Obtaining the Preset AI Frameworks Supported by a Training Job
Function
This API is used to obtain the preset AI frameworks supported by a training job.
URI
GET /v2/{project_id}/training-job-engines
|
Parameter |
Mandatory |
Type |
Description |
|---|---|---|---|
|
project_id |
Yes |
String |
Project ID. For details, see Obtaining a Project ID and Name. |
Request Parameters
None
Response Parameters
Status code: 200
|
Parameter |
Type |
Description |
|---|---|---|
|
total |
Integer |
Total number of training job engines. |
|
items |
Array of items objects |
List of engine specifications. |
|
Parameter |
Type |
Description |
|---|---|---|
|
engine_id |
String |
Engine ID, for example, caffe-1.0.0-python2.7. |
|
engine_name |
String |
Engine name, for example, Caffe. |
|
engine_version |
String |
Engine version. Engines with the same name have multiple versions, for example, Caffe-1.0.0-python2.7 of Python 2.7. |
|
v1_compatible |
Boolean |
Whether the v1 compatibility mode is used. |
|
run_user |
String |
User UID started by default by the engine. |
|
image_info |
image_info object |
Engine information. |
Example Requests
The following shows how to query all public engine specifications of a training job in CN North-Beijing4 (only part of the specifications are displayed because there are too many engines).
GET https://endpoint/v2/{project_id}/training-job-engines
Example Responses
Status code: 200
ok
{
"total" : 20,
"items" : [ {
"engine_id" : "caffe-1.0.0-python2.7",
"engine_name" : "Caffe",
"engine_version" : "caffe-1.0.0-python2.7",
"v1_compatible" : true,
"run_user" : "",
"image_info" : {
"cpu_image_url" : "modelarts-job-dev-image/caffe1-cpu-cp27:1.0.0",
"gpu_image_url" : "modelarts-job-dev-image/caffe1-gpu-cuda8-cp27:1.0.0",
"image_version" : "3.1.0"
}
}, {
"engine_id" : "horovod-cp36-tf-1.16.2",
"engine_name" : "Horovod",
"engine_version" : "0.16.2-TF-1.13.1-python3.6",
"v1_compatible" : true,
"run_user" : "",
"image_info" : {
"cpu_image_url" : "modelarts-job-dev-image/tensorflow-gpu-cuda10-cp36-horovod0162:1.13.1",
"gpu_image_url" : "modelarts-job-dev-image/tensorflow-gpu-cuda10-cp36-horovod0162:1.13.1",
"image_version" : "3.2.1"
}
}, {
"engine_id" : "horovod_0.20.0-tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64",
"engine_name" : "Horovod",
"engine_version" : "horovod_0.20.0-tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64",
"v1_compatible" : false,
"run_user" : "1102",
"image_info" : {
"cpu_image_url" : "aip/horovod_tensorflow:train",
"gpu_image_url" : "aip/horovod_tensorflow:train",
"image_version" : "horovod_0.20.0-tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64-20210912152543-1e0838d"
}
}, "......", {
"engine_id" : "tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64",
"engine_name" : "TensorFlow",
"engine_version" : "tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64",
"v1_compatible" : false,
"run_user" : "1102",
"image_info" : {
"cpu_image_url" : "aip/tensorflow_2_1:train",
"gpu_image_url" : "aip/tensorflow_2_1:train",
"image_version" : "tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64-20210912152543-1e0838d"
}
}, {
"engine_id" : "xgboost-sklearn-python3.6",
"engine_name" : "XGBoost-Sklearn",
"engine_version" : "XGBoost-0.80-Sklearn-0.18.1-python3.6",
"v1_compatible" : true,
"run_user" : "",
"image_info" : {
"cpu_image_url" : "modelarts-job-dev-image/python-train-py36:secure",
"gpu_image_url" : "",
"image_version" : "2.0.10-20211101113705"
}
} ]
}
Status Codes
|
Status Code |
Description |
|---|---|
|
200 |
ok |
Error Codes
See Error Codes.
Feedback
Was this page helpful?
Provide feedbackThank you very much for your feedback. We will continue working to improve the documentation.