Deze pagina is nog niet beschikbaar in uw eigen taal. We werken er hard aan om meer taalversies toe te voegen. Bedankt voor uw steun.

Linear Regression with TensorFlow

Updated on 2023-11-16 GMT+08:00

Adding TensorFlow on Function Details Page

Figure 1 Adding TensorFlow

Importing TensorFlow to Code

import json
import random
# Import TensorFlow.
import tensorflow as tf
def handler (event, context):
 
    TRUE_W = random.randint(0,9)
    TRUE_b = random.randint(0,9)
    
    NUM_SAMPLES = 100
 
    X = tf.random.normal(shape=[NUM_SAMPLES, 1]).numpy()
    noise = tf.random.normal(shape=[NUM_SAMPLES, 1]).numpy()
    y = X * TRUE_W + TRUE_b + noise  
    model = tf.keras.layers.Dense(units=1)  
 
    EPOCHS = 20
    LEARNING_RATE = 0.002
    print("start training")
    for epoch in range(EPOCHS):  
        with tf.GradientTape() as tape: 
            y_ = model(X)
            loss = tf.reduce_sum(tf.keras.losses.mean_squared_error(y, y_))  
 
        grads = tape.gradient(loss, model.variables)  
        optimizer = tf.keras.optimizers.SGD(LEARNING_RATE)  
        optimizer.apply_gradients(zip(grads, model.variables))  
 
        print('Epoch [{}/{}], loss [{:.3f}]'.format(epoch, EPOCHS, loss))
    print("finished")
    print(TRUE_W,TRUE_b)
    print(model.variables)
    return {
        "statusCode": 200,
        "isBase64Encoded": False,
        "body": json.dumps(event),
        "headers": {
            "Content-Type": "application/json"
        }
    }
 
class Model(object):
    def __init__(self):
        self.W = tf.Variable(tf.random.uniform([1]))  
        self.b = tf.Variable(tf.random.uniform([1]))
    def __call__(self, x):
        return self.W * x + self.b
Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback