XGBoost
Training and Saving a Model
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
import pandas as pd import xgboost as xgb from sklearn.model_selection import train_test_split # Prepare training data and setting parameters iris = pd.read_csv('/home/ma-user/work/iris.csv') X = iris.drop(['variety'],axis=1) y = iris[['variety']] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1234565) params = { 'booster': 'gbtree', 'objective': 'multi:softmax', 'num_class': 3, 'gamma': 0.1, 'max_depth': 6, 'lambda': 2, 'subsample': 0.7, 'colsample_bytree': 0.7, 'min_child_weight': 3, 'silent': 1, 'eta': 0.1, 'seed': 1000, 'nthread': 4, } plst = params.items() dtrain = xgb.DMatrix(X_train, y_train) num_rounds = 500 model = xgb.train(plst, dtrain, num_rounds) model.save_model('/tmp/xgboost.m') |
Before training, download the iris.csv dataset, decompress it, and upload it to the /home/ma-user/work/ directory of the notebook instance. Download the iris.csv dataset from https://gist.github.com/netj/8836201. For details about how to upload a file to a notebook instance, see Upload Scenarios and Entries.
After the model is saved, it must be uploaded to the OBS directory before being published. The config.json configuration and the customize_service.py inference code must be included during the publishing. For details about how to compile config.json, see Specifications for Editing a Model Configuration File. For details about inference code, see Inference Code.
Inference Code
In the model inference code file customize_service.py, add a child model class. This child model class inherits properties from its parent model class. For details about the import statements of different types of parent model classes, see Table 1.
# coding:utf-8 import collections import json import xgboost as xgb from model_service.python_model_service import XgSklServingBaseService class UserService(XgSklServingBaseService): # request data preprocess def _preprocess(self, data): list_data = [] json_data = json.loads(data, object_pairs_hook=collections.OrderedDict) for element in json_data["data"]["req_data"]: array = [] for each in element: array.append(element[each]) list_data.append(array) return list_data # predict def _inference(self, data): xg_model = xgb.Booster(model_file=self.model_path) pre_data = xgb.DMatrix(data) pre_result = xg_model.predict(pre_data) pre_result = pre_result.tolist() return pre_result # predict result process def _postprocess(self,data): resp_data = [] for element in data: resp_data.append({"predictresult": element}) return resp_data
Feedback
Was this page helpful?
Provide feedbackThank you very much for your feedback. We will continue working to improve the documentation.