Help Center/
MapReduce Service/
Component Operation Guide (LTS) (Ankara Region)/
Using Spark/
Spark FAQ/
Why Does Spark Fail to Export a Table with Duplicate Field Names?
Updated on 2024-11-29 GMT+08:00
Why Does Spark Fail to Export a Table with Duplicate Field Names?
Question
The following code fails to execute on spark-shell of Spark:
val acctId = List(("49562", "Amal", "Derry"), ("00000", "Fred", "Xanadu")) val rddLeft = sc.makeRDD(acctId) val dfLeft = rddLeft.toDF("Id", "Name", "City") //dfLeft.show val acctCustId = List(("Amal", "49562", "CO"), ("Dave", "99999", "ZZ")) val rddRight = sc.makeRDD(acctCustId) val dfRight = rddRight.toDF("Name", "CustId", "State") //dfRight.show val dfJoin = dfLeft.join(dfRight, dfLeft("Id") === dfRight("CustId"), "outer") dfJoin.show dfJoin.repartition(1).write.format("com.databricks.spark.csv").option("delimiter", "\t").option("header", "true").option("treatEmptyValuesAsNulls", "true").option("nullValue", "").save("/tmp/outputDir")
Answer
In Spark, check whether there are duplicate field names in join statements. If so, modify the code to ensure there is no duplicate field name in the table.
Parent topic: Spark FAQ
Feedback
Was this page helpful?
Provide feedbackThank you very much for your feedback. We will continue working to improve the documentation.See the reply and handling status in My Cloud VOC.
The system is busy. Please try again later.
For any further questions, feel free to contact us through the chatbot.
Chatbot