Help Center/ ModelArts/ SDK Reference/ Service Management/ Obtaining Service Monitoring Information
Updated on 2024-06-12 GMT+08:00

Obtaining Service Monitoring Information

You can use the API to obtain the monitoring information about a service.

Sample Code

In ModelArts notebook, you do not need to enter authentication parameters for session authentication. For details about session authentication of other development environments, see Session Authentication.

  • Method 1: Obtain the monitoring information of a service based on the service object created in Deploying a Real-Time Service.
    1
    2
    3
    4
    5
    6
    7
    from modelarts.session import Session
    from modelarts.model import Predictor
    
    session = Session()
    predictor_instance = Predictor(session, service_id="your_service_id")
    predictor_monitor = predictor_instance.get_service_monitor() 
    print(predictor_monitor)
    
  • Method 2: Obtain the monitoring information of a service based on the service object returned in Obtaining Service Objects.
    1
    2
    3
    4
    5
    6
    7
    8
    from modelarts.session import Session
    from modelarts.model import Predictor
    
    session = Session()
    predictor_object_list = Predictor.get_service_object_list(session)
    predictor_instance = predictor_object_list[0]                
    predictor_monitor = predictor_instance.get_service_monitor()
    print(predictor_monitor)
    

Parameters

Table 1 get_service_monitor response parameters

Parameter

Type

Description

service_id

String

Service ID

service_name

String

Service name

monitors

monitor array corresponding to infer_type of a service

Monitoring details

Table 2 monitor parameters corresponding to real-time

Parameter

Type

Description

model_id

String

Model ID

model_name

String

Model name

model_version

String

Model version

invocation_times

Number

Total number of model instance calls

failed_times

Number

Number of failed model instance calls

cpu_core_usage

Float

Number of used CPUs

cpu_core_total

Float

Total number of CPUs

cpu_memory_usage

Integer

Used memory, in MB

cpu_memory_total

Integer

Total memory, in MB

gpu_usage

Float

Number of used GPUs

gpu_total

Float

Total number of GPUs