
API Gateway

Best Practices

Date 2023-04-30

Contents

1 Selectively Exposing CCE Workloads.. 1

2 Selectively Exposing Service Capabilities of a Data Center.. 10

3 Developing a Custom Authorizer with FunctionGraph.. 13

4 Exposing Backend Services Across VPCs.. 17
4.1 Introduction.. 17
4.2 Resource Planning.. 18
4.3 General Procedure.. 18
4.4 Implementation Procedure.. 19

5 Interconnecting with WAF.. 29

6 Request Throttling 2.0..34
6.1 Introduction.. 34
6.2 General Procedure.. 35
6.3 Implementation Procedure.. 36

7 Two-Factor Authentication... 39
7.1 Introduction.. 39
7.2 General Procedure.. 40
7.3 Implementation Procedure.. 40

8 Change History.. 45

API Gateway
Best Practices Contents

2023-04-30 ii

1 Selectively Exposing CCE Workloads

Overview

You can use APIG to selectively expose your workloads and microservices in Cloud
Container Engine (CCE). Using APIG to expose containerized applications has the
following benefits:

● You do not need to set elastic IP addresses, and this reduces network
bandwidth costs.
You can set up a VPC channel to access workloads in CCE.

● You can choose an authentication mode from multiple options to ensure
access security.

● You can configure a request throttling policy to ensure secure access to your
backend service.

● You can configure multiple pods for each workload for load balancing,
optimizing resource utilization and increasing system reliability.

Figure 1-1 Accessing CCE workloads through APIG

Preparing CCE Workloads

Create a cluster and workload in CCE, and add pods and containers to the
workload. For more information, see CCE User Guide.

View the workload details on the CCE console, and ensure that the service access
mode is NodePort or LoadBalancer. For details, see section "NodePort" or section
"LoadBalancer".

API Gateway
Best Practices 1 Selectively Exposing CCE Workloads

2023-04-30 1

● NodePort access

Figure 1-2 Viewing the access port

Figure 1-3 Viewing the name of the ECS on which the pod resides

● LoadBalancer access

API Gateway
Best Practices 1 Selectively Exposing CCE Workloads

2023-04-30 2

Creating a VPC Channel
If the access mode of the target CCE workload is LoadBalancer, skip this
procedure and go to Opening an API.

Step 1 Log in to the management console, select a region in the upper left corner, and
choose Service List > Application > API Gateway.

Step 2 Create a VPC channel.

1. On the VPC Channels page, click Create Fast Channel.

Figure 1-4 VPC channel list

2. Set the parameters according to the following figure and retain the default
values for other parameters.
For details, see API Gateway User Guide.

Figure 1-5 Setting the basic VPC channel information

Step 3 Add the node that contains the CCE workload you want to access through APIG.

You can add multiple nodes for load balancing.

API Gateway
Best Practices 1 Selectively Exposing CCE Workloads

2023-04-30 3

Step 4 Click Finish.

----End

Opening an API

Step 1 Create an API group, as shown in Figure 1-6.

API Gateway
Best Practices 1 Selectively Exposing CCE Workloads

2023-04-30 4

Figure 1-6 Creating an API group

Step 2 Create an API.

For details, see API Gateway User Guide.

1. Click Create API.

Figure 1-7 API list

2. Set the basic information of the API.

Figure 1-8 Setting the basic API information

3. On the Define API Request page, set the API request information.

API Gateway
Best Practices 1 Selectively Exposing CCE Workloads

2023-04-30 5

4. On the Define Backend Request page, set the backend request information.
If the access mode of the target CCE workload is NodePort, select Configure
now, and select the VPC channel created in Creating a VPC Channel. If the
access mode is LoadBalancer, select Do not configure, and enter the access
address and port of the load balancer. This step uses NodePort as an
example.

5. On the Define Response page, enter an example success response.

API Gateway
Best Practices 1 Selectively Exposing CCE Workloads

2023-04-30 6

6. Click Finish.

Step 3 Debug the API.

1. Click Debug.

Figure 1-9 API list

2. Debug the API.

Figure 1-10 Debugging the API ("200" indicates that the API is called
successfully.)

Step 4 Publish the API.

1. Click Publish.

API Gateway
Best Practices 1 Selectively Exposing CCE Workloads

2023-04-30 7

Figure 1-11 API list

2. Enter a description.

Figure 1-12 Publishing an API

----End

Calling the API

Step 1 In the API list, click the API you created, and copy the URL on the displayed API
details page.

1. Go to the API details page.

Figure 1-13 Clicking the name of an API

2. Copy the URL on the displayed API details page.

Figure 1-14 Copying the URL

Step 2 Paste the URL to the address bar of a browser. The following page will be
displayed if the API request is successful.

API Gateway
Best Practices 1 Selectively Exposing CCE Workloads

2023-04-30 8

To limit the number of API calls that will be received within a specific period,
create a request throttling policy and bind it to the API. For more information, see
API Gateway User Guide.

----End

API Gateway
Best Practices 1 Selectively Exposing CCE Workloads

2023-04-30 9

2 Selectively Exposing Service Capabilities
of a Data Center

The backend services of APIG can be deployed in the following modes:

● Deployed in a VPC and accessible only using private IP addresses.
You can create a VPC channel on APIG to enable network routing between
APIG and the VPC.

● Deployed on the public network and accessible using a public IP address.
● Deployed in an on-premises data center and not accessible using a public IP

address.
If you use a dedicated API gateway, you can set up a connection between
your on-premises data center and the gateway.

This section describes the precautions for using APIG to selectively expose APIs of
backend services deployed in a local data center.

Connecting a Data Center to APIG

Step 1 Create a VPC.

For details, see the section "Creating a VPC" in the Virtual Private Cloud User
Guide.

To allow APIG to access services in your on-premises data center, bind a VPC to
your dedicated gateway, and establish a connection between the data center and
VPC.

API Gateway
Best Practices

2 Selectively Exposing Service Capabilities of a Data
Center

2023-04-30 10

Figure 2-1 Creating a VPC

NO TE

● Specify a subnet for your dedicated gateway.
● A connection can be used to connect a local data center to only one VPC. You are

advised to bind the same VPC to all your cloud resources to reduce costs.
● If a VPC already exists, you do not need to create a new one.

Step 2 Buy a dedicated API gateway.

For details, see section "Buying a Gateway" in the API Gateway User Guide.

Step 3 Enable Direct Connect by referring to the Direct Connect User Guide.

1. Create a connection.
Apply for a connection from your account manager. If you do not have an
account manager, contact technical support.

2. Create a virtual gateway.
The virtual gateway is a logical gateway for accessing the VPC bound to the
dedicated gateway.

NO TE

Select the subnet that the dedicated gateway uses, to connect to the VPC. For details
about the subnet, go to the gateway details page.

3. Create a virtual interface.
The virtual interface links the connection with the virtual gateway, enabling
connectivity between the connection and the VPC of the dedicated gateway.
Configure the remote gateway and remote subnet as the gateway and subnet
for accessing the open API of your on-premises data center. For example, if

API Gateway
Best Practices

2 Selectively Exposing Service Capabilities of a Data
Center

2023-04-30 11

the API calling address of your data center is http://192.168.0.25:80/{URI},
configure the remote gateway and remote subnet as those of 192.168.0.25.

Step 4 Verify the network connectivity.

Create another pay-per-use ECS and select the same VPC, subnet, and security
group as the dedicated gateway. If the data center can connect to the ECS, the
data center can also connect to the dedicated gateway.

----End

Exposing APIs with the Dedicated Gateway
After you connect the data center to the dedicated gateway, you can expose APIs
using the gateway. For details, see "Getting Started" > "Opening APIs" in the API
Gateway User Guide.

When creating an API, specify the backend address as the API calling address of
your data center.

API Gateway
Best Practices

2 Selectively Exposing Service Capabilities of a Data
Center

2023-04-30 12

3 Developing a Custom Authorizer with
FunctionGraph

Overview

In addition to IAM and app authentication, APIG also supports custom
authentication with your own authentication system, which can better adapt to
your business capabilities.

Custom authentication is implemented using the FunctionGraph service. You can
create a FunctionGraph function so that APIG can invoke it to authenticate
requests for your API. This section uses basic authentication as an example to
describe how to implement custom authentication with FunctionGraph.

Developing a Custom Authentication Function

Create a function on the FunctionGraph console by referring to section "Creating a
Function for Frontend Custom Authentication" in the Developer Guide.

Specify the runtime as Python 3.6.

Table 3-1 Function configuration

Parameter Description

Function Type Default: Event Function

Region Select the same region as that of APIG.

Function Name Enter a name that conforms to specific rules to
facilitate search.

Agency An agency that delegates FunctionGraph to access
other cloud services. For this example, select Use no
agency.

Enterprise Project The default option is default.

Runtime Select Python 3.6.

API Gateway
Best Practices

3 Developing a Custom Authorizer with
FunctionGraph

2023-04-30 13

On the Code tab, copy the following code to index.py:

-*- coding:utf-8 -*-
import json
def handler(event, context):
If the authentication information is correct, the username is returned.
 if event["headers"]["authorization"]=='Basic dXNlcjE6cGFzc3dvcmQ=':
 return {
 'statusCode': 200,
 'body': json.dumps({
 "status":"allow",
 "context":{
 "user_name":"user1"
 }
 })
 }
 else:
 return {
 'statusCode': 200,
 'body': json.dumps({
 "status":"deny",
 "context":{
 "code":"1001",
 "message":"incorrect username or password"
 }
 })
 }

Creating a Custom Authorizer
On the APIG console, go to the Create Custom Authorizer page, set Type to
Frontend, select the function created in the preceding section, and click OK.

Creating a Custom Authentication API
Create an API by referring to section "Creating an API" in the API Gateway User
Guide. Set the authentication mode to Custom, and select the custom authorizer
created in the preceding section. After modifying the API, publish it.

API Gateway
Best Practices

3 Developing a Custom Authorizer with
FunctionGraph

2023-04-30 14

Setting the Error Response
If incorrect authentication information is carried in a request for the API, the
response is displayed as follows:

{"error_msg":"Incorrect authentication information: frontend authorizer","error_code":"APIG.
0305","request_id":"36e42b3019077c2b720b6fc847733ce9"}

To include the context field of the function response in the API response result,
modify the response template of the API. On the details page of the group to
which the API belongs, navigate to the Gateway Responses area on the Gateway
Information tab and click Edit. Change the status code to 401, modify the
response template with the following code, and click OK:

{"code":"$context.authorizer.frontend.code","message":"$context.authorizer.frontend.message"}

After the modification, if incorrect authentication is transferred when calling the
API, the status code 401 is returned and the response result is as follows:

 {"code":"1001","message":"incorrect username or password"}

Mapping Frontend Authentication Parameters to Backend Parameters
If the authentication is successful, the context information returned by the
function can be transferred to the backend of the API. To do this, perform the
following configurations:

On the APIs page, choose More > Edit in the row that contains the API, and go to
the Define Backend Request page. Add a system parameter, specify the
parameter type as Frontend authentication parameter, set the parameter name
to the content of the context field in the function response, and set the name and
location of the backend parameter to which you want to the map the frontend
authentication parameter.

API Gateway
Best Practices

3 Developing a Custom Authorizer with
FunctionGraph

2023-04-30 15

After modifying the API, publish it again. If the authentication information carried
in a request for the API is correct, the response result contains the X-User-Name
header field whose value is the same as that of user_name in the context field of
the authentication function.

API Gateway
Best Practices

3 Developing a Custom Authorizer with
FunctionGraph

2023-04-30 16

4 Exposing Backend Services Across VPCs

4.1 Introduction

Scenario
If the VPC of your backend server is different from that of your gateway, how do
you configure cross-VPC interconnection? This section uses Elastic Load Balance
(ELB) as an example to describe how to expose services in a private network load
balancer using APIG.

Solution Architecture

Figure 4-1 Exposing backend services across VPCs

Advantages
Without modifying the existing network architecture, you can have all requests
directly forwarded to your backend server through flexible configuration.

Restrictions
VPC 1, VPC 2, and the VPC CIDR block of your gateway cannot overlap. For details
about the VPC CIDR block planning of the gateway, see Table 4-3.

API Gateway
Best Practices 4 Exposing Backend Services Across VPCs

2023-04-30 17

4.2 Resource Planning

Table 4-1 Resource planning

Resource Quantity

VPC 2

Dedicated gateway 1

Load balancer 1

ECS 1

4.3 General Procedure

API Gateway
Best Practices 4 Exposing Backend Services Across VPCs

2023-04-30 18

1. Create a VPC.
Create two VPCs, one for your gateway and the other for your backend
service.

2. Create a gateway.
Create a dedicated gateway in VPC 1.

3. Create a load balancer.
Create a load balancer in VPC 2.

4. Create a VPC peering connection.
Create a VPC peering connection to connect VPC 1 and VPC 2.

5. Configure a route.
Configure a route for the dedicated gateway by setting the IP address to the
IPv4 CIDR block of VPC 2 where the created load balancer is located.

6. Create an API.
Create an API and set the backend service address to the IP address of the
load balancer.

7. Create an ECS.
Create an ECS in VPC 2, and deploy the backend service on the ECS.

8. Debug the API.
Verify that the connection to the private network load balancer is successful.

4.4 Implementation Procedure

Creating a VPC

Step 1 Log in to the network console.

Step 2 In the navigation pane, choose Virtual Private Cloud > My VPCs.

Step 3 On the Virtual Private Cloud page, click Create VPC, and configure the
parameters by referring to Table 4-2 and Table 4-3. For details, see sections
"Creating a VPC" and "Creating a Subnet for the VPC" in the Virtual Private Cloud
User Guide.

API Gateway
Best Practices 4 Exposing Backend Services Across VPCs

2023-04-30 19

Table 4-2 Configuration information

Parameter Description

Region Select a region.

Name Enter VPC1. This VPC will be used to run a gateway.

Enterprise Project Select default.

Name A subnet is automatically created when you create a
VPC.

Table 4-3 VPC CIDR block planning

VPC 1 VPC of APIG VPC 2

10.X 172.31.0.0/16 Must be different from VPC 1 and the
VPC of the gateway.

172.X 192.168.0.0/16

192.X 172.31.0.0/16

Step 4 Click Create Now.

Step 5 Repeat Step 3 to Step 4 to create VPC2 for running your backend service.

----End

API Gateway
Best Practices 4 Exposing Backend Services Across VPCs

2023-04-30 20

Creating a Gateway

Step 1 Log in to the APIG console.

Step 2 In the navigation pane, choose Gateways.

Step 3 Click Buy Gateway.

Table 4-4 Gateway information

Parameter Description

Region Select the region where the gateway is located. It must
be the same as the region of VPC 1.

AZ The AZ where the gateway is located. Select AZ1.

Gateway Name Enter a name that conforms to specific rules to
facilitate search.

Edition Select Professional. The edition cannot be changed
after the gateway is created.

Scheduled
Maintenance

Select a time period when the gateway can be
maintained by technical support engineers. A period
with low service traffic is recommended. For this
example, retain the default value 22:00:00---02:00:00.

Enterprise Project Select the enterprise project to which the gateway
belongs. For this example, retain the default value
default.

Network Select VPC 1 and a subnet.

API Gateway
Best Practices 4 Exposing Backend Services Across VPCs

2023-04-30 21

Parameter Description

Security Group Click Manage Security Groups and create a security
group. Ensure that you have selected default for
Enterprise Project.

Description Description of the gateway.

Step 4 Click Next.

Step 5 If the gateway configurations are correct, and click Pay Now.

----End

Creating a Load Balancer

Step 1 Log in to the network console.

Step 2 In the navigation pane, choose Elastic Load Balance > Load Balancers.

Step 3 Click Create Elastic Load Balancer.

Step 4 Configure the load balancer information. For details, see section Load Balancer in
the Elastic Load Balance User Guide.

API Gateway
Best Practices 4 Exposing Backend Services Across VPCs

2023-04-30 22

Table 4-5 Load balancer parameters

Parameter Description

Type Type of the load balancer.

Region Select the region where the load balancer is located. It
must be the same as the region of VPC 2.

AZ The AZ where the load balancer is located. Select AZ1.

Network Type Select Private Network.

VPC Select VPC 2.

Subnet Select a subnet.

Specification Select Network load balancing.

Name Enter a load balancer name that conforms to specific
rules to facilitate search.

Enterprise Project Select default.

Step 5 Click Create Now.

Step 6 Confirm the configuration and click Submit.

Step 7 Add a listener.

1. Click the name of the load balancer. On the Listeners tab page, click Add
Listener.

2. Configure the listener name, frontend protocol, and port, and click Next.
3. Configure the backend server group name, backend protocol, and load

balancing algorithm. Then click Next.
4. Add backend servers and click Next.
5. Click Submit. The following figure shows the configuration.

Figure 4-2 Listener information

Figure 4-3 Backend server group information

----End

API Gateway
Best Practices 4 Exposing Backend Services Across VPCs

2023-04-30 23

Creating a VPC Peering Connection

Step 1 Log in to the network console.

Step 2 In the navigation pane, choose Virtual Private Cloud > VPC Peering
Connections.

Step 3 Click Create VPC Peering Connection and configure the parameters.

Table 4-6 Configuring a VPC peering connection

Parameter Description

Name Enter a VPC peering connection name that conforms to
specific rules to facilitate search.

Local VPC Select VPC 1.

Account By default, My account is selected.

Peer Project Select a project

Peer VPC Select VPC 2.

Step 4 Click OK.

Step 5 In the displayed dialog box, click Add Route to go to the VPC peering connection
details page.

Step 6 On the Local Routes tab page, click Route Tables.

1. Under Routes, click Add Route.
2. In the displayed dialog box, enter the route information.

– Destination: Enter the service address displayed on the details page of
the load balancer.

– Next Hop Type: Select VPC peering connection.
3. Click OK.

Figure 4-4 Local routes

Step 7 Go to the Peer Routes tab page, and click Route Tables.

1. Under Routes, click Add Route.
2. In the displayed dialog box, enter the route information.

– Destination: Enter the private outbound address displayed on the details
page of the dedicated gateway.

– Next Hop Type: Select VPC peering connection.
3. Click OK.

API Gateway
Best Practices 4 Exposing Backend Services Across VPCs

2023-04-30 24

Figure 4-5 Peer routes

----End

Configuring a Route

Step 1 Log in to the APIG console.

Step 2 In the navigation pane, choose Gateways.

Step 3 Click the name of the created dedicated gateway or click Access Console.

Step 4 Click Change in the Routes area, enter the IPv4 CIDR block of VPC 2 where the
load balancer you created is located.

Step 5 Click Save.

----End

Creating an API

Step 1 Log in to the APIG console.

Step 2 In the upper part of the navigation pane, select the gateway.

Step 3 Choose API Management > APIs, and click Create API.

Step 4 Configure the frontend information and click Next.

Table 4-7 Frontend configuration

Parameter Description

API Name Enter a name that conforms to specific rules to
facilitate search.

Group The default option is DEFAULT.

API Gateway
Best Practices 4 Exposing Backend Services Across VPCs

2023-04-30 25

Parameter Description

URL Method: Request method of the API. Set this
parameter to GET.
Protocol: Request protocol of the API. Set this
parameter to HTTPS.
Subdomain Name: The system automatically allocates
a subdomain name to each API group for internal
testing. The subdomain name can be accessed 1000
times a day.
Path: Path for requesting the API.

Gateway Response Select a response to be displayed if the gateway fails to
process an API request.
The default gateway response is default.

Authentication Mode API authentication mode. Select None.

Step 5 Configure the backend information and click Next.

Table 4-8 Parameters for defining an HTTP/HTTPS backend service

Parameter Description

Load Balance Channel Determine whether the backend service will be
accessed using a load balance channel. For this
example, select Skip.

URL Method: Request method of the API. Set this
parameter to GET.
Protocol: Set this parameter to HTTP.
Backend Address: Enter the service address of the load
balancer you created.
Path: Path of the backend service.

Step 6 Define the response and click Finish.

----End

Creating an ECS

Step 1 Log in to the cloud server console.

Step 2 Click Create ECS.

Step 3 Configure the basic settings and click Next: Configure Network.

API Gateway
Best Practices 4 Exposing Backend Services Across VPCs

2023-04-30 26

Table 4-9 Basic settings

Parameter Description

Region Select the region where the ECS is located. It must be
the same as the region of VPC 2.

AZ Select the AZ where the ECS is located.

CPU Architecture The default option is x86.

Specifications Select specifications that match your service planning.

Image Select an image that matches your service planning.

Step 4 Configure the network settings and click Next: Configure Advanced Settings.

Table 4-10 Network settings

Parameter Description

Network Select VPC 2 and a subnet.

Security Group Select the security group created for the dedicated
gateway.

EIP Select Not required.

Step 5 Configure advanced settings and click Next: Confirm.

API Gateway
Best Practices 4 Exposing Backend Services Across VPCs

2023-04-30 27

Table 4-11 Advanced settings

Parameter Description

ECS Name Enter a name that conforms to specific rules to
facilitate search.

Login Mode Credential for logging in to the ECS. The default option
is Password.

Username The default user is root.

Password Set a password for logging in to the ECS.

Confirm Password Enter the password again.

Step 6 Confirm the configuration and select enterprise project default.

Step 7 Read and confirm your acceptance of the agreement. Then click Create Now.

----End

Debugging the API

Step 1 On the Backend Server Groups tab page of the load balancer, add the ECS.

Step 2 Start the ECS.

Step 3 Go to the API Management > APIs page of the dedicated gateway, and choose
More > Debug in the row that contains the API you created.

Step 4 Enter the request parameters and click Debug.

If the status code is 200, the debugging is successful.

----End

API Gateway
Best Practices 4 Exposing Backend Services Across VPCs

2023-04-30 28

5 Interconnecting with WAF

To protect API Gateway and your backend servers from malicious attacks, deploy
Web Application Firewall (WAF) between API Gateway and the external network.

Figure 5-1 Access to a backend server

(Recommended) Solution 1: Register API Group Debugging Domain Name
on WAF and Use the Domain Name to Access the Backend Service

API groups provide services using domain names for high scalability.

Step 1 Create an API group in a gateway, record the domain name, and create an API in
the group.

Figure 5-2 Creating an API group and recording the debugging domain name

Figure 5-3 Creating an API

API Gateway
Best Practices 5 Interconnecting with WAF

2023-04-30 29

Step 2 Go to the WAF console, and add a domain name by configuring Server Address
as the API group domain name and adding a certificate. For details, see section
"Connection Process (Cloud Mode)" in the Web Application Firewall User Guide.

NO TE

You can use a public network client to access WAF with its domain name. WAF then uses
the same domain name to forward your requests to API Gateway. There is no limit on the
number of requests that API Gateway can receive for the domain name.

Step 3 On the gateway details page, bind the domain name to the API group.

Step 4 Enable real_ip_from_xff and set the parameter value to 1.

NO TE

When a user accesses WAF using a public network client, WAF records the actual IP address
of the user in the HTTP header X-Forwarded-For. API Gateway resolves the actual IP
address of the user based on the header.

API Gateway
Best Practices 5 Interconnecting with WAF

2023-04-30 30

----End

Solution 2: Forward Requests Through the DEFAULT Group and Use Gateway
Inbound Access Address to Access the Backend Service from WAF

Step 1 View the inbound access addresses of your gateway. There is no limit on the
number of times the API gateway can be accessed using an IP address.
● VPC Ingress Address: VPC access address
● EIP: public network access address

Step 2 Create an API in the DEFAULT group.

Step 3 Go to the WAF console, add a domain name by configuring Server Address as an
inbound access address of your API gateway and adding a certificate, and then
copy the WAF back-to-source IP addresses. For details, see section "Connection
Process (Cloud Mode)" in the Web Application Firewall User Guide.

API Gateway
Best Practices 5 Interconnecting with WAF

2023-04-30 31

NO TE

● If WAF and your gateway are in the same VPC, set Server Address to the VPC access
address.

● If your gateway is bound with an EIP, set Server Address to the EIP.

Step 4 On the gateway details page, bind the domain name to the DEFAULT group.

Step 5 Enable real_ip_from_xff and set the parameter value to 1.

NO TE

When a user accesses WAF using a public network client, WAF records the actual IP address
of the user in the HTTP header X-Forwarded-For. API Gateway resolves the actual IP
address of the user based on the header.

API Gateway
Best Practices 5 Interconnecting with WAF

2023-04-30 32

----End

API Gateway
Best Practices 5 Interconnecting with WAF

2023-04-30 33

6 Request Throttling 2.0

6.1 Introduction

Scenario

If the number of requests initiated from public networks for open APIs on APIG is
not limited, the continuous increase in users will deteriorate the backend
performance. And what's worse, the website or program will break down due to a
large number of requests sent by malicious users. The traditional request
throttling policies of APIG throttle requests by API, user, credential, and source IP
address.

However, as users and their demands become more diversified, these traditional
policies cannot meet the requirements for more refined rate limiting. To resolve
this issue, APIG has launched request throttling 2.0, which is a type of plug-in
policy. The 2.0 policies enable you to configure more refined throttling, for
example, to throttle requests based on a certain request parameter or tenant.

This section describes how to create a request throttling 2.0 policy for rate limiting
in different scenarios.

Advantages
● A request throttling 2.0 policy limits the number of times that an API can be

called within a specific time period. Basic, parameter-based, and excluded
throttling is supported.

– Basic throttling: Throttle requests by API, user, credential, or source IP
address. This function is similar to a traditional request throttling policy
but is incompatible with it.

– Parameter-based throttling: Throttle requests based on headers, path
parameter, method, query strings, or system parameters.

– Excluded throttling: Throttle requests for specific tenants or credentials.

● API requests allowed in a time period can be limited by user or credential.

● Request throttling can be precise to the day, hour, minute, or second.

API Gateway
Best Practices 6 Request Throttling 2.0

2023-04-30 34

Restrictions
● Adding a request throttling 2.0 policy to an API means binding them together.

An API can be bound with only one such policy in an environment, but each
policy can be bound to multiple APIs. The APIs bound with request throttling
2.0 policies must have been published.

● For APIs not bound with a request throttling 2.0 policy, the throttling limit is
the value of ratelimit_api_limits set on the Parameters page of the gateway.

● A traditional request throttling policy becomes invalid if a request throttling
2.0 policy is bound to the same API as the traditional one.

● You can define a maximum of 100 parameter-based throttling rules.
● The policy content cannot exceed 65,535 characters.
● If your gateway does not support request throttling 2.0, contact technical

support.

6.2 General Procedure
Assume that you have the following request throttling requirements for an API:

1. The API can be called up to 10 times per 60s but can be called by a user only
5 times per 60s.

2. Only 10 requests containing header field Host=www.abc.com are allowed in
60s.

3. Only 10 requests with method GET and path reqPath = /list are allowed in
60s.

4. Only 10 requests with path reqPath = /fc are allowed in 60s.
5. Each excluded tenant can only call the API 5 times per 60s.

Following this procedure to create a request throttling 2.0 policy and bind it to an
API.

API Gateway
Best Practices 6 Request Throttling 2.0

2023-04-30 35

1. Create a policy.
Enter the basic information of the request throttling 2.0 policy.

2. Configure basic throttling.
Configure the basic throttling settings.

3. Configure parameter-based throttling.
Enable parameter-based throttling, and define parameters and rules.

4. Configure excluded throttling.
Enable excluded throttling, and configure excluded tenants and credentials.

5. Bind the policy to an API.
Bind the request throttling 2.0 policy to the API.

6. Verify the API.
Call the API and verify whether the request throttling 2.0 policy has taken
effect.

6.3 Implementation Procedure
Step 1 Create a policy.

Log in to the APIG console and create a request throttling 2.0 policy. For details,
see section "Request Throttling 2.0" in the API Gateway User Guide.

In the navigation pane, choose API Management > API Policies. Click Create
Policy, and select Request Throttling 2.0.

Configure basic policy information to meet your demands.

API Gateway
Best Practices 6 Request Throttling 2.0

2023-04-30 36

Table 6-1 Policy basic Information

Parameter Description

Name Enter a policy name that conforms to specific rules to facilitate
search.

Throttling Select High-performance.

Policy Type Select API-specific, which means measuring and throttling requests
of a single API.

Period Throttling period. Set this parameter to 60s.

Step 2 Configure basic throttling.

As required in 1, set Max. API Requests to 10 times per 60s and Max. User
Requests to 5 times per 60s.

Table 6-2 Basic throttling

Parameter Description

Max. API Requests 10

Max. User Requests 5

Step 3 Configure parameter-based throttling.

1. As required in 2, enable parameter-based throttling, and define the header
and rule.

a. Click Add Parameter, select header for Parameter Location, and enter
Host for Parameter.

b. In the Rules area, click Add Rule, and set Max. API Requests to 10 and

Period to 60 seconds. Then click , and set the matching condition
Host = www.abc.com.

c. Click OK. The header matching rule Host = www.abc.com is generated,
indicating that an API bound with this policy can only be called 10 times
per 60s by requests whose Host header is www.abc.com.

2. As required in 3 and 4, define multiple rules with parameter Path.

a. In the Rules area, click Add Rule, and set Max. API Requests to 10 and

Period to 60 seconds. Then click to open the Condition Expressions
dialog box.

b. Add these three condition expressions: reqPath = /fc, reqPath = /list, and
method = get.

c. Click Set Lower Level.
d. Put the two reqPath expressions in an OR relationship. This means the

condition is met when either of the two paths is matched.
e. Select reqPath = /list and method = get, click Set Lower Level, and

select AND.

API Gateway
Best Practices 6 Request Throttling 2.0

2023-04-30 37

f. Click OK. It indicates that APIs with path /list and method GET or APIs
with path /fc bound with this policy can only be called 10 times per 60s.

Step 4 Configure excluded throttling.

As required in 5, enable excluded throttling. Add an excluded tenant with a
threshold of 5 requests per 60s.

Table 6-3 Excluded throttling

Parameter Description

Account ID Tenant ID

Threshold 5

Step 5 Click OK. The request throttling 2.0 policy is configured.

Step 6 Bind this policy to an API.

1. Click the policy name to go to the policy details page.
2. In the APIs area, select environment RELEASE and click Bind to APIs. Select

an API and click OK.

Step 7 Verify the API.

Call the API and verify whether the request throttling 2.0 policy has taken effect.

----End

API Gateway
Best Practices 6 Request Throttling 2.0

2023-04-30 38

7 Two-Factor Authentication

7.1 Introduction

Scenario
APIG provides flexible authentication modes and allows you to configure a custom
authorizer for two-factor authentication. This section describes how to create an
API that uses two-factor authentication (app + custom).

Advantages
In addition to secure app authentication, you can use a custom authorizer to
ensure API security.

Restrictions
Custom authentication relies on FunctionGraph.

API Gateway
Best Practices 7 Two-Factor Authentication

2023-04-30 39

7.2 General Procedure

1. Create a function.
The function will be used for custom authentication.

2. Create a custom authorizer.
Set the authorizer type to Frontend, and select the function created in the
previous step.

3. Create an API.
Set authentication mode to App, enable Two-Factor Authentication, and
select the custom authorizer created in the previous step.

4. Create a credential.
APIs that use app authentication require a credential to call. Create a
credential to generate an ID and key/secret pair.

5. Bind the credential to the created API.
APIs that use app authentication can be called only with bound credentials.

6. Verify the API.
Call the API to check whether two-factor authentication is configured
successfully.

7.3 Implementation Procedure
Step 1 Log in to the FunctionGraph console. On the Dashboard page, click Create

Function. For details, see Developing a Custom Authorizer with FunctionGraph.

API Gateway
Best Practices 7 Two-Factor Authentication

2023-04-30 40

1. Set the parameters according to the following table, and click Create
Function.

Table 7-1 Function configuration

Parameter Description

Function Type Default: Event Function

Region Select the same region as that of APIG.

Function Name Enter a name that conforms to specific rules to
facilitate search.

Agency An agency that delegates FunctionGraph to access
other cloud services. For this example, select Use no
agency.

Enterprise Project The default option is default.

Runtime Select Python 3.9.

2. On the Configuration tab, choose Environment Variables in the left pane,

and click Add. test is a header for identity authentication, and query is for
parameter query. If token involves sensitive data, enable the Encrypted
option.

3. On the Code tab, copy the following code to index.py, and click Deploy. For
details about coding, see section "Creating a Function for Frontend Custom
Authentication" in the API Gateway Developer Guide.
-*- coding:utf-8 -*-
import json
def handler(event, context):
 testParameter = context.getUserData('test');
 userToken = context.getUserData('token');
 if event["headers"].get("token") == userToken and event["queryStringParameters"].get("test") ==
testParameter:
 resp = {
 'statusCode': 200,
 'body': json.dumps({
 "status":"allow",
 "context":{
 "user":"auth success"
 }
 })
 }
 else:
 resp = {
 'statusCode': 401,
 'body': json.dumps({
 "status":"deny",
 })
 }
 return json.dumps(resp)

4. Configure a test event to debug the code.

API Gateway
Best Practices 7 Two-Factor Authentication

2023-04-30 41

a. Select Configure Test Event from the drop-down list and configure a test
event.

NO TE

The parameter values in the test event must be the same as those of the
environment variables.

b. Click Test.

c. Click Deploy.

Step 2 Log in to the APIG console, and choose API Management > API Policies.

On the Custom Authorizers tab, create a custom authorizer.

Table 7-2 Custom authorizer configuration

Parameter Description

Name Enter a name that conforms to specific rules to
facilitate search.

Type Select Frontend.

Function URN Click Select and select the created function.

Version/Alias Version is selected by default.

Max. Cache Age (s) 30

Identity Sources Set two identity sources: header token and query string
test.

API Gateway
Best Practices 7 Two-Factor Authentication

2023-04-30 42

Step 3 Choose API Management > APIs, and click Create API.

1. Configure the frontend information according to the following table.

Table 7-3 Frontend configuration

Parameter Description

API Name Enter a name that conforms to specific rules to
facilitate search.

Group The default option is DEFAULT.

URL Method: Request method of the API. Set this
parameter to GET.
Protocol: Request protocol of the API. Set this
parameter to HTTPS.
Subdomain Name: The system automatically
allocates a subdomain name to each API group for
internal testing. The subdomain name can be
accessed 1000 times a day.
Path: Path for requesting the API. Enter /api/
two_factor_authorization.

Gateway Response Select a response to be displayed if the gateway
fails to process an API request.
The default gateway response is default.

Authentication Mode API authentication mode. Set this parameter to App.

Two-Factor
Authentication

Enable this option and select a custom authorizer.

2. Click Next and set the backend type to Mock.

Select a status code, set the response, and click Finish.
3. Publish the API.

Step 4 In the navigation pane, choose API Management > Credentials.

Click Create Credential, enter a credential name, and click OK.

Step 5 Bind this credential to the API.

Click the credential name to go to the details page. In the APIs area, click Bind to
APIs, select an API, and click OK.

Step 6 Verify the API.
● Call the API on the debugging page of APIG to verify if two-factor

authentication is configured successfully.
Add test on the Parameters tab and add token on the Headers tab. Use the
same parameter values set for the custom authentication function. If the
parameter values are different, the server will return a 401 message
indicating that the authentication fails.

API Gateway
Best Practices 7 Two-Factor Authentication

2023-04-30 43

● Alternatively, call the API with a curl command. Download the JavaScript SDK
first. To call the API, input a key and secret as well as the header and query
string to generate a curl command, and then copy this command to your CLI
for execution. For details, see section "curl" in the API Gateway Developer
Guide.

----End

API Gateway
Best Practices 7 Two-Factor Authentication

2023-04-30 44

8 Change History

Table 8-1 Change history

Date Description

2023-04-30 This issue incorporates the following changes:
● Updated this document for the new console.
● Added Request Throttling 2.0 and Two-Factor

Authentication.

2023-04-12 This issue incorporates the following change:
Added Exposing Backend Services Across VPCs and
Interconnecting with WAF.

2021-09-30 This issue is the first official release.

API Gateway
Best Practices 8 Change History

2023-04-30 45

	Contents
	1 Selectively Exposing CCE Workloads
	2 Selectively Exposing Service Capabilities of a Data Center
	3 Developing a Custom Authorizer with FunctionGraph
	4 Exposing Backend Services Across VPCs
	4.1 Introduction
	4.2 Resource Planning
	4.3 General Procedure
	4.4 Implementation Procedure

	5 Interconnecting with WAF
	6 Request Throttling 2.0
	6.1 Introduction
	6.2 General Procedure
	6.3 Implementation Procedure

	7 Two-Factor Authentication
	7.1 Introduction
	7.2 General Procedure
	7.3 Implementation Procedure

	8 Change History

