Updated on 2022-11-18 GMT+08:00

Java Example Code

Function

In Spark applications, use StructuredStreaming to invoke Kafka interface to obtain word records. Collect the statistics of records for each word.

Code Sample

The following code is an example. For details, see com.huawei.bigdata.spark.examples.KafkaWordCount.

When new data is available in Streaming DataFrame/Dataset, outputMode is used for configuring data written to the Streaming receptor.

public class KafkaWordCount
{
  public static void main(String[] args) throws Exception {
    if (args.length < 3) {
      System.err.println("Usage: KafkaWordCount <bootstrap-servers> " +
        "<subscribe-type> <topics>");
      System.exit(1);
    }

    String bootstrapServers = args[0];
    String subscribeType = args[1];
    String topics = args[2];

    SparkSession spark = SparkSession
      .builder()
      .appName("KafkaWordCount")
      .getOrCreate();


    // Create DataSet representing the stream of input lines from kafka
    Dataset<String> lines = spark
      .readStream()
      .format("kafka")
      .option("kafka.bootstrap.servers", bootstrapServers)
      .option(subscribeType, topics)
      .load()
      .selectExpr("CAST(value AS STRING)")
      .as(Encoders.STRING());

    // Generate running word count
    Dataset<Row> wordCounts = lines.flatMap(new FlatMapFunction<String, String>() {
      @Override
      public Iterator<String> call(String x) {
        return Arrays.asList(x.split(" ")).iterator();
      }
    }, Encoders.STRING()).groupBy("value").count();

    // Start running the query that prints the running counts to the console
    StreamingQuery query = wordCounts.writeStream()
      .outputMode("complete")
      .format("console")
      .start();

    query.awaitTermination();
  }
}