
Atlas 500

Application Software Development
Guide

Issue 01

Date 2020-05-30

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2020. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. i

Contents

1 Before You Start... 1

2 Introduction to the Atlas 500 and Software... 3
2.1 Atlas 500 Hardware.. 3
2.1.1 Atlas 500 Product Form... 3
2.1.2 Atlas 500 System Architecture.. 5
2.1.3 Atlas 200 AI Accelerator Card..5
2.2 Atlas 500 Software..6
2.2.1 OS Introduction.. 6
2.2.2 Atlas 200 Driver.. 6
2.2.3 Introduction to the Intelligent Management System..6

3 Preparations..8
3.1 Obtaining Software Packages... 8
3.2 Obtaining the Sample Program... 9

4 Configuring the Atlas 500... 10
4.1 Powering On an Atlas 500... 10
4.2 Obtaining a PC...11
4.3 Logging In to the Atlas IES.. 11
4.4 Configuring a Network for the Atlas 500...12
4.5 Checking the Atlas 500 Software Version.. 12
4.6 Upgrading the Atlas 500 Software... 12
4.7 Logging In to and Using the Atlas 500 CLI.. 13
4.8 Accessing the Atlas 500 Development Mode..15

5 Development Environment... 16
5.1 Setting Up the Software Development Environment... 16
5.2 DDK Directory Distribution..18
5.3 Header Files and Link Libraries.. 19
5.3.1 Header Files...19
5.3.2 Link libraries.. 20
5.4 Compilation Toolchains.. 20
5.4.1 Host Compilation Toolchain.. 20
5.4.2 Device Compilation Toolchain...20
5.5 DDK Tools.. 20

Atlas 500
Application Software Development Guide Contents

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. ii

6 General Inference Service Flow..22
6.1 Service Flow.. 22
6.2 Mapping Between Software and Hardware Modules.. 23

7 Running a Code Sample...24
7.1 Obtaining the HelloDavinci Code..24
7.2 Description of the HelloDavinci File...24
7.3 HelloDavinci Process Framework.. 25
7.4 HelloDavinci Compilation and Running.. 26

8 Software Code Development..28
8.1 Configuring the Matrix Framework.. 28
8.1.1 Configuring, Creating, and Destroying a Graph..29
8.1.2 Configuring Engine... 31
8.1.3 Configuring Data Transmission...32
8.2 Using DVPP APIs... 34
8.2.1 Using DVPP APIs.. 34
8.2.2 Applying for DVPP Memory... 36
8.3 Offline Model Inference..36
8.3.1 Configuring AIPPs.. 36
8.3.2 Converting an Offline Model...38
8.3.3 Performing Model Inference.. 38
8.4 Commissioning Software Logs... 40
8.4.1 Configuring Log System.. 40
8.4.2 Viewing Logs... 41
8.4.3 Log API Usage.. 42
8.5 Service Software Compilation.. 43
8.5.1 Compiling Service Software Using CMake..43

9 Software Packaging and Deployment..45
9.1 Importing the Base Image... 45
9.2 Creating an Image.. 46
9.3 Deploying the Image... 46
9.3.1 Deployment Using the IES..46
9.3.2 Deployment Using the CLI... 48

10 Appendix... 49
10.1 Graph Keywords.. 49
10.2 Change History.. 56

Atlas 500
Application Software Development Guide Contents

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. iii

1 Before You Start

This topic describes the basic knowledge, requirements, and precautions for using
the Atlas 500 to develop services.

You are advised to read this section carefully before starting the development.

Application Scenario

This document applies to inference tasks using the Atlas 500.

Key Concepts

Table 1-1 Key concepts

Concept Description

Ascend
310

The Ascend 310 is a high-performance and low–power
consumption AI chip designed for scenarios such as image
recognition, video processing, inference computing, and machine
learning.
The chip has two built-in AI cores, supports 128-bit LPDDR4X, and
provides up to 16 TOPS (Float16/INT8) computing capability.

DDK The Mind Studio solution provides the Digital Development Kit
(DDK) for developers. You can install the DDK to obtain the APIs,
libraries, and tool chains required for development on Mind Studio.

Graph Graph is a concept in the HiAI framework instead of the
computational graph in the deep learning framework. In the HiAI
framework, a graph describes the entire service processing flow. It
is a program processing flow consisting of multiple engines.

HiAI
Engine

HiAI Engine is a universal service flow execution engine. It consists
of Agent that runs on the host and Manager that runs on the
device. Each engine provides a function implemented by user code,
that is, the engine processing program is implemented by users.

Host The host is the OS of the Hi3559A CPU.

Atlas 500
Application Software Development Guide 1 Before You Start

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 1

Concept Description

Device The device is the OS of the Ascend 310.

DVPP Digital vision pre-processing (DVPP) supports pre-processing
operations such as image/video decoding and scaling. It is also
capable of encoding and outputting precessed videos and images.

AIPP AI pre-processing (AIPP) provides functions such as format
conversion and padding/cropping, CSC (YUV2RGB or RGB2YUV),
scaling, and channel data exchange.

OMG Offline model generator (OMG) converts models trained by using
frameworks such as Caffe and TensorFlow into offline models
supported by Huawei chips. The OMG also supports model
optimization functions that are performed independent from the
device, such as operator scheduling optimization, weight data
rearrangement and compression, and memory usage optimization.

OME Offline model executor (OME) loads converted offline models for
inference.

Ctrl CPU One Ascend 310 chip has four Ctrl CPUs, which are used for service
logic processing.

AI CPU One Ascend 310 chip has four AI CPUs, which are used for
operator task scheduling and implementation of some operators.

AI Core One Ascend 310 chip has two AI cores, which are used for matrix
computing.

IPC An IP camera (IPC) provides RTSP data streams.

Atlas 500
Application Software Development Guide 1 Before You Start

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 2

2 Introduction to the Atlas 500 and
Software

The Atlas 500 is a lightweight edge device designed for a wide range of edge
applications. It features powerful computing performance, large-capacity storage,
flexible configuration, compact size, operating under a wide temperature range,
strong environment adaptability, and easy maintenance and management. It is
ideal for intelligent video surveillance, analysis, and data storage application
scenarios, and can be deployed across edge and central equipment rooms,
meeting application requirements in diverse environments, such as public security
departments, communities, campuses, shopping malls, and supermarkets.

2.1 Atlas 500 Hardware

2.2 Atlas 500 Software

2.1 Atlas 500 Hardware

2.1.1 Atlas 500 Product Form
The Atlas 500 has two models with different drive configurations:

● Figure 2-1 shows the Atlas 500 without a drive.

Atlas 500
Application Software Development Guide 2 Introduction to the Atlas 500 and Software

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 3

Figure 2-1 Atlas 500 (without a drive)

● Figure 2-2 shows the Atlas 500 with a 3.5-inch drive configured in the drive
tray on the right.

Figure 2-2 Atlas 500 (with a drive)

Atlas 500 PSU specifications:

The Atlas 500 uses 12 V DC/5 A power supply units (PSUs). You are advised to use
60 W industrial AC PSUs. For details about cable connections and recommended
PSU models, see the Atlas 500 AI Edge Station User Guide (Models 3000, 3010).

Atlas 500
Application Software Development Guide 2 Introduction to the Atlas 500 and Software

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 4

2.1.2 Atlas 500 System Architecture
Figure 2-3 shows the system architecture of the Atlas 500. It uses the Huawei-
developed HiSilicon Hi3559A chip as the processor and works with the Atlas 200
AI Accelerator Card (optional) to provide 16 TOPS compute power on INT8 data.
For details, see the Huawei Atlas 500 White Paper.

Figure 2-3 Atlas 500 system architecture

2.1.3 Atlas 200 AI Accelerator Card
Integrated with the HiSilicon Ascend 310 AI processor, the Atlas 200 allows data
analysis, inference, and computing for various data such as images and videos. For
details about the Atlas 200 AI Accelerator Card, see the Huawei Atlas 500 White
Paper.

Project Description

(Optional) Atlas 200 ● Two Da Vinci AI cores
● 8-core Arm Cortex-A55 1.6 GHz CPU
● Computing performance (multiplication and

addition): 8 TFLOPS for FP16 and 16 TOPS for INT8
● Memory specifications: LPDDR4X, 128-bit, 8 GB/4

GB, interface rate at 3200 Mbit/s

Atlas 500
Application Software Development Guide 2 Introduction to the Atlas 500 and Software

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 5

Project Description

Atlas 200 codec
capability

● H.264 hardware decoding, 16-channel 1080p 30
FPS (2-channel 3840 x 2160 60 FPS), YUV420

● H.265 hardware decoding, 16-channel 1080p 30
FPS (2-channel 3840 x 2160 60 FPS), YUV420

● H.264 hardware encoding, 1-channel 1080p 30 FPS,
YUV420

● H.265 hardware encoding, 1-channel 1080p 30 FPS,
YUV420

● JPEG decoding capability at 1080p 256 FPS and
encoding capability at 1080p 64 FPS, up to 8192 x
8192 resolution

● PNG decoding at 1080p 48 FPS, up to 4096 x 4096
resolution

2.2 Atlas 500 Software

2.2.1 OS Introduction
The master chip (Hi3559A) of the Atlas 500 runs a custom Linux kernel-based
operating system (OS) Euler, which is used to manage hardware resources. To
manage hardware resources and service software, EulerOS integrates software
such as the intelligent management system. For details, see the Atlas 500
Intelligent Edge System (V2.2.200.010 or Later) User Guide (Models 3000, 3010).

You can log in to the EulerOS CLI over SSH. For details about the IP address, user name,
and password, see "Default Parameters" in the Atlas 500 Intelligent Edge System
(V2.2.200.010 or Later) User Guide (Models 3000, 3010). The file systems and commands of
EulerOS are similar to those of CentOS. You can configure the network and query hardware
resources on the CLI.

2.2.2 Atlas 200 Driver
The Atlas 200 is mounted to EulerOS as a PCIe slave device for service software to
call. You do not need to install or upgrade the Atlas 200 driver because it has been
integrated into EulerOS.

2.2.3 Introduction to the Intelligent Management System
The Atlas Intelligent Edge System (IES) is used to enable and manage the
intelligent edge computing hardware. It provides a secure, easy-to-use, and
reliable edge AI hardware platform, making it easier for Huawei Atlas solution
service software or third-party service software to use edge computing
capabilities. With the IES, you can deploy media analysis and processing services in
a low-cost, secure, reliable, and flexible manner.

The Atlas IES supports the following features:

Atlas 500
Application Software Development Guide 2 Introduction to the Atlas 500 and Software

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 6

● Network configuration
● Time synchronization
● Drive partitioning
● Software installation
● Certificate management
● Edge-cloud synergy
● System maintenance, including firmware upgrade, system restart, and log

collection

For details about the Atlas IES, see the Atlas 500 Intelligent Edge System
(V2.2.200.010 or Later) User Guide (Models 3000, 3010).

Atlas 500
Application Software Development Guide 2 Introduction to the Atlas 500 and Software

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 7

3 Preparations

3.1 Obtaining Software Packages

3.2 Obtaining the Sample Program

3.1 Obtaining Software Packages
Step 1 Log in to the Huawei enterprise product support website.

Step 2 Choose TECHNICAL SUPPORT > AI Computing Platform > Atlas and select the
product.

Select A500-3000 or A500-3010 to go to the details page of the A500-3000 or
A500-3010. The software packages on the A500-3000 page are the same as those
on the A500-3010 page. You can select either of them.

Step 3 Click the Software Download tab and select the required software version.

Step 4 Obtain the Atlas 500 software packages, as listed in Table 3-1.

Table 3-1 Software packages

Name Package Description

Host cross
compiler file

Euler_compile_env_cross.tar.gz Used to compile the
programs on the Atlas 500
host (Hi3559A).

OS source code
package

A500-3000_A500-3010-
EulerOSx.x.x.xxx_64bit_aarch64
_basic.tar.gz

Contains the OS kernel
source code of the Atlas 500
host.

DDK A500-3000_A500-3010_A200-3
000HiLens-DDK-Vx.x.x.x.tar.gz

Contains the development
and debugging tools,
header files, dependent
libraries, and device
compilation toolchain of the
Atlas 500.

Atlas 500
Application Software Development Guide 3 Preparations

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 8

https://support.huawei.com/enterprise/en/index.html

Name Package Description

System
software
upgrade
package

A500-3000_A500-3010-ESP-
FIRMWARE-Vx.x.x.xxx.zip

Used to upgrade the Atlas
500 OS, driver, and
intelligent management
system.

In the package names, xxx indicates the software version.

----End

3.2 Obtaining the Sample Program
Open source code samples are available for the software components and
inference services of the Ascend AI processor to improve the code development
efficiency. You can refer to the code samples for code development. The following
describes how to obtain the code samples.

● Obtain the sample program.
Download URL: https://gitee.com/HuaweiAtlas/samples
Usage: For details, see the README.md file of each sample provided on gitee.

● Obtain the demo program.
Download URL: https://gitee.com/HuaweiAtlas
Usage: For details, see the README.md file of the demo provided on gitee.

Atlas 500
Application Software Development Guide 3 Preparations

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 9

https://gitee.com/HuaweiAtlas/samples
https://gitee.com/HuaweiAtlas

4 Configuring the Atlas 500

4.1 Powering On an Atlas 500

4.2 Obtaining a PC

4.3 Logging In to the Atlas IES

4.4 Configuring a Network for the Atlas 500

4.5 Checking the Atlas 500 Software Version

4.6 Upgrading the Atlas 500 Software

4.7 Logging In to and Using the Atlas 500 CLI

4.8 Accessing the Atlas 500 Development Mode

4.1 Powering On an Atlas 500
Step 1 Power on the system by referring to "Power-On Procedure" in the Atlas 500 AI

Edge Station User Guide (Models 3000, 3010).

Step 2 Wait 1-2 minutes after the device is powered on for the OS and device
management software to start.

Step 3 After the system is started, check the status of the indicators and buttons on the
front panel of the Atlas 500 by referring to "Indicators and Buttons" in the Atlas
500 AI Edge Station User Guide (Models 3000, 3010).
● For the Atlas 500 (without a disk), both the graceful power-off indicator and

health indicator are green. If the green indicators are steady on, the system is
normal.

● For the Atlas 500 (with a disk), the graceful power-off indicator, health
indicator, and disk indicator are green. If the green indicators are steady on,
the system is normal. Otherwise, the system is abnormal.

----End

Atlas 500
Application Software Development Guide 4 Configuring the Atlas 500

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 10

4.2 Obtaining a PC
Obtain a PC for accessing the IES and CLI of the Atlas 500 and configure network
data to enable communication between the PC and the Atlas 500.

Step 1 Add an IP address in 192.168.2.xxx for the PC, set the subnet mask to
255.255.255.0 and the gateway address to 192.168.2.1.

Step 2 Connect GE port 1 of the Atlas 500 and the PC network port using an RJ45
network cable.

Step 3 On the PC, run the ping Atlas 500 IP address command to check whether the
communication between the Atlas 500 and the PC is successful.

----End

4.3 Logging In to the Atlas IES
Step 1 Open your browser, enter https://Atlas IES IP address in the address box, and press

Enter. The default IP address of port 1 is 192.168.2.111, and the default IP
address of the port 2 is 192.168.3.111.

Google Chrome 69 or later and Internet Explorer 11 are supported.

Step 2 Enter the user name and password.
● Default user name: admin
● Default password: Huawei12#$

● The system locks a user account if the user enters incorrect passwords for consecutive
five times. The locked account will be automatically unlocked in 5 minutes.

● For security purposes, change the initial password upon the first login and change the
password periodically.

Figure 4-1 Atlas IES login page

Step 3 Click Log In.

Atlas 500
Application Software Development Guide 4 Configuring the Atlas 500

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 11

The Atlas IES home page is displayed.

----End

4.4 Configuring a Network for the Atlas 500
To connect the Atlas 500 to a LAN not in the 192.168.2.xxx network segment, you
need to change the network configurations of the Atlas 500. For details about
how to configure a network for the Atlas 500, see "Changing the Initial IP Address
for the IES" in the Atlas 500 AI Edge Station User Guide (Models 3000, 3010).

4.5 Checking the Atlas 500 Software Version
Step 1 Log in to the Atlas 500 IES.

Step 2 In the System Information area at the lower left corner on the homepage of the
IES, click More to view system details.

Alternatively, on the Maintenance tab, click System Information on the left to
view more.

Step 3 On the System Information page, check whether the system version, OS version,
and NPU driver version are consistent with those in the obtained development
software version. For details about how to obtain the development software and
how to check its version, see 3.1 Obtaining Software Packages.

Figure 4-2 Checking system information

----End

4.6 Upgrading the Atlas 500 Software
Decompress the A500-3000_A500-3010-ESP-FIRMWARE-Vx.x.x.xxx.zip package
and obtain the A500-3000_A500-3010-FW-Vx.x.xxx.xxx.hpm file. To ensure that
the software can run on the Atlas 500, use the A500-3000_A500-3010-FW-
Vx.x.xxx.xxx.hpm file to upgrade the system to the same version as the
development package.

Atlas 500
Application Software Development Guide 4 Configuring the Atlas 500

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 12

Step 1 Log in to the Atlas 500 IES.

Step 2 Choose Maintenance > Firmware Update.

Step 3 On the Firmware Update page, click on the right of Firmware Package and
select a firmware package.

The firmware format must be *.hpm.

Step 4 Upgrade firmware.

NO TICE

Do not power off the device during the update. Otherwise, the device may be
damaged.

1. Click Update. A confirmation dialog box is displayed.
2. (Optional) Select After the update is complete, the system automatically

restarts for the update to take effect.

– If you select this option, the system automatically restarts for the update to take
effect after the update is complete.

– If you do not select this option, you need to manually restart the system for the
update to take effect. For details, see Step 5.

3. Click OK.

You can view the update version and update progress on the page.

Step 5 After the update is complete, click Restart to Take Effect.

Step 6 Click OK. Wait for about 10 minutes until the update is complete.

----End

4.7 Logging In to and Using the Atlas 500 CLI
You can run commands on the Atlas 500 CLI to manage the Atlas 500. You can log
in to the Atlas 500 CLI using either of the following:

● SSH
● serial port

Logging In to the OS Using SSH

Step 1 Prepare a PC installed with SSH client software (such as PuTTY and MobaXterm).

Step 2 Connect the PC and GE port 1 of the Atlas 500 to the same LAN, or use a network
cable to directly connect the PC to the Atlas 500.

Step 3 On the PC, ping the Atlas 500 IP address to check whether the network between
the Atlas 500 and the PC is connected.

Atlas 500
Application Software Development Guide 4 Configuring the Atlas 500

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 13

Step 4 Start the SSH client software on the PC, set parameters, and log in to the Atlas
500.

Example:

● Host Name (or IP address): IP address of the Atlas 500. The default IP
address of the Atlas 500 is 192.168.2.111.

● Port: The default value is 22.
● Connection type (or protocol): Select SSH.
● Username: Set it to admin.
● Password: The default password of admin is Huawei12#$.

After setting the parameters, start the connection and log in to the Atlas 500
OS.

Step 5 Access the Atlas 500 CLI.

The host name of the login device is displayed on the left of the prompt.

Step 6 Run an Atlas 500 CLI command.

For details about the Atlas 500 CLI commands and their instructions, see "CLI" in
the Atlas 500 Intelligent Edge System (V2.2.200.010 or Later) User Guide (Models
3000, 3010).

----End

Logging In to the OS over a Serial Port

Step 1 Prepare a PC with a serial port, install the serial port client software (PuTTY or
MobaXterm) on the PC, and prepare a Phoenix connector-to-serial cable.

Step 2 Connect the male Phoenix connector to the female Phoenix connector on the rear
panel of the Atlas 500, and connect the serial cable to the PC. Locate the female
Phoenix connector on the rear panel of the Atlas 500 by referring to "Rear Panel"
in the Atlas 500 AI Edge Station User Guide (Models 3000, 3010).

Step 3 Start the serial port client software and set login parameters.

Example:

● Serial Line to connect to: COMn
● Speed (baud): 115200
● Data bits: 8
● Stop bits: 1
● Parity: None
● Flow control: None

In COMN, N indicates the serial port number, and the value is an integer.
After the parameters are set, start the connection.

Step 4 Enter the user name and password.

The default user name and password of the Atlas 500 are admin and Huawei12#
$, respectively.

Atlas 500
Application Software Development Guide 4 Configuring the Atlas 500

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 14

Step 5 Access the Atlas 500 CLI.

The host name of the login device is displayed on the left of the prompt.

Step 6 Run an Atlas 500 CLI command.

For details about the Atlas 500 CLI commands and their instructions, see "CLI" in
the Atlas 500 Intelligent Edge System (V2.2.200.010 or Later) User Guide (Models
3000, 3010).

----End

4.8 Accessing the Atlas 500 Development Mode
On the Atlas 500 CLI, run the develop command and enter the password
Huawei@SYS3 to switch to the Atlas 500 development mode.

In the displayed EulerOS CLI, you can run common Linux commands.

It is recommended that the Atlas 500 development mode be enabled only in the software
development and debugging phases.

Atlas 500
Application Software Development Guide 4 Configuring the Atlas 500

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 15

5 Development Environment

5.1 Setting Up the Software Development Environment

5.2 DDK Directory Distribution

5.3 Header Files and Link Libraries

5.4 Compilation Toolchains

5.5 DDK Tools

5.1 Setting Up the Software Development Environment
After obtaining the software by referring to 3.1 Obtaining Software Packages
and verifying the software version consistency by referring to 4.5 Checking the
Atlas 500 Software Version, set up the software development environment.

Step 1 Prepare an x86 CPU server (or PC) as the development host. Install the Ubuntu
16.04 LTS OS on the development host. (If the development host has been
installed with another OS version, you can install a VM on the development host
and then the Ubuntu 16.04 LTS OS for development.)

URL for downloading the Ubuntu 16.04 LTS OS image: http://old-
releases.ubuntu.com/releases/

Step 2 Configure the development host network and ensure that the development host
and Atlas 500 are in the same LAN.

Step 3 Copy the software packages obtained in 3.1 Obtaining Software Packages to a
directory, for example /home, on the development host.

Step 4 Run the following command to create a directory for installing the Atlas 500 DDK,
for example, /home/Atlas500_DDK:

mkdir -p /home/Atlas500_DDK

Step 5 Run the following command in the directory where the
A500-3000_A500-3010_A200-3000HiLens-DDK-Vx.x.x.x.tar.gz file is located to
install the Atlas 500 DDK file in the created directory:

tar -zxvf A500-3000_A500-3010_A200-3000HiLens-DDK-Vx.x.x.x.tar.gz -C /
home/Atlas500_DDK

Atlas 500
Application Software Development Guide 5 Development Environment

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 16

http://old-releases.ubuntu.com/releases/
http://old-releases.ubuntu.com/releases/

In A500-3000_A500-3010_A200-3000HiLens-DDK-Vx.x.x.x.tar.gz, Vx.x.x.x
indicates the version number.

Step 6 In the directory where Euler_compile_env_cross.tar.gz is located, run the
following command to install the cross compilation toolchain of the Atlas 500
host to the Atlas 500 DDK installation directory:

tar -zxvf Euler_compile_env_cross.tar.gz -C /home/Atlas500_DDK/toolchains

Step 7 Run the cd /home/Atlas500_DDK command to go to the Atlas 500 DDK
installation directory.

Run the cat ddk_info command to check the version of the installed Atlas 500
DDK.
● VERSION: consistent with the NPU driver version obtained in 4.5 Checking

the Atlas 500 Software Version.
● NAME: DDK
● TARGET: ASIC

Step 8 Run the vi ~/.bashrc command to open the environment configuration file of the
current user and add the following content to the end of the file:
export DDK_HOME=/home/Atlas500_DDK
export PATH=$PATH:$DDK_HOME/host/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$DDK_HOME/host/lib

Run the source ~/.bashrc command for the settings to take effect.

Step 9 Run the following commands to add a soft link to the lib64 folder in
$DDK_HOME:
cd /home/Atlas500_DDK/lib64
ln -s libssl.so.1.1 libssl.so
ln -s libcrypto.so.1.1 libcrypto.so
ln -s libprotobuf.so.15 libprotobuf.so

Step 10 If no error is reported in the preceding steps and the following information is
displayed after you run the omg -h command in a directory of the OS, the Atlas
500 development environment has been successfully set up. If the Atlas 500
development environment fails to be set up, see Getting Help.
omg: usage: ./omg <args>
example:
./omg --model=./alexnet.prototxt --weight=./alexnet.caffemodel
--framework=0 --output=./domi
aguments explain:
 --model Model file
 --weight Weight file. Required when framework is Caffe
 --framework Framework type(0:Caffe; 3:Tensorflow)
 --output Output file path&name(needn't suffix, will add .om automatically)
 --encrypt_mode Encrypt flag. 0: encrypt; -1(default): not encrypt
 --encrypt_key Encrypt_key file
 --certificate Certificate file
 --hardware_key ISV file
 --private_key Private key file
 --input_shape Shape of input data. E.g.: "input_name1:n1,c1,h1,w1;input_name2:n2,c2,h2,w2"
 --h/help Show this help message
 --cal_conf Calibration config file
 --insert_op_conf Config file to insert new op
 --op_name_map Custom op name mapping file
 --plugin_path Custom op plugin path. Default value is: "./plugin". E.g.: "path1;path2;path3".
 Note: A semicolon(;) cannot be included in each path, otherwise the resolved path will not
match the expected one.
 --om The model file to be converted to json
 --json The output json file path&name which is converted from a model

Atlas 500
Application Software Development Guide 5 Development Environment

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 17

 --mode Run mode. 0(default): model => davinci; 1: framework/davinci model => json; 3: only pre-
check
 --target Target platform. (mini)
 --out_nodes Output nodes designated by users. E.g.: "node_name1:0;node_name1:1;node_name2:0"
 --input_format Format of input data. E.g.: "NCHW"
 --perf_level Performance level. -1(default): generate a task-sink-model with ub-fuison and l2-fusion;
 3: generate task-sink-model without l2-fusion; 4: task-sink-model without ub-fusion and l2-
fusion.
 --check_report The pre-checking report file. Default value is: "check_result.json"
 --input_fp16_nodes Input node datatype is fp16 and format is NCHW. E.g.: "node_name1;node_name2"
 --is_output_fp16 Net output node datatype is fp16 and format is NCHW, or not. E.g.:
"false,true,false,true"
 --ddk_version The ddk version. E.g.: "x.y.z.Patch.B350"
 --net_format Set net prior format. ND: select op's ND format preferentially; 5D: select op's 5D format
preferentially
 --output_type Set net output type. Support FP32 and UINT8
 --fp16_high_prec FP16 high precision. 0(default): not use fp16 high precision; 1: use fp16 high precision

----End

5.2 DDK Directory Distribution
After the Atlas500 DDK is installed, its directory structure is as follows:

 .
├── bin
├── conf
├── device
├── host
├── include
├── lib
├── lib64
├── packages
├── sample
├── scripts
├── toolchains
 ├── Euler_compile_env_cross
 ├── aarch64-linux-gcc6.3
└── uihost

Table 5-1 Description of the Atlas 500 DDK directory

Directory Name Description

bin Contains tools used on the development host, such as
the offline model conversion tool OMG.

conf Contains header files related to TE operator
development.

device Contains the link library files that device (Ascend 310)
programs of the Atlas 500 depend on. This directory is
linked to ../lib/aarch64-linux-gcc6.3.

host Contains the tools and libraries used on the
development host.

include Contains the header files required for the development
of software running on the Atlas 500.

Atlas 500
Application Software Development Guide 5 Development Environment

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 18

Directory Name Description

lib Contains the link library files that device programs of
the Atlas 500 and programs on the development host
depend on.

lib64 Contains the link library files that host programs of the
Atlas 500 depend on.

packages -

sample -

scripts -

toolchains Contains the cross compilation toolchain of the Atlas
500.

toolchains/
Euler_compile_env_cro
ss

Contains the cross compilation toolchain for the host
side of the Atlas 500.

toolchains/aarch64-
linux-gcc6.3

Contains the cross compilation toolchain for the device
side of the Atlas 500.

uihost -

5.3 Header Files and Link Libraries

5.3.1 Header Files
The Atlas 500 host and device programs share a set of header files during
development. All header files are stored in the include directory in the Atlas 500
DDK installation directory. The include directory structure is as follows:

├── include
│ ├── inc
│ ├── libc_sec
│ └── third_party

Table 5-2 Description of header files

Header File Description

include/inc Contains header files of service functions of Atlas 500
programs.

include/libc_sec Contains header files of security functions.

include/
third_party

Contains header files of third-party libraries.

Atlas 500
Application Software Development Guide 5 Development Environment

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 19

5.3.2 Link libraries
The link libraries for Atlas 500 program development include the link libraries on
which host and device programs of the Atlas 500 depend.

● The link library files on the host are stored in the lib64 directory in the Atlas
500 DDK installation directory. The lib64 directory does not contain
subdirectories and contains all link library files and soft links required by the
Atlas 500 host.

● The link library files of the device are stored in the device/lib directory in the
Atlas500 DDK installation directory. The device/lib directory does not contain
subdirectories and contains all link library files and soft links required by the
Atlas 500 device.

5.4 Compilation Toolchains

5.4.1 Host Compilation Toolchain
The Atlas 500 host uses Hi3559A as the CPU, which is a 64-bit CPU based on the
Armv8-A architecture. The Atlas 500 does not have any compilation tool running
on Hi3559A. Therefore, you need to perform cross compilation on the x86
platform and then copy the compiled software to Hi3559A for running.

The Atlas 500 host software development and compilation toolchain is stored in
the toolchains/Euler_compile_env_cross/arm/cross_compile/install/bin
directory of the Atlas 500 DDK installation directory.

5.4.2 Device Compilation Toolchain
The Atlas 500 device uses the Arm Cortex-A55 CPU embedded in the Ascend 310
chip. Arm Cortex-A55 is a 64-bit CPU based on the Armv8-A architecture. The
Atlas 500 does not have any compilation tool running on the Arm Cortex-A55
CPU. Therefore, you need to perform cross compilation on the x86 platform and
then copy the compiled software to the Atlas 500 host for running. During
program running, copy the generated executable file or dynamic library to the
Atlas 500 device for running.

The software development and compilation toolchain for the Atlas 500 device is
stored in toolchains/aarch64-linux-gcc6.3/bin under the Atlas 500 DDK
installation directory.

5.5 DDK Tools
● DDK tool directory: $DDK_HOME/bin/x86_64-linux-gcc5.4

$DDK_HOME is the installation directory of the Atlas 500 DDK, for example, /
home/Atlas500_DDK.

● For details about tool functions, see Table 5-3.

Atlas 500
Application Software Development Guide 5 Development Environment

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 20

Table 5-3 Description of tool functions

Name Function Description

IDE-daemon-
client

IDE daemon
command toolkit

For details, see the IDE-daemon-client
Command Reference.

IDE-daemon-
hiai

Data backhaul tool ● Data is sent back during image pre-
processing.

● Operator data is transmitted from
the device to the host.

omg Model conversion
tool

The Caffe or TensorFlow model can be
converted into a .om model file
supported by the DDK. For details, see
the Model Conversion Guide.

protoc Tool for the third-
party library
protobuf

This tool converts .proto files into
protocols supported by each language.

Atlas 500
Application Software Development Guide 5 Development Environment

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 21

6 General Inference Service Flow

6.1 Service Flow

6.2 Mapping Between Software and Hardware Modules

6.1 Service Flow

Figure 6-1 Service flow

Figure 6-1 shows the software service flow. For details, see Table 6-1.

Table 6-1 Service flow description

Process Description Remarks

Data source Indicates the video or
image source.

The source can be RTSP streams
from an IP camera (IPC) or
offline videos or pictures in a
disk.

Data
obtaining

Implements data obtaining. You can pull streams from the
open-source FFmpeg function
library or using custom
implementation code. HostCPU
implements data obtaining.

Atlas 500
Application Software Development Guide 6 General Inference Service Flow

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 22

Process Description Remarks

Data pre-
processing

Implements image pre-
processing functions such
as decoding, scaling, and
color gamut conversion.

● If software decoding is used,
the open-source OpenCV
function library is called. The
data pre-processing software
runs on the host CPU or Ctrl
CPU.

● If hardware decoding is used,
the API for DVPP decoding and
AIPP CSC is called to
implement pre-processing.
Then the corresponding
hardware modules are started
on the device side.

Inference Implements the model
inference function.

The function runs on the device-
side AI Core or AI CPU.

Post-
processing

Implements post-processing
of model inference results.

The function runs on the device-
side Ctrl CPU or host CPU.

Output Displays the
implementation result.

-

6.2 Mapping Between Software and Hardware Modules
● Pre-processing and post-processing can be performed on the host or device

side based on actual requirements.
● Pre-processing can be implemented by either hardware or software.

Figure 6-2 Software modules

Figure 6-3 Hardware modules

Atlas 500
Application Software Development Guide 6 General Inference Service Flow

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 23

7 Running a Code Sample

7.1 Obtaining the HelloDavinci Code

7.2 Description of the HelloDavinci File

7.3 HelloDavinci Process Framework

7.4 HelloDavinci Compilation and Running

7.1 Obtaining the HelloDavinci Code
Download URL: https://gitee.com/HuaweiAtlas/samples

7.2 Description of the HelloDavinci File
The samples directory contains compilation configurations and program samples
(HelloDavinci included) of the Atlas. To run the HelloDavinci code file
independently, obtain the Samples/Cmake, Samples/Common, and Samples/
HelloDavinci folders, as shown in Figure 7-1.

● CMake: Stores the CMake configuration file.
● Common: Stores common code.
● HelloDavinci: Indicates the HelloDavinci project directory, including the .build

file, source code file, graph configuration file, and README.md.

Retain the relative paths of the three folders.

Atlas 500
Application Software Development Guide 7 Running a Code Sample

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 24

https://gitee.com/HuaweiAtlas/samples

Figure 7-1 File directory

The directory structure of the CMake files is as follows:

├──Ascend.cmake // device-side compilation chain
├──Euler.cmake // host-side compilation chain
└──FindDDK.cmake // file for searching for the DDK module

The directory structure of HelloDavinci is as follows:

├── build // compilation folder, including the compilation on the host and device sides
│ ├── CMakeLists.txt
│ ├── device
│ └── host
├── build.sh // compilation script
├── README.md //README.md
├── main.cpp // main function entry
├── include // HelloDavinci common module
├── DstEngine // DstEngine (host side)
│ ├── DstEngine.cpp
│ └── DstEngine.h
├── graph.config // graph configuration file
├── HelloDavinci // HelloDavinci engine (device side)
│ ├── HelloDavinci.cpp
│ └── HelloDavinci.h
└── SrcEngine // SrcEngine engine (host side)
│ ├── SrcEngine.cpp
│ └── SrcEngine.h

7.3 HelloDavinci Process Framework
This section describes the process of implementing the HelloDavinci sample code.

Atlas 500
Application Software Development Guide 7 Running a Code Sample

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 25

If you are familiar with this process, directly go to 7.4 HelloDavinci Compilation and
Running and check the running result.

This sample demonstrates how to send data from the host to the device, return
the generated character string from the device to the host, save the result, and
print it to the terminal. As shown in Figure 7-2, the program is divided into two
parts running on the host side (including SrcEngine and DstEngine) and device
side (including HelloDavinci), respectively. The running process is as follows:

1. The main function is called to send data to SrcEngine.

2. SrcEngine forwards the received data to HelloDavinci, which generates the
character string "This message is from HelloDavinci" and sends it to
DstEngine.

3. After receiving the character string, DstEngine saves it to ${workPath}/out/
dacvinci_log_info.txt and sends a signal indicating the operation completion
to the main function. ${workPath} is the root directory of the project.

4. After the main function receives the completion signal, the graph is
destroyed, information indicating the operation completion is printed on the
terminal, and the program exits.

Figure 7-2 HelloDavinci process framework

7.4 HelloDavinci Compilation and Running

Prerequisites
● The Atlas 500 DDK has been installed.

● The third-party CMake compilation tool (2.8.4 or later) has been installed.

If the CMake compilation tool is not available, install it by referring to 8.5.1
Compiling Service Software Using CMake.

Atlas 500
Application Software Development Guide 7 Running a Code Sample

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 26

Compilation Procedure

Step 1 Copy the samples file obtained in 7.2 Description of the HelloDavinci File to a
directory on the development host.

Step 2 Run the export DDK_HOME=Atlas 500 DDK installation directory command.

Step 3 Go to the HelloDavinci directory.

Step 4 Run the bash build.sh A500 command to perform compilation. After the
compilation is successful, a .main executable file and the target dynamic library
file are generated in the ${workPath}/out/ directory.

${workPath} indicates the HelloDavinci directory.

Step 5 Copy the out folder to Atlas 500 and run the ./out/main command to view the
output result. If the following information is displayed, the execution is successful:
Euler:~ # ./out/main
Hello Davinci!
The sample end!!
Euler:~ # cat out/davinci_log_info.txt
This message is from HelloDavinci

----End

Atlas 500
Application Software Development Guide 7 Running a Code Sample

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 27

8 Software Code Development

8.1 Configuring the Matrix Framework

8.2 Using DVPP APIs

8.3 Offline Model Inference

8.4 Commissioning Software Logs

8.5 Service Software Compilation

8.1 Configuring the Matrix Framework

Service Framework
To maximize the computing power of Ascend 310 chips, Huawei provides the
Matrix framework to migrate inference services. The Matrix framework provides
the following functions:

● Process orchestration

a. An engine is defined as a basic functional unit in the process, and its
implementation can be customized (for example, inputting image data,
classifying images, and outputting the predicted class of images). By
default, each engine corresponds to a thread on Ascend 310.

b. A graph is defined to manage multiple engines. Each graph corresponds
to a process on Ascend 310. Figure 8-1 shows the relationship between
the graph and engines.

Figure 8-1 Relationship between the graph and engines

In the graph configuration file, configure the serial connections of engine
nodes and node properties (parameters required for node running). The

Atlas 500
Application Software Development Guide 8 Software Code Development

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 28

actual data flow direction is implemented on the nodes based on the specific
service. The entire engine computation process is started by inputting data to
the start node of the service.

● Media pre-processing

Engines running on Ascend 310 can directly call the APIs provided by the
DVPP to implement the media pre-processing capability.

● Offline model loading and running

Engines running on Ascend 310 can directly call the APIs provided by the
model manager (AIModelManger) to load offline models and perform
inference.

The following figure shows a user's service software structure based on the
Matrix framework. The user creates a service flow (graph) that consists of
custom engines. Engines running on the device side can call the APIs of the
DVPP and AIModelManager to utilize Ascend 310-enabled media pre-
processing and the hardware acceleration function of model inference.
Engines on the host side are used to implement the service software logic and
exchange data with the engines on the device side.

Figure 8-2 Service software framework

8.1.1 Configuring, Creating, and Destroying a Graph
The graph describes the data transmission relationship between engines in a
service. The Matrix framework defines the graph data structure in a protobuf file.
You can define the graph configurations in the configuration file.

For details about the graph keywords, see 10.1 Graph Keywords. For more details, see the
Matrix API Reference.

The following provides a simple graph configuration file, which will create a graph
service flow with the ID of 1000. The service flow contains three engines. Figure
8-3 shows the data transmission relationship between the engines.

Atlas 500
Application Software Development Guide 8 Software Code Development

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 29

Figure 8-3 Data transmission relationship between engines

graphs {
 graph_id: 1000 # A single chip supports multiple graphs, whose IDs must be greater
than 0 and must be unique within the chip.
 device_id: "0" # ID of the chip on which the graph is running
 priority: 1 # priority

 # user-defined engine, which can be instantiated into multiple engines. Multiple engines are
differentiated by ID.
 engines {
 id: 2001 # engine ID
 engine_name: "ObjectDetectionEngine" # class name of the user-defined engine
 side: DEVICE # whether the engine runs on the host or device
 so_name: "./libObjectDetectionEngine.so" # name and host-side path of the dynamic
library, which is copied by the Matrix framework to the device side
 # user-definable parameters
 ai_config{
 items{
 name: "model" # model name
 value: "./FaceDetection.om" # host-side path of the model, which is copied by the
Matrix framework to the device side
 }
 items{
 name: "mode"
 value: "test"
 }
 }
 }
 engines {
 id: 1000
 engine_name: "DecodeEngine"
 side: DEVICE
 so_name: "./libDecodeEngine.so"
 }
 engines {
 id: 2002
 engine_name: "PostProcess"
 side: HOST
 }

 # Describes interface connections between engines.
 connects {
 src_engine_id: 1000 # source engine ID for data transmission
 src_port_id: 0 # source port ID for data transmission
 target_engine_id: 2001 # target engine ID for data transmission
 target_port_id: 0 # target port ID for data transmission
 }
 connects {
 src_engine_id: 2001
 src_port_id: 0
 target_engine_id: 2002
 target_port_id: 0
 }
}

Atlas 500
Application Software Development Guide 8 Software Code Development

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 30

Table 8-1 lists three frequently used graph APIs provided by the Matrix. For
details, see the Matrix API Reference.

Table 8-1 API description

API Description

HIAI_StatusT HIAI_Init(uint32_t
deviceID)

Initializes an Ascend 310 chip. Note
that the chip ID used must be the
absolute number of the Ascend 310
chip. The chip ID queried on the Atlas
500 is fixed to 0, while the chip ID
queried using the npu-smi command
is a relative number.

static HIAI_StatusT
Graph::CreateGraph(const std::string&
configFile)

Reads the graph configuration file,
initializes engines, and creates threads
and channels for data transmission to
initialize the service flow.

static HIAI_StatusT
Graph::DestroyGraph(uint32_t
graphID)

Destroys the graph and runs the
destructor functions of engines.

8.1.2 Configuring Engine
An engine is a basic functional unit of service software defined by the Matrix
framework. Users inherit the engine template class defined by the Matrix
framework and create engines for each functional module in services (such as
reading input files, image pre-processing, neural network inference, inference
result post-processing, and host/device data transmission). For details about the
functional modules, see the Matrix API Reference. Each engine defines the Init()
and Process() functions. When the graph is initialized, the Init() function is
automatically executed to initialize engine parameters (including memory
allocation and model loading). The Process() function implements data
transmission and service logic.

● Table 8-2 describes the common APIs.

Table 8-2 API description

API Description Remarks

HIAI_DEFINE_PROCESS
(inputPortNum,
outputPortNum)

Specifies the
number of
interfaces for
inputting and
outputting
engine data.

The Matrix framework creates a
queue for each interface to
cache data. The transmission
relationship between engines is
specified in the graph
configuration file. For details, see
10.1 Graph Keywords.

Atlas 500
Application Software Development Guide 8 Software Code Development

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 31

API Description Remarks

HIAI_StatusT
Engine::Init(const
AIConfig &config, const
vector<AIModelDescripti
on>&modelDesc)

Initializes the
engine.

During graph creation, this API is
called to initialize engines. The
ai_config value defined in the
graph configuration file is
transferred to the argument
config of the function. You can
add custom items to the
configuration file and use them
in the initialization function.

HIAI_IMPL_ENGINE_PRO
CESS(name,
engineClass, inPortNum)

Indicates the
Process()
function of an
engine,
corresponding
to a device-side
thread.

The Process() function of the
engine is driven by data on the
device side. That is, after the
input interface receives data, the
framework starts the process. If
multiple input interfaces are
configured, each input interface
triggers a process after receiving
data. Therefore, if service
processing depends on multiple
inputs, you need to implement
the synchronization logic of
multiple inputs. The framework
has encapsulated the Process()
function into a macro definition
for implementation.

● The engine reads data from the input interface. The framework supports a
maximum of 16 input interfaces (arg0–arg15) that can be directly used. From
the perspective of service applications, shared pointers are transmitted. The
following shows the transmission code sample:
// Transmission engine: transmits the user-defined data USER_DEFINE_TYPE to the target
engine.
std::shared_ptr<USER_DEFINE_TYPE > streamData= std::make_shared< USER_DEFINE_TYPE
>();
// After a value is assigned to streamData, call Senddata to send the value. The shared
pointer needs to be converted to the void type for data transmission.
hiai::Engine::SendData(0, " USER_DEFINE_TYPE ",
std::static_pointer_cast<void>(deviceStreamData));
// Receiving engine: receives data and converts it to the user-defined type
USER_DEFINE_TYPE.
std::shared_ptr< USER_DEFINE_TYPE > inputArg = std::static_pointer_cast<
USER_DEFINE_TYPE >(arg0);

8.1.3 Configuring Data Transmission
Based on service applications, data transmission defined by the Matrix framework
is classified into the following types (The used APIs are similar and the transmitted
objects are shared pointers, but the API usage varies according to scenarios):

● Input API for transmitting data outside a graph to engines. For details, see
"Graph::SendData" in the Matrix API Reference.

Atlas 500
Application Software Development Guide 8 Software Code Development

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 32

● Output API for transmitting data of engines in a graph to the outside of the
graph. For details, see "Graph::SetDataRecvFunctor" and
"Engine::SetDataRecvFunctor" in the Matrix API Reference.

● Data is transmitted between engines in a graph. For details, see
"Engine::SendData" in the Matrix API Reference.

Data Transmission Between Engines
The Matrix framework divides service software into the software on the host side
(x86/Arm server) and the software on the device side (Ascend 310 chip).
Therefore, data transmission between engines is classified into cross-side
transmission and intra-side transmission.

● Cross-side transmission: The data to be transmitted needs to be serialized into
binary data. After the data is transmitted by using hardware such as PCIe or
DMA, the data is deserialized into valid data. Therefore, you need to
customize serialization and deserialization functions for custom data
structures. The Matrix framework allows you to define serialization and
deserialization functions using either a common or a high-speed interface.
The common interface is applicable to data transmission at a rate below 256
kbit/s, whereas the high-speed interface is applicable to data transmission at
a rate of 256 kbit/s or higher. The high-speed interface operates at a speed
similar to that of a common interface when transmitting small memory
blocks. For details, see "Data Type Serialization and Deserialization (C++
Language)" in the Matrix API Reference.

● Intra-side transmission: The transferred data is the address of the shared
pointer and is not copied. As the Process() function of engines is instantiated
into threads, intra-side transmission implements data transmission in
memory-sharing mode. Ensure that there is no unauthorized access. The
Matrix framework recommends that the local engine does not modify the
shared pointer after transmitting it to the next engine.

● After the serialization and deserialization functions are implemented for
cross-side transmission, the API used in the service application is the same as
that used in intra-side transmission.
HIAI_StatusT Engine::SendData(uint32_t portId, const std::string& messageName,
const shared_ptr<void>& dataPtr, uint32_t timeOut = TIME_OUT_VALUE);

Input API for Transmitting Data Outside a Graph to Engines
● The service flow composed of engines is driven by data. This API allows data

outside a graph to be sent to engines in the graph.
● The following APIs can be called to implement cross-side and intra-side

transmission, with similar requirements to those for data transmission
between engines. For details, see "Graph::SendData" in the Matrix API
Reference.
HIAI_StatusT Graph::SendData(const EnginePortID& targetPortConfig, const
std::string& messageName, const std::shared_ptr<void>& dataPtr,const uint32_t
timeOut = 500)

Output API for Transmitting Data of Engines in a Graph to the Outside of
the Graph

● The Matrix framework transmits the data of engines in a graph to the outside
of the graph using either of the following callback functions:

Atlas 500
Application Software Development Guide 8 Software Code Development

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 33

– Callback on the output API for an engine (node of a service flow). For
details, see "Graph::SetDataRecvFunctor" in the Matrix API Reference.

– For details about the callback on the output API in other scenarios, see
"Engine::SetDataRecvFunctor" in the Matrix API Reference.

● The framework provides the template class DataRecvInterface of callback
functions.

● The framework requires that the callback function and the output engine run
on the same side. That is, only intra-side data transmission is supported.

8.2 Using DVPP APIs
DVPP is an image pre-processing hardware acceleration module provided by
Ascend 310. This module integrates the following six functions. For details about
the APIs and their usage, see the DVPP API Reference.

● Format conversion, image cropping, and scaling (by the VPC)
● H.264/H.265 video decoding (by the VDEC)
● H.264/H.265 video encoding (by the VENC)
● JPEG image decoding (by the JPEGD)
● JPEG image encoding (by the JPEGE)
● PNG image decoding (by the PNGD)

8.2.1 Using DVPP APIs
The DVPP provides the following three types of APIs by using handles, namely,
APIs for creating, using, and destroying handles.

The VPC, JPEGE, JPEGD, and PNGD components share the same set of APIs with
varying input parameters. VDEC and VENC each have a separate set of APIs.

● VDEC uses the following three APIs for decoding, which can be called in
asynchronous mode. The VdecCtl API is used to transfer configurations
including the callback function) and H.264/H.265 data. After hardware
decoding, the Matrix framework calls the callback function to return the
result.

The data decoded by the VDEC is in HFBC format (internal format), which has to be
converted to the YUV420SP format using the VPC. For details, see samples in
"Implementing the VDEC Function" of the DVPP API Reference.

int CreateVdecApi(IDVPPAPI *&pIDVPPAPI, int singleton)
int VdecCtl(IDVPPAPI *&pIDVPPAPI, int CMD, dvppapi_ctl_msg *MSG, int singleton)
int DestroyVdecApi(IDVPPAPI *&pIDVPPAPI, int singleton)

● The VPC, JPEGE, JPEGD, and PNGD use the same interfaces. The configuration
parameters vary according to the function. For details, see "VPC/JPEGE/JPEGD/
PNGD Interfaces" in the DVPP API Reference.
int CreateDvppApi(IDVPPAPI *&pIDVPPAPI)
int DvppCtl(IDVPPAPI *&pIDVPPAPI, int CMD, dvppapi_ctl_msg *MSG)
int DestroyDvppApi(IDVPPAPI *&pIDVPPAPI)

● The DVPP is restricted by hardware during its usage. To speed up data read
and write, an image's length and width must be aligned to the specified size

Atlas 500
Application Software Development Guide 8 Software Code Development

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 34

without affecting the valid region. The image's length and width are aligned
to the specified size by padding 0s to leftward and downward.

For example, for a 300 x 300 YUV420SP_UV image, the size must be aligned
to 304 x 300 (The width is 16-pixel aligned, and the height is 2-pixel aligned).
The valid region ranges from [0, 0] to [300, 300]. In this case, you need to
pad 0s rightward to column 304.

– When the JPEGD, VDEC, and PNGD components of the DVPP are used to
read input images, the decoded images must meet the length and width
alignment requirements. In this case, you need to apply for memory for
output images based on the size of the aligned images.

For example, for a 300 x 300 YUV420SP_UV image, you need to apply for
memory with the size of (304*300*3/2) bytes. Each pixel of a YUV420SP
image requires a 1.5-byte storage space.

▪ VPC: input and output memory address aligned by 16 bytes

▪ VPC: output image width aligned by 16 bytes

▪ VPC: output image height aligned by two bytes

▪ VPC: input image width aligned by 16 bytes

▪ VPC: input image height aligned by two bytes

▪ JPEGD: output image width aligned by 128 bytes

▪ JPEGD: output image height aligned by 16 bytes

– DVPP components pose many restrictions on output images based on the
processing speed and memory usage. For example, the length and width
of output images must be aligned, and the output format must be
YUV420SP. However, the model input is usually in RGB or BGR format,
and the sizes of the input images are different. Therefore, the Ascend 310
chip provides AI pre-processing (AIPP) for image format conversion and
image cropping. For details, see the Model Conversion Guide.

Figure 8-4 shows the handling process of the JPEG image input and H.
26* video input.

Figure 8-4 Handling process of video and image inputs

Atlas 500
Application Software Development Guide 8 Software Code Development

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 35

8.2.2 Applying for DVPP Memory
The Matrix framework provides the memory allocation API HIAI_DVPP_DMalloc
and memory freeing API HIAI_DVPP_DFree. HIAI_DVPP_DMalloc is used to
allocate memory that meets DVPP alignment requirements. The two APIs must be
used in pairs. To prevent memory leakage, you are advised to use the shared
pointer to manage the allocated memory. The implementation code is as follows:

uint8_t* buffer = nullptr;
HIAI_StatusT ret = hiai::HIAIMemory::HIAI_DVPP_DMalloc(dataSize, (void*&) buffer);
std::shared_ptr<uint8_t> dataBuffer = std::shared_ptr<uint8_t>(buffer, \
[](std::uint8_t* data) hiai::HIAIMemory::HIAI_DVPP_DFree(data);});

In addition, these APIs are available only on the device side. The memory allocated
by HIAI_DVPP_DMalloc can be used for high-speed data transmission from the
device to host. In this mode, the memory is freed by the Matrix framework. For
details, see the sample code DvppDecodeResize.

8.3 Offline Model Inference
The Ascend 310 chip is capable of accelerating inference under the Caffe and
TensorFlow frameworks. After model training is complete, you need to convert the
trained model to the model file (.om file) supported by Ascend 310, compile
service code, and call APIs provided by the Matrix framework to implement service
functions.

The Matrix framework encapsulates the AI pre-processing (AIPP) and model
inference functions into a module. After the inference API is called, the Matrix
framework calls the AIPP to pre-process input images, inputs the pre-processed
images into the model inference module, and returns the inference result.

8.3.1 Configuring AIPPs
AIPP is a hardware image pre-processing function provided by Ascend 310. The
pre-processing includes CSC, image normalization (by subtracting the mean value
or multiplying a coefficient), image cropping (by specifying the start point of
cropping and cropping the image to the size required by the neural network), and
much more.

AIPP supports static and dynamic modes.

● Static AIPP: In this mode, parameters are set during model conversion. The
model inference process uses fixed AIPP pre-processing (cannot be modified).
For details about the keywords and configuration file template of static AIPP,
see "Configuration File Template" in the Model Conversion Guide.

● Dynamic AIPP: During model conversion, AIPP is set to dynamic mode. Before
model inference, set AIPP pre-processing parameters as required. Dynamic
AIPP is used when pre-processing parameters have to be changed based on
service requirements. For example, cameras use different normalization
parameters, and the input image format must be compatible with YUV420
and RGB. For details about how to use dynamic AIPP, see "AIPP Configuration
APIs" in the Matrix API Reference.

Atlas 500
Application Software Development Guide 8 Software Code Development

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 36

● The input format of AIPP is YUV420SP_U8 (the default format is YUV420SP_UV). If the
format is YUV420SP_VU, change the value of rbuv_swap_switch. Otherwise, the output
result will be affected.

● The model input is in either RGB_U8 or BGR_U8 format, corresponding to different
color gamut conversion matrices.

Images output by the DVPP module are the aligned YUV420SP images. The output
does not support the RGB format. Therefore, the service flow needs to use
converted and aligned YUV420SP images of the AIPP module, and crop the image
to the size in line with the model input.

For example, the model requires the input of a 300 x 300 RGB image. After DVPP
APIs are called for processing (such as JPEG decoding and scaling), the DVPP
module outputs a 384 x 304 image YUV420SP_UV image (the valid region size is
300 x 300, and 0s are padded to rightward and downward.

The following shows the static AIPP configuration. The file configures the start
coordinates of the image to be cropped. The length and width of the image to be
cropped are set according to the model input by default. The image normalization
parameters are the mean value and the reciprocal of the variance (The final value
is obtained by subtracting the mean value and multiplying this coefficient).

aipp_op{
Sets AIPP to static mode.
aipp_mode: static
Enables image cropping.
crop: true
Sets the format and size for an input image.
input_format : YUV420SP_U8
src_image_size_w : 384
src_image_size_h : 304
Sets the start coordinates for cropping. The width and height of the cropped region are in line
with the model input by default.
load_start_pos_h : 0
load_start_pos_w : 0

Enables format conversion. The conversion matrix converts YUV420SP_UV to RGB888.
csc_switch : true
matrix_r0c0 : 298
matrix_r0c1 : 516
matrix_r0c2 : 0
matrix_r1c0 : 298
matrix_r1c1 : -100
matrix_r1c2 : -208
matrix_r2c0 : 298
matrix_r2c1 : 0
matrix_r2c2 : 409
input_bias_0 : 16
input_bias_1 : 128
input_bias_2 : 128

Enables data normalization and configure the mean value and the reciprocal of variance.
mean_chn_0 : 125
mean_chn_1 : 125
mean_chn_2 : 125
var_reci_chn_0 : 0.0039
var_reci_chn_1 : 0.0039
var_reci_chn_2 : 0.0039
}

Atlas 500
Application Software Development Guide 8 Software Code Development

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 37

8.3.2 Converting an Offline Model
The Ascend 310 chip is capable of accelerating inference under the Caffe and
TensorFlow framework models. During model conversion, operator scheduling
tuning, weight data rearrangement, quantization compression, and memory usage
tuning can be implemented, and model preprocessing can be completed without
using devices. After model training is complete, you need to convert the trained
model to the model file (.om file) supported by Ascend 310, compile service code,
and call APIs provided by the Matrix framework to implement service functions.

The offline model conversion tool is stored in the DDK in the <$DDK_HOME>/
uihost/bin/omg directory. The offline model generator (OMG) tool is a CLI tool
(parameters can be obtained by using the -h command). It is used to convert
models under Caffe and TensorFlow frameworks into .om files supported by
Ascend 310. For details about how to use the OMG tool, see "Model Conversion
Using OMG" in the Model Conversion Guide.

1. Caffe model conversion:
#omg --framework 0 --model <model.prototxt> --weight <model.caffemodel> --output
<output name> --insert_op_conf <aipp.cfg>

2. TensorFlow model conversion:
#omg --framework 3 --model <model.pb> --input_shape "input_name:1,112,112,3" --
output <output_name> --insert_op_conf <aipp.cfg>

Table 8-3 Parameter description

Parameter Description

framework=0 Indicates a Caffe model.

framework=3 Indicates a TensorFlow model.

model Specifies a model file.

weight Specifies a weight file for the Caffe model.

output Specifies a name of the .om file.

input_shape Specifies the name and size of the input layer. The
default value for TensorFlow models is
input_layer_name: n, h, w, c.

insert_op_conf Specifies an AIPP configuration file.

8.3.3 Performing Model Inference
The Matrix framework provides the AIModelManager class to implement model
loading and inference. For details, see the Matrix API Reference.

Model Inference Initialization

Step 1 Set the model path in the graph configuration file of the custom inference model
engine (add items to ai_config and set the model path on the host).

Atlas 500
Application Software Development Guide 8 Software Code Development

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 38

Step 2 Use the Matrix framework to transfer the model file to the device.

Step 3 Parse the custom items in the custom engine to obtain the path of the model on
the device side.

Step 4 Call AIModelManager::Init() to complete the initialization. The implementation is
as follows:
/* Define member variables of a custom engine. */
std::shared_ptr<hiai::AIModelManager> modelManager;
/* Implement AIModelManager initialization with the Init function of the custom engine. */
std::vector<hiai::AIModelDescription> model_desc_vec;
hiai::AIModelDescription model_desc_;
......
/* Parse the model path from the ai_config structure in the graph configuration file. */
model_desc_.set_path(model_path);// Set the model path.
model_desc_vec.push_back(model_desc_);
ret = modelManager->Init(config, model_desc_vec);// If configurations are meaningless, input
the arguments of Engine::Init.

----End

Setting the Input and Output of Model Inference
● The Matrix framework defines the IAITensor class for managing the input and

output matrices of model inference. For ease of use, the Matrix framework
derives AISimpleTensor and AINeuralNetworkBuffer based on the IAITensor
class.

● Memory for the model inference input and output is allocated by calling
HIAI_DMalloc, which reduces memory copy.

● Even though the Matrix framework can automatically free the memory
managed by AISimpleTensor, you are advised to apply for and free the
memory by yourself to prevent memory leakage or repeated freeing.

● During model conversion, if the functions such as image cropping, format
conversion, and image normalization of the AIPP module are enabled, the
input data must be processed by the AIPP module before it is used for model
inference.

Input and Output Implementation
The code for input and output implementation is as follows:

/* Obtain the descriptions of input and output tensors of the inference model. */
std::vector<hiai::TensorDimension> inputTensorDims;
std::vector<hiai::TensorDimension> outputTensorDims;
ret = modelManager->GetModelIOTensorDim(modelName, inputTensorDims,
outputTensorDims);

/* Set the input. If there are multiple inputs, create and set them in sequence. */
std::shared_ptr<hiai::AISimpleTensor> inputTensor =
std::shared_ptr<hiai::AISimpleTensor>(new hiai::AISimpleTensor());
inputTensor->SetBuffer (< memory address of the input data >, < length of the input data >);
inputTensorVec.push_back(inputTensor);

/* Set the output. */
for (uint32_t index = 0; index < outputTensorDims.size(); index++) {
hiai::AITensorDescription outputTensorDesc = hiai::AINeuralNetworkBuffer::GetDescription();
uint8_t* buf = (uint8_t*)HIAI_DMalloc(outputTensorDims[index].size);
......

Atlas 500
Application Software Development Guide 8 Software Code Development

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 39

std::shared_ptr<hiai::IAITensor> outputTensor = hiai::AITensorFactory::GetInstance()-
>CreateTensor(
outputTensorDesc, buf, outputTensorDims[index].size);
outputTensorVec.push_back(outputTensor);
}

Model Inference
● The Matrix framework supports either synchronous inference and

asynchronous inference. Synchronous inference is used by default. You can set
the AIContext configuration item and call the callback function to implement
asynchronous inference.
/* Model inference */
hiai::AIContext aiContext;
HIAI_StatusT ret = modelManager->Process(aiContext, inputTensorVec, outputTensorVec,
0);

● If the AIModelManager object loads multiple models, you can set the
AIContext configuration item to set model parameters (initialization phase
and model name). For details, see "Offline Model Manager" in the Matrix API
Reference.

Model Inference Post-Processing
The result matrix of model inference is stored in the IAITensor object as the
memory+description information. You need to parse the memory information into
valid output based on the actual output format (data type and data sequence) of
the model.

/* Parse the inference result. */
for (uint32_t index = 0; index < outputTensorVec.size(); index++) {
shared_ptr<hiai::AINeuralNetworkBuffer> resultTensor =
std::static_pointer_cast<hiai::AINeuralNetworkBuffer>(outputTensorVec[i]);
// resultTensor->GetNumber() -- N
// resultTensor->GetChannel() -- C
// resultTensor->GetHeight() -- H
// resultTensor->GetWidth() -- W
// resultTensor->GetSize() -- memory size
// resultTensor->GetBuffer() -- memory address
}

For details about the post-processing of common classification models, see the
sample code InferClassification. For details about the post-processing of the SSD
object detection model, see the sample code InferObjectDetection.

8.4 Commissioning Software Logs

8.4.1 Configuring Log System

Configuring Log Levels
The framework provides five log levels: error > warning > info > debug > event.

Event logs record the most critical logs of the system and must be set separately.

For the other four log levels, logs of the specified level and higher can all be
printed.

Atlas 500
Application Software Development Guide 8 Software Code Development

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 40

Step 1 Enter the developer mode by following the instructions provided in 4.8 Accessing
the Atlas 500 Development Mode.

Step 2 Run the vi /etc/slog.conf command to open the log configuration file. Its default
content is as follows:
Global log level
global_level=3

User
user=HwHiAiUser

Share memory size of node 512k * 32 biggest support
maxNodeSize=524272

Share memory count of queue
maxQueueCount=40

log-agent-host #
logAgentMaxFileNum=8
set host one log file max size, range is (0, 104857600]
logAgentMaxFileSize=10485760
set host log dir
logAgentFileDir=/var/dlog
...

Step 3 Change the global_level value in the log configuration file to change the log
level. The global_level value corresponding to each log level is as follows. After
the modification, save the /etc/slog.conf file.

0: debug

1: info

2: warning

3: error

Step 4 Restart the OS for the modifications to take effect.

----End

8.4.2 Viewing Logs
The log files of the Atlas 500 are in the /var/dlog directory.

● The log files prefixed by host- are log files on the host (Hi3559A).
● The files prefixed by device- are the log files on the device (Ascend 310).

Procedure

Step 1 Access the development mode of the Atlas 500 by referring to 4.8 Accessing the
Atlas 500 Development Mode.

Step 2 Go to the /var/dlog directory.

Step 3 Check whether the value of zip_switch is 0 before viewing logs.

In the /etc/slog.conf file, check the value of zip_switch. If the value is not 0, open
the /etc/slog.conf file as the root user, change the value of zip_switch to 0, and
save the file.

Atlas 500
Application Software Development Guide 8 Software Code Development

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 41

Step 4 Restart the Atlas 500 OS for the modification to take effect.

You can use the editor to view logs generated after zip_switch is set.

----End

8.4.3 Log API Usage

Defining the Log Module

Step 1 Define an ID for a log module. The value must be unique.
#define USER_DEFINE_ERROR 0x6001

The include/inc/hiaiengine/status.h file in the Atlas 500 DDK installation directory
contains some module IDs. Ensure that new module IDs do not conflict with those defined
in the file.

Step 2 Define the error code enumeration of the log module. If there are multiple errors,
define multiple error codes in the enumeration.
typedef enum
{
USER_DEFINE_OK_CODE,
USER_DEFINE_INVALID_CODE
}
USER_DEFINE_CODE;

Step 3 Register the error codes defined in Step 2 with HIAI_DEF_ERROR_CODE (macro
definition). moduleId corresponds to the module ID defined in Step 1. loglevel is
the log level registered for the error code. The value can be HIAI_ERROR,
HIAI_INFO, HIAI_DEBUG, or HIAI_WARNING. codeName corresponds to the
content of the enumeration ID (excluding _CODE) of the error code in Step 2.
codeDesc indicates the error code description. The following describes the
implementation of the macro definition and use sample:
HIAI_DEF_ERROR_CODE(moduleId, logLevel, codeName, codeDesc)
HIAI_DEF_ERROR_CODE(USER_DEFINE_ERROR,HIAI_ERROR,USER_DEFINE_OK,"OK")

----End

Exporting Logs to the .dlog Log File

The Atlas 500 service software can call HIAI_ENGINE_LOG to output logs to
the .dlog log file. For details, see "Logs (C++)" in the Matrix API Reference. There
are eight log formats. This section describes one of them based on the log
registration content. The definition and use sample are as follows:

● The function format is as follows. For details about the parameters, see Table
8-4.
#define HIAI_ENGINE_LOG(...) \
HIAI_ENGINE_LOG_IMPL(__FUNCTION__, __FILE__, __LINE__, ##__VA_ARGS__)
void HIAI_ENGINE_LOG_IMPL(const char* funcPointer, const char* filePath, int lineNumber,
const uint32_t errorCode, const char* format, ...);

Atlas 500
Application Software Development Guide 8 Software Code Development

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 42

Table 8-4 Parameter description

Parameter Description

errorCode Error code

format Log description

... This is a variable parameter in the
format and is added based on the
log content.

● HIAI_ENGINE_LOG is called as follows:
HIAI_ENGINE_LOG(HIAI_INVALID_INPUT_MSG, "RUNNING OK");

8.5 Service Software Compilation
A complete program running on the Atlas 500 can be divided into two parts,
which are running on the Atlas 500 host CPU (Hi3559A) and the Atlas 500 device
CPU (Arm Cortex-A55), respectively.

The Atlas 500 does not provide compilation toolchains running on the host or
device CPU. Therefore, cross compilation is required. The methods of cross-
compiling software for the Atlas 500 host and device are similar. They differ only
in the used tools and link libraries. This document describes the method of cross-
compiling the host software and device software. To improve software compilation
efficiency, a build automation tool is used. The Atlas 500 supports software
building using CMake, which is a cross-platform build tool with simple syntax and
strong portability. The Atlas 500 also supports software compilation using CMake.

8.5.1 Compiling Service Software Using CMake
Step 1 Run the sudo apt install cmake command on the development host to install the

CMake tool.

Step 2 Run the cmake -version command to check the CMake version. The version must
be later than 2.8.4.

Step 3 Create a CMake compilation project by referring to the settings of the Atlas 500
sample project.

Step 4 Copy the CMake directory in the root directory of the Atlas 500 sample project to
the upper-level directory in the home directory of the target project.

Step 5 Copy the build.sh file in a subproject (for example, HelloDavinci) of the Atlas 500
sample project to the home directory of the target project and modify the file.

Step 6 Delete source $path_cur/../Common/scripts/build_tools.sh from the file.

Step 7 Go to the root directory of the project and run the following command to compile
the program. After the compilation, check the generated target program in the
out folder under the root directory.

export DDK_HOME=Atlas 500 DDK installation directory&&bash build.sh A500

Atlas 500
Application Software Development Guide 8 Software Code Development

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 43

Step 8 Copy the out folder to the Atlas 500 host for running.

----End

Atlas 500
Application Software Development Guide 8 Software Code Development

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 44

9 Software Packaging and Deployment

9.1 Importing the Base Image

9.2 Creating an Image

9.3 Deploying the Image

9.1 Importing the Base Image

Prerequisites

Ensure that the Docker program has been installed in the packaging environment.

The dockerfile command is a built-in command of Docker. Therefore, Docker 18.09 that
matches the Atlas 500 is recommended.

Procedure

Step 1 In the development environment, go to the directory where
A500-3000_A500-3010-EulerOSx.x.x.xxx_64bit_aarch64_basic.tar.gz is located.

In A500-3000_A500-3010-EulerOSx.x.x.xxx_64bit_aarch64_basic.tar.gz, x.x.x.xxx
indicates the version number.

Step 2 Run the following commands to decompress the A500-3000_A500-3010-
EulerOSx.x.x.xxx_64bit_aarch64_basic.tar.gz package and obtain the
Atlas500_EulerOSx.x.x.xxx_64bit_aarch64_basic.tar.gz package:

tar -mxvf A500-3000_A500-3010-EulerOSx.x.x.xxx_64bit_aarch64_basic.tar.gz

Step 3 Run the following command to import the EulerOS base image:

docker load -i Atlas500_EulerOSx.x.x.xxx_64bit_aarch64_basic.tar.gz

Step 4 Run the following command to view the imported images:

docker images

Atlas 500
Application Software Development Guide 9 Software Packaging and Deployment

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 45

Step 5 Run the following command to rename the base image as euler:

docker tag atlas500_eulerosx.x.x.xxx_64bit_aarch64_basic euler

atlas500_eulerosx.x.x.xxx_64bit_aarch64_basic indicates the image name
obtained in Step 4.

----End

9.2 Creating an Image
Step 1 Run the vi Dockerfile command in the project directory to generate and compile

the Dockerfile file. The content is as follows:
FROM euler #Specify the renamed base image euler.
WORKDIR /app #Specify the working directory app.
COPY --chown=1001:1001 out /app/ #Copy the generated program to the /app directory. By default,
images are deployed on the management platform as the HwHiAiUser user. Add --chown=1001:1001.
ENTRYPOINT [./main"] #Specify the container boot program.

Step 2 Run the following command to create an image:

docker build -t myapp .

Step 3 Run the following command to export the image:

docker save myapp -o myapp.tar

----End

9.3 Deploying the Image

9.3.1 Deployment Using the IES
Step 1 Open the browser, enter https://Atlas 500 IES IP address in the address box and

press Enter and enter the user name and password to log in to the Atlas 500 IES.
The default user name is admin, and the default password is Huawei12#$. Figure
9-1 shows the home page.

Figure 9-1 Atlas 500 IES

Atlas 500
Application Software Development Guide 9 Software Packaging and Deployment

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 46

Step 2 Choose Management > Service Software > Service Instances > Add Service. The
page for service instance creation is displayed in the right pane.

Step 3 Enter basic information, such as the service instance name and its description.

Step 4 Set container information as follows:

● Container Image File: Click to upload a file (for example, myapp.tar
exported in 9.2 Creating an Image).

The file size (including the size after decompression) cannot exceed 512 MB. The file can be
in the *.tar or *.tar.gz format.

● Click on the right of Additional Configuration File to upload a file and
mount the file to the container directory.

An additional configuration file indicates the directory where the configuration and data
files of a container service are located. Generally, an additional configuration file is used to
store inference model files, images, and video data.
The file size cannot exceed 512 MB. The file can be in the *.tar or *.tar.gz format.

● Resource Restriction
– CPU: Select this option and enter the maximum CPU usage for a

container.
– Memory: Select this option and enter the maximum memory capacity for

a container.
– AI Compute Power: Select the option to allow the container to use AI

compute power.

Step 5 Set environment variables, including the variable name and value.
● To delete an environment variable, click Delete in the Operations column.

● To add an environment variable, click .

1. System environment variables can be configured in the container running environment
and can be modified even after the service instance is deployed.

2. The values of environment variables are displayed in plaintext. Do not enter sensitive
information. If sensitive information is involved, encrypt it to prevent information
leakage.

Step 6 Configure drive partitions.

1. Click under Drive Partition Name and select a drive partition name to
view the total capacity (GB) and available capacity (GB). Set the host mount
point of the drive partition and container mount directory, and select the
permission.

2. To delete the drive partition, click Delete in the Operations column.

3. Click to mount the drive partition.

Set the local drive partition that is mounted to the container to implement persistent data
file storage.

Atlas 500
Application Software Development Guide 9 Software Packaging and Deployment

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 47

Step 7 Configure the container restart policy and container service network.

1. The container restart policies include:

a. Restart Upon Failure: The system restarts the container only if the
container is exited abnormally.

b. Not Restart: The system does not restart the container regardless of
whether the container is exited normally or abnormally.

c. Always Restart: The system restarts the container regardless of whether
the container is exited normally or abnormally.

2. The available container service network configurations include:

a. Host network: Configure the container to directly use the host network.

b. Port mapping: Map host ports to container ports.

3. To delete a port mapping, click Delete in the Operations column.

4. To add a port mapping, click .

Step 8 Check the configuration and click OK to start the deployment. After the
deployment is complete, the new service is displayed in the list.

NO TICE

● The deployment requires a long time. Do not close the page before the
deployment result is displayed. Otherwise, the deployment will fail.

----End

9.3.2 Deployment Using the CLI
Step 1 Upload the image file (for example, myapp.tar exported in 9.2 Creating an

Image) to the Atlas 500.

Step 2 Run the following command on the Atlas 500 to import images:

docker load –i myapp.tar

Step 3 Start deployment.

The following device parameters need to be added for the Atlas 500 to load the
Atlas 200 AI accelerator module:

docker run \
-it \
--device=/dev/davinci_manager \
--device=/dev/hisi_hdc \
--device=/dev/davinci0 \
myapp

----End

Atlas 500
Application Software Development Guide 9 Software Packaging and Deployment

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 48

10 Appendix

10.1 Graph Keywords

10.2 Change History

10.1 Graph Keywords
Parameter Description Mandatory

(M) or
Optional
(O)

graph_i
d

- Graph ID, which is a positive integer O

priority - Priority, which does not need to be adjusted O

device_i
d

- Device ID. Different graphs can run on one or
more chips or on the chips of different PCIe
cards. If they run on different chips, the
device_id field has to be added to the graph
configuration file to specify the device ID on
which the graphs are running. If device_id is
not specified, the graphs are running on the
chips of device 0 by default. The value of
device id ranges from 0 to N-1 (N indicates
the number of devices).

O

engines id Engine ID M

engine_
name

Engine name M

side Target for the engine to run. The value can
be HOST or DEVICE, which is determined
based on service requirements.

M

Atlas 500
Application Software Development Guide 10 Appendix

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 49

Parameter Description Mandatory
(M) or
Optional
(O)

NOTE
You are
advised
to
configu
re
multipl
e
engine
s for
multi-
channe
l
decodi
ng.
One
engine
corresp
onds to
one
thread.
If one
engine
corresp
onds to
multipl
e
threads
, the
sequen
ce
cannot
be
ensure
d
during
decodi
ng.

so_nam
e

During engine running, you need to copy the
dynamic library file in .so format from the
host to the device. If FrameworkerEngine
running depends on a third-party library file
or user-defined library file, the dependent .so
file must be configured in the graph file.
(Replace xxx in the following example with
the actual name of the dependent library.)
so_name: "./libFrameworkerEngine.so"
so_name: "./libxxx.so"
so_name: "./libxxx.so"

O

thread_
num

Number of threads. You are advised to set
this parameter to 1 for multi-channel
decoding. If the value of thread_num is
greater than 1, the decoding sequence of
threads cannot be ensured.

M

thread_
priority

Thread priority. The value ranges from 1 to
99. This parameter is used to set the priority
of the data processing thread corresponding
to the engine. A higher priority is configured
for the corresponding engine according to
the SCHED_RR scheduling policy.

O

queue_
size

Queue size. The default value is 200.
The parameter value needs to be adjusted
based on the service load fluctuation, size of
data received by the engine, and system
memory.

O

Atlas 500
Application Software Development Guide 10 Appendix

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 50

Parameter Description Mandatory
(M) or
Optional
(O)

ai_confi
g

Configuration example:
ai_config{
 items{
 name: "model_path"
 value: "./test_data/model/resnet18.om"
 }
 }

● name does not need to be set.
● Set the value to the path of the model

file, including the file name. The file name
can contain only digits, letters,
underscores (_), and dots (.). Alternatively,
you can set the value to the path of a
single model file, for example, ./
test_data/model/resnet18.om. You can
also compress the model file into a .tar
package and set the parameter to the
path ./test_data/model/resnet18.tar
where the .tar package is stored. If there
are multiple AI configuration items,
ensure that files with the same name but
in different formats (for example, ./
test_data/model/test.zip and ./
test_data/model/test.tar) do not exist in
the same directory.

O

ai_mod
el

Configuration example:
ai_model{
 name: "" // model name
 type:"" // model type
 version:"" // model version
 size:"" // model size
 path:"" // model path
 sub_path:"" // auxiliary model path
 key:"" // model key
sub_key: "" // auxiliary model key
 frequency:"UNSET" // device frequency.
Value UNSET or 0 indicates that the setting is
canceled. Value LOW or 1 indicates low frequency.
Value MEDIUM or 2 indicates medium frequency.
Value HIGH or 3 indicates high frequency.
 device_frameworktype:"NPU" // type of the device
on which a model is running. The value is NPU, IPU,
MLU, or CPU.
framework: "OFFLINE" // execution framework. The
value is OFFLINE, CAFFE, or TENSORFLOW.
 }

O

Atlas 500
Application Software Development Guide 10 Appendix

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 51

Parameter Description Mandatory
(M) or
Optional
(O)

oam_co
nfig

Mode of dumping algorithm data. If the
inference is inaccurate, you can view the
algorithm execution results of some or all
layers.
Configuration example:
oam_config{
 items{
 model_name: "" // relative path+model name
+suffix
is_dump_all: "" // whether to dump all data. The
value is true or false.
 layer: "" // layer
 }
 dump_path:"" // dump path
 }

O

internal
_so_na
me

Dynamic library file embedded on the device.
You can directly use the file without copying
it from the host to the device.

O

wait_in
putdata
_max_ti
me

Maximum timeout of waiting for the next
piece of data after the current data is
received
● Unit: millisecond
● The default value is 0, indicating that the

wait does not time out.

O

is_repe
at_time
out_fla
g

Whether to perform cyclic timeout processing
(wakeup) when the engine does not receive
data. This parameter is used together with
wait_inputdata_max_time. The options are
as follows:
● 0: Cyclic timeout processing is not

performed. The default value is 0.
● 1: Cyclic timeout processing is performed.

O

holdMo
delFileF
lag

Whether to retain the model file of the
engine. The options are as follows:
● 0: no
● Other values: yes

O

connect
s

src_eng
ine_id

ID of the source engine M

Atlas 500
Application Software Development Guide 10 Appendix

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 52

Parameter Description Mandatory
(M) or
Optional
(O)

src_port
_id

Sending port number of the source engine.
The port number starts from 0. The number
of ports is defined by the
HIAI_DEFINE_PROCESS macro in the
corresponding header file. The
implementation code is as follows:
#define SOURCE_ENGINE_INPUT_SIZE 1
 #define SOURCE_ENGINE_OUTPUT_SIZE 1
 class SrcEngine : public Engine {

HIAI_DEFINE_PROCESS(SOURCE_ENGINE_INPUT_SIZ
E, SOURCE_ENGINE_OUTPUT_SIZE)
 }

M

target_
engine_
id

ID of the target engine M

target_
port_id

Receive port number of the target engine M

Atlas 500
Application Software Development Guide 10 Appendix

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 53

Parameter Description Mandatory
(M) or
Optional
(O)

target_
graph_i
d

ID of the target graph.
Engines can be connected across graphs. In
this scenario, the target_graph_id field
needs to be added to the connection
configuration file to indicate the graph ID at
the receive end. If target_graph_id is not
specified, engines are connected within the
same graph by default.
When multiple Ascend 310 chips are
available, you can enable models to run on
different Ascend 310 chips by connecting
engines across graphs. Therefore, you are
advised to place the same type of models on
the same chip for inference, which avoids
unnecessary memory consumption.
Scenario description:
● As shown in Figure 10-1, engines support

inter-graph serial connection in the
following scenarios:
1. 1: The host engine of graph A directly

sends data to the host engine of graph
B.

2. 2: The host engine of graph A directly
sends data to the device engine of
graph B.

3. 3: The device engine of graph A directly
sends data to the device engine of
graph B.

● Engines do not support inter-graph serial
connection in the following scenarios:
4: The device engine of graph A directly
sends data to the host engine of graph B,
as shown in Figure 10-1.

O

Atlas 500
Application Software Development Guide 10 Appendix

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 54

Parameter Description Mandatory
(M) or
Optional
(O)

receive_
memor
y_witho
ut_dvpp

● The default value is 0, indicating that the
RX memory of the target engines running
on the device side must meet the address
space limit of 4 GB.

● If this parameter is set to 1, the target
engines running on the device side does
not need to meet the address space limit
of 4 GB.

● In the graph configuration file, you can set
the receive_memory_without_dvpp
parameter (under the connects property)
to 1 for all target engines running on the
device. Alternatively, you can set the
receive_memory_without_dvpp
parameter (under the connects property)
to 1 for all target engines, because this
parameter setting does not affect the
target engines running on the host. In this
way, the Matrix RX memory pool is not
limited by the 4 GB address space, which
improves the memory utilization.
NOTE

In the current DVPP, the input memory for the
VPC, JPEGE, JPEGD, and PNGD must meet the
address space limit of 4 GB, which is not
mandatory for the input memory of the VDEC
and VENC.

O

Figure 10-1 Engine connection across graphs

Atlas 500
Application Software Development Guide 10 Appendix

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 55

10.2 Change History
Release Date Description

2020-05-30 This issue is the first official release.

Atlas 500
Application Software Development Guide 10 Appendix

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 56

	Contents
	1 Before You Start
	2 Introduction to the Atlas 500 and Software
	2.1 Atlas 500 Hardware
	2.1.1 Atlas 500 Product Form
	2.1.2 Atlas 500 System Architecture
	2.1.3 Atlas 200 AI Accelerator Card

	2.2 Atlas 500 Software
	2.2.1 OS Introduction
	2.2.2 Atlas 200 Driver
	2.2.3 Introduction to the Intelligent Management System

	3 Preparations
	3.1 Obtaining Software Packages
	3.2 Obtaining the Sample Program

	4 Configuring the Atlas 500
	4.1 Powering On an Atlas 500
	4.2 Obtaining a PC
	4.3 Logging In to the Atlas IES
	4.4 Configuring a Network for the Atlas 500
	4.5 Checking the Atlas 500 Software Version
	4.6 Upgrading the Atlas 500 Software
	4.7 Logging In to and Using the Atlas 500 CLI
	4.8 Accessing the Atlas 500 Development Mode

	5 Development Environment
	5.1 Setting Up the Software Development Environment
	5.2 DDK Directory Distribution
	5.3 Header Files and Link Libraries
	5.3.1 Header Files
	5.3.2 Link libraries

	5.4 Compilation Toolchains
	5.4.1 Host Compilation Toolchain
	5.4.2 Device Compilation Toolchain

	5.5 DDK Tools

	6 General Inference Service Flow
	6.1 Service Flow
	6.2 Mapping Between Software and Hardware Modules

	7 Running a Code Sample
	7.1 Obtaining the HelloDavinci Code
	7.2 Description of the HelloDavinci File
	7.3 HelloDavinci Process Framework
	7.4 HelloDavinci Compilation and Running

	8 Software Code Development
	8.1 Configuring the Matrix Framework
	8.1.1 Configuring, Creating, and Destroying a Graph
	8.1.2 Configuring Engine
	8.1.3 Configuring Data Transmission

	8.2 Using DVPP APIs
	8.2.1 Using DVPP APIs
	8.2.2 Applying for DVPP Memory

	8.3 Offline Model Inference
	8.3.1 Configuring AIPPs
	8.3.2 Converting an Offline Model
	8.3.3 Performing Model Inference

	8.4 Commissioning Software Logs
	8.4.1 Configuring Log System
	8.4.2 Viewing Logs
	8.4.3 Log API Usage

	8.5 Service Software Compilation
	8.5.1 Compiling Service Software Using CMake

	9 Software Packaging and Deployment
	9.1 Importing the Base Image
	9.2 Creating an Image
	9.3 Deploying the Image
	9.3.1 Deployment Using the IES
	9.3.2 Deployment Using the CLI

	10 Appendix
	10.1 Graph Keywords
	10.2 Change History

