
Data Warehouse Service

Stream warehouse

Issue 08

Date 2024-05-06

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 Introduction to Stream Data Warehouse.. 1

2 Support and Constraints.. 5
2.1 Extension Constraints... 5
2.2 Data Types Supported by TSFIELD.. 6

3 Stream Data Warehouse Syntax..12
3.1 CREATE TABLE..12
3.2 DROP TABLE... 17
3.3 ALTER TABLE... 17
3.4 CREATE INDEX... 19

4 Functions and Expressions.. 25

5 Stream Data Warehouse GUC Parameters..36

Data Warehouse Service
Stream warehouse Contents

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

1 Introduction to Stream Data Warehouse

In the IoT era, collecting massive device status and service message data enables
device monitoring, service analysis and prediction, and fault diagnosis.

For example, a self-driving vehicle uses many sensors to collect its running data in
real time, such as GPS coordinates, speeds, directions, temperatures, and power.
Each vehicle generates terabytes of data each day. The data is time sensitive and
is collected at fixed intervals. This type of data is called time series data. Analyzing
time series data helps us understand not only the real-time status of different
objects, but also useful trends and patterns. It can even help us predict the future.

The GaussDB(DWS) stream data warehouse uses Huawei's in-house developed
time series engine. It provides extended time series syntax, and functions for
partition management and time series computation, as well as those from
ecosystem partners. Time series computation is performed based on time series
tables.

Differences Between Stream Data Warehouse and Cloud Data Warehouse
The stream data warehouse and cloud data warehouse are two different
GaussDB(DWS) products and have different applications. For details, see Table
1-1.

Table 1-1 Differences between the stream data warehouse and cloud data
warehouse

Data
Warehouse

Standard Data Warehouse Stream Data Warehouse

Application
scenarios

Converged data analysis using
OLAP. It is used in sectors such
as finance, government and
enterprise, e-commerce, and
energy.

Application performance
monitoring, environment
monitoring, system
monitoring, autonomous
driving, and IoT.

Data Warehouse Service
Stream warehouse 1 Introduction to Stream Data Warehouse

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

Data
Warehouse

Standard Data Warehouse Stream Data Warehouse

Advantages Cost effective, both hot and
cold data analysis supported,
elastic storage and compute
capacities.

Efficient time series
computation and IoT analysis.
Support for real-time and
historical data association,
built-in time series operators,
massive data write, high
compression ratio, and multi-
dimensional analysis. It
performs excellently where the
cloud data warehouse is
typically used.

Features Excellent performance in
interactive analysis and offline
processing of massive data, as
well as complex data mining.

Aggregation of tens of
millions of timelines within
seconds, much faster IoT data
importing and query than
traditional engines.

SQL syntax Compatible with the SQL
syntax of the cloud data
warehouse.

Added the DDL syntax specific
to the standard data
warehouse.

GUC
parameters

A wide variety of GUC
parameters enable customers
to configure a data warehouse
environment best suited to
their needs.

Support for the GUC
parameters of the standard
data warehouse; added new
GUC parameters for stream
data warehouse optimization.

Data Features

There are three types of columns in a time series table:

● Tag column: This column stores data source and attribute information. The
values in this column are stable and do not change with time.

● Field column: This column stores metric values, and the values change with
time.

● Time column: This column stores timestamps.

Figure 1-1 shows a sample of genset data. The data of voltage, power, frequency,
and current phase angle is collected on three gensets. Data is continuously
collected at a fixed interval and continuously sent to a storage system. Each
dashed line in the diagram represents a time line.

The data shown in Figure 1-1 is stored in tables similar to the one shown in
Figure 1-2. The tag + field + time combination determines the timeline showing
the value changes of each metric.

The tag columns (orange headers) contain information such as the genset name,
manufacturer, model, location, and ID, which do not change with time.

Data Warehouse Service
Stream warehouse 1 Introduction to Stream Data Warehouse

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

The field columns (blue headers) contain information such as the voltage, power,
frequency, and current phase angle. The values in these columns change over
time.

The time column (yellow header) contains timestamps, which indicate the time
when the sample was taken.

Figure 1-1 Genset data sample

Figure 1-2 Genset data table

Technical Highlights
● Massive data write throughput

If five metrics (speed, temperature, engine power, direction, and coordinates)
are collected from 10 million self-driving vehicles, 50 million transactions will
be generated per second.

● Stable and continuous write

Data Warehouse Service
Stream warehouse 1 Introduction to Stream Data Warehouse

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

Time series data is generated and collected at a fixed frequency, so the write
speed is relatively stable.

● More writes and fewer reads

In a stream data warehouse, around 90% of the operations on time series
data are writes. For example, in a monitoring scenario, a large amount of
data needs to be stored every day, but only a small amount of data needs to
be read. Generally, you pay attention to only a handful of key metrics within
specific time periods.

● High compression ratio

A high compression rate benefits customers in two ways. The first is reduced
storage costs because a smaller disk space is needed. The second is that
compressed data can be stored in the memory more easily, which significantly
improves query performance.

● Real-time data writing

Time series data is written into the warehouse in real time. Data is
continuously generated, and there is no need to update the old data.

● High data read rate

The latest data is more valuable. Therefore, it is more likely to be read. For
example, in a monitoring scenario, monitoring data of the last several hours
or days is most likely to be accessed, and data of a quarter or a year ago is
seldom accessed.

● Multidimensional analysis

The stream data warehouse supports flexible, multidimensional data analysis.
For example, when monitoring the network traffic of a cluster of nodes, you
can choose to monitor either the traffic of each individual node or that of the
entire cluster as a whole.

Application Scenarios

There are two typical use cases of a stream data warehouse: application
performance management (APM) and Internet of Things (IoT).

● Retail: e-commerce transaction amount, payment amount, inventory, and
logistics data

● Finance: stock price and transaction volume recorded by the stock trading
system

● People's lives: hourly power consumption data recorded by smart meters

● Industrial: data of industrial machines, for example, real-time rotational
speed, wind speed, and energy yield data of wind turbines.

● System monitoring: IT infrastructure load and resource usage, DevOps
monitoring data, and mobile/web application event flows

● Environment monitoring: data of natural environment (such as temperature,
air, hydrology, and wind force) and scientific measurements

● City management: city traffic monitoring (vehicles, people flow, and roads)

● Self-driving: real-time environment data of self-driving cars

Data Warehouse Service
Stream warehouse 1 Introduction to Stream Data Warehouse

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

2 Support and Constraints

2.1 Extension Constraints
IoT database warehouses support only some relational syntax.

Table 2-1 Supported syntax

Syntax Supported or Not (Y/N)

CREATE TABLE Y

CREATE TABLE LIKE Y

DROP TABLE Y

INSERT Y

COPY Y

SELECT Y

TRUNCATE Y

EXPLAIN Y

ANALYZE Y

VACUUM Y

ALTER TABLE DROP PARTITION Y

ALTER TABLE ADD PARTITION Y

ALTER TABLE SET WITH OPTION Y

ALTER TABLE DROP COLUMN Y

ALTER TABLE ADD COLUMN Y

ALTER TABLE ADD NODELIST Y

Data Warehouse Service
Stream warehouse 2 Support and Constraints

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

Syntax Supported or Not (Y/N)

ALTER TABLE CHANGE OWNER Y

ALTER TABLE RENAME COLUMN Y

ALTER TABLE TRUNCATE PARTITION Y

CREATE INDEX Y

DROP INDEX Y

DELETE Y

ALTER TABLE N

ALTER INDEX N

MERGE N

SELECT INTO Y

UPDATE N

CREATE TABLE AS N

2.2 Data Types Supported by TSFIELD
The TSFIELD time series table supports the following data types.

Table 2-2 Supported data types

Type Data Type Description Sup
por
ted
or
Not
(Y/
N)

Leng
th

Value

Nume
ric
Types

SMALLINT A small integer. Y 2
bytes

-32,768 ~
+32,767

INTEGER Common integers. Y 4
bytes

-2,147,483,648
~
+2,147,483,647

BIGINT A large integer. Y 8
bytes

-9,223,372,036,
854,775,808 ~
9,223,372,036,
854,775,807

Data Warehouse Service
Stream warehouse 2 Support and Constraints

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

Type Data Type Description Sup
por
ted
or
Not
(Y/
N)

Leng
th

Value

NUMERIC[(p[,s])]
,
DECIMAL[(p[,s])]

The value range of
p (precision) is
[1,1000], and the
value range of s
(standard) is [0,p].

Y Varia
ble
lengt
h

Up to 131,072
digits before
the decimal
point; and up
to 16,383 digits
after the
decimal point
when no
precision is
specified

REAL Single precision
floating points,
inexact

Y 4
bytes

Six bytes of
decimal digits

DOUBLE
PRECISION

Double precision
floating points,
inexact

Y 8
bytes

1E-307~1E
+308,
15 bytes of
decimal digits

SMALLSERIAL Two-byte auto-
incrementing
integer

Y 2
bytes

1 ~ 32,767

SERIAL Four-byte auto-
incrementing
integer

Y 4
bytes

1 ~
2,147,483,647

BIGSERIAL Eight-byte auto-
incrementing
integer

Y 8
bytes

1 ~
9,223,372,036,
854,775,807

Mone
tary
Types

MONEY Currency amount Y 8
bytes

-92233720368
547758.08 ~
+92233720368
547758.07

Data Warehouse Service
Stream warehouse 2 Support and Constraints

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

Type Data Type Description Sup
por
ted
or
Not
(Y/
N)

Leng
th

Value

Chara
cter
Types

VARCHAR(n)
CHARACTER
VARYING(n)

Variable-length
string.

Y n
indica
tes
the
byte
lengt
h.
The
value
of n
is less
than
1048
5761.

The maximum
size is 10 MB.

CHAR(n)
CHARACTER(n)

Fixed-length
character string. If
the length is not
reached, fill in
spaces.

Y n
indica
tes
the
string
lengt
h. If it
is not
specif
ied,
the
defau
lt
precis
ion 1
is
used.
The
value
of n
is less
than
1048
5761.

The maximum
size is 10 MB.

CHARACTER
CHAR

Single-byte
internal type

Y 1
byte

-

Data Warehouse Service
Stream warehouse 2 Support and Constraints

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

Type Data Type Description Sup
por
ted
or
Not
(Y/
N)

Leng
th

Value

TEXT Variable-length
string.

Y Varia
ble
lengt
h

The maximum
size is
1,073,733,621
bytes (1 GB -
8023 bytes).

NVARCHAR2(n) Variable-length
string.

Y Varia
ble
lengt
h

The maximum
size is 10 MB.

NAME Internal type for
object names

N 64
bytes

-

Date/
Time
Types

TIMESTAMP[(p)]
[WITH TIME
ZONE]

Specifies the date
and time (with
time zone). p
indicates the
precision after the
decimal point. The
value ranges from
0 to 6.

Y 8
bytes

-

TIMESTAMP[(p)]
[WITHOUT TIME
ZONE]

Specifies the date
and time.
p indicates the
precision after the
decimal point. The
value ranges from
0 to 6.

Y 8
bytes

-

Data Warehouse Service
Stream warehouse 2 Support and Constraints

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

Type Data Type Description Sup
por
ted
or
Not
(Y/
N)

Leng
th

Value

DATE In Oracle
compatibility
mode, it is
equivalent to
timestamp(0) and
records the date
and time.
In other modes, it
records the date.

Y In
Oracl
e
comp
atibili
ty
mode
, it
occup
ies 8
bytes.
In
Oracl
e
comp
atibili
ty
mode
, it
occup
ies 4
bytes.

-

TIME [(p)]
[WITHOUT TIME
ZONE]

Specifies time
within one day.
p indicates the
precision after the
decimal point. The
value ranges from
0 to 6.

Y 8
bytes

-

TIME [(p)] [WITH
TIME ZONE]

Specifies time
within one day
(with time zone).
p indicates the
precision after the
decimal point. The
value ranges from
0 to 6.

Y 12
bytes

-

INTERVAL Specifies the time
interval.

Y 16
bytes

-

Data Warehouse Service
Stream warehouse 2 Support and Constraints

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

Type Data Type Description Sup
por
ted
or
Not
(Y/
N)

Leng
th

Value

big
object

CLOB Variable-length
string. A big text
object.

Y Varia
ble
lengt
h

The maximum
size is
1,073,733,621
bytes (1 GB -
8023 bytes).

BLOB Binary large object. N Varia
ble
lengt
h

The maximum
size is
10,7373,3621
bytes (1 GB -
8023 bytes).

other
types

… … N … …

Data Warehouse Service
Stream warehouse 2 Support and Constraints

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

3 Stream Data Warehouse Syntax

3.1 CREATE TABLE

Function

CREATE TABLE creates a time series table in the current database. The table will
be owned by the user who created it.

The stream data warehouse provides DDL statements for creating a time series
table. To create a time series table that stores data based on key values, the DDL
statement needs to include the dimension attribute tstag, indicator attribute
tsfield, and time attribute tstime. The time series database (TSDB) allows you to
specify the time to live (TTL) of data and the period for creating partitions
(PERIOD) to automatically create or delete partitions. In addition, orientation
needs to be set to timeseries in the table creation statement.

Precautions
● To create a time series table, you must have the USAGE permission on

schema cstore.
● All attributes of a time series table, except the time attribute, must be

specified to either a dimension(TSTAG) or an indicator (TSFIELD).
● If PARTITION BY is specified explicitly, only tstime can be used as the

partition key.
● If an index column is deleted using DROP COLUMN, the remaining index

columns will be used to rebuild the index. If all the index columns are deleted,
the first 10 tag columns will be used to rebuild the index.

● Time series tables do not support UPDATE, UPSERT, primary keys, or PCKs.
● Each time series table is bound to a tag table. The OIDs and index OIDs of the

tag table are recorded in the reltoastrelid and reltoastidxid columns of the
pg_class table, respectively.

● By default, the first 10 tag columns of a tag table are used to create an index.
● Tag tables cannot be queried on CNs. The table size returned in a query

contains the tag table size.

Data Warehouse Service
Stream warehouse 3 Stream Data Warehouse Syntax

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

● The kvtype column setting in the statement for creating a non-time series
table does not take effect.

Syntax Format
CREATE TABLE [IF NOT EXISTS] table_name
({ column_name data_type [kv_type]
 | LIKE source_table [like_option [...]] }
}
 [, ...])
[WITH ({storage_parameter = value} [, ...])]

[TABLESPACE tablespace_name]
[DISTRIBUTE BY HASH (column_name [,...])]
[TO { GROUP groupname | NODE (nodename [, ...]) }]
[PARTITION BY {
 {RANGE (partition_key) (partition_less_than_item [, ...])}
 } [{ ENABLE | DISABLE } ROW MOVEMENT]];
The options for LIKE are as follows:
{ INCLUDING | EXCLUDING } { DEFAULTS | CONSTRAINTS | INDEXES | STORAGE | COMMENTS | PARTITION
| RELOPTIONS | DISTRIBUTION | ALL }

Parameter description
● IF NOT EXISTS

Does not throw an error if a table with the same name exists. A notice is
issued in this case.

● table_name
Specifies the name of the table to be created.

● column_name
Specifies the name of a column to be created in the new table.

● data_type
Specifies the data type of the column.

● kv_type
kv_type attributes of columns, including a dimension attribute (TSTAG), an
indicator attribute (TSFIELD), and a time attribute (TSTIME).
One and only one TSTIME attribute must be specified. Columns of the
TSTIME type cannot be deleted. At least one of the TSTAG and TSFIELD
columns must be specified, or an error will be reported during table creation.
The TSTAG column supports the text, char, bool, int, and big int types.
The TSTime column supports the timestamp with time zone and timestamp
without time zone types. It also supports the date type in databases
compatible with the Oracle syntax. If time zone-related operations are
involved, select a time type with time zone.
For details about the data types supported by the TSFIELD column, see Data
Types Supported by TSFIELD.

● LIKE source_table [like_option...]
Specifies a table from which the new table automatically copies all column
names and their data types.
The new table and the original table are decoupled after creation is complete.
Changes to the original table will not be applied to the new table, and scans
on the original table will not be performed on the data of the new table.

Data Warehouse Service
Stream warehouse 3 Stream Data Warehouse Syntax

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

Columns copied by LIKE are not merged with the same name. If the same
name is specified explicitly or in another LIKE clause, an error will be
reported.
A time series table only inherits from another time series table.

● WITH({ storage_parameter = value } [, ...])
Specifies an optional storage parameter for a table.
– ORIENTATION

Specifies the storage mode (time series, row-store, or column-store) of
table data. This parameter cannot be modified once it is set.
Options:

▪ TIMESERIES indicates that the data is stored in time series.

▪ COLUMN indicates that the data is stored in columns.

▪ ROW indicates that table data is stored in rows.

Default value: ROW
– COMPRESSION

Specifies the compression level of the table data. It determines the
compression ratio and time. Generally, a higher compression level
indicates a higher compression ratio and a longer compression time, and
vice versa. The actual compression ratio depends on the distribution
characteristics of loading table data.
Options:

▪ The valid values for time series tables and column-store tables are
YES/NO and LOW/MIDDLE/HIGH, and the default is LOW.

▪ The valid values for row-store tables are YES and NO, and the
default is NO.

– COMPRESSLEVEL
Specifies table data compression rate and duration at the same
compression level. This divides a compression level into sub-levels,
providing you with more choices for compression ratio and duration. As
the value becomes greater, the compression rate becomes higher and
duration longer at the same compression level. The parameter is only
valid for time series tables and column-store tables.
Value range: 0 to 3. The default value is 0.

– MAX_BATCHROW
Specifies the maximum number of rows in a storage unit during data
loading. The parameter is only valid for time series tables and column-
store tables.
Value range: 10000 to 60000
Default value: 60000

– PARTIAL_CLUSTER_ROWS
Specifies the number of records to be partially clustered for storage
during data loading. The parameter is only valid for time series tables
and column-store tables.

Data Warehouse Service
Stream warehouse 3 Stream Data Warehouse Syntax

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

Value range: 600000 to 2147483647
– enable_delta

Specifies whether to enable delta tables in time series tables. The
parameter is only valid for time series tables and column-store tables.
Default value: on

– SUB_PARTITION_COUNT
Specifies the number of level-2 partitions in a time series table. This
parameter specifies the number of level-2 partitions during data import.
This parameter is configured during table creation and cannot be
modified after table creation. You are not advised to set the default
value, which may affect the import and query performance.
Value range: 1 to 1024. The default value is 32.

– DELTAROW_THRESHOLD
Specifies the maximum number of rows (SUB_PARTITION_COUNT *
DELTAROW_THRESHOLD) to be imported to the delta table when a time
series table is imported. This parameter is valid only if enable_delta has
been enabled. The parameter is only valid for time series tables and
column-store tables.
Value range: 0 to 60000
Default value: 10000

– COLVERSION
Specifies the version of a storage format. The parameter is only valid for
time series tables and column-store tables. You cannot switch between
different storage formats in time series tables. The time series table
supports only version 2.0.
Options:
1.0: Each column in a column-store table is stored in a separate file. The
file name is relfilenode.C1.0, relfilenode.C2.0, relfilenode.C3.0, or
similar.
2.0: All the columns of a time series or column-store table are combined
and stored in a file. The file is named relfilenode.C1.0.
Default value: 2.0

– TTL
Schedules the partition deletion tasks in a time series table. By default,
partitions are not deleted.
Value range:
1 hour ~ 100 years

– PERIOD
Schedules the tasks to create partitions in a time series table. If TTL has
been configured, PERIOD cannot be greater than TTL.
Value range:
1 hour to 100 years. The default value is 1 day.

● TABLESPACE tablespace_name
Specifies the tablespace where the new table is created. If not specified,
default tablespace is used.

Data Warehouse Service
Stream warehouse 3 Stream Data Warehouse Syntax

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

● DISTRIBUTE BY
Specifies how the table is distributed or replicated between DNs.
Options:
HASH (column_name): Each row of the table will be placed into all the DNs
based on the hash value of the specified column.
By default, the time series table is distributed based on all tag columns.

● TO { GROUP groupname | NODE (nodename [, ...]) }
TO GROUP specifies the Node Group in which the table is created. Currently,
it cannot be used for HDFS tables. TO NODE is used for internal scale-out
tools.

● PARTITION BY
Specifies the initial partition of a time series table. The partition keys of the
time series table must be in the TSTIME column.

NO TE

● TTL indicates the data storage period of a table. Data that exceeds the TTL period will
be deleted. PERIOD indicates that data is partitioned by time. The partition size may
affect the query performance. In this partitioning mode, a partition will be created at
the interval specified by PERIOD. The values of TTL and PERIOD are of the interval
type, for example, 1 hour, 1 day, 1 week, 1 month, 1 year, and 1 month 2 day 3 hour.

● orientation of storage_parameter specifies the storage mode. The key-value storage is
supported only when orientation is set to timeseries.

● You do not need to manually specify DISTRIBUTE BY and PARTITION BY for a time
series table. By default, data is distributed based on all tag columns, the TSTIME is used
as the partition key, and a partitioned table with the automatic partition management
function is created.

Examples
Create a simple time series table.

CREATE TABLE IF NOT EXISTS CPU(
scope_name text TSTag,
server_ip text TSTag,
group_path text TSTag,
time timestamptz TSTime,
 idle numeric TSField,
system numeric TSField,
 util numeric TSField,
vcpu_num numeric TSField,
guest numeric TSField,
iowait numeric TSField,
 users numeric TSField) with (orientation=TIMESERIES) distribute by hash(scope_name);

CREATE TABLE CPU1(
idle numeric TSField,
IO numeric TSField,
scope text TSTag,
IP text TSTag,
time timestamp TSTime
) with (TTL='7 days', PERIOD='1 day', orientation=TIMESERIES);

CREATE TABLE CPU2 (LIKE CPU INCLUDING ALL);

Data Warehouse Service
Stream warehouse 3 Stream Data Warehouse Syntax

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

3.2 DROP TABLE

Function

DROP TABLE deletes a time series table.

Precautions

DROP TABLE forcibly deletes a specified table. After a table is deleted, any indexes
that exist for the table will be deleted, and any stored procedures that use this
table cannot be run. When a partition table is deleted, all partitions in the
partition table are deleted, and the partition creation and deletion tasks of the
table are also cleared.

Syntax
DROP TABLE [IF EXISTS]
{ [schema.]table_name } [, ...] [CASCADE | RESTRICT];

Description
● IF EXISTS

Reports a notice instead of an error if the specified table does not exist.

● schema

Specifies the schema name.

● table_name

Specifies the name of the table to be deleted.

● CASCADE | RESTRICT

– CASCADE: Automatically deletes the objects, such as views, that depend
on the table.

– RESTRICT: refuses to delete the table if any objects depend on it. This is a
default parameter.

Example

Delete a simple time series table.

DROP TABLE CPU;

3.3 ALTER TABLE

Function

ALTER TABLE modifies a table. You can use this syntax to modify table definitions,
rename tables, rename a specified column in a table, add or update multiple
columns, and enable or disable row-level access control.

Data Warehouse Service
Stream warehouse 3 Stream Data Warehouse Syntax

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

Precautions
● You must own the time series table to use ALTER TABLE. A system

administrator has this permission by default.
● The tablespace of the partitioned table cannot be modified. However, the

tablespace of the partition can be modified.
● The storage parameter ORIENTATION cannot be modified.
● Currently, SET SCHEMA can only be used to set a schema to a user schema,

not to a system internal schema.
● When you modify the enable_delta parameter of a time series table, other

ALTER operations cannot be performed.
● orientation of storage_parameter and sub_partition_count cannot be

modified.
● The column to be added must have the kv_type attribute, and the attribute

must be set to tstag or tsfiled.
● The column to be deleted cannot be of the tstime type that indicates a

partition column.
● If the delta table function is enabled, a delta table and an automatic

writeback task will be created. If the delta table function is disabled, the delta
table data will be forcibly written to CU.

Syntax
The syntax of the DDL statement for adding columns is as follows:
ALTER TABLE [IF EXISTS] { table_name [*] | ONLY table_name | ONLY (table_name) }
action [, ...];

There are several clauses of action:

● ADD COLUMN is used to add a column to a time series table.
ADD COLUMN column_name data_type [kv_type] [compress_mode]

A time series table can contain only one TSTIME column. If you attempt to create
another TSTIME column, an error will be reported.

● DROP_COLUMN is used to delete columns from a time series table.
|DROP COLUMN [IF EXISTS] column_name [RESTRICT | CASCADE]

If an index column is deleted using DROP COLUMN, the remaining index columns
will be used to rebuild the index. If all the index columns are deleted, the first 10
tag columns will be used to rebuild the index.

● Modifying the storage parameters of a time series table
|SET ({ storage_parameter = value } [, ...])

● Renaming the specified column in a table
RENAME [COLUMN] column_name to new_column_name;

● Changing the owner of a time series table:
OWNER TO new_owner

● (Not recommended) Expanding a time series table:
ADD NODE (nodename [, ...])

● Adding a partition to a time series table:
ADD PARTITION part_new_name partition_less_than_item

● Removing a specified partition from a partitioned table:
DROP PARTITION { partition_name }

Data Warehouse Service
Stream warehouse 3 Stream Data Warehouse Syntax

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

● Deleting the specified partition of a time series table:
TRUNCATE PARTITION { partition_name }

Description
● table_name

Specifies the name of a partitioned table.
Value range: an existing partitioned table name

● partition_name
Partition name
Value range: an existing partition name

● partition_new_name
Specifies the new name of a partition.
Value range: a string compliant with the naming convention

Examples

Create a simple time series table.

CREATE TABLE CPU(
idle numeric TSField,
IO numeric TSField,
scope text TSTag,
IP text TSTag,
time timestamp TSTime
) with (TTL='7 days', PERIOD = '1 day', orientation=TIMESERIES);

Add a column to the time series table.

ALTER TABLE CPU ADD COLUMN memory numeric TSField;

Delete a column from the time series table.

ALTER TABLE CPU DROP COLUMN idle;

Modify the column name of the time series table.

ALTER TABLE CPU RENAME scope to scope1;

Set the TTL of the partitions in a time series table to seven days.

ALTER TABLE CPU SET (TTL = '7 day');

Set Period to 1 day.

ALTER TABLE CPU SET (PERIOD = '1 day');

Modify parameters related to the Delta table of the time series table.
ALTER TABLE CPU SET (enable_delta = false);

3.4 CREATE INDEX

Function

CREATE INDEX creates an index in a specified table.

Data Warehouse Service
Stream warehouse 3 Stream Data Warehouse Syntax

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

Indexes are primarily used to enhance database performance (though
inappropriate use can result in slower database performance). You are advised to
create indexes on:

● Columns that are often queried
● Join conditions. For a query on joined columns, you are advised to create a

composite index on the columns, for example, select * from t1 join t2 on
t1.a=t2.a and t1.b=t2.b. You can create a composite index on the a and b
columns of table t1.

● Columns having filter criteria (especially scope criteria) of a where clause
● Columns that appear after order by, group by, and distinct.

The partitioned table does not support concurrent index creation, partial index
creation, and NULL FIRST.

Precautions
● Indexes consume storage and computing resources. Creating too many

indexes has negative impact on database performance (especially the
performance of data import. Therefore, you are advised to import the data
before creating indexes). Create indexes only when they are necessary.

● All functions and operators used in an index definition must be immutable,
that is, their results must depend only on their arguments and never on any
outside influence (such as the contents of another table or the current time).
This restriction ensures that the behavior of the index is well-defined. To use a
user-defined function in an index expression or WHERE clause, remember to
mark the function immutable when you create it.

● A unique index created on a partitioned table must include a partition column
and all the partition keys.

● Column-store tables and HDFS tables support B-tree indexes. If the B-tree
indexes are used, you cannot create expression and partial indexes.

● Column-store tables support creating unique indexes using B-tree indexes.
● Column-store and HDFS tables support psort indexes. If the psort indexes are

used, you cannot create expression, partial, and unique indexes.
● Column-store tables support GIN indexes, rather than partial indexes and

unique indexes. If GIN indexes are used, you can create expression indexes.
However, an expression in this situation cannot contain empty splitters, empty
columns, or multiple columns.

● Indexes can be created only on the tag column in a time series table. Any type
of index created for a time series table will be converted to btree and gin dual
indexes in a tag table. The index columns of the two indexes are specified. By
default, the first three columns in a tag table are used as the default index
columns.

Syntax
● Create an index on a table.

CREATE [UNIQUE] INDEX [[schema_name.] index_name] ON table_name [USING method]
 ({ { column_name | (expression) } [COLLATE collation] [opclass] [ASC | DESC] [NULLS
{ FIRST | LAST }] }[, ...])
 [WITH ({storage_parameter = value} [, ...])]
 [TABLESPACE tablespace_name]
 [WHERE predicate];

Data Warehouse Service
Stream warehouse 3 Stream Data Warehouse Syntax

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

● Create an index for a partitioned table.
CREATE [UNIQUE] INDEX [[schema_name.] index_name] ON table_name [USING method]
 ({{ column_name | (expression) } [COLLATE collation] [opclass] [ASC | DESC] [NULLS
LAST] }[, ...])
 LOCAL [({ PARTITION index_partition_name [TABLESPACE index_partition_tablespace] } [, ...])]
 [WITH ({ storage_parameter = value } [, ...])]
 [TABLESPACE tablespace_name];

Description
● UNIQUE

Causes the system to check for duplicate values in the table when the index is
created (if data exists) and each time data is added. Attempts to insert or
update data which would result in duplicate entries will generate an error.
Currently, only B-tree indexes of row-store tables and column-store tables
support unique indexes.

● schema_name
Name of the schema where the index to be created is located. The specified
schema name must be the same as the schema of the table.

● index_name
Specifies the name of the index to be created. The schema of the index is the
same as that of the table.
Value range: a string compliant with the naming convention

● table_name
Specifies the name of the table to be indexed (optionally schema-qualified).
Value range: an existing table name

● USING method
Specifies the name of the index method to be used.
Value range:
– btree: The B-tree index uses a structure that is similar to the B+ tree

structure to store data key values, facilitating index search. btree
supports comparison queries with ranges specified.

– gin: GIN indexes are reverse indexes and can process values that contain
multiple keys (for example, arrays).

– gist: GiST indexes are suitable for the set data type and multidimensional
data types, such as geometric and geographic data types.

– Psort: psort index. It is used to perform partial sort on column-store
tables.

Row-based tables support the following index types: btree (default), gin, and
gist. Column-based tables support the following index types: Psort (default),
btree, and gin.

● column_name
Specifies the name of a column of the table.
Multiple columns can be specified if the index method supports multi-column
indexes. A maximum of 32 columns can be specified.

● expression
Specifies an expression based on one or more columns of the table. The
expression usually must be written with surrounding parentheses, as shown in

Data Warehouse Service
Stream warehouse 3 Stream Data Warehouse Syntax

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

the syntax. However, the parentheses can be omitted if the expression has the
form of a function call.
Expression can be used to obtain fast access to data based on some
transformation of the basic data. For example, an index computed on
upper(col) would allow the clause WHERE upper(col) = 'JIM' to use an index.
If an expression contains IS NULL, the index for this expression is invalid. In
this case, you are advised to create a partial index.

● COLLATE collation
Assigns a collation to the column (which must be of a collatable data type). If
no collation is specified, the default collation is used.

● opclass
Specifies the name of an operator class. Specifies an operator class for each
column of an index. The operator class identifies the operators to be used by
the index for that column. For example, a B-tree index on the type int4 would
use the int4_ops class; this operator class includes comparison functions for
values of type int4. In practice, the default operator class for the column's
data type is sufficient. The operator class applies to data with multiple sorts.
For example, we might want to sort a complex-number data type either by
absolute value or by real part. We could do this by defining two operator
classes for the data type and then selecting the proper class when making an
index.

● ASC
Indicates ascending sort order (default). This option is supported only by row
storage.

● DESC
Indicates descending sort order. This option is supported only by row storage.

● NULLS FIRST
Specifies that nulls sort before not-null values. This is the default when DESC
is specified.

● NULLS LAST
Specifies that nulls sort after not-null values. This is the default when DESC is
not specified.

● WITH ({storage_parameter = value} [, ...])
Specifies the name of an index-method-specific storage parameter.
Value range:
Only the GIN index supports the FASTUPDATE and
GIN_PENDING_LIST_LIMIT parameters. The indexes other than GIN and psort
support the FILLFACTOR parameter.
– FILLFACTOR

The fillfactor for an index is a percentage between 10 and 100.
Value range: 10–100

– FASTUPDATE
Specifies whether fast update is enabled for the GIN index.
Valid value: ON and OFF
Default: ON

Data Warehouse Service
Stream warehouse 3 Stream Data Warehouse Syntax

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

– GIN_PENDING_LIST_LIMIT
Specifies the maximum capacity of the pending list of the GIN index
when fast update is enabled for the GIN index.
Value range: 64–INT_MAX. The unit is KB.
Default value: The default value of gin_pending_list_limit depends on
gin_pending_list_limit specified in GUC parameters. By default, the value
is 4 MB.

● WHERE predicate
Creates a partial index. A partial index is an index that contains entries for
only a portion of a table, usually a portion that is more useful for indexing
than the rest of the table. For example, if you have a table that contains both
billed and unbilled orders where the unbilled orders take up a small fraction
of the total table and yet that is an often used section, you can improve
performance by creating an index on just that portion. Another possible
application is to use WHERE with UNIQUE to enforce uniqueness over a
subset of a table.
Value range: predicate expression can refer only to columns of the underlying
table, but it can use all columns, not just the ones being indexed. Presently,
subquery and aggregate expressions are also forbidden in WHERE.

● PARTITION index_partition_name
Specifies the name of the index partition.
Value range: a string compliant with the naming convention

Examples
● Create a sample table named tpcds.ship_mode_t1.

CREATE TABLE tpcds.ship_mode_t1
(
 SM_SHIP_MODE_SK INTEGER NOT NULL,
 SM_SHIP_MODE_ID CHAR(16) NOT NULL,
 SM_TYPE CHAR(30) ,
 SM_CODE CHAR(10) ,
 SM_CARRIER CHAR(20) ,
 SM_CONTRACT CHAR(20)
)
DISTRIBUTE BY HASH(SM_SHIP_MODE_SK);

-- Create a common index on the SM_SHIP_MODE_SK column in the
tpcds.ship_mode_t1 table:
CREATE UNIQUE INDEX ds_ship_mode_t1_index1 ON tpcds.ship_mode_t1(SM_SHIP_MODE_SK);

Create a B-tree index on the SM_SHIP_MODE_SK column in the
tpcds.ship_mode_t1 table.
CREATE INDEX ds_ship_mode_t1_index4 ON tpcds.ship_mode_t1 USING btree(SM_SHIP_MODE_SK);

Create an expression index on the SM_CODE column in the
tpcds.ship_mode_t1 table.
CREATE INDEX ds_ship_mode_t1_index2 ON tpcds.ship_mode_t1(SUBSTR(SM_CODE,1 ,4));

Create a partial index on the SM_SHIP_MODE_SK column where
SM_SHIP_MODE_SK is greater than 10 in the tpcds.ship_mode_t1 table.
CREATE UNIQUE INDEX ds_ship_mode_t1_index3 ON tpcds.ship_mode_t1(SM_SHIP_MODE_SK)
WHERE SM_SHIP_MODE_SK>10;

● Create a sample table named tpcds.customer_address_p1.
CREATE TABLE tpcds.customer_address_p1
(

Data Warehouse Service
Stream warehouse 3 Stream Data Warehouse Syntax

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

 CA_ADDRESS_SK INTEGER NOT NULL,
 CA_ADDRESS_ID CHAR(16) NOT NULL,
 CA_STREET_NUMBER CHAR(10) ,
 CA_STREET_NAME VARCHAR(60) ,
 CA_STREET_TYPE CHAR(15) ,
 CA_SUITE_NUMBER CHAR(10) ,
 CA_CITY VARCHAR(60) ,
 CA_COUNTY VARCHAR(30) ,
 CA_STATE CHAR(2) ,
 CA_ZIP CHAR(10) ,
 CA_COUNTRY VARCHAR(20) ,
 CA_GMT_OFFSET DECIMAL(5,2) ,
 CA_LOCATION_TYPE CHAR(20)
)
DISTRIBUTE BY HASH(CA_ADDRESS_SK)
PARTITION BY RANGE(CA_ADDRESS_SK)
(
 PARTITION p1 VALUES LESS THAN (3000),
 PARTITION p2 VALUES LESS THAN (5000) ,
 PARTITION p3 VALUES LESS THAN (MAXVALUE)
)
ENABLE ROW MOVEMENT;

Create the partitioned table index ds_customer_address_p1_index1 with the
name of the index partition not specified.
CREATE INDEX ds_customer_address_p1_index1 ON tpcds.customer_address_p1(CA_ADDRESS_SK)
LOCAL;

Create the partitioned table index ds_customer_address_p1_index2 with the
name of the index partition specified.
CREATE INDEX ds_customer_address_p1_index2 ON tpcds.customer_address_p1(CA_ADDRESS_SK)
LOCAL
(
 PARTITION CA_ADDRESS_SK_index1,
 PARTITION CA_ADDRESS_SK_index2,
 PARTITION CA_ADDRESS_SK_index3
)
;

Data Warehouse Service
Stream warehouse 3 Stream Data Warehouse Syntax

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

4 Functions and Expressions

The stream data warehouse provides basic computing capabilities in time series
scenarios through time series calculation functions.

Time Series Calculation Functions

Table 4-1 Functions supported by time series calculation

Functionality Function

Calculates the difference between two rows sorted
by time.

delta

Calculates the difference between the maximum
value and the minimum value in a specified period.

spread

Returns the value with the highest occurrence
frequency for a given column. If multiple values
have the same frequency, this function returns the
smallest value among these values.

mode()

Calculates the percentile. Its result is an
approximation to the result of percentile_cont.

value_of_percentile

Calculates a value based on a given percentile. This
is the inverse function of value_of_percentile.

percentile_of_value

Compare the values in the column2, find the
minimum value, and output the value both in the
column1 and in the row of the minimum value.

first

Compare the values in the column2, find the
maximum value, and output the value both in the
column1 and in the row of the maximum value.

last

Obtains the number of rows in the tag table of the
time series table on the current DN. This function
can be used only on DNs.

get_timeline_count_inter
nal

Data Warehouse Service
Stream warehouse 4 Functions and Expressions

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

Functionality Function

Obtains the number of rows in the tag table of the
time series table on each DN. This function can be
used only on CNs.

get_timeline_count

Deletes the useless data in the tagid row of the tag
table.

gs_clean_tag_relation

Migrates partition management tasks of a time
series table. It is used only when the time series
table is upgraded along with the cluster upgrade
from 8.1.1 to 8.1.3.

ts_table_part_policy_pgjo
b_to_pgtask

Migrates the partition management tasks of all
time series tables in the database. It is used only
when time series tables are upgraded along with
the cluster upgrade from 8.1.1 to 8.1.3.

proc_part_policy_pgjob_t
o_pgtask

Prints SQL statements. Each statement is used to
migrate the partition management tasks of a time
series table. It is used only when time series table is
upgraded from 8.1.1 to 8.1.3.

print_sql_part_policy_pgj
ob_to_pgtask

Table 4-2 Expressions for supplementing time information

Features Expression

Aggregates data, sorts data by the
time column, and supplements the
missing time data by forward filling.

time_fill(interval, time_column,
start_time, end_time),
fill_last(agg_function(agg_column))

Aggregates data, sorts data by the
time column, and supplements the
missing time data by backward filling.

time_fill(interval, time_column,
start_time, end_time),
fill_first(agg_function(agg_column))

Aggregates data, sorts data by the
time column, and supplements the
missing time data by forward and
backward filling.

time_fill(interval, time_column,
start_time, end_time),
fill_avg(agg_function(agg_column))

Table 4-3 Parameter description

Parameter Type Description Required/Option

interval INTERVAL. The
smallest unit is
second.

Interval grouped
by time

Required

Data Warehouse Service
Stream warehouse 4 Functions and Expressions

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

Parameter Type Description Required/Option

time_column TIMESTAMP or
TIMESTAMPTZ

Interval grouped
by a specified
column

Required

start_time TIMESTAMP or
TIMESTAMPTZ

Start time of a
group

Required

end_time TIMESTAMP or
TIMESTAMPTZ

End time of a
group

Required

agg_function(agg
_column))

Aggregates
specified columns.
Example,
max(col)

Fills the missing
part in the agg
result.

Required

NO TE

● The time_fill function needs to be used as an aggregation function. The GROUP BY
clause needs to reference its own calculation result and cannot be nested with itself. The
clause cannot be called multiple times in a single query, used as a lower-layer
computing node, or used with the WITHIN GROUP clause.

● The start timestamp must be smaller than the finish timestamp, and their interval must
be greater than the value of window_width.

● All parameters cannot be null. Values of start and finish must be specified.

● time_fill must be used together with fill_avg, fill_first, fill_last, or the Agg function.

● time_fill can only be used in GROUP BY. A GROUP BY clause that contains time_fill
cannot contain other columns.

● time_fill cannot be used after SELECT, for example, after WHERE or in other conditions.

Example:

Create a table and insert data.

create table dcs_cpu(
idle real TSField,
vcpu_num int TSTag,
node text TSTag,
scope_name text TSTag,
server_ip text TSTag,
iowait numeric TSField,
time_string timestamp TSTime
)with (TTL='7 days', PERIOD = '1 day', orientation=timeseries) distribute by hash(node);
insert into dcs_cpu VALUES(1.0,1,'node_a','scope_a','1.1.1.1',1.0,'2019-07-12 00:10:10');
insert into dcs_cpu VALUES(2.0,2,'node_b','scope_a','1.1.1.2',2.0,'2019-07-12 00:12:10');
insert into dcs_cpu VALUES(3.0,3,'node_c','scope_b','1.1.1.3',3.0,'2019-07-12 00:13:10');

Calculate the average value in a group, 1 minute as the unit. Use the value of the
previous time segment to fill in the value of the next time segment.

select time_fill(interval '1 min',time_string,'2019-07-12 00:09:00','2019-07-12 00:14:00'), fill_last(avg(idle))
from dcs_cpu group by time_fill order by time_fill;
time_fill | fill_last
--------------------------+-----------
Fri Jul 12 00:09:00 2019 |
Fri Jul 12 00:10:00 2019 | 1
Fri Jul 12 00:11:00 2019 | 1

Data Warehouse Service
Stream warehouse 4 Functions and Expressions

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

Fri Jul 12 00:12:00 2019 | 2
Fri Jul 12 00:13:00 2019 | 3
Fri Jul 12 00:14:00 2019 | 3
(6 rows)

Calculate the average value in a group, 1 minute as the unit. Use the value of the
next time segment to fill in the value of the previous time segment.

select time_fill(interval '1 min',time_string,'2019-07-12 00:09:00','2019-07-12 00:14:00'), fill_first(avg(idle))
from dcs_cpu group by time_fill order by time_fill;
time_fill | fill_first
--------------------------+------------
Fri Jul 12 00:09:00 2019 | 1
Fri Jul 12 00:10:00 2019 | 1
Fri Jul 12 00:11:00 2019 | 2
Fri Jul 12 00:12:00 2019 | 2
Fri Jul 12 00:13:00 2019 | 3
Fri Jul 12 00:14:00 2019 |
(6 rows)

Calculate the average value in the group in the unit of 1 minute and fill the
current value with the weighted average value of the two consecutive time
segments.

select time_fill(interval '1 min',time_string,'2019-07-12 00:09:00','2019-07-12 00:14:00'), fill_avg(avg(idle))
from dcs_cpu group by time_fill order by time_fill;
time_fill | fill_avg
--------------------------+----------
Fri Jul 12 00:09:00 2019 | 1
Fri Jul 12 00:10:00 2019 | 1
Fri Jul 12 00:11:00 2019 | 1.5
Fri Jul 12 00:12:00 2019 | 2
Fri Jul 12 00:13:00 2019 | 3
Fri Jul 12 00:14:00 2019 | 3
(6 rows)

delta(field numeric)
Calculates the difference between two rows sorted by time.

Table 4-4 Parameter description

Parameter Type Description Required/
Option

field Numeric Column to be calculated Required

NO TE

● This function is used to calculate the interpolation between two adjacent rows sorted by
time to monitor indicators such as traffic and speed.

● The delta window function needs to be used together with the over window function.
In addition, the rows statement in the over statement does not change the result of the
delta function. For example, the results returned by delta(value) over(order by time
rows 1 preceding) and delta(value) over(order by time rows 3 preceding) are the
same.

Example:
SELECT
 delta(value) over (rows 1 preceding)
FROM

Data Warehouse Service
Stream warehouse 4 Functions and Expressions

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

 (VALUES ('2019-07-12 00:00:00'::timestamptz, 1),('2019-07-12 00:01:00'::timestamptz, 2),('2019-07-12
00:02:00'::timestamptz, 3)) v(time,value);

spread(field numeric)
Calculates the difference between the maximum value and the minimum value in
a specified period.

Table 4-5 Parameter description

Parameter Type Description Required/
Option

field Numeric Column to be calculated Required

NO TE

● This function is used to calculate the increment of each counter sorted by time.
● If there are fewer than two tuples in each group, the returned result is 0. Do not use this

function with the OVER window function.

Example:
SELECT
 SPREAD(value)
FROM
 (VALUES ('2019-07-12 00:00:00'::timestamptz, 1),('2019-07-12 00:01:00'::timestamptz, 2),('2019-07-12
00:02:00'::timestamptz, 3)) v(time,value);

mode() within group (order by value anyelement)
Returns the value with the highest occurrence frequency for a given column. If
multiple values have the same frequency, this function returns the smallest value
among these values.

Table 4-6 Parameter description

Parameter Type Description Required/
Option

value anyelement Querying a column Required

NO TE

● This function must be used together with the within group function. If the within
group statement does not exist, an error is reported. This function parameter is placed
after order by of the group.

● This function cannot be used together with the over clause.

Example:
SELECT
 mode() within group (order by value)
FROM
 (VALUES ('2019-07-12 00:00:00'::timestamptz, 1),('2019-07-12 00:01:00'::timestamptz, 2),('2019-07-12
00:02:00'::timestamptz, 3)) v(time,value);

Data Warehouse Service
Stream warehouse 4 Functions and Expressions

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

value_of_percentile(column float, percentile float, compression float)

Returns percentile values for a specified column in ascending order. It result is an
approximation of percentile_cont, but the function achieves better performance
than percentile_cont.

Table 4-7 Parameter description

Parameter Type Description Required/Option

column float Column whose
percentile is to be
calculated

Required

percentile float Percentile value.
Value range: 0 to
1

Required

compression float Specifies the
compression
coefficient. The
value range is
[0,500]. The
default value is
300. A larger
value indicates
higher memory
usage and higher
result precision. If
the specified
value is not within
the value range,
the value is
regarded as 300.

Required

Example:

SELECT value_of_percentile(values, 0.8, 0) from TABLE;

percentile_of_value(column float, percentilevalue float, compression float)

Returns percentiles in ascending order for a given column. This function is the
inverse function of value_of_percentile.

Table 4-8 Parameter description

Parameter Type Description Requried/Option

column float Column whose
percentile is to be
calculated

Required

Data Warehouse Service
Stream warehouse 4 Functions and Expressions

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

Parameter Type Description Requried/Option

percentilevalue float Value whose
percentile is to be
calculated

Required

compression float Specifies the
compression
coefficient. The
value range is
[0,500]. The
default value is
300. A larger
value indicates
higher memory
usage and higher
result precision. If
the specified
value is not within
the value range,
the value is
regarded as 300.

Required

Example:

SELECT percentile_of_value(values, 80, 0) from TABLE;

first(column1, column2)
Aggregate Functions Compare the values of column2 in a group, find the
minimum value, and output the value of column1.

Table 4-9 Parameter description

Parameter Type Description Requried/Option

column1 bigint/text/
double/numeric

Output column Required

column2 timestamp/
timestamptz/
numeric

Comparison
column

Required

Example (the table definition and data in the time_fill expression is used):

Obtain the first idle value in time order in each group based on scope_name.

select first(idle, time_string) from dcs_cpu group by scope_name;
first

1
3
(2 rows)

Data Warehouse Service
Stream warehouse 4 Functions and Expressions

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

last(column1, column2)
Aggregate Functions Compare the values of column2 in a group, find the
maximum value, and output the corresponding value of column1.

Table 4-10 Parameter description

Parameter Type Description Requried/Option

column1 bigint/text/
double/numeric

Output column Required

column2 timestamp/
timestamptz/
numeric

Comparison
column

Required

Example (the table definition and data in the time_fill expression is used):

Obtain the last idle value in time order in each group based on scope_name.

select last(idle, time_string) from dcs_cpu group by scope_name;
last

2
3
(2 rows)

get_timeline_count_internal(schema_name text, rel_name text)
Obtains the number of rows in the tag table of the time series table on the
current DN. This function can be used only on DNs.

Parameter Type Description Required/
Option

schema_name text Name of the schema that
the time series table
belongs to

Required

rel_name text Name of a time series
table

Required

Example:

Create a table and insert data.

CREATE TABLE IF NOT EXISTS CPU(
scope_name text TSTag,
server_ip text TSTag,
group_path text TSTag,
time timestamptz TSTime,
idle numeric TSField
) with (orientation=TIMESERIES) distribute by hash(scope_name);
insert into CPU values('dcxtataetaeta','10.145.255.33','saetataetaeta','2020-04-07 17:12:09+08', 60639);
insert into CPU values('wrhtataetaeta','10.145.255.33','saetataetaeta','2020-04-07 17:12:09+08', 53311);

Data Warehouse Service
Stream warehouse 4 Functions and Expressions

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

insert into CPU values('saetataetaeta','10.145.255.33','saetataetaeta','2020-04-07 17:12:09+08', 27101);
insert into CPU values('saetataetaeta','10.145.255.33','saetataetaeta','2020-04-07 17:12:09+08', 48005);

After data is transferred from the delta table to CU, connect to the DN and
execute the following function:

select get_timeline_count_internal('public', 'cpu');
get_timeline_count_internal

2
(1 row)

get_timeline_count(relname regclass)
Obtains the number of rows in the tag table of the time series table on each DN.
This function can be used only on CNs.

Parameter Type Description Required/
Option

relname regclass Name of the time series
table

Required

Example:

Table creation and data import are the same as those of the
get_timeline_count_internal function. Connect to the CN and execute the
function:

select get_timeline_count('cpu');
get_timeline_count

(dn_1,2)
(dn_2,1)
(2 rows)

gs_clean_tag_relation(tagOid oid)
This function is used to delete useless data in the row corresponding to a tagid in
a tag table. Data in the primary table is cleared during automatic partition
elimination. However, if a tag table is used for a long time, there may be some
obsolete data in it You can invoke this function to clear the row data in the tag
table to improve the utilization rate of the tag table. The returned value is the
number of rows that are successfully deleted from the tag table.

Parameter description

Parameter Type Description Required/
Option

tagOid oid Delete useless data from
a specified tag table.

Required

Example:

Data Warehouse Service
Stream warehouse 4 Functions and Expressions

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

CREATE TABLE IF NOT EXISTS CPU(
scope_name text TSTag,
server_ip text TSTag,
group_path text TSTag,
time timestamptz TSTime,
idle numeric TSField,
system numeric TSField,
util numeric TSField,
vcpu_num numeric TSField,
guest numeric TSField,
iowait numeric TSField,
users numeric TSField) with (orientation=TIMESERIES) distribute by hash(scope_name);
SELECT oid FROM PG_CLASS WHERE relname='cpu';
 oid

 19099
(1 row)
SELECT gs_clean_tag_relation(19099);
 gs_clean_tag_relation

 0
(1 row)

ts_table_part_policy_pgjob_to_pgtask(schemaName text, tableName text)
This function is used to migrate partition management tasks of a time series table.
It is used only when the time series table is upgraded along with the cluster
upgrade from 8.1.1 to 8.1.3. In version 8.1.1, the partition management tasks of
time series tables are in the pg_jobs table, while in version 8.1.3, these tasks are in
the pg_task table. Therefore, during the cluster upgrade from version 8.1.1 to
version 8.1.3, the partition management tasks need to be migrated from pg_jobs
to pg_task. This function migrates only the time series table partition
management tasks. After the migration is complete, the status of the original
tasks in pg_jobs table are changed to broken.

Parameter Type Description Required/
Option

schemaName text Name of the schema that
the time series table
belongs to

Required

tableName text Name of the time series
table

Required

Example:

CALL ts_table_part_policy_pgjob_to_pgtask('public','cpu1');
WARNING: The job on pg_jobs is migrated to pg_task, and the original job is broken, the job what is call
proc_drop_partition('public.cpu1', interval '7 d'); , the job interval is interval '1 day'.
WARNING: The job on pg_jobs is migrated to pg_task, and the original job is broken, the job what is call
proc_add_partition('public.cpu1', interval '1 d'); , the job interval is interval '1 day'.
ts_table_part_policy_pgjob_to_pgtask

(1 row)

Data Warehouse Service
Stream warehouse 4 Functions and Expressions

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

proc_part_policy_pgjob_to_pgtask()
This function is used only when the time series table is upgraded along with the
cluster upgrade from version 8.1.1 to version 8.1.3. It is used to migrate the
partition management tasks of all time series tables in the 8.1.1 version database.
This function traverses all time series tables in the database and checks whether
the partition management tasks of a time series table are migrated. If the tasks
are not migrated, the ts_table_part_policy_pgjob_to_pgtask function is invoked
to migrate them. If the migration fails, the entire system is rolled back.

Example:

CALL proc_part_policy_pgjob_to_pgtask();
NOTICE: find table, name is cpu1, namespace is public.
WARNING: The job on pg_jobs is migrated to pg_task, and the original job is broken, the job what is call
proc_drop_partition('public.cpu1', interval '7 d'); , the job interval is interval '1 day'.
CONTEXT: SQL statement "call ts_table_part_policy_pgjob_to_pgtask('public', 'cpu1');"
PL/pgSQL function proc_part_policy_pgjob_to_pgtask() line 17 at EXECUTE statement
WARNING: The job on pg_jobs is migrated to pg_task, and the original job is broken, the job what is call
proc_add_partition('public.cpu1', interval '1 d'); , the job interval is interval '1 day'.
CONTEXT: SQL statement "call ts_table_part_policy_pgjob_to_pgtask('public', 'cpu1');"
PL/pgSQL function proc_part_policy_pgjob_to_pgtask() line 17 at EXECUTE statement
NOTICE: find table, name is cpu2, namespace is public.
WARNING: The job on pg_jobs is migrated to pg_task, and the original job is broken, the job what is call
proc_add_partition('public.cpu2', interval '1 d'); , the job interval is interval '1 day'.
CONTEXT: SQL statement "call ts_table_part_policy_pgjob_to_pgtask('public', 'cpu2');"
PL/pgSQL function proc_part_policy_pgjob_to_pgtask() line 17 at EXECUTE statement
proc_part_policy_pgjob_to_pgtask

(1 row)

print_sql_part_policy_pgjob_to_pgtask()
This function is used only when the time series tables are upgraded along with the
cluster upgrade from version 8.1.1 to version 8.1.3. This function is used to print
SQL statements that can be used to migrate the partition management tasks of a
time series table. The migration granularity of proc_part_policy_pgjob_to_pgtask
function is at the database level. But you can manually execute the statements
printed by the proc_part_policy_pgjob_to_pgtask function to implement the
table-level migration granularity.

Example:

CALL print_sql_part_policy_pgjob_to_pgtask();
call ts_table_part_policy_pgjob_to_pgtask('public', 'cpu1');
call ts_table_part_policy_pgjob_to_pgtask('public', 'cpu2');
print_sql_part_policy_pgjob_to_pgtask

(1 row)

Data Warehouse Service
Stream warehouse 4 Functions and Expressions

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

5 Stream Data Warehouse GUC
Parameters

enable_tagbucket_auto_adapt
Parameter description: Specifies whether to enable tagbucket adaption. If this
parameter is enabled, the tag column that is frequently used in the query
statement in the current time period is optimized, and the query statements that
contain the tag column in its where condition are accelerated.

Type: POSTMASTER

Value range: Boolean
● on/true indicates the tagbucket adaption is enabled.
● off/false indicates the tagbucket adaption is disabled.

Default value: on

cache_tag_value_num
Parameter description: Specifies the number of cached tag tuples in the tag
column lateread scenario. The speed of loading data from the cache is faster,
which improves the query performance.
● If the tag tuples in the tag table after being filtered is less than or equal to

the value of this parameter, they are loaded to the memory for cache.
● Otherwise, they are not loaded.

Type: USERSET

Value range: an integer ranging from 0 to 60000

Default value: 60000

tag_cache_max_number
Parameter description: Specifies the maximum value of the tag cache.

Type: POSTMASTER

Value range: an integer ranging from 100000 to INT MAX

Data Warehouse Service
Stream warehouse 5 Stream Data Warehouse GUC Parameters

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

Default value: 10000000

autovacuum_vacuum_cost_delay
Parameter description: Specifies the value of the cost delay used in the VACUUM
operation.

Type: SIGHUP

Value range: an integer ranging from –1 to 100. The unit is ms. -1 indicates that
the normal vacuum cost delay is used.

Default value: 0

autoanalyze
Parameter description: Specifies whether to automatically collect statistics on
tables that have no statistics when a plan is generated. If an exception occurs in
the database during the execution of autoanalyze on a table, after the database is
recovered, the system may still prompt you to collect the statistics of the table
when you run the statement again. Then, you need to manually perform the
analyze operation.

Type: SUSET

Value range: Boolean
● on/true indicates that the table statistics are automatically collected.
● off/false indicates that the table statistics are not automatically collected.

Default value: off

NO TE

Currently, the autoanalyze feature is not available for foreign tables and temporary tables
with the ON COMMIT [DELETE ROWS|DROP] option. If you need the statistics, manually
perform the ANALYZE operation.

Data Warehouse Service
Stream warehouse 5 Stream Data Warehouse GUC Parameters

Issue 08 (2024-05-06) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

	Contents
	1 Introduction to Stream Data Warehouse
	2 Support and Constraints
	2.1 Extension Constraints
	2.2 Data Types Supported by TSFIELD

	3 Stream Data Warehouse Syntax
	3.1 CREATE TABLE
	3.2 DROP TABLE
	3.3 ALTER TABLE
	3.4 CREATE INDEX

	4 Functions and Expressions
	5 Stream Data Warehouse GUC Parameters

