Deze pagina is nog niet beschikbaar in uw eigen taal. We werken er hard aan om meer taalversies toe te voegen. Bedankt voor uw steun.

On this page

Show all

Help Center/ ModelArts/ FAQs/ Notebook (New Version)/ Others/ How Do I Use Multiple Ascend Cards for Debugging in a Notebook Instance?

How Do I Use Multiple Ascend Cards for Debugging in a Notebook Instance?

Updated on 2024-06-11 GMT+08:00

An Ascend multi-card training job runs in multi-process, multi-card mode. The number of cards is equal to the number of Python processes. The Ascend underlayer reads the environment variable RANK_TABLE_FILE, which has been configured in the development environment, without requiring manual configuration. For example, to run a job on eight cards, the code is as follows:

 export RANK_SIZE=8
 current_exec_path=$(pwd)
 echo 'start training'
 for((i=0;i<=$RANK_SIZE-1;i++));
 do
 echo 'start rank '$i
 mkdir ${current_exec_path}/device$i
 cd ${current_exec_path}/device$i
 echo $i
 export RANK_ID=$i
 dev=`expr $i + 0`
 echo $dev
 export DEVICE_ID=$dev
 python train.py > train.log 2>&1 &
 done

Set the environment variable DEVICE_ID in train.py.

devid = int(os.getenv('DEVICE_ID'))
 context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=devid)
Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback