Esta página aún no está disponible en su idioma local. Estamos trabajando arduamente para agregar más versiones de idiomas. Gracias por tu apoyo.

On this page

Show all

Help Center/ ModelArts/ DevEnviron/ JupyterLab/ Operation Process in JupyterLab

Operation Process in JupyterLab

Updated on 2024-06-12 GMT+08:00

ModelArts allows you to access notebook instances online using JupyterLab and develop AI models based on the PyTorch, TensorFlow, or MindSpore engines. The following figure shows the operation process.

Figure 1 Using JupyterLab to develop and debug code online
  1. Create a notebook instance.

    On the ModelArts management console, create a notebook instance with a proper AI engine. For details, see Creating a Notebook Instance.

  2. Use JupyterLab to access the notebook instance. For details, see Accessing JupyterLab.
  3. Upload training data and code files to JupyterLab. For details, see Uploading Files from a Local Path to JupyterLab.
  4. Compile and debug code in JupyterLab. For details, see JupyterLab Overview and Common Operations.
  5. In JupyterLab, call the ModelArts SDK to create a training job for in-cloud training.

    For details, see Using ModelArts SDK.

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback