
Data Warehouse Service

Hybrid Data Warehouse

Issue 01

Date 2025-01-07

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Contents

1 Introduction to Hybrid Data Warehouse... 1

2 Support and Constraints.. 6

3 Hybrid Data Warehouse Syntax... 8
3.1 CREATE TABLE.. 8
3.2 INSERT.. 18
3.3 DELETE..20
3.4 UPDATE.. 21
3.5 UPSERT... 23
3.6 MERGE INTO.. 25
3.7 SELECT.. 26
3.8 ALTER TABLE... 28

4 Hybrid Data Warehouse Functions... 31

5 Hybrid Data Warehouse GUC Parameters...38

6 Hybrid Data Warehouse Binlog... 45
6.1 Subscribing to Hybrid Data Warehouse Binlog.. 45
6.2 Real-Time Binlog Consumption by Flink.. 50

Data Warehouse Service
Hybrid Data Warehouse Contents

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

1 Introduction to Hybrid Data Warehouse

Hybrid: A hybrid data warehouse offers both large-scale data query and analysis
capabilities, as well as low-cost, high-concurrency, high-performance, and low-
latency transaction processing capabilities.

NO TE

● To use hybrid data warehouse capabilities, choose the storage-compute coupled
architecture when you create a GaussDB(DWS) cluster on the console and ensure the
vCPU to memory ratio is 1:4 when setting up cloud disk flavors. For more information,
see Data Warehouse Flavors.

● When setting up a GaussDB(DWS) cluster, make sure to have a vCPU to memory ratio
of 1:8 for standard data warehouses and a ratio of 1:4 for hybrid data warehouses. You
can distinguish a standard data warehouse from a real-time data warehouse by
comparing their vCPU to memory ratios.

A hybrid data warehouse needs to work with data sources, such as upstream
databases or applications, to insert, upsert, and update data in real time. The data
warehouse should also be able to query data shortly after it was imported.

Currently, the existing row-store and column-store tables in a conventional
GaussDB(DWS) data warehouse cannot meet real-time data import and query
requirements. Row-store tables have strong real-time import capabilities and
support highly concurrent updates, but their disk usage is high and query
efficiency is low. Column-store tables have high data compression ratio and good
OLAP query performance, but do not support concurrent updates. Concurrent
import will cause severe lock conflicts.

To solve these problems, we use column storage to reduce the disk usage, support
highly concurrency updates, and improve query speed. GaussDB(DWS) hybrid data
warehouses use HStore tables to achieve high performance during real-time data
import and query, and have the transaction processing capabilities required for
traditional OLTP scenarios.

The HStore tables uniquely support single and small-batch real-time IUD
operations, as well as regular large-batch import. Data can be queried
immediately after being imported. You can deduplicate traditional indexes (such
as primary keys) and accelerate point queries. You can further accelerate OLAP
queries through partitioning, multi-dimensional dictionaries, and partial sorting.
Strong data consistency can be ensured for transactions with heavy workloads,
such as TPC-C.

Data Warehouse Service
Hybrid Data Warehouse 1 Introduction to Hybrid Data Warehouse

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

https://support.huaweicloud.com/intl/en-us/productdesc-dws/dws_01_00018.html

NO TE

● Only clusters 8.2.0.100 and later support the HStore tables of the hybrid data
warehouse.

● The hybrid data warehouse is used for both production and analysis. It is applicable to
hybrid transaction and analysis scenarios. It can be deployed in single-node or cluster
mode. For how to create a hybrid data warehouse, see Creating a GaussDB(DWS) 2.0
Cluster with Coupled Storage and Compute.

● Hot and cold data management is supported for HStore tables. For details, see Best
Practices of Hot and Cold Data Management. This function is supported only by
cluster versions 8.2.0.101 and later.

● HStore is a table type designed for the hybrid data warehouse and is irrelevant to the
SQL parameter hstore.

Differences from Standard Data Warehouses

Hybrid data warehouses and standard data warehouses are two types of
GaussDB(DWS) data warehouses with different specifications and usage. For
details, see Table 1-1.

Table 1-1 Comparison between hybrid and standard data warehouses

Type Standard Data Warehouse
(Compute-Storage Coupled
Architecture with 1:8 vCPU
to Memory Ratio)

Hybrid Data
Warehouse
(Compute-Storage
Coupled Architecture
with 1:4 vCPU to
Memory Ratio)

Application scenario Converged data analysis
using OLAP. It is used in
sectors such as finance,
government and enterprise,
e-commerce, and energy.

Real-time data import
+ Hybrid analysis. Real-
time upstream data
import + Real-time
query after data
import. It is mainly
used in scenarios that
have high requirements
on real-time data
import, such as e-
commerce and finance.

Advantage It is cost-effective and widely
used.
Cost effective, both hot and
cold data analysis supported,
elastic storage and compute
capacities.

Hybrid load, high data
import performance.
It achieves high query
efficiency and high
data compression ratio
that are equivalent to
those of column
storage. It can also
process transactions in
traditional OLTP
scenarios.

Data Warehouse Service
Hybrid Data Warehouse 1 Introduction to Hybrid Data Warehouse

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

https://support.huaweicloud.com/intl/en-us/mgtg-dws/dws_01_0019.html
https://support.huaweicloud.com/intl/en-us/mgtg-dws/dws_01_0019.html
https://support.huaweicloud.com/intl/en-us/bestpractice-dws/dws_05_0094.html
https://support.huaweicloud.com/intl/en-us/bestpractice-dws/dws_05_0094.html

Type Standard Data Warehouse
(Compute-Storage Coupled
Architecture with 1:8 vCPU
to Memory Ratio)

Hybrid Data
Warehouse
(Compute-Storage
Coupled Architecture
with 1:4 vCPU to
Memory Ratio)

Features Excellent performance in
interactive analysis and
offline processing of massive
data, as well as complex
data mining.

It supports highly
concurrent update
operations on massive
amounts of data and
can achieve high query
efficiency. It achieves
high performance
when processing a
large amount of data
in scenarios like high-
concurrency import
and latency-sensitive
queries.

SQL syntax Highly compatible with SQL
syntax

Compatible with
column-store syntax

GUC parameter You can configure a wide
variety of GUC parameters
to tailor your data
warehouse environment.

It is compatible with
standard data
warehouse GUC
parameters and
supports hybrid data
warehouse tuning
parameters.

Technical Highlights
● Transaction consistency

Data can be retrieved for queries immediately after being inserted or updated.
After concurrent updates, data is strongly consistent, and there will not be
incorrect results caused by wrong update sequence.

● High query performance
In complex OLAP queries, such as multi-table correlation, the data warehouse
achieves high performance through comprehensive distributed query plans
and distributed executors. It also supports complex subqueries and stored
procedures.

● Quick import
There will not be lock conflicts on column-store CUs. High-concurrency
update and import operations are supported. The concurrent update
performance can be over 100 times higher than before in general scenarios.

● High compression

Data Warehouse Service
Hybrid Data Warehouse 1 Introduction to Hybrid Data Warehouse

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

Column storage can achieve a high compression ratio. Data is stored in the
column-store primary table through MERGE can be compressed to greatly
reduce disk usage and I/O.

● Query acceleration
You can deduplicate traditional indexes (such as primary keys) and accelerate
point queries. You can further accelerate OLAP queries through partitioning,
multi-dimensional dictionaries, and partial sorting.

Comparison Between Row-store, Column-store, and HStore Tables

Table 1-2 Comparison between row-store, column-store, and HStore tables

Table Type Row-Store Column-Store HStore

Data storage
mode

The attributes of
a tuple are stored
nearby.

The values of an
attribute are stored
nearby in the unit of
CU.

Data is stored in the
column-store primary
tables as CUs.
Updated columns
and data inserted in
small batches is
serialized and then
stored in a newly
designed delta table.

Data write Row-store
compression has
not been put into
commercial use.
Data is stored as
it is, occupying a
large amount of
disk space.

In row storage, data
with the same
attribute value types
is easy to compress.
Data write
consumes much
fewer I/O resources
and less disk space.

Data inserted in
batches is directly
written to CUs, which
are as easy to
compress as column
storage.
Updated columns
and data inserted in
small batches are
serialized and then
compressed. They will
also be periodically
merged to primary
table CUs.

Data update Data is updated
by row, avoiding
CU lock conflicts.
The performance
of concurrent
updates
(UPDATE/
UPSERT/DELETE)
is high.

The entire CU needs
to be locked even if
only one record in it
is updated.
Generally,
concurrent updates
(UPDATE/UPSERT/
DELETE) are not
supported.

CU lock conflicts can
be avoided. The
performance of
concurrent updates
(UPDATE/UPSERT/
DELETE) is higher
than 60% of the row-
store update
performance.

Data Warehouse Service
Hybrid Data Warehouse 1 Introduction to Hybrid Data Warehouse

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

Table Type Row-Store Column-Store HStore

Data read Data is read by
row. An entire
row needs to be
retrieved even if
only one column
in it needs to be
accessed. The
query
performance is
low.

When data is read
by column, only the
CU of a column
needs to be
accessed. CUs can
be easily
compressed,
occupying less I/O
resources, and
achieve high read
performance.

Data in a column-
store primary table is
read by column.
Updated columns
and data inserted in
small batches are
deserialized and then
retrieved. After data
is merged to the
primary table, the
data can be read as
easily as that in
column storage.

Advantage The concurrent
update
performance is
high.

The query
performance is high,
and the disk space
usage is small.

The concurrent
update performance
is high. After data
merges, the query
and compression
performance are the
same as those of
column storage.

Disadvantag
e

A large amount
of disk space is
occupied, and the
query
performance is
low.

Generally,
concurrent updates
are not supported.

A background
permanent thread is
required to clear
unnecessary HStore
table data after
merge. Data is
merged to the
primary table CUs
and then cleared.
This operation is
irrelevant to the SQL
syntax MERGE.

Application
scenario

1. OLTP
transactions
with frequent
update and
deletion
operations

2. Point queries
(simple
queries that
are based on
indexes and
return a small
amount of
data)

1. OLAP query and
analysis

2. A large volume of
data is imported,
and is rarely
updated or
deleted after the
import.

1. Data is
concurrently
imported to the
database in real
time.

2. High-concurrency
update and
import; and high-
performance
query

Data Warehouse Service
Hybrid Data Warehouse 1 Introduction to Hybrid Data Warehouse

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

2 Support and Constraints

A hybrid data warehouse is compatible with all column-store syntax.

Table 2-1 Supported syntax

Syntax Supported

CREATE TABLE Yes

CREATE TABLE LIKE Yes

DROP TABLE Yes

INSERT Yes

COPY Yes

SELECT Yes

TRUNCATE Yes

EXPLAIN Yes

ANALYZE Yes

VACUUM Yes

ALTER TABLE DROP PARTITION Yes

ALTER TABLE ADD PARTITION Yes

ALTER TABLE SET WITH OPTION Yes

ALTER TABLE DROP COLUMN Yes

ALTER TABLE ADD COLUMN Yes

ALTER TABLE ADD NODELIST Yes

ALTER TABLE CHANGE OWNER Yes

ALTER TABLE RENAME COLUMN Yes

ALTER TABLE TRUNCATE PARTITION Yes

Data Warehouse Service
Hybrid Data Warehouse 2 Support and Constraints

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

Syntax Supported

CREATE INDEX Yes

DROP INDEX Yes

DELETE Yes

Other ALTER TABLE syntax Yes

ALTER INDEX Yes

MERGE Yes

SELECT INTO Yes

UPDATE Yes

CREATE TABLE AS Yes

Constraints
1. To use HStore tables, use the following parameter settings, or the

performance of HStore tables will deteriorate significantly:
autovacuum_max_workers_hstore=3, autovacuum_max_workers=6, and
autovacuum=true

2. In version 8.2.1 and later, you can now clear the dirty data from column-store
indexes. This is especially beneficial when dealing with frequent data updates
and imports into the database. By efficiently managing the index space, it
improves both the import and query performance.

3. When using HStore asynchronous sorting, pay attention to the following:
– DML operations on certain data may be blocked during asynchronous

sorting. The maximum blocking granularity is the row threshold for
asynchronous sorting. This function is not recommended for frequent
DML operations.

– Automatic asynchronous sorting and column-store VACUUM cannot be
used together. If the autovacuum process meets the conditions for
column-store VACUUM, asynchronous sorting is skipped and will wait for
the next trigger. In some cases, column-store VACUUM may be
continuously triggered due to a high volume of DML operations, which
means asynchronous sorting will never be triggered.

Data Warehouse Service
Hybrid Data Warehouse 2 Support and Constraints

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

3 Hybrid Data Warehouse Syntax

3.1 CREATE TABLE

Function

Create an HStore table in the current database. The table will be owned by the
user who created it.

In a hybrid data warehouse, you can use DDL statements to create HStore tables.
To create an HStore table, set enable_hstore to true and set orientation to
column.

NO TE

● To use hybrid data warehouse capabilities, choose the storage-compute coupled
architecture when you create a GaussDB(DWS) cluster on the console and ensure the
vCPU to memory ratio is 1:4 when setting up cloud disk flavors. For more information,
see Data Warehouse Flavors.

● When setting up a GaussDB(DWS) cluster, make sure to have a vCPU to memory ratio
of 1:8 for standard data warehouses and a ratio of 1:4 for hybrid data warehouses. You
can distinguish a standard data warehouse from a real-time data warehouse by
comparing their vCPU to memory ratios.

Precautions
● When creating an HStore table, ensure that the database GUC parameter

settings meet the following requirements:
– autovacuum is set to on.
– The value of autovacuum_max_workers_hstore is greater than 0.
– The value of autovacuum_max_workers is greater than that of

autovacuum_max_workers_hstore.
● To create an HStore table, you must have the USAGE permission on schema

cstore.
● The table-level parameters enable_delta and enable_hstore cannot be

enabled at the same time. The parameter enable_delta is used to enable
delta for common column-store tables and conflicts with enable_hstore.

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

https://support.huaweicloud.com/intl/en-us/productdesc-dws/dws_01_00018.html
https://support.huaweicloud.com/intl/en-us/HyDevg-dws/dws_15_00014.html
https://support.huaweicloud.com/intl/en-us/devg-dws/dws_04_0923.html

● Each HStore table is bound to a delta table. The OID of the delta table is
recorded in the reldeltaidx field in pg_class. (The reldelta field is used by the
delta table of the column-store table).

Syntax
CREATE TABLE [IF NOT EXISTS] table_name
({ column_name data_type
 | LIKE source_table [like_option [...]] }
}
 [, ...])
[WITH ({storage_parameter = value} [, ...])]
[TABLESPACE tablespace_name]
[DISTRIBUTE BY HASH (column_name [,...])]
[TO { GROUP groupname | NODE (nodename [, ...]) }]
[PARTITION BY {
 {RANGE (partition_key) (partition_less_than_item [, ...])}
 } [{ ENABLE | DISABLE } ROW MOVEMENT]];
The options for LIKE are as follows:
{ INCLUDING | EXCLUDING } { DEFAULTS | CONSTRAINTS | INDEXES | STORAGE | COMMENTS | PARTITION
| RELOPTIONS | DISTRIBUTION | ALL }

Differences Between Delta Tables

Table 3-1 Differences between the delta tables of HStore and column-store tables

Type Column-Store
Delta Table

HStore Delta Table HStore Opt Delta
Table

Table
struct
ure

Same as that
defined for the
column-store
primary table.

Different from that
defined for the
primary table.

Different from the
definitions of the
primary table and but
same as the definitions
of the HStore table.

Functi
onality

Used to temporarily
store a small batch
of inserted data.
After the data size
reaches the
threshold, the data
will be merged to
the primary table. In
this way, data will
not be directly
inserted to the
primary table or
generate a large
number of small
CUs.

Persistently stores
UPDATE, DELETE, and
INSERT information. It
is used to restore the
memory structure that
manages concurrent
updates, such as the
memory update chain,
in the case of a fault.

Persistently stores
UPDATE, DELETE, and
INSERT information. It
is used to restore the
memory structure that
manages concurrent
updates, such as the
memory update chain,
in the case of a fault.
It is further optimized
compared with HStore.

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

Type Column-Store
Delta Table

HStore Delta Table HStore Opt Delta
Table

Weak
ness

If data is not
merged in a timely
manner, the delta
table will grow large
and affect query
performance. In
addition, the table
cannot solve lock
conflicts during
concurrent updates.

The merge operation
depends on the
background
AUTOVACUUM.

The merge operation
depends on the
background
AUTOVACUUM.

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

Type Column-Store
Delta Table

HStore Delta Table HStore Opt Delta
Table

Specifi
cation
differe
nces

Concurrent requests
in the same CU are
not supported. It is
applicable to the
scenario where
there are not many
concurrent updates.

1. Insertion and
update restrictions:
● MERGE INTO

does not support
concurrent
updates of the
same row or
repeated
updates of the
same key.

● Concurrent
UPDATE or
DELETE
operations on
the same row
are not
supported.
Otherwise, an
error is reported.

2. Index and query
restrictions:
● Indexes do not

support array
condition
filtering, IN
expression
filtering, partial
indexes, or
expression
indexes.

● Indexes cannot
be invalidated.

3. Table structure and
operation
restrictions:
● Ensure that the

tables to be
exchanged are
HStore tables
during partition
exchange or
relfilenode
operations.

● The distribution
column cannot
be modified

1. Insertion and
update restrictions:
● MERGE INTO

does not support
concurrent
updates of the
same row or
repeated
updates of the
same key.

● Concurrent
updates or
deletions of the
same row is not
supported.

● hstore_opt does
not support
cross-partition
upserts.

2. Index and query
restrictions:
● Bitmap indexes

are supported.
● Global

dictionaries are
supported.

● bitmap_column
s must be
specified during
table creation
and cannot be
modified after
being set.

● The opt version
does not support
transparent
parameter
transmission
during SMP
streaming. In
multi-table join
queries that
require partition
pruning, avoid
using replicated
tables or setting
query_dop.

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

Type Column-Store
Delta Table

HStore Delta Table HStore Opt Delta
Table

using the
UPDATE
command. You
are not advised
to modify the
partition column
using the
UPDATE
command. (No
error is reported,
but the
performance is
poor.)

3. Table structure and
operation
restrictions:
● Distribution

columns and
partition
columns cannot
be modified
using UPDATE.

● The
enable_hstore_o
pt attribute must
be set when the
table is created
and cannot be
changed after
being set.

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

Type Column-Store
Delta Table

HStore Delta Table HStore Opt Delta
Table

Data
import
sugges
tions

1. For optimal data import, query performance, and space utilization,
it is recommended to choose the HStore Opt table. In scenarios
involving micro-batch copying with high performance demands and
no data updates, you can choose the HStore table.

2. Similarities between HStore and HStore Opt tables:
● The performance of importing data using UPDATE is poor. You

are advised to use UPSERT to import data.
● When using DELETE to import data, use index scanning. The

JDBC batch method is recommended.
● Use MERGE INTO to import data records to the database when

the data volume exceeds 1 million per DN and there is no
concurrent data.

● Do not modify or add data in cold partitions.
3. Suggestions on HStore table data import using UPSERT:

● Select a method.
Step 1: Select Method 2 for partial column upsert. For full column
upsert (update all columns to new values without expressions when
a conflict occurs), go to step 2.
Step 2: Check whether data is concurrently updated to the same key
when being imported to the database. If no conflict occurs, select
Method 1. If a conflict occurs, go to step 3.
Step 3: If duplicate data exists in the database, select Method 2.
Otherwise, go to step 4.
Step 4: If copying of temporary tables is used for import, select
Method 3. Otherwise, select Method 2.
● The methods are as follows:

– Method 1: Enable
enable_hstore_nonconflict_upsert_optimization and disable
enable_hstore_partial_upsert_optimization.

– Method 2: Disable
enable_hstore_nonconflict_upsert_optimization and enable
enable_hstore_partial_upsert_optimization.

– Method 3: Disable
enable_hstore_nonconflict_upsert_optimization and
enable_hstore_partial_upsert_optimization.

● Note: If the number of accumulated batches is less than 2,000,
import data in batches into the database. For accumulated
batches exceeding 2,000, import data into the database by
copying temporary tables.

4. Suggestions on HStore Opt table data import using UPSERT:
If there is no concurrency conflict, enable the
enable_hstore_nonconflict_upsert_optimization parameter. In
other scenarios, disable the parameter. The optimal path is
automatically selected.

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

Type Column-Store
Delta Table

HStore Delta Table HStore Opt Delta
Table

Point
query
sugges
tions

1. Generally, the HStore Opt table is recommended for point queries.
2. Similarities between HStore and HStore Opt tables:

Create a level-2 partition on the column where the equal-value
filter condition is most frequently used and distinct values are
evenly distributed.

3. Suggestions on using HStore tables for point queries:
● Accelerating indexes other than primary keys may have poor

effect. You are advised not to enable index acceleration.
● If the data type is numeric or strings less than 16 bytes, Turbo

acceleration is recommended.
4. Suggestions on using HStore Opt tables:

● For equal-value filter columns not in level-2 partitions, if the
columns involved in the filter criteria are basically fixed in the
query, use the CB-tree index. If the columns change continuously,
you are advised to use the GIN index. Do not select more than
five index columns.

● For all string columns involving equivalent filtering, bitmap
indexes can be specified during table creation. The number of
columns is not limited, but cannot be modified later.

● Specify columns that can be filtered by time range as the
partition columns.

● If the number of returned data records exceeds 100,000 per DN,
index scanning may not significantly enhance performance. In
this case, you are advised to use the GUC parameter
enable_seqscan to test the performance then determine which
optimization method to use.

Parameters
● IF NOT EXISTS

If IF NOT EXISTS is specified, a table will be created if there is no table using
the specified name. If there is already a table using the specified name, no
error will be reported. A message will be displayed indicating that the table
already exists, and the database will skip table creation.

● table_name
Specifies the name of the table to be created.
The table name can contain a maximum of 63 characters, including letters,
digits, underscores (_), dollar signs ($), and number signs (#). It must start
with a letter or underscore (_).

● column_name
Specifies the name of a column to be created in the new table.
The column name can contain a maximum of 63 characters, including letters,
digits, underscores (_), dollar signs ($), and number signs (#). It must start
with a letter or underscore (_).

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

● data_type
Specifies the data type of the column.

● LIKE source_table [like_option ...]
Specifies a table from which the new table automatically copies all column
names and their data types.
The new table and the original table are decoupled after creation is complete.
Changes to the original table will not be applied to the new table, and scans
on the original table will not be performed on the data of the new table.
Columns copied by LIKE are not merged with the same name. If the same
name is specified explicitly or in another LIKE clause, an error will be
reported.
HStore tables can be inherited only from HStore tables.

● WITH ({ storage_parameter = value } [, ...])
Specifies an optional storage parameter for a table.
– ORIENTATION

Specifies the storage mode (time series, row-store, or column-store) of
table data. This parameter cannot be modified once it is set. For HStore
tables, use the column storage mode and set enable_hstore to on.
Options:

▪ TIMESERIES indicates that the data is stored in time series.

▪ COLUMN indicates that the data is stored in columns.

▪ ROW indicates that table data is stored in rows.

Default value: ROW
– COMPRESSION

Specifies the compression level of the table data. It determines the
compression ratio and time. Generally, a higher compression level
indicates a higher compression ratio and a longer compression time, and
vice versa. The actual compression ratio depends on the distribution
characteristics of loading table data.
Options:

▪ The valid values for HStore tables and column-store tables are YES/
NO and LOW/MIDDLE/HIGH, and the default is LOW.

▪ The valid values for row-store tables are YES and NO, and the
default is NO.

– COMPRESSLEVEL
Specifies table data compression rate and duration at the same
compression level. This divides a compression level into sub-levels,
providing you with more choices for compression ratio and duration. As
the value becomes greater, the compression rate becomes higher and
duration longer at the same compression level. The parameter is only
valid for time series tables and column-store tables.
Value range: 0 to 3
Default value: 0

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

– MAX_BATCHROW
Specifies the maximum number of rows in a storage unit during data
loading. The parameter is only valid for time series tables and column-
store tables.
Value range: 10000 to 60000
Default value: 60000

– PARTIAL_CLUSTER_ROWS
Specifies the number of records to be partially clustered for storage
during data loading. The parameter is only valid for time series tables
and column-store tables.
Value range: 600000 to 2147483647

– enable_delta
Specifies whether to enable delta tables in column-store tables. This
parameter cannot be enabled for HStore tables.
Default value: off

– enable_hstore
Specifies whether to create a table as an HStore table (based on column-
store tables). The parameter is only valid for column-store tables. This
parameter is supported by version 8.2.0.100 or later clusters.
Default value: off

NO TE

If this parameter is enabled, the following GUC parameters must be set to ensure
that HStore tables are cleared.
autovacuum=true, autovacuum_max_workers=6,
autovacuum_max_workers_hstore=3.

– enable_disaster_cstore
Specifies whether fine-grained DR will be enabled for column-store
tables. This parameter only takes effect on column-store tables whose
COLVERSION is 2.0 and cannot be set to on if enable_hstore is on. This
parameter is supported by version 8.2.0.100 or later clusters.
Default value: off

CA UTION

Before enabling this function, set the GUC parameter
enable_metadata_tracking to on. Otherwise, fine-grained DR may fail to
be enabled.

– SUB_PARTITION_COUNT
Specifies the number of level-2 partitions. This parameter specifies the
number of level-2 partitions during data import. This parameter is
configured during table creation and cannot be modified after table
creation. You are not advised to set the default value, which may affect
the import and query performance.
Value range: 1 to 1024
Default value: 32

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

– DELTAROW_THRESHOLD
Specifies the maximum number of rows (SUB_PARTITION_COUNT x
DELTAROW_THRESHOLD) to be imported to the delta table.
Value range: 0 to 60000
Default value: 60000

– COLVERSION
Specifies the version of the storage format. HStore tables support only
version 2.0, and enable_hstore_opt tables support versions 2.0 and 3.0.
Options:
1.0: Each column in a column-store table is stored in a separate file. The
file name is relfilenode.C1.0, relfilenode.C2.0, relfilenode.C3.0, or
similar.
2.0: All columns of a column-store table are combined and stored in a
file. The file is named relfilenode.C1.0.
Default value: 2.0

– enable_binlog
Specifies whether to enable the binlog function for the HStore table. This
parameter is supported only by clusters of version 8.3.0.100 or later.
Value range: on and off
Default value: off

– enable_binlog_timestamp
Determines whether to enable the binlog function with timestamps for
HStore tables. This parameter and enable_binlog cannot be enabled at
the same time. Only clusters of 9.1.0.200 and later versions support this
parameter.
Value range: on and off
Default value: off

– DISTRIBUTE BY
Specifies how the table is distributed or replicated between DNs.
Options:
HASH (column_name): Each row of the table will be placed into all the
DNs based on the hash value of the specified column.

– TO { GROUP groupname | NODE (nodename [, ...]) }
TO GROUP specifies the Node Group in which the table is created.
Currently, it cannot be used for HDFS tables. TO NODE is used for
internal scale-out tools.

– PARTITION BY
Specifies the initial partition of an HStore table.

– secondary_part_column
Specifies the name of a level-2 partition column in a column-store table.
Only one column can be specified as the level-2 partition column. This
parameter applies only to HStore column-store tables. This parameter is
supported only by clusters of version 8.3.0 and later. V3 tables do not
support this parameter and will use hashbucket pruning.

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

NO TE

● The column specified as a level-2 partition column cannot be deleted or
modified.

● The level-2 partition column can be specified only when a table is created.
After a table is created, the level-2 partition column cannot be modified.

● You are not advised to specify a distribution column as a level-2 partition
column.

● The level-2 partition column determines how the table is logically split into
hash partitions on DNs, which enhances the query performance for that
column.

– secondary_part_num
Specifies the number of level-2 partitions in a column-store table. This
parameter applies only to HStore column-store tables. This parameter is
supported only by clusters of version 8.3.0 and later. V3 tables do not
support this parameter and will use hashbucket pruning.
Value range: 1 to 32
Default value: 8

NO TE

● This parameter can be specified only when secondary_part_column is
specified.

● The number of level-2 partitions can be specified only when a table is created
and cannot be modified after the table is created.

● You are not advised to change the default value, which may affect the import
and query performance.

Example
Create a simple HStore table.

CREATE TABLE warehouse_t1
(
 W_WAREHOUSE_SK INTEGER NOT NULL,
 W_WAREHOUSE_ID CHAR(16) NOT NULL,
 W_WAREHOUSE_NAME VARCHAR(20) ,
 W_WAREHOUSE_SQ_FT INTEGER ,
 W_STREET_NUMBER CHAR(10) ,
 W_STREET_NAME VARCHAR(60) ,
 W_STREET_TYPE CHAR(15) ,
 W_SUITE_NUMBER CHAR(10) ,
 W_CITY VARCHAR(60) ,
 W_COUNTY VARCHAR(30) ,
 W_STATE CHAR(2) ,
 W_ZIP CHAR(10) ,
 W_COUNTRY VARCHAR(20) ,
 W_GMT_OFFSET DECIMAL(5,2)
)WITH(ORIENTATION=COLUMN, ENABLE_HSTORE=ON);

CREATE TABLE warehouse_t2 (LIKE warehouse_t1 INCLUDING ALL);

3.2 INSERT

Function
Insert one or more rows of data into an HStore table.

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

NO TE

● To use hybrid data warehouse capabilities, choose the storage-compute coupled
architecture when you create a GaussDB(DWS) cluster on the console and ensure the
vCPU to memory ratio is 1:4 when setting up cloud disk flavors. For more information,
see Data Warehouse Flavors.

● When setting up a GaussDB(DWS) cluster, make sure to have a vCPU to memory ratio
of 1:8 for standard data warehouses and a ratio of 1:4 for hybrid data warehouses. You
can distinguish a standard data warehouse from a real-time data warehouse by
comparing their vCPU to memory ratios.

Precautions
● If the data to be inserted at a time is greater than or equal to the value of the

table-level parameter DELTAROW_THRESHOLD, the data is directly inserted
into the primary table to generate a compression unit (CU).

● If the data to be inserted is smaller than DELTAROW_THRESHOLD, a record
of the type I will be inserted into the delta table. The data will be serialized
and stored in the values field of the record.

● CUIDs are allocated to the data in the delta table and the primary table in a
unified manner.

● The data inserted into the delta table depends on AUTOVACUUM to merge to
primary table CUs.

Syntax
INSERT [/*+ plan_hint */] [IGNORE | OVERWRITE] INTO table_name [AS alias] [(column_name [, ...])]
 { DEFAULT VALUES
 | VALUES {({ expression | DEFAULT } [, ...]) }[, ...] | query }

Parameters
● table_name

Specifies the name of the target table.
Value range: an existing table name

● AS
Specifies an alias for the target table table_name. alias indicates the alias
name.

● column_name
Specifies the name of a column in a table.

● query
Specifies a query statement (SELECT statement) that uses the query result as
the inserted data.

Example
Create the reason_t1 table.
-- Create the reason_t1 table.
CREATE TABLE reason_t1
(
 TABLE_SK INTEGER ,
 TABLE_ID VARCHAR(20) ,
 TABLE_NA VARCHAR(20)
)WITH(ORIENTATION=COLUMN, ENABLE_HSTORE=ON);

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

https://support.huaweicloud.com/intl/en-us/productdesc-dws/dws_01_00018.html

Insert a record into a table.
INSERT INTO reason_t1(TABLE_SK, TABLE_ID, TABLE_NA) VALUES (1, 'S01', 'StudentA');

Insert records into the table.
INSERT INTO reason_t1 VALUES (1, 'S01', 'StudentA'),(2, 'T01', 'TeacherA'),(3, 'T02', 'TeacherB');
SELECT * FROM reason_t1 ORDER BY 1;
 TABLE_SK | TABLE_ID | TABLE_NAME
----------+----------+------------
 1 | S01 | StudentA
 2 | T01 | TeacherA
 3 | T02 | TeacherB
(3 rows)

3.3 DELETE

Function

Delete data from an HStore table.

NO TE

● To use hybrid data warehouse capabilities, choose the storage-compute coupled
architecture when you create a GaussDB(DWS) cluster on the console and ensure the
vCPU to memory ratio is 1:4 when setting up cloud disk flavors. For more information,
see Data Warehouse Flavors.

● When setting up a GaussDB(DWS) cluster, make sure to have a vCPU to memory ratio
of 1:8 for standard data warehouses and a ratio of 1:4 for hybrid data warehouses. You
can distinguish a standard data warehouse from a real-time data warehouse by
comparing their vCPU to memory ratios.

Precautions
● To delete all the data from a table, you are advised to use the TRUNCATE

syntax to improve performance and reduce table bloating.
● If a single record is deleted from an HStore table, a record of the type D will

be inserted into the delta table. The memory update chain will also be
updated to manage concurrency.

● If multiple records are deleted from an HStore table at a time, a record of the
type D will be inserted for the consecutive deleted records in each CU.

● In concurrent deletion scenarios, operations on the same CU will get queued
in traditional column-store tables and result in low performance. For HStore
tables, the operations can be concurrently performed, and the deletion
performance can be more than 100 times that of column-store tables.

● The syntax is fully compatible with column storage. For more information, see
the UPDATE syntax.

Syntax
DELETE FROM [ONLY] table_name [*] [[AS] alias]
 [USING using_list]
 [WHERE condition]

Parameters
● ONLY

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

https://support.huaweicloud.com/intl/en-us/productdesc-dws/dws_01_00018.html

If ONLY is specified, only that table is deleted. If ONLY is not specified, this
table and all its sub-tables are deleted.

● table_name
Specifies the name (optionally schema-qualified) of a target table.
Value range: an existing table name

● alias
Specifies the alias for the target table.
Value range: a string. It must comply with the naming convention.

● using_list
Specifies the USING clause.

● condition
Specifies an expression that returns a value of type boolean. Only rows for
which this expression returns true will be deleted.

Example
Create the reason_t2 table.
CREATE TABLE reason_t2
(
 TABLE_SK INTEGER ,
 TABLE_ID VARCHAR(20) ,
 TABLE_NA VARCHAR(20)
)WITH(ORIENTATION=COLUMN, ENABLE_HSTORE=ON);
INSERT INTO reason_t2 VALUES (1, 'S01', 'StudentA'),(2, 'T01', 'TeacherA'),(3, 'T02', 'TeacherB');

Use the WHERE condition for deletion.
DELETE FROM reason_t2 WHERE TABLE_SK = 2;
DELETE FROM reason_t2 AS rt2 WHERE rt2.TABLE_SK = 2;

Use the IN syntax for deletion.
DELETE FROM reason_t2 WHERE TABLE_SK in (1,3);

3.4 UPDATE

Function
Update specified data in an HStore table.

NO TE

● To use hybrid data warehouse capabilities, choose the storage-compute coupled
architecture when you create a GaussDB(DWS) cluster on the console and ensure the
vCPU to memory ratio is 1:4 when setting up cloud disk flavors. For more information,
see Data Warehouse Flavors.

● When setting up a GaussDB(DWS) cluster, make sure to have a vCPU to memory ratio
of 1:8 for standard data warehouses and a ratio of 1:4 for hybrid data warehouses. You
can distinguish a standard data warehouse from a real-time data warehouse by
comparing their vCPU to memory ratios.

Precautions
● Similar to column storage, the UPDATE operation on an HStore table in the

current version involves DELETE and INSERT. You can configure a global GUC

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

https://support.huaweicloud.com/intl/en-us/productdesc-dws/dws_01_00018.html

parameter to control the lightweight UPDATE of HStore. In the current
version, the lightweight UPDATE is disabled by default.

● In concurrent update scenarios, operations on the same CU will cause lock
conflicts in traditional column-store tables and result in low performance. For
HStore tables, the operations can be concurrently performed, and the update
performance can be more than 100 times that of column-store tables.

Syntax
UPDATE [/*+ plan_hint */] [ONLY] table_name [*] [[AS] alias]
SET {column_name = { expression | DEFAULT }
 |(column_name [, ...]) = {({ expression | DEFAULT } [, ...]) |sub_query }}[, ...]
 [FROM from_list] [WHERE condition];

Parameters
● plan_hint clause

Following the keyword in the /*+ */ format, hints are used to optimize the
plan generated by a specified statement block. For details, see Hint-based
Tuning.

● table_name
Name (optionally schema-qualified) of the table to be updated.
Value range: an existing table name

● alias
Specifies the alias for the target table.
Value range: a string. It must comply with the naming convention.

● expression
Specifies a value assigned to a column or an expression that assigns the value.

● DEFAULT
Sets the column to its default value.
The value is NULL if no specified default value has been assigned to it.

● from_list
A list of table expressions, allowing columns from other tables to appear in
the WHERE condition and the update expressions. This is similar to the list of
tables that can be specified in the FROM clause of a SELECT statement.

NO TICE

Note that the target table must not appear in the from_list, unless you intend
a self-join (in which case it must appear with an alias in the from_list).

● condition
An expression that returns a value of type boolean. Only rows for which this
expression returns true are updated.

Example
Create the reason_update table.

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

https://support.huaweicloud.com/intl/en-us/devg-dws/dws_04_0455.html
https://support.huaweicloud.com/intl/en-us/devg-dws/dws_04_0455.html

CREATE TABLE reason_update
(
 TABLE_SK INTEGER ,
 TABLE_ID VARCHAR(20) ,
 TABLE_NA VARCHAR(20)
)WITH(ORIENTATION=COLUMN, ENABLE_HSTORE=ON);

Insert data to the reason_update table.
INSERT INTO reason_update VALUES (1, 'S01', 'StudentA'),(2, 'T01', 'TeacherA'),(3, 'T02', 'TeacherB');

Perform the UPDATE operation on the reason_update table.
UPDATE reason_update SET TABLE_NA = 'TeacherD' where TABLE_SK = 3;

3.5 UPSERT

Function

HStore is compatible with the UPSERT syntax. You can add one or more rows to a
table. When a row duplicates an existing primary key or unique key value, the row
will be ignored or updated.

NO TE

● To use hybrid data warehouse capabilities, choose the storage-compute coupled
architecture when you create a GaussDB(DWS) cluster on the console and ensure the
vCPU to memory ratio is 1:4 when setting up cloud disk flavors. For more information,
see Data Warehouse Flavors.

● When setting up a GaussDB(DWS) cluster, make sure to have a vCPU to memory ratio
of 1:8 for standard data warehouses and a ratio of 1:4 for hybrid data warehouses. You
can distinguish a standard data warehouse from a real-time data warehouse by
comparing their vCPU to memory ratios.

Precautions
● The UPSERT statement of updating data upon conflict can be executed only

when the target table contains a primary key or unique index.

● Similar to column storage, an update operation performed using UPSERT on
an HStore table in the current version involves DELETE and INSERT.

● In concurrent UPSERT scenarios, operations on the same CU will cause lock
conflicts in traditional column-store tables and result in low performance. For
HStore tables, the operations can be concurrently performed, and the upsert
performance can be more than 100 times that of column-store tables.

Syntax

Table 3-2 UPSERT syntax

Syntax Update Data Upon Conflict Ignore Data Upon Conflict

Syntax 1:
No index is
specified.

INSERT INTO ON DUPLICATE KEY UPDATE INSERT IGNORE
INSERT INTO ON CONFLICT DO
NOTHING

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

https://support.huaweicloud.com/intl/en-us/productdesc-dws/dws_01_00018.html

Syntax Update Data Upon Conflict Ignore Data Upon Conflict

Syntax 2:
The unique
key
constraint
can be
inferred
from the
specified
column
name or
constraint
name.

INSERT INTO ON CONFLICT(...) DO UPDATE
SET
INSERT INTO ON CONFLICT ON
CONSTRAINT con_name DO UPDATE SET

INSERT INTO ON CONFLICT(...) DO
NOTHING
INSERT INTO ON CONFLICT ON
CONSTRAINT con_name DO NOTHING

Parameters
In syntax 1, no index is specified. The system checks for conflicts on all primary
keys or unique indexes. If a conflict exists, the system ignores or updates the
corresponding data.

In syntax 2, a specified index is used for conflict check. The primary key or unique
index is inferred from the column name, the expression that contains column
names, or the constraint name specified in the ON CONFLICT clause.

● Unique index inference
Syntax 2 infers the primary key or unique index by specifying the column
name or constraint name. You can specify a single column name or multiple
column names by using an expression. Example: column1, column2,
column3

● UPDATE clause
The UPDATE clause can use VALUES(colname) or EXCLUDED.colname to
reference inserted data. EXCLUDED indicates the rows that should be
excluded due to conflicts.

● WHERE clause
– The WHERE clause is used to determine whether a specified condition is

met when data conflict occurs. If yes, update the conflict data. Otherwise,
ignore it.

– Only syntax 2 of Update Data Upon Conflict can specify the WHERE
clause, that is, INSERT INTO ON CONFLICT(...) DO UPDATE SET
WHERE.

Example
Create table reason_upsert and insert data into it.
CREATE TABLE reason_upsert
(
 a int primary key,
 b int,
 c int
)WITH(ORIENTATION=COLUMN, ENABLE_HSTORE=ON);
INSERT INTO reason_upsert VALUES (1, 2, 3);

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

Ignore conflicting data.
INSERT INTO reason_upsert VALUES (1, 4, 5),(2, 6, 7) ON CONFLICT(a) DO NOTHING;

Update conflicting data.
INSERT INTO reason_upsert VALUES (1, 4, 5),(3, 8, 9) ON CONFLICT(a) DO UPDATE SET b = EXCLUDED.b,
c = EXCLUDED.c;

3.6 MERGE INTO

Function
The MERGE INTO statement is used to conditionally match data in a target table
with that in a source table. If data matches, UPDATE is executed on the target
table; if data does not match, INSERT is executed. You can use this syntax to run
UPDATE and INSERT at a time for convenience.

NO TE

● To use hybrid data warehouse capabilities, choose the storage-compute coupled
architecture when you create a GaussDB(DWS) cluster on the console and ensure the
vCPU to memory ratio is 1:4 when setting up cloud disk flavors. For more information,
see Data Warehouse Flavors.

● When setting up a GaussDB(DWS) cluster, make sure to have a vCPU to memory ratio
of 1:8 for standard data warehouses and a ratio of 1:4 for hybrid data warehouses. You
can distinguish a standard data warehouse from a real-time data warehouse by
comparing their vCPU to memory ratios.

Precautions
In concurrent MERGE INTO scenarios, the update operations triggered on the
same CU will cause lock conflicts in traditional column-store tables and result in
low performance. For HStore tables, the operations can be concurrently
performed, and the MERGE INTO performance can be more than 100 times that
of column-store tables.

Syntax
MERGE INTO table_name [[AS] alias]
USING { { table_name | view_name } | subquery } [[AS] alias]
ON (condition)
[
 WHEN MATCHED THEN
 UPDATE SET { column_name = { expression | DEFAULT } |
 (column_name [, ...]) = ({ expression | DEFAULT } [, ...]) } [, ...]
 [WHERE condition]
]
[
 WHEN NOT MATCHED THEN
 INSERT { DEFAULT VALUES |
 [(column_name [, ...])] VALUES ({ expression | DEFAULT } [, ...]) [, ...] [WHERE condition] }
];

Parameters
● INTO clause

Specifies the target table that is being updated or has data being inserted.
– table_name

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

https://support.huaweicloud.com/intl/en-us/productdesc-dws/dws_01_00018.html

Specifies the name of the target table.
– alias

Specifies the alias for the target table.
Value range: a string. It must comply with the naming convention.

● USING clause
Specifies the source table, which can be a table, view, or subquery.

● ON clause
Specifies the condition used to match data between the source and target
tables. Columns in the condition cannot be updated. The ON association
condition can be ctid, xc_node_id, or tableoid.

● WHEN MATCHED clause
Performs UPDATE if data in the source table matches that in the target table
based on the condition.

NO TE

Distribution columns, system catalogs, and system columns cannot be updated.

● WHEN NOT MATCHED clause
Specifies that the INSERT operation is performed if data in the source table
does not match that in the target table based on the condition.

NO TE

● An INSERT clause can contain only one VALUES.
● The sequence of WHEN NOT MATCHED and WHEN NOT MATCHED clauses can

be exchanged. One of them can be omitted, but they cannot be omitted at the
same time.

● Two WHEN MATCHED or WHEN NOT MATCHED clauses cannot be specified at
the same time.

Example
Create a target for MERGE INTO.
CREATE TABLE target(a int, b int)WITH(ORIENTATION = COLUMN, ENABLE_HSTORE = ON);
INSERT INTO target VALUES(1, 1),(2, 2);

Create a data source table.
CREATE TABLE source(a int, b int)WITH(ORIENTATION = COLUMN, ENABLE_HSTORE = ON);
INSERT INTO source VALUES(1, 1),(2, 2),(3, 3),(4, 4),(5, 5);

Run the MERGE INTO command.
MERGE INTO target t
USING source s
ON (t.a = s.a)
WHEN MATCHED THEN
 UPDATE SET t.b = t.b + 1
WHEN NOT MATCHED THEN
 INSERT VALUES (s.a, s.b) WHERE s.b % 2 = 0;

3.7 SELECT

Function
Read data from an HStore table.

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

NO TE

● To use hybrid data warehouse capabilities, choose the storage-compute coupled
architecture when you create a GaussDB(DWS) cluster on the console and ensure the
vCPU to memory ratio is 1:4 when setting up cloud disk flavors. For more information,
see Data Warehouse Flavors.

● When setting up a GaussDB(DWS) cluster, make sure to have a vCPU to memory ratio
of 1:8 for standard data warehouses and a ratio of 1:4 for hybrid data warehouses. You
can distinguish a standard data warehouse from a real-time data warehouse by
comparing their vCPU to memory ratios.

Precautions
● Currently, neither column-store tables and HStore tables support the SELECT

FOR UPDATE syntax.
● When a SELECT query is performed on an HStore table, the system will scan

the data in column-store primary table CUs, the delta table, and the update
information in each row in the memory. The three types of information will
be combined before returned.

● If data is queried based on the primary key index or unique index,
For traditional column-store tables, the unique index stores both the data
location information (blocknum, offset) of the row-store Delta table and the
data location information (cuid, offset) of the column-store primary table.
After the data is merged to the primary table, a new index tuple will be
inserted, and the index will keep bloating.
For HStore tables, global CUIDs are allocated in a unified manner. Therefore,
only cuid and offset are stored in index tuples. After data is merged, no new
index tuples will be generated.

Syntax
[WITH [RECURSIVE] with_query [, ...]]
SELECT [/*+ plan_hint */] [ALL | DISTINCT [ON (expression [, ...])]]
{ * | {expression [[AS] output_name]} [, ...] }
[FROM from_item [, ...]]
[WHERE condition]
[GROUP BY grouping_element [, ...]]
[HAVING condition [, ...]]
[{ UNION | INTERSECT | EXCEPT | MINUS } [ALL | DISTINCT] select]
[ORDER BY {expression [[ASC | DESC | USING operator] | nlssort_expression_clause] [NULLS { FIRST |
LAST }]} [, ...]]
[{ [LIMIT { count | ALL }] [OFFSET start [ROW | ROWS]] } | { LIMIT start, { count | ALL } }]

Parameters
● DISTINCT [ON (expression [, ...])]

Removes all duplicate rows from the SELECT result set.
ON (expression [, ...]) is only reserved for the first row among all the rows
with the same result calculated using given expressions.

● SELECT list
Indicates columns to be queried. Some or all columns (using wildcard
character *) can be queried.
You may use the AS output_name clause to give an alias for an output
column. The alias is used for the displaying of the output column.

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

https://support.huaweicloud.com/intl/en-us/productdesc-dws/dws_01_00018.html

● FROM clause

Indicates one or more source tables for SELECT.

The FROM clause can contain the following elements:

● WHERE clause

The WHERE clause forms an expression for row selection to narrow down the
query range of SELECT. The condition is any expression that evaluates to a
result of Boolean type. Rows that do not satisfy this condition will be
eliminated from the output.

In the WHERE clause, you can use the operator (+) to convert a table join to
an outer join. However, this method is not recommended because it is not the
standard SQL syntax and may raise syntax compatibility issues during
platform migration. There are many restrictions on using the operator (+):

● GROUP BY clause

Condenses query results into a single row all selected rows that share the
same values for the grouped expressions.

● HAVING clause

Selects special groups by working with the GROUP BY clause. The HAVING
clause compares some attributes of groups with a constant. Only groups that
matching the logical expression in the HAVING clause are extracted.

● ORDER BY clause

Sorts data retrieved by SELECT in descending or ascending order. If the
ORDER BY expression contains multiple columns:

Example

Create the reason_select table and insert data into the table.
CREATE TABLE reason_select
(
 r_reason_sk integer,
 r_reason_id integer,
 r_reason_desc character(100)
)WITH(ORIENTATION = COLUMN, ENABLE_HSTORE=ON);
INSERT INTO reason_select values(3, 1,'reason 1'),(10, 2,'reason 2'),(4, 3,'reason 3'),(10, 4,'reason 4');

Perform the GROUP BY operation.
SELECT COUNT(*), r_reason_sk FROM reason_select GROUP BY r_reason_sk;

Perform the HAVING filtering operation.
SELECT COUNT(*) c,r_reason_sk FROM reason_select GROUP BY r_reason_sk HAVING c > 1;

Perform the ORDER BY operation.
SELECT * FROM reason_select ORDER BY r_reason_sk;

3.8 ALTER TABLE

Function

Modify a table, including modifying the definition of a table, renaming a table,
renaming a specified column in a table, adding or updating multiple columns, and
changing a column-store table to an HStore table.

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

NO TE

● To use hybrid data warehouse capabilities, choose the storage-compute coupled
architecture when you create a GaussDB(DWS) cluster on the console and ensure the
vCPU to memory ratio is 1:4 when setting up cloud disk flavors. For more information,
see Data Warehouse Flavors.

● When setting up a GaussDB(DWS) cluster, make sure to have a vCPU to memory ratio
of 1:8 for standard data warehouses and a ratio of 1:4 for hybrid data warehouses. You
can distinguish a standard data warehouse from a real-time data warehouse by
comparing their vCPU to memory ratios.

Precautions
● You can set enable_hstore by using ALTER to change a column-store table to

an HStore table, or to change it back. If enable_delta is set to on,
enable_hstore cannot be set to on.

● For some ALTER operations (such as modifying column types, merging
partitions, adding NOT NULL constraints, and adding primary key constraints),
HStore tables need to merge data to the primary table and then perform
ALTER, which may cause extra performance overhead. The impact on
performance depends on the data volume in the delta table.

● When you add a column, do not use ALTER to specify other operations (for
example, modifying the column type). An ALTER statement with only the
ADD COLUMN parameter can achieve high performance, because it does not
require FULL MERGE.

● The storage parameter ORIENTATION cannot be modified.

Modifying Table Attributes
Syntax:

ALTER TABLE [IF EXISTS] <table_name> SET ({ENABLE_HSTORE = ON} [, ...]);

To change a column-store table to an HStore table, run the following command:

CREATE TABLE alter_test(a int, b int) WITH(ORIENTATION = COLUMN);
ALTER TABLE alter_test SET (ENABLE_HSTORE = ON);

NO TICE

To use HStore tables, set the following parameters, or the HStore performance will
deteriorate severely. The recommended settings are as follows:
autovacuum_max_workers_hstore=3, autovacuum_max_workers=6,
autovacuum=true

Adding a Column
Syntax:

ALTER TABLE [IF EXISTS] <table_name> ADD COLUMN <new_column> <data_type> [DEFAULT
<default_value>];

Example:

Create the alter_test2 table and add a column to it.

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

https://support.huaweicloud.com/intl/en-us/productdesc-dws/dws_01_00018.html

CREATE TABLE alter_test2(a int, b int) WITH(ORIENTATION = COLUMN,ENABLE_HSTORE = ON);
ALTER TABLE alter_test ADD COLUMN c int;

NO TE

When adding a column, you are not advised to use ALTER to specify other operations in the
same SQL statement.

Renaming
Syntax:

ALTER TABLE [IF EXISTS] <table_name> RENAME TO <new_table_name>;

Example:

Create table alter_test3 and rename it as alter_new.

CREATE TABLE alter_test3(a int, b int) WITH(ORIENTATION = COLUMN,ENABLE_HSTORE = ON);
ALTER TABLE alter_test3 RENAME TO alter_new;

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

4 Hybrid Data Warehouse Functions

hstore_light_merge(rel_name text)
Description: This function is used to manually perform lightweight cleanup on
HStore tables and holds the level-3 lock of the target table.

Return type: int

Example:
SELECT hstore_light_merge('reason_select');

hstore_full_merge(rel_name text, partitionName text)
Description: This function is used to manually perform full cleanup on HStore
tables. The second input parameter is optional and is used to specify a single
partition for operations.

Return type: int

NO TICE

● This operation forcibly merges all the visible operations of the delta table to the
primary table, and then creates an empty delta table. During this period, this
operation holds the level-8 lock of the table.

● The duration of this operation depends on the amount of data in the delta
table. You must enable the HStore clearing thread to ensure unnecessary data
in the HStore table is cleared in a timely manner.

● The second parameter partitionName is only supported by clusters of version
8.3.0.100 and later. However, these versions do not allow calling this function
via call because it lacks reload capability.

Example:
SELECT hstore_full_merge('reason_select', 'part1');

pgxc_get_small_cu_info(rel_name text, row_count int)
Description: Obtains the small CU information of the target table. The second
parameter row_count is optional and indicates the small CU threshold. If the

Data Warehouse Service
Hybrid Data Warehouse 4 Hybrid Data Warehouse Functions

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

number of live tuples in a CU is fewer than the threshold, the CU is considered as
a small CU. The default value is 200. This function is supported only by clusters of
version 8.2.1.300 or later.

Return type: record

Return value:

node_name: DN name.

part_name: partition name. This column is empty for non-partitioned tables.

zero_cu_count: number of 0 CUs. If all data in a CU is deleted, the CU is called 0
CU.

small_cu_count: number of small CUs. When a CU has live data that is less than
the threshold, the CU is called a small CU.

total_cu_count: total number of CUs.

sec_part_cu_num: number of CUs in each level-2 partition. This column is
displayed only when secondary_part_column is specified. This field is available
only in clusters of version 8.3.0 or later.

It should be noted that a CU may contain multiple columns.

Example:

SELECT * FROM pgxc_get_small_cu_info('hs');
node_name | part_name | zero_cu_count | small_cu_count | total_cu_count |
sec_part_cu_num
-----------+-----------+---------------+----------------+----------------+--
 datanode1 | | 0 | 4 | 4 | p1:1 p2:0 p3:1 p4:0 p5:1 p6:0 p7:1 p8:0
 datanode2 | | 0 | 4 | 4 | p1:0 p2:1 p3:0 p4:1 p5:0 p6:1 p7:0 p8:1
(2 rows)

gs_hstore_compaction(rel_name text, row_count int)

Description: Merges small CUs of the target table. The second parameter
row_count is optional and indicates the small CU threshold. If the number of live
tuples in a CU is fewer than the threshold, the CU is considered as a small CU. The
default value is 100. This function is supported only by 8.2.1.300 and later
versions.

Return type: int

Return value: numCompactCU, which indicates the number of small CUs to be
merged.

NO TE

● A CU may contain multiple columns.

● The partition name cannot be input in the function. Currently, a single partition cannot
be specified in this function.

Example:

SELECT gs_hstore_compaction('hs', 10);

Data Warehouse Service
Hybrid Data Warehouse 4 Hybrid Data Warehouse Functions

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

pgxc_get_hstore_delta_info(rel_name text)
Description: This function is used to obtain the delta table information of the
target table, including the delta table size and the number of INSERT, DELETE,
and UPDATE records. This function is supported only by clusters of version
8.2.1.100 or later.

Return type: record

Return value:

node_name: DN name.

part_name: partition name. This column is set to non-partition table if the table
is not a partitioned table.

live_tup: number of live tuples.

n_ui_type: number of records with a type of ui (small CU combination and upsert
insertion through update). An ui record represents a single or batch insertion. This
parameter is supported only by 8.3.0.100 and later versions.

n_i_type: number of records whose type is i (insert). An i record indicates one
insertion, which can be single insertion or batch insertion.

n_d_type: number of records whose type is d (delete). One d record indicates one
deletion, which can be single deletion or batch deletion.

n_x_type: number of records whose type is x (deletions generated by update).

n_u_type: number of records whose type is u (lightweight update).

n_m_type: number of records whose type is m (merge).

data_size: total size of the delta table (including the size of the index and toast
data on the delta table).

Example:

SELECT * FROM pgxc_get_hstore_delta_info('hs_part');
 node_name | part_name | live_tup | n_ui_type | n_i_type | n_d_type | n_x_type | n_u_type | n_m_type |
data_size
-----------+-----------+----------+-----------+----------+----------+----------+----------+----------+-----------
 dn_1 | p1 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 8192
 dn_1 | p2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 8192
 dn_1 | p3 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 8192
(3 rows)

pgxc_get_binlog_sync_point(rel_name text, slot_name text, checkpoint bool,
node_id int)

Description: Obtains the synchronization point information corresponding to a slot
from the pg_binlog_slots system catalog. This function is applicable only to tables
with binlog or binlog timestamp enabled. This function is supported only by
clusters of version 9.1.0.200 or later.

Return type: record

Return value:

node_name: DN name

Data Warehouse Service
Hybrid Data Warehouse 4 Hybrid Data Warehouse Functions

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

node_id: node ID

last_sync_point: last synchronization point

latest_sync_point: latest synchronization point

xmin: xmin corresponding to the synchronization point

Example:

SELECT * FROM pg_catalog.pgxc_get_binlog_sync_point('hstore_binlog_source', 'slot1', false, 0);
 node_name | node_id | last_sync_point | latest_sync_point | xmin
-----------+-------------+-----------------+-------------------+-------
 dn_2 | -1051926843 | 0 | 10512 | 10507
 dn_1 | -1300059100 | 0 | 10512 | 10508
(2 rows)

pgxc_get_binlog_changes(rel_name text, node_id int, start_csn bigint,
end_csn bigInt)

Description: Obtains the incremental data of the target table within the specified
synchronization point range on a specified DN. If node_id is set to 0, all DNs are
specified. This function is applicable only to tables with binlog or binlog
timestamp enabled. This function is supported only by clusters of version 9.1.0.200
or later.

Return type: record

Return value:

gs_binlog_sync_point: synchronization point

gs_binlog_event_sequence: sequence in the same transaction

gs_binlog_event_type: binlog type

gs_binlog_timestamp_us: timestamp of the binlog record. For the binlog table
whose enable_binlog_timestamp is false, this column is empty.

value columns: data of each user field in the target table

Example:

SELECT * FROM pgxc_get_binlog_changes('hstore_binlog_source', 0, 0 , 9999999999);
 gs_binlog_sync_point | gs_binlog_event_sequence | gs_binlog_event_type | gs_binlog_timestamp_us | c1 | c2
| c3
----------------------+--------------------------+----------------------+------------------------+-----+----+----
 10516 | 2 | I | 1731570520900211 | 100 | 1 | 1
 10517 | 3 | d | 1731570520904425 | 100 | 1 | 1
 10518 | 2 | I | 1731570520909055 | 200 | 1 | 1
 10519 | 3 | B | 1731570520914102 | 200 | 1 | 1
 10519 | 4 | U | 1731570520914154 | 200 | 2 | 1

pgxc_register_binlog_sync_point(rel_name text, slot_name text, node_id int,
end_csn bigInt, checkpoint bool, xmin bigint)

Description: Registers synchronization points and can be used only for tables with
binlog or binlog timestamp enabled. This function is supported only by clusters of
version 9.1.0.200 or later.

Return type: int

Data Warehouse Service
Hybrid Data Warehouse 4 Hybrid Data Warehouse Functions

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

Return value: number of nodes that are successfully registered

Example:

SELECT pgxc_register_binlog_sync_point('hstore_binlog_source', 'slot1', 0, 9999999999, false, 100);
 pgxc_register_binlog_sync_point

 2
(1 row)

pgxc_consumed_binlog_records(rel_name text, node_id int)
Description: Obtains the consumption status of the target table on a specified DN.
This function can be used only for tables with binlog or binlog timestamp enabled.
This function is supported only by clusters of version 9.1.0.200 or later.

Return type: int

Return value: If 0 is returned, the binlog of the target table is not completely
consumed (including all slots and checkpoint synchronization points). If 1 is
returned, the binlog of the target table is completely consumed.

Example:

SELECT * FROM pgxc_consumed_binlog_records('hstore_binlog_source',0);
 pgxc_consumed_binlog_records

 1
(1 row)

pgxc_get_binlog_cursor_by_timestamp(rel_name text, timestamp
timestampTz, node_id int)

Description: Obtains information about the first binlog record after a specified
time point in the target table. This function can be used only for tables with the
binlog timestamp enabled.

This function is supported only by clusters of version 9.1.0.200 or later.

Return type: record

Return value:

node_name: DN name

node_id: node ID

latest_sync_point: latest synchronization point

binlog_sync_point: synchronization point of the first binlog record after the time
point

binlog_timestamp_us: timestamp of the first binlog record after the time point

binlog_xmin: xmin recorded in the first binlog after the time point

Example:

SELECT * FROM pgxc_get_binlog_cursor_by_timestamp('hstore_binlog_source','2024-11-14
15:48:40.900211+08', 0);
 node_name | node_id | latest_sync_point | binlog_sync_point | binlog_timestamp_us | binlog_xmin
-----------+-------------+-------------------+-------------------+---------------------+-------------
 dn_2 | -1051926843 | 10532 | 10516 | 1731570520900211 | 10510

Data Warehouse Service
Hybrid Data Warehouse 4 Hybrid Data Warehouse Functions

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

 dn_1 | -1300059100 | 10532 | 10518 | 1731570520909055 | 10510
(2 rows)

pgxc_get_binlog_cursor_by_syncpoint(rel_name text, csn int8, node_id int)
Description: Obtains the first binlog record after a specified synchronization point
on the target table. This function can be used only for tables with the binlog
timestamp enabled.

This function is supported only by clusters of version 9.1.0.200 or later.

Return type: record

Return value:

node_name: DN name

node_id: node ID

latest_sync_point: latest synchronization point

binlog_sync_point: synchronization point of the first binlog record after the time
point

binlog_timestamp_us: timestamp of the first binlog record after the time point

binlog_xmin: xmin recorded in the first binlog after the time point

Example:

SELECT * FROM pgxc_get_binlog_cursor_by_syncpoint('hstore_binlog_source',10516,0);
 node_name | node_id | latest_sync_point | binlog_sync_point | binlog_timestamp_us | binlog_xmin
-----------+-------------+-------------------+-------------------+---------------------+-------------
 dn_1 | -1300059100 | 11187 | 10518 | 1731570520909055 | 10510
 dn_2 | -1051926843 | 11187 | 10516 | 1731570520900211 | 10510
(2 rows)

pgxc_get_cstore_dirty_ratio(rel_name text, partition_name)
Description: This function is used to obtain the cu, delta, and cudesc dirty page
rates and sizes of the target table on each DN. Only HStore_opt tables are
supported.

The partition_name parameter is optional. If the partition name is specified, only
the information about the partition is returned. If the partition name is not
specified and the table is a primary table, the information about all partitions is
returned. It is supported only by clusters of version 9.1.0.100 or later.

Return type: record

Return value:

node_name: DN name

database_name: name of the database where the table is located

rel_name: primary table name

part_name: partition name

cu_dirty_ratio: dirty page rate of CU files

cu_size: CU file size

Data Warehouse Service
Hybrid Data Warehouse 4 Hybrid Data Warehouse Functions

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

delta_dirty_ratio: dirty page rate of the delta table

delta_size: delta table size

cudesc_dirty_ratio: dirty page rate of the cudesc table

cudesc_size: cudesc table size

Example:

SELECT * FROM pgxc_get_cstore_dirty_ratio('hs_opt_part');
 node_name | database_name | rel_name | partition_name | cu_dirty_ratio | cu_size | delta_dirty_ratio
| delta_size | cudesc_dirty_ratio | cudesc_size
-----------+---------------+--------------------+----------------+----------------+---------+-------------------
+------------+--------------------+-------------
 dn_1 | postgres | public.hs_opt_part | p1 | 0 | 0 | 0 | 16384
| 0 | 24576
 dn_1 | postgres | public.hs_opt_part | p2 | 0 | 0 | 0 | 16384
| 0 | 24576
 dn_1 | postgres | public.hs_opt_part | p3 | 0 | 0 | 0 | 16384
| 0 | 24576
 dn_1 | postgres | public.hs_opt_part | p4 | 0 | 0 | 0 | 16384
| 0 | 24576
 dn_1 | postgres | public.hs_opt_part | other | 0 | 1105920 | 0 | 524288
| 0 | 40960

Data Warehouse Service
Hybrid Data Warehouse 4 Hybrid Data Warehouse Functions

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

5 Hybrid Data Warehouse GUC
Parameters

autovacuum
Parameter description: Specifies whether to start the automatic cleanup process
(autovacuum).

Type: SIGHUP

Value range: Boolean

● on indicates the database automatic cleanup process is enabled.
● off indicates that the database automatic cleanup process is disabled.

Default value: on

autovacuum_compaction_rows_limit
Parameter description: Specifies the threshold of a small CU. A CU whose
number of live tuples is less than the value of this parameter is considered as a
small CU. This parameter is supported only by clusters of version 8.2.1.300 or later.

Type: USERSET

Value range: an integer ranging from -1 to 5000

Default value: 2500

NO TICE

If the version is earlier than 9.1.0.100, do not set this parameter. Otherwise,
duplicate primary key data may occur.

Data Warehouse Service
Hybrid Data Warehouse 5 Hybrid Data Warehouse GUC Parameters

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

NO TE

● If the version is earlier than 9.1.0.100, value –1 indicates that the 0 CU switch is
disabled.

● In version 9.1.0.100, the default value of this parameter is 0.

● In 9.1.0.200 and later versions, the default value of this parameter is 2500.

● You are advised not to modify this parameter. If you do need to modify this
parameter, contact technical support.

autovacuum_compaction_time_limit

Parameter description: Specifies the interval for clearing small CUs. Small CUs
are merged at a specified interval. This parameter is supported only by clusters of
version 8.2.1.300 or later.

Type: SIGHUP

Value range: an integer ranging from 0 to 10080. The unit is minute.

Default value: 0

autovacuum_max_workers

Parameter description: Specifies the maximum number of autovacuum worker
threads that can run at the same time. The upper limit of this parameter is related
to the values of max_connections and job_queue_processes.

Type: SIGHUP

Value range: an integer

● The minimum value is 0, indicating that autovacuum is not automatically
performed.

● The theoretical maximum value is 262143, and the actual maximum value
dynamically changes. Formula: 262143 - max_inner_tool_connections -
max_connections - job_queue_processes - auxiliary threads - Number of
autovacuum launcher threads - 1. The number of auxiliary threads and the
number of autovacuum launcher threads are specified by two macros. Their
default values in the current version are 20 and 2, respectively.

Default value: 4

autovacuum_max_workers_hstore

Parameter description: Specifies the maximum number of concurrent automatic
cleanup threads used for hstore tables in autovacuum_max_workers.

Type: SIGHUP

Value range: an integer

Default value: 1

Data Warehouse Service
Hybrid Data Warehouse 5 Hybrid Data Warehouse GUC Parameters

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

NO TE

To use HStore tables, set the following parameters, or the HStore performance will
deteriorate severely. The recommended settings are as follows:
autovacuum_max_workers_hstore=3, autovacuum_max_workers=6, autovacuum=true

hstore_buffer_size
Parameter description: Specifies the number of HStore CU slots. The slots are
used to store the update chain of each CU, which significantly improves the
update and query efficiency.

To prevent excessive memory usage, the system calculates a slot value based on
the memory size, compares the slot value with the value of this parameter, and
uses the smaller value of the two.

Type: POSTMASTER

Value range: an integer ranging from 100 to 100000

Default value: 100000

gtm_option
Parameter description: Specifies the GTM running mode in GaussDB(DWS). This
parameter is supported by version 8.2.1 or later clusters.

● GTM mode: In this mode, the GTM manages running transactions and
allocates XIDs and CSNs in a unified manner.

● GTM-Lite mode: The GTM is only responsible for XID allocation and CSN
update, and is no longer responsible for global transaction management. The
GTM-Lite mode applies to TP scenarios with high concurrency and short
queries. It can improve query performance while ensuring transaction
consistency.

● GTM-Free mode: Distributed transactions support only external write
consistency and do not support external read consistency. This mode does not
take effect in hybrid data warehouses

Type: POSTMASTER

Value range: enumerated values

● gtm or 0: The GTM mode is enabled.
● gtm-lite or 1: The GTM-Lite mode is enabled.
● gtm-free or 2: The GTM-Free mode starts.

Default value: gtm

Data Warehouse Service
Hybrid Data Warehouse 5 Hybrid Data Warehouse GUC Parameters

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

NO TICE

1. Both GaussDB(DWS) and GTM instances have the gtm_option parameter with
the same meaning. For GTM and GTM-Lite, the same mode must be set in
GaussDB(DWS) and GTM. Otherwise, service errors may occur.

2. The GTM-Free mode can be enabled by setting enable_gtm_free to on or
gtm_option to gtm-free.

3. To set the non-GTM-Free modes, set enable_gtm_free to off.
4. The GTM-Free mode takes effect only in hybrid cloud and ESL scenarios.

defer_xid_cleanup_time
Parameter description: Specifies the global OldestXmin maintenance period in
GTM-Lite mode in the hybrid data warehouse. In each maintenance period, the
CCN or FCN collects and delivers the values of global OldestXmin. This parameter
is supported by version 8.2.1 or later clusters.

This parameter takes effect only in GTM-Lite mode. You are advised not to modify
this parameter.

Type: SIGHUP

Value range: an integer ranging from 1 to INT_MAX. The unit is ms.

Default value: 5,000.

enable_hstore_keyby_upsert
Parameter description: Specifies whether to enable batch upsert optimization for
hstore tables, which can boost performance significantly if the front end
guarantees that no two upsert operations affect the same row or column at the
same time. You should turn on this parameter for such scenarios. This parameter
is supported only in cluster 8.3.0 and later versions.

Type: USERSET

Value range: Boolean

on indicates that upsert optimization is enabled for hstore tables.

off indicates that the upsert process optimization on the hstore table is disabled
and the old process is used.

Default value: off

autovacuum_asyncsort_rows_limit
Parameter description: This parameter specifies the row threshold for automatic
asynchronous sorting. This parameter is supported only by clusters of version 9.1.0
or later.

Type: SIGHUP

Value range: an integer ranging from 120000 to 4200000

Default value: 600000

Data Warehouse Service
Hybrid Data Warehouse 5 Hybrid Data Warehouse GUC Parameters

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

autovacuum_asyncsort_size_limit

Parameter description: Specifies the space usage threshold for automatic
asynchronous sorting. This parameter is supported only by clusters of version 9.1.0
or later.

Type: SIGHUP

Value range: an integer between 1048576 and 104857600. The unit is KB.

Default value: 10485760 (10 GB)

autovacuum_asyncsort_time_limit

Parameter description: This parameter specifies the interval for automatic
asynchronous sorting. Asynchronous sorting is triggered again only when the time
elapsed since the last asynchronous sorting exceeds the value of
autovacuum_asyncsort_time_limit. This parameter is supported only by clusters
of version 9.1.0 or later.

Type: SIGHUP

Value range: an integer ranging from 0 to 10080. The unit is minute.

Default value: 10

enable_hstore_binlog_table

Parameter description: This parameter specifies whether binlog tables can be
created.

Type: SIGHUP

Value range: Boolean

● on indicates that binlog tables can be created.
● off indicates that binlog tables cannot be created.

Default value: off

enable_generate_binlog

Parameter description: Specifies whether binlogs are generated for DML
operations on binlog tables in the current session. This parameter is supported
only by clusters of version 9.1.0.200 or later.

Type: USERSET

Value range: Boolean

● on indicates that binlogs are generated.
● off indicates that binlogs are not generated.

Default value: on

Data Warehouse Service
Hybrid Data Warehouse 5 Hybrid Data Warehouse GUC Parameters

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

binlog_consume_timeout

Parameter description: This parameter specifies the duration for cyclically
determining whether all binlog records are consumed during binlog table scaling
or VACUUM FULL operations. This parameter is supported only by 8.3.0.100 and
later versions. Unit: second

Type: SIGHUP

Value range: an integer ranging from 0 to 86400

Default value: 3600

enable_hstoreopt_auto_bitmap

Parameter description: This parameter determines whether to automatically set
bitmap columns by default when creating HStore Opt tables. This parameter is
supported only by version 9.1.0.100 or later.

Type: SIGHUP

Value range: Boolean

● on indicates that the bitmap columns option is set by default.
● off indicates that the bitmap columns option is not set by default.

Default value: off

enable_cu_predicate_pushdown

Parameter description:

1. Function overview: This function is used to control whether to enable filter
pushdown. Enabling this will enhance query performance, particularly when
working with the bitmap_columns column and PCK sorting column. It applies
to specific WHERE, IS NULL, and IN conditions. This parameter is supported
only in 9.1.0.200 and later versions.

2. Supported column types:
– Integer type: INT2, INT4, and INT8
– Date and time type: DATE, TIMESTAMP, and TIMESTAMPTZ
– String types: VARCHAR and TEXT
– Numeral type: NUMERIC (a maximum of 19 characters)

3. Query conditions: This function supports multiple WHERE expressions,
including:
– IN expression: matches multiple values.
– IS NULL / IS NOT NULL condition: checks whether the column value is

null.
– Comparison expressions: greater than (>), less than (<), equal to (=), and

not equal to (<>), which is used for range query and exact match.

Type: USERSET

Value range: Boolean

Data Warehouse Service
Hybrid Data Warehouse 5 Hybrid Data Warehouse GUC Parameters

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

● on indicates that filter pushdown is enabled.
● off indicates that filter pushdown is disabled.

Default value: on

enable_hstoreopt_insert_sort
Parameter description: This parameter determines whether to enable sorting
(including VACUUM FULL) for importing data to the HStore Opt table.

This parameter is supported only by version 9.1.0.100 or later.

Type: SIGHUP

Value range: Boolean

● on indicates that sorting during import is enabled.
● off indicates that sorting during import (including VACUUM FULL) is disabled

when asynchronous sorting is enabled (the value of
autovacuum_asyncsort_time_limit is greater than 0). When asynchronous
sorting is disabled, sorting during import (including VACUUM FULL) is still
enabled.

Default value: on

Data Warehouse Service
Hybrid Data Warehouse 5 Hybrid Data Warehouse GUC Parameters

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

6 Hybrid Data Warehouse Binlog

6.1 Subscribing to Hybrid Data Warehouse Binlog

Binlog Usage
The HStore table within the GaussDB(DWS) hybrid data warehouse offers binlog
to facilitate the capture of database events. This enables the export of incremental
data to third-party components like Flink. By consuming binlog data, you can
synchronize upstream and downstream data, improving data processing efficiency.

Unlike traditional MySQL binlog, which logs all database changes and focuses on
data recovery and replication. The GaussDB(DWS) hybrid data warehouse binlog is
optimized for real-time data synchronization, recording DML operations—Insert,
Delete, Update, and Upsert—while excluding DDL operations.

GaussDB(DWS) Binlog has the following advantages:

● Table-level on-demand switch: enables or disables binlog for specific tables as
needed.

● Full incremental integrated consumption: supports full synchronization
followed by real-time incremental consumption after a Flink task is started.

● Cleanup upon consumption: allows asynchronous clearing of incremental data
after consumption, reducing space usage.

With Flink's real-time processing capabilities and Binlog, you can build a hybrid
data warehouse efficiently without additional components like Kafka. The
architecture is streamlined, and data flows efficiently, driven by Flink SQL.

Constraints and Limitations
1. Currently, only 8.3.0.100 and later versions support HStore and HStore Opt to

record binlogs. V3 tables are in the trial commercial use phase. Before using
them, contact technical support for evaluation.

2. Binlog requires a primary key, an HStore or HStore-opt table, and supports
only hash distribution.

3. Binlog tables log DML operations like insert, delete, and update (upsert),
excluding DDL operations.

Data Warehouse Service
Hybrid Data Warehouse 6 Hybrid Data Warehouse Binlog

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

4. Binlog tables do not support insert overwrite, altering distribution columns,
enabling binlog on temporary tables, or partition operations like exchange,
merge, or split.

5. Users can perform certain DDL operations (ADD COLUMN, DROP COLUMN,
SET TYPE, VACUUM FULL, TRUNCATE),
but these will reset incremental data and synchronization details.

6. The system waits for binlog consumption before further scaling. The default
wait time is 1 hour, which can be set through the GUC parameter
binlog_consume_timeout. Timeouts or errors will fail the scaling process.

7. The system waits for the consumption of binlog records before the VACUUM
FULL operation is performed on a binlog table. The default wait time is 1
hour, which can be specified by the GUC parameter
binlog_consume_timeout. Timeouts or errors will fail the VACUUM FULL
process. Additionally, even if VACUUM FULL is executed for a partition table, a
level-7 lock is added to the primary table of the partition, which blocks the
insertion, update, or deletion of the entire table.

8. Binlog tables are backed up as standard HStore tables. Post-restoration, you
must restart data synchronization as incremental data and sync details are
reset.

9. The Binlog timestamp function is supported. This function can be enabled by
activating enable_binlog_timestamp. Only the HStore and HStore Opt tables
support this function. This constraint is supported only in 9.1.0.200 and later
versions.

Binlog Formats and Principles

Table 6-1 binlog fields

Field Type Description

gs_binlog_sync
_point

BIGINT Binlog system field, which indicates the
synchronization point. In common GTM
mode, the value is unique and ordered.

gs_binlog_even
t_sequence

BIGINT Binlog system field, which indicates the
sequence of operations of the same
transaction type.

Data Warehouse Service
Hybrid Data Warehouse 6 Hybrid Data Warehouse Binlog

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

Field Type Description

gs_binlog_even
t_type

CHAR Binlog system field, which indicates the
operation type of the current record.
The options are as follows:
● I refers to INSERT, indicating that a new

record is inserted into the current binlog.
● d refers to DELETE, indicating that a

record is deleted from the current binlog.
● B refers to BEFORE_UPDATE, indicating

that the current binlog is a record before
the update.

● U refers to AFTER_UPDATE, indicating
that the current binlog is a record after
the update.

gs_binlog_time
stamp_us

BIGINT System field of Binlog, indicating the
timestamp when the current record is saved
to the database.
This field is available only when the Binlog
timestamp function is enabled. If the Binlog
timestamp function is disabled, this field is
left blank. Only 9.1.0.200 and later versions
support this function.

user_column_1 User column User-defined data column

...

usert_column_
n

User column User-defined data column

NO TE

● For each UPDATE (or UPSERT-triggered update), two binlog records—BEFORE_UPDATE
and AFTER_UPDATE—are created. BEFORE_UPDATE verifies the accuracy of data
processed by third-party components like Flink.

● During UPDATE and DELETE operations, the GaussDB(DWS) hybrid data warehouse
generates BEFORE_UPDATE and DELETE binlogs without querying or populating all user
columns, enhancing database import efficiency.

● Enabling binlog for an HStore table in the GaussDB(DWS) hybrid data warehouse is in
fact the process of creation of a supplementary table. This table includes three system
columns gs_binlog_event_sync_point, gs_binlog_event_event_sequence, and
gs_binlog_event_type, and a value column that serializes all user columns.

● When the enable_binlog_timestamp parameter is enabled, binlog records are retained
until the TTL expires, causing extra space overhead proportional to the data volume
updated within the TTL. When enable_binlog is enabled, binlogs can be cleared
asynchronously once consumed by downstream processes, significantly reducing space
usage. Only 9.1.0.200 and later versions support this function.

Data Warehouse Service
Hybrid Data Warehouse 6 Hybrid Data Warehouse Binlog

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

Enabling Binlog
You can specify the table-level parameter enable_binlog when creating an HStore
table to enable binlog.
CREATE TABLE hstore_binlog_source (
 c1 INT PRIMARY KEY,
 c2 INT,
 c3 INT
) WITH (
 ORIENTATION = COLUMN,
 enable_hstore_opt=true,
 enable_binlog=on,
 binlog_ttl = 86400
);

NO TE

● Binlog recording begins only after a synchronization point is registered for the task, not
during the initial data import. Once binlog synchronization in Flink is activated, it
periodically acquires the synchronization point and incremental data, then registers the
synchronization point.

● The binlog_ttl parameter defaults to 86,400 seconds and is optional. If a registered
synchronization point exceeds this TTL without undergoing incremental synchronization,
it will be cleared. Subsequently, binlogs before the oldest synchronization point are
asynchronously deleted to free up space.

● Space overhead: For a table with common binlog enabled, if incremental data can be
consumed by downstream processes in a timely manner, the space can be cleared and
reclaimed promptly.

Run the ALTER command to enable the binlog function for an existing HStore
table.

CREATE TABLE hstore_binlog_source (
 c1 INT PRIMARY KEY,
 c2 INT,
 c3 INT
) WITH (
 ORIENTATION = COLUMN,
 enable_hstore_opt=true
);
ALTER TABLE hstore_binlog_source SET (enable_binlog=on);

Querying Binlogs
You can use the system functions provided by GaussDB(DWS) to query the binlog
information of the target table on a specified DN and check whether the binlog is
consumed by downstream processes.

-- Simulate Flink to call a system function to obtain the synchronization point. The parameters indicate the
table name, slot name, whether the point is a checkpoint, and target DN (0 indicates all DNs).
select * from pg_catalog.pgxc_get_binlog_sync_point('hstore_binlog_source', 'slot1', false, 0);
select * from pg_catalog.pgxc_get_binlog_sync_point('hstore_binlog_source', 'slot1', true, 0);
-- Incremental binlogs are generated after additions, deletions, and modifications.
INSERT INTO hstore_binlog_source VALUES(100, 1, 1);
delete hstore_binlog_source where c1 = 100;
INSERT INTO hstore_binlog_source VALUES(200, 1, 1);
update hstore_binlog_source set c2 =2 where c1 = 200;
-- Simulate Flink to call a system function to query the binlog of a specified CSN range. The parameters
indicate the table name, target DN (0 indicates all DNs), start CSN point, and end CSN point.
select * from pgxc_get_binlog_changes('hstore_binlog_source', 0, 0 , 9999999999);

Data Warehouse Service
Hybrid Data Warehouse 6 Hybrid Data Warehouse Binlog

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

Two INSERT operations generate two records with gs_binlog_event_type as I. The
DELETE operation generates a record whose type is d. The UPDATE operation
generates a B record for BeforeUpdate and a U record for AfterUpdate,
indicating the values before and after the update.

You can call the system function pgxc_consumed_binlog_records to check
whether the binlogs of the target table are consumed by all slots. The parameters
indicate the target table name and target DN (0 indicates all DNs).
-- Simulate Flink to call the system function to register a synchronization point. The parameters indicate
the table name, slot name, registered point, whether the point is a checkpoint, and xmin corresponding to
the point (provided when the synchronization point is obtained).
select pgxc_register_binlog_sync_point('hstore_binlog_source', 'slot1', 0, 9999999999, false, 100);
select pgxc_register_binlog_sync_point('hstore_binlog_source', 'slot1', 0, 9999999999, true, 100);
-- Check whether all binlogs in the table are consumed. If 1 is returned, all binlogs have been consumed by
downstream slots.
select * from pgxc_consumed_binlog_records('hstore_binlog_source',0);

Enabling the Binlog Timestamp Function
If you need to read binlogs generated after a specified time point, specify the
table-level parameter enable_binlog_timestamp when creating an HStore table
to enable the binlog timestamp function of the HStore table. Only 9.1.0.200 and
later versions support this function.
CREATE TABLE hstore_binlog_source(
 c1 INT PRIMARY KEY,
 c2 INT,
 c3 INT
) WITH (
 ORIENTATION = COLUMN,
 enable_hstore_opt=true,
 enable_binlog_timestamp =on,
 binlog_ttl = 86400
);

NO TE

● Binlog recording begins only after a synchronization point is registered for the task, not
during the initial data import. Once the binlog timestamp is enabled, the system
periodically acquires the synchronization point and incremental data, then registers the
synchronization point.

● Binlog_ttl is an optional parameter. If not set, the default value is 86400 seconds (i.e.,
data is retained for one day by default). If the timestamp of the binlog record is greater
than the current TTL, the binlog record will be deleted asynchronously.

● Space overhead: For a table with the binlog timestamp enabled, the binlog records
recorded in the auxiliary table are retained until the TTL expires. This results in extra
space overhead, which is proportional to the amount of data updated and imported into
the database within the TTL.

Query the binlog on the table where the binlog timestamp function is enabled.

Data Warehouse Service
Hybrid Data Warehouse 6 Hybrid Data Warehouse Binlog

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

Convert gs_binlog_timestamp_us from the BigInt type to a readable timestamp.

 select to_timestamp(1731569598408661/1000000);

To obtain the first binlog information of the target table after the specified time
point on each DN (if the value is empty, no binlog exists after the time point).

 select * from pgxc_get_binlog_cursor_by_timestamp('hstore_binlog_source','2024-11-14 15:33:18.40866+08',
0);

Obtain the consumption progress of the table for which the binlog timestamp
function is enabled.

The returned fields indicate the timestamp of the latest consumed binlog, the
latest timestamp on the binlog, the CSN point of the latest consumed binlog, the
latest CSN point on the binlog, and the number of unconsumed binlog records.

-- Simulate Flink to call the system function to register a synchronization point. The parameters indicate
the table name, slot name, registered point, whether the point is a checkpoint, and xmin corresponding to
the point (provided when the synchronization point is obtained).
select pgxc_register_binlog_sync_point('hstore_binlog_source', 'slot1', 0, 9999999999, false, 100);
select pgxc_register_binlog_sync_point('hstore_binlog_source', 'slot1', 0, 9999999999, true, 100);
-- Query the consumption progress of each slot in the target table.
select * from pgxc_get_binlog_consume_progress('hstore_binlog_source', 0);

Preventing DML from Generating Binlogs
You can set the session-level parameter enable_generate_binlog to off to control
the DML of the current session. When a table for which binlog is enabled is
imported to the database, no binlog record is generated.

6.2 Real-Time Binlog Consumption by Flink

Precautions
● Currently, only versions 8.3.0.100 and later support HStore and HStore-opt for

recording binlogs. V3 is currently in the trial commercial use phase and needs
to be evaluated before being used.

Data Warehouse Service
Hybrid Data Warehouse 6 Hybrid Data Warehouse Binlog

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

● The Binlog function is only supported for Hstore and HStore-opt tables in
GaussDB(DWS). These tables must have primary keys and one of parameters
enable_binlog and enable_binlog_timestamp must be set to on.

● The name of the consumed binlog table cannot contain special characters,
such as periods (.) and double quotation marks (").

● If multiple tasks consume binlog data of a single table, ensure that
binlogSlotName of each task is unique.

● For maximum consumption speed, match task concurrency with the number
of DNs in your GaussDB(DWS) cluster.

● If you use the sink capability of dws-connector-flink to write binlog data, pay
attention to the following:

– To ensure the data write sequence on DNs, set connectionSize to 1.

– If the primary key is updated on the source end or Flink is required for
aggregation calculation, set ignoreUpdateBefore to false. Otherwise,
you are not advised to set ignoreUpdateBefore to false (the default
value is true).

Real-Time Binlog Consumption by Flink

Use DWS Connector to consume binlogs in real time. For details, see DWS-
Connector.

If full data has been synchronized to the target end using other synchronization
tools, and only incremental synchronization is required, you can call the following
system function to update the synchronization points.

SELECT * FROM pg_catalog.pgxc_register_full_sync_point('table_name', 'slot_name');

Source Table DDL

The source autonomously assigns the appropriate Flink RowKind type (INSERT,
DELETE, UPDATE_BEFORE, or UPDATE_AFTER) to each data row based on the
operation type. This mechanism facilitates the synchronization of table data in a
mirrored way, akin to the Change Data Capture (CDC) feature in MySQL and
PostgreSQL databases.

CREATE TABLE test_binlog_source (
 a int,
 b int,
 c int,
 primary key(a) NOT ENFORCED
) with (
 'connector' = 'dws',
 'url' = 'jdbc:gaussdb://ip:port/gaussdb',
 'binlog' = 'true',
 'tableName' = 'test_binlog_source',
 'binlogSlotName' = 'slot',
 'username'='xxx',
 'password'='xxx')

Binlog Parameters

The following table describes the parameters involved in binlog consumption.

Data Warehouse Service
Hybrid Data Warehouse 6 Hybrid Data Warehouse Binlog

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

https://support.huaweicloud.com/intl/en-us/tg-dws/dws_07_0176.html
https://support.huaweicloud.com/intl/en-us/tg-dws/dws_07_0178.html
https://support.huaweicloud.com/intl/en-us/tg-dws/dws_07_0178.html

Table 6-2 Parameters

Parameter Description Data
Type

Default
Value

binlog Specifies whether to read binlog
information.

Boolean false

binlogSlotName Slot, which serves as an
identifier. Multiple Flink tasks
can simultaneously consume
binlog data of the same table, so
each task's binlogSlotName
must be unique.

String Name of
the Flink
mapping
table

binlogBatchRead-
Size

Rows of binlog data read in
batches.

Integer 5000

fullSyncBinlogBat-
chReadSize

Rows of binlog data fully read. Integer 50000

binlogReadTimeout Timeout for incrementally
consuming binlog data, in
milliseconds.

Integer 600000

fullSyncBinlogRead-
Timeout

Timeout for fully consuming
binlog data, in milliseconds.

Long 1800000

binlogSleepTime Sleep duration when no real-
time binlog data is consumed, in
milliseconds. The sleep duration
with consecutive read failures is
binlogSleepTime * failures, up
to binlogMaxSleepTime. The
value is reset after successful
data read.

Long 500

binlogMaxSleepTim
e

Maximum sleep duration when
no real-time binlog data is
consumed, in milliseconds.

Long 10000

binlogMaxRetryTim
es

Maximum number of retries
after a binlog data consumption
error.

Integer 1

binlogRetryInterval Interval between retries after a
binlog data consumption error, in
milliseconds. Sleep duration
during retry, which is calculated
as binlogRetryInterval *
(1~binlogMaxRetryTimes) +
Random(100). The unit is
millisecond.

Long 100

Data Warehouse Service
Hybrid Data Warehouse 6 Hybrid Data Warehouse Binlog

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

Parameter Description Data
Type

Default
Value

binlogParallelNum Number of threads for
consuming binlog data. This
parameter is valid only when
task concurrency is less than the
number of DNs in the
GaussDB(DWS) cluster.

Integer 3

connectionPoolSize Number of connections in the
JDBC connection pool.

Integer 5

needRedistribution Determines compatibility with
expansion redistribution. To
ensure compatibility, upgrade the
kernel to the corresponding
version. If the kernel is an older
version, set this parameter to
false. If set to true, restart-
strategy of Flink cannot be set
to none.

Boolean true

newSystemValue Indicates whether to use the new
system field when reading binlog
data. (The kernel needs to be
upgraded to the corresponding
version. If the kernel is an older
version, set this parameter to
false.)

Boolean true

checkNodeChangeI
nterval

Interval for detecting node
changes. This parameter is valid
only when needRedistribution is
set to true.

Long 10000

connectionSocket-
Timeout

Timeout interval for connection
processing, in milliseconds. It can
also be considered as the
timeout interval for executing
SQL statements on the client.
The default value is 0, which
means that the timeout interval
is not set.

Integer 0

binlogIgnoreUpda-
teBefore

Determines whether to filter out
before_update records in binlogs
and whether to return only
primary key information for
delete records. This parameter is
supported only in 9.1.0.200 and
later versions.

Boolean false

Data Warehouse Service
Hybrid Data Warehouse 6 Hybrid Data Warehouse Binlog

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

Parameter Description Data
Type

Default
Value

binlogStartTime Sets the time point from which
binlogs are consumed can be set
using the format yyyy-MM-dd
hh:mm:ss.
enable_binlog_timestamp must
be enabled for the table.
This parameter is supported only
in 9.1.0.200 and later versions.

String N/A

binlogSyncPointSize Specifies the size of the
synchronization point range for
incrementally reading binlogs.
This can control data flushing if
the data volume is too large.
This parameter is supported only
in 9.1.0.200 and later versions.

Integer 5000

Data Synchronization Example
● On GaussDB(DWS):

NO TE

When creating a binlog table, set enable_hstore_binlog_table to true. You can run
the show enable_hstore_binlog_table command to query the binlog table.

-- Source table (generating binlogs)
CREATE TABLE test_binlog_source(a int, b int, c int, primary key(a)) with(orientation=column,
enable_hstore_opt=on, enable_binlog=true);

-- Target table
CREATE TABLE test_binlog_sink(a int, b int, c int, primary key(a)) with(orientation=column,
enable_hstore_opt=on);

● On Flink:
Run the following commands to perform complete data synchronization:
-- Create a mapping table for the source table.
CREATE TABLE test_binlog_source (
 a int,
 b int,
 c int,
 primary key(a) NOT ENFORCED
) with (
 'connector' = 'dws',
 'url' = 'jdbc:gaussdb://ip:port/gaussdb',
 'binlog' = 'true',
 'tableName' = 'test_binlog_source',
 'binlogSlotName' = 'slot',
 'username'='xxx',
 'password'='xxx');

-- Create a mapping table for the target table:
CREATE TABLE test_binlog_sink (
 a int,
 b int,
 c int,

Data Warehouse Service
Hybrid Data Warehouse 6 Hybrid Data Warehouse Binlog

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

 primary key(a) NOT ENFORCED
) with (
 'connector' = 'dws',
 'url' = 'jdbc:gaussdb://ip:port/gaussdb',
 'tableName' = 'test_binlog_sink',
 'ignoreUpdateBefore'='false',
 'connectionSize' = '1',
 'username'='xxx',
 'password'='xxx');

INSERT INTO test_binlog_sink select * from test_binlog_source;

Example of Using Java Programs
Create a source table and a target table.

-- source
create table binlog_test_source(a int, b int, c int, primary key(a)) with(orientation=column,
enable_hstore_opt=on, enable_binlog=true);
-- sink
create table binlog_test_sink(a int, b int, c int, primary key(a)) with(orientation=column,
enable_hstore_opt=on, enable_binlog=true);

Demo program:

public class BinlogDemo {

 //Name of the binlog table
 private static final String BINLOG_TABLE_NAME = "binlog_test_source";

 //Slot name of the binlog table
 private static final String BINLOG_SLOT_NAME = "binlog_test_slot";

 //Name of the table to be written
 private static final String SINK_TABLE_NAME = "binlog_test_sink";

 public static void main(String[] args) throws Exception {
 DwsConfig dwsConfig = buildDwsConfig();
 DwsClient dwsClient = new DwsClient(dwsConfig);

 TableSchema sourceTableSchema =
dwsClient.getTableSchema(TableName.valueOf(BINLOG_TABLE_NAME));
 TableSchema sinkTableSchema = dwsClient.getTableSchema(TableName.valueOf(SINK_TABLE_NAME));

 // Columns to be written
 List<String> sinkColumns = sinkTableSchema.getColumnNames();

 // Thread pool
 DwsConnectionPool dwsConnectionPool = new DwsConnectionPool(dwsConfig);
 //Queue for storing data
 BlockingQueue<BinlogRecord> queue = new LinkedBlockingQueue<>();
 //Columns to be synchronized
 List<String> sourceColumnNames = sourceTableSchema.getColumnNames();

 BinlogReader binlogReader = new BinlogReader(dwsConfig, queue, sourceColumnNames,
dwsConnectionPool);

 //Start the read task.
 binlogReader.start();
 binlogReader.getRecords();

 while (binlogReader.isStart()) {
 try {
 while (!queue.isEmpty() && !binlogReader.hasException()) {
 // Read data.
 BinlogRecord record = queue.poll();
 if (Objects.isNull(record)) {
 continue;
 }

Data Warehouse Service
Hybrid Data Warehouse 6 Hybrid Data Warehouse Binlog

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

 BinlogRecordType type = BinlogRecordType.toBinlogRecordType(record.getType());
 List<Object> columnValues = record.getColumnValues();

 // Write data.
 if (BinlogRecordType.INSERT.equals(type) || BinlogRecordType.UPDATE_AFTER.equals(type)) {
 Operate upsert = dwsClient.write(sinkTableSchema);
 for (int i = 0; i < sinkColumns.size(); i++) {
 upsert.setObject(i, columnValues.get(i), false);
 }
 upsert.commit();
 } else if (BinlogRecordType.DELETE.equals(type) ||
BinlogRecordType.UPDATE_BEFORE.equals(type)) {
 Operate delete = dwsClient.delete(sinkTableSchema);
 for (int i = 0; i < sinkColumns.size(); i++) {
 String field = sinkColumns.get(i);
 if (!sinkTableSchema.isPrimaryKey(field)) {
 continue;
 }
 delete.setObject(i, columnValues.get(i), false);
 }
 delete.commit();
 }
 }
 binlogReader.checkException();
 } catch (Exception e) {
 throw new DwsClientException(ExceptionCode.GET_BINLOG_ERROR, "get binlog has error", e);
 }
 }
 }

 private static DwsConfig buildDwsConfig() {
 //Initialize configuration information. (Only necessary parameters are listed. For more information
about the configuration, see the document.)
 TableConfig tableConfig = new TableConfig().withBinlog(true)
 .withNewSystemValue(true)
 .withNeedRedistribution(false)
 .withBinlogSlotName(BINLOG_SLOT_NAME);
 return DwsConfig.builder()
 .withUrl("Link information")
 .withUsername("Username")
 .withPassword ("Password")
 .withBinlogTableName(BINLOG_TABLE_NAME)
 .withTableConfig(BINLOG_TABLE_NAME, tableConfig)
 .build();
 }
}

Data Warehouse Service
Hybrid Data Warehouse 6 Hybrid Data Warehouse Binlog

Issue 01 (2025-01-07) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

	Contents
	1 Introduction to Hybrid Data Warehouse
	2 Support and Constraints
	3 Hybrid Data Warehouse Syntax
	3.1 CREATE TABLE
	3.2 INSERT
	3.3 DELETE
	3.4 UPDATE
	3.5 UPSERT
	3.6 MERGE INTO
	3.7 SELECT
	3.8 ALTER TABLE

	4 Hybrid Data Warehouse Functions
	5 Hybrid Data Warehouse GUC Parameters
	6 Hybrid Data Warehouse Binlog
	6.1 Subscribing to Hybrid Data Warehouse Binlog
	6.2 Real-Time Binlog Consumption by Flink

