هذه الصفحة غير متوفرة حاليًا بلغتك المحلية. نحن نعمل جاهدين على إضافة المزيد من اللغات. شاكرين تفهمك ودعمك المستمر لنا.

Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
SoftWare Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive

lag

Updated on 2023-11-30 GMT+08:00

This function is used to return the value of the nth row upwards within a specified window.

Restrictions

The restrictions on using window functions are as follows:

  • Window functions can be used only in select statements.
  • Window functions and aggregate functions cannot be nested in window functions.
  • Window functions cannot be used together with aggregate functions of the same level.

Syntax

lag(<expr>[, bigint <offset>[, <default>]]) over([partition_clause] orderby_clause)

Parameters

Table 1 Parameters

Parameter

Mandatory

Description

expr

Yes

Expression whose return result is to be calculated

offset

No

Offset. It is a constant of the BIGINT type and its value is greater than or equal to 0. The value 0 indicates the current row, the value 1 indicates the previous row, and so on. The default value is 1. If the input value is of the STRING or DOUBLE type, it is implicitly converted to the BIGINT type before calculation.

default

Yes

Constant. The default value is NULL.

Default value when the range specified by offset is out of range. The value must be the same as the data type corresponding to expr. If expr is non-constant, the evaluation is performed based on the current row.

partition_clause

No

Partition. Rows with the same value in partition columns are considered to be in the same window.

orderby_clause

No

It is used to specify how data is sorted in a window.

Return Values

The return value is of the data type of the parameter.

Example Code

Example data

To help you understand how to use functions, this example provides source data and function examples based on the source data. Run the following command to create the logs table and add data:
create table logs(
 cookieid string,
 createtime string,
 url string
) 
STORED AS parquet;

Adds the following data:

cookie1 2015-04-10 10:00:02 url2
cookie1 2015-04-10 10:00:00 url1
cookie1 2015-04-10 10:03:04 url3
cookie1 2015-04-10 10:50:05 url6
cookie1 2015-04-10 11:00:00 url7
cookie1 2015-04-10 10:10:00 url4
cookie1 2015-04-10 10:50:01 url5
cookie2 2015-04-10 10:00:02 url22
cookie2 2015-04-10 10:00:00 url11
cookie2 2015-04-10 10:03:04 url33
cookie2 2015-04-10 10:50:05 url66
cookie2 2015-04-10 11:00:00 url77
cookie2 2015-04-10 10:10:00 url44
cookie2 2015-04-10 10:50:01 url55

Groups all records by cookieid, sorts the records by createtime in ascending order, and returns the value of the second row above the window. An example command is as follows:

Example 1:

SELECT cookieid, createtime, url,
       LAG(createtime, 2) OVER (PARTITION BY cookieid ORDER BY createtime) AS last_2_time
FROM logs;
-- Returned result:
cookieid createtime         url  last_2_time
cookie1 2015-04-10 10:00:00 url1 NULL
cookie1 2015-04-10 10:00:02 url2 NULL
cookie1 2015-04-10 10:03:04 url3 2015-04-10 10:00:00
cookie1 2015-04-10 10:10:00 url4 2015-04-10 10:00:02
cookie1 2015-04-10 10:50:01 url5 2015-04-10 10:03:04
cookie1 2015-04-10 10:50:05 url6 2015-04-10 10:10:00
cookie1 2015-04-10 11:00:00 url7 2015-04-10 10:50:01
cookie2 2015-04-10 10:00:00 url11 NULL
cookie2 2015-04-10 10:00:02 url22 NULL
cookie2 2015-04-10 10:03:04 url33 2015-04-10 10:00:00
cookie2 2015-04-10 10:10:00 url44 2015-04-10 10:00:02
cookie2 2015-04-10 10:50:01 url55 2015-04-10 10:03:04
cookie2 2015-04-10 10:50:05 url66 2015-04-10 10:10:00
cookie2 2015-04-10 11:00:00 url77 2015-04-10 10:50:01
NOTE:

Note: Because no default value is set, NULL is returned when the preceding two rows do not exist.

Example 2:

SELECT cookieid, createtime, url,
       LAG(createtime,1,'1970-01-01 00:00:00') OVER (PARTITION BY cookieid ORDER BY createtime) AS last_1_time
FROM cookie4;
-- Result:
cookieid createtime          url last_1_time
cookie1 2015-04-10 10:00:00 url1 1970-01-01 00:00:00 (The default value is displayed.)
cookie1 2015-04-10 10:00:02 url2 2015-04-10 10:00:00
cookie1 2015-04-10 10:03:04 url3 2015-04-10 10:00:02
cookie1 2015-04-10 10:10:00 url4 2015-04-10 10:03:04
cookie1 2015-04-10 10:50:01 url5 2015-04-10 10:10:00
cookie1 2015-04-10 10:50:05 url6 2015-04-10 10:50:01
cookie1 2015-04-10 11:00:00 url7 2015-04-10 10:50:05
cookie2 2015-04-10 10:00:00 url11 1970-01-01 00:00:00 (The default value is displayed.)
cookie2 2015-04-10 10:00:02 url22 2015-04-10 10:00:00
cookie2 2015-04-10 10:03:04 url33 2015-04-10 10:00:02
cookie2 2015-04-10 10:10:00 url44 2015-04-10 10:03:04
cookie2 2015-04-10 10:50:01 url55 2015-04-10 10:10:00
cookie2 2015-04-10 10:50:05 url66 2015-04-10 10:50:01
cookie2 2015-04-10 11:00:00 url77 2015-04-10 10:50:05

We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out more

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback