Obtaining Models
Sample Code
In ModelArts notebook, you do not need to enter authentication parameters for session authentication. For details about session authentication of other development environments, see Session Authentication.
- Scenario 1: Obtain all models of a user.
1 2 3 4 5
from modelarts.session import Session from modelarts.model import Model session = Session() model_list = Model.get_model_list(session)
- Scenario 2: Obtain the models of a user based on search criteria.
1 2 3 4 5
from modelarts.session import Session from modelarts.model import Model session = Session() model_list = Model.get_model_list(session, model_status="published", model_name="digit", order="desc")
Parameters
Parameter |
Mandatory |
Type |
Description |
---|---|---|---|
model_name |
No |
String |
Model name. Fuzzy match is supported. |
model_version |
No |
String |
Model version |
model_status |
No |
String |
Model status. The value can be publishing, published, or failed. You can obtain jobs based on their statuses. |
description |
No |
String |
Description. Fuzzy match is supported. |
offset |
No |
Integer |
Index of the page to be queried. Default value: 0 |
limit |
No |
Integer |
Maximum number of records returned on each page. Default value: 280 |
sort_by |
No |
String |
Sorting mode. The value can be create_at, model_version, or model_size. Default value: create_at |
order |
No |
String |
Sorting order. The value can be asc or desc, indicating the ascending or descending order. Default value: desc |
workspace_id |
No |
String |
Workspace ID. Default value: 0 |
Parameter |
Type |
Description |
---|---|---|
total_count |
Integer |
Total number of models that meet the search criteria when no paging is implemented |
count |
Integer |
Number of models |
models |
model array |
Model metadata |
Parameter |
Type |
Description |
---|---|---|
model_id |
String |
Model ID |
model_name |
String |
Model name |
model_version |
String |
Model version |
model_type |
String |
Model type. The value can be TensorFlow, MXNet, Spark_MLlib, Scikit_Learn, XGBoost, MindSpore, Image, or PyTorch. |
model_size |
Long |
Model size, in bytes |
tenant |
String |
Tenant to whom a model belongs |
project |
String |
Project to which a model belongs |
owner |
String |
User to whom a model belongs |
create_at |
Long |
Time when a model is created, in milliseconds calculated from 1970.1.1 0:0:0 UTC |
description |
String |
Model description |
source_type |
String |
Model source type. This parameter is valid only when the model is deployed through ExeML. The value is auto. |
Feedback
Was this page helpful?
Provide feedbackThank you very much for your feedback. We will continue working to improve the documentation.