configure a route for the dedicated gateway by setting the IP address to the
IPv4 CIDR block of VPC 2 where the created load balancer is located.

6. Create an API.

API Gateway
Best Practices

4 Exposing Backend Services Across VPCs Using a
Dedicated Gateway

2024-10-09 22

Create an API and set the backend service address to the IP address of the
load balancer.

7. Create an ECS.
Create an ECS in VPC 2, and deploy the backend service on the ECS.

8. Debug the API.
Verify that the connection to the private network load balancer is successful.

4.4 Implementation Procedure

Creating a VPC

Step 1 Log in to the network console.

Step 2 In the navigation pane, choose Virtual Private Cloud > My VPCs.

Step 3 On the Virtual Private Cloud page, click Create VPC, and configure the
parameters by referring to Table 4-2 and Table 4-3. For details, see sections
"Creating a VPC" and "Creating a Subnet for the VPC" in the Virtual Private Cloud
User Guide.

Table 4-2 Configuration information

Parameter Description

Region Select a region.

Name Enter VPC1. This VPC will be used to run a gateway.

API Gateway
Best Practices

4 Exposing Backend Services Across VPCs Using a
Dedicated Gateway

2024-10-09 23

Parameter Description

Enterprise Project Select default.

AZ The AZ to which the subnet belongs. Select AZ1.

Name A subnet is automatically created when you create a
VPC.

Table 4-3 VPC CIDR block planning

VPC 1 VPC of APIG VPC 2

10.X 172.31.0.0/16 Must be different from VPC 1 and the
VPC of the gateway.

172.X 192.168.0.0/16

192.X 172.31.0.0/16

Step 4 Click Create Now.

Step 5 Repeat Step 3 to Step 4 to create VPC2 for running your backend service.

----End

Creating a Gateway

Step 1 Go to the APIG console.

Step 2 In the navigation pane, choose Gateways.

Step 3 Click Buy Gateway.

Table 4-4 Gateway information

Parameter Description

Region Select the region where the gateway is located. It must
be the same as the region of VPC 1.

AZ The AZ where the gateway is located. Select AZ1.

Gateway Name Enter a name that conforms to specific rules to
facilitate search.

Edition Select Professional. The edition cannot be changed
after the gateway is created.

Scheduled
Maintenance

Select a time period when the gateway can be
maintained by technical support engineers. A period
with low service traffic is recommended. For this
example, retain the default value 22:00:00---02:00:00.

API Gateway
Best Practices

4 Exposing Backend Services Across VPCs Using a
Dedicated Gateway

2024-10-09 24

Parameter Description

Enterprise Project Select the enterprise project to which the gateway
belongs. For this example, retain the default value
default.

Network Select VPC 1 and a subnet.

Security Group Click Manage Security Groups and create a security
group. Ensure that you have selected default for
Enterprise Project.

Description Description of the gateway.

Step 4 Click Next.

Step 5 If the gateway configurations are correct, create the instance.

----End

Creating a Load Balancer

Step 1 Return to the network console.

Step 2 In the navigation pane, choose Elastic Load Balance > Load Balancers.

Step 3 Click Create Elastic Load Balancer.

Step 4 Configure the load balancer information. For details, see section section "Load
Balancer" in the Elastic Load Balance User Guide.

Table 4-5 Load balancer parameters

Parameter Description

Type Type of the load balancer.

Region Select the region where the load balancer is located. It
must be the same as the region of VPC 2.

AZ The AZ where the load balancer is located. Select AZ1.

Name Enter a load balancer name that conforms to specific
rules to facilitate search.

Enterprise Project Select default.

Specification Select Fixed – Application load balancing (HTTP/
HTTPS) and Network load balancing (TCP/UDP) by
default.

Network Type Select Private IPv4 network by default.

VPC Select VPC 2.

Frontend Subnet Select a subnet.

API Gateway
Best Practices

4 Exposing Backend Services Across VPCs Using a
Dedicated Gateway

2024-10-09 25

Step 5 Click Create Now.

Step 6 Confirm the configuration and click Submit.

Step 7 Add a listener.

1. Click the name of the load balancer. On the Listeners tab page, click Add
Listener.

2. Configure the listener name, frontend protocol, and port, and click Next.
3. Configure the backend server group name, backend protocol, and load

balancing algorithm. Then click Next.
4. Add backend servers and click Next.
5. Click Submit. The following figure shows the configuration.

Figure 4-2 Viewing the basic information and backend server group of the listener

----End

Creating a VPC Peering Connection

Step 1 In the navigation pane, choose Virtual Private Cloud > VPC Peering
Connections.

Step 2 Click Create VPC Peering Connection and configure the parameters.

Table 4-6 Configuring a VPC peering connection

Parameter Description

VPC Peering
Connection Name

Enter a VPC peering connection name that conforms to
specific rules to facilitate search.

Local VPC Select VPC 1.

Account By default, My account is selected.

Peer Project Select a project

Peer VPC Select VPC 2.

Step 3 Click OK.

Step 4 In the displayed dialog box, click Add Now to go to the VPC peering connection
details page.

API Gateway
Best Practices

4 Exposing Backend Services Across VPCs Using a
Dedicated Gateway

2024-10-09 26

Step 5 On the Associated Routes area, click Add Route.

1. In the displayed dialog box, enter the route information.

Table 4-7 Local and peer routing information

Parameter Description

Local routes

VPC Select VPC 1.

Route Table VPC 1 route table

Destination Enter the service address displayed on the details
page of the load balancer.

Peer routes

VPC Select VPC 2.

Route Table VPC 2 route table

Destination Enter the private outbound address displayed on the
details page of the dedicated gateway.

2. Click OK.

----End

Configuring a Route

Step 1 Return to the APIG console.

Step 2 In the navigation pane, choose Gateways.

Step 3 Click the name of the created dedicated gateway or click Access Console.

Step 4 Click Change in the Routes area, enter the IPv4 CIDR block of VPC 2 where the
load balancer you created is located.

Step 5 Click Save.

----End

Creating an API

Step 1 On the APIG console, choose API Management > APIs, and click Create API >
Create API.

Step 2 Configure the frontend information and click Next.

API Gateway
Best Practices

4 Exposing Backend Services Across VPCs Using a
Dedicated Gateway

2024-10-09 27

Table 4-8 Frontend configuration

Parameter Description

API Name Enter a name that conforms to specific rules to
facilitate search.

Group The default option is DEFAULT.

URL Method: Request method of the API. Set this
parameter to GET.
Protocol: Request protocol of the API. Set this
parameter to HTTPS.
Subdomain Name: The system automatically allocates
a subdomain name to each API group for internal
testing. The subdomain name can be accessed 1000
times a day.
Path: Path for requesting the API.

Gateway Response Select a response to be displayed if the gateway fails to
process an API request.
The default gateway response is default.

Authentication Mode API authentication mode. Select None. (None: Not
recommended for actual services. All users will be
granted access to the API.)

Step 3 Configure the backend information and click Next.

Table 4-9 Parameters for defining an HTTP/HTTPS backend service

Parameter Description

Load Balance Channel Determine whether the backend service will be
accessed using a load balance channel. For this
example, select Skip.

URL Method: Request method of the API. Set this
parameter to GET.
Protocol: Set this parameter to HTTP.
Backend Address: Enter the service address of the load
balancer you created.
Path: Path of the backend service.

Step 4 Define the response and click Finish.

----End

Creating an ECS

Step 1 Log in to the cloud server console.

API Gateway
Best Practices

4 Exposing Backend Services Across VPCs Using a
Dedicated Gateway

2024-10-09 28

Step 2 Click Create ECS.

Step 3 Configure the basic settings and click Next: Configure Network.

Table 4-10 Basic settings

Parameter Description

Region Select the region where the ECS is located. It must be
the same as the region of VPC 2.

Billing Mode Select Pay-per-use.

AZ Select the AZ where the ECS is located.

CPU Architecture The default option is x86.

Specifications Select specifications that match your service planning.

Image Select an image that matches your service planning.

Step 4 Configure the network settings and click Next: Configure Advanced Settings.

Table 4-11 Network settings

Parameter Description

Network Select VPC 2 and a subnet.

Security Group Select the security group created for the dedicated
gateway.

EIP Select Not required.

Step 5 Configure advanced settings and click Next: Confirm.

Table 4-12 Advanced settings

Parameter Description

ECS Name Enter a name that conforms to specific rules to
facilitate search.

Login Mode Credential for logging in to the ECS. The default option
is Password.

Username The default user is root.

Password Set a password for logging in to the ECS.

Confirm Password Enter the password again.

Step 6 Confirm the configuration and select enterprise project default.

API Gateway
Best Practices

4 Exposing Backend Services Across VPCs Using a
Dedicated Gateway

2024-10-09 29

Step 7 Read and confirm your acceptance of the agreement. Then click Apply Now.

----End

Debugging the API

Step 1 In the load balancer listener details, click View/Add Backend Server.

Step 2 On the Backend Servers page, add the created ECS.

Step 3 Go to the API Management > APIs page of the dedicated gateway, and choose
More > Debug in the row that contains the API you created.

Step 4 Enter the request parameters and click Debug.

If the status code is 200, the debugging is successful. Otherwise, rectify the fault
by following the instructions provided in "Published API Calling" > "Error Codes" in
the API Gateway User Guide.

----End

API Gateway
Best Practices

4 Exposing Backend Services Across VPCs Using a
Dedicated Gateway

2024-10-09 30

5 Interconnecting a Dedicated Gateway
with WAF

To protect API Gateway and your backend servers from malicious attacks, deploy
Web Application Firewall (WAF) between API Gateway and the external network.

Figure 5-1 Access to a backend server

(Recommended) Solution 1: Register API Group Debugging Domain Name
on WAF and Use the Domain Name to Access the Backend Service

API groups provide services using domain names for high scalability.

Step 1 Create an API group in a gateway, record the domain name, and create an API in
the group.

1. Log in to the APIG console, and choose API Management > API Groups.

2. Click Create API Group > Create Directly and enter the group name.

3. Click the name of the created group. The group details page is displayed.

4. On the Group Information tab, view and record the debugging domain
name. It is unique and cannot be changed. It can be accessed up to 1,000
times a day.

5. On the APIs tab, click Create API > Create API to add an API.

Step 2 Add a domain name to WAF. Log in to the WAF console and choose Website
Settings > Add Website. When configuring the Server Address, you need to
enter the domain name of the API group and add a certificate. After adding a
domain name, you need to whitelist the back-to-origin IP addresses, test WAF
locally, and modify the DNS resolution settings of the domain name. For
details, see section "Connection Process (Cloud Mode)" in the Web Application
Firewall User Guide.

API Gateway
Best Practices 5 Interconnecting a Dedicated Gateway with WAF

2024-10-09 31

NO TE

You can use a public network client to access WAF with its domain name. WAF then uses
the same domain name to forward your requests to API Gateway. There is no limit on the
number of requests that API Gateway can receive for the domain name.

Step 3 On the gateway details page, bind the domain name to the API group.

1. Go to the APIG console, and choose API Management > API Groups.
2. Click the name of a created group.
3. On the Group Information tab, click Bind Independent Domain Name.
4. In the dialog box that is displayed, add the domain name.

Step 4 Enable real_ip_from_xff and set the parameter value to 1.

1. In the navigation pane of the APIG console, choose Gateways.
2. On the Parameters tab, configure real_ip_from_xff.

NO TE

When a user accesses WAF using a public network client, WAF records the actual IP
address of the user in the HTTP header X-Forwarded-For. API Gateway resolves the
actual IP address of the user based on the header.

----End

API Gateway
Best Practices 5 Interconnecting a Dedicated Gateway with WAF

2024-10-09 32

Solution 2: Forward Requests Through the DEFAULT Group and Use Gateway
Inbound Access Address to Access the Backend Service from WAF

Step 1 View the inbound access addresses of your gateway. There is no limit on the
number of times the API gateway can be accessed using an IP address.

1. Log in to the APIG console, and choose Gateways in the navigation pane.
2. Click the gateway name or Access Console.
3. On the Basic Information tab, view the inbound access.

– VPC Access Address: VPC private access address
– EIP: public network access address

Step 2 Create an API in the DEFAULT group.

1. Go to the APIG console, and choose API Management > API Groups.
2. Click the name of the DEFAULT group.
3. Click Create API > Create API to add an API.

Step 3 Add a domain name to WAF. Log in to the WAF console and choose Website
Settings > Add Website. Set the Server Address to the inbound access of the
gateway and add a certificate. After adding a domain name, you need to
whitelist the back-to-origin IP addresses, test WAF locally, and modify the
DNS resolution settings of the domain name. For details, see section
"Connection Process (Cloud Mode)" in the Web Application Firewall User Guide.

NO TE

● If WAF and your gateway are in the same VPC, set Server Address to the VPC access
address.

● If your gateway is bound with an EIP, set Server Address to the EIP.

API Gateway
Best Practices 5 Interconnecting a Dedicated Gateway with WAF

2024-10-09 33

Step 4 On the gateway details page, bind the domain name to the DEFAULT group.

1. Go to the APIG console, and choose API Management > API Groups.
2. Click the name of the DEFAULT group.
3. On the Group Information tab, click Bind Independent Domain Name.
4. In the dialog box that is displayed, add the domain name.

Step 5 Enable real_ip_from_xff and set the parameter value to 1.

1. In the navigation pane of the APIG console, choose Gateways.
2. On the Parameters tab, configure real_ip_from_xff.

NO TE

When a user accesses WAF using a public network client, WAF records the actual IP
address of the user in the HTTP header X-Forwarded-For. APIG resolves the actual IP
address of the user based on the header.

----End

API Gateway
Best Practices 5 Interconnecting a Dedicated Gateway with WAF

2024-10-09 34

6 Request Throttling 2.0 with a Dedicated
Gateway

6.1 Introduction

Scenario

If the number of requests initiated from public networks for open APIs on APIG is
not limited, the continuous increase in users will deteriorate the backend
performance. And what's worse, the website or program will break down due to a
large number of requests sent by malicious users. The traditional request
throttling policies of APIG throttle requests by API, user, credential, and source IP
address.

However, as users and their demands become more diversified, these traditional
policies cannot meet the requirements for more refined rate limiting. To resolve
this issue, APIG has launched request throttling 2.0, which is a type of plug-in
policy. The 2.0 policies enable you to configure more refined throttling, for
example, to throttle requests based on a certain request parameter or tenant.

This section describes how to create a request throttling 2.0 policy for rate limiting
in different scenarios.

Advantages
● A request throttling 2.0 policy limits the number of times that an API can be

called within a specific time period. Basic, parameter-based, and excluded
throttling is supported.
– Basic throttling: Throttle requests by API, user, credential, or source IP

address. This function is similar to a traditional request throttling policy
but is incompatible with it.

– Parameter-based throttling: Throttle requests based on headers, path
parameter, method, query strings, or system parameters.

– Excluded throttling: Throttle requests for specific tenants or credentials.
● API requests allowed in a time period can be limited by user or credential.

API Gateway
Best Practices 6 Request Throttling 2.0 with a Dedicated Gateway

2024-10-09 35

● Request throttling can be precise to the day, hour, minute, or second.

Restrictions
● Adding a request throttling 2.0 policy to an API means binding them together.

An API can be bound with only one such policy in an environment, but each
policy can be bound to multiple APIs. The APIs bound with request throttling
2.0 policies must have been published.

● For APIs not bound with a request throttling 2.0 policy, the throttling limit is
the value of ratelimit_api_limits set on the Parameters page of the gateway.

● A traditional request throttling policy becomes invalid if a request throttling
2.0 policy is bound to the same API as the traditional one.

● You can define a maximum of 100 parameter-based throttling rules.
● The policy content cannot exceed 65,535 characters.
● If your gateway does not support request throttling 2.0, contact technical

support.

6.2 General Procedure
Assume that you have the following request throttling requirements for an API:

1. The API can be called up to 10 times per 60s but can be called by a user only
5 times per 60s.

2. Only 10 requests containing header field Host=www.abc.com are allowed in
60s.

3. Only 10 requests with method GET and path reqPath = /list are allowed in
60s.

4. Only 10 requests with path reqPath = /fc are allowed in 60s.
5. Each excluded tenant can only call the API 5 times per 60s.

Following this procedure to create a request throttling 2.0 policy and bind it to an
API.

API Gateway
Best Practices 6 Request Throttling 2.0 with a Dedicated Gateway

2024-10-09 36

1. Create a policy.
Enter the basic information of the request throttling 2.0 policy.

2. Configure basic throttling.
Configure the basic throttling settings.

3. Configure parameter-based throttling.
Enable parameter-based throttling, and define parameters and rules.

4. Configure excluded throttling.
Enable excluded throttling, and configure excluded tenants and credentials.

5. Bind the policy to an API.
Bind the request throttling 2.0 policy to the API.

6. Verify the API.
Call the API and verify whether the request throttling 2.0 policy has taken
effect.

6.3 Implementation Procedure
Step 1 Create a policy.

Log in to the APIG console and create a request throttling 2.0 policy. For details,
see section "Request Throttling 2.0" in the API Gateway User Guide.

API Gateway
Best Practices 6 Request Throttling 2.0 with a Dedicated Gateway

2024-10-09 37

In the navigation pane, choose API Management > API Policies. Click Create
Policy, and select Request Throttling 2.0.

Configure basic policy information to meet your demands.

Table 6-1 Policy basic Information

Parameter Description

Name Enter a name that conforms to specific rules to facilitate search.

Throttling Select High-performance.

Policy Type Select API-specific, which means measuring and throttling requests
of a single API.

Period Throttling period. Set this parameter to 60s.

Step 2 Configure basic throttling.

As required in 1, set Max. API Requests to 10 times per 60s and Max. User
Requests to 5 times per 60s.

Table 6-2 Basic throttling

Parameter Description

Max. API Requests 10

Max. User Requests 5

Step 3 Configure parameter-based throttling.

1. As required in 2, enable parameter-based throttling, and define the header
and rule.

a. Click Add Parameter, select header for Parameter Location, and enter
Host for Parameter.

b. In the Rules area, click Add Rule, and set Max. API Requests to 10 and

Period to 60 seconds. Then click , and set the matching condition
Host = www.abc.com.

c. Click OK. The header matching rule Host = www.abc.com is generated,
indicating that an API bound with this policy can only be called 10 times
per 60s by requests whose Host header is www.abc.com.

2. As required in 3 and 4, define multiple rules with parameter Path.

a. In the Rules area, click Add Rule, and set Max. API Requests to 10 and

Period to 60 seconds. Then click to open the Condition Expressions
dialog box.

b. Add these three condition expressions: reqPath = /fc, reqPath = /list, and
method = get.

c. Click Set Lower Level.

API Gateway
Best Practices 6 Request Throttling 2.0 with a Dedicated Gateway

2024-10-09 38

d. Put the two reqPath expressions in an OR relationship. This means the
condition is met when either of the two paths is matched.

e. Select reqPath = /list and method = get, click Set Lower Level, and
select AND.

f. Click OK. It indicates that APIs with path /list and method GET or APIs
with path /fc bound with this policy can only be called 10 times per 60s.

Step 4 Configure excluded throttling.

As required in 5, enable excluded throttling. Add an excluded tenant with a
threshold of 5 requests per 60s.

Table 6-3 Excluded throttling

Parameter Description

Account ID Tenant ID

Threshold 5

Step 5 Click OK. The request throttling 2.0 policy is configured.

Step 6 Bind this policy to an API.

1. Click the policy name to go to the policy details page.
2. In the APIs area, select environment RELEASE and click Bind to APIs. Select

an API and click OK.

Step 7 Verify the API.

Call the API and verify whether the request throttling 2.0 policy has taken effect.

----End

API Gateway
Best Practices 6 Request Throttling 2.0 with a Dedicated Gateway

2024-10-09 39

7 Two-Factor Authentication with a
Dedicated Gateway

7.1 Introduction

Scenario
APIG provides flexible authentication modes and allows you to configure a custom
authorizer for two-factor authentication. This section describes how to create an
API that uses two-factor authentication (app + custom).

Advantages
In addition to secure app authentication, you can use a custom authorizer to
ensure API security.

Restrictions
Custom authentication relies on FunctionGraph.

API Gateway
Best Practices

7 Two-Factor Authentication with a Dedicated
Gateway

2024-10-09 40

7.2 General Procedure

1. Create a function.
The function will be used for custom authentication.

2. Create a custom authorizer.
Set the authorizer type to Frontend, and select the function created in the
previous step.

3. Create an API.
Set authentication mode to App, enable Two-Factor Authentication, and
select the custom authorizer created in the previous step.

4. Create a credential.
APIs that use app authentication require a credential to call. Create a
credential to generate an ID and key/secret pair.

5. Bind the credential to the created API.
APIs that use app authentication can be called only with bound credentials.

6. Verify the API.
Call the API to check whether two-factor authentication is configured
successfully.

API Gateway
Best Practices

7 Two-Factor Authentication with a Dedicated
Gateway

2024-10-09 41

7.3 Implementation Procedure
Step 1 Log in to the FunctionGraph console. On the Dashboard page, click Create

Function. For details, see Developing a Custom Authorizer with FunctionGraph.

1. Set the parameters according to the following table, and click Create
Function.

Table 7-1 Function configuration

Parameter Description

Project Projects group and isolate resources (including
compute, storage, and network resources) across
physical regions. A default project is provided for
each region, and subprojects can be created under
each default project. Users can be granted
permissions to access all resources in a specific
project. The selected region is used by default.

Region Select the same region as that of APIG.

Function Type Default: Event Function

Function Name Enter a name that conforms to specific rules to
facilitate search.

Agency An agency that delegates FunctionGraph to access
other cloud services. For this example, select Use no
agency.

Enterprise Project Enterprise projects group and manage resources
across regions. Resources in enterprise projects are
logically isolated. Select default.

Runtime Select Python 3.9.

2. After the function is created, go to the function details page. On the

Configuration tab, choose Environment Variables in the left pane, and click
Edit Environment Variable > Add. test is a header for identity
authentication, and query is for parameter query. If token involves sensitive
data, enable the Encrypted option.

3. On the Code tab, copy the following code to index.py, and click Deploy. For
details about coding, see section "Creating a Function for Frontend Custom
Authentication" in the API Gateway Developer Guide.
-*- coding:utf-8 -*-
import json

API Gateway
Best Practices

7 Two-Factor Authentication with a Dedicated
Gateway

2024-10-09 42

def handler(event, context):
 testParameter = context.getUserData('test');
 userToken = context.getUserData('token');
 if event["headers"].get("token") == userToken and event["queryStringParameters"].get("test") ==
testParameter:
 resp = {
 'statusCode': 200,
 'body': json.dumps({
 "status":"allow",
 "context":{
 "user":"auth success"
 }
 })
 }
 else:
 resp = {
 'statusCode': 401,
 'body': json.dumps({
 "status":"deny",
 })
 }
 return json.dumps(resp)

4. Configure a test event to debug the code.

a. Select Configure Test Event from the drop-down list and configure a test
event.

NO TE

The parameter values in the test event must be the same as those of the
environment variables.

b. Click Test.

c. Click Deploy.

Step 2 Go to the APIG console, and choose API Management > API Policies.

On the Custom Authorizers tab, create a custom authorizer.

Table 7-2 Custom authorizer configuration

Parameter Description

Name Enter a name that conforms to specific rules to
facilitate search.

Type Select Frontend.

Function URN Click Select and select the created function.

Version/Alias Version is selected by default.

API Gateway
Best Practices

7 Two-Factor Authentication with a Dedicated
Gateway

2024-10-09 43

Parameter Description

Max. Cache Age (s) 30

Identity Sources Set two identity sources: header token and query string
test.

Step 3 Choose API Management > APIs, and click Create API > Create API.

1. Configure the frontend information according to the following table.

Table 7-3 Frontend configuration

Parameter Description

API Name Enter a name that conforms to specific rules to
facilitate search.

Group The default option is DEFAULT.

URL Method: Request method of the API. Set this
parameter to GET.
Protocol: Request protocol of the API. Set this
parameter to HTTPS.
Subdomain Name: The system automatically
allocates a subdomain name to each API group for
internal testing. The subdomain name can be
accessed 1000 times a day.
Path: Path for requesting the API. Enter /api/
two_factor_authorization.

Gateway Response Select a response to be displayed if the gateway
fails to process an API request.
The default gateway response is default.

Authentication Mode API authentication mode. Set this parameter to App.

Two-Factor
Authentication

Enable this option and select a custom authorizer.

2. Click Next and set the backend type to Mock.

Select a status code, set the response, and click Finish.
3. Publish the API.

Step 4 In the navigation pane, choose API Management > Credentials.

Click Create Credential, enter a credential name, and click OK.

Step 5 Bind this credential to the API.

Click the credential name to go to the details page. In the APIs area, click Bind to
APIs, select an API, and click OK.

API Gateway
Best Practices

7 Two-Factor Authentication with a Dedicated
Gateway

2024-10-09 44

Step 6 Verify the API.
● Call the API on the debugging page of APIG to verify if two-factor

authentication is configured successfully.
Add test on the Parameters tab and add token on the Headers tab. Use the
same parameter values set for the custom authentication function. If the
parameter values are different, the server will return a 401 message
indicating that the authentication fails.

● Alternatively, call the API with a curl command. Download the JavaScript SDK
first. To call the API, input a key and secret as well as the header and query
string to generate a curl command, and then copy this command to your CLI
for execution. For details, see section "curl" in the API Gateway Developer
Guide.

----End

API Gateway
Best Practices

7 Two-Factor Authentication with a Dedicated
Gateway

2024-10-09 45

8 HTTP-to-HTTPS Auto Redirection with a
Dedicated Gateway

8.1 Introduction

Scenario
APIG supports HTTP-to-HTTPS redirection. HTTP APIs are insecure in transmission
and authentication. You can upgrade them for access over HTTPS while ensuring
HTTP compatibility.

Restrictions
Redirection is only suitable for GET and HEAD requests. Redirecting other requests
may cause data loss due to browser restrictions.

8.2 General Procedure

1. Enable redirection.
Ensure that the API for which you enable redirection uses HTTPS or
HTTP&HTTPS for frontend requests.

API Gateway
Best Practices

8 HTTP-to-HTTPS Auto Redirection with a Dedicated
Gateway

2024-10-09 46

2. Verify redirection.
Verify that the redirection function is working.

8.3 Implementation Procedure

Prerequisites
● You have created an API whose frontend request protocol is set to HTTPS or

HTTP&HTTPS.
● The API has been published.
● An independent domain name and SSL certificate have been bound to the API

group to which the API belongs.

For details about these operations, see the APIG User Guide

Enabling Redirection

Step 1 Log in to the APIG console, and choose API Management > API Groups.

Step 2 Click a group name to go to the details page.

Step 3 On the Group Information tab, locate the bound independent domain name, and
enable HTTP-to-HTTPS Auto Redirection.

----End

Verifying Redirection

Step 1 Use a browser to call the API through HTTPS.

1. In the address bar of the browser, enter https://API request path, and press
Enter.

2. Press F12.
3. Check the status code displayed on the Network tab. 200 means the calling is

successful.

Step 2 Use a browser to call the API through HTTP.

1. In the address bar of the browser, enter http://API request path, and press
Enter.

2. Press F12.
3. Check the status code displayed on the Network tab. 301 means the

redirection is successful.

API Gateway
Best Practices

8 HTTP-to-HTTPS Auto Redirection with a Dedicated
Gateway

2024-10-09 47

----End

API Gateway
Best Practices

8 HTTP-to-HTTPS Auto Redirection with a Dedicated
Gateway

2024-10-09 48

9 Client Authentication with a Dedicated
Gateway

9.1 Solution
If the API frontend supports HTTPS, you need to add an SSL certificate for the
independent domain name bound to the API group. An SSL certificate is used for
data encryption and identity authentication. If an SSL certificate contains a CA
certificate, client authentication (two-way authentication) is enabled by default.
Or one-way authentication will be used.

● One-way authentication: When a client connects to a server, the client verifies
the validity of the SSl certificate of the server.

● Two-way authentication: When a client connects to a server, both the client
and server verify the validity of the SSl certificate.

API Gateway
Best Practices 9 Client Authentication with a Dedicated Gateway

2024-10-09 49

9.2 General Procedure

Dedicated gateways support both one-way and two-way authentication. These
two modes have the same procedure. The following will take one-way
authentication as an example. For details about two-way authentication, see Two-
Way Authentication.

1. Create an SSL certificate.
An SSL certificate is used for data encryption and identity authentication.

2. Bind a domain name.
Bind the group to which the API belongs with a licensed and resolved
independent domain name.

3. Bind a certificate.
Bind the independent domain name to the created SSL certificate.

4. Call the API.
Check whether the API call is successful.

9.3 Implementation Procedure

One-Way Authentication

Step 1 Log in to the APIG console.

Step 2 Select a gateway at the top of the navigation pane.

Step 3 Create an SSL certificate.

1. In the navigation pane, choose API Management > API Policies.

API Gateway
Best Practices 9 Client Authentication with a Dedicated Gateway

2024-10-09 50

2. On the SSL Certificates tab, click Create SSL Certificate.

Table 9-1 Certificate configuration for one-way authentication

Parameter Description

Name Enter a certificate name that conforms to specific
rules to facilitate search.

Instances Covered Select Current.

Content -----Start certificate-----
MIICXgIBAAKBgQC6ndRHy5Dv5TcZiVzT6qF
iaMGy61ZIbUrmBhUn61vMdvOHmtblST+fSl
ZheNAcv2hQR4aqJLi4wrcerTaRyG9op3OSh...
-----End certificate-----

Key -----Start RSA private key-----
MIICXgIBAAKBgQC6ndRHy5Dv5TcZiVzT6qF
iaMGy61ZIbUrmBhUn61vMdvOHmtblST+fSl
ZheNAcv2hQR4aqJLi4wrcerTaRyG9op3OSh...
-----End RSA private key-----

CA No CA certificate is required for one-way
authentication.

3. Click OK.

Step 4 Bind a domain name.

1. In the navigation pane, choose API Management > API Groups.
2. Click the name of the group to which the API belongs. The group details page

is displayed.
3. On the Group Information tab page, click Bind Independent Domain Name.

Table 9-2 Independent domain name configuration

Parameter Description

Domain Name Enter a licensed domain name.

Minimum TLS
Version

Select TLS1.2.

HTTP-to-HTTPS Auto
Redirection

Disabled by default.

4. Click OK.

Step 5 Bind a certificate.

1. In the row that contains the domain name, click Select SSL Certificate.
2. Select the created certificate and click OK.

API Gateway
Best Practices 9 Client Authentication with a Dedicated Gateway

2024-10-09 51

NO TICE

Client authentication should be disabled for one-way authentication.

Step 6 Call the API.

Use the API test tool to call the API. If the status code is 200, the API is
successfully called. Otherwise, rectify the fault by following the instructions
provided in "Published API Calling" > "Error Codes" in the API Gateway User
Guide.

----End

Two-Way Authentication

Step 1 On the SSL Certificates tab, click Create SSL Certificate.

Table 9-3 Certificate configuration for two-way authentication

Parameter Description

Name Enter a certificate name that conforms to specific rules
to facilitate search.

Instances Covered Select Current.

Content Enter the certificate content.
-----Start certificate-----
MIICXgIBAAKBgQC6ndRHy5Dv5TcZiVzT6qF
iaMGy61ZIbUrmBhUn61vMdvOHmtblST+fSl
ZheNAcv2hQR4aqJLi4wrcerTaRyG9op3OSh...
-----End certificate-----

API Gateway
Best Practices 9 Client Authentication with a Dedicated Gateway

2024-10-09 52

Parameter Description

Key Enter the key.
-----Start RSA private key-----
MIICXgIBAAKBgQC6ndRHy5Dv5TcZiVzT6qF
iaMGy61ZIbUrmBhUn61vMdvOHmtblST+fSl
ZheNAcv2hQR4aqJLi4wrcerTaRyG9op3OSh...
-----End RSA private key-----

CA Enter the CA certificate content. After the CA
certificate is configured, bind the SSL certificate to
the independent domain name and enable Client
Authentication.
-----Start certificate-----
MIICXgIBAAKBgQC6ndRHy5Dv5TcZiVzT6qF
iaMGy61ZIbUrmBhUn61vMdvOHmtblST+fSl
ZheNAcv2hQR4aqJLi4wrcerTaRyG9op3OSh...
-----End certificate-----

Step 2 Click OK.

Step 3 Bind a domain name.

1. In the navigation pane, choose API Management > API Groups.
2. Click the name of the group to which the API belongs. The group details page

is displayed.
3. On the Group Information tab page, click Bind Independent Domain Name.

Table 9-4 Independent domain name configuration

Parameter Description

Domain Name Enter a licensed domain name.

Minimum TLS
Version

Select TLS1.2.

HTTP-to-HTTPS Auto
Redirection

Disabled by default.

4. Click OK.

Step 4 Bind a certificate.

1. In the row that contains the domain name, click Select SSL Certificate.
2. Select the created certificate, select Enable Client Authentication, and click

OK.

Step 5 Call the API.

Use the API test tool to call the API. If the status code is 200, the API is
successfully called. Otherwise, rectify the fault by following the instructions

API Gateway
Best Practices 9 Client Authentication with a Dedicated Gateway

2024-10-09 53

provided in "Published API Calling" > "Error Codes" in the API Gateway User
Guide.

You need to configure the client certificate when accessing APIs.

If Postman is used to call APIs, you need to add client certificates to Certificates
in Setting and upload the client certificates and key.

----End

API Gateway
Best Practices 9 Client Authentication with a Dedicated Gateway

2024-10-09 54

10 Invoking an API Policy Backend via
Frontend Authentication Parameters (System

Parameter)

10.1 Introduction

Scenario
APIG allows you to define multiple backend policies and forward API requests to
different backends based on these different policies. For example, to distinguish
special calls from regular calls, you can define a policy backend that uses frontend
custom authentication parameters. This section uses frontend authentication
parameters (system parameter) as an example to describe how to forward API
requests to a specified backend.

Restrictions
● Before adding a backend policy, set the security authentication mode of the

frontend to Custom or enable Two-Factor Authentication (App or IAM
authentication).

● API requests that do not meet the conditions of any backend will be
forwarded to the default backend.

● The Condition Value of the System parameter - Frontend authentication
parameter can only be character string, integer, or Boolean.

● A maximum of five policy backends can be defined for an API.

API Gateway
Best Practices

10 Invoking an API Policy Backend via Frontend
Authentication Parameters (System Parameter)

2024-10-09 55

10.2 General Procedure

1. Configuring the API Frontend
Set the security authentication mode of the API frontend to Custom or enable
Two-Factor Authentication (app or IAM authentication), and select a custom
authorizer. If no custom authorizer is available, click Create Custom
Authorizer.

2. Configuring the API Backend
Add a policy for the backend. Set the Source of the Policy Conditions to
System parameter - Frontend authentication parameter, and configure the
Parameter Name, Condition Type, and Condition Value. The Parameter
Name and Condition Value must be the same as the key-value pair in the
context field in the return value of the frontend custom authentication
function.

3. Debugging the API
Debug the API and check whether the added policy backend is called.

10.3 Implementation Procedure

Prerequisites
1. A custom authentication function has been created. For details, see section

"Creating a Function from Scratch" in the FunctionGraph User Guide. The
function's return value must have a context field with key-value pairs, where
the values are limited to string, boolean, or integer. The key-value pair
corresponds to the Parameter Name and Condition Value of the System
parameter - Frontend authentication parameter configured in Policy
Conditions.

API Gateway
Best Practices

10 Invoking an API Policy Backend via Frontend
Authentication Parameters (System Parameter)

2024-10-09 56

Figure 10-1 Custom authentication function

2. A custom frontend authorizer has been created. If no custom authorizer is
available, create one by following the instructions in section "Custom
Authorizer" in the API Gateway User Guide.

Configuring the API Frontend

Step 1 Log in to the APIG console.

Step 2 Select a gateway at the top of the navigation pane.

Step 3 In the navigation pane, choose API Management > APIs.

Step 4 Click Create API > Create API and configure the frontend.

Table 10-1 Frontend configuration

Parameter Description

API Name Enter a name that conforms to specific rules to
facilitate search.

Group The default option is DEFAULT.

URL Method: Request method of the API. Default: GET.
Protocol: Request protocol of the API. Default: HTTPS.
Subdomain Name: The system automatically allocates
a subdomain name to each API group for internal
testing. The subdomain name can be accessed 1,000
times a day.
Path: Path for requesting the API. In this example,
enter /1234.

API Gateway
Best Practices

10 Invoking an API Policy Backend via Frontend
Authentication Parameters (System Parameter)

2024-10-09 57

Parameter Description

Gateway Response Select a response to be displayed if the gateway fails to
process an API request.
The default gateway response is default.

Authentication Mode API authentication mode. Select Custom.

Custom Authorizer Select the custom authorizer created in Prerequisites.

----End

Configuring the API Backend

Step 1 After configuring the frontend, click Next.

Set Backend Type to Mock and enter Default backend in the Response.

Step 2 Click to add a backend policy based on the following table.

Table 10-2 Policy backend configuration

Parameter Description

Name Enter a policy name that conforms to specific rules to
facilitate search.

Backend Type Select Mock.

Response Enter Policy backend.

Policy Conditions ● Source: Select System parameter - Frontend
authentication parameter.

● Parameter Name: Enter authstatus1 under the
context field in the response body of the custom
authentication function created in Prerequisites.

● Condition Type: Select Equal.
● Condition Value: Enter False under the context

field in the response body of the custom
authentication function created in Prerequisites.

Step 3 Click Finish.

----End

Debugging the API

The Mock backend type helps you view the result with a response. For other
backend types, you can check whether the backend address is successfully
accessed.

API Gateway
Best Practices

10 Invoking an API Policy Backend via Frontend
Authentication Parameters (System Parameter)

2024-10-09 58

Step 1 On the APIs page, click Debug to debug the created API.

If 200 OK is displayed in Response, the API is successfully invoked. If the Policy
backend is also returned, the configured policy backend condition matches the
key-value pair in the context field in the response body of the custom
authentication function, and the API invokes the policy backend. Otherwise, rectify
the fault by following the instructions provided in "Published API Calling" > "Error
Codes" in the API Gateway User Guide.

Step 2 On the APIs page, click Modify. The API configuration page is displayed.

Step 3 Click Next. On the backend configuration page, change Condition Value of the
added policy to True.

Step 4 Click Finish.

Step 5 Debug the API again.

The policy backend parameter and condition value do not match any key-value
pair of the frontend custom authentication function. Therefore, the API policy
backend cannot be matched based on the frontend authentication parameters. In
this case, 200 OK is displayed with the return result of Default backend,
indicating that the default backend of the API is invoked. Otherwise, rectify the
fault by following the instructions provided in "Published API Calling" > "Error
Codes" in the API Gateway User Guide.

----End

API Gateway
Best Practices

10 Invoking an API Policy Backend via Frontend
Authentication Parameters (System Parameter)

2024-10-09 59

11 Forwarding WebSocket Services
Using Dedicated Gateway

Scenario

You can create WebSocket APIs using APIG same as creating an HTTP API.
WebSocket is a protocol for full-duplex communication over a single TCP
connection. It outweighs HTTP in real-time, two-way communication between the
client and server, proving invaluable for applications such as instant messaging,
online gaming, and real-time data update in the financial sector.

Restrictions
● WebSocket APIs cannot be debugged on the APIG console.
● The WebSocket API has a timeout, and if the idle time of a WebSocket

connection without ping/pong exceeds the configured timeout, the connection
expires.

Prerequisites

Prepare a WebSocket service backend for which ping/pong keepalive has been
performed.

Procedure

Step 1 Log in to the APIG console.

Step 2 Select a gateway at the top of the navigation pane.

Step 3 In the navigation pane, choose API Management > APIs.

Step 4 Click Create API > Create API and configure the frontend.

Table 11-1 Frontend configuration

Parameter Description

API Name Enter a name that conforms to specific rules to
facilitate search. For example, API01.

API Gateway
Best Practices

11 Forwarding WebSocket Services Using Dedicated
Gateway

2024-10-09 60

Parameter Description

Group The default option is DEFAULT.

URL Method: Request method of the API. Set this
parameter to GET.
Protocol: Request protocol of the API. Default: HTTPS,
which corresponds to the WebSocket Secure (WSS).
Subdomain Name: The system automatically allocates
a subdomain name to each API group for internal
testing. The subdomain name can be accessed 1,000
times a day.
Path: Path for requesting the API. In this example,
enter /hello.

Gateway Response Select a response to be displayed if the gateway fails to
process an API request. default is selected by default.

Authentication Mode API authentication mode. Select None. (None: Not
recommended for actual services. All users will be
granted access to the API.)

Step 5 Click Next and configure the backend information.

Table 11-2 Backend configuration

Parameter Description

Backend Type Select HTTP&HTTPS.

Load Balance Channel Determine whether the backend service will be
accessed using a load balance channel. For this
example, select Skip.

URL ● Method: Request method of the API. Set this
parameter to GET.

● Protocol: Set this parameter to HTTP.
● Backend Address: Address and port of the

WebSocket backend service.
● Path: Path of the backend service. In this example,

enter /.

Timeout (ms) Adjust the backend timeout to be longer than the ping/
pong heartbeat interval. For example, if the ping/pong
heartbeat interval is 20s, the timeout can be set to
(20000 ms, 60000 ms].

Step 6 Click Finish.

Step 7 After the API is created, click Publish Latest Version on the APIs page to publish
the API.

API Gateway
Best Practices

11 Forwarding WebSocket Services Using Dedicated
Gateway

2024-10-09 61

Step 8 Use the API test tool to call the API.

In this practice, enter wss://IP address/hello to call an API in the DEFAULT group.
The IP address is the EIP in the Gateway Information on the APIG console.

----End

API Gateway
Best Practices

11 Forwarding WebSocket Services Using Dedicated
Gateway

2024-10-09 62

12 Change History

Table 12-1 Change history

Date Description

2024-10-09 This issue incorporates the following changes:
● Updated Selectively Exposing CCE Workloads with

a Dedicated Gateway.
● Added Client Authentication with a Dedicated

Gateway.
● Added Invoking an API Policy Backend via

Frontend Authentication Parameters (System
Parameter).

● Added Forwarding WebSocket Services Using
Dedicated Gateway.

2023-07-30 This issue incorporates the following change:
Added HTTP-to-HTTPS Auto Redirection with a
Dedicated Gateway.

2023-04-30 This issue incorporates the following changes:
● Updated this document for the new console.
● Added Request Throttling 2.0 with a Dedicated

Gateway and Two-Factor Authentication with a
Dedicated Gateway.

2023-04-12 This issue incorporates the following change:
Added Exposing Backend Services Across VPCs Using
a Dedicated Gateway and Interconnecting a
Dedicated Gateway with WAF.

2021-09-30 This issue is the first official release.

API Gateway
Best Practices 12 Change History

2024-10-09 63

	Contents
	1 Selectively Exposing CCE Workloads with a Dedicated Gateway
	1.1 Introduction
	1.2 Resource Planning
	1.3 General Procedure
	1.4 Implementation Procedure

	2 Selectively Exposing Service Capabilities of a Data Center Using a Dedicated Gateway
	3 Developing a Custom Authorizer with FunctionGraph
	4 Exposing Backend Services Across VPCs Using a Dedicated Gateway
	4.1 Introduction
	4.2 Resource Planning
	4.3 General Procedure
	4.4 Implementation Procedure

	5 Interconnecting a Dedicated Gateway with WAF
	6 Request Throttling 2.0 with a Dedicated Gateway
	6.1 Introduction
	6.2 General Procedure
	6.3 Implementation Procedure

	7 Two-Factor Authentication with a Dedicated Gateway
	7.1 Introduction
	7.2 General Procedure
	7.3 Implementation Procedure

	8 HTTP-to-HTTPS Auto Redirection with a Dedicated Gateway
	8.1 Introduction
	8.2 General Procedure
	8.3 Implementation Procedure

	9 Client Authentication with a Dedicated Gateway
	9.1 Solution
	9.2 General Procedure
	9.3 Implementation Procedure

	10 Invoking an API Policy Backend via Frontend Authentication Parameters (System Parameter)
	10.1 Introduction
	10.2 General Procedure
	10.3 Implementation Procedure

	11 Forwarding WebSocket Services Using Dedicated Gateway
	12 Change History

