Querying a Built-in Algorithm
Function
This API is used to obtain the details about a built-in model.
URI
GET /v1/{project_id}/built-in-algorithms
Parameter |
Mandatory |
Type |
Description |
---|---|---|---|
project_id |
Yes |
String |
Project ID. For details about how to obtain a project ID, see Obtaining a Project ID and Name. |
Request Body
Table 2 describes the request parameters.
Parameter |
Mandatory |
Type |
Description |
---|---|---|---|
per_page |
No |
Integer |
Number of job parameters displayed on each page. The value range is [1, 100]. Default value: 10 |
page |
No |
Integer |
Index of the page to be queried. Default value: 1 |
sortBy |
No |
String |
Sorting mode of the query. The value can be engine, model_name, model_precision, model_usage, model_precision, model_size, create_time, or parameter. Default value: engine |
order |
No |
String |
Sorting order. Options:
|
search_content |
No |
String |
Search content, for example, a parameter name. By default, this parameter is left blank. |
Response Body
Parameter |
Type |
Description |
---|---|---|
is_success |
Boolean |
Whether the request is successful |
error_message |
String |
Error message of a failed API call. This parameter is not included when the API call succeeds. |
error_code |
String |
Error code of a failed API call. For details, see Error Codes. This parameter is not included when the API call succeeds. |
model_total_count |
Integer |
Number of models |
models |
Array<Object> |
Model parameter list. For details, see Table 4. |
Parameter |
Type |
Description |
---|---|---|
model_id |
Integer |
Model ID |
model_name |
String |
Model name |
model_usage |
Integer |
Model usage. Options:
|
model_precision |
String |
Model precision |
model_size |
Long |
Model size, in bytes |
model_train_dataset |
String |
Model training dataset |
model_dataset_format |
String |
Dataset format required by a model |
model_description_url |
String |
URL of the model description |
parameter |
String |
Running parameters of a model. This parameter is a container environment variable when a training job uses a custom image. For details, see the sample request. |
create_time |
Long |
Time when a model is created |
engine_id |
Long |
Engine ID of a model |
engine_name |
String |
Engine name of a model |
engine_version |
String |
Engine version of a model |
Parameter |
Type |
Description |
---|---|---|
label |
String |
Parameter name |
value |
String |
Parameter value |
required |
Boolean |
Whether a parameter is mandatory |
Sample Request
The following shows how to obtain the algorithm whose name contains configname.
GET https://endpoint//v1/{project_id}/built-in-algorithms?per_page=10&page=1&sortBy=engine&order=asc&search_content=model
Sample Response
- Successful response
{ "models": [ { "model_id": 4, "model_name": "ResNet_v2_50", "model_usage": 1, "model_precision": "75.55%(top1), 92.6%(top5)", "model_size": 102503801, "model_train_dataset": "ImageNet, 1,000 classes for image classification", "model_dataset_format": "shape: [H>=32, W>=32, C>=1]; type: int8", "model_description_url": "https://github.com/apache/incubator-mxnet/blob/master/example/image-classification/symbols/resnet.py", "parameter": "[{\"label\":\"batch_size\",\"value\":\"4\",\"placeholder_cn\":\"Total number of training images updated each time\",\"placeholder_en\":\"\",\"required\":true},{\"label\":\"lr\",\"value\":\"0.0001\",\"placeholder_cn\":\"Learning rate\",\"placeholder_en\":\"\",\"required\":true},{\"label\":\"save_frequency\",\"value\":\"1\",\"placeholder_cn\":\"Interval for saving the model, indicating that the model is saved every N epochs\",\"placeholder_en\":\"\",\"required\":true},{\"label\":\"num_classes\",\"value\":\"\",\"placeholder_cn\":\"Total number of image classes in training\",\"placeholder_en\":\"\",\"required\":true},{\"label\":\"num_epoch\",\"value\":\"10\",\"placeholder_cn\":\"Number of training epochs\",\"placeholder_en\":\"\",\"required\":true}]", "create_time": 1522218780025, "engine_id": 501, "engine_name": "MXNet", "engine_version": "MXNet-1.2.1-python2.7" }, { "model_id": 5, "model_name": "Faster_RCNN_ResNet_v2_101", "model_usage": 2, "model_precision": "80.05%(mAP)", "model_size": 190936449, "model_train_dataset": "PASCAL VOC2007, 20 classes for object detection", "model_dataset_format": "shape: [H, W, C==3]; type: int8", "model_description_url": "https://github.com/apache/incubator-mxnet/tree/master/example/rcnn", "parameter": "[{\"label\":\"lr\",\"value\":\"0.0001\",\"placeholder_cn\":\"Learning rate\",\"placeholder_en\":\"\",\"required\":true},{\"label\":\"eval_frequence\",\"value\":\"1\",\"placeholder_cn\":\"Frequency for validating the model. By default, validation is performed every epoch.\",\"placeholder_en\":\"\",\"required\":true},{\"label\":\"mom\",\"value\":\"0.9\",\"placeholder_cn\":\"Momentum of the training network\",\"placeholder_en\":\"\",\"required\":true},{\"label\":\"wd\",\"value\":\"0.0005\",\"placeholder_cn\":\"Weight decay coefficient\",\"placeholder_en\":\"\",\"required\":true},{\"label\":\"num_classes\",\"value\":\"\",\"placeholder_cn\":\"Total number of image classes in training. The value must plus 1 because there is a background class.\",\"placeholder_en\":\"\",\"required\":true}]", "create_time": 1525313224596, "engine_id": 501, "engine_name": "MXNet", "engine_version": "MXNet-1.2.1-python2.7" } ], "model_total_count": 41, "is_success": true }
- Failed response
{ "is_success": false, "error_message": "Error string", "error_code": "ModelArts.0105" }
Status Code
For details about the status code, see Status Code.
Feedback
Was this page helpful?
Provide feedbackThank you very much for your feedback. We will continue working to improve the documentation.See the reply and handling status in My Cloud VOC.
For any further questions, feel free to contact us through the chatbot.
Chatbot