Data Warehouse Service

Developer Guide

Issue 03
Date 2024-12-18

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

HUAWEI

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

QD

nuawer and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice

The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Data Warehouse Service

Developer Guide Contents

Contents
T BefOre YOU STArt...... e oieeeeciecctcntcecseeeteseceseesnessessnsssnesssssssssssssessssssssssssasssssssssssssasssaasass 1
2 GaussDB(DWS) Development Design Specifications..........ccccceeveeeeeceececeeceecreesecceennns 5
2.1 OVEIVIEW...cerieiieireeeireeeieeeete et teae st sttt seas s s st s st s b s et seseeasseeasseeassseaetseastsesetsese b e sebeese e s s ee st eeasseeasteeasteeastsesnsnans 5
2.2 GaussDB(DWS) Connection Management SPeCifiCations.........ccvccreeieeeeinieisieisieisiessiessesssesssessssssessssessssesans 9
2.3 GaussDB(DWS) Object Design SPeCifiCations........cociirieeeeeeeieininieeisiesieseesessasss st ssssssssssssss st ssssssssesanes 10
2.3.1 DATABASE ODjJECE DESIGN....curierierierirrisieireissessiesssanss 11
2.3.2 USER ODjJECE DESIGN....evieeiieeiiieirieisieeeieistessstssssesasssssssssssssssssssssssssssssessssssssssssssessssesssssssessssssssssssssessssessssessssessssasassens 12
2.3.3 SCNEMA ODJECE DESIGN....oiiieiiitriceeeieieiete sttt sb st ss bbb bbbt ss s bbbt s s s s s sas bbb ssssensesanes 12
2.3.4 TABLESPACE ODjJECE DESIGN...cvuiiiireiirieiiesissisisessesisssssssssissnssnns 13
2.3.5 TABLE Object DeSign (PrioritiZEd)......cccceueueeerreeiieeieieisieisieesiesestessssssssssesssssesseesssssssssessssessssesssssssssesssssssssssssssanss 13
2.3.6 INDEX Object DeSigN (PriOFTIZEA)cccvueruereeieeieirisisiesieeieseesiess sttt essassssssssss st sssssssssssssssas s s ssssessssanssssanes 17
2.3.7 VIEW ODjJECE DESIGN...uvuriririerrerierieieisissississessesssessssssssssassssssssssesssssessnes 18
2.4 GaussDB(DWS) SQL Statement Development SpeCifiCations........coceieiceiercieeeireeiseesiess st sesessesessenens 18
2.4.1 DDLU OPEIAtIONS....oiiuriieeiierieieisieisisssesestseassstsssessssssssasssssssssssssssssssnsssssssessssessssassssesanss 19
2.4.2 INSERT OPEIALION .ottt ittt ettt sttt s sttt et sttt s st ee st sa st e sassetassesas 19
2.4.3 UPDATE and DELETE OPEIatioNS......ccueuieeiiriieeirieisieesisssessssesssssssssssesssssssssssssssssssssssssssssessssessssessssessssssssssessnes 20
2.4.4 SELECT OPIAtION.c.uiuiiiiiiiieiriecietrireeietets ettt ettt ettt bttt ettt b st eae bttt a st et e ae s b e bt aeae b et st aeae st etaeaees 21
2.5 GaussDB(DWS) Stored Procedure Development SpecCifiCations.........cccveninenrninisisinssssessessesssssssseens 24
2.6 Detailed Design Rules for GausSDB(DWS) ODjJECES........cccuierieiieieeireissss s sssss s sssssssssssssnsns 26
2.6.1 GaussDB(DWS) Database Object Naming RULES..........ccocieiieieeierieieicesies sttt sassessnens 26
2.6.2 GaussDB(DWS) Database Object DESIGN RULES..........cerririnrrrerininisis s sssssssssssssssssssssssssssssssssenes 26
2.6.2.1 GaussDB(DWS) Database and Schema DeSign RULES...........ccoeeeieieieieiscesieeceesiesst st sssesssssnanens 26
2.6.2.2 GausSDB(DWS) Table DESIGN RULES..........cccwrieririrrterieieeie sttt seesaesessassas st es s ssssssssssssasssssssssssssssassansas 27
2.6.2.3 GaussDB(DWS) Colummn DESigN RULES.......covrrirrerierrinirieieisiseississesssanes 30
2.6.2.4 GaussDB(DWS) Constraint DESIGN RULES.........c.ccuieiieiieeieeisieesteestess et ssssssssssssesssssesassessssessssessnsnans 32
2.6.2.5 Design Rules for GaussDB(DWS) Views and Associated Tables........c.cceieinininninseseseeesesssssnns 33
2.6.3 GauSSDB(DWS) SQL WIITING RULES.......coorurierieeireirieniieisisissiesisstssessesssssss st ssnsens 33
2.6.4 GaussDB(DWS) JDBC Configuration RULES........cc.cccueieveeiieieeieeeeeiets ettt sssas s ssssssss s sssssssssssssnssnsnens 36
2.6.5 Rules for Using Custom GaussDB(DWS) External Functions (pgSQL/Java).......eeeereeeenreeinnieneneeneens 38
2.6.6 Rules for Using GausSDB(DWS) PL/PGSQL.....ouriririrririerinininisisisssssissesssssesseses 39
3 Creating and Managing GaussDB(DWS) Database Objects.......cccccceeeueeeerurceeruecnenne 43
3.1 Creating and Managing GaussDB(DWS) Databases..........cccoeimrrinienininsirsississensinsesssssssssssssssssssssssssssssssssssssens 43

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Data Warehouse Service

Developer Guide Contents
3.2 Creating and Managing GausSDB(DWS) SCHEMAS........corriininininerisissississeseessessssssssssssssssssssssssssssssssssssnes 44
3.3 Selecting a GaussDB(DWS) Table StOrage MOEL. ...t sssssenens 47
3.4 Creating and Managing GausSDB(DWS) TabLeS.......ccovrriririreeireiseissisesesssesssssessssesssssessssssssssssssssssesssssssesns 51
3.5 Creating and Managing GaussDB(DWS) Partitioned Tables........cceeierinisineinsisseeseesessessissssesesssssesssenes 55
3.6 Creating and Managing GauSSDB(DWS) INAEXES......cccccruerrierreereeieeissesseessissssssssssssssssssessssssssssssssssssssssesenes 59
3.7 Creating and Using GauSSDB(DWS) SEQUENCES........cc.orvermrrirrinsersenssnsenssenes 62
3.8 Creating and Managing GauSSDB(DWS) VIBWS........cc.ccrureuririeieineereineeseeseisesstsese s isstsessessesseasesessssssssssessessssssasens 64
3.9 Creating and Managing GaussDB(DWS) Scheduled Tasks........cccrirriririnsinsensenenenessssssssessssssssssssssssssens 65
3.10 Viewing GaussDB(DWS) SYStemM Catalogs......cccomirriiirreeienieeieisiesissiseeseesessasssssssssessssssssssssssssssssssssesssssssssnses 68
4 Syntax Compatibility Differences Among Oracle, Teradata, and MySQL................ 71
5 GaussDB(DWS) Database Security Management............cceeeeveececneecercseesuncsessneesnenns 77
5.1 GaussDB(DWS) User and Permissions ManagemeENt.........ccciereeeeinererneeinesinessssessssessssessssssssesssssssssssssssssssnes 77
5.1.1 GaussSDB(DWS) Database USEI TYPES........ccovrurrrrerrerinirinisississssssessns 77
5.1.2 GaussDB(DWS) Database User ManagemMENt.........ccceeirireunsuneenseesessessssssssesesssssssssssssssssssssessssssssssssssssnses 79
5.1.3 Creating a Custom Password Policy for GauSSDB(DWS).......cccovurririreririnsireirsinseseesesssssssssssssssesssssssssssnes 80
5.1.4 GaussDB(DWS) Database Permissions ManagemeNti............ccerrneeneenininssssssnsssssssssssssssssssssssssssssssssssssans 88
5.1.5 Separation of Duties in GAUSSDB(DWS)......cirinirieisiessiesesssssessssessesssssessssssssssssssssssssssssssssssessssessssessssess 92
5.2 GaussDB(DWS) Sensitive Data ManagemMENt.........creririnrinrinsensensensensssnes 94
5.2.1 GaussDB(DWS) ROW-LeVEL ACCESS CONTIOL......oouiirieeeieeeeeteeeeteeeeteeeeteeete et ses et st s s esaes s esessess s s sesasserans 94
5.2.2 GAUSSDB(DWS) DAt MaSKING.....coceeurrurerierrerienieririessessseses 96
5.2.3 Encrypting and Decrypting GausSDB(DWS) STIHNGS......c.eueiririeirirsissieieseesessessssssssssissssssessssssssssssssssssssenns 100
6 GAUSSDB(DWS) Data QUENY......cceeceereeceeeeecnecseecneessesanessesssssesssssssesssssssssessasssssssssssssasssass 104
6.1 GaussSDB(DWS) SiNgle-Table QUETY ...ttt ettt sss s s s s ssssnsessnssas 104
6.2 GaussDB(DWS) Multi-Table JOIN QUETY ...ttt sssnsens 105
6.3 GAUSSDB(DWS) SUDQUETY EXPIESSIONS........cvuiureereereeenreeeiseseeesetsssssessessesssesssssssssesssssssasesssssssasessssssssssssessssssssssssssans 111
6.4 GAUSSDB(DWS) WITH EXPIESSIONS.....cririeirirereeriereessssissssssssessseses 114
6.5 Usage of GAUSSDB(DWS) UNION........oriirieiireieeeeeisiesisssssssesiesessesssssssssssss s ssssesssssssssssssssssssssssssssnssssssssssassessanes 119
7 GausSDB(DWS) SOrting RULES..........cceeveieveereeeeneieeeceeceesaeesessasesesasessessssssssssssassasssassnses 122
8 GaussDB(DWS) User-Defined FUNCLIONS..........ccccoeeeenernerneeceeneeceesensesseesssesnssssesassnees 126
8.1 GAUSSDB(DWS) PL/JAVA FUNCHIONS. ..ottt sasss st s s sss s ssss s ssssssassesssasasassssssanes 126
8.2 GaUSSDB(DWS) PL/PGSQL FUNCLIONS......coiriririririrrireissisees s sstssss s ssssss s s ssnsssssnns 136
9 GausSDB(DWS) Stored ProCeAUIE.........eceeeeeeceeeeccnreecccneeeesnneeesssseesssseeessssssesssnnes 138
9.1 OVEIVIEW...eieiieieeeieeesieeeeiseee s eesas st ae s ss sttt ess et as e s s s e s s e s e s b st st re et s et ee bt e s ee s s e s b e st asssrnns 138
9.2 Converting Data Types in GaussDB(DWS) Stored ProCeAUIES..........ccorieueieeinreeireeeisieesiessissestessssssssesenssnens 138
9.3 GaussDB(DWS) Stored Procedure Array and RECOIM........ooiiinreerenienininieississississessessssssssssssssssssssssssssssssssssssans 140
0,301 AT QY S ettt ettt h et Rttt AR £ £t A A E ARt Rttt A b et A b et R et ettt et eeneae st 140
LS00 Tl o o PO U TSP 146
9.4 GaussDB(DWS) Stored Procedure Declaration SYNTaX.........cccrrereeeeneeeeninisssssssesissesssssssssssssssssssssesssssssans 148
9.5 Basic Statements of GaussSDB(DWS) Stored ProCEAUIES.........ooeeeeeeeeeeeeeeeeeeeeeeete et sssaes 150
9.6 Dynamic Statements of GaussDB(DWS) Stored ProCeAUIES..........ooeeieirinrinrencensieisisssssssssessssssssssssssssssnens 153

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

Data Warehouse Service

Developer Guide Contents
9.6.1 Executing DyNamic QUETY SEAtEMENTS. ..ottt sttt sttt sessssssssssans 154
9.6.2 Executing Dynamic NON-QUETY SEAtEIMENTS......c.cviiiririirieiricireeteetstieiseie ettt sseaees 156
9.6.3 Dynamically Calling StOred ProCEAUIES...........cviririereee ettt eb st essesseassassnes 157
9.6.4 Dynamically Calling ANONYMOUS BLOCKS.........ccoiueiuiirrierieeeeiieirisiesis st ssssssss st ss s ssessssssssssassansans 159
9.7 GaussDB(DWS) Stored Procedure CONtrol StAtEMENTS.. ...ttt ssssans 160
O.7.1 RETURN SEQEEMENTS.....ouieeieeiieccicteeeteeesesetresesesen e eae s ases s sse s sse s e ese s s s sas s s ssessanesssesnens 161
0.7.2 CONAITIONAL SEATEIMENTES. ..ottt ettt et sas 163
O.7.3 LOOP STALEIMENTS. ...ttt ettt s et et et ettt sttt bbbt 165
0.7.4 BranCh STAtEIMENES ...ttt sa s bbbttt s s s bbbt ae s s s b bbb en b s s sanssnsas 168
O.7.5 NULL STQEEMIENTES.....cuvieereciricereectrectrercieeeteeeisee st et s st sesessese s tse e sasa e s s e eae e eaesseae s eaesasaesnsassnsanes 169
O.7.6 Error TrapPiNg STATEIMENTS. ..ottt sttt sttt st st seas b seastsenssesssssans 169
0.7.7 GOTO SLATEMENTS.....c ittt ese ettt sttt esesaesasacs 171
9.8 Other Statements in @ GaussDB(DWS) Stored ProCEAUIE...........o.cuecveeeeeeeeeeeveee et 173
9.9 GausSDB(DWS) Stored ProCEAUIE CUISON ...t seeseseessssss s s sssassssssssssssssssassssssssssssssssasssssssassssens 174
0.9.7T OVEIVIEW....uuruiririreiniiereeiieeeseaeseasesseaseseese s saease e ssessesssssesesse st sse st sstsssssesessesaebasssesassaesssssssesesasnsssesesnssssssssesnesnesncs 174
9.9.2 EXPLICHE CUISON .ottt sttt sse s st ss st essassass s s st st s st es s s s sss s e st sessesssesesasssss et st st esssssssssssssasssnsnnes 174
9.9.3 IMPLICIE CUISON ..ttt sttt ssee s ass st sesas st ss st s s s e b s e s s s s s b s s e s s s s sssessssessstessssesanssssssansensnssnssas 179
O.9.4 CUISOE LOOP.c.ueitiiieiririitieieirtte ettt steasts s st st e st et e s e s s se st eeassetstaeass et et e ass e s et asse s et tasaes et easassesstasassesstasassesetasasans 180
9.10 GaussDB(DWS) Stored Procedure Advanced Package.........ieieieieisinsieseeessesssssss s ssessssessssssnsenes 181
O.T0.1 DBIMS_LOBi..... ettt ettt tese b et b e ettt e b et ss et siee s 181
9.70.2 DBMS_RANDOM....coiiiireireiriireieietireine e ssstae e essesse s essessessess st sssasse e ssse s sttt ts st sssessesaesssesesasane 190
O.70.3 DBMS_OUTPUT ... ttiieireineeeiereeseemseaneasestasesstssessessessessesssssesesssesse s sastsnessssantssessessnessesssssssessessessessessessesaessesas 191
0.T0.4 UTL_RAW ...ttt ittt et s s e s s s et be st s et neans 192
O.T0.5 DBIMS_JOB.... ettt ettt es et ease s st e e b bbbttt 195
O.T0.6 DBIMS_SQL.ccriiiieiriencireireieieseie ettt ts e es e ssees sttt e e bbb st ettt 202
9.11 GaussDB(DWS) Stored Procedure DEDUQGQGING.....c.ouvuuriririeerrereireireeseiresisee s essese s sssssssssssssssssassssssssssssns 212
10 USiNg POSEGIS EXTENSION........oiceieerieicneeneeseeceecsanesneesneessssssasesassssesssesssasssassssesssasssasese 216
T0.T POSEGIS .ottt ettt e b ettt 216
TO.2 USING POSEGIS......oieieieeeiei ettt sttt st bt ettt st bttt e st setasseens 216
10.3 POSEGIS SUPPOIT @Nd CONSLIAINTS......ovuriririeireieieeirisieese sttt ssss s ess s sttt sassssssssssssssssnsnsnes 217
10.4 OPEN SOURCE SOFTWARE NOTICE (FOr POSEGIS).....cosiririeiieririeisieisisesiessissessssesssssessssssssessssessssesssssssssesans 221
11 Using JDBC or ODBC for GaussDB(DWS) Secondary Development...................... 269
T T PrOIEQUISITES. ...ttt tae et ae st a st ettt s ettt st bt asseeas 269
171.2 JDBC-BASEA DEVEIOPMENT ...ttt esssss sttt ssesssss s sss st st ssssssssssssssssssssssssssssssssssnens 269
171.2.1 JDBC DEVELOPIMENT PrOCESS. ... ceceeeieeereieireireisiesees st tssesessess st ss s ese s st sees et e st s sastsnseees 269
11.2.2 JDBC Package and DIiVEr ClasS.......ccciieiueiueeeerenienieeissssssiesissesssssssssssssssssssessssssssssssssssassssssssssssssssssssssssassassansans 271
171.2.3 LOQAAING @ DFIVET ..ottt ssss s s e sssssssss bbbt st ssssss s s ssss s s bt ssssssssssssssss s st s sessessessnsanssnsansnns 271
11.2.4 CONNECLING 1O @ DAtADASE......iee ettt bttt s s sanen 271
11.2.5 EXECULING SQL STAtEMIENTES ...ttt st sttt saees 275
11.2.6 Processing Data iN @ RESULL SEL........iiiieeirereee ettt s ettt 278
11.2.7 Common JDBC Development EXAMIPLES........c.cevriririeiecieeeeeeseieeeis s ssissessssssssss s st ssssssssessssasssssasssnsenes 281
11.2.8 Processing RoaringBitmap Result Sets and Importing It to GaussDB (DWS).......ccccoevvrnrrrrereerreneenennnns 291

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iv

Data Warehouse Service

Developer Guide Contents
17.2.9 JDBC INEEITACES. ... ceiereireeeeireteeieetre ettt ettt bbbttt 294
11.3 ODBC-BasSed DEVEIOPMENT.......c.couirieeeieeeiiieiieeistesseesss e sesaesassssss s s s sss s s ssssss s e ssssessssessssesassesassessssssssanansassnss 307
11.3.1 ODBC Package and Its Dependent Libraries and Header Files..........cccconneieneinenenereeeeeeeeeene 309
11.3.2 Configuring a Data Source in the LINUX OS........iieesiesssissssssessssissssssessssssssssssssessessssssssssassssses 309
11.3.3 Configuring a Data Source in the WINAOWS OS..........cinrnininisisissssississessessssssssssssssssssssssssssssssssssssans 317
11.3.4 ODBC DeVvelopmMeENt EXAMIPLE.......coiririreeiresiesieeseisees st ssans 321
171.3.5 ODBC INEEITACES. ...ttt sttt s st s bbbt s s as e s et snssessennssneas 327
12 GaussDB(DWS) Resource MoONItOriNg.........ccceeeeeereeeeereeseeseeceeseecsessaessessasssessasssasanes 346
12.7 User RESOUICE MONITOTING....c.ieiieriierieirieireeisee ettt tsssstssse st sttt sesssseastsesssssssssssssssssssssssssssassesnssesassesans 346
12.2 RESOUICE POOL IMONITOIING....cuierierierieirirriseisiesisisisssissessss s sss s sssassssssssssssssssssssssssansnns 348
12.3 MONItOriNG MEMOIY RESOUICES......oviieriririeeeieieieeeetstesesiseessss et sssssssssssssssssessssssssesssssssssssssssssssessssssssessssssssesssssees 350
12.4 InStance RESOUICE MONITOING. ...ttt etes ettt b sttt baes st ses 352
12.5 REAL-EIME TOP SQL.cuiiiiiiieieeieriieieisisiseses st sassss bbbt sss s s s bbbt s s s s bbbt s s s b s s s b s bt s s s sessessssanssnsas 354
12.6 HIiStOMCAl TOP SQL.ucouieiiieeieieeirieieisieisetsses sttt sttt ssss s s s s s s s bbbt st sssses s sas s ssns st snsensessessessen 357
12.7 TOPSQL QUETY EXAMIPLE...uirieieiiriiriririsisiseisesees st ss s ass s s st st sss s s ssssss s st ssssssssssssssssssssssnsssssssssansnns 360
13 GaussDB(DWS) Performance TUNING........cccceceeveereereereecreeseeeseessessessasseesasessssssssasssesns 364
T3.T OVEIVIBW..cccieiieiceeieteeieee et asses st et sas et s s s b s se s s s e s b e s e s s ea s bt se s e s ea s bt ss b e s b nse b e s b s s sansetrsseens 364
13.2 PErformMance DIQgNOSIS........ccvueururirrirririineissesiessesssssesssssssasssssssssssesssssssssses 366
13.2.1 Cluster Performance ANQLYSIS.......cooorrirrerieninirieie st ssnes 366
13.2.2 SLOW SQL ANQLYSIS.....oviiririeiiieicieieieesieeee et ssseessae st ee sttt ss st es s s essssesss s sas s ssesssssssssesssssssssessssessstesassessssessnssssnes 366
13.2.2.1 Querying SQL Statements That Affect Performance MOSt..........cooieieeeeeeenieeseseees s sssenanes 367
13.2.2.2 Checking BLOCKEA StAT@MENLS......c.coivieriereeeeererieie sttt sss s s sss s bbbt st sssssssasssssnsensans 368
13.2.3 SQL DiIAgNOSIS...ucuiuriririeriieriieeiterieesisesesestasesesssstasssssssssssssssssssssssssssssssassssassesassssassssssssssssssssssssassssnssssnsssssssssnssssnsscs 369
13.2.4 TADLE DIAQNOSIS.....orererireriirierieressisisississesetsesssssassass st sssssssesssassnssssssssssssanen 369
T3.3 SYSTEM OPLIMIZATION ...ttt et ss st s s st eess st e sessssssssesssnssssnsaen 370
13.3.1 TUNING Database ParamELers.........ciririeiieieeieeeesee et s st s st sss s sss bbb s s s ssassassassnsenes 370
13.3.2 SMP Parallel EXECULION......cviviiiee ittt sttt sss s s ss st st ss s s bbbttt ssssas s ssssnens 378
13.3.3 CONFIGUIING LLV M.ttt tstss st sss st ss st ss sttt s s s s bbbt snsesssssssssssnssnsanen 382
T304 SQL TUNING ettt ettt st s ettt st se sttt st s et bbb et b et seastseastseaetseaeteans 385
13.4.1 SQL QUETY EXECULION PrOCESS......ovieeieiieeeieirieeeieisiesesiettsastststss s ssssessssssssessassessssssssesssssssssssssssssssesnssssessssssssssesesns 385
13.4.2 SQL EXECUTION PLAN...oitittiiieeceeceee ettt s s sttt s s sas s s s sasss s sssassssesssssas st sssasasssssasassssanaes 387
13.4.3 EXECULION PLaN OPEIAtON.....cuieeeeeerieeieisissiesiseessee st ss st ssssssss s sss s st sssssssssssasssssssssssssessessssassssssssssessnssnsans 399
13.4.4 SQL TUNING PrOCESS.....coieeiieeiiieitieitisites s ieisesss sttt tss s s s ettt t st assetas b et s et asseessseeasseasssensens 404
13.4.5 UPAAtiNG STAtISTICS...urureieierieeirieieisircise sttt sttt ss st s s s st st e ssssnesnens 405
13.4.6 Reviewing and Modifying @ Table Definition.......ccconnincrieee ettt esenas 406
13.4.7 AAVaNCEA SQL TUNING....ceieieieirisieeisieetesee ettt s s st as s sssssssas b st sssssssessesasssssasbassensessessnsans 407
13.4.7.1 SQL SeLf-DIAgNOSIS......ccrrerirrerrrirrirsississisiesissssssssssssssssessessssssssssssssessesssssssans 407
13.4.7.2 Optimizing StatemMeNt PUSNAOWN..........c.oveieieeieirieieis sttt ssss s s st sssssssssssassassnsnes 411
13.4.7.3 OPLtiMIZING SUDGQUETIES........oeeieeieirireieieeieesisie sttt st sss st ssses s s ssss s st ssssesssssssssnssns 418
13.4.7.4 OPLMIZING SEATISTICS....uvuiietricirieericir ettt ettt sttt taees 426
13.4.7.5 OPLIMIZING OPEIATOIS. ..ottt st et st sass st sasssessssssssssssesssessssssasssssssesssssssssasans 431
13.4.7.6 OPtiMiIzZING Data SKEW......ovrieiriieieseeie ettt sttt ssssss s s bbbt s st sssssssss bbb sensssssssnsanen 433

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. %

Data Warehouse Service

Developer Guide Contents
13.4.7.7 SQL Statement REWIITING RULES.......cc.ovieeierieieerieisisicses sttt tssss st st sssssssssssassssssnsnsnns 439
13.4.7.8 TUNING OPLIMIZEr PAramMELEIS.....c.veuieeiierieenieieieieeeieesseee et sss st sssssssssssssssssssssssssssessssessssessssssssessssenes 440
13.4.8 HINT-DASEA TUNING....eririeirieireir ettt sttt sttt s st ss st st ss s s e sassnssssensenes 442
13.4.8.1 Plan Hint OptimMiZatiON......ccciueieieeeeirieisiesiesiesis ettt sssasssnens 442
T3.4.8.2 JOIN OFAEI HINTS....ouitiiieeieeieecieieieeteet et ssessses s st sss et esss s bbb s s s s s s ssssessssessssessssessssessnssansnsnsenes 444
13.4.8.3 JOIN OPEIAtION HINES ..ottt sttt st ses et ene s e asssnanen 446
T3L4.8.4 ROWS HINTS...ooiiiiice ettt ettt ettt ettt st e s et et asse st easassetseasantetas 447
13.4.8.5 STream OPErationN HINTS... ..ottt s st ss s st ssssssssssessssssssessssssesssssssssnsanes 448
13.4.8.6 SCAN OPEIatioN HiNTS ..ottt sttt ettt st s s seens 451
13.4.8.7 SUDLINK NGIME HINTS....uiiiiieeeeei ettt st s st bbbt b st snenen 452
13.4.8.8 SKEW HINES...oueitieieieiecireieee sttt bbb s s b bbbt es 453
13.4.8.9 Configuration Parameter HINES.........ccoiiieiiiiieieeeeeeeeiesstes st s s sses e s s s s sssassansansanes 458
13.4.8.10 Hint Errors, Conflicts, and Other Warnings........ccceorrrreneenininesisessssissssesssssssesssssssssssssssssssssssssssssans 460
13.4.8.17 PLan HINE CASES.....ceierieierrisirsisieeeieiessesssssssss s ssasssssssssssssssssssssansassans 462
13.4.9 Routinely Maintaining TabLes........c.cceieirieiieiceiseisess et s s bbb sassesas e sansnas 467
13.4.10 Routinely RECrEAtING N INAEX......ccovururierierieririeisiese st sssssssssss s sss s ssssssssssssssssssssssnssssssesssssssans 469
13.4.11 Automatic Retry upon SQL Statement EXECULION ErTOrS........ccvenieinerineeineiseseisieeecsee e seeaesene 470
13.4.12 query_band Load 1dentifiCation.......ccienirinireeireess sttt ssssssssssssssssssssensns 474
13.5 SQL TUNING EXQMPLES....ecoeiirierieeieieisiesie ettt st s s s s bt sas s sssss bbbt ssssessessssasssss st nasssessessnsans 477
13.5.1 Case: Selecting an Appropriate Distribution COLUMN........cooiiirinireeeee et seasenes 478
13.5.2 Case: Creating an APPropriate INAEX ... sssssessesssesssans 479
13.5.3 Case: Adding NOT NULL fOr JOIN COLUMNS.......vriurierrirreereereineesssiseeesessssssssessssssssssssssssssessssssssssssssssssssssssesses 480
13.5.4 Case: Pushing Down Sort Operations t0 DINS........ccorrrnrnrininesissssssssisesssssssssssss s sssssssssssssssssssssssssssans 481
13.5.5 Case: Configuring cost_param for Better Query PErformance........ereeeeeeeeeesseses e eseesessensenes 483
13.5.6 Case: Adjusting the Partial ClUSTEIING KEY ...ttt sss s sss st sssssssssssssssssssnns 487
13.5.7 Case: Adjusting the Table Storage Mode in @ Medium Table.........creieienireeseseeeee e 489
13.5.8 Case: Reconstructing Partition TabLes...........o ettt ettt esees 489
13.5.9 Case: Adjusting the GUC Parameter best_agg_plan....... et ssessessssssssssssssns 491
13.5.10 Case: Rewriting SQL Statements and Eliminating Prune Interference.........oceeeeeereeeeennnnnns 492
13.5.11 Case: Rewriting SQL Statements and Deleting iN-ClauSe.........ccovrurrrerererirerirrreseseesee e 494
13.5.12 Case: Setting Partial CLUSTEEN KEYS.......ooorrirreieiieeeeienisissssssississessanes 496
13.5.13 Case: Converting from NOT IN £0 NOT EXISTS....coorrnrireireireieceesieisseseiseesessessesessssssssssssssssssssssessssssns 498
14 GaussDB(DWS) System Catalogs and VIieWs...........ccceeveeceereecenseenesseesnessesssesssessens 500
14.1 Overview of System Catalogs and SYSTEM VI@WS........c.riririrrineineinesesiesse s sssesssssssssssssssssssssssssssssssens 500
T4.2 SYSLEIM CAtALOGS ...ttt s st sas s s sss bbb s s s s s bs bbbt s s s s s s s b s bt s s st s s sanssnsas 503
T4.2.T GS_OBSSCANINFO.....c.iiriitieieieeeeesetseeceseessetsesse i st st et a ettt st sttt tsneen 503
14.2.2 GS_RESPOOL_RESOURCE_HISTORYtiutiutieereueieenseieieemseeseeessseisesesssessessesssesse e sssess s ssss s sssssssssessssssssessnes 504
14.2.3 GS_WLM_INSTANCE_HISTORY. ..ottt tsesess sttt sss et s st ass st ssssssssesesssssssssssssssssnsnen 506
14.2.4 GS_WLM_OPERATOR _INFO.....oitieriirtireemtireieemseiseisesiseaseisesssesse e ssstsss e sssesssssessssssessesssessessssssessessesssessesaessnssnssaees 508
14.2.5 GS_WLM_SESSION_INFO......teiurtereieeereireieeastess s esseessesetssessesesssesse s ssssssesssases s s s s s sssessssssssessesssssssssesssasesnes 509
14.2.6 GS_WLM_USER_RESOURCE_HISTORY......cstuiuriuriirerneriuereeeesteesseesseesessessessessessessesssssesesassnsssessesnessesseces 510
T4.2.7 PG_AGGREGATE.....o ittt ettt sssts st e s bbbttt 511

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. Vi

Data Warehouse Service

Developer Guide Contents
T4.2.8 PG_AM..ociieeiieieeiesis st ssssssssssssss s sssssss s s st st s ss st s s st s s s s s s as s s st s s s s s st e b s s s e b s s s st b e s s b b s st st b s ins 512
TA.2.9 PG_AMOIP......ooeeete ettt ettt ettt bbbt bbb bbbt et s e st bbb tans 514
T4.2.10 PG_AMPROC ...ttt sssae st sas s sa s ss s sas e et b st b e s b a et ba bt b e bt s b bans st nes 515
TA.2.TT PG_ATTRDEF ...ttt ssnssssssssssssssssssssssssssssssssssssssnssssssnssnssns 516
TA.2T2 PG_ATTRIBUTE. ...ttt sttt sttt bbbt b bbb bbb s bbb sesasassssbesasassssesasanes 516
T4.2.13 PG_AUTHID ...ttt sas s b sas s s s s st ss st ba e a et s et b ae bttt ss s st e ees s bansen 519
14.2.14 PG_AUTH_HISTORY......oosieiirrierinsirsssesessissssesssessssssssessns 520
TA.2.15 PG_AUTH_MEMBERS........o oottt ettt ae s bbbt aeb b s s b bbb s st bebebetes st esebesesesesesesesnens 521
T4.2.T6 PG_CAST .ottt aesa s a bbb s bbb st e bbb e bbb e bt e bbb s bbb b et b e bt b ree 521
TA.2.T7 PG_CLASS. ...ttt s s sss s sss st b s s ss st s s s s s s es b ss s SseRs b e S e b sss bbb b b s bbb s st b sees 522
T4.2.18 PG_COLLATION. ..ottt sae s bbbt st sas bbb st as e bbb bbb es s s s sassassassassensnsans 527
14.2.T9 PG_CONSTRAINT ..ot iettesteteestestssee st s s st s s ses s sas s sss st sss s e e sse st s s s st sassses s s b s b et bass s s b basses b benses 527
14.2.20 PG_CONVERSION.......oimrierrrirsissensisssssessssssssessesssssssssassssssssssssons 530
T4.2.27 PG_DATABASE ...ttt sttt bbbt a bbbt st b s b b st b a s e s san st 530
14.2.22 PG_DB_ROLE_SETTING.....oiiierertseieseestssseeseesisssssas st ssss s sas st s sa s sss st s sassssstsssssssssssssassassssssassassssssassansens 532
14.2.23 PG_DEFAULT_ACL...c.ceotiririerrirniesiesissssesessissssessss s ssssssssss s sssssssssssssssssssssssssssssessssssssssssssssssssssnssssssnssnsssssssssssssssssssnes 532
T4.2.24 PG_DEPEND ...ttt sttt bbb st b bbb s st e b s bassas s st s s es s sannans 533
14.2.25 PG_DESCRIPTION......coiiirieetteeieseestssisseestssses s saesssssasssss s sassssssasssss s ssssss s sasssssssssasssesssssassssssessassssssessassassnssassansens 535
T4.2.26 PG_ENUM....oiiieiirieiierineie sttt sssssss s st st ssnssnssssssssssssssessssssssssssesssssssssnssssssnsens 535
T4.2.27 PG_EXTENSION....oo oottt ettt b s st et b sttt es b e st se b e s et esasses 536
14.2.28 PG_EXTENSION_DATA _SOURCE.......oeieriereeetesieesieses s sssaesassss s sass s sasssesssssasssss s ssssassssssssssssssssassansssnsanns 536
14.2.29 PG_FOREIGN_DATA_WRAPPER........coocssrrrrrrirrenserssrsssesssesssssssssssons 537
T4.2.30 PG_FOREIGN_SERVER.......ootieeeeeeeeeteeee et s s se s sesesas s sasasasasasasasasesasans 538
14.2.31 PG_FOREIGN_TABLE.........oiteeeeiteeteeteetee et tssssses st ssesses s sas st sass s sas s ss s bssss s s bassessssssasssessensansanns 538
T4.2.32 PG_INDEX....iiererieriiesensississssssssssssssessssssesssssssssssssssssssssssssssssssnsssssssssnssssssessessssssssssssssssssssssssssssnssssssnssnsssssssssnssssssnssnes 539
T4.2.33 PG_INHERITS. ..ottt sttt a st bbb a bbb bbb bbb e s e bbbt s sesassassansans 540
T4.2.34 PG_IOBS.....ooeeeeeettee ettt as s a st a st st bbb et s bbb a bbb et b b et b e e bbb e st banen 541
T4.2.35 PG_LANGUAGE..........oosieterieeeesissiesesiss st sss st sss st st ssssssssssssssssssssssss st s s s sassnssansans 542
14.2.36 PG_LARGEOBIECT ...ttt sas s a s s bbb s s s s bbb bbb s s s s sassassasbansnsnsans 543
14.2.37 PG_LARGEOBJECT_METADATA......o oottt sae st sas st ss st sss s s sss st s sasstessassssstessasssss s ssasssnsens 544
14.2.38 PG_INAMESPAGCE..........otiieiertirriesiesisssssiestssssssesssssssssssssssssssssssssssssssssssssssesssssssssssssssssssssssssssssssssssssssnssssssssssssssssssans 544
T4.2.39 PG_OBJECT ..ottt sas s ses s s bbb bbbttt as s s st ses s s b b s b s b s sas bt s sessesaesansans 545
14.2.40 PG_OBSSCANINFO.......ooeieiteeeeerterieseestessssasstes s st sass b sas st ss st bs s sas st b sae st b s st b ae s b b e s e b se b e sas 545
TA.2.47 PG_OPCLASS. ...ttt sssssssssssssssss s ssssssssssssesssesssnsssssnsssssanssnsssssanses 546
14.2.42 PG_OPERATOR.......otieeceeeeeet ettt sttt bbbt b s bttt s s b sas s st st sessesansans 547
T4.2.43 PG_OPFAMILY ...ttt sas s sas st b sass s sas st sas st b st s ba bbb s e e b s st b s st b s e st b sens 548
T4.2.44 PG_PARTITION.....c.eiriieinrersinsessesssssssssssssssssesssssssssssssssssssessssssssssssssssnsssnssanses 548
TA.2.45 PG_PLTEMPLATE. ... oottt ettt ettt et et b s a et s bbb e s e st et ebesesebebesesesesesesebesesesesetesesesesesesesesesesesene 551
T4.2.46 PG_PROC ...t sss s sas s sa s sas s s bas e as st a bt b ae et bs bt b e bt b s b e st b s eentenen 552
TA.2.47 PG_RANGE.........oiriiereerinsieiessiss s sessesssss s st sssssssssssssssssssss s ssssssssssssssssssssssasssssassssssssssssessssssssssssssssssssssssssssnssssssnssnsens 555
14.2.48 PG_REDACTION_COLUMNL. ..ottt teteae s st s s sesea et ese s s s st be s s sesesesesesesesesesesesessesesesesesnes 556
14.2.49 PG_REDACTION_POLICYoiiiereerteeieseneirsseeseesssssassssssssssssses s s sssssssssssssssssssssssssssssnssssssssenssssssssasssssssssassssssassasssns 557

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. vii

Data Warehouse Service

Developer Guide Contents
14.2.50 PG_RELFILENODE_SIZE........coosiiiieeeireineeeeseireereeiseise e seseise e ssesss e sssess s sssesse e sssss st ssssse s s ssse e sasssssssssssnees 557
T4.2.57 PG_RLSPOLICY ... iirieierrieieeeseiessetesessesssssss s ssassssssssssssss s ssssss st sssssssssssssssssssessssssssssssssssssssssssssssassassssssasssnssnssssssees 558
14.2.52 PG_RESOURCE_POO ...ttt sseease e ssses e esse s s css s et eases s baneas 559
T4.2.53 PG_REWRITE.... ottt ettt ts sttt s s sttt sttt st 560
T4.2.54 PG_SECLABEL.......cotirieieetireieeeseireisetss s ess st ss s sssss s s essss s s ss et s st s st ss s ss s sas s ens e sssaseesnsansses 560
T4.2.55 PG_SHDEPEND.......coiitiertieieieseie ettt et sssess e s s bbb ee st bbb saen 561
14.2.56 PG_SHDESCRIPTION. ...cotitirtirtieieriteieisseiseeseessesseesesssetsessesssesse s ssse e ssse s e ssse s ss st s ssess st ssesssessesasssnesaesasesns 562
T4.2.57 PG_SHSECLABEL.......cettrieeereireie ettt seseese s st st st s sas s ssses s ss st s ssee s s sssas s s sansssssnsanees 563
TA.2.58 PG_STATISTIC oottt tese e st esse s e s et 563
T4.2.59 PG_STATISTIC _EXT oottt ess bbb es st s bbbt st 565
T4.2.60 PG_SYNONYM....oiiririirrinieniireisieseissesssssesssssessasssssssssssssssssssssssssssssassssssessasssssssssasssnssns 566
T4.2.67 PG_TABLESPACE..........oieieieeecereie ettt ettt e e skt 567
T4.2.62 PG_TRIGGER......o ittt ettt b b ettt 567
14.2.63 PG_TS_CONFIG...cuierieiereereireeeseiseisessstsssssssssss s sssess s sssssssssessssssesssssessssssssssssssssssasesssssssasesssssssasssessssassssssssassssssns 568
14.2.64 PG_TS_CONFIG_MAP.....c ettt st e s s 569
T4.2.65 PG_TS_DICT ottt ss st ssse st e e bbb s s et et ettt 569
T4.2.66 PG_TS_PARSER.......oiirrieietirtie ettt sssss b sssssss s s st sas st s s sas s s et s s s st et s s eesanasss s ssssas 570
T4.2.67 PG_TS_TEMPLATE ...ttt ettt eas et es bbb ettt sneeses 571
TA.2.68 PG_TYPE.....oiieiirteeeetsetetis ettt et e b bbbttt 571
14.2.69 PG_USER_MAPPING......otuertrrireeentirsieiissississssess s ssssss st ssssssssssssssssssssssssssssssssssssssassssssssassssssssssssssssssssssssssssssssssssnns 575
T4.2.70 PG_USER_STATUS.... ottt sttt tssee st te st s ss st s et e b bbbt 576
14.2.717 PG_WORKLOAD _ACTION....coeutierirretreesetiseesessetisessessetssesse s ssse e ssse s essesse st st essssssessesssssse e sasessesassasssnsens 576
T4.2.72 PGXC_CLASS......oeiitieeeeireireiseess st esss s ss s ss st s ss st s et s s s e a et s e sas et et e sssessessnsansses 577
T4.2.73 PGXC_GROUP ...ttt e et bbbt 577
T4.2.74 PGXC_NODE......coiiireitieiineireenetiseise ettt esse e es sttt st b bbbt es 578
14.2.75 PLAN_TABLE_DATA...... oot terteeiettsetssasesese s sssssss s ssss s ssssss s sssss s s ssssssesasssssssssasssssssssassssessssassanessessssssssssassanes 580
T4.2.76 SINAPSHOT ...ttt ce st es s s es s s s bbbkt 581
14.2.77 TABLES_SNAP_TIMESTAMP.....o ittt ettt ss et ssses s bbbt et b st sessessssses 581
14.2.78 System Catalogs for Performance View SNapShof........corrrinrneineirrneeesietse e esessees 582
TA.3 SYSTEIM VIBWS....eiieieieieieicete ettt sas et st st s et e b s et s b et n s en s s s s snsssnsssrnes 583
TA.3.T ALL_ALL_TABLES. ...ttt sttt e e et b et 583
14.3.2 ALL_CONSTRAINTS ..o rireettrrieiestersiseeestessssssssessassassansssssansas 583
14.3.3 ALL_CONS_COLUMNS. ... trtereeettrtereeeeisetse st css e csssessssses st es s es e e et s s sases st sesnenees 584
14.3.4 ALL_COL_COMMENTS ..ottt essesse s esssssesse s st ssees sttt et b e eesseessees 584
14.3.5 ALL_DEPENDENUCIES........coeirterieetereirseseseseissasssssssssassssssnssasssssssssssssssssssssanes 585
14.3.6 ALL_IND_COLUMNES......otieeetrtireenettrttreeeeesetseessesse s ess s s es s ssses s sas s s es s asesse s e es bbb s b sases st sesasesns 585
14.3.7 ALL_IND_EXPRESSIONS......oomiirieirtireieitrtieieeiseeseesetssetsessessses s ssse st ettt ettt s 586
T4.3.8 ALL_INDEXES........oiiirieriersireeereissesessssessssesssssssssssssssss s sss s s ssesssssssanssnsssssanssnssssssssssssssssessnes 586
T4.3.9 ALL_OBJECTS ..ottt cese s cese e ssses s ssees s ssses s et et e e bt s et s et es et eae s 587
14.3.70 ALL_PROGCEDURES......oottireiririirtieistisee et setiseesessses s saees sttt ettt sise b 587
T4.3.T7 ALL_SEQUENCES......otrietirrieeeneirsiseessissisesse s sssssssssssssssssssssssssssssssssesssssssssssssasssssssssasssssssssasssssssssssssssssessesssssssans 588
T4.3.T2 ALL_SOURCE......cot ittt et essee s ss sttt e et st 588

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. viii

Data Warehouse Service

Developer Guide Contents
T4.3.T3 ALL_SYNONYMS......ooierieirrirsissessississsssstsssnsssssssssnsssnsens 589
T4.3.14 ALL_TAB_COLUMNSttt ettt et a et st s st b a et b a s bbb st a b b esesessesesesesessesesesessanes 589
14.3.15 ALL_TAB_COMMENTS. ..ottt se st ssssse st s sss s sas s s s s bas b bas et b s st b s s et sas s e st sans 590
T4.3.T6 ALL_TABLES ...ttt sttt st s sssssss s sss st s st st bss s st b s st b s st es s b s st ans e sssssass s ssessensssassssssnssnsen 590
TA.3.17 ALL_USERS. ...ttt bbbt sttt s a bbb st s ses e bbb s 591
TA.3.T8 ALL_VIEWS....oooetee ettt sttt sa s sa st sttt a et a bt ba e be bbb et baentenen 591
T4.3.T9 DBA _DATA_FILES ...ttt st s ssessssssssssssssssssnssssssssnsssssssssesssssansanns 592
T4.3.20 DBA _USERS ...ttt sttt st a ettt s e b bbbt st b e b s ba bt s s s s s sannans 592
14.3.21 DBA_COL_COMMENTS ..ottt s s s s sa s s sass s sss s sas e bss s s e bsssae st b sasst s s sasstes s sans 592
14.3.22 DBA_CONSTRAINTS.....oteierttrrisesiesisssessesssessens 593
14.3.23 DBA_CONS_COLUMNS ...ttt sttt ettt bbb st s bbbt s e sbassassassnsansans 593
14.3.24 DBA_IND_COLUMNS......ooereee sttt sttt sass s st sas st b sae s s bas st b e st a st basbaes s saes s bansens 593
14.3.25 DBA_IND_EXPRESSIONS........oioiiririentirsinsiestssssssessnsssssssssnsssssssssnses 594
14.3.26 DBA_IND_PARTITIONS.......o oottt sttt st a s s st s s st st s s s st st sesesssesesesessessesesessanes 594
T4.3.27 DBA_INDEXES. ...ttt st ss s sae s s s s s b sas st sae st b b a st s b e bbb s et b s st b s st b s e st b sens 595
T4.3.28 DBA _OBIECTS......oveiieineirsissesstsssasssssssssesssssssssnsssssanssnssssssnses 596
T4.3.29 DBA_PART_INDEXES.......cocteeeetetetetetcetetetetetete ettt sttt s st s s bbb es et e s ebesesesesesesesesesesesesesesesesesasesesesesesesesesesesane 596
14.3.30 DBA _PART_TABLES.......oieeeetee ettt sa s sas st st s st bbb bbb se bbb e as e bbbt s bansens 597
14.3.37 DBA_PROCEDURES......ooosvririeiensinissesstsissansssnssnsens 598
14.3.32 DBA_SEQUENCES.........oo ettt sttt st s s bt s bbb e sas st assesaesansans 598
14.3.33 DBA_SOURCE.......cioiieeeriereeisets et saes s sas st bbbt e et a bbb et bbbt b b e st bas e s e e s eenes 598
14.3.34 DBA_SYNONYMS......ooririerensirsiesississnssssssssnssssssnses 599
T4.3.35 DBA_TAB_COLUMNES ...t s s s e s s s s sesese s asassssesessseaesesessaessaesenns 599
14.3.36 DBA_TAB_COMMENTS......oieieiteieieeetsnsiesees st sa e ss st ss e ss e b st ssss s s sass s b sass b e sess s bansen 600
14.3.37 DBA_TAB_PARTITIONS......ooieierieiesinsisssssississssessssssssssssssssssssssssssssessesssssssssssssssssssnsssssssssnssssssssssssssssssessesssnssessnns 600
T4.3.38 DBA _TABLES ...ttt bbb bbbt bbb bt a e s bbbt e 602
14.3.39 DBA_TABLESPACES. ...ttt sa st se st sa s sse st st b a bbb a st bas e bbb een s b e sasn s bansens 602
14.3.40 DBA_TRIGGERS.......irierirrieessiss sttt sss s sss st st ssssssssssssss s s sse st ss st bssssss s s s s st s ssessensssssessnsansans 603
TA.3.47 DBA _VIEWS. ...ttt ettt bbbt s st s st bbb bbb s s s b e b s sas b st s s ntans 603
TA.3.42 DUAL. oottt ae st e bbb e s e bbb et a et b b s bbb s bbb et bae s et beentenen 603
14.3.43 GLOBAL_COLUMN_TABLE_IO_STAT....oieirrirrnsersiesississssssessssssssssssssssssssssssssssssssssssssnsssssssssssssssssssssssssssssssnns 604
14.3.44 GLOBAL_REDO _STAT ...ttt tesas s sas st bbb a s bbb st es s essassas s snsanes 604
14.3.45 GLOBAL_REL_IOSTAT ..ottt see st sas st s sas st sae st bse s s ses b bss et bess s b bas s st bas s s st sasens 605
14.3.46 GLOBAL_ROW_TABLE_IO_STATocsieierirriesensinsssssensssnsssssssssssssssssssssssanss 605
14.3.47 GLOBAL_STAT_DATABASE........co oottt ettt bttt s ettt b b s ettt s st s bebesesesesesesesesesenane 606
14.3.48 GLOBAL_TABLE_CHANGE_STATooiieiteeeeeetse s se st sess s sas s s ssas st s ss st sasssss s ssssass s sassesssnsansen 608
14.3.49 GLOBAL_TABLE _STAT ...ttt sttt ssssssssssssss s s ssnssnssssssssnssssssnses 609
14.3.50 GLOBAL_WORKLOAD_SQL_COUNT ...oitieiterterteeteeteeiesess s sesaesaesaesasss s ses s sses e sassas s ses s ssessssassassassanes 610
14.3.51 GLOBAL_WORKLOAD_SQL_ELAPSE_TIME.....cosisiirrerireresiesiesseesessissessesssssaessesssssssssesssssassssssssssssnsssssessensens 611
14.3.52 GLOBAL_WORKLOAD_TRANSACTION.....oeivrrerrierrensirsisnssnssssssesssens 612
14.3.53 GS_ALL_CONTROL_GROUP_INFO.......oorrerierieeteteeeiseeiesiesiessessesesassasss s sssses s ssssssssssasss s sssses s sassassassassssssnns 613
14.3.54 GS_CLUSTER_RESOURCE_INFOQ.....cocoiieieriereerirsinsenstessssaestessssaesiss s sssssss s sssassssssassens 613

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ix

Data Warehouse Service

Developer Guide Contents
14.3.55 GS_COLUMN_TABLE_IO_STAT ...ttt sirsiesessessissessssssssssssenss 614
14.3.56 GS_INSTR_UNIQUE_SQL.....oruirierrrrteeteeteeieeieiste st sas st st s s s sassasss s sesassassansas 614
14.3.57 GS_NODE_STAT_RESET_TIME ...ttt s sass s s sass s sassass s ssss s sassssssssssssasssssssnsannes 619
T4.3.58 GS_REL_IOSTATooiietierireiesississsssesssssssssssssssssssssssssssssssssssssasssssssssssssssssssssssssssssssssssssnssssssssnsssssssssssssssssssssssssessns 619
14.3.59 GS_RESPOOL_RUNTIME_INFO.....cieeeeeeteteteteteteteteetetete ettt s st s s s s ese s sese s s s s s s sesesesesesesesesesesene 619
14.3.60 GS_RESPOOL_RESOURCE_INFO.......ocoiieiseiereeeisninseesissssssaestss s sses s sassass s sssssss s ssssesssssssssessssssasssssssssssssssassanes 620
14.3.67 GS_ROW_TABLE_IO_STAT....oiietrrieieeserssssssnsessssssessessssssssssssssssssssens 623
14.3.62 GS_SESSION_CPU_STATISTICS......o oottt et sassas s s s s s s st s s ss s sassassassssanes 624
14.3.63 GS_SESSION_MEMORY_STATISTICS......coereerereerieeieseesiee s sesssssassasssessssssesssssassassssssasssssssssassesssssssssssssssssssssssnnes 624
14.3.64 GS_SQL_COUNTovirirrnrirriesensisssesssesssssssssesssssssssesssssssssssssssssssssssssnses 625
T4.3.65 GS_STAT _DB_ClU...coeeeeet ettt sttt ettt s s bbb b st et sassassansansans 627
14.3.66 GS_STAT_SESSION_CU....ooieieeierieetesreseesiss st sass s sssssss s s ssss s b sa s s s s b ses s s b s et sassass s s sasssenbansens 627
14.3.67 GS_TABLE_CHANGE_STAToieirireiierirsiesessisssnsssssssssssssssssssssssssssssssssssssessns 628
T4.3.68 GS_TABLE _STAT ...ttt sttt bbb bbb bbbt b s s bbb bbb e s aesassanes 629
14.3.69 GS_TOTAL_NODEGROUP_MEMORY_DETAIL......cvverurriereerirrreriesisssissiesiesssessesssssassesssssssssesssssasssssssssssssessassanss 630
14.3.70 GS_USER_TRANSACTION.......osiererrrrrienieriiessnsesssssssessssssssssssssssssssssssssssnsssssssssssssssssssssssssssssessssssssssssssssssssssassssens 631
T4.3.771 GS_VIEW _DEPENDENQ Y ...ttt s s s as s s ss s s s asssssssasasssssasssssanaenas 631
14.3.72 GS_VIEW_DEPENDENCY_PATH.....iirieeitseiereesisnsesiesiessesses s sesses s sssssss s sessssssssssssssssssssssssssassssssssssssensssssassens 632
T4.3.73 GS_VIEW_INVALID......ooesrrrtrieerersirsissesstsssssissnssssssssnssnssssssnssnssssssnssnnes 632
TA.3.74 GS_WAIT_EVENTS ..ottt bbb bbb bbbt st b e s sasssneas 632
14.3.75 GS_WLM_OPERAROR_INFO.......oieierteriierinsieeiessiesesssssaesasssssssssesssssas st es s sass s sssssss s ssssssssassasssssssssassssssassassanns 634
14.3.76 GS_WLM_OPERATOR_HISTORYstrrirrirrirriresnsississes 636
14.3.77 GS_WLM_OPERATOR _STATISTICS...... ottt sssesssss s sas s s sasasa s s sesasasssasesesasass 637
14.3.78 GS_WLM_SESSIONL_INFO.......ooeiiriereeetesiesiesies st sssess s s et sssssassses s sassssssssssssass s sassssssassasssssssssasssessansassanns 639
14.3.79 GS_WLM_SESSION_HISTORY.......cvesrrrrrrierrersisssesesssnssns 643
14.3.80 GS_WLM_SESSION_STATISTICS......ootoiteieeeeeeeteeeiesiee st siesesas st s st s s s s s s s sas s ss s s sasaesassansans 646
14.3.81 GS_WLM_SQL_ALLOW.......ooreeertreeeetestse st ses s sass s sas s s sas s sass s sa st ba e bassses s sassassssssassans 649
14.3.82 GS_WORKLOAD_SQL_COUNT ...csiirrerrriesinsissssnsessesssnes 650
14.3.83 GS_WORKLOAD_SQL_ELAPSE_TIME.....o ottt sssss s s s s sese s s s s s sasssssesesesasans 650
14.3.84 GS_WORKLOAD_TRANSACTION......errirrreertrrieseesissssssestes s sassass s sa e s ssssssssassssssssssssssssssssssssssssssssassssssssensens 651
T4.3.85 IMPP_TABLES.........ostreieiniteiesessiss st sssstss s ssssssssssssssssssssssessssssssssssssssssssssssssnssnssssssssssssssssssnssnssssssssssssssssessnssansens 652
14.3.86 PG_AVAILABLE_EXTENSION_VERSIONS.......co oottt teve e tete s s st st se s s st bbb s s s sesesenene 652
14.3.87 PG_AVAILABLE_EXTENSIONS. ..ottt stsetsseestsssssse st sssas st sse st s s s sasas s ssassss s ssassasssssasssessansansanns 653
14.3.88 PG_BULKLOAD_STATISTICS.......oevrrtrrreeressirsisesississsessanss 653
14.3.89 PG_COMM_CLIENT_INFO ...ttt sttt se s sss st a s s s sassasss s ssessesassansans 654
14.3.90 PG_COMM_DELAY. ...ttt sass s s s s sas st s sass s b sass s s bas e s sa st b ses st basseesasssasssessenes 655
14.3.97 PG_COMM_STATUS ..ottt sesssnsssssssssssnssssssssssssssssesssssssssssssssnsens 656
14.3.92 PG_COMM_RECV_STREAM.......oiiiererteeteeteeeeeisse sttt sasss st s s sas bbb s s sssassassas s s s ssssesassansans 656
14.3.93 PG_COMM_SEND_STREAM......coetrriertertreresiesissssse i sesssssssssassssssasssssssssassassssssassassssssassassssssasssssssssassasssssassanns 658
14.3.94 PG_COMM_QUERY_SPEED........cocsirrirteriinsinsirsssssssisssasssnsens 659
14.3.95 PG_CONTROL_GROUP_CONFIG.......cooirerereeeeeeieresiesiesies e ses s sses s bbb ss st s s sasssssassassassassessensnes 659
14.3.96 PG_CURSORS. ...ttt ssssse st sa s sa st st ss bbb a st b s bt s ae et bas b s bbb as bt b bae s et s seseenen 660

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. X

Data Warehouse Service

Developer Guide Contents
T4.3.97 PG_EXT _STATS...o ettt ssssess s s st s sssnssnsssssssssnssnsssssnssssssessssasssessns 660
14.3.98 PG_GET_INVALID_BACKENDS.......coo oottt et se s st se s st b bbb s bbb e ese sttt ebebesesesesesesesesenane 662
14.3.99 PG_GET_SENDERS_CATCHUP_TIME.....coocoieirereeetrrieseesisssessesiesssssesssssssassssssssssssssssessssssssssssssssssssssassssssssassans 662
T4.3.T00 PG_GROUP.......oevrririerirtisiee st sssstssss st ssss s s sss st sss st st sss s s s ss st s s st et bss st s s s s bbb s st s b se st s s sssen 663
TA.3. 10T PG_INDEXES.......ooeeeeeeieeeeteetesie sttt et a e bbb s s s s b s bbbt bt es s sasssssansansans 664
TA.3.T02 PG_JOB.....o ettt sa st bbbt ae st b as bbb s e e bbb e et a bbb a bbb et raes 664
14.3.T03 PG_JOB_PROC.......ooriieieerirrisiessensisssnssssssssssssssssssesssessssssssssssssssssnsssssssssnses 666
T4.3.104 PG_JOB_SINGLE.......ooititeeeeeeectets ettt bbbttt b s s s s s sansan s 666
14.3.105 PG_LIFECYCLE_DATA_DISTRIBUTE.......ceocesteettrireeeeriesseseesisssesae st ssesasssssssssesssssssssssssssssssssssssssassssssassassssassens 668
T4.3.T06 PG_LOCKS......orietirrierinsirsssesississsesssssssssssssssssssessnssssssnsssssssssnssssssssessnsssssns 668
14.3.107 PG_NODE_ENV.....ooiieeeteteeteetetie ettt ettt as bbb st e b b ss s s st s s s bas s st sneas 670
14.3.T08 PG_OS_THREADS ...ttt sae st sssass s sass s sas s b ss bbb ses sttt b s st b b s bbb st bensaseas 670
14.3.1709 PG_POOLER _STATUS......oeietirrierintirsiesississsnssssssssssssssssssssssssnses 671
T14.3.110 PG_PREPARED _STATEMENTS ...ttt s s s s s s s s s sas s s asasasasasasanans 672
14.3.1717 PG_PREPARED _XACTS......ooteteeiieeeerteetessiesies s aes s sass s sas e sssssssssssasssssssssasssssssssassasssssasssssssssssssnssnssassssssnnes 673
14.3.112 PG_QUERYBAND_ACTION......evcrrrrierreriirisnsessessansens 673
14.3.113 PG_REPLICATION_SLOTS......oo ettt ettt sssa s sas s s a bbb st s b ssesassassassansansans 674
TA.3.TT4 PG_ROLES......coieeeetseeteestse sttt sse st sa st sa st sss bbb ee st b a st ae bbb st e b s e b s ba e b s s st b bastns 674
TA.3.TT5 PG_RULES ...ttt ettt sss st sss s sss st s sss st s sss st s s st sss st b s ssss bbb sns s s s ssesssssnssessnss 676
14.3.116 PG_RUNNING_XACTS.....cooetrteeteteeteeete s sttt s st sss s s as s s s s st s s e sassas s ssssessssessssassassassanes 676
T4.3.T717 PG_SECLABELS. ...ttt et sse st bbb sa st bbb ae bbb ae st bbb bbb a st e beestsbas 677
14.3.718 PG_SESSION_WLMSTAT.......sierirrierinsirsissessisssnsssssssssnssssssssssssssssssssssssssssssons 677
T4.3.1719 PG_SESSION _IOSTAT ...ttt et sas bbb a st s s s st s s s s s sassassesbasassessesansans 680
T4.3.120 PG_SETTINGS. ..ottt sae s sas s ss s sss e et as st b bas s b b s et ba e b s bae s e s b sasssensenen 680
T4.3.127 PG_SHADOW......oorrrrrrirriniensessissessessssssssssssssssesssesssssssssesssssssssessssssssessssssssssssssnses 681
14.3.122 PG_SHARED_MEMORY _DETAIL....uitiititeteeteteeteteetetee et ettt st ss s s e e sesssessanaenas 682
T4.3.T23 PG_STATS. ..ottt sss sttt se sttt a e b a st e bbb et b et b a et b et b ban s 683
T4.3.124 PG_STAT_ACTIVITY c.osteierrrisiensessisssssstsssnsssssssssnsssssssssessssssssssssassssssessssssssssssssssssnsens 685
T4.3.125 PG_STAT_ALL_INDEXES......co oottt ettt sttt st s st bbb s bbb bbb s ebesesesesesesesesesesesesesesesesesesas 688
14.3.126 PG_STAT_ALL _TABLES....... ittt se st sass s sa s s sas st b sas s bas st be e s sas st s sassses s sassans 689
14.3.127 PG_STAT_BAD_BLOCKcoirierirrisiresinsississessisssasssssssssssssssssssssnes 691
14.3.128 PG_STAT_BGWRITER ...ttt sttt bt ae s bbb s s s saesansas 691
14.3.129 PG_STAT_DATABASE........o ottt sae st sas st sas st se s b e sttt a bbbt b s et bassen e 692
14.3.130 PG_STAT_DATABASE_CONFLICTS......ovrriererirninrensississessissnsssssssssssssssnns 693
14.3.131 PG_STAT_GET_MEM_MBYTES_RESERVED.......ooiieeeeeeeeeeeeeee s sasanaes 694
14.3.132 PG_STAT_USER_FUNCTIONS........coietrrrirreertestesiestessssssesies s sassass s ssssssssssssssssssssssssssssssssssssssassasssssssssanssnssassansens 695
14.3.133 PG_STAT_USER_INDEXES........cccssrererirrrrrrensensisssnsessnsssssssssssssssssssssssssssns 695
14.3.134 PG_STAT_USER_TABLES........ oottt sttt s st s sassansans 696
14.3.135 PG_STAT_REPLICATION.iveiterieereetteesesiestss e saes i sass s sas e s sssssssssssasssssssssassasssss s sasssss s sassssssssssssasssssssssennes 697
14.3.136 PG_STAT_SYS_INDEXES.......ocsirrrerirriesensensisssessesssnsssssssssnsssssssssssssssnss 698
14.3.137 PG_STAT_SYS_TABLES.......o ottt sttt bbbt bt s s bbbt sntens 698
14.3.138 PG_STAT_XACT _ALL_TABLES......... oottt saes s sae st ssss s s sa s sss e e sassasssassaesssssansanes 699

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. Xi

Data Warehouse Service

Developer Guide Contents
14.3.139 PG_STAT_XACT_SYS_TABLES ...ttt ssssisssss st s st s sssnsssssansens 700
14.3.140 PG_STAT_XACT_USER _FUNUCTIONS. ...t sss s s s s asas s sasasasasasasasesanans 701
14.3.147 PG_STAT_XACT_USER _TABLES. ..o tettreiereeetretesieetessesaes st saes s saes s sa s sess s ssas e st sassassssssasssssssnsansans 701
14.3.142 PG_STATIO_ALL_INDEXES.....ccsurriererrirsresessissssssessesssessens 702
14.3.143 PG_STATIO_ALL_SEQUENCES.......ooiiereeteeeeeeeeesiestes st saess st ae s sa st a s s s s s snanns 702
14.3.144 PG_STATIO_ALL_TABLES........o oottt sa st ses st ses st sss st sas st s ae bbb s b s e s sesen 703
14.3.145 PG_STATIO_SYS_INDEXES........coscstrrrerinriressesesssssssssesses 703
14.3.146 PG_STATIO_SYS_SEQUENU ES.........oiereeeteeteeteeteeetee ettt ses s bbb bbb a bbb sneas 704
14.3.147 PG_STATIO_SYS_TABLES ...ttt sae s s st bt ba e b ba et sass et baesans 704
14.3.148 PG_STATIO_USER _INDEXES........cecstirrerrirrinsinsissasssnssssssnses 705
14.3.149 PG_STATIO_USER_SEQUENG ES.........cooititeeeeeeecie sttt sttt b s sas bbb st asnansans 705
14.3.150 PG_STATIO_USER _TABLES.......oiieieetsetesteeteetesiestes st sa st sss st sss e s sas st sass st sass s sassass s sasassans 706
14.3.157 PG_THREAD_WAIT_STATUS......vrirerrirriesinsissssssssisssnssssssnses 707
TA.3.152 PG_TABLES. ..ottt bttt s s bt a s bbb s s st n s s s saeen 719
T4.3.153 PG_TDE_INFO......ooiieieiiiereetieniesiesiesse st sssa s sss st sas s ssss s e s s ssss s st sassse st sassses s ssssses s bassesssassasssssassssssnes 720
14.3.154 PG_TIMEZONE_ABBREVS........setrririntirsissensersssssssisssnsssssssssssssssssssessssssssssssssssssens 721
T4.3.155 PG_TIMEZONE_NAMES........ooeeeeeeeeeeee e s s s s s s ss s s s assessssssassesesesessasaenas 721
14.3.156 PG_TOTAL_MEMORY_DETAIL.....oivrreertreicreesireseeseesissessissssssaesiessssssssaesssssasssssssssssssssssssssssssasssnsssssssssssssssssssssnes 721
14.3.157 PG_TOTAL_SCHEMAL_INFO......c.cevererirrirrensisisssessessssssssssssssssssssssssssessons 723
14.3.158 PG_TOTAL_USER_RESOURCE_INFO......coteeeetcteteeetete ettt ettt s 724
T4.3.159 PG_USER......otiieeeeiteteetiee ettt sa st sa st sas st b s sas st ae bbb s st e a bbb e et b s st e e bbb et b saes 725
14.3.1760 PG_USER_MAPPINGS........oooiererirririinsirsisssissesssssssesssessssssssssssssssssnsens 727
TA.3.T6T PG_VIEWS.....oeeeeeeeeee sttt sttt bbbt bbbt ss s b bt et s s s s saesassansansans 727
14.3.162 PG_WLM_STATISTICS ..ottt s saes i sss st sas s ses s sss e s s sss st sass s s bas s s b bas s s sasenssas 728
14.3.163 PGXC_BULKLOAD_PROGRESS........coocsiirrrririnrensisssssisssnsssssssssssssssssssssssssssssssons 729
14.3.164 PGXC_BULKLOAD _STATISTICS.. .ottt ettt et ettt bbb se st b besesenesesesesenenane 729
14.3.165 PGXC_COLUMN_TABLE_IO_STAT ..ottt s sasessss s s s s sasssssssssasssss s ssssassssssassessssssassansssnsanes 730
14.3.166 PGXC_COMM_CLIENT_INFO......siiierirrierensisinsessissessenss 731
14.3.167 PGXC_COMIM_DELAY. ...ttt st sa s st st ae s as bbbt st s b s esassassassansansans 732
14.3.168 PGXC_COMM_RECV_STREAM......eiireritrriereeetinseesiesssssssaes s sass s sass s sassas s sasssssssssassassssssassassssssassssssssassens 732
14.3.169 PGXC_COMM_SEND_STREAM.....c.osterirrrrrenrirsisnsensisssnssnssssssssssssssssessnss 733
14.3.170 PGXC_COMM_STATUS . ..ottt sttt s st ae bbb bbbt s s e s s sassessnsnsans 735
14.3.171 PGXC_COMM_QUERY_SPEED.......oosierrrrereertseteseesiesissses s sas st ssssas s s sassses s sasasssssssssass s e sssssssssnssssassanes 735
14.3.172 PGXC_DEADLOCKccoteiererriesessessissssssssssssssssssssssssesssssssssssssssssssssssssssssssssssssssnsssssssssssssssssssesssssssssesssssssssesssssssens 736
T14.3.173 PGXC_GET_STAT_ALL_TABLES........o oottt s s s anaan 738
14.3.174 PGXC_GET_STAT_ALL_PARTITIONS ...ttt sa st ses s sassssssssssssssssssssssassssssassassssssassensens 739
14.3.175 PGXC_GET_TABLE_SKEWNESS.........oostetirrierirrirsinsinsissssssessisssnssssssssnssssssnses 740
14.3.176 PGXC_GTM_SNAPSHOT_STATUS. ...ttt sttt s s s bbb se s bbb ss s s s sansans 741
14.3.177 PGXC_INSTANCE_TIME.....coiieieeiiieieeeeeetsnsesiesssssaessessesssssses s sassass s sassssssss s sassssssssssssssssssssssssssasssssssssasssssassansens 742
14.3.178 PGXC_LOCKWAIT_DETAIL....courverireierenrirsssnsensissssssssssssssssssssssssssssssssssssessans 742
14.3.179 PGXC_INSTR_UNIQUE_SQL....oouititieeeteeteeeetetetee ettt ettt ettt e be s bbbt sesesasesesenene 744
14.3.180 PGXC_LOCK_CONFLICTS......oioereerteririeeetrsisseesssssssssestessssssssessssass s s ssssssssasssssssssssssssssssssssssssssassssssssssssanssssasans 747

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. xii

Data Warehouse Service

Developer Guide Contents
14.3.181 PGXC_NODE_ENV......oiosieirririenririinsensisssssssnsssesssssssssssssssssssnsens 748
14.3.182 PGXC_NODE_STAT_RESET _THME......oieteieeeieeteietetetetetetetetete sttt s s sssesese st s s sssessesesesesesesesssesesenes 749
14.3.183 PGXC_OS_RUNL_INFO.......oiveierirreeririrnsieetesss et sae st sas s ssss s ssss s sassss st sassassssssassaesssssassssssssassesssassensen 749
14.3.184 PGXC_OS_THREADS........oitrrirreniirsiesississessssssssssssnsssssssssnssssssssssssssanss 750
T4.3.185 PGXC_PREPARED _XACTS.. .ottt ettt sttt sttt bbb be bbb bt tesebasesesesesesasesesesane 750
14.3.186 PGXC_REDO _STAToeieiieeeeeteeiiesiesies it saesesssssssesss st sssssssssssasssss s sssssss s sass s ssssssssssssssssssssssssssssssssssassssssassans 750
14.3.T87 PGXC_REL_IOSTATovrririeereriississessssssssesssnssnsssssssssssssssssssesssssssssesssssssssssssasssnsssssanses 751
14.3.188 PGXC_REPLICATION_SLOTS......oottttttet ittt s st s s s s s s s s ses s s s s sesessssesnnanes 751
14.3.189 PGXC_RESPOOL_RUNTIME_INFOQ......oosiereertrirerieriissssiesiessssees s ssessssssssassssssssssssssssssssssssssssssssssssasssssssansens 752
14.3.190 PGXC_RESPOOL_RESOURCE_INFO.......cccsvrrirriirrirsinsississensensissnssnsens 753
14.3.1971 PGXC_RESPOOL_RESOURCE_HISTORY ...ttt s s s sess s s s sssesssssssanes 755
14.3.192 PGXC_ROW _TABLE_IO_STAT ...ttt siesees s ssss s sa e s sassass s ssssssesssssassssssssssssssssss e ssnsssssansensssssanes 758
14.3.193 PGXC_RUNNING_XACTS......oterirrierinrisssssensisssasssssssssssssssssssanss 759
T4.3.194 PGXC_SETTINGS. ...ttt ettt st bbb bbb e bbb st s s sassassassansans 760
14.3.195 PGXC_SESSION_WLMSTAT ...t siestsssesaesissssssss s ssss s sas s ssssssssssssassasssssssssssssessasssssasssassansensssssensen 761
14.3.196 PGXC_STAT_ACTIVITY ceoreerriereseirsiesisssssssssesssessssssssssssnsssssssssnsssssssssnsssssssssnsssssanss 763
14.3.197 PGXC_STAT_BAD_BLOGCK ...ttt tese e seae s aese s s esese s s s s s sssesesesesesesesesesesesesssesesesesesnes 767
14.3.198 PGXC_STAT_BGWRITER......cviteieertreresieeteste ettt sae s ses st ses s sae s sas s b sas s s s bass s b b s st b se s e s seenen 767
14.3.199 PGXC_STAT_DATABASE........oieieetrriesiesirssssessissnsssssssssssssssssssnssssssssnns 768
14.3.200 PGXC_STAT_REPLICATION. ...ttt ettt et bbbt be bt st basesetesesasasesesenane 770
14.3.207 PGXC_STAT _TABLE _DIRTY ...oiteitierereeetseseseestssaesaessssssssses s s saes s sassass s sasssssssssss s sssssssssssssssasssessassassssssassasanns 771
14.3.202 PGXC_SQL_COUNT ...cvterirrierinsisisesissessssssssssssssssssssssssssssssssssssnssnssssssssssssssssssssssssnss 774
T14.3.203 PGXC_TABLE_CHANGE_STAT ..ottt s s s s s s se s s s s s sesesasasasesasasans 774
14.3.204 PGXC_TABLE _STAT ..ottt ettt s et ssa s b sas s bbb a e a st s ba bbb e e bas et ba s et b saes 775
14.3.205 PGXC_THREAD_WAIT_STATUS.....ovrtrrirerrirssesinsissssssesssss s sssnssnssns 776
14.3.206 PGXC_TOTAL_MEMORY _DETAIL ..ottt sttt s s se s ssesss s s s ses s sssssesssesesesessnanes 778
14.3.207 PGXC_TOTAL_SCHEMA_INFO.......coiieirirereeriieiesiesiss s sesssss s sa s ssssssssssssssasssssssssasssssssssssssssassassensssssenses 780
14.3.208 PGXC_TOTAL_SCHEMA_INFO_ANALYZE.......oostmrrrererirsiesessissens 780
14.3.209 PGXC_USER _TRANSACTION......ooiitrtiteeteteetecie st stes s sassas st sessss s s s s s e sassassassessssssesassassans 781
14.3.210 PGXC_VARIABLE_INFO........oiiiierteeieierieeiee e sasass s ssssa s ssssssssassasssssssssssssss s sasssss s sas st e ssssssssassanssssssnsennes 782
14.3.217 PGXC_WAIT_DETAIL..cvurirrrierreriieseneirsisessssessssssesssesssssssssasssssssssssssssssssnsssssssssssssssnses 782
T4.3.2T2 PGXC _WAIT_EVENTS ...ttt ssss s s s e e e sasasasasasasasasasasasasasanas 784
14.3.213 PGXC_WLM_OPERATOR_HISTORY.......eeterurirrreerensisseesesissssstessssssssessessasssesssssssssssssssssssssssssssssssssssasssessssassanns 785
14.3.214 PGXC_WLM_OPERATOR_INFO.......covrrierenrirriesensirsisssisssessns 787
14.3.215 PGXC_WLM_OPERATOR_STATISTICS. ...ttt ettt v s st et se s s s bbb s s bbb s s s esesesenenens 789
14.3.216 PGXC_WLM_SESSION_INFO......oosieieerereeeieesesississeesessssses st sssssssssssssssssesssssassssssassssssssssssansssssasssnsssssssasssssanes 790
14.3.217 PGXC_WLM_SESSION_HISTORY.....c.covcsrrrrerrrrriensersisssnsessns 794
14.3.218 PGXC_WLM_SESSION_STATISTICS......oot ettt tesaesiesasssess st sesassss s s sass s s saesassassassansansans 798
14.3.219 PGXC_WLM_WORKLOAD_RECORDS.........ovirrrrerrieriniseeiessssees s sssaes s sssss s ssssssssssssssssssssassassssssasssessassassanns 801
14.3.220 PGXC_WORKLOAD_SQL_COUNT....orirrrrrerrirrinsiesissesssssassens 802
14.3.2271 PGXC_WORKLOAD_SQL_ELAPSE_TIME.....oou oottt esetese st sese st sesesese s sesesesesesesesene 803
14.3.222 PGXC_WORKLOAD_TRANSACTION.....cooeiieerteriereeriesisiees s et ssssessessssassses s sassses s sassasssss e ssssssssansanssansanes 804

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. Xiii

Data Warehouse Service

Developer Guide Contents
T4.3.223 PLAN_TABLE ...ttt ebse e ssets sttt s bbb 805
T4.3.224 PV _FILE _STAT oottt ettt sttt ess e s e s s bt e et st s e s st 806
14.3.225 PV_INSTANGCE_TIME......oieerieireiresieesisistssessasssseas s sssss s ssnsssssssssessssssanes 806
14.3.226 PV_OS_RUN_INFO....co ittt eeseise e esseissssesseess s es st ssse s s ssse sttt st b s teseb e besseesseen 807
14.3.227 PV_SESSION_MEMORYcovrrirrerierririnsiensisisseessessessesssssssssssssssssssssssssssssssssasssassens 807
14.3.228 PV_SESSION_MEMORY _DETAIL....cttutiiemirreereemeeureeseemsesseisessseasessesssessessesssssssessessssssessssssessessssssessessssssessesassens 808
14.3.229 PV _SESSION_STAT .. ittt ettt e st s ess s es s s s s ss st es et s e st b e be et sssnesseen 809
14.3.230 PV_SESSION_TIME.....csisiriereririreerserseseiseesessessssssssssssssessesssssssssssssssssssssssssssssasses 810
14.3.237 PV_TOTAL_MEMORY _DETAIL. ..ottt ieseeseeseessetsessesssesse s sssesse s sssesss s sssessssesssessessesssessessesssssns 810
T4.3.232 PV_REDO _STAT ..ttt sttt ss s sesa sttt ss sttt se st seeassssesessssssssassssssssssssssssesssssssesnsanes 812
14.3.233 REDACTION_COLUMNS ..ottt ctsttessetesetsessees st sssesse e esse s ettt ses s s s 812
14.3.234 REDACTION_POLICIES......oteieriertieeeeeereietaeetsetsessessssssessssss s easesss s esses s sssesssssesssesssssssssessssassssessssasessssnssasesneens 813
14.3.235 REMOTE _TABLE _STAT ...ttt ittt s s s sss s sss s st s s sssassssssssssssassssssssssnsssssssssssnsanes 814
14.3.236 USER_COL_COMMENTS ... coittieeertereeneteseteeseetsessesssessesss s esse s sssesss s es st ss st s be s s sasesssaneas 815
14.3.237 USER_CONSTRAINTS....ottitrttrteeieetrisietseisstseeseasessessess sttt sssessessessssssss s sssessssssssessessssssassssssesssssssssssassssssssassnns 815
14.3.238 USER_CONS_COLUMNS.....oittiireetrtireeneeesetseeeeaseise et sse e ss st s ss s sttt et ssessscsneen 816
14.3.239 USER_INDEXES......outiriurtiriereeeineiseeesessssssessssssssesssssssssesss s sasssss s sssesssssssssessesasssssssessssssessessssssssssasssssssssasssnessssanens 816
14.3.240 USER_IND_COLUMNS......iiiitieietiretretneeisetse ettt ssse e ssse e ts sttt st st et et aesssessees 817
14.3.247 USER_IND_EXPRESSIONS.......co ittt essesse e tseessesessses st s s s es s s sases st sasessesesaseses 817
14.3.242 USER_IND_PARTITIONS......ootrtieereireeecieesisieiseisstsesseasess s sss s se st sssesssas s ssssss st sssssssessssssssssssssssssssseassnsssssansnns 818
T4.3.243 USER _JOBS..... ettt et e s bbbt 819
T4.3.244 USER_OBJECTS.....coitrieeereireiieetreteeeesss s sssesss s sssesss s sss s ssss st s sssss st ssssssssssssssssssessssanssssssssasesssssssasessssssssssssssssanes 820
14.3.245 USER_PART_INDEXES......cieireireeeemsetreireeiseise e sasesse e sssess e sssessessessess st ss s ssse s sss s esse e ssesssessessessnes 820
14.3.246 USER_PART_TABLES........ ettt ettt csse s cs st ses et seen 821
14.3.247 USER_PROGCEDURES.........oi ettt sessss s s ssnsssssssssssssssassassans 822
14.3.248 USER_SEQUENCES...... oottt bbb s bbb 822
14.3.249 USER_SOURCE........orirtirrireeneirsieiessiss st ssssssssssssssssssssssssssssssssssssssassssssssasesssssssassssssssssssssssssssssssssssssssssssssans 822
14.3.250 USER_SYNONYMS....oimiiriireiineistieeistie e esseuse e sssesseeessesssessesssesse e s e sss e ts st e sasts s ssee s e ssssssessesssssesane 823
14.3.257 USER_TAB_COLUMNS ...ttt sessees st css e esse st esses s s s s s tse s ease s sasessesssaseses 823
14.3.252 USER_TAB_COMMENTS......ooiiiireeririeersisesetsssssssesssss e ssssssssssssssassssssssssssssssssesssnsssens 824
14.3.253 USER_TAB_PARTITIONS. ...ttt teseesete et tseesses et ssses s s es et saecen 824
T4.3.254 USER _TABLES ...ttt ettt st ss sttt s nesseassansas 825
14.3.255 USER_TRIGGERS......oiiiiie sttt sttt e ts ettt et e 826
T4.3.256 USER _VIEWS......o ettt ettt te ettt s st s 826
T4.3.257 VESESSION ...ttt teeseesse s essees st ssse st et b bbb st et bbbttt 826
14.3.258 VESESSION_LONGOPS ...ttt e etsseseesse s ase s es s sttt 827
15 GUC Parameters of the GaussDB(DWS) Database..........cceeerererreeecceecreeecneecnne 828
15.7T VIEWING GUC PAramMIELETS......cueieeicericirecirectreactseietsess st tesstse sttt sttt sttt et st et sttt sseseens 828
15.2 CoNfiIGUIING GUC PAramELEIS........vovuierieririerieisisississesesssassssssssnsnns 829
T5.3 GUC PArameEter USAQL. ...ttt ettt ettt ae ettt s ettt b ettt etseae e bt et e assessteassetetaen 831
15.4 Connection and AUTNENTICATION. ...ttt es sttt eas s s sansas 831
15.4.T CONNECLION SETEINGS...cuovitriririrereeieieie ettt sttt st eassseas bt s b ae b s s ssssassssasssbassesassesassssnssacs 831

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. Xiv

Data Warehouse Service

Developer Guide Contents
15.4.2 Security and Authentication (POStgreSqLCONT)ottt 833
15.4.3 Communication LiDrary ParamEters.........ooereieineirrireireireeeis sttt essessess s sss st ssssesssssesssasssssssssns 840
15.5 RESOUICE CONSUMPTION...viiieieetriieiieeieieieeeiseeassaesssssasastssseesssesssssssssssssssssssssssssssssssssssssesassessssesssssssssssssnsssssssesnssesnssss 846
T5.5.T IMIBIMIOIY .ttt ettt ettt bt ettt st b et ee e b et e bbb eeas 846
15.5.2 Statement Disk SPACE CONTIOL. ...ttt ettt st ea sttt eaeeanens 854
15.5.3 KEIMNEL RESOUICES.......ceeeerinieceeieineeesete e eese et css s e es bbb e ettt aeties 855
15.5.4 COSt-DasSed VACUUM DELAY ..ot issessssssssss s ssssss st sssssssssssssssssssssssessssssssssssssssssssssssnnsnns 856
15.5.5 ASYNCIONOUS 1/ OPEIAtIONS.....c.cuieieeirieieireiretseesesesie e tsstssisess st ss st ess s st s s sassassssnens 858
15.6 PArallel DAta IMPOIt.. ettt ssses s s bbb s s sas s s sas bbb st essessessssas s b snsnsssessnssnen 860
15.7 WIEE ANEAA LOGS....uiuierierierireirieisissistiseesiesssssss s sssassansans 861
T5.7.T SEUINGS.coveeereetreetreetree ettt st st b bbb s s s sttt st b et bbbt e bt et st seaes 861
15.7.2 CRECKPOINES. ...ttt sttt bbb a st se s sas s bs s bbb s b s ss s b s s s st s s s s e b s b ss b s b s b s st s sessesassanbansnsensans 864
15.8 HA REPLCATION.....e ettt sss sttt s s sss st se s s s ss s st sa s s essenssssssasssnsanssnsensaes 865
T5.8.1 SENAING SEIVENceieieieiretr ettt sttt s s bt ee ettt s st b et sses s eeaneas 865
T5.8.2 PrIMAIY SEIVET ...ttt s sassssss s s s st sbss s aas s et ssssesssessssesss s ssssssssssssesasssesssssassessssesassesssssassansnss 866
15.9 QUEIY PLANNING ..ottt sttt s sttt sss s s st st sssassssnsssssssnsnssnsensnssnsans 868
15.9.1 Optimizer Method CONfiGUIAtION........o.c ettt ettt saen 868
15.9.2 OPLtIMIZEr COSt CONSTANTS....cviuiiieeieerieieisieisie sttt ssess s sss st ssss st st ssassessssssss s ssssesssssssssssssssssssnssssassssnssacs 877
15.9.3 GENELIC QUENY OPLIMIZET ..ottt sttt st s bbbt et seastseans 879
15.9.4 Other OPtiMIZEr OPLIONS......covuiuiereereeieereireiseireiseeseeseses ettt sses st s s s st as st se b ssessesseasessssssaseses 881
15.10 Error Reporting @nd LOGQING.....ccccuiuiieieeieeieeisisiisisisissesseessssssssssssssssssssssessssssssssssssssessssssssssssssssssssssssssssssssssssanes 894
T5.T0.T LOGGING TIME..ouiiiiiriieeieieieiriciree sttt sesetseas st ss st s s s sessssesssseasssese s ts s s easbsas b s aseaesebassseasseeassseasseeassssassnanes 894
15.10.2 LOGGING CONETENT ..ottt ettt sttt sttt s bbbt st sttt s et bbbt bebaesetacs 898
1577 ALGIMN DEEECTION. ...ttt ettt ce bbb bbbt saenies 903
15.12 Statistics During the Database RUNNING ...t sss st sssssssssssssasssssans 904
15.12.1 Query and Index StatiStiCS COLLECLONttt ettt saen 904
15.12.2 PerfOrmManCe STATISTICS. ... ittt ettt ea s cb e es st s bbbt 909
T5.13 RESOUICE MANAGEMENT ..ottt ettt ettt bbbttt s bbbt bbbt s ettt aeaesstataeas 910
15.14 AULOMATIC CLEANUP .. ceieieee ittt e st ettt sttt st eeseeaseansanen 922
15.15 Default Settings of ClIENt CONNECLION.......ciririeeceeteee ettt s s sss s ssssansas 926
15.15.1 STAEMENT BERAVION ...ttt st 926
15.15.2 ZONE AN FOrMATEINGuturieiereiririeieise ettt sttt esees sttt ettt setensees 933
15.15.3 Other Default ParamEters..... ..ot eeeeseesetsseese e ssses st ssse s s e et ssesseesseen 937
15.16 Lock Management

15.17 Version and Platform CompatiDility.......ccccocoirrerreeresererr ettt st 941
15.17.1 Compatibility With EQrlier VEISIONS.........ceieeeeceeie ettt essssssssss s st ssssssssssssanssnsns 941
15.17.2 Platform and Client COMPAtiDility......ccoerrrrurirreriririeisieississses st ssse s s st ssssssssssssssnsenes 944
T5.18 FAULE TOLBIANCE. ... ettt st s et sttt bbb nnens 945
15.19 CONNECLION POOL PAramELErs..... .ottt ca s es sttt 947
15.20 Cluster TranSaCtion PArameLers........ e ecreereemreereeeeeseiseise e sesesse e sssesse e sssesss e sssessesessse s sssesssaesanesns 948
15.27 DEVELOPEI OPEIALIONS......cuuiereieceeeirieiseie ettt esetae st bt ss s st s s ess s bbb s e s sastassessasssnseens 951
15.22 AUGITING. cceu ettt ettt cs e es e b s s e e bbbttt 968

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. XV

Data Warehouse Service

Developer Guide Contents
15.22.7 AUIE SWILCN oottt s s bbb s s s s s bbbt n s s s st essnssnsnns 968
15.22.2 OPEIrAtiON AUIt. ..ottt essese st et se st s st st s st e e bt sesseseeaeeasenssesnsees 969
15.23 TranSaCtioN MONITOING . .c.cieiiurirereeieieieieieeeieee st es ettt eassesss s sssessssssesssssssssssassssssssssssssnssessssans 973
T5.24 GTIM PAr@mMELEIS.....cueiieecieisireeietei ettt ettt ettt sttt ettt bbbttt s st eae 974
15.25 MiSCELLANEOUS PAramELEIS........cveieeieeeieeeirieesiessieiestess st ss s s s ssssssssse s sassesassessssessssesssssssssssessnsnsassnes 975
16 GaussDB(DWS) Developer TEIMS........cccireeeieneecieseesnnessessessnssasesssssssssssssssassssssasnes 1007

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. XVi

Data Warehouse Service
Developer Guide 1 Before You Start

Before You Start

Target Readers

This document is intended for database designers, application developers, and
database administrators, and provides information required for designing, building,
querying and maintaining data warehouses.

As a database administrator or application developer, you need to be familiar
with:

e Knowledge about OSs, which is the basis for everything.
e SQL syntax, which is the necessary skill for database operation.

Prerequisites

Complete the following tasks before you perform operations described in this
document:

e Create a GaussDB(DWS) cluster.
e Install a SQL client.
e Connect the SQL client to the default database of the cluster.

For details about these tasks, see Getting Started with GaussDB(DWS).

Reading Guide

If you are a new GaussDB(DWS) user, you are advised to read the following
contents first:

e Sections describing the features, functions, and application scenarios of
GaussDB(DWS).

e "Getting Started": guides you through creating a data warehouse cluster,
creating a database table, uploading data, and testing queries.

If you intend to or are migrating applications from other data warehouses to
GaussDB(DWS), you might want to know how GaussDB(DWS) differs from them.

You can find useful information from the following table for GaussDB(DWS)
database application development.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

https://support.huaweicloud.com/eu/qs-dws/index.html

Data Warehouse Service
Developer Guide

1 Before You Start

Operation Query Suggestion

Quickly getting Deploy a cluster, connect to the database, and perform
started with some queries by referring to .

GaussDB(DWS)

First, follow the steps in Getting Started with
GaussDB(DWS) to quickly deploy a cluster, connect to a
database, and try some queries.

When you are ready to construct a database, load data to
tables and compile the query content to operate the data in
the data warehouse. Then, you can return to the Data
Warehouse Service Database Developer Guide.

Understand the
internal
architecture of a
GaussDB(DWS)
data warehouse.

To know more about GaussDB(DWS), go to the
GaussDB(DWS) homepage.

Learn how to
design tables to
achieve the
excellent
performance.

GaussDB(DWS) Development Design Specifications
introduces the design specifications that should be complied
with during the development of database applications.
Modeling compliant with these specifications fits the
distributed processing architecture of GaussDB(DWS) and
provides efficient SQL code.

To facilitate service execution through optimization, you can
refer to Overview of Query Performance Optimization.
Database administrators' experience and judgment play a
more significant role in achieving successful performance
optimization than instructions and explanations. However,
Overview of Query Performance Optimization still tries to
systematically illustrate the performance optimization
methods for application development personnel and new
GaussDB(DWS) database administrators.

Loading data

Importing Data describes how to import data to
GaussDB(DWS).

Importing Best Practices provides experience tips for fast
and efficient data import.

Managing users,
groups, and
database security

GaussDB(DWS) Database Security Management covers
database security topics.

Monitoring and
optimizing
system
performance

GaussDB(DWS) System Catalogs and Views describes the
system catalogs where you can query the database status
and monitor the query content and process.

You should also refer to Management Guide to learn how
to use the GaussDB (DWS) console to check the system
running status and monitoring metrics.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

https://support.huaweicloud.com/eu/qs-dws/index.html
https://support.huaweicloud.com/eu/qs-dws/index.html
https://support.huaweicloud.com/eu/performance-dws/dws_10_0001.html
https://support.huaweicloud.com/eu/performance-dws/dws_10_0001.html
https://support.huaweicloud.com/eu/migration-dws/dws_15_0003.html
https://support.huaweicloud.com/eu/bestpractice-dws/dws_05_0001.html
https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0022.html

Data Warehouse Service
Developer Guide 1 Before You Start

SQL Syntax Text Conventions

To better understand how to use the syntax, you can refer to the following
description of SQL syntax text conventions.

Format Description

Uppercase Keywords must be in uppercase.
characters

Lowercase Parameters must be in lowercase.
characters

[] Items in brackets [] are optional.

Preceding elements can appear repeatedly.

[x|y]..] One item is selected from two or more options or no item
is selected.

{x]y]..} One item is selected from two or more options.

Xly|..1[..1] You can choose either multiple parameters or no

parameters. If you choose multiple parameters, simply
separate them with spaces.

[x|yl..1[,.1] You can choose either multiple parameters or no
parameters. If you choose multiple parameters, simply
separate them with commas (,).

{x|yl..}[..] You must select at least one parameter. If you select
multiple parameters, separate them with spaces.

{x|yl-3}[,-1] You must select at least one parameter. If you select
multiple parameters, separate them with commas (,).

Statement

When writing documents, the writers of GaussDB(DWS) try their best to provide
guidance from the perspective of commercial use, application scenarios, and task
completion. Even so, references to PostgreSQL content may still exist in the
document. For this type of content, the following PostgreSQL Copyright is
applicable:

Postgres-XC is Copyright © 1996-2013 by the PostgreSQL Global Development
Group.

PostgreSQL is Copyright © 1996-2013 by the PostgreSQL Global Development
Group.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

Data Warehouse Service
Developer Guide 1 Before You Start

ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
PROVIDED HEREUNDER IS ON AN "AS-IS" BASIS, AND THE UNIVERSITY OF
CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

Data Warehouse Service 2 GaussDB(DWS) Development Design
Developer Guide Specifications

GaussDB(DWS) Development Design
Specifications

2.1 Overview

Objective

This document outlines the rules for design and development that need to be
followed when developing the GaussDB(DWS) database. The objective is to
enhance development efficiency and ensure the continuity and stability of the
service.

Application Scope

These specifications apply to all GaussDB(DWS) self-development scenarios,
including designing and developing applications and database services.

Terms

Rule: a mandatory requirement that must be followed during database design and
development.

Suggestion: an option that you need to consider for the design and development
process.

Description: a detailed explanation of a rule or suggestion.

Overall Development and Design Specifications

The table below provides a list of development and design specifications that must
be followed during GaussDB(DWS) development. You can click the links to access
the corresponding rules for more details.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

Data Warehouse Service 2 GaussDB(DWS) Development Design
Developer Guide Specifications

Table 2-1 GaussDB(DWS) development and design specifications

N | Category Rule/Suggestion
o.
1 | Conn |- Rule 1.1: Configuring Load Balancing for
ectio GaussDB(DWS) Clusters
n
2 | man Rule 1.2: Ending the Database Connection After
agem Necesgary Operations (Except in Connection Pool
ent Scenarios)
3 regul Rule 1.3: Ensuring a Started Transaction Is
§t|on Committed or Rolled Back
4 Rule 1.4: Ensuring the Idle Timeout Duration Is
Shorter Than SESSION_TIMEOUT Value When
Connection Pool Is Used for Applications
5 Rule 1.5: Restoring Parameters to Default Values in
Connections Before Returning Them to the Pool
6 Rule 1.6: Manually Clearing Temporary Tables
Created with a Connection Before Returning it to
the Pool
7 | Obje | DATABAS | Rule 2.1: Avoiding Direct Usage of Built-in
ct E object Databases Such As postgres and gaussdb
desig | design - -
8 |n Rule 2.2: Selecting the Suitable Database Code
specif During Database Creation
g |lcatio Rule 2.3: Choosing the Right Database Type for
ns Compatibility with the Database to Be Created
10 Suggestion 2.4: Storing Objects with Associated
Calculations in the Same Database
11 USER Rule 2.5: Following the Least Privilege Principle and
object Avoiding Running Services Using Users with Special
design Permissions
12 Rule 2.6: Avoiding the Use of a Single Database
Account for All Services
13 SCHEMA | Suggestion 2.7: Avoiding the Creation of Objects
object Under Other Users' Private Schemas
design
14 TABLESPA | Rule 2.8 Avoiding Tablespace Customization
CE object
design

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

Data Warehouse Service 2 GaussDB(DWS) Development Design

Developer Guide Specifications
N | Category Rule/Suggestion
o.
15 TABLE Rule 2.9: Selecting the Optimal Distribution
object Method and Columns During Table Creation
design
16 (pric?ritize Rule 2.10 Selecting an Optimal Storage Type
d) During Table Creation
17 Rule 2.11 Selecting an Optimal Partitioning Policy
During Table Creation
18 Suggestion 2.12: Designing Table Columns for Fast
and Accurate Queries
19 Suggestion 2.13: Avoiding the Usage of Auto-
increment Columns or Data Types
20 INDEX Rule 2.14: Creating Necessary Indexes and Selecting
object Optimal Columns and Sequences for Them
design
21 (prigritize Suggestion 2.15: Optimizing Performance by

d) Choosing the Right Index Type and Avoiding
Indexes for Column-Store Tables

22 VIEW Suggestion 2.16: Limiting View Nesting to Three
object Layers
design

23 |SQL | DDL Suggestion 3.1: Avoiding Performing DDL

devel | operation | Operations (Except CREATE) During Peak Hours or
opme | specificati | in Long Transactions

24 '?;ecif ons Rule 3.2: Specifyil?g the Scope of Objects to Be
icatio Deleted When Using DROP
25 | MS INSERT Rule 3.3: Replacing INSERT with COPY for Efficient
operation | Multi-Value Batch Insertion
specificati
26 ons Suggestion 3.4: Avoiding Performing Real-time
INSERT Operations on Common Column-store
Tables
27 UPDATE/ | Suggestion 3.5: Preventing Simultaneous Updates
DELETE or Deletions of the Same Row in a Row-store Table
operation) T)
28 specificati Suggestion 3.6: Avoiding Frequent or Simultaneous
ons UPDATE and DELETE Operations on Column-store
Tables
29 SELECT Rule 3.7: Avoiding Executing SQL Statements That
operation | Do Not Support Pushdown
specificati . . .
30 ons Rule 3.8: Specifying Association Conditions when

Multiple Tables Are Associated

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

Data Warehouse Service 2 GaussDB(DWS) Development Design

Developer Guide Specifications
N | Category Rule/Suggestion
o.
31 Rule 3.9: Ensuring Consistency of Data Types in
Associated Fields across Multiple Tables
32 Suggestion 3.10: Avoiding Function Calculation on
Association and Filter Condition Fields
33 Suggestion 3.11: Performing Pressure Tests and
Concurrency Control for Resource-intensive SQL
Statements
34 Rule 3.12: Avoiding Excessive COUNT Operations on
Large Row-store Tables
35 Suggestion 3.13: Avoid Getting Large Result Sets
(Except for Data Exports)
36 Suggestion 3.14: Avoiding the Usage of SELECT * for
Queries
37 Suggestion 3.15: Using WITH RECURSIVE with
Defined Termination Condition for Recursion
38 Suggestion 3.16: Setting Schema Prefix for Table
and Function Access
39 Suggestion 3.17: Identifying an SQL Statement with
a Unique SQL Comment
40 | Store | - Suggestion 4.1: Simplifying Stored Procedures and
d Avoiding Nesting
proce . . .
41 | dure Rule 4.2: Avoiding Non-CREATE DDL Operations in
devel Stored Procedures
opme
nt
specif
icatio
ns

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

Data Warehouse Service 2 GaussDB(DWS) Development Design
Developer Guide Specifications

2.2 GaussDB(DWS) Connection Management
Specifications

Rule 1.1: Configuring Load Balancing for GaussDB(DWS) Clusters
(11 NOTE

Impact of rule violation:
e Load imbalance causes performance problems and even service interruption.

e When a CN is faulty, services cannot be automatically recovered or the recovery may
take a long time.

Solution:

e Configure ELB load balancing and connect the application to the load balancing IP
address.

e For how to use the JDBC for load balancing, see Configuring JDBC to Connect to a
Cluster (Load Balancing Mode).

Rule 1.2: Ending the Database Connection After Necessary Operations
(Except in Connection Pool Scenarios)

(10 NOTE

Impact of rule violation:

e The number of idle connections exceeds the maximum limit, causing connection
creation failure.

e Resource overload occurs because there are too many idle connections.
Solution:

e After the connection between the application and the database is established and used,
manually end the connection.

e Set the session_timeout parameter on the service side to set the idle timeout duration.
The connection will be automatically ended when the idle timeout duration expires.

Rule 1.3: Ensuring a Started Transaction Is Committed or Rolled Back
(11 NOTE

Impact of rule violation:

e If a transaction remains uncommitted for an extended period, it blocks operations such
as ALTER, thereby affecting all services.

e The number of idle connections exceeds the maximum limit, causing connection
creation failure.

Solution:

e autocommit is enabled by default, so there is no need to manually commit any
transaction unless you modify the default setting.

e If a transaction is explicitly started, it must be explicitly ended (either by committing or
rolling back) once the relevant operations are finished.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0169.html
https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0169.html

Data Warehouse Service 2 GaussDB(DWS) Development Design
Developer Guide Specifications

Rule 1.4: Ensuring the Idle Timeout Duration Is Shorter Than
SESSION_TIMEOUT Value When Connection Pool Is Used for Applications

(11 NOTE

Impact of rule violation:

e The idle timeout mechanism on the service side clears connections in the connection
pool, which negatively impacts connection reuse.

Solution:

e To ensure everything works correctly, make sure the idle timeout duration of the
connection pool is shorter than the SESSION_TIMEOUT value in GaussDB(DWS). It is
advised to adjust the idle timeout duration rather than modifying the
SESSION_TIMEOUT value.

Rule 1.5: Restoring Parameters to Default Values in Connections Before
Returning Them to the Pool

(11 NOTE

Impact of rule violation:

e When a connection is reused by another service, the parameters set by the service may
also be reused. This can result in performance issues or service errors.

Solution:

e Before returning the connection to the connection pool, use SET SESSION
AUTHORIZATION DEFAULT;RESET ALL; to reset parameters.

Notes:

When connection pool is used for applications, if you set the global GUC parameter using
GS_GUC RELOAD in GaussDB(DWS), restart the connection pool for the changes to be
applied. This is because the modification only affects new connections in the connection
pool.

Rule 1.6: Manually Clearing Temporary Tables Created with a Connection
Before Returning it to the Pool

(11 NOTE

Impact of rule violation:

e When a connection is reused by other services, an error may be reported when a
temporary table is created.

Solution:

e Before returning a connection to the connection pool, use DROP to clear the temporary
table created by the current session.

2.3 GaussDB(DWS) Object Design Specifications

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

Data Warehouse Service 2 GaussDB(DWS) Development Design
Developer Guide Specifications

2.3.1 DATABASE Object Design

Rule 2.1: Avoiding Direct Usage of Built-in Databases Such As postgres and
gaussdb

(11 NOTE

Impact of rule violation:

e If the code or the compatibility setting of the built-in databases does not meet service
requirements, you may need to migrate your data again.

e The time for changes to be applied may be prolonged if all services use built-in
databases.

Solution:

e To meet the specific requirements of each service, it is recommended to create a
dedicated database and allocate it accordingly.

Rule 2.2: Selecting the Suitable Database Code During Database Creation
(1] NOTE

Impact of rule violation:

e Selecting the wrong database code may result in displaying garbled characters, and it is
not possible to directly change the database code. In such cases, you will need to create
a database and import the data again.

Solution:

e Itis advisable to set the ENCODING to the UTF-8 format during database creation,
unless there are specific requirements for a different encoding.

Rule 2.3: Choosing the Right Database Type for Compatibility with the
Database to Be Created

(11 NOTE

Impact of rule violation:

e Selecting the wrong type can lead to behavior inconsistencies after migrating the
database from a different vendor to GaussDB(DWS). Unfortunately, it is not possible to
directly change the compatibility setting. The only solution is to create a database and
import the data again.

Solution:

e GaussDB(DWS) supports compatibility with databases like Teradata, Oracle, and MySQL.
You can specify DBCOMPATIBILITY to set the compatible database type when creating
a database.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

Data Warehouse Service 2 GaussDB(DWS) Development Design
Developer Guide Specifications

Suggestion 2.4: Storing Objects with Associated Calculations in the Same
Database

(10 NOTE

Impact of rule violation:

e Cross-database access tends to have poorer performance compared to performing
operations within the same database.

Solution:

e If multiple databases are created, it is advisable to store objects requiring associated
calculations in the same database.

2.3.2 USER Object Design

Rule 2.5: Following the Least Privilege Principle and Avoiding Running
Services Using Users with Special Permissions

(11 NOTE

Impact of rule violation:

e Super users and administrators have full access to a lot of things in the system and
using these users to run services can pose security and control risks.

Solution:

e Itis advised to use common users for service running, reserving users with special
permissions for management operations.

Rule 2.6: Avoiding the Use of a Single Database Account for All Services
(110 NOTE

Impact of rule violation:

e Cross-database access typically has lower performance compared to accessing
operations within the same database.

Solution:
e Create administrators , service operation users, and O&M users for different purposes.

e Use different users to run different services for improved management and allocation of
services and resources.

2.3.3 Schema Object Design

Suggestion 2.7: Avoiding the Creation of Objects Under Other Users' Private
Schemas

(10 NOTE

A private schema refers to a schema with the same name as the user when the user is
created. This schema is only accessible to the user.

Impact of rule violation:

e When you create an object under someone else's private schema, the permissions for
that object are determined by the schema owner.

Solution:

e Create objects under your own private schema to have full control over the object
permissions.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

Data Warehouse Service 2 GaussDB(DWS) Development Design
Developer Guide Specifications

2.3.4 TABLESPACE Object Design

Rule 2.8 Avoiding Tablespace Customization
(1 NOTE

Impact of rule violation:

e In a distributed scenario, using a custom tablespace to create a table can result in the
table data not being stored in a distributed manner by DN, leading to storage skew.

Solution:

e Use the built-in default tablespace when creating a table object.

2.3.5 TABLE Object Design (Prioritized)

Rule 2.9: Selecting the Optimal Distribution Method and Columns During
Table Creation

(1 NOTE

Impact of rule violation:

e Incorrect distribution method and column selection can cause storage skew, deteriorate
access performance, and even overload storage and computing resources.

Solution:

e When creating a table, it is important to use the DISTRIBUTE BY clause to explicitly
specify the distribution method and distribution columns. The table below provides
principles for selecting the distribution columns.

Table 2-2 Distribution column selection

Distribut | Description Scenario

ion

Method

Hash Table data is distributed to each Large tables and fact tables

DN based on the mapping
between hash values generated
by distribution columns and DNs.

e Advantage: Each DN contains
only part of data, which is
space-saving.

e Disadvantage: The even
distribution of data depends
heavily on the selection of
distribution columns. If the
join condition does not include
the distribution columns of
each node, data
communication between
nodes will be required.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

Data Warehouse Service 2 GaussDB(DWS) Development Design

Developer Guide Specifications
Distribut | Description Scenario
ion
Method
RoundRo | Table data is distributed to DNs Large tables, fact tables, and
bin in polling mode. tables without proper
e Advantage: Each DN only distribution columns

contains a portion of the data,
taking up a small amount of
space. Data is evenly
distributed in polling mode
and does not rely on
distribution columns,
eliminating data skews.

e Disadvantage: Using
distribution column conditions
cannot eliminate or reduce
inter-node communication. In
this scenario, the performance
is inferior to that of HASH.

Replicati | Full data in a table is copied to Small tables and dimension
on each DN in the cluster. tables

e Advantage: Each DN holds the
complete data of the table.
The JOIN operation avoids
data communication between
nodes, reducing network
overhead and the overhead of
starting and stopping the
STREAM thread.

e Disadvantage: Each DN
retains complete table data,
which is redundant and
occupies more storage space.

Rule 2.10 Selecting an Optimal Storage Type During Table Creation
(110 NOTE

Impact of rule violation:

e Row-store tables are not properly used. As a result, the query performance is poor and
resources are overloaded.

e Improper use of column-store tables causes CU expansion, poor performance, and
resource overload.

Solution:

e When creating a table, use orientation to explicitly specify the storage type. The
following table describes the rules for selecting a storage type.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

Data Warehouse Service 2 GaussDB(DWS) Development Design
Developer Guide Specifications

Table 2-3 Storage type selection

Storag | Applicable Scenario Inapplicable Scenario

e Type

Row e DML addition, deletion, and DML query: statistical analysis

storage modification: scenarios with query (with mass data involved
many UPDATE and DELETE in GROUP and JOIN processes)
operations CAUTION

e DML query: point query (simple When creating a row-store table

index-based query that returns (orientation is set to row), do not
L f d specify the compress attribute or
only a few records) use a row-store compressed table.

Colum | e DML addition, deletion, and e DML addition, deletion, and
n modification: INSERT batch modification: scenarios with
storage import scenario (The number of many UPDATE/DELETE
data records imported to a operations or a small number
single partition at a time is of INSERT operations

approximately 60,000 times the | 4

DML query: high-concurrency
number of DNs or greater.)

point query

e DML query: statistical analysis
query (with mass data involved
in GROUP and JOIN processes)

Rule 2.11 Selecting an Optimal Partitioning Policy During Table Creation
(11 NOTE

Impact of rule violation:

Without partitioning, query performance and data governance efficiency will deteriorate.
The larger the data volume, the greater the deterioration. The advantages of partitioning
include:

e High query performance: The system queries only the concerned partitions rather than
the whole table, improving the query efficiency.

e Improved data governance efficiency: In the data lifecycle management scenario,
performing TRUNCATE or DROP PARTITION on historical partitions is much more
efficient and effective than using DELETE.

Solution:
e Design partitions for tables that contain fields of the time type.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

Data Warehouse Service

Developer Guide

2 GaussDB(DWS) Development Design
Specifications

Table 2-4 Partitioning policy selection

Partitioning | Description Scenario

Policy

Range Data is stored in different 1. The date or time field is used
partitioning partitions based on the range as the partition key.

of partition key values. The p)
partition key ranges are
consecutive but not

. Most queries contain
partition keys as filter criteria.

3. Periodically delete data based

overlapped.
PP on the partition key.
List Partitioning is performed 1. A specific number of
partitioning based on a unique list of enumerated values are used
partition key values. as partition key values.

2. Most queries contain
partition keys as filter criteria.

Suggestion 2.12: Designing Table Columns for Fast and Accurate Queries
(11 NOTE

Impact of rule violation:

e The system may have limited storage space and low query efficiency.

Solution:

1.

Design the table columns well for fast queries.
e If possible, use integers instead of floating points or characters.

e When using variable-length character type, specify the maximum length based on
data features.

Design the table columns well for accurate queries.
e Use the time type instead of the character type to store time data.

e Use the minimum numeric type that meets the requirements. Avoid using bigint if
int or smallint is sufficient to save space.

Correctly use the constraints.

e Add NOT NULL constraints to columns that never have NULL values. The optimizer
automatically optimizes the columns in certain scenarios.

e Do not use the DEFAULT constraint for fields that can be supplemented at the
service layer. Otherwise, unexpected results may be generated during data loading.

Avoid unnecessary data type conversion.

e In tables that are logically related, columns having the same meaning should use
the same data type.

e Different types of comparison operations cause data type conversion, which may
cause index and partition pruning failures and affect query performance.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

Data Warehouse Service 2 GaussDB(DWS) Development Design
Developer Guide Specifications

Suggestion 2.13: Avoiding the Usage of Auto-increment Columns or Data
Types

(11 NOTE

Impact of rule violation:

e When auto-increment sequences or data types are heavily used, the GTM may become
overloaded and slow down sequence generation.

Solution:
e Set a UUID to obtain a unique ID.

e If the auto-increment sequence must be used and there is no strict requirement for
increasing order, you can set the cache, for example, 1000, to reduce the pressure on
GTM.

2.3.6 INDEX Object Design (Prioritized)

Rule 2.14: Creating Necessary Indexes and Selecting Optimal Columns and
Sequences for Them

(1 NOTE

Impact of rule violation:

e Redundant indexes consume unnecessary space and can impact data import efficiency.
e The column sequence in the composite index is incorrect, affecting the query efficiency.
Best practices:

The following conditions must be met when indexes are used:

e The index column should be a column commonly used for filtering or joining conditions.
e The index column should have more distinct values.

e When creating a multi-column combination index, prioritize columns with more distinct
values.

e The number of indexes in a single table should be limited to less than five. You can
control the number of indexes by combining them.

e In scenarios where data is added, deleted, or modified in batches, delete the index first
and then add it back after the batch operation is complete to improve performance
(real-time access may be affected).

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

Data Warehouse Service 2 GaussDB(DWS) Development Design
Developer Guide Specifications

Suggestion 2.15: Optimizing Performance by Choosing the Right Index Type
and Avoiding Indexes for Column-Store Tables

(11 NOTE

Impact of rule violation:

e Incorrect indexes do not improve column-store access and can negatively affect query
performance.

Solution:

1. Specify the appropriate index type when creating indexes, avoiding the default psort
index.

2. In point queries where small amounts of data need to be retrieved from mass datasets,
consider creating a B-tree index.

3. For high range query performance, create a partial cluster key (PCK) to quickly filter and
scan fact tables using the min/max sparse index. Comply with the following rules to
create a PCK:

e [Notice] Only one PCK can be created in a table. A PCK can contain multiple
columns, preferably no more than two columns.

e [Suggestion] Create a PCK for the filter condition column of the expression (e.g.,
col op const, where op is the operator =, >, >=, <=, and <, and const is a constant
value).

2.3.7 VIEW Object Design

Suggestion 2.16: Limiting View Nesting to Three Layers
(11 NOTE

Impact of rule violation:

e Too many nested views can lead to unstable execution plans and unpredictable time
consumption.

e The risk of rebuilding objects on which views depend is high and the probability of lock
conflicts increases.

Solution:
e Create views based on physical tables.

2.4 GaussDB(DWS) SQL Statement Development
Specifications

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

Data Warehouse Service 2 GaussDB(DWS) Development Design
Developer Guide Specifications

2.4.1 DDL Operations

Suggestion 3.1: Avoiding Performing DDL Operations (Except CREATE)
During Peak Hours or in Long Transactions

(11 NOTE

Impact of rule violation:

DDL operations like ALTER, DROP, TRUNCATE, REINDEX, and VACUUM FULL have high
lock levels and can block services during execution.

e During peak hours, these DDL operations with high lock levels should be avoided to
prevent service blockage.

e Long transactions involving DDL operations with held or waited locks can also block
services.

Solution:

e Choose off-peak hours or maintenance windows for DDL operations based on service
periods. Specify the DDL execution environment and time consumption to avoid service
blockage due to long lock waiting duration.

Rule 3.2: Specifying the Scope of Objects to Be Deleted When Using DROP

A DANGER

Impact of rule violation:

Be cautious when using DROP OBJECT (e.g., DATABASE, USER/ROLE, SCHEMA,
TABLE, VIEW) as it may cause data loss, especially with CASCADE deletions.

e DROP DATABASE: deletes all objects in the database.
e DROP USER: deletes the USER object and its schemas and table objects.
e DROP SCHEMA: deletes all objects in the schema.

e DROP TABLE: deletes the TABLE object and the indexes and views that depend
on it.

Solution:

e Exercise caution when performing the DROP operation and back up data in
advance.

2.4.2 INSERT Operation

Rule 3.3: Replacing INSERT with COPY for Efficient Multi-Value Batch
Insertion

(11 NOTE

Impact of rule violation:

e Parsing multiple values is time-consuming and resource-intensive, leading to low
efficiency when importing data into the database.

Solution:

e Instead of using INSERT VALUES, the frontend should use APIs like CopyManager of
JDBC.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

Data Warehouse Service 2 GaussDB(DWS) Development Design
Developer Guide Specifications

Suggestion 3.4: Avoiding Performing Real-time INSERT Operations on
Common Column-store Tables

(11 NOTE

Impact of rule violation:

e Importing a small batch of data in real-time to a common column-store table can
significantly expand the small CU, occupying a lot of storage space and impacting the
query performance.

Solution:

e In real-time INSERT scenarios, evaluate the amount of data to be imported at once and
the total amount of data. If the total amount of data is small, use row-store tables.

e In the real-time INSERT scenario, import around 60,000 data records to a single table,
partition, or DN at a time. The minimum import batch is 5,000 data records.

e In the real-time INSERT scenario, use H-Store column-store tables (for version 8.3.0 or
later).

2.4.3 UPDATE and DELETE Operations

Suggestion 3.5: Preventing Simultaneous Updates or Deletions of the Same
Row in a Row-store Table

(11 NOTE

Impact of rule violation:

e Concurrent UPDATE and DELETE operations on row-store tables may cause row lock
blockage and distributed deadlocks, which can lead to service errors and performance
degradation.

Solution:

e Group UPDATE and DELETE operations by primary key or distribution column. Perform
parallel operations between groups while keeping operations within a group serial.

Suggestion 3.6: Avoiding Frequent or Simultaneous UPDATE and DELETE
Operations on Column-store Tables

(11 NOTE

Impact of rule violation:

e Frequent UPDATE and DELETE operations on column-store tables can result in CU
bloat, leading to large space occupation and decreased access performance.

e Concurrent UPDATE and DELETE operations on row-store tables may cause row lock
blockage and distributed deadlocks, which can lead to service errors and performance
degradation.

Solution:
e Design tables with frequent UPDATE and DELETE operations as row-store tables.

e Group UPDATE and DELETE operations by primary key or distribution column. Perform
parallel operations between groups while keeping operations within a group serial.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

Data Warehouse Service 2 GaussDB(DWS) Development Design
Developer Guide Specifications

2.4.4 SELECT Operation

Rule 3.7: Avoiding Executing SQL Statements That Do Not Support
Pushdown

(11 NOTE

GaussDB(DWS) uses a distributed architecture, and to achieve optimal performance, SQL
statements need to be pushed down to utilize distributed computing resources.

Impact of rule violation:

e SQL statements that are not pushed down may experience poor execution performance
and, in severe cases, can lead to CN resource bottlenecks, impacting overall services.

Solution:

e Do not use syntax or functions that cannot be executed near the data source. For
details, see Optimizing Statement Pushdown.

Rule 3.8: Specifying Association Conditions when Multiple Tables Are
Associated

(10 NOTE

Impact of rule violation:

e If no association condition is specified when linking multiple tables, it will result in a
Cartesian product calculation. This can lead to an expanded result set, posing risks of
performance issues and resource overload.

Solution:

e Specify filter and association conditions for each table during the association process.

Rule 3.9: Ensuring Consistency of Data Types in Associated Fields across
Multiple Tables

(11 NOTE

Impact of rule violation:

e Ensure consistent data types for associated fields to avoid unnecessary type conversions,
data redistribution issues, and hindered generation of optimal plans.

Solution:
e Use the same data type for associated fields when tables are associated.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

https://support.huaweicloud.com/eu/devg-dws/dws_04_0447.html

Data Warehouse Service 2 GaussDB(DWS) Development Design
Developer Guide Specifications

Suggestion 3.10: Avoiding Function Calculation on Association and Filter
Condition Fields

(11 NOTE

Impact of rule violation:

e In cases where function calculations are involved in association and filter conditions, the
optimizer may fail to obtain accurate field statistics, impacting execution performance.

Solution:

e When comparing association condition fields, process the data before importing it into
the database, especially when calculations are required for comparison.

e When filter criteria are compared with constants, perform function calculation only on
constant columns. The following is an example:
SELECT id, from_image_id, from_person_id, from_video_id
FROM face_data
WHERE SS.DEL_FLAG ="'N'

AND NVL(SS.DELETE_FLAG, 'N') ='N'

The modification is as follows:

SELECT id, from_image_id, from_person_id, from_video_id
FROM face_data

where SS.DEL_FLAG ='N'

AND (SS.DELETE_FLAG = 'N' or SS.DELETE_FLAG is null)

Suggestion 3.11: Performing Pressure Tests and Concurrency Control for
Resource-intensive SQL Statements

(11 NOTE

Impact of rule violation:

e Storage and computing resources are overloaded, and the overall running performance
deteriorates.

Solution:

A resource-intensive SQL statement contains:

e A large number of UNION ALL.

e A large number of AGGs (such as COUNT DISTINCT and MAX).
e A lot of JOIN operations for a large number of tables.

e A large number of STREAM operators (plan dimension).

Before rolling out, conduct pressure tests and implement concurrency control for certain
SQL statements. If the resource capacity is exceeded, optimizing the service should be
prioritized before reassessing the rollout plan.

Rule 3.12: Avoiding Excessive COUNT Operations on Large Row-store Tables
(11 NOTE

If SSDs or other high-performance disk types are used, it may not be necessary to adhere
strictly to this rule, but it is still crucial to monitor the I/O consumption.

Impact of rule violation:

e Performing frequent COUNT operations on large row-store tables can consume a
significant amount of 1/O resources, potentially leading to performance issues if an I/O
bottleneck occurs.

Solution:

e Reduce the frequency of COUNT operations, use result caching, and collect statistics by
partition to minimize /O consumption.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

Data Warehouse Service 2 GaussDB(DWS) Development Design
Developer Guide Specifications

Suggestion 3.13: Avoid Getting Large Result Sets (Except for Data Exports)
(11 NOTE

Impact of rule violation:

e If you do not need to view all the results, querying ultra-large result sets becomes
inefficient and wasteful in terms of resources.

Solution:
e Use the LIMIT clause to retrieve only the necessary result segments.

e Use a cursor to obtain the result sets by segment and set an appropriate value for
FETCH SIZE if you need to query a large number of result sets.

Suggestion 3.14: Avoiding the Usage of SELECT * for Queries
(11 NOTE

Impact of rule violation:

e Querying unnecessary columns increases the computing load and wastes computing
resources.

Solution:

e Clearly list the fields required for the query in the SELECT statement to improve the
query performance.

Suggestion 3.15: Using WITH RECURSIVE with Defined Termination
Condition for Recursion

(1 NOTE

Impact of rule violation:

e In cases where there is no specific termination condition, recursive operations can enter
an infinite loop.

e Recursive operations generate duplicate data and occupy excessive resources.
Solution:

e Design proper termination conditions based on the volume and characteristics of the
data in the service table.

Suggestion 3.16: Setting Schema Prefix for Table and Function Access
(11 NOTE

Impact of rule violation:

e If the schema name prefix is not specified, the search will be performed sequentially
across all tablespaces based on the tablespace list in the current search_path. This can
lead to accessing unexpected tables due to schema switchover.

Solution:

e To enhance readability, stability, and portability, explicitly specify the schema prefix as
SCHEMA. when accessing tables and function objects.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

Data Warehouse Service

Developer Guide

2 GaussDB(DWS) Development Design

Specifications

Suggestion 3.17: Identifying an SQL Statement with a Unique SQL Comment

(1 NOTE

Impact of rule violation:

e The service's source tracing capability is limited. You can only verify it with R&D

engineers using the database, user name, and client IP address.
Solution:

e You are advised to use query_band. The following is an example:
SET query_band='JobName=abc;AppName=test;UserName=user’,

e Add a unique comment for each SQL statement to facilitate troubleshooting and
application performance analysis. The following is an example of such comment.
/* Module name_Tool name_Job name_Step */, for example, /* mca_python_xxxxxx_step1 */ insert

into xxx select ... from

2.5 GaussDB(DWS) Stored Procedure Development
Specifications

Suggestion 4.1: Simplifying Stored Procedures and Avoiding Nesting

Step 1

Step 2

Step 3

(11 NOTE

Impact of rule violation:

e The maintenance cost for complex and nested stored procedures is high, making fault

locating and recovery time-consuming.
Solution:

e Avoid using stored procedures altogether or limit their usage to a single layer. Nested

stored procedures should be avoided.

e Create a corresponding log table for the stored procedure design and record information
before and after key steps in the log table. Follow the steps below to implement this.

Saving and Viewing Logs

Create a log table.

CREATE TABLE func_exec_log

(

id varchar2(32) default lower(sys_guid()),
pro_name varchar2(60),

exec_times int,

log_date date,

deal_date date,

log_mesage text

’

Create a table and import data.

CREATE TABLE demo_table(data_id int, data_number int);
INSERT INTO demo_table values(generate_series(1,1000),generate_series(1,1000));

Create a service stored procedure.

CREATE OR REPLACE FUNCTION demo_table_process(out exe_info text)
LANGUAGE plpgsql

AS $$

declare v_count int;

pro_result text;

fun_name text;

exec_times int;

begin

fun_name := 'demo_table_process';

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

24

Data Warehouse Service 2 GaussDB(DWS) Development Design

Developer Guide

Specifications

Step 4

Step 5

Step 6

Step 7

select nvl(max(exec_times), '0") + 1 into exec_times from func_exec_log where pro_name = fun_name;
-- Insert data into the service table.

insert into demo_table values (dbms_random.value(1, 1000):int,generate_series(1,
dbms_random.value(10000, 20000)::int));

get diagnostics v_count = ROW_COUNT;

exe_info = sysdate || '# step1:insert count:' || v_count || ' rows;';

-- Delete specified data from a service table.

delete from demo_table where data_id = dbms_random.value(1, 1000):int;

get diagnostics v_count = ROW_COUNT;

exe_info = exe_info || sysdate || '# step2:delete count:' || v_count || ' rows;';

-- Update service table data.

update demo_table set data_number = dbms_random.value(1, 100)::int where data_id =
dbms_random.value(1, 1000)::int;

exe_info = exe_info || sysdate || '# step3:update count:' || sql%rowcount || ' rows';

-- Record logs either before the entire program ends or after each step completes. You can also create a
function specifically for logging purposes.

insert into func_exec_log(pro_name, exec_times, log_date, deal_date, log_mesage) values
(fun_name,exec_times,sysdate,split_part(regexp_split_to_table(exe_info, ';'), '#',
1),split_part(regexp_split_to_table(exe_info, "), '#', 2));

-- EXCEPTION is used to ensure that logs can be properly recorded when the insertion, update, or deletion
exits abnormally.

EXCEPTION

WHEN OTHERS THEN

pro_result := exe_info || sysdate || '# exception error message is: ' || sqlerrm;

insert into func_exec_log(pro_name, exec_times, log_date, deal_date, log_mesage)
values(fun_name,exec_times,sysdate,split_part(regexp_split_to_table(pro_result, ';"), '#',
1),split_part(regexp_split_to_table(pro_result, ';"), '#', 2));

END; $$;

Invoke the stored procedure (normal execution).
SELECT demo_table_process();

View the created log table to check the service running status.
SELECT * FROM func_exec_log ORDER BY log_date desc,deal_date,log_mesage;

demodb=# select * from func_exec_log erder by log date desc,deal date,log mesage;
pro_name log_date al_da log_mesage

f7e0fffe | demo_table proce 20 || 2022-11- sert count:1912
f7eefffe | demo_table_process 2022-11-15 || 2022-11- 33 s elete count:22 rows

f7eefffe | demo_table_process 1| 2022-11-15 || 2022-11- 34 s update count:15 rows

Invoke the stored procedure again to construct an execution exception.

SELECT demo_table_process(); -- Delete the data_number column of demo_table to construct an exception,
and then call the stored procedure again.

View the log to check the service running status.

--—-End

Rule 4.2: Avoiding Non-CREATE DDL Operations in Stored Procedures

(1 NOTE

Impact of rule violation:

e A stored procedure is a large transaction. If a non-CREATE DDL operation, especially one
with a high lock level, is executed, it can block external access to related tables during
the stored procedure's execution window.

Solution:

e Avoid using non-CREATE DDL operations within stored procedures whenever possible. If
there is a necessity to use such operations, carefully assess the duration of the stored
procedures and the potential impact of the DDL operations. It is advised to schedule
non-CREATE DDL operations during off-peak hours when external access services are
less active.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

Data Warehouse Service 2 GaussDB(DWS) Development Design

Developer Guide

Specifications

2.6 Detailed Design Rules for GaussDB(DWS) Objects

2.6.1 GaussDB(DWS) Database Object Naming Rules

The name of a database object must contain 1 to 63 characters, start with a letter
or underscore (_), and can contain letters, digits, underscores (_), and dollar signs

($).

[Proposal] Do not use reserved or non-reserved keywords to name database
objects.

(10 NOTE

You can run SELECT * FROM pg_get_keywords() to query GaussDB(DWS) keywords
or view the keywords in section "Keywords" in SQL Syntax Reference.
[Proposal] Do not use strings enclosed in double quotation marks to define
database object names. In GaussDB(DWS), double quotation marks are used
to specify that the enclosed database object names are case sensitive. Case
sensitivity of database object names makes problem location difficult.

[Proposal] Use the same naming format for database objects.

- In a system undergoing incremental development or service migration,
you are advised to comply with its historical naming conventions.

- A database object name consists of letters, digits, and underscores (_);
and cannot start with a digit. You are advised to use multiple words
separated with hyphens (-).

- You are advised to use intelligible names and common acronyms or
abbreviations for database objects. Acronyms or abbreviations that are
generally understood are recommended. For example, you can use
English words indicating actual business terms. The naming format
should be consistent within a cluster.

- A variable name must be descriptive and meaningful. It must have a
prefix indicating its type.

[Proposal] The name of a table object should indicate its main characteristics,
for example, whether it is an ordinary, temporary, or unlogged table.

- An ordinary table name should indicate the business relevant to a data
set.

- Temporary tables are named in the format of tmp_Suffix.
- Unlogged tables are named in the format of ul_Su/ffix.
- Foreign tables are named in the format of f_Suffix.

2.6.2 GaussDB(DWS) Database Object Design Rules

2.6.2.1 GaussDB(DWS) Database and Schema Design Rules

In GaussDB(DWS), services can be isolated by databases and schemas. Databases
share little resources and cannot directly access each other. Connections to and
permissions on them are also isolated. Schemas share more resources than

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

Data Warehouse Service 2 GaussDB(DWS) Development Design

Developer Guide

Specifications

databases do. User permissions on schemas and subordinate objects can be
controlled using the GRANT and REVOKE syntax.

You are advised to use schemas to isolate services for convenience and
resource sharing.

It is recommended that system administrators create schemas and databases
and then assign required permissions to users.

Database Design Suggestions

Create databases as required. Do not use the default gaussdb database of a
cluster.

Create a maximum of three user-defined databases in a cluster.

To make your database encoding compatible with most characters, you are
advised to use the UTF-8 encoding when creating a database.

Exercise caution when you set ENCODING and DBCOMPATIBILITY
configuration items during database creation. In GaussDB(DWS),
DBCOMPATIBILITY can be set to TD, Oracle, or MySQL to be compatible
with Teradata, Oracle, or MySQL syntax, respectively. Syntax behavior may
vary with the three modes. For details, see Syntax Compatibility Differences
Among Oracle, Teradata, and MySQL.

By default, a database owner has all permissions for all objects in the
database, including the deletion permission. Exercise caution when using the
deletion permission.

Schema Design Suggestions

To let a user access an object in a schema, grant the usage permission and
the permissions for the object to the user, unless the user has the sysadmin
permission or is the schema owner.

To let a user create an object in the schema, grant the CREATE permission for
the schema to the user.

By default, a schema owner has all permissions for all objects in the schema,
including the deletion permission. Exercise caution when using the deletion
permission.

2.6.2.2 GaussDB(DWS) Table Design Rules

GaussDB(DWS) uses a distributed architecture. Data is distributed on DNs. Comply
with the following principles to properly design a table:

[Notice] Evenly distribute data on each DN to prevent data skew. If most data
is stored on several DNs, the effective capacity of a cluster decreases. Select a
proper distribution column to avoid data skew.

[Notice] Evenly scan each DN when querying tables. Otherwise, DNs most
frequently scanned will become the performance bottleneck. For example,
when you use equivalent filter conditions on a fact table, the nodes are not
evenly scanned.

[Notice] Reduce the amount of data to be scanned. You can use the pruning
mechanism of a partitioned table.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

Data Warehouse Service
Developer Guide

2 GaussDB(DWS) Development Design

Specifications

e [Notice] Minimize random 1I/O. By clustering or local clustering, you can
sequentially store hot data, converting random 1/O to sequential I/O to reduce
the cost of I/O scanning.

e [Notice] Try to avoid data shuffling. To shuffle data is to physically transfer it
from one node to another. This unnecessarily occupies many network
resources. To reduce network pressure, locally process data, and to improve
cluster performance and concurrency, you can minimize data shuffling by

using proper association and grouping conditions.

Selecting a Storage Mode

[Proposal] Selecting a storage mode is the first step in defining a table. The
storage mode mainly depends on the user's service type. For details, see Table

2-5.

Table 2-5 Table storage modes and scenarios

Storage
Mode

Benefit

Drawback

Application Scenarios

Row
storage

Data is stored by
row. When you
query a row of
data, you can
quickly locate the
target row.

All data in the
queried row is
read while only a
few columns are
needed.

1. The number of
columns in the table is
small, and most fields
in the table are
queried.

2. Point queries (simple
index-based query that
returns only a few
records) are performed.

3. Add, Delete, Modify,
and Query operations
on entire rows are
frequently performed.

Column
storage

1. Only necessary
columns in a
query are read.

2. The
homogeneity
of data within
a column
facilitates
efficient
compression.

It is not suitable
for INSERT or
UPDATE
operations on a
small amount of
data.

1. Query a few columns
in a table that contains
a large number of
columns.

2. Statistical analysis
queries (requiring a
large number of
association and
grouping operations)

3. Ad hoc queries (using
uncertain query
conditions and unable
to utilize indexes to
scan row-store tables)

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

Data Warehouse Service
Developer Guide

2 GaussDB(DWS) Development Design

Specifications

Selecting a Distribution Mode

[Proposal] Comply with the following rules to distribute table data.

Table 2-6 Table distribution modes and scenarios

Distribution
Mode

Description

Application Scenarios

Hash

Table data is distributed on
all DNs in a cluster by hash.

Fact tables containing a large
amount of data

Replication

Full data in a table is stored
on every DN in a cluster.

Dimension tables and fact
tables containing a small
amount of data

Round-robin

Each row of the table is sent
to each DN in turn.
Therefore, data is evenly
distributed on each DN.

Fact tables that contain a large
amount of data and cannot
find a proper distribution
column in hash mode

Selecting a Partitioning Mode

Comply with the following rules to partition a table containing a large amount of

data:

e [Proposal] Create partitions on columns that indicate certain ranges, such as
dates and regions.

e [Proposal] A partition name should show the data characteristics of a
partition. For example, its format can be Keyword+Range characteristics.

e [Proposal] Set the upper limit of a partition to MAXVALUE to prevent data

overflow.

The example of a partitioned table definition is as follows:

CREATE TABLE staffS_p1

staff_ID NUMBER(6) not null,
FIRST_NAME VARCHAR2(20),
LAST_NAME VARCHAR2(25),
EMAIL VARCHAR2(25),
PHONE_NUMBER VARCHAR2(20),
HIRE_DATE DATE,
employment_ID VARCHAR2(10),
SALARY NUMBER(8,2),
COMMISSION_PCT NUMBER(4,2),
MANAGER_ID NUMBER(6),
section_ID NUMBER(4)

)

PARTITION BY RANGE (HIRE_DATE)

(
PARTITION HIRE_19950501 VALUES LESS THAN ('1995-05-01 00:00:00'),
PARTITION HIRE_19950502 VALUES LESS THAN ('1995-05-02 00:00:00'),
PARTITION HIRE_maxvalue VALUES LESS THAN (MAXVALUE)

)

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

29

Data Warehouse Service 2 GaussDB(DWS) Development Design
Developer Guide Specifications

Selecting a Distribution Key

Selecting a distribution key is important for a hash table. An improper distribution
key may cause data skew. As a result, the I/O load is heavy on several DNs,
affecting the overall query performance. After you select a distribution policy for a
hash table, check for data skew to ensure that data is evenly distributed. Comply
with the following rules to select a distribution key:

e [Proposal] Select a column containing discrete data as the distribution key, so
that data can be evenly distributed on each DN. If a single column is not
discrete enough, consider using multiple columns as distribution keys. You can
select the primary key of a table as the distribution key. For example, in an
employee information table, select the certificate number column as the
distribution key.

e [Proposal] If the first rule is met, do not select a column having constant filter
conditions as the distribution key. For example, in a query on the dwcjk table,
if the zqdh column contains the constant filter condition zqdh='000001",
avoid selecting the zqdh column as the distribution key.

e [Proposal] If the first and second rules are met, select the join conditions in a
query as distribution keys. If a join condition is used as a distribution key, the
data involved in a join task is locally distributed on DNs, which greatly
reduces the data flow cost among DNs.

2.6.2.3 GaussDB(DWS) Column Design Rules

Selecting a Data Type

Comply with the following rules to improve query efficiency when you design
columns:

e [Proposal] Use the most efficient data types allowed.

If all of the following number types provide the required service precision,
they are recommended in descending order of priority: integer, floating point,
and numeric.

e [Proposal] In tables that are logically related, columns having the same
meaning should use the same data type.

e [Proposal] For string data, you are advised to use variable-length strings and
specify the maximum length. To avoid truncation, ensure that the specified
maximum length is greater than the maximum number of characters to be
stored. You are not advised to use CHAR(n), BPCHAR(n), NCHAR(n), or
CHARACTER(n), unless you know that the string length is fixed.

For details about string types, see Common String Types.
Common String Types

Every column requires a data type suitable for its data characteristics. The
following table lists common string types in GaussDB(DWS).

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

Data Warehouse Service 2 GaussDB(DWS) Development Design
Developer Guide Specifications

Table 2-7 Common string types

Parameter Description Max. Storage
Capacity
CHAR(n) Fixed-length string, where n 10 MB

indicates the stored bytes. If the
length of an input string is smaller
than n, the string is automatically
padded to n bytes using NULL
characters.

CHARACTER(n) Fixed-length string, where n 10 MB
indicates the stored bytes. If the
length of an input string is smaller
than n, the string is automatically
padded to n bytes using NULL
characters.

NCHAR(n) Fixed-length string, where n 10 MB
indicates the stored bytes. If the
length of an input string is smaller
than n, the string is automatically
padded to n bytes using NULL
characters.

BPCHAR(n) Fixed-length string, where n 10 MB
indicates the stored bytes. If the
length of an input string is smaller
than n, the string is automatically
padded to n bytes using NULL
characters.

VARCHAR(Nn) Variable-length string, where n 10 MB
indicates the maximum number of
bytes that can be stored.

CHARACTER Variable-length string, where n 10 MB
VARYING(n) indicates the maximum number of

bytes that can be stored. This data

type and VARCHAR(n) are different
representations of the same data

type.

VARCHAR2(n) Variable-length string, where n 10 MB
indicates the maximum number of
bytes that can be stored. This data
type is added to be compatible with
the Oracle database, and its
behavior is the same as that of
VARCHAR(n).

NVARCHAR2(n) Variable-length string, where n 10 MB
indicates the maximum number of
bytes that can be stored.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

Data Warehouse Service 2 GaussDB(DWS) Development Design

Developer Guide Specifications
Parameter Description Max. Storage
Capacity
TEXT Variable-length string. Its maximum | 8203 bytes less
length is 8203 bytes less than 1 GB. | than 1 GB

2.6.2.4 GaussDB(DWS) Constraint Design Rules

DEFAULT and NULL Constraints

e [Proposal] If all the column values can be obtained from services, you are not
advised to use the DEFAULT constraint, because doing so will generate
unexpected results during data loading.

e [Proposal] Add NOT NULL constraints to columns that never have NULL
values. The optimizer automatically optimizes the columns in certain
scenarios.

e [Proposal] Explicitly name all constraints excluding NOT NULL and DEFAULT.

Partial Cluster Key

A partial cluster key (PCK) is a local clustering technology used for column-store
tables. After creating a PCK, you can quickly filter and scan fact tables using min
or max sparse indexes in GaussDB(DWS). Comply with the following rules to
create a PCK:

e [Notice] Only one PCK can be created in a table. A PCK can contain multiple
columns, preferably no more than two columns.

e [Proposal] Create a PCK on simple expression filter conditions in a query. Such
filter conditions are usually in the form of col op const, where col specifies a
column name, op specifies an operator (such as =, >, >=, <=, and <), and
const specifies a constant.

e [Proposal] If the preceding conditions are met, create a PCK on the column
having the least distinct values.

Unique Constraint
e [Notice] Both row-store and column-store tables support unique constraints.

e [Proposal] The constraint name should indicate that it is a unique constraint,
for example, UNI/ncluded columns.

Primary Key Constraint

e [Notice] Both row-store and column-store tables support the primary key
constraint.

e [Proposal] The constraint name should indicate that it is a primary key
constraint, for example, PK/ncluded columns.

Check Constraint

e [Notice] Check constraints can be used in row-store tables but not in column-
store tables.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

Data Warehouse Service 2 GaussDB(DWS) Development Design
Developer Guide Specifications

e [Proposal] The constraint name should indicate that it is a check constraint,
for example, CK/ncluded columns.

2.6.2.5 Design Rules for GaussDB(DWS) Views and Associated Tables

View Design

e [Proposal] Do not nest views unless they have strong dependency on each
other.

e [Proposal] Try to avoid sort operations in a view definition.

Joined Table Design
e [Proposal] Minimize joined columns across tables.
e [Proposal] Joined columns should use the same data type.

e [Proposal] The names of associated fields should show the associations. For
example, they can use the same name.

2.6.3 GaussDB(DWS) SQL Writing Rules

DDL

[Proposal] In GaussDB(DWS), you are advised to execute DDL operations,
such as creating table or making comments, separately from batch processing
jobs to avoid performance deterioration caused by many concurrent
transactions.

e [Proposal] Execute data truncation after unlogged tables are used because
GaussDB(DWS) cannot ensure the security of unlogged tables in abnormal
scenarios.

e [Proposal] Suggestions on the storage mode of temporary and unlogged
tables are the same as those on base tables. Create temporary tables in the
same storage mode as the base tables to avoid high computing costs caused
by hybrid row and column correlation.

e [Proposal] The total length of an index column cannot exceed 50 bytes.
Otherwise, the index size will increase greatly, resulting in large storage cost
and low index performance.

e [Proposal] Do not use DROP... CASCADE to delete objects unless the
dependencies between objects are specified. Otherwise, objects may be
deleted by mistake.

Data Loading and Uninstalling

e [Proposal] Provide the inserted column list in the insert statement. Example:
INSERT INTO task(name,id,comment) VALUES ('task1','100','100th task');

e [Proposal] After data is imported to the database in batches or the data
increment reaches the threshold, you are advised to analyze tables to prevent
the execution plan from being degraded due to inaccurate statistics.

e [Proposal] To clear all data in a table, you are advised to use TRUNCATE
TABLE instead of DELETE TABLE. DELETE TABLE is not efficient and cannot
release disk space occupied by the deleted data.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

Data Warehouse Service 2 GaussDB(DWS) Development Design
Developer Guide Specifications

Type conversion

e [Proposal] Perform type coercion to convert data types. If you perform
implicit conversion, the result may differ from expected.

e [Proposal] During data query, explicitly specify the data type for constants,
and do not attempt to perform any implicit data type conversion.

e [Notice] In Oracle compatibility mode, null strings will be automatically
converted to NULL during data import. If a null string needs to be reserved,
you need to create a database that is compatible with Teradata.

Query Operation

e [Proposal] Do not return a large number of result sets to a client except the
ETL program. If a large result set is returned, consider modifying your service
design.

e [Proposal] Perform DDL and DML operations encapsulated in transactions.
Operations like table truncation, update, deletion, and dropping, cannot be
rolled back once committed. You are advised to encapsulate such operations
in transactions so that you can roll back the operations if necessary.

e [Proposal] During query compilation, you are advised to list all columns to be
queried and avoid using *. Doing so reduces output lines, improves query
performance, and avoids the impact of adding or deleting columns on front-
end service compatibility.

e [Proposal] During table object access, add the schema prefix to the table
object to avoid accessing an unexpected table due to schema switchover.

e [Proposal] The cost of joining more than three tables or views, especially full
joins, is difficult to be estimated. You are advised to use the WITH TABLE AS
statement to create interim tables to improve the readability of SQL
statements.

e [Proposal] Do not use Cartesian products or full joins. Cartesian products and
full joins will result in a sharp expansion of result sets and poor performance.

e [Notice] Only IS NULL and IS NOT NULL can be used to determine NULL
value comparison results. If any other method is used, NULL is returned. For
example, NULL instead of expected Boolean values is returned for
NULL<>NULL, NULL=NULL, and NULL<>1.

e [Notice] Do not use count(col) instead of count(*) to count the total number
of records in a table. count(*) counts the NULL value (actual rows) while
count (col) does not.

e [Notice] While executing count(col), the number of NULL record rows is
counted as 0. While executing sum(col), NULL is returned if all records are
NULL. If not all the records are NULL, the number of NULL record rows is
counted as 0.

e [Notice] To count multiple columns using count(), column names must be
enclosed with parentheses. For example, count ((col1, col2, col3)). Note:
When multiple columns are used to count the number of NULL record rows, a
row is counted even if all the selected columns are NULL. The result is the
same as that when count(*) is executed.

e [Notice] Null records are not counted when count(distinct col) is used to
calculate the number of non-null columns that are not repeated.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

Data Warehouse Service 2 GaussDB(DWS) Development Design

Developer Guide

Specifications

[Notice] If all statistical columns are NULL when count(distinct (col1,col2,...))
is used to count the number of unique values in multiple columns, Null
records are also counted, and the records are considered the same.

[Notice] When constants are used to filter data, the system searches for
functions used for calculating these two data types based on the data types
of the constants and matched columns. If no function is found, the system
converts the data type implicitly. Then, the system searches for a function

used for calculating the converted data type.
SELECT * FROM test WHERE timestamp_col = 20000101;

In the preceding example, if timestamp_col is the timestamp type, the
system first searches for the function that supports the "equal" operation of
the timestamp and int types (constant numbers are considered as the int
type). If no such function is found, the timestamp_col data and constant
numbers are implicitly converted into the text type for calculation.

[Proposal] Do not use scalar subquery statements. A scalar subquery appears
in the output list of a SELECT statement. In the following example, the part

enclosed in parentheses is a scalar subquery statement:
SELECT id, (SELECT COUNT(*) FROM films f WHERE f.did = s.id) FROM staffs_p1 s;

Scalar subqueries often result in query performance deterioration. During
application development, scalar subqueries need to be converted into
equivalent table associations based on the service logic.

[Proposal] In WHERE clauses, the filtering conditions should be sorted. The
condition that few records are selected for reading (the number of filtered
records is small) is listed at the beginning.

[Proposal] The filter criteria in the WHERE clause should comply with the
unilateral rule. That is, the field name is placed on one side of the comparison
condition. This allows the optimizer to automatically perform pruning
optimization in some scenarios. Filtering conditions in a WHERE clause will be
displayed in col op expression format, where col indicates a table column, op
indicates a comparison operator, such as = and >, and expression indicates an

expression that does not contain a column name. For example:
SELECT id, from_image_id, from_person_id, from_video_id FROM face_data WHERE
current_timestamp(6) - time < '1 days':interval;

The modification is as follows:

SELECT id, from_image_id, from_person_id, from_video_id FROM face_data WHERE time >
current_timestamp(6) - '1 days':interval;

[Proposal] Do not perform unnecessary sorting operations. Sorting requires a
large amount of memory and CPU. If service logic permits, ORDER BY and
LIMIT can be combined to reduce resource overhead. By default, data in
GaussDB(DWS) is sorted by ASC & NULL LAST.

[Proposal] When the ORDER BY clause is used for sorting, specify sorting
modes (ASC or DESC), and use NULL FIRST or NULL LAST for NULL record
sorting.

[proposal] Do not rely on only the LIMIT clause to return the result set
displayed in a specific sequence. Combine ORDER BY and LIMIT clauses for
some specific result sets and use offset to skip specific results if necessary.

[Proposal] If the service logic is accurate, you are advised to use UNION ALL
instead of UNION.

[Proposal] If a filtering condition contains only an OR expression, convert the
OR expression to UNION ALL to improve performance. SQL statements that

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

Data Warehouse Service 2 GaussDB(DWS) Development Design

Developer Guide

Specifications

use OR expressions cannot be optimized, resulting in slow execution. For

example:
SELECT * FROM scdc.pub_menu
WHERE (cdp= 300 AND inline=301) OR (cdp= 301 AND inline=302) OR (cdp= 302 AND inline=301);

Convert the statement to the following:

SELECT * FROM scdc.pub_menu

WHERE (cdp= 300 AND inline=301)

union all

SELECT * FROM scdc.pub_menu

WHERE (cdp= 301 AND inline=302)

union all

SELECT * FROM scdc.pub_menu

WHERE (cdp= 302 AND inline=301);

[Proposal] If an IN(val1l, val2, va...) expression contains a large number of
columns, you are advised to replace it with the IN (values (va1l), (val2),
(val3...) statement. The optimizer will automatically convert the IN constraint

into a non-correlated subquery to improve the query performance.

[Proposal] Replace (NOT) IN with (NOT) EXIST when associated columns do
not contain NULL values. For example, in the following query statement, if
the T1.C1 column does not contain any NULL value, add the NOT NULL
constraint to the T1.C1 column, and then rewrite the statements.

SELECT * FROM T1 WHERE T1.C1 NOT IN (SELECT T2.C2 FROM T2);

Rewrite the statement as follows:
SELECT * FROM T1 WHERE NOT EXISTS (SELECT * FROM T1,T2 WHERE T1.C1=T2.C2);

(10 NOTE

e If you cannot ensure that the values of the T1.C1 column are NOT NULL, you
cannot use (NOT) EXIST instead of (NOT) IN.

e If T1.C1 is the output of a subquery, check whether the output is NOT NULL based
on the service logic.

[Proposal] Use cursors instead of the LIMIT OFFSET syntax to perform
pagination queries to avoid resource overheads caused by multiple executions.
A cursor must be used in a transaction, and you must disable it and commit
transaction once the query is finished.

2.6.4 GaussDB(DWS) JDBC Configuration Rules

Currently, third-party tools are connected to GaussDB(DWS) trough JDBC. This
section describes the precautions for configuring the tools.

Connection Parameters

[Notice] When a third-party tool connects to GaussDB(DWS) through JDBC,
JDBC sends a connection request to GaussDB(DWS). By default, the following
parameters are added. For details, see the implementation of the

ConnectionFactorylmpl JDBC code.
params = {

{ "user", user },

{ "database", database },

{ "client_encoding", "UTF8" },

{ "DateStyle", "ISO" },

{ "extra_float_digits", "2" },

{ "TimeZone", createPostgresTimeZone() },

Y

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

Data Warehouse Service 2 GaussDB(DWS) Development Design

Developer Guide

Specifications

fetchsize

autocommit

These parameters may cause the JDBC and gsql clients to display inconsistent
data, for example, date data display mode, floating point precision
representation, and timezone.

If the result is not as expected, you are advised to explicitly set these
parameters in the Java connection setting.

e [Proposal] When connecting to the database through JDBC, ensure that the
following two time zones are the same:

- Time zone of the host where the JDBC client is located
- Time zone of the host where the GaussDB(DWS) server is located

[Notice] To use fetchsize in applications, disable the autocommit switch. Enabling
the autocommit switch makes the fetchsize configuration invalid.

[Proposal] It is recommended that you enable the autocommit switch in the code
for connecting to GaussDB(DWS) by the JDBC. If autocommit needs to be
disabled to improve performance or for other purposes, applications need to
ensure their transactions are committed. For example, explicitly commit
translations after specifying service SQL statements. Particularly, ensure that all
transactions are committed before the client exits.

Connection Releasing

[Proposal] You are advised to use connection pools to limit the number of
connections from applications. Do not connect to a database every time you run
an SQL statement.

[Proposal] After an application completes its tasks, disconnect its connection to
GaussDB(DWS) to release occupied resources. You are advised to set the session
timeout interval in the task.

[Proposal] Reset the session environment before releasing connections to the JDBC
connection tool. Otherwise, historical session information may cause object
conflicts.

e If GUC parameters are set in the connection, before you return the connection
to the connection pool, run SET SESSION AUTHORIZATION DEFAULT;RESET
ALL; to clear the connection status.

e If a temporary table is used, delete it before you return the connection to the
connection pool.

CopyManager

[Proposal] In the scenario where the ETL tool is not used and real-time data
import is required, it is recommended that you use the CopyManager interface
driven by the GaussDB(DWS) JDBC to import data in batches during application
development.

For how to use CopyManager, see CopyManager.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

Data Warehouse Service 2 GaussDB(DWS) Development Design
Developer Guide Specifications

2.6.5 Rules for Using Custom GaussDB(DWS) External
Functions (pgSQL/Java)

e [Notice] Java UDFs can perform some Java logic calculation. Do not
encapsulate services in Java UDFs.

e [Notice] Do not connect to a database in any way (for example, by using
JDBCQ) in Java functions.

e [Notice] Only the data types listed in the following table can be used. User-
defined types and complex data types (Java Array and derived classes) are not
supported.

e [Notice] User-defined aggregation functions (UDAFs) and user-defined table-
generating functions (UDTFs) are not supported.

Table 2-8 PL/Java mapping for default data types

GaussDB(DWS) Java

BOOLEAN boolean

"char" byte

bytea byte[]

SMALLINT short

INTEGER int

BIGINT long

FLOAT4 float

FLOAT8 double

CHAR java.lang.String

VARCHAR java.lang.String

TEXT java.lang.String

name java.lang.String

DATE java.sgl.Timestamp

TIME java.sgl.Time (stored value treated as
local time)

TIMETZ java.sgl.Time

TIMESTAMP java.sgl.Timestamp

TIMESTAMPTZ java.sgl.Timestamp

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

Data Warehouse Service 2 GaussDB(DWS) Development Design

Developer Guide

Specifications

2.6.6 Rules for Using GaussDB(DWS) PL/pgSQL

General Principles

1.

o Uk~ W

N

10.

Development shall strictly comply with design documents.

Program modules shall be highly cohesive and loosely coupled.
Proper, comprehensive troubleshooting measures shall be developed.
Code shall be reasonable and clear.

Program names shall comply with a unified naming rule.

Fully consider the program efficiency, including the program execution
efficiency and database query and storage efficiency. Use efficient and
effective processing methods.

Program comments shall be detailed, correct, and standard.

The COMMIT or ROLLBACK operation shall be performed at the end of a
stored procedure, unless otherwise required by applications.

Programs shall support 24/7 processing. In the case of an interruption, the
applications shall provide secure, easy-to-use resuming features.

Application output shall be standard and simple. The output shall show the
progress, error description, and execution results for application maintenance
personnel, and provide clear and intuitive reports and documents for business
personnel.

Programming Principles

Use bound variables in SQL statements in the PL/pgSQL.
RETURNING is recommended for SQL statements in PL/pgSQL.
Principles for using stored procedures:

a. Do not use more than 50 output parameters of the Varchar or Varchar2
type in a stored procedure.

b. Do not use the LONG type for input or output parameters.
¢. Use the CLOB type for output strings that exceed 10 MB.
Variable declaration principles:

a. Use %TYPE to declare a variable that has the same meaning as that of a
column or variable in an application table.

b. Use %ROWTYPE to declare a record that has the same meaning as that
of a row in an application table.

c. Each line of a variable declaration shall contain only one statement.
d. Do not declare variables of the LONG type.

Principles for using cursors:

a. Explicit cursors shall be closed after being used.

b. Cursor variables must be closed after being used. If a cursor variable
needs to transfer data to the invoked application, close the cursor in the
application. If a cursor variable is used only in a stored procedure, close
the cursor explicitly.

c. Before using DBMS_SQL.CLOSE_CURSOR to close a cursor, use
DBMS_SQL.IS_OPEN to check whether the cursor is open.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

Data Warehouse Service 2 GaussDB(DWS) Development Design

Developer Guide

Specifications

Principles for collections: You are advised to use the FOR ALL statement
instead of the FOR loop statement to reference elements in a collection.

Principles for using dynamic statements:

a. Dynamic SQL shall not be used in the transaction programs of online
systems.

b. Dynamic SQL statements can be used to implement DDL statements and
system control commands in PL/pgSQL.

¢. Variable binding is recommended.
Principles for assembling SQL statements:

You are advised to use bound variables to assemble SQL statements.

If the conditions for assembling SQL statements contain external input
sources, the characters in the input conditions shall be checked to prevent
attacks.

¢. Ina PL/pgSQL script, the length of a single line of code cannot exceed
2499 characters.

Principles for using triggers:

a. Triggers can be used to implement availability design in scenarios where
differential data logs are irrelevant to service processing.

b. Do not use triggers to implement service processing functions.

Exception Handling Principles

Any error that occurs in a PL/pgSQL function aborts the execution of the function
and related transactions. You can use a BEGIN block with an EXCEPTION clause to
catch and fix errors.

1.

In a PL/pgSQL block, if an SQL statement cannot return a definite result, you
are advised to handle exceptions (if any) in EXCEPTION. Otherwise,
unhandled errors may be transferred to the external block and cause program
logic errors.

You can directly use the exceptions that have been defined in the system.
GaussDB(DWS) does not support custom exceptions.

A block containing an EXCEPTION clause is more expensive to enter and exit
than a block without one. Therefore, do not use EXCEPTION without need.

Writing Standard

1.

Variable naming rules:

a. The input parameter format of a procedure or function is
IN_Parameter_name. The parameter name shall be in uppercase.

b. The output parameter format of a procedure or function is
OUT_Parameter_name. The parameter name shall be in uppercase.

¢. The format for input and output parameters in a procedure or function is
10_Parameter name, with the parameter name written in uppercase.

d. When creating variables for procedures and functions, use the format
v_Variable name, with the variable name written in lowercase.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

Data Warehouse Service 2 GaussDB(DWS) Development Design

Developer Guide

Specifications

e. In query concatenation, the concatenation variable name of the WHERE
statement shall be v_.where, and the concatenation variable name of the
SELECT statement shall be v_select.

f. The record type (TYPE) name shall consist of T and a variable name. The
name shall be in uppercase.

g. A cursor name shall consist of CUR and a variable name. The name shall
be in uppercase.

h. The name of a reference cursor (REF CURSOR) shall consist of REF and a
variable name. The name shall be in uppercase.

Rules for defining variable types:
a. Use %TYPE to declare the type of a variable that has the same meaning
as that of a column in an application table.

b. Use %ROWTYPE to declare the type of a record that has the same
meaning as that of a row in an application table.

Rules for writing comments:

a. Comments shall be meaningful and shall not just repeat the code
content.

b. Comments shall be concise and easy to understand.

¢. Comments shall be provided at the beginning of each stored procedure or
function. The comments shall contain a brief function description, author,
compilation date, program version number, and program change history.
The format of the comments at the beginning of stored procedures shall
be the same.

d. Comments shall be provided next to the input and output parameters to
describe the meaning of variables.

e. Comments shall be provided at the beginning of each block or large
branch to briefly describe the function of the block. If an algorithm is
used, comments shall be provided to describe the purpose and result of
the algorithm.

Variable declaration format:

Each line shall contain only one statement. To assign initial values, write them
in the same line.

Letter case:
Use uppercase letters except for variable names.
Indentation:

In the statements used for creating a stored procedure, the keywords CREATE,
AS/IS, BEGIN, and END at the same level shall have the same indent.

Statement rules:
a. For statements that define variables, Each line shall contain only one
statement.

b. The keywords IF, ELSE IF, ELSE, and END at the same level shall have the
same indent.

c. The keywords CASE and END shall have the same indent. The keywords
WHEN and ELSE shall be indented.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

Data Warehouse Service 2 GaussDB(DWS) Development Design
Developer Guide Specifications

d. The keywords LOOP and END LOOP at the same level shall have the
same indent. Nested statements or statements at lower levels shall have
more indent.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

Creating and Managing GaussDB(DWS)
Database Objects

3.1 Creating and Managing GaussDB(DWS) Databases

A database is a collection of objects such as tables, indexes, views, stored
procedures, and operators. GaussDB (DWS) supports the creation of multiple
databases. However, a client program can connect to and access only one
database at a time, and cross-database query is not supported.

Template and Default Databases

e GaussDB (DWS) provides two template databases template0 and template1
and a default database gaussdb.

e By default, each newly created database is based on a template database. The
GaussDB(DWS) database uses template1 as the template by default. The
encoding format is SQL_ASCII, and user-defined character encoding is not
allowed. If you need to specify the character encoding when creating a
database, use template0 to create the database.

e Do not use a client or any other tools to connect to or to perform operations
on both the two template databases.

(10 NOTE

You can run the show server_encoding command to view the current database
encoding.

Creating a Database.
Run the CREATE DATABASE statement to create a database.

CREATE DATABASE mydatabase;

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

(11 NOTE

e When you create a database, if the length of the database name exceeds 63 bytes, the
server truncates the database name and retains the first 63 bytes. Therefore, you are
advised to set the length of the database name to a value less than or equal to 63
bytes. Do not use multi-byte characters as object names. If an object whose name is
truncated mistakenly cannot be deleted, delete the object using the name before the
truncation, or manually delete it from the corresponding system catalog on each node.

e Database names must comply with the naming convention of SQL identifiers. The
current user automatically becomes the owner of this new database.

e If a database system is used to support independent users and projects, store them in
different databases.

e If the projects or users are associated with each other and share resources, store them in
different schemas in the same database.

e A maximum of 128 databases can be created in GaussDB(DWS).

e You must have the permission to create a database or the permission that the system
administrator owns.

Viewing Databases

To view databases, perform the following steps:
e Run the \l meta-command to view the database list of the database system.
\L

e Querying the database list using the pg_database system catalog
SELECT datname FROM pg_database;

Modifying a Database

You can use the ALTER DATABASE statement modify database configuration such
as the database owner, name, and default settings.

e Run the following command to set the default search path for the database:
ALTER DATABASE mydatabase SET search_path TO pa_catalog,public

e Rename the database.
ALTER DATABASE mydatabase RENAME TO newdatabase;

Deleting a Database

You can run DROP DATABASE statement to delete a database. This statement
deletes the system catalog of the database and the database directory on the disk.
Only the database owner or system administrator can delete a database. A
database being accessed by users cannot be deleted, You need to connect to
another database before deleting this database.

Run the DROP DATABASE statement to delete a database:
DROP DATABASE newdatabase;

3.2 Creating and Managing GaussDB(DWS) Schemas

A schema is the logical organization of objects and data in a database. Schema
management allows multiple users to use the same database without interfering
with each other. Third-party applications can be added to corresponding schemas
to avoid conflicts.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database

Developer Guide

Objects

Public mode

The same database object name can be used in different schemas in a database
without causing conflicts. For example, both a_schema and b_schema can contain
a table named mytable. Users with required permissions can access objects across
multiple schemas in a database.

If a user is created, a schema named after the user will also be created in the
current database.

Each database has a schema named public. All users have the ability to use the
public schema in the database, but only certain roles have the authority to create
objects within it.

Creating a Schema

e Run the CREATE SCHEMA command to create a schema.
CREATE SCHEMA myschema;
To create or access an object in the schema, the object name in the command
should be composed of the schema name and the object name, which are
separated by a dot (.), for example, myschema.table.

e Users can create a schema owned by others. For example, run the following
command to create a schema named myschema and set the owner of the
schema to user jack:

CREATE SCHEMA myschema AUTHORIZATION jack;
If authorization username is not specified, the schema owner is the user
who runs the command.

Modifying a Schema

e Run the ALTER SCHEMA command to change the schema name. Only the
schema owner can change the schema name.
ALTER SCHEMA schema_name RENAME TO new_name;

e Run the ALTER SCHEMA command to change the schema owner.
ALTER SCHEMA schema_name OWNER TO new_owner;

Setting the Schema Search Path

The GUC parameter search_path specifies the schema search sequence. The
parameter value is a series of schema names separated by commas (,). If no
schema is specified during object creation, the object will be added to the first
schema displayed in the search path. If there are objects with the same name in
different schemas and no schema is specified for an object query, the object will
be returned from the first schema containing the object in the search path.

e Run the SHOW command to view the current search path.
SHOW SEARCH_PATH;
search_path

"$user",public

(1 row)

The default value of search_path is "Suser"”,public. Suser indicates the name
of the schema with the same name as the current session user. If the schema
does not exist, Suser will be ignored. By default, after a user connects to a
database that has schemas with the same name, objects will be added to all

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

the schemas. If there are no such schemas, objects will be added to only to
the public schema.

e Run the SET command to modify the default schema of the current session.
For example, if the search path is set to "myschema, public", myschema is
searched first.

SET SEARCH_PATH TO myschema, public
You can also run the ALTER ROLE command to set search_path for a role

(user). For example:
ALTER ROLE jack SET search_path TO myschema, public;

Using a Schema

If you want to create or access an object in a specified schema, the object name
must contain the schema name. To be specific, the name consists of a schema
name and an object name, which are separated by a dot (.).

e C(Create a table mytable in myschema. Create a table in
schema_name.table_name format.
CREATE TABLE myschema.mytable(id int, name varchar(20));

e Query all data in the table mytable in myschema.
SELECT * FROM myschema.mytable,
id | name
- oo
(0 rows)

Viewing a Schema

e Use the current_schema() function to view the current schema.
SELECT current_schema();
current_schema

myschema
(1 row)

e To view the owner of a schema, perform the following join query on the

system catalogs PG_NAMESPACE and PG_USER. Replace schema_name in the

statement with the name of the schema to be queried.
SELECT s.nspname,u.usename AS nspowner FROM PG_NAMESPACE s, PG_USER u WHERE
nspname='schema_name' AND s.nspowner = u.usesysid;

e To view a list of all schemas, query the system catalog PG_NAMESPACE.
SELECT * FROM PG_NAMESPACE;

e Use the PGXC_TOTAL_SCHEMA_INFO view to query the space usage of
schemas in the cluster.
SELECT * FROM PGXC_TOTAL_SCHEMA_INFO;

e To view a list of tables in a schema, query the system catalog PG_TABLES. For
example, the following query will return a table list from PG_CATALOG in the

schema.
SELECT distinct(tablename),schemaname FROM PG_TABLES where schemaname = 'pg_catalog’;

Schema Permission Control

By default, a user can only access database objects in its own schema. To access
objects in other schemas, the user must have the usage permission of the
corresponding schema.

By granting the CREATE permission for a schema to a user, the user can create
objects in this schema.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database

Developer Guide

Objects

Drop Schema

System Schema

Grant the usage permission of myschema to user jack.
GRANT USAGE ON schema myschema TO jack;
Run the following command to revoke the USAGE permission for myschema

from jack:
REVOKE USAGE ON schema myschema FROM jack;

Run the DROP SCHEMA command to delete an empty schema (no database
objects in the schema).

DROP SCHEMA IF EXISTS myschema;

By default, a schema must be empty before being deleted. To delete a schema
and all its objects (such as tables, data, and functions), use the CASCADE

keyword.
DROP SCHEMA myschema CASCADE;

Each database has a pg_catalog schema, which contains system catalogs and
all built-in data types, functions, and operators. pg_catalog is a part of the
search path and has the second highest search priority. It is searched after the
schema of temporary tables and before other schemas specified in
search_path. This search order ensures that database built-in objects can be
found. To use a custom object that has the same name as a built-in object,
you can specify the schema of the custom object.

The information_schema consists of a collection of views that contain object
information in a database. These views obtain system information from the
system catalogs in a standardized way.

3.3 Selecting a GaussDB(DWS) Table Storage Model

GaussDB(DWS) supports hybrid row and column storage. When creating a table,
you can set the table storage mode to row storage or column storage.

Row storage stores tables to disk partitions by row, and column storage stores
tables to disk partitions by column. By default, a table is created in row storage
mode. For details about differences between row storage and column storage, see
Figure 3-1.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

Figure 3-1 Differences between row storage and column storage

Row-based store

Row | Date/ Customer
ID | Time | Matenal Name Quantity

2 i T 3

LR - E— =
e

Y 7 - :

Column-based store

Row Dj’tu‘ l _él.;tomer

D | Time | Matenal |/ Name | Quantity

1 sgl';s i 3 g

2 §5| 5 HE! i

s| er| s al [O o emmramE . SR
o fem| 1] s| /|

s| i]ass] (|2 il 4 s

off loss|[{s|/ lal/ |

i Lol o]/ 1|i 1

In the preceding figure, the upper left part is a row-store table, and the upper
right part shows how the row-store table is stored on a disk; the lower left part is
a column-store table, and the lower right part shows how the column-store table
is stored on a disk.

The row/column storage of a table is specified by the orientation attribute in the
table definition. The value row indicates a row-store table and column indicates a
column-store table. The default value is row. Each storage mode applies to
specific scenarios. Select an appropriate mode when creating a table.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

Data Warehouse Service

Developer Guide

3 Creating and Managing GaussDB(DWS) Database

Objects

Table 3-1 Table storage modes and scenarios

query are read.

2. The
homogeneity
of data within
a column
facilitates
efficient
compression.

Storage Benefit Drawback Application Scenarios
Mode
Row Data is stored by | All data in the . The number of
storage row. When you queried row is columns in the table is
query a row of read while only a small, and most fields
data, you can few columns are in the table are
quickly locate the | needed. queried.
target row. . Point queries (simple
index-based query that
returns only a few
records) are performed.
. Add, Delete, Modify,
and Query operations
on entire rows are
frequently performed.
Column 1. Only necessary | It is not suitable . Query a few columns
storage columns in a for INSERT or in a table that contains

UPDATE
operations on a
small amount of
data.

. Statistical analysis

. Ad hoc queries (using

a large number of
columns.

queries (requiring a
large number of
association and
grouping operations)

uncertain query
conditions and unable
to utilize indexes to
scan row-store tables)

Creating a Row-store Table

For example, to create a row-store table named customer_t1, run the following

command:

CREATE TABLE customer t1

(

state ID CHAR(2),
state NAME VARCHAR2(40),

)'

area_ ID NUMBER

Creating a column-store table.

For example, to create a column-store table named customer_t2, run the
following command:

CREATE TABLE customer _t2

(

state ID CHAR(2),

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

state. NAME VARCHAR2(40),
area_I[D NUMBER

)
WITH (ORIENTATION = COLUMN);

Table Compression

Table compression can be enabled when a table is created. Table compression
enables data in the table to be stored in compressed format to reduce memory
usage.

In scenarios where 1/O is large (much data is read and written) and CPU is
sufficient (little data is computed), select a high compression ratio. In scenarios
where 1/O is small and CPU is insufficient, select a low compression ratio. Based
on this principle, you are advised to select different compression ratios and test
and compare the results to select the optimal compression ratio as required.
Specify a compressions ratio using the COMPRESSION parameter. The supported
values are as follows:

e The valid value of column-store tables is YES, NO, LOW, MIDDLE, or HIGH,
and the default value is LOW.

e The valid values of row-store tables are YES and NO, and the default is NO.
(The row-store table compression function is not put into commercial use. To
use this function, contact technical support.)

The service scenarios applicable to each compression level are described in the
following table.

Compression Application Scenario

Level

LOW The system CPU usage is high and the disk storage space is
sufficient.

MIDDLE The system CPU usage is moderate and the disk storage
space is insufficient.

HIGH The system CPU usage is low and the disk storage space is
insufficient.

For example, to create a compressed column-store table named customer_t3, run
the following command:

CREATE TABLE customer t3
(
state ID CHAR(2),
state. NAME VARCHARZ2(40),
area_ID NUMBER

)
WITH (ORIENTATION = COLUMN,COMPRESSION=middle);

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

3.4 Creating and Managing GaussDB(DWS) Tables

Creating a Table

You can run the CREATE TABLE command to create a table. When creating a
table, you can define the following information:

e Columns and data type of the table.

e Table or column constraints that restrict a column or the data contained in a
table. For details, see Definition of Table Constraints.

e Distribution policy of a table, which determines how the GaussDB (DWS)
database divides data between segments. For details, see Definition of Table
Distribution.

e Table storage format. For details, see Selecting a GaussDB(DWS) Table
Storage Model.

e Partition table information. For details, see Creating and Managing
GaussDB(DWS) Partitioned Tables.

Example: Use CREATE TABLE to create a table web_returns_p1, use wr_item_sk
as the distribution key, and sets the range distribution function through
wr_returned_date_sk.

CREATE TABLE web_returns_p1
(

wr_returned_date_sk integer,
wr_returned_time_sk integer,
wr_item_sk integer NOT NULL,

wr_refunded_customer_sk integer

)

WITH (orientation = column)

DISTRIBUTE BY HASH (wr_item_sk)

PARTITION BY RANGE (wr_returned_date_sk)

(
PARTITION p2019 START(20191231) END(20221231) EVERY(10000),
PARTITION p0 END(maxvalue)

%

Definition of Table Constraints

You can define constraints on columns and tables to restrict data in a table.
However, there are the following restrictions:

e The primary key constraint and unique constraint in the table must contain a
distribution column.

e Column-store tables support the PARTIAL CLUSTER KEY and table-level
primary key and unique constraints, but do not support table-level foreign key
constraints.

e Only the NULL, NOT NULL, and DEFAULT constant values can be used as
column-store table column constraints.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

https://support.huaweicloud.com/eu/sqlreference-dws/dws_06_0008.html

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

Table 3-2 Table constraints

Constrain | Description Example
t
Check A CHECK constraint allows | Create the products table. The price
constraint | you to specify that values | column must be positive.

in a specific column must | CREATE TABLE products

satisfy:_ﬂ Boolean (true) (i o (R

expression. name text,

price numeric CHECK (price > 0)
)

NOT A NOT NULL constraint Create the products table. The values
NULL specifies that a column of product_no and name cannot be
constraint | cannot have null values. A | null.

non-null constraint is CREATE TABLE products

always written as a (product_no integer NOT NULL,

column constraint. name text NOT NULL,

price numeric
)

UNIQUE A UNIQUE constraint Create the products table. The values
constraint | specifies that the values in | of product_no must be unique.

a column or a group of CREATE TABLE products

columns are all unique. If (product_no integer UNIQUE,

DISTRIBUTE BY name text,

REPLICATION is not price numeric

specified, the column)DISTRIBUTE BY HASH (product_no);

table that contains only

unique values must

contain distribution

columns.
Primary A primary key constraint is | Create the products table. The primary
key the combination of a key constraint is product_no.
constraint | UNIQUE constraint and a %REATE TABLE products

NOT NULL constraint. If product_no integer PRIMARY KEY,

DISTRIBUTE BY name text,

REPLICATION is not price numeric

specified, the column set)DISTRIBUTE BY HASH (product_no);

with a primary key

constraint must contain

distributed columns. If a

table has a primary key,

the column (or group of

columns) of the primary

key is selected as the

distribution keys of the

table by default.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

Data Warehouse Service

3 Creating and Managing GaussDB(DWS) Database

Developer Guide Objects
Constrain | Description Example
t
Partial Partial cluster key can Create the products table with PCK set
cluster minimize or maximize to product_no:
key sparse indexes to quickly | CREATE TABLE products

filter base tables. Partial
cluster key can specify
multiple columns, but you
are advised to specify no
more than two columns.

(

product_no integer,

name text,

price numeric,
PARTIAL CLUSTER KEY (product_no)
) WITH (ORIENTATION = COLUMN);

Definition of Table Distribution

GaussDB(DWS) supports the following distribution modes: replication, hash, and

roundrobin.

(11 NOTE

The roundrobin distribution mode is supported only by cluster version 8.1.2 or later.

Policy

Description

Scenario

Advantages/Disadvantages

Replicatio
n

Full data in a

table is stored
on each DN in
the cluster.

Small tables o

and dimension

tables

The advantage of
replication is that each DN
has full data of the table.
During the join operation,
data does not need to be
redistributed, reducing
network overheads and
reducing plan segments
(each plan segment starts a
corresponding thread).

The disadvantage of
replication is that each DN
retains the complete data
of the table, resulting in
data redundancy. Generally,
replication is only used for
small dimension tables.

Hash

Table data is
distributed on
all DNs in the
cluster.

Fact tables °

containing a
large amount of

data

The 1/O resources of each
node can be used during
data read/write, greatly
improving the read/write
speed of a table.

Generally, a large table
(containing over 1 million
records) is defined as a
hash table.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database

Objects

Policy

Description

Scenario

Advantages/Disadvantages

Polling
(Round-
robin)

Each row in the
table is sent to
each DN in
turn. Data can
be evenly
distributed on
each DN.

Fact tables that
contain a large
amount of data
and cannot find
a proper
distribution
column in hash
mode

e Round-robin can avoid data
skew, improving the space
utilization of the cluster.

e Round-robin does not
support local DN
optimization like a hash
table does, and the query
performance of Round-
robin is usually lower than
that of a hash table.

e If a proper distribution
column can be found for a
large table, use the hash
distribution mode with
better performance.
Otherwise, define the table
as a round-robin table.

Selecting a Distribution Key

If the hash distribution mode is used, a distribution key must be specified for the
user table. When a record is inserted, the system hashes it based on the
distribution key and then stores it on the corresponding DN.

Select a hash distribution key based on the following principles:

1. The values of the distribution key should be discrete so that data can be
evenly distributed on each DN. You can select the primary key of the table
as the distribution key. For example, for a person information table, choose

the ID number column as the distribution key.

2. Do not select the column that has a constant filter. For example, if a
constant constraint (for example, zqdh='000001") exists on the zqdh column
in some queries on the dwcjk table, you are not advised to use zqdh as the
distribution key.

3. With the above principles met, you can select join conditions as
distribution keys, so that join tasks can be pushed down to DNs for
execution, reducing the amount of data transferred between the DNs.

For a hash table, an inappropriate distribution key may cause data skew or
poor |I/O performance on certain DNs. Therefore, you need to check the table
to ensure that data is evenly distributed on each DN. You can run the
following SQL statements to check for data skew:

select

xc_node_id, count(1)
from tablename

group by xc_node_id
order by xc_node_id desc;
xc_node_id corresponds to a DN. Generally, over 5% difference between the
amount of data on different DNs is regarded as data skew. If the
difference is over 10%, choose another distribution key.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database

Developer Guide

Objects

4.

You are not advised to add a column as a distribution key, especially add a
new column and use the SEQUENCE value to fill the column. (Sequences may
cause performance bottlenecks and unnecessary maintenance costs.)

View the data in the table.

Run the following command to query information about all tables in a
database in the system catalog pg_tables:
SELECT * FROM pg_tables;

Run the \d+ command of the gsql tool to query table attributes:
\d+ customer tT,

Run the following command to query the data volume of table customer_t1:
SELECT count(*) FROM customer tT7;

Run the following command to query all data in table customer_t1:
SELECT * FROM customer tT;

Run the following command to query data in column c_customer_sk:
SELECT c_customer_sk FROM customer tT;

Run the following command to filter repeated data in column c¢_customer_sk:
SELECT DISTINCT(¢ _customer sk') FROM customer _tT,

Run the following command to query all data whose column c_customer_sk
is 3869:
SELECT * FROM customer_t71 WHERE c¢_customer_sk = 3869,

Run the following command to sort data based on column c_customer_sk.
SELECT * FROM customer_t7 ORDER BY c¢_customer _sk;

Deleting Data in a Table

/A\ CAUTION

Exercise caution when running the DROP TABLE and TRUNCATE TABLE
statements. After a table is deleted, data cannot be restored.

Delete the customer_t1 table from the database.
DROP TABLE customer _t7,

You can use DELETE or TRUNCATE to clear rows in a table without removing
the definition of the table.

Delete all rows from the customer_t1 table.
TRUNCATE TABLE customer tT;

Delete all rows from the customer_t1 table.
DELETE FROM customer _tT,

Delete all records whose c_customer_sk is 3869 from the customer_t1 table.
DELETE FROM customer_t1 WHERE c¢_customer_sk = 3869,

3.5 Creating and Managing GaussDB(DWS) Partitioned

Tables

Partitioning refers to splitting what is logically one large table into smaller
physical pieces based on specific schemes. The table based on the logic is called a
partition cable, and a physical piece is called a partition. Data is stored on these

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

smaller physical pieces, namely, partitions, instead of the larger logical partitioned
table. During conditional query, the system scans only the partitions that meet the
conditions rather than scanning the entire table improving query performance.

Advantages of partitioned tables:

e Improved query performance. You can search in specific partitions, improving
the search efficiency.

e Enhanced availability. If a partition is faulty, data in other partitions is still
available.

e Improved maintainability. For expired historical data that needs to be
periodically deleted, you can quickly delete it by dropping or truncate
partitions.

Supported Table Partition Types

e Range partitioning: partitions are created based on a numeric range, for
example, by date or price range.

e List partitioning: partitions are created based on a list of values, such as sales
scope or product attribute. Only clusters of 8.1.3 and later versions support
this function.

Choosing to Partition a Table

You can choose to partition a table when the table has the following
characteristics:

e There are obvious ranges among the fields of the table.

A table is partitioned based on obvious rangeable fields. Generally, columns
such as date, area, and value are used for partitioning. The time column is
most commonly used.

e Queries to the table have obvious range characteristics.

If the queried data fall into specific ranges, its better tables are partitioned so
that through partition pruning, only the queried partition needs to be
scanned, improving data scanning efficiency and reducing the I/O overhead of
data scanning.

e The table contains a large amount of data.

Scanning small tables does not take much time, therefore the performance
benefits of partitioning are not significant. Therefore, you are advised to
partition only large tables. In column-store table, each column is an
independent file storage unit, and the minimum storage unit CU can store
60,000 rows of data. Therefore, for column-store partitioned tables, it is
recommended that the data volume in each partition be greater than or
equal to the number of DNs multiplied by 60,000.

Creating a Range Partitioned Table

Example: Create a table web_returns_p1 partitioned by the range
wr_returned_date_sk.

CREATE TABLE web_returns_p1

(

wr_returned_date_sk integer,
wr_returned_time_sk integer,

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

wr_item_sk integer NOT NULL,
wr_refunded_customer_sk integer

)

WITH (orientation = column)

DISTRIBUTE BY HASH (wr_item_sk)

PARTITION BY RANGE (wr_returned_date_sk)

(
PARTITION p2016 VALUES LESS THAN(20161231),
PARTITION p2017 VALUES LESS THAN(20171231),
PARTITION p2018 VALUES LESS THAN(20181231),
PARTITION p2019 VALUES LESS THAN(20191231),
PARTITION pxxxx VALUES LESS THAN (maxvalue)

)

Create partitions in batches, with fixed partition ranges. The following example
can be used:

CREATE TABLE web_returns_p2

(

wr_returned_date_sk integer,
wr_returned_time_sk integer,
wr_item_sk integer NOT NULL,

wr_refunded_customer_sk integer
)
WITH (orientation = column)
DISTRIBUTE BY HASH (wr_item_sk)
PARTITION BY RANGE(wr_returned_date_sk)

PARTITION p2016 START(20161231) END(20191231) EVERY(10000),
PARTITION p0O END(maxvalue)

)

Partition the table web_returns_p2 by date and time, using time as the partition
key.
CREATE TABLE web_returns_p2
(
id integer,
idle numeric,
10 numeric,
scope text,
IP text,
time timestamp
)
WITH (TTL='7 days',PERIOD="1 day")
PARTITION BY RANGE(time)
(
PARTITION P1 VALUES LESS THAN('2022-01-05 16:32:45"),
PARTITION P2 VALUES LESS THAN('2022-01-06 16:56:12")
);

Creating a List Partitioned Table

A list partitioned table can use any column that allows value comparison as the
partition key column. When creating a list partitioned table, you must declare the
value partition for each partition.

Example: Create a list partitioned table sales_info.

CREATE TABLE sales_info
(

sale_time timestamptz,
period int,

city text,

price numeric(10,2),
remark varchar2(100)

)
DISTRIBUTE BY HASH (sale_time)
PARTITION BY LIST (period, city)

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

(

PARTITION province1_202201 VALUES (('202201", 'city1'), ('202201', 'city2')),

PARTITION province2_202201 VALUES (('202201', 'city3'), ('202201', 'city4'), ('202201", 'city5')),
PARTITION rest VALUES (DEFAULT)

)

Partitioning an Existing Table

A table can be partitioned only when it is created. If you want to partition a table,
you must create a partitioned table, load the data in the original table to the
partitioned table, delete the original table, and rename the partitioned table as
the name of the original table. You must also re-grant permissions on the table to
users. For example:

CREATE TABLE web_returns_p2
(

wr_returned_date_sk integer,
wr_returned_time_sk integer,
wr_item_sk integer NOT NULL,

wr_refunded_customer_sk integer

)

WITH (orientation = column)

DISTRIBUTE BY HASH (wr_item_sk)
PARTITION BY RANGE(wr_returned_date_sk)

PARTITION p2016 START(20161231) END(20191231) EVERY(10000),
PARTITION pO END(maxvalue)
)
INSERT INTO web_returns_p2 SELECT * FROM web_returns_p1;
DROP TABLE web_returns_p1;
ALTER TABLE web_returns_p2 RENAME TO web_returns_p1;
GRANT ALL PRIVILEGES ON web_returns_p1 TO dbadmin;
GRANT SELECT ON web_returns_p1 TO jack;

Adding a Partition

Run the ALTER TABLE statement to add a partition to a partitioned table. For
example, to add partition P2020 to the web_returns_p1 table, run the following
command:

ALTER TABLE web_returns_p7 ADD PARTITION P2020 VALUES LESS THAN (20201231);

Splitting a Partition

The syntax for splitting a partition varies between a range partitioned table and a
list partitioned table.

e Run the ALTER TABLE statement to split a partition in a range partitioned
table. For example, the partition pxxxx of the table web_returns_p1 is split

into two partitions p2020 and p20xx at the splitting point 20201231.
ALTER TABLE web_returns_p1 SPLIT PARTITION pxxxx AT(20201231) INTO (PARTITION
p2020,PARTITION p20xx);

e Run the ALTER TABLE statement to split a partition in a list partitioned table.

For example, split the partition province2_202201 of table sales_inf into two

partitions province3_202201 and province4_202201.
ALTER TABLE sales_info SPLIT PARTITION province2 202207 VALUES(('202201', city5')) INTO
(PARTITION province3_202201,PARTITION province4_202207);

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database

Developer Guide

Objects

Merging Partitions

Run the ALTER TABLE statement to merge two partitions in a partitioned table.
For example, merge partitions p2016 and p2017 of table web_returns_p1 into
one partition p20162017.

ALTER TABLE web_returns_p1 MERGE PARTITIONS p2076,p2077 INTO PARTITION p20762017,

Deleting a Partition

Run the ALTER TABLE statement to delete a partition from a partitioned table. For
example, run the following command to delete partition P2020 from the

web_returns_p1 table:
ALTER TABLE web_returns_p1 DROP PARTITION P2020;

Querying a Partition

e Query partition p2019.
SELECT * FROM web_returns p1 PARTITION (p2079);
SELECT * FROM web _returns_p7 PARTITION FOR (20207237);

e View partitioned tables using the system catalog dba_tab_partitions.
SELECT * FROM dba_tab_partitions where table_name='web_returns p1’;

Deleting a Partitioned Table

Run the DROP TABLE statement to delete a partitioned table.

DROP TABLE web_returns_p1;

3.6 Creating and Managing GaussDB(DWS) Indexes

Index type

Indexes accelerate the data access speed but also add the processing time of the
insert, update, and delete operations. Therefore, before creating an index, consider
whether it is necessary and determine the columns where indexes will be created.
You can determine whether to add an index for a table by analyzing the service
processing and data use of applications, as well as columns that are frequently
used as search criteria or need to be sorted.

e btree: The B-tree index uses a structure that is similar to the B+ tree structure
to store data key values, facilitating index search. btree supports comparison
queries with ranges specified.

e gin: GIN indexes are reverse indexes and can process values that contain
multiple keys (for example, arrays).

e gist: GiST indexes are suitable for the set data type and multidimensional
data types, such as geometric and geographic data types.

e Psort: psort index. It is used to perform partial sort on column-store tables.
Row-based tables support the following index types: btree (default), gin, and gist.

Column-based tables support the following index types: Psort (default), btree,
and gin.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

(11 NOTE

Create a B-tree index for point queries.

Index Selection Principles

Indexes are created based on columns in database tables. When creating indexes,
you need to determine the columns, which can be:

e Columns that are frequently searched: The search efficiency can be improved.
e The uniqueness of the columns and the data sequence structures is ensured.

e Columns that usually function as foreign keys and are used for connections.
Then the connection efficiency is improved.

e Columns that are usually searched for by a specified scope. These indexes
have already been arranged in a sequence, and the specified scope is
contiguous.

e Columns that need to be arranged in a sequence. These indexes have already
been arranged in a sequence, so the sequence query time is accelerated.

e Columns that usually use the WHERE clause. Then the condition decision
efficiency is increased.

e Fields that are frequently used after keywords, such as ORDER BY, GROUP
BY, and DISTINCT.

(10 NOTE

e After an index is created, the system automatically determines when to reference
it. If the system determines that indexing is faster than sequenced scanning, the
index will be used.

e After an index is successfully created, it must be synchronized with the associated
table to ensure new data can be accurately located. Therefore, data operations
increase. Therefore, delete unnecessary indexes periodically.

Creating an Index

GaussDB(DWS) supports four methods for creating indexes. For details, see Table
3-3.

(11 NOTE

e After an index is created, the system automatically determines when to reference it. If
the system determines that indexing is faster than sequenced scanning, the index will be
used.

e After an index is successfully created, it must be synchronized with the associated table
to ensure new data can be accurately located. Therefore, data operations increase.
Therefore, delete unnecessary indexes periodically.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database

Developer Guide

Objects

Table 3-3 Indexing Method

Indexing Description
Method

Unique index | Refers to an index that constrains the uniqueness of an index

attribute or an attribute group. If a table declares unique
constraints or primary keys, GaussDB(DWS) automatically
creates unique indexes (or composite indexes) for columns that
form the primary keys or unique constraints. Currently, only B-
tree can create a unique index in GaussDB(DWS).

Composite Refers to an index that can be defined for multiple attributes of
index a table. Currently, composite indexes can be created only for B-

tree in GaussDB(DWS) and a maximum of 32 columns can
share a composite index.

Partial index Refers to an index that can be created for subsets of a table.

This indexing method contains only tuples that meet condition
expressions.

Expression Refers to an index that is built on a function or an expression
index calculated based on one or more attributes of a table. An

expression index works only when the queried expression is the
same as the created expression.

Run the following command to create an ordinary table:
CREATE TABLE (pcds.customer_address_bak AS TABLE tpcds.customer_address,

Create a common index.

You need to query the following information in the
tpcds.customer_address_bak table:

SELECT ca_address_sk FROM tpcds.customer_address bak WHERE ca_address_sk=14888,
Generally, the database system needs to scan the
tpcds.customer_address_bak table row by row to find all matched tuples. If
the size of the tpcds.customer_address_bak table is large but only a few
(possibly zero or one) of the WHERE conditions are met, the performance of
this sequential scan is low. If the database system uses an index to maintain
the ca_address_sk attribute, the database system only needs to search a few
tree layers for the matched tuples. This greatly improves data query
performance. Furthermore, indexes can improve the update and delete
operation performance in the database.

Run the following command to create an index:
CREATE INDEX /ndex_wr_returned_date_sk ON tpcds.customer_address_bak (ca_address_sk);

Create a unique index.

If a table declares a unique constraint or primary key, GaussDB(DWS)
automatically creates a unique index (possibly a multi-column index) on the
columns that form the primary key or unique constraint. If no unique
constraint or primary key is specified during table creation, you can run the
CREATE INDEX statement to create an index.

CREATE UNIQUE INDEX unique_index ON tpcds.customer._address_bak(ca_address_sk);

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

e (Create a multi-column index.

Assume you need to frequently query records with ca_address_sk being 5050
and ca_street_number smaller than 1000 in the

tpcds.customer_address_bak table. Run the following command:
SELECT ca_address_sk,ca_address_id FROM tpcds.customer_address_bak WHERE ca_address_sk =
5050 AND ca_street_number < 71000,

Run the following command to define a multiple-column index on

ca_address_sk and ca_street_number columns:
CREATE INDEX more_column_index ON
tpcds.customer_address_bak(ca_address sk ,ca_street_number);

e C(Create a partition index.

If you only want to find records whose ca_address_sk is 5050, you can create
a partial index to facilitate your query.

CREATE INDEX part_index ON tpcds.customer_address_bak(ca_address_sk) WHERE ca_address_sk =
5050,

e C(Create an expression index.

Assume you need to frequently query records with ca_street_number smaller

than 1000, run the following command:
SELECT * FROM (pcds.customer_address_bak WHERE trunc(ca_street_number) < 1000,

The following expression index can be created for this query task:
CREATE INDEX para_index ON tpcds.customer_address_bak (trunc(ca_street_number));

Querying an Index

e Run the following command to query all indexes defined by the system and

users:
SELECT RELNAME FROM PG_CLASS WHERE RELKIND='i";

e Run the following command to query information about a specified index:
\di+ /ndex_wr_returned_date_sk

Recreating an Index

e Recreate the index index_wr_returned_date_sk.
REINDEX INDEX /index_wr_returned_date_sk;,

e Recreate all indexes of a table.
REINDEX TABLE tpcds.customer_address_bak;

Deleting an Index

You can use the DROP INDEX statement to delete indexes.
DROP INDEX /ndex_wr_returned_date_sk;

3.7 Creating and Using GaussDB(DWS) Sequences

A sequence is a database object that generates unique integers according to a
certain rule and is usually used to generate primary key values.

You can create a sequence for a column in either of the following methods:

e Set the data type of a column to sequence integer. A sequence will be
automatically created by the database for this column.

e Use CREATE SEQUENCE to create a new sequenc. Use the
nextval('sequence_name') function to increment the sequence and return a

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

new value. Specify the default value of the column as the sequence value
returned by the nextval('sequence_name') function. In this way, this column
can be used as a unique identifier.

Creating a Sequence.

Method 1: Set the data type of a column to a sequence integer. For example:
CREATE TABLE 77
(

id serial,
name text

)

Method 2: Create a sequence and set the initial value of the
nextval('sequence_name') function to the default value of a column. You can
cache a specific number of sequence values to reduce the requests to the GTM,
improving the performance.

1. Create a sequence.
CREATE SEQUENCE seq7 cache 100,
2. Set the initial value of the nextval('sequence_name') function to the default

value of a column.
CREATE TABLE 72

(
id int not null default nextval('seq1’),
name text

)i
(11 NOTE

Methods 1 and 2 are similar except that method 2 specifies cache for the sequence. A
sequence using cache has holes (non-consecutive values, for example, 1, 4, 5) and cannot
keep the order of the values. After a sequence is deleted, its sub-sequences will be deleted
automatically. A sequence shared by multiple columns is not forbidden in a database, but
you are not advised to do that.

Currently, the preceding two methods cannot be used for existing tables.

Modifying a Sequence

The ALTER SEQUENCE statement changes the attributes of an existing sequence,
including the owner, owning column, and maximum value.
e Associate the sequence with a column.

The sequence will be deleted when you delete the column or the table where
the column resides.

ALTER SEQUENCE seq7 OWNED BY 72.ic:
e Modify the maximum value of serial to 300.

ALTER SEQUENCE seq7 MAXVALUE 300;
Deleting a Sequence

Run the DROP SEQUENCE command to delete a sequence. For example, to delete
the sequence named seq1, run the following command:

DROP SEQUENCE seg7,

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database

Developer Guide

Objects

Precautions

Sequence values are generated by the GTM. By default, each request for a
sequence value is sent to the GTM. The GTM calculates the result of the current
value plus the step and then returns the result. As GTM is a globally unique node,
generating default sequence numbers can cause performance issues. For
operations that need frequent sequence number generation, such as bulkload data
import, this is not recommended. For example, the INSERT FROM SELECT
statement has poor performance in the following scenario:

CREATE SEQUENCE newSeqT,;
CREATE TABLE newT7
(

id int not null default nextval('newSeq1’),
name text
);

INSERT INTO newT1(name) SELECT name from TT,

To improve the performance, run the following statements (assume that data of
10,000 rows will be imported from 77 to newT7):

INSERT INTO newT1](id, name) SELECT id,name from TT,
SELECT SETVAL('newSeqT',10000);

(11 NOTE

Rollback is not supported by sequence functions, including nextval() and setval(). The
value of the setval function immediately takes effect on nextval in the current session in
any cases and take effect in other sessions only when no cache is specified for them. If
cache is specified for a session, it takes effect only after all the cached values have been
used. To avoid duplicate values, use setval only when necessary. Do not set it to an existing
sequence value or a cached sequence value.

If BulkLoad is used, set sufficient cache for newSeg7 and do not set Maxvalue or
Minvalue. To improve the performance, database may push down the invocation
of nextval('sequence_name') to DNs. Currently, the concurrent connection
requests that can be processed by the GTM are limited. If there are too many DNs,
a large number of concurrent connection requests will be sent to the GTM. In this
case, you need to limit the concurrent connection of BulkLoad to save the GTM
connection resources. If the target table is a replication table (DISTRIBUTE BY
REPLICATION), pushdown cannot be performed. If the data volume is large, this
will be a disaster for the database. In addition, the database space may be
exhausted. After the import is complete, do VACUUM FULL. Therefore, you are
not advised to use sequences when BulkLoad is used.

After a sequence is created, a single-row table is maintained on each node to
store the sequence definition and value, which is obtained from the last
interaction with the GTM rather than updated in real time. The single-row table
on a node does not update when other nodes request a new value from the GTM
or when the sequence is modified using setval.

3.8 Creating and Managing GaussDB(DWS) Views

Views allow users to save queries. Views are not physically stored on disks. Queries
to a view run as subqueries. A database only stores the definition of a view and
does not store its data. The data is still stored in the original base table. If data in
the base table changes, the data in the view changes accordingly. In this sense, a

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

view is like a window through which users can know their interested data and
data changes in the database. A view is triggered every time it is referenced.

Creating a view

Run the CREATE VIEW command to create a view.
CREATE OR REPLACE VIEW MyView AS SELECT * FROM tpcds.customer WHERE c_customer_sk < 150;

(11 NOTE

The OR REPLACE parameter in this command is optional. It indicates that if the view exists,
the new view will replace the existing view.

View Details

e View the MyView view. Real-time data will be returned.
SELECT * FROM myview;

e Run the following command to query the views in the current user:
SELECT * FROM user_views;

e Run the following command to query all views:
SELECT * FROM dba_views;

e View details about a specified view.

Run the following command to view details about the dba_users view:
\d+ dba_users
View "PG_CATALOG.DBA_USERS"
Column | Type | Modifiers | Storage | Description

+. + + +

USERNAME | CHARACTER VARYING(64) | | extended |

View definition:

SELECT PG_AUTHID.ROLNAME::CHARACTER VARYING(64) AS USERNAME
FROM PG_AUTHID;

Rebuilding a View

Run the ALTER VIEW command to rebuild a view without entering query
statements.

ALTER VIEW myview REBUILD;

Deleting a View

Run the DROP VIEW command to delete a view.
DROP VIEW myview;

DROP VIEW ... The CASCADE command can be used to delete objects that depend
on the view. For example, view A depends on view B. If view B is deleted, view A
will also be deleted. Without the CASCADE option, the DROP VIEW command will
fail.

3.9 Creating and Managing GaussDB(DWS) Scheduled
Tasks

GaussDB(DWS) allows users to create scheduled tasks, which are automatically
executed at specified time points, reducing O&M workload.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database

Developer Guide

Objects

Database complies with the Oracle scheduled task function using the DBMS.JOB
interface, which can be used to create scheduled tasks, execute tasks
automatically, delete a task, and modify task attributes(including task ID, enable/
disable a task, the task triggering time/interval and task contents).

(11 NOTE

e The hybrid data warehouse (standalone) does not support scheduled tasks.

e The execution statements of scheduled tasks are not recorded in the Real-time Top SQL
logs. The statements can be recorded only in versions later than 8.2.1.

e By default, GaussDB(DWS) uses the UTC time. The execution time of the scheduled task
needs to be converted to the time zone of the user.

Periodic Task Management

Step 1

Step 2

Step 3

Step 4

Creates a test table.
CREATE TABLE test(id int, time date);

If the following information is displayed, the table has been created.

CREATE TABLE

Create the customized storage procedure.

CREATE OR REPLACE PROCEDURE PRC_JOB_1()
AS

N_NUM integer :=1;

BEGIN

FOR 1IN 1..1000 LOOP

INSERT INTO test VALUES(I,SYSDATE);

END LOOP;

END;

/

If the following information is displayed, the procedure has been created.

CREATE PROCEDURE

Create a task.

e C(Create a task with unspecified job_id and execute the PRC_JOB_1 storage

procedure every two minutes.
call dbms_job.submit('call public.prc_job_1(); ', sysdate, 'interval "1 minute', :a);
job

(1 row)

e C(Create task with specified job_id.
call dbms_job.isubmit(2,'call public.prc_job_1(); ', sysdate, 'interval "1 minute"');
isubmit

(1 row)
View the created task information about the current user in the USER_JOBS view.

Only the system administrator can access this system view. For details about the
fields, see Table 14-295.

select job,dbname,start_date,last_date,this_date,next_date,broken,status,interval,failures,what from

user_jobs;
job | dbname | start_date | last_date | this_date | next_date |
broken | status | interval | failures | what

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database

Developer Guide

Objects

Step 5

Step 6

Step 7

Step 8

Step 9

il Aar Aar Aar Tr

1| db_demo | 2022-03-25 07:58:01.829436 | 2022-03-25 07:58:03.174817 | 2022-03-25 07:58:01.829436 |
2022-03-25 07:59:01 | n |'s | interval '1 minute' | 0 | call public.prc
_job_10);

2 | db_demo | 2022-03-25 07:58:15.893383 | 2022-03-25 07:58:16.608959 | 2022-03-25 07:58:15.893383 |
2022-03-25 07:59:15 | n |'s | interval '1 minute' | 0 | call public.prc
_job_10);
(2 rows)

Stop a task.

call dbms_job.broken(1,true);
broken

(1 row)

Start a task.

call dbms_job.broken(1,false);
broken

(1 row)

Modify attributes of a task.

e Modify the Next_date parameter information about a task. For example,

change the value of Next_date of Job1 to 1 hour.
call dbms_job.next_date(1, sysdate+1.0/24);
next_date

(1 row)

e Modify the Interval parameter information of a task. For example, change

the value of Interval of Job1 to 1 hour.
call dbms_job.interval(1,'sysdate + 1.0/24');
interval

(1 row)

e Modify the What parameter information of a JOB. For example, change

What of Job1 to insert into public.test values(333, sysdate+5).
call dbms_job.what(1,'insert into public.test values(333, sysdate+5);');
what

(1 row)

e Modify Next_date, Interval, and What parameter information of JOB.
call dbms_job.change(1, 'call public.prc_job_1();', sysdate, 'interval "1 minute'');
change

(1 row)

Delete a job.

call dbms_job.remove(1);
remove

(1 row)

Set job permissions.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

e During the creation of a job, the job is bound to the user and database that
created the job. Accordingly, the user and database are added to dbname and
log_user columns in the pg_job system view, respectively.

e If the current user is a DBA user, system administrator, or the user who
created the job (log_user in pg_job), the user has the permissions to delete
or modify parameter settings of the job using the remove, change, next_data,
what, or interval interface. Otherwise, the system displays a message
indicating that the current user has no permission to perform operations on
the JOB.

e If the current database is the one that created a job, (that is, dbname in
pg_job), you can delete or modify parameter settings of the job using the
remove, change, next_data, what, or interval interface.

e When deleting the database that created a job, (that is, dbname in pg_job),
the system associatively deletes the job records of the database.

e When deleting the user who created a job, (that is, log_user in pg_job), the
system associatively deletes the job records of the user.

--—-End

3.10 Viewing GaussDB(DWS) System Catalogs

In addition to the created tables, a database contains many system catalogs These
system catalogs contain cluster installation information and information about
various queries and processes in GaussDB(DWS). You can collect information
about the database by querying the system catalog.

Querying Database Tables

For example, query the PG_TABLES system catalog for all tables in the public
schema.

SELECT distinct(tablename) FROM pg_tables WHERE SCHEMANAME = 'public’;

Information similar to the following is displayed:

tablename
err_hr_staffs
test
err_hr_staffs_ft3
web_returns_p1
mig_seq_table
films4
(6 rows)

Viewing Database Users

You can run the PG_USER command to view the list of all users in the database,
and view the user ID (USESYSID) and permissions.

SELECT * FROM pg_user;

usename | usesysid | usecreatedb | usesuper | usecatupd | userepl | passwd | valbegin | valuntil | respool
| parent | spacelimit | useconfig | nodegroup | tempspacelimit | spillspacelim

it

+ + +. + + + + +. +
t t t t t t y t

+ + + +. + +
t t t t t t

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database

Developer Guide

Objects
Ruby | 10|t |t | t |t | Rk | | | default_pool | 0]
Idbadmiln | 16.|?»93 | f | | f | f | f | Fadortok | | | default_pool | 0]
lily | | 16691 I|f |f| | f | f | ek | | | default_pool | 0|
Ijack || 706941 | f ||f | f | f | ok | | | default_pool | 0]
I(4 rows)| | |

GaussDB(DWS) uses Ruby to perform routine management and maintenance. You
can add WHERE usesysid > 10 to the SELECT statement to filter queries so that
only specified user names are displayed.

SELECT * FROM pg_user WHERE usesysid > 10;

usename | usesysid | usecreatedb | usesuper | usecatupd | userepl | passwd | valbegin | valuntil |
respool | parent | spacelimit | useconfig | nodegroup | tempspacelimit | spillspacelim

it

+ + + + + + + + +

ils ol Ar Tr ar TR

dbadmin | 16393 | f | f | f | f | ok | | | default_pool | 0]
|lily | | 16691 I|f |f| | f | f | ek | | | default_pool | 0|
|jack || 706941 | f ||f | f | f | ok | | | default_pool | 0]
|(3 rows)| | |

Viewing and Stopping the Running Query Statements

Step 1

Step 2

Step 3

You can view the running query statements in the PG_STAT_ACTIVITY view. Do as
follows:

Set the parameter track_activities to on.
SET track_activities = on;

The database collects the running information about active queries only if the
parameter is set to on.

View the running query statements. Run the following command to view the
database names, users, query statuses, and PIDs of the running query statements:
SELECT datname, usename, state,pid FROM pg_stat_activity;

If the state column is idle, the connection is idle and requires a user to enter a
command.

To identify only active query statements, run the following command:
SELECT datname, usename, state FROM pg_stat_activity WHERE state != 'idle";
To cancel queries that have been running for a long time, use the

PG_TERMINATE_BACKEND function to end sessions based on the thread ID.
SELECT PG_TERMINATE_BACKEND(139834759993104);

If information similar to the following is displayed, the session is successfully
terminated:

PG_TERMINATE_BACKEND

If information similar to the following is displayed, a user has terminated the
current session.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

FATAL: terminating connection due to administrator command
FATAL: terminating connection due to administrator command

(11 NOTE

If the PG_TERMINATE_BACKEND function is used to terminate the backend threads of the
current session, the gsql client will be reconnected automatically rather than be logged out.
The message "The connection to the server was lost." is returned. Attempting reset:
Succeeded.”

FATAL: terminating connection due to administrator command

FATAL: terminating connection due to administrator command
The connection to the server was lost. Attempting reset: Succeeded.

----End

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

Data Warehouse Service
Developer Guide

4 Syntax Compatibility Differences Among Oracle,

Teradata, and MySQL

Syntax Compatibility Differences Among
Oracle, Teradata, and MySQL

In GaussDB(DWS), DBCOMPATIBILITY can be set to TD, Oracle, or MySQL to be
compatible with Teradata, Oracle, or MySQL syntax, respectively. Syntax behavior
varies with the three modes.

The database compatibility model can be specified using the DBCOMPATIBILITY
parameter when creating a database. For details, refer to the CREATE DATABASE

syntax.

CREATE DATABASE ora_compatible_db DBCOMPATIBILITY 'ORA';

Table 4-1 Compatibility differences

Compatibility | Oracle Teradata MySQL

Item

Empty string | Only null is An empty string is An empty string is
available. distinguished from distinguished from

null. null.

Conversion of | Null 0 0

an empty

string to a

number

Automatic Not supported Supported (set GUC | Not supported

truncation of parameter

overlong td_compatible_trun

characters cation to ON)

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

Data Warehouse Service
Developer Guide

4 Syntax Compatibility Differences Among Oracle,
Teradata, and MySQL

concatenation

null object after
combining a
non-null object
with null.

For example,
'‘abc'||null
returns 'abc'.

strict_text_concat_t
d option is added to
the GUC parameter
behavior_compat_o
ptions to be
compatible with the
Teradata behavior.
After the null type is
concatenated, null is
returned.

For example, 'abc'||
null returns null.

Compatibility | Oracle Teradata MySQL
Item
null Returns a non- The Compatible with

MySQL behavior.
After the null type is
concatenated, null is
returned.

For example, 'abc'||
null returns null.

Concatenatio
n of the
char(n) type

Removes spaces
and placeholders
on the right
when the char(n)
type is
concatenated.

For example,
cast('a' as

char(3))||'b'
returns 'ab'.

After the
bpchar_text_withou
t_rtrim option is
added to the GUC
parameter
behavior_compat_o
ptions, when the
char(n) type is
concatenated,
spaces are reserved
and supplemented
to the specified
length n.

Currently, ignoring
spaces at the end of
a string for
comparison is not
supported. If the
concatenated string
contains spaces at
the end, the
comparison is space-
sensitive.

For example,
cast('a' as
char(3))||'b' returns
'ab'.

Removes spaces and
placeholders on the
right.

2)

concat(str1,str

Returns the
concatenation of
all non-null
strings.

Returns the
concatenation of all
non-null strings.

If an input
parameter is null,
null is returned.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

Data Warehouse Service
Developer Guide

4 Syntax Compatibility Differences Among Oracle,
Teradata, and MySQL

Compatibility
Item

Oracle

Teradata

MySQL

left and right
processing of

Returns all
characters except

Returns all
characters except

Returns an empty
string.

negative the first and last | the first and last |n|
values [n| characters. characters.
pad(string Fills up the string | If fill is an empty If fill is an empty

text, length
int [, fill text])

rpad(string
text, length
int [, fill text])

to the specified
length by
appending the
fill characters (a
space by
default). If the
string is already
longer than
length then it is
truncated (on
the right). If fill
is an empty
string or length
is a negative
number, null is
returned.

string and the string
length is less than
the specified length,
the original string is
returned. If length is
a negative number,
an empty string is
returned.

string and the string
length is less than
the specified length,
an empty string is
returned. If length is
a negative number,
null is returned.

substr(str, s[,

nl)

If s is setto O,
the first n
characters are
returned.

If s is set to 0, the
first n characters are
returned.

If sissetto 0, an
empty string is
returned.

substring (str,
s[, n])

substring(str
[from s] [for

nl)

If s is set to O,
the first n - 1
characters are
returned.

If sis <0, the
firsts+n -1
characters are
returned.

Ifnis<0, an
error is reported.

If s is set to O, the
first n - 1 characters
are returned.

If s is <0, the first s
+ n - 1 characters
are returned.

If nis <0, an error is
reported.

If sis setto 0, an
empty string is
returned.
Ifsis<0,n
characters starting
from the last |s|
character are
truncated.

If nis <0, an empty
string is returned.

trim, ltrim,
rtrim,
btrim(string],
characters])

Removes the
longest string
that contains
only the
characters (a
space by default)
in the characters
from a specified
position of the
string.

Removes the longest
string that contains
only the characters
(a space by default)
in the characters
from a specified
position of the
string.

Removes the string
that is equivalent to
characters (a space
by default) from a
specified position of
the string.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

Data Warehouse Service
Developer Guide

4 Syntax Compatibility Differences Among Oracle,

Teradata, and MySQL

Compatibility
Item

Oracle

Teradata

MySQL

log(x)

Returns the
logarithm with
10 as the base.

Returns the
logarithm with 10 as
the base.

Returns the natural
logarithm.

mod(x, 0)

Returns x if the
divisor is 0.

Returns x if the
divisor is 0.

Reports an error if
the divisor is 0.

date data
type

Converts the
date data type to
the timestamp
data type which
stores year,
month, day, hour,
minute, and
second values.

Stores year and
month values.

Stores year and
month values.

to_char(date)

The maximum
value of the
input parameter
can only be the
maximum value
of the timestamp
type. The
maximum value
of the date type
is not supported.
The return value
is of the
timestamp type.

The maximum value
of the input
parameter can only
be the maximum
value of the
timestamp type. The
maximum value of
the date type is not
supported. The
return value is of the
date type in
YYYY/MM/DD
format. (The GUC
parameter
convert_empty_str_
to_null td is
enabled.)

Only the timestamp
type and the date
type support the
maximum input
value. The return
value is of the date

type.

to_date,
to_timestamp,
and
to_number
processing of
empty strings

Returns null.

Returns null. (The
convert_empty_str_
to_null_td
parameter is
enabled.)

to_date and
to_timestamp
returns null. If the
parameter passed to
to_number is an
empty string, 0 is
returned.

Return value
types of
last_day and
next_day

Returns values of
the timestamp

type.

Returns values of
the timestamp type.

Returns values of
the date type.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

74

Data Warehouse Service
Developer Guide

4 Syntax Compatibility Differences Among Oracle,

Teradata, and MySQL

Compatibility | Oracle Teradata MySQL
Item
Return value | Returns values of | Returns values of If the input

type of the timestamp the timestamp type. | parameter is of the
add_months type. date type, the return
value is of the date
type.
If the input
parameter is of the
timestamp type, the
return value is of the
timestamp type.
If the input
parameter is of the
timestamptz type,
the return value is of
the timestamptz
type.
CURRENT_TI Obtains the time | Obtains the time of | Obtains the
ME of the current the current execution time of
CURRENT TI transaction. The transaction. The the current
ME(p) B return value is of | return value is of the | statement. The
the timetz type. | timetz type. return value is of the
time type.
CURRENT_TI Obtains the Obtains the Obtains the
MESTAMP execution time of | execution time of execution time of
CURRENT TI the current the current the current
MESTAM P_(p) statement. The statement. The statement. The
return value is of | return value is of the | return value is of the
the timestamptz | timestamptz type. timestamp type.
type.
LOCALTIME Obtains the time | Obtains the time of | Obtains the

LOCALTIME(p
)

of the current
transaction. The
return value is of
the time type.

the current
transaction. The
return value is of the
time type.

execution time of
the current
statement. The
return value is of the
timestamp type.

LOCALTIMEST
AMP

LOCALTIMEST
AMP(p)

Obtains the time
of the current
transaction. The
return value is of
the timestamp

type.

Obtains the time of
the current
transaction. The
return value is of the
timestamp type.

Obtains the
execution time of
the current
statement. The
return value is of the
timestamp type.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

Data Warehouse Service

Developer Guide

4 Syntax Compatibility Differences Among Oracle,

Teradata, and MySQL

Compatibility | Oracle Teradata MySQL
Item
SYSDATE Obtains the Obtains the Obtains the current
SYSDATE(p) execution time of | execution time of system time. The
the current the current return value is of the
statement. The statement. The timestamp(0) type.
return value is of | return value is of the | This function cannot
the timestamp(0) | timestamp(0) type. be pushed down.
type. You are advised to
use current_date
instead.
now() Obtains the time | Obtains the time of | Obtains the
of the current the current statement execution
transaction. The | transaction. The time. The return
return value is of | return value is of the | value is of the
the timestamptz | timestamptz type. timestamptz type.
type.
Operator A Performs Performs Performs the
exponentiation. exponentiation. exclusive OR
operation.
Expressions Returns the Returns the If an input

GREATEST comparison comparison results parameter is null,
and LEAST results of all of all non-null input | null is returned.
non-null input parameters.
parameters.
Different Reports error. Is compatible with Is compatible with
input behavior of Teradata | behavior of MySQL
parameter and supports type and supports type
types of CASE, conversion between | conversion between
COALESCE, IF, digits and strings. strings and other
and IFNULL For example, if input | types. For example,

expressions

parameters for
COALESCE are of
INT and VARCHAR
types, the
parameters are
resolved as
VARCHAR type.

if input parameters
for COALESCE are of
DATE, INT, and
VARCHAR types, the
parameters are
resolved as
VARCHAR type.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

GaussDB(DWS) Database Security
Management

5.1 GaussDB(DWS) User and Permissions Management

5.1.1 GaussDB(DWS) Database User Types

Without separation of permissions, GaussDB(DWS) supports two types of
database accounts: administrator and common user. For details about user types
and permissions under separation of permissions, see Separation of Duties in
GaussDB(DWS).

e The administrator can manage all common users and databases.

e Common users can connect to and access the database, and perform specific
database operations and execute SQL statements after being authorized.

Users are authenticated when they log in to the GaussDB(DWS) database. A user
can own databases and database objects (such as tables), and grant permissions
of these objects to other users and roles. In addition to system administrators,
users with the CREATEDB attribute can create databases and grant permissions to
these databases.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

Database User Types

Table 5-1 Database user types

e Have the attributes of
specific database
system operations, such
as CREATEDB,
CREATEROLE, and
SYSADMIN.

e Access database
objects.

e Run SQL statements.

User | Description Allowed Operations How to Create
Type
Admi | An If separation of e User dbadmin created
nistra | administrator, | permissions is not during cluster creation
tor also called a enabled, this account has on the GaussDB(DWS)
dbad | system the highest permission in management console is
min administrator, | the system and can a system administrator.
is an account | perform all operations. e Use the CREATE USER
with the The system admini§tr§tor or ALTER USER syntax
SYS_ADMIN has the same permissions to create an
attribute. as the object owner. administrator.
CREATE USER sysadmin WITH
SYSADMIN password
'{Password},
ALTER USER u7 SYSADMIN;
Com | Common user | e Use a tool to connect Run the CREATE USER
mon to the database. syntax to create a
user common user.

CREATE USER 7 PASSWORD
'{Password},

Private user

A user created with the
INDEPENDENT attribute
in non-separation-of-
permissions mode.

Database administrators
can manage (DROP,
ALTER, and TRUNCATE)
objects of private users
but cannot access
(INSERT, DELETE,
SELECT, UPDATE, COPY,
GRANT, REVOKE, and
ALTER OWNER) the
objects before being
authorized.

Use the CREATE USER
syntax to create a private
user.

CREATE USER user_independent

WITH INDEPENDENT IDENTIFIED
BY '{Password};

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

78

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

5.1.2 GaussDB(DWS) Database User Management

You can use CREATE USER and ALTER USER to create and manage database
users.

Creating a User

In the non-separation-of-permission mode, a GaussDB(DWS) user account
can be created and deleted only by a system administrator or a security
administrator with the CREATEROLE attribute.

In separation-of-permission mode, a user account can be created only by a
security administrator.

The CREATE USER statement is used to create a GaussDB (DWS) user. After
creating a user, you can use the user to connect to the database.

Create common user ul and assign the CREATEDB attribute to the user.
CREATE USER 7 WITH CREATEDB PASSWORD ‘{Password};

To create the system administrator mydbadmin, you need to specify the

SYSADMIN parameter.
CREATE USER mydbadmin sysadmin PASSWORD '{Password};

View the created user in the PG_USER view.
SELECT * FROM pg_user;

To view user attributes, query the system catalog PG_AUTHID.
SELECT * FROM pg_authid;

Altering User Attributes

The ALTER USER statement is used to alter user attributes, such as changing user
passwords or permissions.

Example:

Locking a User

Rename user u1l to u2.
ALTER USER u1 RENAME TO u2;

Grant the CREATEROLE permission to user uf:
ALTER USER u1 CREATEROLE;

For details about how to change the user password, see Setting and
Changing a Password.

The ACCOUNT LOCK | ACCOUNT UNLOCK parameter in the statement is used to
lock or unlock a user. A locked user cannot log in to the system. If an account is
stolen or illegally accessed, the administrator can manually lock the account. After
the account is secured, the administrator can manually unlock the account.

Example:

To lock user u1, run the following command:
ALTER USER w7 ACCOUNT LOCK;

To unlock user u1, run the following command:
ALTER USER u7 ACCOUNT UNLOCK;

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Deleting a User

The DROP USER statement is used to delete one or more GaussDB(DWS) users.
An administrator can delete an account that is no longer used. Deleted users
cannot be restored.

e If multiple users are deleted at the same time, separate them with commas

().

e After a user is deleted successfully, all the permissions of the user are also
deleted.

e When an account to be deleted is in the active state, it is deleted after the
session is disconnected.

e When CASCADE is specified in the DROP USER statement, objects such as
tables that depend on the user will be deleted. That is, the objects whose
owner is the user are deleted, and the authorizations of other objects to the
user are also deleted.

Example:

e -- Delete user ul.
DROP USER uT;

e Delete account u2 in a cascading manner.
DROP USER 12 CASCADE;

5.1.3 Creating a Custom Password Policy for GaussDB(DWS)

When creating or modifying a user, you need to specify a password.
GaussDB(DWS) has default password complexity requirements. You can also
define database account password policies.

Default GaussDB(DWS) Password Policy

By default, GaussDB(DWS) verifies the password complexity (that is, the GUC
parameter password_policy is set to 1 by default). The default password policy
requires that the password:

e Contain 8 to 32 characters.

e Contain at least three types of the following characters: uppercase letters,
lowercase letters, digits, and special characters.

e Cannot be the same as the user name or the user name in reverse order, case
insensitive.

e Cannot be the current password or the current password in reverse order.

User-defined Password Policy

The password policy includes the password complexity requirements, password
validity period, password reuse settings, password encryption mode, and password
retry and lock policies. Different policy items are controlled by the corresponding
GUC parameters. For details, see Security and Authentication (postgresql.conf).

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

Table 5-2 User-defined password policies and corresponding GUC parameters

Password Parameter | Description Value Range Defa
Policy ult
Value
in
Gaus
sDB(
DWS
)
Password password_p | Specifies Integer, 0 or 1 1
complexity | olicy whether to e 0 indicates that no
check check the password complexity
password policy is used. Setting
complexity this parameter to 0
when a leads to security risks.
GaussDB(DW You are advised not to
S) account is set this parameter to 0.
created or o
modified. e 1 indicates that the
default password
complexity policy is
used.
Password password_ | Specifies the | An integer ranging from 6 | 8
complexity [min_length | minimum to 999
requirement password
length.
password_ Specifies the An integer ranging from 6 | 32
max_length | maximum to 999
password
length.
password_ Minimum An integer ranging from 0 | O
min_upperc | number of to 999
ase uppercase e 0 means no
letters (A-Z) requirements.
e 1-999 indicates the
minimum number of
uppercase letters in the
password.
password_ Minimum An integer ranging from 0 | O
min_lowerc | number of to 999
ase lowercase e 0 means no
letters (a-z) requirements.
e 1-999 indicates the
minimum number of
lower letters in the
password.
Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

Data Warehouse Service
Developer Guide

5 GaussDB(DWS) Database Security Management

Password Parameter | Description Value Range Defa
Policy ult
Value
in
Gaus
sDB(
DWS
)
password_ Minimum An integer ranging from 0 | O
min_digital | number of to 999
digits (0-9) e 0 means no
requirements.
e 1-999 indicates the
minimum number of
digits in the password.
password_ Minimum An integer ranging from 0 | O
min_special | number of to 999
special e 0 means no
characters requirements.
(Table 5-3 Lo
lists the e 1-999 indicates the
special minimum number of
characters) special characters in
the password.
Password password_ef | Password The value is a floating 90
validity fect_time validity period | point number ranging
When the from 0 to 999. The unit is
number of day.
days in e 0 indicates the validity
advance a period is disabled.
user is . .
notified that e A floating point
the password number from 1 to 999
is about to indicates the validity
expire reaches period of the password.
the value of When the password is
password_no about to expire or has
tify time,_the expired, the system
systém prompts the user to
prompts the change the password.
user to
change the
password
when the user
logs in to the
database.
Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

Data Warehouse Service
Developer Guide

5 GaussDB(DWS) Database Security Management

Password Parameter | Description Value Range Defa
Policy ult
Value
in
Gaus
sDB(
DWS
)
password_n | Specifies for The value is an integer 7
otify_time how many ranging from 0 to 999.
days you are | The unit is day.
reminded of | ¢ g indicates the
the password reminder is disabled.
expiry. .
e A value ranging from 1
to 999 indicates the
number of days prior
to password expiration
that a user will receive
a notification.
Password password_r | Specifies the | A Floating point number 60
reuse euse_time number of ranging from 0 to 3650.
settings days after The unit is day.
which the e 0 indicates that the
password password reuse days
cannot be are not checked.
reused. .
e A positive number
indicates that the new
password cannot be
chosen from passwords
in history that are
newer than the
specified number of
days.
password_r | Specifies the | An integer ranging from 0 | O
euse_max number of to 1000
the most e 0 indicates that the
recent password reuse times
passwords are not checked.
that the new .
password ° A p'osmve number
cannot be indicates that the new
chosen from. password cannot be
chosen from the
specified number of the
most recent passwords.
Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

Data Warehouse Service
Developer Guide

5 GaussDB(DWS) Database Security Management

Password
Policy

Parameter

Description

Value Range

Defa
ult
Value
in
Gaus
sDB(
DWS
)

Encryption
mode

password_e
ncryption_t
ype

Specifies the
password
storage
encryption
mode.

0,1,2

e 0 indicates that
passwords are
encrypted in MD5
mode. The password is
encrypted using MD5.
This mode is not
recommended for
users.

e 1 indicates that
passwords are
encrypted with
SHA-256, which is
compatible with the
MD5 user
authentication method
of the PostgreSQL
client. The password is
stored in ciphertext
encrypted by MD5 and
SHA256.

e 2 indicates that
passwords are
encrypted using
SHA-256. The password
is encrypted using
SHA256.

1

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

84

Data Warehouse Service

Developer Guide 5 GaussDB(DWS) Database Security Management
Password Parameter | Description Value Range Defa
Policy ult
Value
in
Gaus
sDB(
DWS
)

Retry and password_lo | Specifies the | A Floating point number 1

lock ck_time duration for a | ranging from 0 to 365.

locked The unit is day.

account to be | § ¢ jndicates that the
automatically account is not
unlocked. automatically locked if
the password
verification fails.

e A positive number
indicates the duration
after which a locked
account is
automatically unlocked.

NOTE
The integral part of the
value of the
password_lock_time
parameter indicates the
number of days and its
decimal part can be
converted into hours,
minutes, and seconds.

failed_login | If the number | An integer ranging from 0 | 10

_attempts of incorrect to 1000
password e 0 indicates that the
attempts automatic locking
reaches the function does not take
value of effect.

failed_login_a

ttempts, the e A positive number

indicates that an

account is :
locked and account is locked when
will be the number of incorrect

automatically password attempts
unlocked in X reaches the value of

(which failed_login_attempts.

indicates the
value of
password_loc
k_time)
seconds.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

Table 5-3 Special characters

No. Chara | No. Charac | No. Charac | No. Charact
cter ter ter er

1 ~ 9 * 17 | 25 <

2 ! 10 (18 [26

3 @ 11) 19 { 27 >

4 # 12 - 20 } 28 /

5 $ 13 _ 21] 29 ?

6 % 14 = 22 ; - -

7 N 15 + 23 - -

8 & 16 \ 24) - -

Example of User-defined Password Policies

Example 1: Configure the password complexity parameter password_policy.

1. Log in to the GaussDB(DWS) management console.
In the navigation pane on the left, choose Clusters.

In the cluster list, find the target cluster and click the cluster name. The
Cluster Information page is displayed.

4. Click the Parameters tab, change the value of password_policy, and click
Save. The password_policy parameter takes effect immediately after being
modified. You do not need to restart the cluster.

Figure 5-1 password_policy

Synenvonzea @ ParametorName + alc

Example 2: Configure password_effect_time for password validity period.

Log in to the GaussDB(DWS) management console.
In the navigation pane on the left, choose Clusters.

In the cluster list, find the target cluster and click the cluster name. The
Cluster Information page is displayed.

4. Click the Parameters tab, change the value of password_effect_time, and
click Save. The modification of password_effect_time takes effect
immediately. You do not need to restart the cluster.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

86

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

Figure 5-2 password_effect_time

Parameters Modiy Records

Synetmnizec (3) PaaneterNane v Qfc
Parameter Name |= CNValue DN Value Unit Valte Range RestartCluster... Descrption

parifion_men_batch bii % - 1~63505 N o aptnize the nsering o coumr-stoe pertonsd aes i aaiches, data i ca.

passwerd_eflect_fime L] L) Day 0-9%9 No Valdity period ofth account passwo'd. Whenthe passivord i3 aoout to expie or.

passwerd_encryption fype 1 1 B 0-2 No $pecifies fhe enzryafian fype of user passworcs.{ indicates that passworcs ere .

passwerd_lock_ime 1 1 Day 0-365 N Specifies he duration before an account is aulomatically wnlozked.) indicates b

Setting and Changing a Password

Both system administrators and common users need to periodically change
their passwords to prevent the accounts from being stolen.

For example, to change the password of the user user1, connect to the
database as the administrator and run the following command:
ALTER USER user7 IDENTIFIED BY 'newpassword REPLACE 'oldpassword,;

(10 NOTE

The password must meet input requirements, or the execution will fail.

An administrator can change its own password and other accounts'
passwords. With the permission for changing other accounts' passwords, the
administrator can resolve a login failure when a user forgets its password.
To change the password of the user joe, run the following command:

ALTER USER joe IDENTIFIED BY 'password;

(11 NOTE

e System administrators are not allowed to change passwords for each other.

e When a system administrator changes the password of a common user, the original
password is not required.

e However, when a system administrator changes its own password, the original password
is required.

Password verification

Password verification is required when you set the user or role in the current
session. If the entered password is inconsistent with the stored password of
the user, an error is reported.

To set the password of the user joe, run the following command:

SET ROLE joe PASSWORD 'password,;

If the following information is displayed, the role setting has been modified:
SET ROLE

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

5.1.4 GaussDB(DWS) Database Permissions Management

Permission Overview

Permissions are used to control whether a user is allowed to access a database
object (including schemas, tables, functions, and sequences) to perform operations
such as adding, deleting, modifying, querying, and creating a database object.

Permission management in GaussDB(DWS) falls into three categories:

e System permissions

System permissions are also called user attributes, including SYSADMIN,
CREATEDB, CREATEROLE, AUDITADMIN, and LOGIN.

They can be specified only by the CREATE ROLE or ALTER ROLE syntax. The
SYSADMIN permission can be granted and revoked using GRANT ALL
PRIVILEGE and REVOKE ALL PRIVILEGE, respectively. System permissions
cannot be inherited by a user from a role, and cannot be granted using
PUBLIC.

e Object permissions

Permissions on a database object (table, view, column, database, function,
schema, or tablespace) can be granted to a role or user. The GRANT
command can be used to grant permissions to a user or role. These
permissions granted are added to the existing ones.

e Permissions

Grant a role's or user's permissions to one or more roles or users. In this case,
every role or user can be regarded as a set of one or more database
permissions.

If WITH ADMIN OPTION is specified, the member can in turn grant
permissions in the role to others, and revoke permissions in the role as well. If
a role or user granted with certain permissions is changed or revoked, the
permissions inherited from the role or user also change.

A database administrator can grant permissions to and revoke them from any
role or user. Roles having CREATEROLE permission can grant or revoke
membership in any role that is not an administrator.

Hierarchical Permission Management

GaussDB(DWS) implements a hierarchical permission management on databases,
schemas, and data objects.

e Databases cannot communicate with each other and share very few
resources. Their connections and permissions can be isolated. The database
cluster has one or more named databases. Users and roles are shared within
the entire cluster, but their data is not shared. That is, a user can connect to
any database, but after the connection is successful, any user can access only
the database declared in the connection request.

e Schemas share more resources than databases do. User permissions on
schemas and subordinate objects can be flexibly configured using the GRANT
and REVOKE syntax. Each database has one or more schemas. Each schema
contains various types of objects, such as tables, views, and functions. To

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

access an object contained in a specified schema, a user must have the
USAGE permission on the schema.

After an object is created, by default, only the object owner or system
administrator can query, modify, and delete the object. To access a specific
database object, for example, table1, other users must be granted the
CONNECT permission of database, the USAGE permission of schema, and the
SELECT permission of table1. To access an object at the bottom layer, a user
must be granted the permission on the object at the upper layer. To create or
delete a schema, you must have the CREATE permission on its database.

Figure 5-3 Hierarchical Permission Management

Roles

Database

Schema

takle table2 view

The permission management model of GaussDB(DWS) is a typical implementation
of the role-based permission control (RBAC). It manages users, roles, and
permissions through this model.

A role is a set of permissions.

The concept of "user" is equivalent to that of "role". The only difference is
that "user" has the login permission while "role" has the nologin permission.

Roles are assigned with different permissions based on their responsibilities in
the database system. A role is a set of database permissions and represents
the behavior constraints of a database user or a group of data users.

Roles and users can be converted. You can use ALTER to assign the login
permission to a role.

After a role is granted to a user through GRANT, the user will have all the
permissions of the role. It is recommended that roles be used to efficiently
grant permissions. For example, you can create different roles of design,
development, and maintenance personnel, grant the roles to users, and then
grant specific data permissions required by different users. When permissions
are granted or revoked at the role level, these permission changes take effect
for all the members of the role.

In non-separation-of-duty scenarios, a role can be created, modified, and
deleted only by a system administrator or a user with the CREATEROLE
attribute. In separation-of-duty scenarios, a role can be created, modified, and
deleted only by a user with the CREATEROLE attribute.

To view all roles, query the system catalog PG_ROLES.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

Data Warehouse Service
Developer Guide

5 GaussDB(DWS) Database Security Management

SELECT * FROM PG_ROLES;

For how to create, modify, and delete a role, see "CREATE ROLE/ALTER ROLE/

DROP ROLE" in SQL Syntax Reference.

Preset Roles

GaussDB(DWS) provides a group of preset roles. Their names start with gs_role_.

These roles allow access to operations that require high permissions. You can

grant these roles to other users or roles in the database for them to access or use

specific information and functions. Exercise caution and ensure security when

using preset roles.

The following table describes the permissions of preset roles.

Table 5-4 Permissions of preset roles

Role

Permission

gs_role_signal_bac
kend

Invokes functions such as pg_cancel_backend,
pg_terminate_backend, pg_terminate_query,
pg_cancel_query, pgxc_terminate_query, and
pgxc_cancel_query to cancel or terminate sessions,

excluding those of the initial users.

gs_role_read_all_s
tats

Reads the system status view and uses various extension-
related statistics, including information that is usually
visible only to system administrators. For example:

Resource management views:

pgxc_wlm_operator_history
pgxc_wlm_operator_info
pgxc_wlm_operator_statistics
pgxc_wlm_session_info
pgxc_wlm_session_statistics
pgxc_wlm_workload_records
pgxc_workload_sql_count
pgxc_workload_sql_elapse_time
pgxc_workload_transaction

Status information views:

pgxc_stat_activity
pgxc_get_table_skewness
table_distribution
pgxc_total_memory_detail
pgxc_os_run_info
pg_nodes_memory
pgxc_instance_time
pgxc_redo_stat

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

90

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

Role Permission

gs_role_analyze_a | A user with the system-level ANALYZE permission can skip
ny

the schema permission check and perform ANALYZE on all
tables.

gs_role_vacuum_a | A user with the system-level VACUUM permission can skip
ny

the schema permission check and perform ANALYZE on all
tables.

Restrictions on using preset roles:

gs_role_ is the name field dedicated to preset roles in the database. Do not
create users or roles starting with gs_role_ or rename existing users or roles
starting with gs_role_.

Do not perform ALTER or DROP operations on preset roles.

By default, a preset role does not have the LOGIN permission, so there is no
preset login password for the role.

The gsql meta-commands \du and \dg do not display information about
preset roles. However, if PATTERN is specified, information about preset roles
will be displayed.

If the separation of permissions is disabled, the system administrator and
users with the ADMIN OPTION permission of preset roles are allowed to
perform GRANT and REVOKE operations on preset roles. If the separation of
permissions is enabled, the security administrator (with the CREATEROLE
attribute) and users with the ADMIN OPTION permission of preset roles are

allowed to perform GRANT and REVOKE operations on preset roles. Example:
GRANT gs_role_signal_backend TO user1;
REVOKE gs_role_signal_backend FROM userf;

Granting or Revoking Permissions

A user who creates an object is the owner of this object. By default, Separation of
Duties in GaussDB(DWS) is disabled after cluster installation. A database system
administrator has the same permissions as object owners.

After an object is created, only the object owner or system administrator can
query, modify, and delete the object, and grant permissions for the object to other
users through GRANT by default. To enable a user to use an object, the object
owner or administrator can run the GRANT or REVOKE command to grant
permissions to or revoke permissions from the user or role.

Run the GRANT statement to grant permissions.

For example, grant the permission of schema myschema to role u1, and

grant the SELECT permission of table myschema.t1 to role u1.
GRANT USAGE ON SCHEMA myschema TO ufT,;
GRANT SELECT ON TABLE myschema.t1 to uf,

Run the REVOKE command to revoke a permission that has been granted.

For example, revoke all permissions of user u1 on the myschema.t1 table.
REVOKE ALL PRIVILEGES ON myschema.t1 FROM u1;

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

Data Warehouse Service
Developer Guide

5 GaussDB(DWS) Database Security Management

5.1.5 Separation of Duties in GaussDB(DWS)

By default, the system administrator with the SYSADMIN attribute has the highest
permission in the system. To avoid risks caused by centralized permissions, you can
enable the separation of permissions to delegate system administrator permissions
to security administrators and audit administrators.

e After the separation of permissions is enabled, a system administrator does
not have the CREATEROLE attribute (security administrator) and
AUDITADMIN attribute (audit administrator). That is, you do not have the
permissions for creating roles and users and the permissions for viewing and
maintaining database audit logs. For details about the CREATEROLE and
AUDITADMIN attributes, see CREATE ROLE.

e After the separation of permissions is enabled, system administrators have the
permissions only for the objects owned by them.

For how to configure permission separation, see Configuring Separation of
Permissions

For details about permission changes before and after enabling the separation of
permissions, see Table 5-5 and Table 5-6.

Table 5-5 Default user permissions

Object

System
Administrator

Security Audit Common
Administrator | Administrato | User
r

Tables
pace

Can create, modify,
delete, access, and
allocate
tablespaces.

Cannot create, modify, delete, or allocate
tablespaces, with authorization required for
accessing tablespaces.

Table

Has permissions for
all tables.

Has permissions for its own tables, but does not
have permissions for other users' tables.

Index

Can create indexes
on all tables.

Can create indexes on their own tables.

Schem

Has permissions for
all schemas.

Has all permissions for its own schemas, but
does not have permissions for other users'
schemas.

Functio
n

Has permissions for
all functions.

Has permissions for its own functions, has the
call permission for other users' functions in the
public schema, but does not have permissions
for other users' functions in other schemas.

Custo
mized
view

Has permissions for
all views.

Has permissions for its own views, but does not
have permissions for other users' views.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0074.html
https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0074.html

Data Warehouse Service
Developer Guide

5 GaussDB(DWS) Database Security Management

Object

r

System Security Audit Common
Administrator Administrator | Administrato | User

System
catalog
and
system
view

Has permissions for | Has permissions for querying only some system
querying all system | catalogs and views. For details, see
catalogs and views. | GaussDB(DWS) System Catalogs and Views.

Table 5-6 Changes in permissions after the separation of permissions

Objec | System Administrator Securi | Audit | Common
t ty Admi | User
Admi | nistra
nistra | tor
tor
Tables | No change No change
pace
Table | Permissions reduced No change
Has all permissions for its own tables, but
does not have permissions for other
users' tables in their schemas.
Index | Permissions reduced No change
Can create indexes on its own tables.
Sche Permissions reduced No change
ma Has all permissions for its own schemas,
but does not have permissions for other
users' schemas.
Functi | Permissions reduced No change
on Has all permissions for its own functions,
but does not have permissions for other
users' functions in their schemas.
Custo | Permissions reduced No change
mized | yas all permissions for its own views and
VIEW | other users' views in the public schema,
but does not have permissions for other
users' views in their schemas.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

Data Warehouse Service

Developer Guide 5 GaussDB(DWS) Database Security Management
Objec | System Administrator Securi | Audit | Common
t ty Admi | User

Admi | nistra

nistra | tor

tor
Syste | No change No No Has no
m chang | chang | permissio
catalo e e n for
g and viewing
syste any
m system
view catalogs

or views.

5.2 GaussDB(DWS) Sensitive Data Management

5.2.1 GaussDB(DWS) Row-Level Access Control

The row-level access control feature restricts users to access only specific data
rows in the data table, ensuring data read and write security.

Configuring Row-Level Access Control

Row-level access control is used to control the visibility of row-level data in tables.
By predefining filters for data tables, the expressions that meet the specified
condition can be applied to execution plans in the query optimization phase,
which will affect the final execution result. Currently, the SQL statements that can
be affected include SELECT, UPDATE, and DELETE.

e You can use the CREATE ROW LEVEL SECURITY POLICY statement to create
a row-level security policy on a table.

This policy works only for expressions that take effect for specific database
users and SQL operations. When a database user accesses the data table, if a
SQL statement meets the specified row-level access control policies of the
data table, the expressions that meet the specified condition will be combined
by using AND or OR based on the attribute type (PERMISSIVE |
RESTRICTIVE) and applied to the execution plan in the query optimization
phase.

e After a row-level access control policy is created for a table, it takes effect
only when the row-level access control switch (ALTER TABLE..ENABLE ROW
LEVEL SECURITY) of the table is turned on.

Example of Row-Level Access Control

The data of all users is aggregated in table all_data. Implement row-level access
control on this table so that different users can view only their own data.

Step 1 Create users alice, bob, and peter.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

https://support.huaweicloud.com/eu/sqlreference-dws/dws_06_0169.html

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

Step 2

Step 3

Step 4

Step 5

Step 6

CREATE ROLE alice PASSWORD ' ######%#.
CREATE ROLE bob PASSWORD ! #####%2.
CREATE ROLE peter PASSWORD ' #######,

Create table all_data and insert data of different users into it.
CREATE TABLE public.all_data(id int, role varchar(100), data varchar(100));

INSERT INTO all_data VALUES(1, 'alice’, 'alice data');
INSERT INTO all_data VALUES(2, 'bob', 'bob data');
INSERT INTO all_data VALUES(3, 'peter, 'peter data');

Grant the read permission on table all_data to users alice, bob, and peter.
GRANT SELECT ON all_data TO alice, bob, peter;

Run the ALTER TABLE tablename ENABLE ROW LEVEL SECURITY statement to
enable the row-level access control.
ALTER TABLE all_data ENABLE ROW LEVEL SECURITY;

Run the CREATE ROW LEVEL SECURITY POLICY statement to create a row-level
access control policy so that the current user can view only its own data.
CREATE ROW LEVEL SECURITY POLICY all_data_rls ON all_data USING(role = CURRENT_USER);

View information about the all_data table.

\d+ all_data
Table "public.all_data"
Column | Type | Modifiers | Storage | Stats target | Description

+
t

id |integer | | plain | |
role | character varying(100) | | extended | |
data | character varying(100) | | extended | |
Row Level Security Policies:

POLICY "all_data_rls"

USING (((role):name = "current_user"()))

Has OIDs: no
Distribute By: ROUND ROBIN
Location Nodes: ALL DATANODES
Options: orientation=row, compression=no, enable_rowsecurity=true

Switch to user alice and query the data in table all_data. The query result shows
that the row-level access control policy takes effect. User alice can only view its
own data.

SET ROLE alice PASSWORD ' #+#++;

SELECT * FROM all_data;
id | role | data
N | S ER——

1 | alice | alice data

The execution plan of the query is displayed, indicating that access to table
all_data is under the row-level access control.

EXPLAIN(COSTS OFF) SELECT * FROM all_data;
QUERY PLAN

id | operation
1]-> Streaming (type: GATHER)
2| -> Seq Scan on all_data

Predicate Information (identified by plan id)

2 --Seq Scan on all_data
Filter: ((role)::name = 'alice::name)
Notice: This query is influenced by row level security feature

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

Step 7

System available mem: 4833280KB
Query Max mem: 4833280KB
Query estimated mem: 1024KB
(16 rows)

Switch to user peter and query the data in table all_data. The query result shows
that the row-level access control policy takes effect. User peter can only view its

own data.
SET ROLE peter PASSWORD 'vsist:

SELECT * FROM all_data;
id | role | data

3| peter | peter data
(1 row)

The execution plan of the table query is displayed, indicating that the query of
table all_data is under the row-level access control.

EXPLAIN(COSTS OFF) SELECT * FROM all_data;
QUERY PLAN

id | operation
1]-> Streaming (type: GATHER)
2| -> Seq Scan on all_data

Predicate Information (identified by plan id)

2 --Seq Scan on all_data
Filter: ((role)::name = 'peter':name)
Notice: This query is influenced by row level security feature

System available mem: 4833280KB
Query Max mem: 4833280KB
Query estimated mem: 1024KB
(16 rows)

--—-End

5.2.2 GaussDB(DWS) Data Masking

GaussDB(DWS) provides the column-level dynamic data masking (DDM) function.
For sensitive data (such as the ID card number, mobile number, and bank card
number), the DDM function is used to redact the original data to protect data
security and user privacy.

e Creating a data masking policy for a table

GaussDB(DWS) uses the CREATE REDACTION POLICY syntax to create a
data masking policy on a table. (MASK_NONE: Do not perform masking.
MASK_FULL: Mask data into a fixed value. MASK_PARTIAL: Perform partial
masking based on the character type, numeric type, or time type.)

e Modifying the data masking policy of a table

The ALTER REDACTION POLICY syntax is used to modify the expression for
enabling a masking policy, rename a masking policy, and add, modify, or
delete masked columns.

e Deleting the masking policy of a table

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

https://support.huaweicloud.com/eu/sqlreference-dws/dws_06_0168.html
https://support.huaweicloud.com/eu/sqlreference-dws/dws_06_0132.html

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

The DROP REDACTION POLICY syntax is used to delete the masking function
information of a masking policy on all columns of a table.

e Viewing the masking policy and masked columns

Redaction policy information is stored in the system catalog
PG_REDACTION_POLICY, and redacted column information is stored in the
system catalog PG_REDACTION_COLUMN. You can view information about
the redaction policy and redacted columns in the system views
REDACTION_POLICIES and REDACTION_COLUMNS.

(11 NOTE

e Generally, you can run the SELECT statement to view the data redaction result. If a
statement has the following features, sensitive data may be deliberately obtained. In
this case, an error will be reported during statement execution.

e The GROUP BY clause references the Target Entry containing redaction columns as
the target column.

e DISTINCT works on the output redaction columns.
e The statement contains CTE.
e Operations on sets are involved.

e The target columns of a subquery are not redaction columns of the base table, but
the expressions or function calls for redaction columns of the base table.

e You can use COPY TO or GDS to export the redacted data. Due to the irreversibility of
the data redaction, secondary redaction of the data is meaningless.

e Do not set target columns of UPDATE, MERGE INTO, and DELETE statements to
redaction columns.

e The UPSERT statement allows you to insert update data through EXCLUDED. If data in
the base table is updated by referencing redaction columns, the data may be modified
by mistake. As a result, an error will be reported during the execution.

Examples

The following uses the employee table emp, table owner alice, and roles matu
and july as an example to illustrate the data masking process. The emp table
contains private data such as the employee name, mobile number, email address,
bank card number, and salary.

Step 1 After connecting to the database as the administrator, create roles alice, matu,
and july.
CREATE ROLE alice PASSWORD '{Password}';

CREATE ROLE matu PASSWORD '{Password}';
CREATE ROLE july PASSWORD '{Password}';

Step 2 Grant schema permissions on the current database to alice, matu, and july.
GRANT ALL PRIVILEGES on schema public to alice,matu,july;

Step 3 Switch to role alice, create the emp table, and insert three pieces of employee
information.

SET ROLE alice PASSWORD '{Password};

CREATE TABLE emp(id int, name varchar(20), phone_no varchar(11), card_no number, card_string
varchar(19), email text, salary numeric(100, 4), birthday date);

INSERT INTO emp VALUES(1, 'anny', '13420002340', 1234123412341234, '1234-1234-1234-1234,
'smithWu@163.com', 10000.00, '1999-10-02');

INSERT INTO emp VALUES(2, 'bob', '18299023211', 3456345634563456, '3456-3456-3456-3456',
'66allen_mm@qg.com’, 9999.99, '1989-12-12');

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

https://support.huaweicloud.com/eu/sqlreference-dws/dws_06_0199.html

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

Step 4

Step 5

Step 6

Step 7

Step 8

INSERT INTO emp VALUES(3, 'cici', '15512231233', NULL, NULL, 'jonesishere@sina.com', NULL,
'1992-11-06');

alice grants the read permission on the emp table to matu and july.
GRANT SELECT ON emp TO matu, july;

Create the masking policy mask_emp: Only user alice can view all employee
information. User matu and july cannot view employee bank card numbers and
salary data. The card_no column is of the numeric type and all of its data is
masked into 0 by the MASK_FULL function. The card_string column is of the
character type and part of its data is masked by the MASK_PARTIAL function
based on the specified input and output formats. The salary column is of the
numeric type and the MASK_PARTIAL function is used to mask all digits before
the penultimate digit using the number 9.

CREATE REDACTION POLICY mask_emp ON emp WHEN (current_user IN ('matu’, 'july))

ADD COLUMN card_no WITH mask_full(card_no),

ADD COLUMN card_string WITH mask_partial(card_string, 'VVVVFVVVVFVVVVFVVWV','VVVV-VVVV-VVVV-
VWWV','#',1,12),

ADD COLUMN salary WITH mask_partial(salary, '9', 1, length(salary) - 2);

Switch to matu and july and view the employee table emp.

SET ROLE matu PASSWORD '{Password};
SELECT * FROM emp;

id | name | phone_no |card_no| card_string | email | salary | birthday
-t + + + + + +

1| anny | 13420002340 | O | ####-####-####-1234 | smithWu@163.com | 99999.9990 |
1999-10-02 00:00:00

2 | bob | 18299023211 | O | ####-####-####-3456 | 66allen_mm@qgqg.com | 9999.9990 |
1989-12-12 00:00:00

3| cici | 15512231233 | | | jonesishere@sina.com | | 1992-11-06 00:00:00
(3 rows)

SET ROLE july PASSWORD '{Password};
SELECT * FROM emp;

id | name | phone_no |card_no| card_string | email | salary | birthday
-t + + + + + +

1| anny | 13420002340 | O | ####-####-####-1234 | smithWu@163.com | 99999.9990 |
1999-10-02 00:00:00

2 | bob | 18299023211 | O | ####-####-####-3456 | 66allen_mm@qgqg.com | 9999.9990 |
1989-12-12 00:00:00

3| cici | 15512231233 | | | jonesishere@sina.com | | 1992-11-06 00:00:00
(3 rows)

If you want matu to have the permission to view all employee information, but do
not want july to have. In this case, you only need to modify the effective scope of
the policy.

SET ROLE alice PASSWORD '{Password};

ALTER REDACTION POLICY mask_emp ON emp WHEN(current_user = 'july');

Switch to users matu and july and view the emp table again, respectively.

SET ROLE matu PASSWORD '{Password}';
SELECT * FROM emp;
id | name | phone_no | <card_.no | card_string | email | salary | birthday

+ + +. +. + +
t t t t t t

1| anny | 13420002340 | 1234123412341234 | 1234-1234-1234-1234 | smithWu@163.com |
10000.0000 | 1999-10-02 00:00:00

2 | bob | 18299023211 | 3456345634563456 | 3456-3456-3456-3456 | 66allen_mm@qq.com |
9999.9900 | 1989-12-12 00:00:00

3| cici | 15512231233 | | | jonesishere@sina.com | | 1992-11-06 00:00:00
(3 rows)

SET ROLE july PASSWORD '{Password}';
SELECT * FROM emp;
id | name | phone_no |card_no| card_string | email | salary | birthday

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

Step 9

Step 10

Step 11

Step 12

1| anny | 13420002340 | O | ###t#-####-####-1234 | smithWu@163.com | 99999.9990 |
1999-10-02 00:00:00

2 | bob | 18299023211 | O | ####-####-####-3456 | 66allen_mm@qgg.com | 9999.9990 |
1989-12-12 00:00:00

3| cici | 15512231233 | | | jonesishere@sina.com | | 1992-11-06 00:00:00
(3 rows)

The information in the phone_no, email, and birthday columns is private data.
Update redaction policy mask_emp and add three redaction columns.

SET ROLE alice PASSWORD '{Password}';

ALTER REDACTION POLICY mask_emp ON emp ADD COLUMN phone_no WITH mask_partial(phone_no, ',
4);

ALTER REDACTION POLICY mask_emp ON emp ADD COLUMN email WITH mask_partial(email, "*', 1,
position('@' in email));

ALTER REDACTION POLICY mask_emp ON emp ADD COLUMN birthday WITH mask_full(birthday);

Switch to july and view data in the emp table.

SET ROLE july PASSWORD '{Password};
SELECT * FROM emp;
id | name | phone_no |card_no| card_string | email | salary | birthday
-t + + + + + +
1| anny | 134xkkrkeix | O | ####-####-####-1234 | P63 .com | 99999.9990 | 1970-01-01
00:00:00
2 | bob | 182%xkrkiak | O | ###H#-#AR#-HH#H#-3456 | *Hresvigg com | 9999.9990 | 1970-01-01
00:00:00
3| cici | 155%* kx| | | FrrriRrRRRSING com | | 1970-01-01 00:00:00
(3 rows)

Query redaction_policies and redaction_columns to view details about the
current redaction policy mask_emp.
SELECT * FROM redaction_policies;

object_schema | object_owner | object_name | policy_name expression | enable |
policy_description | inherited

+ + +
y t t

+ +
t

public | alice | emp | mask_emp | ("current_user"() = 'july':name) |t |
(1 row)

SELECT object_name, column_name, function_info FROM redaction_columns;

object_name | column_name | function_info

emp | card_no | mask_full(card_no)

emp | card_string | mask_partial(card_string, 'VVVVFVVVVFVVVVFVVVV':text, 'VVVV-VVVV-VVVV-
VVVV':text, '#':text, 1, 12)

emp | email | mask_partial(email, "*"::text, 1, "position" (email, '@":text))

emp | salary | mask_partial(salary, '9":text, 1, (length((salary)::text) - 2))

emp | birthday | mask_full(birthday)

emp | phone_no | mask_partial(phone_no, *"::text, 4)

(6 rows)

Add the salary_info column. To replace the salary information in text format with
**, you can create a user-defined redaction function. In this step, you can use the
PL/pgSQL to define the redaction function mask_regexp_salary. To create a
redaction column, you simply need to customize the function name and
parameter list. For details, see GaussDB(DWS) User-Defined Functions.

SET ROLE alice PASSWORD '{Password};

ALTER TABLE emp ADD COLUMN salary_info TEXT;
UPDATE emp SET salary_info = salary:text;

CREATE FUNCTION mask_regexp_salary(salary_info text) RETURNS text AS

$$
SELECT regexp_replace($1, '[0-9]+',"*','g");

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

Step 13

$$
LANGUAGE SQL
STRICT SHIPPABLE;

ALTER REDACTION POLICY mask_emp ON emp ADD COLUMN salary_info WITH
mask_regexp_salary(salary_info);

SET ROLE july PASSWORD '{Password}';
SELECT id, name, salary_info FROM emp;
id | name | salary_info

1]anny | **

2| bob |**

3| cici |
(3 rows)

If there is no need to set a redaction policy for the emp table, delete redaction
policy mask_emp.

SET ROLE alice PASSWORD '{Password};
DROP REDACTION POLICY mask_emp ON emp;

--—-End

5.2.3 Encrypting and Decrypting GaussDB(DWS) Strings

GaussDB(DWS) supports encryption and decryption of strings using the following
functions:

e gs_encrypt(encryptstr, keystr, cryptotype, cryptomode, hashmethod)

Description: Encrypts an encryptstr string using the keystr key based on the
encryption algorithm specified by cryptotype and cryptomode and the
HMAC algorithm specified by hashmethod, and returns the encrypted string.
cryptotype can be aes128, aes192, aes256, or sm4. cryptomode is cbc.
hashmethod can be sha256, sha384, sha512, or sm3. Currently, the
following types of data can be encrypted: numerals supported in the
database; character type; RAW in binary type; and DATE, TIMESTAMP, and
SMALLDATETIME in date/time type. The keystr length is related to the
encryption algorithm and contains 1 to KeyLen bytes. If cryptotype is aes128
or sm4, KeyLen is 16; if cryptotype is aes192, KeyLen is 24; if cryptotype is
aes256, KeyLen is 32.

Return type: text

Length of the return value: at least 4 x [(maclen + 56)/3] bytes and no more
than 4 x [(Len + maclen + 56)/3] bytes, where Len indicates the string length
(in bytes) before the encryption and maclen indicates the length of the
HMAC value. If hashmethod is sha256 or sm3, maclen is 32; if hashmethod
is sha384, maclen is 48; if hashmethod is sha512, maclen is 64. That is, if
hashmethod is sha256 or sm3, the returned string contains 120 to 4 x [(Len
+ 88)/3] bytes; if hashmethod is sha384, the returned string contains 140 to
4 x [(Len + 104)/3] bytes; if hashmethod is sha512, the returned string
contains 160 to 4 x [(Len + 120)/3] bytes.

Example:

SELECT gs_encrypt('GaussDB(DWS)', 1234, 'aes128', 'cbc', 'sha256');
gs_encrypt

AAAAAAAAAACCF]DcCSbop7D87s0a2nxTFrkE9RIQGK34ypgrOPsFllgggl8tl
+eMDcQYT3p098wPCC7VBfhv7mdBy71VnzdrpOrdMrD6/zTI8wO0v9/s20A==
(1 row)

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

(11 NOTE

e A decryption password is required during the execution of this function. For
security purposes, the gsql tool does not record this function in the execution
history. That is, the execution history of this function cannot be found in gsql by
paging up and down.

e Do not use the ge_encrypt and gs_encrypt_aes128 functions for the same data
table.

gs_decrypt(decryptstr, keystr,cryptotype, cryptomode, hashmethod)

Description: Decrypts a decryptstr string using the keystr key based on the
encryption algorithm specified by cryptotype and cryptomode and the
HMAC algorithm specified by hashmethod, and returns the decrypted string.
The keystr used for decryption must be consistent with that used for
encryption. keystr cannot be empty.

Return type: text

Example:

SELECT gs_decrypt('AAAAAAAAAACCF]DcCSbop7D87s0a2nxTFrkE9RIQGK34ypgrOPsFJIqggl8tl
+eMDcQYT3p098wPCC7VBfhv7mdBy71VnzdrpOrdMrD6/zTI8wOv9/s20A==", 1234, 'aes128', 'cbc’,
'sha256');

gs_decrypt

GaussDB(DWS)
(1 row)

(11 NOTE

e A decryption password is required during the execution of this function. For
security purposes, the gsql tool does not record this function in the execution
history. That is, the execution history of this function cannot be found in gsql by
paging up and down.

e This function works with the gs_encrypt function, and the two functions must use
the same encryption algorithm and HMAC algorithm.
gs_encrypt_aes128(encryptstr,keystr)

Description: Encrypts encryptstr strings using keystr as the key and returns
encrypted strings. The length of keystr ranges from 1 to 16 bytes. Currently,
the following types of data can be encrypted: numerals supported in the
database; character type; RAW in binary type; and DATE, TIMESTAMP, and
SMALLDATETIME in date/time type.

Return type: text

Length of the return value: At least 92 bytes and no more than (4*[Len/
3]+68) bytes, where Len indicates the length of the data before encryption
(unit: byte).

Example:

SELECT gs_encrypt_aes128('DWS','1234");
gs_encrypt_aes128

MGFX/AvA69PvS6wgZMtEAWNAjf/IMM6Eb7plY5miAAKSOcf3m5mKI8iNe1BKDVqTvgZEEOMTycVVE
+tHF69uHYznXyhs=
(1 row)

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

(11 NOTE

e A decryption password is required during the execution of this function. For
security purposes, the gsql tool does not record this function in the execution
history. That is, the execution history of this function cannot be found in gsql by
paging up and down.

e Do not use the ge_encrypt and gs_encrypt_aes128 functions for the same data
table.

gs_decrypt_aes128(decryptstr,keystr)

Description: Decrypts a decryptstr string using the keystr key and returns the
decrypted string. The keystr used for decryption must be consistent with that
used for encryption. keystr cannot be empty.

Return type: text

Example:

SELECT gs_decrypt_aes128('MGFX/AvA69PvS6wgZMtEAwWN(djf/
IMM6b7plY5miAAkSOcf3m5mKI8iNe1BKDVqTvgZEEOMTycVVE+tHF69uHYznXyhs=','"1234");
gs_decrypt_aes128

e A decryption password is required during the execution of this function. For
security purposes, the gsql tool does not record this function in the execution
history. That is, the execution history of this function cannot be found in gsql by
paging up and down.

e This function works with the gs_encrypt_aes128 function.
gs_hash(hashstr, hashmethod)
Description: Obtains the digest string of a hashstr string based on the

algorithm specified by hashmethod. hashmethod can be sha256, sha384,
sha512, or sm3.

Return type: text

Length of the return value: 64 bytes if hashmethod is sha256 or sm3; 96
bytes if hashmethod is sha384; 128 bytes if hashmethod is sha512
Example:

SELECT gs_hash('GaussDB(DWS)', 'sha256');
gs_hash

e59069daab541ae20af7c747662702c731b26b8abd7a788f4d15611aa0db608efdbb5587ba90789a983f8
5dd51766609
(1 row)

md5(string)
Description: Encrypts a string in MD5 mode and returns a value in
hexadecimal form.

(10 NOTE

MDS5 is insecure and is not recommended.
Return type: text

Example:

SELECT md5('ABC');
md5

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

902fbdd2b1df0c4f70b4a5d23525e932
(1 row)

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

GaussDB(DWS) Data Query

6.1 GaussDB(DWS) Single-Table Query

Example table:

CREATE TABLE newproducts

(

product_id INTEGER NOT NULL,

product_name VARCHAR2(60),

category VARCHAR2(60),

quantity INTEGER

)

WITH (ORIENTATION = COLUMN) DISTRIBUTE BY HASH (product_id);

INSERT INTO newproducts VALUES (1502, 'earphones', 'electronics',150);
INSERT INTO newproducts VALUES (1601, 'telescope’, 'toys',80);

INSERT INTO newproducts VALUES (1666, 'Frisbee', 'toys',244);

INSERT INTO newproducts VALUES (1700, 'interface', 'books',100);
INSERT INTO newproducts VALUES (2344, 'milklotion’, 'skin care',320);
INSERT INTO newproducts VALUES (3577, 'dumbbell’, 'sports',550);
INSERT INTO newproducts VALUES (1210, 'necklace’, 'jewels', 200);

Simple Queries
Run the SELECT... FROM... statement to obtain the result from the database.

SELECT category FROM newproducts;
category

electr

sports

jewels

toys

books

skin care

toys

(7 rows)

Filtering Test Results
Run the WHERE statement to filter the query result and find the queried part.

SELECT * FROM newproducts WHERE category="toys';
product_id | product_name | category | quantity

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

Data Warehouse Service

Developer Guide 6 GaussDB(DWS) Data Query
1601 | telescope | toys | 80
1666 | Frisbee | toys | 244
(2 rows)

Sorting Results

Use the ORDER BY statement to sort query results.

SELECT product_id,product_name,category,quantity FROM newproducts ORDER BY quantity DESC;
product_id | product_name | category | quantity

+ + +

3577 | dumbbell | sports | 550

2344 | milklotion | skin care | 320
1666 | Frisbee | toys | 244
1210 | necklace | jewels | 200
1502 | earphones | electronics | 150
1700 | interface | books | 100
1601 | telescope | toys | 80

(7 rows)

Limiting the Number of Query Results

If you want the query to return only part of the result, you can use the LIMIT
statement to limit the number of records returned in the query result.

SELECT product_id,product_name,category,quantity FROM newproducts ORDER BY quantity DESC limit 5;
product_id | product_name | category | quantity

+ + +

3577 | dumbbell | sports | 550

2344 | milklotion | skin care | 320

1666 | Frisbee | toys | 244

1210 | necklace | jewels | 200

1502 | earphones | electronics | 150
(5 rows)

Aggregated Query

If you want query data comprehensively, you can use the GROUP BY statement
and aggregate functions to construct an aggregated query.

SELECT category, string_agg(quantity,',') FROM newproducts group by category;
category | string_agg

toys | 80,244
books | 100
sports | 550
jewels | 200

skin care | 320
electronics | 150

6.2 GaussDB(DWS) Multi-Table Join Query

Join Types

Multiple joins are necessary for accomplishing complex queries. Joins are classified
into inner joins and outer joins. Each type of joins have their subtypes.

e Inner join: inner join, cross join, and natural join.
e OQuter join: left outer join, right outer join, and full join.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

Data Warehouse Service

Developer Guide 6 GaussDB(DWS) Data Query

To better illustrate the differences between these joins, the following provides

some examples.

Create the sample tables student and math_score and insert data into them. Set
enable_fast_query_shipping to off (on by default), that is, the query optimizer
uses the distributed framework. Set explain_perf_mode to pretty (default value)

to specify the EXPLAIN display format.

CREATE TABLE student(
id INTEGER,
name varchar(50)

)i

CREATE TABLE math_score(
id INTEGER,

score INTEGER

)

INSERT INTO student VALUES(1, 'Tom');
INSERT INTO student VALUES(2, 'Lily');

INSERT INTO student VALUES(3, 'Tina");
INSERT INTO student VALUES(4, 'Perry');

INSERT INTO math_score VALUES(1, 80);
INSERT INTO math_score VALUES(2, 75);
INSERT INTO math_score VALUES(4, 95);
INSERT INTO math_score VALUES(6, NULL);

SET enable_fast_query_shipping = off;
SET explain_perf_mode = pretty;

Inner Join
e Inner join
Syntax:

left_table [INNER] JOIN right_table [ON join_condition | USING (join_column)]

Description: Rows that meet join_condition in both the left and right tables
are joined and output. Tuples that do not meet join_condition are not output.

Example 1: Query students' math scores.

SELECT s.id, s.name, ms.score FROM student s JOIN math_score ms on s.id = ms.id;

id | name | score

N —— I .
2|Lily | 75
1] Tom | 80
4| Perry| 95
(3 rows)

EXPLAIN SELECT s.id, s.name, ms.score FROM student s JOIN math_score ms on s.id = ms.id;

QUERY PLAN
id | operation | E-rows | E-memory | E-width | E-costs
1] -> Streaming (type: GATHER) | 4] | 13119.47
2| -> Hash Join (3,4) | 4[1MB | 13]1147
3] -> Seq Scan on math_scorems | 30| 1MB | 8110.10
4| -> Hash | 12|16MB | 9]1.28
5] -> Streaming(type: BROADCAST) | 12| 2MB | 91.28
6 | -> Seq Scan on students | 4| 1MB | 91.01

Predicate Information (identified by plan id)

2 --Hash Join (3,4)
Hash Cond: (ms.id = s.id)

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

106

Data Warehouse Service

Developer Guide

6 GaussDB(DWS) Data Query

System available mem: 1761280KB
Query Max mem: 1761280KB
Query estimated mem: 4400KB
(19 rows)

Cross join

Syntax:

left_table CROSS JOIN right_table

Description: Each row in the left table is joined with each row in the right
table. The number of final rows is the product of the number of rows on both
sides. The product is also called Cartesian product.

Example 2: Cross join of student tables and math score tables.

SELECT s.id, s.name, ms.score FROM student s CROSS JOIN math_score ms;
id | name | score

N S |,
3| Tina | 80
2| Lily | 80
1|Tom | 80
4| Perry| 80
3| Tina |
2| Lily |
1| Tom |
4 | Perry |
3| Tina | 95
2| Lily | 95
1|Tom | 95
4| Perry| 95
2| Lly | 75
3| Tina | 75
1|Tom | 75
4| Perry| 75

(16 rows)

EXPLAIN SELECT s.id, s.name, ms.score FROM student s CROSS JOIN math_score ms;

QUERY PLAN
id | operation | E-rows | E-memory | E-width | E-costs
-+ + + + +
1| -> Streaming (type: GATHER) | 120 | 13119.89
2| -> Nested Loop (3,4) | 120]1MB | 13111.89
3] -> Seq Scan on math_scorems | 30| 1MB | 4110.10
4| -> Materialize | 12]16MB | 911.30
5] -> Streaming(type: BROADCAST) | 12| 2MB | 911.28
6 | -> Seq Scan on students | 4|1MB | 91.01

System available mem: 1761280KB
Query Max mem: 1761280KB
Query estimated mem: 4144KB
(14 rows)

Natural join

Syntax:

left_table NATURAL JOIN right_table

Description: Columns with the same name in left table and right table are

joined by equi-join, and the columns with the same name are merged into
one column.

Example 3: Natural join between the student table and the math_score table.
The columns with the same name in the two tables are the id columns,
therefore equivalent join is performed based on the id columns.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

Data Warehouse Service

Developer Guide

6 GaussDB(DWS) Data Query

Outer Join

SELECT * FROM student s NATURAL JOIN math_score ms;
id | name | score

S I
1] Tom | 80
4| Perry| 95
2|Lily | 75

(3 rows)

EXPLAIN SELECT * FROM student s NATURAL JOIN math_score ms;

QUERY PLAN
id | operation | E-rows | E-memory | E-width | E-costs
1]-> Streaming (type: GATHER) | 4] | 131947
2| -> Hash Join (3,4) | 4]mMB | 131147
3] -> Seq Scan on math_scorems | 30| 1MB | 8110.10
4| -> Hash | 12]16MB | 911.28
5] -> Streaming(type: BROADCAST) | 12| 2MB | 911.28
6 | -> Seq Scan on student s | 4] 1MB | 911.01

Predicate Information (identified by plan id)

2 --Hash Join (3,4)
Hash Cond: (ms.id = s.id)

System available mem: 1761280KB
Query Max mem: 1761280KB
Query estimated mem: 4400KB
(19 rows)

Left Join

Syntax:

left_table LEFT [OUTER] JOIN right_table [ON join_condition | USING (join_column)]
Description: The result set of a left outer join includes all rows of left table,
not only the joined rows. If a row in the left table does not match any row in
right table, the row will be NULL in the result set.

Example 4: Perform left join on the student table and math_score table. The
right table data corresponding to the row where ID is 3 in the student table is
filled with NULL in the result set.

SELECT s.id, s.name, ms.score FROM student s LEFT JOIN math_score ms on (s.id = ms.id);
id | name | score

N —— I .
3| Tina |
1] Tom | 80
2|Lily | 75
4| Perry| 95
(4 rows)

EXPLAIN SELECT s.id, s.name, ms.score FROM student s LEFT JOIN math_score ms on (s.id = ms.id);

QUERY PLAN
id | operation | E-rows | E-memory | E-width | E-costs
1]-> Streaming (type: GATHER) | 4] | 13110.26
2| -> Hash Left Join (3, 5) | 4]1MB | 13]2.26
3] -> Streaming(type: REDISTRIBUTE) | 4 |2MB | 9| 1.11
4| -> Seq Scan on student s | 4]1MB | 911.01
5| -> Hash | 4]16MB | 8]1.11
6 | -> Streaming(type: REDISTRIBUTE) | 4| 2MB | 8| 1.1
7| -> Seq Scan on math_scorems | 4| 1MB | 81.01

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

Data Warehouse Service

Developer Guide

6 GaussDB(DWS) Data Query

Predicate Information (identified by plan id)

2 --Hash Left Join (3, 5)
Hash Cond: (s.id = ms.id)

System available mem: 901120KB

Query Max mem: 901120KB

Query estimated mem: 7520KB

(20 rows)

Right join

Syntax:

left_table RIGHT [OUTER] JOIN right_table [ON join_condition | USING (join_column)]

Description: Contrary to the left join, the result set of a right join includes all
rows of the right table, not just the joined rows. If a row in the right table
does not match any row in right table, the row will be NULL in the result set.

Example 5: Perform right join on the student table and math_score table.
The right table data corresponding to the row where ID is 6 in the
math_score table is filled with NULL in the result set.

SELECT ms.id, s.name, ms.score FROM student s RIGHT JOIN math_score ms on (s.id = ms.id);
id | name | score

- oo Ao
1|Tom | 80
6] |
4| Perry| 95
2| Lly | 75
EXPLAIN SELECT ms.id, s.name, ms.score FROM student s RIGHT JOIN math_score ms on (s.id = ms.id);
QUERY PLAN
id | operation | E-rows | E-memory | E-width | E-costs
-t + + + +
1| -> Streaming (type: GATHER) | 30| | 1311947
2| -> Hash Left Join (3, 4) | 30| 1MB | 13111.47
3] -> Seq Scan on math_scorems | 30| 1MB | 8110.10
4| -> Hash | 12|16MB | 911.28
5] -> Streaming(type: BROADCAST) | 12| 2MB | 911.28
6| -> Seq Scan on student's | 4] 1MB | 9]1.01

Predicate Information (identified by plan id)

2 --Hash Left Join (3, 4)
Hash Cond: (ms.id = s.id)

System available mem: 1761280KB
Query Max mem: 1761280KB
Query estimated mem: 5424KB
(19 rows)

In a right join, Left is displayed in the join operator. This is because a right
join is actually the process replacing the left table with the right table then
performing left join.

Full join

Syntax:

left_table FULL [OUTER] JOIN right_table [ON join_condition | USING (join_column)]
Description: A full join is a combination of a left outer join and a right outer

join. The result set of a full outer join includes all rows of the left table and
the right table, not just the joined rows. If a row in the left table does not

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

match any row in the right table, the row will be NULL in the result set. If a
row in the right table does not match any row in right table, the row will be
NULL in the result set.

Example 6: Perform full outer join on the student table and math_score
table. The right table data corresponding to the row where ID is 3 is filled
with NULL in the result set. The left table data corresponding to the row
where ID is 6 is filled with NULL in the result set.

SELECT s.id, s.name, ms.id, ms.score FROM student s FULL JOIN math_score ms ON (s.id = ms.id);
id | name | id | score
oo e e

2Ly | 2] 75

4| Perry| 4| 95

1|Tom | 1| 80

3| Tina | |

| 16l

(5 rows)

EXPLAIN SELECT s.id, s.name, ms.id, ms.score FROM student s FULL JOIN math_score ms ON (s.id =

ms.id);
QUERY PLAN
id | operation | E-rows | E-memory | E-width | E-costs
-t + + + +
1]-> Streaming (type: GATHER) | 30] | 17| 20.24
2| -> Hash Full Join (3, 5) | 30]1MB | 17112.24
3 -> Streaming(type: REDISTRIBUTE) | 30|2MB | 8111.06
4] -> Seq Scan on math_scorems | 30| 1MB | 8110.10
5] -> Hash | 4]16MB | 9]1.11
6 | -> Streaming(type: REDISTRIBUTE) | 4 |2MB | 911.11
7| -> Seq Scan on student s | 4] 1MB | 911.01

Predicate Information (identified by plan id)

2 --Hash Full Join (3, 5)
Hash Cond: (ms.id = s.id)

System available mem: 1761280KB
Query Max mem: 1761280KB
Query estimated mem: 6496KB
(20 rows)

Differences Between the ON Condition and the WHERE Condition in Multi-
Table Query

According to the preceding join syntax, except natural join and cross join, the ON
condition (USING is converted to the ON condition during query parsing) is used
on the join result of both the two tables. Generally, the WHERE condition is used
in the query statement to restrict the query result. The ON join condition and
WHERE filter condition do not contain conditions that can be pushed down to
tables. The differences between ON and WHERE are as follows:

e The ON condition is used for joining two tables.
e WHERE is used to filter the result set.

To sum up, the ON condition is used when two tables are joined. After the join
result set of two tables is generated, the WHERE condition is used.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

Data Warehouse Service

Developer Guide

6 GaussDB(DWS) Data Query

6.3 GaussDB(DWS) Subquery Expressions

A subquery allows you to nest one query within another, enabling more complex
data query and analysis.

Subquery Expressions

EXISTS/NOT EXISTS

Before the main query runs, the subquery runs and its result determines if the
main query continues. EXISTS returns true if the subquery returns at least one
row. NOT EXISTS returns true if the subquery returns no rows.

—{ expression ‘ EXISTS }—»{ (subquery) }—-

- NOTEXISTS |
Syntax:
WHERE column_name EXISTS/NOT EXISTS (subquery)
IN/NOT IN

IN and NOT IN are operators that check if a value is in a set of values. IN
returns true when the outer query row matches a subquery row. NOT IN
returns true when the outer query row does not match any subquery row.

4‘ expression }—' IN (subguery) }—'

» NOT IN
Syntax:
WHERE column_name IN/NOT IN (subquery)
ANY/SOME

ANY indicates that any value in a subquery can match a value in an outer
query. SOME is the same as ANY, but the syntax is different.

The subquery can return only one column. The expression on the left uses
operators (=, <>, <, <=, >, >=) to compare the value with each subquery row.
The result must be a Boolean value. The result of ANY is true if any true
result is obtained. The result is false if no true result is found (including the
case where the subquery returns no rows).

—{ expression }—»‘ operator % - (subquery)

Jsoue |

Syntax:

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

Data Warehouse Service

Developer Guide

6 GaussDB(DWS) Data Query

Example

WHERE column_name operator ANY/SOME (subquery)

e ALL

The subquery on the right must return only one field. The expression on the
left uses operators (=, <>, <, <=, >, >=) to compare the value with each
subquery row. The result must be a Boolean value. The result of ALL is true if
all rows yield true (including the case where the subquery returns no rows).
The result is false if any false result is found.

expression operator ALL (subquery)
Syntax:
WHERE column_name operator ALL (subquery)
Table 6-1 ALL conditions
Condition Description

column_name > ALL(...)

The column_name value must be
greater than the maximum value of
a set to be true.

column_name >= ALL(...)

The column_name value must be
greater than or equal to the
maximum value of a set to be true.

column_name < ALL(...)

The column_name value must be
smaller than the minimum value of
a set to be true.

column_name <= ALL(...)

The column_name value must be
smaller than or equal to the
minimum value of a set to be true.

column_name <> ALL(...)

The column_name value cannot be
equal to any value in a set to be
true.

column_name = ALL(...)

The column_name value must be
equal to any value in a set to be
true.

Create the course table and insert data into the table.

CREATE TABLE course(cid VARCHAR(10) COMMENT 'No.course',cname VARCHAR(10) COMMENT 'course

name',teid VARCHAR(10) COMMENT 'No.teacher');

INSERT INTO course VALUES('01', 'coursel', '02");
INSERT INTO course VALUES('02', 'course2', '01");
INSERT INTO course VALUES('03', 'course3', '03");

Create the teacher table and insert data into the table.

CREATE TABLE teacher(teid VARCHAR(10) COMMENT ' Teacher /D ,tname VARCHAR(10)

COMMENT!' Teacher name');

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

Data Warehouse Service

Developer Guide

6 GaussDB(DWS) Data Query

INSERT INTO teacher VALUES('01', 'teacher1');
INSERT INTO teacher VALUES('02', 'teacher2');
INSERT INTO teacher VALUES('03', 'teacher3');
INSERT INTO teacher VALUES('04', 'teacher4');

e EXISTS/NOT EXISTS example

Query the teacher records in the course table.
SELECT * FROM teacher WHERE EXISTS (SELECT * FROM course WHERE course.teid = teacher.teid);

| teacher2

| teacherl
| teacher3
(2 rows)

Query the teacher records that are not in the course table.

SELECT * FROM teacher WHERE NOT EXISTS (SELECT * FROM course WHERE course.teid = teacher.teid);

teid | tname

| teacher4
(1 row)

e IN/NOT IN example

Query the course table for teacher information based on the teacher ID.

SELECT * FROM course WHERE teid IN (SELECT teid FROM teacher);

| coursel | 82
| course3 | B3
| coursez | 81

Query the information about teachers who are not in the course table.

SELECT * FROM teacher WHERE teid NOT IN (SELECT teid FROM course);

| teacher4
(1 row)

e ANY/SOME example

Compare the main query fields on the left with the subquery fields on the right to
obtain the required result set.

SELECT * FROM course WHERE teid < ANY (SELECT teid FROM teacher where teid<>'04");

or

SELECT * FROM course WHERE teid < some (SELECT teid FROM teacher where teid<>'04");

cid | cname | tead

| coursel | @2

| coursez | 81
(2 rows)

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 113

Data Warehouse Service

Developer Guide 6 GaussDB(DWS) Data Query

e ALL example

The value in the teid column must be smaller than the minimum value in the set

to be true.

SELECT * FROM course WHERE teid < ALL(SELECT teid FROM teacher WHERE teid<>'01");

| coursez | 81
(1 row)

Important Notes

e Duplicate subquery statements are not allowed in an SQL statement.

e Avoid scalar sub-queries whenever possible. A scalar subquery is a subquery

whose result is one value and whose condition expression uses an equal

operator.

e Do not use subqueries in the SELECT target columns. Otherwise, the plan
cannot be pushed down, affecting the execution performance.

e It is recommended that the nested subqueries cannot exceed two layers.

Subqueries cause temporary table overhead. Therefore, complex queries must

be optimized based on service logic.

A subquery can be nested in the SELECT statement to implement a more complex
query. A subquery can also use the results of other queries in the WHERE clause to

better filter data. However, subqueries may cause query performance problems
and make code difficult to read and understand. Therefore, when using SQL
subqueries in databases such as GaussDB, use them based on the site

requirements.

6.4 GaussDB(DWS) WITH Expressions

The WITH expression is used to define auxiliary statements used in large queries.

These auxiliary statements are usually called common table expressions (CTE),

which can be understood as a named subquery. The subquery can be referenced

multiple times by its name in the quey.

An auxiliary statement may use SELECT, INSERT, UPDATE, or DELETE. The WITH
clause can be attached to a main statement, which can be a SELECT, INSERT, or

DELETE statement.

SELECT in WITH
This section describes the usage of SELECT in a WITH clause.
Syntax
[WITH [RECURSIVE] with_query [, ..]] SELECT ...
The syntax of with_query is as follows:

with_query_name [(column_name [, ..])]
AS [[NOT] MATERIALIZED] ({select | values | insert | update | delete})

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

114

Data Warehouse Service

Developer Guide

6 GaussDB(DWS) Data Query

/A\ CAUTION

e |f you use MATERIALIZED, the subquery runs once and its result set is saved. If
you use NOT MATERIALIZED, the subquery is replaced with its reference in the
main query.

e The SQL statement specified by the AS statement of a CTE must be a
statement that can return query results. It can be a common SELECT query
statement or other data modification statements such as INSERT, UPDATE,
DELETE, and VALUES. When using a data modification statement, you need to
use the RETURNING clause to return tuples. Example:

WITH s AS (INSERT INTO t VALUES(1) RETURNING a) SELECT * FROM s;

e A WITH expression indicates the CTE definition in a SQL statement block.
Multiple CTEs can be defined at the same time. You can specify column names
for each CTE or use the aliases of the columns in the query output. Example:
WITH s1(a, b) AS (SELECT x, y FROM t1), s2 AS (SELECT x, y FROM t2) SELECT * FROM s1 JOIN s2 ON
sl.a=s2.x;

This statement defines two CTEs: s1 and s2. s1 specifies the column names a
and b, and s2 does not specify the column names. Therefore, the column
names are the output column names x and y.

e Each CTE can be referenced zero, one, or more times in the main query.

e CTEs with the same name cannot exist in the same statement block. If CTEs
with the same name exist in different statement blocks, the CTE in the nearest
statement block is referenced.

e An SQL statement may contain multiple SQL statement blocks. Each statement
block can contain a WITH expression. The CTE in each WITH expression can be
referenced in the current statement block, subsequent CTEs of the current
statement block, and sub-layer statement blocks, however, it cannot be
referenced in the parent statement block. The definition of each CTE is also a
statement block. Therefore, a WITH expression can also be defined in the
statement block.

The purpose of SELECT in WITH is to break down complex queries into simple
parts. Example:

WITH regional_sales AS (
SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region
), top_regions AS (
SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)

)
SELECT region,
product,
SUM(quantity) AS product_units,
SUM(amount) AS product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

The WITH clause defines two auxiliary statements: regional_sales and
top_regions. The output of regional_sales is used in top_regions, and the output
of top_regions is used in the main SELECT query. This example can be written
without WITH. In that case, it must be written with a two-layer nested sub-
SELECT statement, making the query longer and difficult to maintain.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 115

Data Warehouse Service

Developer Guide

6 GaussDB(DWS) Data Query

Recursive WITH Query

By declaring the keyword RECURSIVE, a WITH query can reference its own output.
The common form of a recursive WITH query is as follows:
non_recursive_term UNION [ALL] recursive_term

UNION performs deduplication when merging sets, while UNION ALLL directly
merges result sets without deduplication. Only recursive items can contain
references to the output of the query itself.

When using recursive WITH, ensure that the recursive item of the query does not
return a tuple. Otherwise, the query will loop infinitely.

The table tree is used to store information about all nodes in the following figure.

The table definition statement is as follows:

CREATE TABLE tree(id INT, parentid INT);

The data in the table is as follows:

INSERT INTO tree VALUES(1,0),(2,1),(3,1),(4,2),(5,2),(6,3),(7,3),(8,4),(9,4),(10,6),(11,6),(12,10);

SELECT * FROM tree;

id | parentid
N
1 0
2] 1
3] 1
4| 2
5] 2
6| 3

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 116

Data Warehouse Service

Developer Guide 6 GaussDB(DWS) Data Query

7| 3

8| 4

9| 4

10| 6

1| 6

12| 10

(12 rows)

You can run the following WITH RECURSIVE statement to return the nodes and
hierarchy information of the entire tree starting from node 1 at the top layer:

WITH RECURSIVE nodeset AS
(

-- recursive initializing query

SELECT id, parentid, 1 AS level FROM tree

WHERE id =1

UNION ALL

-- recursive join query

SELECT tree.id, tree.parentid, level + 1 FROM tree, nodeset
WHERE tree.parentid = nodeset.id

)
SELECT * FROM nodeset ORDER BY id;

In the preceding query, a typical WITH RECURSIVE expression contains the CTE of
at least one recursive query. The CTE is defined as a UNION ALL set operation.
The first branch is the recursive start query, and the second branch is the recursive
join query, the first part is referenced for continuous recursive join. When this
statement is executed, the recursive start query is executed once, and the join
query is executed several times. The results are added to the start query result set
until the results of some join queries are empty.

The command output is as follows:

id | parentid | level

oo o
1] o] 1
2| 1 2
3] 1 2
4| 2] 3
5] 2] 3
6 | 3] 3
7| 3] 3
8| 4| 4
9| 4| 4
10 | 6| 4
11| 6| 4
12| 10| 5
(12 rows)

According to the returned result, the start query result contains the result set
whose level is 1. The join query is executed for five times. The result sets whose
levels are 2, 3, 4, and 5 are output for the first four times. During the fifth
execution, there is no record whose parentid is the same as the output result set
ID, that is, there is no redundant child node. Therefore, the query ends.

(1 NOTE

GaussDB(DWS) supports distributed execution of WITH RECURSIVE expressions. WITH
RECURSIVE involves cyclic calculation. Therefore, GaussDB(DWS) introduces the
max_recursive_times parameter to control the maximum number of cycles of WITH
RECURSIVE. The default value is 200. If the number of cycles exceeds 200, an error is
reported.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 117

Data Warehouse Service

Developer Guide

6 GaussDB(DWS) Data Query

Data Modification Statements in WITH

Use the INSERT, UPDATE, and DELETE commands in the WITH clause. This allows
the user to perform multiple different operations in the same query. The following
is an example:

WITH moved_tree AS (
DELETE FROM tree
WHERE parentid = 4
RETURNING *)

INSERT INTO tree_log

SELECT * FROM moved_tree;

The preceding query example actually moves rows from tree to tree_log. The
DELETE command in the WITH clause deletes the specified rows from tree,
returns their contents through the RETURNING clause, and then the main query
reads the output and inserts it into tree_log.

To retrieve the modified content instead of the target table, the data modification
statement in the WITH clause should include the RETURNING clause. This clause
creates a temporary table that can be accessed by the rest of the query. If a data
modification statement in the WITH statement lacks a RETURNING clause, it
cannot form a temporary table and cannot be referenced in the remaining queries.

If the RECURSIVE keyword is declare, recursive self-reference is not allowed in
data modification statements. In some cases, you can bypass this restriction by
referencing the output of recursive the WITH statement. For example:

WITH RECURSIVE included_parts(sub_part, part) AS (
SELECT sub_part, part FROM parts WHERE part = 'our_product'
UNION ALL
SELECT p.sub_part, p.part
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part

)
DELETE FROM parts
WHERE part IN (SELECT part FROM included_parts);

This query will remove all direct or indirect subparts of a product.

The substatements in the WITH clause are executed at the same time as the main
query. Therefore, when using the data modification statement in a WITH
statement, the actual update order is in an unpredictable manner. All statements
are executed in the same snapshot, and the effect of the statements is invisible on
the target table. This mitigates the unpredictability of the actual order of row
updates and means that RETURNING data is the only way to convey changes
between different WITH substatements and the main query.

In this example, the outer layer SELECT can return the data before the update.

WITH t AS (
UPDATE tree SET id = id + 1
RETURNING *)

SELECT * FROM tree;

In this example, the external SELECT returns the updated data.

WITH t AS (

UPDATE tree SET id = id + 1
RETURNING *)

SELECT * FROM t;

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 118

Data Warehouse Service

Developer Guide

6 GaussDB(DWS) Data Query

The same row cannot be updated twice in a single statement. Otherwise, the
update effect will be unpredictable. If only one update takes effect, it is difficult
(and sometimes impossible) to predict which one takes effect.

6.5 Usage of GaussDB(DWS) UNION

Syntax

Example

Step 1

Step 2

Step 3

UNION is a powerful SQL operator that combines the result sets of two or more
SELECT statements into one. During combination, the number of columns and
data types in the two tables must be the same and correspond to each other. Use
the UNION or UNION ALL keyword between SELECT statements.

UNION removes duplicate rows, while UNION ALL keeps them. Deduplication is
time-consuming, so UNION ALL can be faster than UNION if the data sets are
already distinct by logic.

The UNION operator combines the results of The UNION ALL operator combines the results of
two queries and removes any duplicates. two queries and keep all the duplicates._

SELECT column,... FROM table1 UNION [ALL]SELECT column,... FROM table2

Create the student information table student (ID, name, gender, and school).

SET current_schema=public;

DROP TABLE IF EXISTS student;
CREATE table student(

sld VARCHAR(10) NOT NULL,
sname VARCHAR(10) NOT NULL,
sgender VARCHAR(10) NOT NULL,
sschool VARCHAR(10) NOT NULL);

Insert data into the student table.

INSERT INTO student VALUES('s01', 'ZhaoLei', 'male', 'NENU");
INSERT INTO student VALUES('s02', 'QianDian', 'male’, 'SITU");
INSERT INTO student VALUES('s03' , 'SunFenng', 'male', 'Tong;ji');
INSERT INTO student VALUES('s04', 'LIYun', 'male', 'CCOM');

INSERT INTO student VALUES('s05' , 'ZhouMei' , 'female’, 'FuDan');
INSERT INTO student VALUES('s06' , 'WulLan', 'female', 'WHU');
INSERT INTO student VALUES('s07', 'ZhengZhu', 'female', 'NWAFU');
INSERT INTO student VALUES('s08' , 'ZhangShan', 'female', 'Tongji');

View the student table.
SELECT * FROM student;

Information similar to the following is displayed.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 119

Data Warehouse Service

Developer Guide

6 GaussDB(DWS) Data Query

Step 4

Step 5

Step 6

Step 7

Sname sgender

ZhaolLel ale NENU
LIYun CCOM
ZhengZhu female | NWAFU

QianDian male sJTU
ZhouMe1 female | FuDan
ZhangShan | female | Tongji
sunFenng male Tongj1
WuLan female | WHU

(8 rows)

Create the teacher information table teacher (ID, name, gender, and school).

DROP TABLE IF EXISTS teacher;
CREATE table teacher(

tid VARCHAR(10) NOT NULL,
tname VARCHAR(10) NOT NULL,
tgender VARCHAR(10) NOT NULL,
tschool VARCHAR(10) NOT NULL);

Insert data to the teacher table.

INSERT INTO teacher VALUES('t01', 'ZhangLei', 'male’, 'FuDan');
INSERT INTO teacher VALUES('t02', 'LiLiang', 'male', 'WHU');
INSERT INTO teacher VALUES('t03' , 'WangGang', 'male', 'Tong;ji');

Query the teacher table.
SELECT * FROM teacher;

te3 | WangGang | male | Tongji
t82 | LiLiang | male | WHU
t01 | ZhangLei | male | FuDan
(3 rows)

Use UNION (combine and deduplicate) to obtain the schools of students and
teachers and sort the schools in ascending order by initial letter of the school
name.

SELECT t.school FROM (

SELECT sschool AS school
FROM student
UNION
SELECT tschool AS school
FROM teacher

)t

ORDER BY t.school ASC;

Information similar to the following is displayed.

CCOM
FuDan
NEMNU

NWAFU
5JTU
Tongj1
WHU

(7 rows)

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

120

Data Warehouse Service

Developer Guide

6 GaussDB(DWS) Data Query

Step 8

Step 9

Summary

Use UNION ALL (combine without deduplication) to obtain the schools of all
students and teachers and sort the schools by initial letter of the school name in
ascending order.

SELECT t.school FROM (

SELECT sschool AS school
FROM student
UNION ALL
SELECT tschool AS school
FROM teacher

)t

ORDER BY t.school ASC;

CCOM
FuDan
FuDan
NENU
NWAaFU

5JTU
Tongj1
Tongj1
Tongj1
WHU

WHU

(11 rows)

Use UNION ALL (combine the result sets of SQL statements with WHERE clause)
to get all information about students and teachers from "Tongji' and sort by
student and teacher number in ascending order.

SELECT t* FROM (
SELECT Sid AS id,Sname AS name,Sgender AS gender,Sschool AS school
FROM student
WHERE Sschool='Tongji'
UNION ALL
SELECT Tid AS id,Tname AS name,Tgender AS gender,Tschool AS school
FROM teacher
WHERE Tschool='Tong;ji'

)t
ORDER BY t.id ASC;

--—-End

In actual service scenarios, pay attention to the following points when using
UNION and UNION ALL:

e The number of SQL fields and field types on the left and right sides must be
the same.

e Check whether data deduplication (deduplication before combination or
during combination) is needed based on service requirements.

e Based on the data volume, valuate the SQL execution efficiency and
determine whether to use temporary tables.

e Select UNION or UNION ALL wisely and consider the complexity when
writing SQL statements.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 121

Data Warehouse Service

Developer Guide

7 GaussDB(DWS) Sorting Rules

GaussDB(DWS) Sorting Rules

Overview

The collation feature allows specifying the data sorting order and data
classification rules in a character set. This alleviates the restriction that the
LC_COLLATE and LC_CTYPE settings of a database cannot be changed after its
creation.

Every expression of a collatable data type has a collation. (The built-in collatable
data types are text, varchar, and char. User-defined base types can also be marked
collatable, and of course a domain over a collatable data type is collatable.) If the
expression is a column reference, the collation of the expression is the defined
collation of the column. If the expression is a constant, the collation is the default
collation of the data type of the constant. The collation of a more complex
expression is derived from the collations of its inputs.

Collation Combination Principles

e The collation of an expression can be the default collation, which means the
locale settings defined for the database. It is also possible for an expression's
collation to be indeterminate. In such cases, ordering operations and other
operations that need to know the collation will fail.

e For a function or operator call, the collation that is derived by examining the
argument collations is used at run time for performing the specified
operation. If the result of the function or operator call is of a collatable data
type, the collation is also used as the defined collation of the function or
operator expression, in case there is a surrounding expression that requires
knowledge of its collation.

e The collation derivation of an expression can be implicit or explicit. This
distinction affects how collations are combined when multiple different
collations appear in an expression. An explicit collation derivation occurs
when a COLLATE clause is used; all other collation derivations are implicit.
When multiple collations need to be combined, the following rules are used:

- If any input expression has an explicit collation derivation, then all
explicitly derived collations among the input expressions must be the
same, otherwise an error is raised. If any explicitly derived collation is
present, that is the result of the collation combination.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 122

Data Warehouse Service

Developer Guide

7 GaussDB(DWS) Sorting Rules

- Otherwise, all input expressions must have the same implicit collation
derivation or the default collation. If any non-default collation is present,
that is the result of the collation combination. Otherwise, the result is the
default collation.

- If there are conflicting non-default implicit collations among the input
expressions, then the combination is deemed to have indeterminate
collation. This is not an error condition unless the particular function
being invoked requires knowledge of the collation it should apply. If it
does, an error will be raised at run-time.

e In a CASE expression, the comparison rule is subject to the COLLATE setting in
the WHEN clause.

e Explicit COLLATE derivation takes effect only in the current query (CTE or
SUBQUERY). Outside the query, implicit derivation takes effect.

Collation Tips

e Do not use multiple collations in the same query statement. Otherwise,
exceptional result sets may be generated.

e Do not use multiple COLLATE clauses to specify a collation.

Case-insensitive Collation Support

Examples

Since cluster 8.1.3, GaussDB(DWS) has added the built-in case_insensitive
collation, which is case-insensitive to character types in some actions (such as
sorting, comparison, and hash).

Constraints:

e Supported character types: char, character, nchar, and varchar/character
varying/varchar2/nvarchar2/clob/text.

e The character types char and name are not supported.

e The following encoding formats are not supported: PG_EUC_JIS_2004,
PG_MULE_INTERNAL, PG_LATIN10 and PG_WIN874.

e |t cannot be specified to LC_COLLATE when CREATE DATABASE is executed.
e Regular expressions are not supported.

e Record comparison of the character type (for example, record_eq) is not
supported.

e Time series tables are not supported.
e Skew optimization is not supported.
e RoughCheck optimization is not supported.

The COLLATE clause is specified in the statement.

SELECT 'a' ='A’, 'a' = 'A' COLLATE case_insensitive;
?column? | ?column?

Set the column attribute to case_insensitive when creating a table.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 123

Data Warehouse Service

Developer Guide

7 GaussDB(DWS) Sorting Rules

CREATE TABLE t1 (a text collate case_insensitive);
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using round-robin as the distribution mode by default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE
\d t1
Table "public.t1"
Column | Type | Modifiers

a | text | collate case_insensitive

INSERT INTO t1 values('a'),('A"),('b"),('B');
INSERT 0 4

This parameter is specified during table creation and does not need to be specified
during query.

SELECT a, a='a' FROM t1;
a | ?column?

(4 rows)

SELECT a, count(1) FROM t1 GROUP BY a;
a | count

oo

Bl 2
(2 rows)

CASE expression, which is subject to the COLLATE setting in the WHEN clause.

SELECT a,case a when 'a' collate case_insensitive then 'casel1' when 'b' collate "C" then 'case2' else 'case3'
end FROM t1;

a | case

e

A | casel

B | case3

a | casel

b | case2

(4 rows)

Implicit derivation across subqueries.

SELECT * FROM (SELECT a collate "C" from t1) WHERE a in (‘a','b");

(2 rows)

SELECT * FROM t1,(SELECT a collate "C" from t1) t2 WHERE t1.a=t2.a;
ERROR: could not determine which collation to use for string hashing
HINT: Use the COLLATE clause to set the collation explicitly.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 124

Data Warehouse Service

Developer Guide 7 GaussDB(DWS) Sorting Rules

/A\ CAUTION

e collate case_insensitive is an insensitive sorting, and the result set is uncertain.
If sensitive sorting is used after collate case_insensitive sorting, the result set

may be unstable. Therefore, do not use sensitive sorting and insensitive sorting
together in statements.

e If collate case_insensitive is used to specify character behaviors as case-
insensitive, the performance will be affected. If you require high performance,
exercise caution when configuring this parameter.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 125

Data Warehouse Service
Developer Guide 8 GaussDB(DWS) User-Defined Functions

GaussDB(DWS) User-Defined Functions

(11 NOTE

The hybrid data warehouse (deployed in standalone mode) does not support user-defined
functions.

8.1 GaussDB(DWS) PL/Java Functions

With the GaussDB(DWS) PL/Java functions, you can choose your favorite Java IDE
to write Java methods and install the JAR files containing these methods into the
GaussDB(DWS) database before invoking them. GaussDB(DWS) PL/Java is
developed based on open-source PL/Java 1.5.5 and uses JRE 1.8.0_322.

Constraints

Java UDF can be used for some Java logical computing. You are not advised to
encapsulate services in Java UDF.

e You are not advised to connect to a database in any way (for example, JDBC)
in Java functions.

e Currently, only data types listed in Table 8-1 are supported. Other data types,
such as user-defined data types and complex data types (for example, Java
array and its derived types) are not supported.

e Currently, UDAF and UDTF are not supported.

Examples

Before using PL/Java, you need to pack the implementation of Java methods into
a JAR package and deploy it into the database. Then, create functions as a
database administrator. For compatibility purposes, use JRE 1.8.0_322 for
compilation.

Step 1 Compile a JAR package.

Java method implementation and JAR package archiving can be achieved in an
integrated development environment (IDE). The following is a simple example of
compilation and archiving through command lines. You can create a JAR package
that contains a single method in the similar way.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 126

Data Warehouse Service
Developer Guide 8 GaussDB(DWS) User-Defined Functions

First, prepare an Example.java file that contains a method for converting
substrings to uppercase. In the following example, Example is the class name and
upperString is the method name:

public class Example

{
public static String upperString (String text, int beginindex, int endIindex)

{

return text.substring(beginindex, endindex).toUpperCase();
}
}

Then, create a manifest.txt file containing the following content:

Manifest-Version: 1.0

Main-Class: Example
Specification-Title: "Example"
Specification-Version: "1.0"

Created-By: 1.6.0_35-b10-428-11M3811
Build-Date: 08/14/2018 10:09 AM

Manifest-Version specifies the version of the manifest file. Main-Class specifies
the main class used by the .jar file. Specification-Title and Specification-Version
are the extended attributes of the package. Specification-Title specifies the title
of the extended specification and Specification-Version specifies the version of
the extended specification. Created-By specifies the person who created the file.
Build-Date specifies the date when the file was created.

Finally, archive the .java file and package it into javaudf-example.jar.

javac Example.java
jar cfm javaudf-example.jar manifest.txt Example.class

NOTICE

JAR package names must comply with JDK rules. If a name contains invalid
characters, an error occurs when a function is deployed or used.

Step 2 Deploy the JAR package.

Place the JAR package on the OBS server using the method described in For
details, see "Uploading a File" in Object Storage Service Console Operation Guide..
Then, create the AK/SK. For details about how to obtain the AK/SK, see section
Creating Access Keys (AK and SK). Log in to the database and run the
gs_extend_library function to import the file to GaussDB(DWS).

SELECT gs_extend_library(‘addjar’, 'obs://bucket/path/javaudf-example.jar
accesskey=access_key value_to_be replaced secretkey=secret access_key value_to_be_replaced
region=region_name libraryname=example');

For details about how to use the gs_extend_library function, see Manage JAR
packages and files. Change the values of AK and SK as needed. Replace
region_name with an actual region name.

Step 3 Use a PL/Java function.

Log in to the database as a user who has the sysadmin permission (for example,
dbadmin) and create the java_upperstring function:

CREATE FUNCTION java_upperstring(VARCHAR, INTEGER, INTEGER)
RETURNS VARCHAR

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 127

https://support.huaweicloud.com/eu/migration-dws/dws_15_0007.html

Data Warehouse Service
Developer Guide 8 GaussDB(DWS) User-Defined Functions

AS 'Example.upperString'
LANGUAGE JAVA;

(11 NOTE

e The data type defined in the java_upperstring function should be a type in
GaussDB(DWS) and match the data type defined in Step 1 in the upperString method
in Java. For details about the mapping between GaussDB(DWS) and Java data types, see
Table 8-1.

e The AS clause specifies the class name and static method name of the Java method
invoked by the function. The format is Class name.Method name. The class name and
method name must match the Java class and method defined in Step 1.

e To use PL/Java functions, set LANGUAGE to JAVA.
e For details about CREATE FUNCTION, see Create functions.

Execute the java_upperstring function.
SELECT java_upperstring('test', 0, 1);
The expected result is as follows:

java_upperstring

Step 4 Authorize a common user to use the PL/Java function.
Create a common user named udf_user.
CREATE USER udf_user PASSWORD 'password';

This command grants user udf_user the permission for the java_upperstring
function. Note that the user can use this function only if it also has the permission
for using the schema of the function.

GRANT ALL PRIVILEGES ON SCHEMA public TO udf_user;
GRANT ALL PRIVILEGES ON FUNCTION java_upperstring(VARCHAR, INTEGER, INTEGER) TO udf_user;

Log in to the database as user udf_user.

SET SESSION SESSION AUTHORIZATION udf_user PASSWORD ' password;
Execute the java_upperstring function.

SELECT public.java_upperstring('test’, 0, 1);

The expected result is as follows:

java_upperstring

Step 5 Delete the function.

If you no longer need this function, delete it.
DROP FUNCTION java_upperstring;

Step 6 Uninstall the JAR package.

Use the gs_extend_library function to uninstall the JAR package.

SELECT gs_extend_library('rmjar’, 'libraryname=example');

--—-End

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 128

Data Warehouse Service

Developer Guide

8 GaussDB(DWS) User-Defined Functions

SQL Definition and Usage
Manage JAR packages and files.

A database user having the sysadmin permission can use the
gs_extend_Llibrary function to deploy, view, and delete JAR packages in the
database. The syntax of the function is as follows:

SELECT gs_extend_library('[action]’, '[operation]');

(1] NOTE

e action: operation action. The options are as follows:

e Is: Displays JAR packages in the database and checks the MD5 value
consistency of files on each node.

e addjar: deploys a JAR package on the OBS server in the database.
e rmijar: Deletes JAR packages from the database.

e operation: operation string. The format can be either of the following:

obs://[bucket]/[source_filepath] accesskey=[accesskey] secretkey=[secretkey]
region=[region] libraryname=[libraryname]

o bucket: name of the bucket to which the OBS file belongs. It is mandatory.
e source_filepath: file path on the OBS server. Only .jar files are supported.
e accesskey: key obtained for accessing the OBS service. It is mandatory.

e secret_key: secret key obtained for the OBS service. It is mandatory.

e region: region where the OBS bucket stored in the JAR package of a user-
defined function belongs to. This parameter is mandatory.

e libraryname: user-defined library name, which is used to invoke JAR files in
GaussDB(DWS). If action is set to addjar or rmjar, libraryname must be
specified. If action is set to s, libraryname is optional. Note that a user-
defined library name cannot contain the following characters: /|;&$<>\'{}"()
[1~*2!

Create functions.

PL/Java functions can be created using the CREATE FUNCTION syntax and
are defined as LANGUAGE JAVA, including the RETURNS and AS clauses.

To use CREATE FUNCTION, specify the name and parameter type for the
function to be created.

The RETURNS clause specifies the return type for the function.

The AS clause specifies the class name and static method name of the
Java method to be invoked. If the NULL value needs to be transferred to
the Java method as an input parameter, specify the name of the Java
encapsulation class corresponding to the parameter type. For details, see
NULL Handling.

For details about the syntax, see CREATE FUNCTION.
CREATE [OR REPLACE] FUNCTION function_name
([{ argname [argmode] argtype [{ DEFAULT | := | = } expression 1} [, ...] 1)
[RETURNS rettype [DETERMINISTIC]]
LANGAUGE JAVA
[

{ IMMUTABLE | STABLE | VOLATILE }

| [NOT] LEAKPROOF

| WINDOW

| { CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT |STRICT }

| {[EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER | AUTHID DEFINER |
AUTHID CURRENT_USER}

| { FENCED }

| COST execution_cost

| ROWS result_rows

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 129

Data Warehouse Service

Developer Guide

8 GaussDB(DWS) User-Defined Functions

| SET configuration_parameter { {TO |=} value | FROM CURRENT}
[..]

1
{

AS 'class_name.method_name' ({ argtype } [, ...])
}

Use functions.

During execution, PL/Java searches for the Java class specified by a function
among all the deployed JAR packages, which are ranked by name in
alphabetical order, invokes the Java method in the first found class, and
returns results.

Delete functions.

PL/Java functions can be deleted by using the DROP FUNCTION syntax. For
details about the syntax, sese DROP FUNCTION.

DROP FUNCTION [IF EXISTS] function_name [([{[argmode] [argname] argtype} [, ..]1]1)

[CASCADE | RESTRICT] J;

To delete an overloaded function (for details, see Overloaded Functions),
specify argtype in the function. To delete other functions, simply specify
function_name.

Authorize permissions for functions.

Only user sysadmin can create PL/Java functions. It can also grant other users
the permission to use the PL/Java functions. For details about the syntax, see
GRANT.

GRANT { EXECUTE | ALL [PRIVILEGES] }
ON { FUNCTION {function_name ([{[argmode] [arg_name] arg_type} [, ..11)} [, ...
| ALL FUNCTIONS IN SCHEMA schema_name [, ..] }
TO { [GROUP] role_name | PUBLIC } [, ...]
[WITH GRANT OPTION 1;

Mapping for Basic Data Types

Table 8-1 PL/Java mapping for default data types

GaussDB(DWS) Java

BOOLEAN boolean

"char" byte

bytea byte[]
SMALLINT short

INTEGER int

BIGINT long

FLOAT4 float

FLOATS8 double

CHAR java.lang.String
VARCHAR java.lang.String
TEXT java.lang.String

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

130

Data Warehouse Service

Developer Guide 8 GaussDB(DWS) User-Defined Functions
GaussDB(DWS) Java
name java.lang.String
DATE java.sgl.Timestamp
TIME java.sgl.Time (stored value treated as
local time)
TIMETZ java.sgl.Time
TIMESTAMP java.sgl.Timestamp
TIMESTAMPTZ java.sgl.Timestamp

Array Type Processing

GaussDB(DWS) can convert basic array types. You only need to append a pair of
square brackets ([]) to the data type when creating a function.

CREATE FUNCTION java_arrayLength(INTEGER[])
RETURNS INTEGER
AS 'Example.getArrayLength’

LANGUAGE JAVA;

Java code is similar to the following:

public class Example

{
public static int getArrayLength(Integer[] intArray)

{

return intArray.length;

}
}

Invoke the following statement:
SELECT java_arrayLength(ARRAY[1, 2, 3]);
The expected result is as follows:

java_arrayLength

NULL Handling

NULL values cannot be handled for GaussDB(DWS) data types that are mapped
and can be converted to simple Java types by default. If you use a Java function to
obtain and process the NULL value transferred from GaussDB(DWS), specify the
Java encapsulation class in the AS clause as follows:

CREATE FUNCTION java_countnulls(INTEGER[])
RETURNS INTEGER
AS 'Example.countNulls(java.lang.Integer[])'
LANGUAGE JAVA;

Java code is similar to the following:

public class Example

{

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 131

Data Warehouse Service

Developer Guide

8 GaussDB(DWS) User-Defined Functions

public static int countNulls(Integer[] intArray)
{

int nullCount = 0;
for (int idx = 0; idx < intArray.length; ++idx)

if (intArray[idx] == null)
nullCount++;

return nullCount;
}
}

Invoke the following statement:
SELECT java_countNulls(ARRAY[null, 1, null, 2, null]);
The expected result is as follows:

java_countNulls

Overloaded Functions

Step 1

Step 2

PL/Java supports overloaded functions. You can create functions with the same
name or invoke overloaded functions from Java code. The procedure is as follows:

Create overloaded functions.

For example, create two Java methods with the same name, and specify the
methods dummy(int) and dummy(String) with different parameter types.

public class Example

{

public static int dummy(int value)

{

return value*2;

public static String dummy(String value)
{

return value;
}
}

In addition, create two functions with the same names as the above two functions
in GaussDB(DWS).

CREATE FUNCTION java_dummy(INTEGER)
RETURNS INTEGER
AS 'Example.dummy’

LANGUAGE JAVA;

CREATE FUNCTION java_dummy(VARCHAR)
RETURNS VARCHAR
AS 'Example.dummy’

LANGUAGE JAVA;

Invoke the overloaded functions.

GaussDB(DWS) invokes the functions that match the specified parameter type.
The results of invoking the above two functions are as follows:

SELECT java_dummy(5);
java_dummy

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 132

Data Warehouse Service

Developer Guide

8 GaussDB(DWS) User-Defined Functions

Step 3

(1 row)

SELECT java_dummy('5');
java_dummy

Note that GaussDB(DWS) may implicitly convert data types. Therefore, you are
advised to specify the parameter type when invoking an overloaded function.

SELECT java_dummy(5::varchar);
java_dummy

In this case, the specified parameter type is preferentially used for matching. If
there is no Java method matching the specified parameter type, the system
implicitly converts the parameter and searches for Java methods based on the
conversion result.

SELECT java_dummy/(5:INTEGER);
java_dummy

10
(1 row)

DROP FUNCTION java_dummy(INTEGER);

SELECT java_dummy/(5:INTEGER);
java_dummy

NOTICE

Data types supporting implicit conversion are as follows:
e SMALLINT: It can be converted to the INTEGER type by default.

e SMALLINT and INTEGER: They can be converted to the BIGINT type by
default.

e TINYINT, SMALLINT, INTEGER, and BIGINT: They can be converted to the
BOOL type by default.

e The following data types can be converted to TEXT by default: CHAR, NAME,
BIGINT, INTEGER, SMALLINT, TINYINT, RAW, FLOAT4, FLOATS8, BPCHAR,
VARCHAR, NVARCHAR2, DATE, TIMESTAMP, TIMESTAMPTZ, NUMERIC, and
SMALLDATETIME.

e The following data types can be converted to VARCHAR by default: TEXT,
CHAR, BIGINT, INTEGER, SMALLINT, TINYINT, RAW, FLOAT4, FLOATS, BPCHAR,
DATE, NVARCHAR2, TIMESTAMP, NUMERIC, and SMALLDATETIME.

Delete the overloaded functions.

To delete an overloaded function, specify the parameter type for the function.
Otherwise, the function cannot be deleted.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 133

Data Warehouse Service
Developer Guide

8 GaussDB(DWS) User-Defined Functions

DROP FUNCTION java_dummy(INTEGER);

--—-End

GUC Parameters

e udf memory_limit

A system-level GUC parameter. It is used to limit the physical memory used by
each CN or DN for executing UDFs. The default value is 0.05 *
max_process_memory. You can use the postgresql.conf file to modify the
parameter setting. The modification takes effect only after the database is

res

tarted.

NOTICE

udf_memory_limit is a part of max_process_memory. When a CN or DN
is started, memory calculated by udf_memory_limit minus 200 MB will be
reserved for Worker processes. CN and DN processes are different from the
UDF Worker process, and the CN and DN processes will save memory for
the UDF Worker process.

For example, if max_process_memory is set to 10GB on a DN and
udf_memory_limit is set to 4GB, the DN can use a maximum of 6.2 GB
memory, that is, 10 GB - (4 GB - 200 MB). This case applies even if no
UDF is executed. By default, the value of udf memory_limit is 0.05 *
max_process_memory. Querying the pv_total_memory_detail view will
prove that the value of process_used_memory would never exceed the
calculation result of max_process_memory - (udf_memory_limit -
200MB).

Executing a simplest Java UDF on a CN consumes about 50 MB physical
memory. You can set this parameter based on the memory usage and
concurrency of Java functions to be used. After this parameter is added,
you are not advised to set UDFWorkerMemHardLimit and
FencedUDFMemoryLimit.

If the parallelism of the UDF process is excessively high and the memory
usage exceeds the udf_memory_limit value, unexpected situations such as
process exit may occur. In this scenario, the execution result may be
unreliable. You are advised to set this parameter to reserve sufficient
memory based on the site requirements. If the system has the /var/log/
messages log, check the log to see whether the memory is insufficient
because the cgroup memory limit has been reached. If the memory is
severely insufficient, the UDF master process may exit. You can view the
UDF log for analysis. The default UDF log path is SGAUSSLOG/cm/
cm_agent/pg_log. For example, if the following log is displayed, the
memory resources are insufficient and the UDF master process exits. In this
case, you need to check the udf_memory_limit parameter.

0 [BACKEND] FATAL: poll() failed: Bad address, please check the
parameter:udf_memory_limit to make sure there is enough memory.

e FencedUDFMemoryLimit

A session-level GUC parameter. It is used to specify the maximum virtual
memory used by a single Fenced UDF Worker process initiated by a session.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 134

Data Warehouse Service
Developer Guide 8 GaussDB(DWS) User-Defined Functions

SET FencedUDFMemoryLimit='512MB';

The value range of this parameter is (150 MB, 1G). If the value is greater
than 1G, an error will be reported immediately. If the value is less than or
equal to 150 MB, an error will be reported during function invoking.

NOTICE

e |f FencedUDFMemoryLimit is set to 0, the virtual memory for a Fenced
UDF Worker process will not be limited.

e You are advised to use udf_memory_limit to control the physical memory
used by Fenced UDF Worker processes. You are not advised to use
FencedUDFMemoryLimit, especially when Java UDFs are used. If you are
clear about the impact of this parameter, set it based on the following
information:

e After a C Fenced UDF Worker process is started, it will occupy about
200 MB virtual memory, and about 16 MB physical memory.

e After a Java Fenced UDF Worker process is started, it will occupy
about 2.5 GB virtual memory, and about 50 MB physical memory.

Exception Handling

If there is an exception in a JVM, PL/Java will export JVM stack information during
the exception to a client.

Logging
PL/Java uses the standard Java Logger. Therefore, you can record logs as follows:

Logger.getAnonymousLogger().config("Time is " + new
Date(System.currentTimeMillis()));

An initialized Java Logger class is set to the CONFIG level by default,
corresponding to the LOG level in GaussDB(DWS). In this case, log messages
generated by Java Logger are all redirected to the GaussDB(DWS) backend. Then,
the log messages are written into server logs or displayed on the user interface.
MPPDB server logs record information at the LOG, WARNING, and ERROR levels.
The SQL user interface displays logs at the WARNING and ERROR levels. The
following table lists mapping between Java Logger levels and GaussDB(DWS) log
levels.

Table 8-2 PL/Java log levels

java.util.logging.Level GaussDB(DWS) Log Level
SERVER ERROR

WARNING WARNING

CONFIG LOG

INFO INFO

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 135

Data Warehouse Service

Developer Guide 8 GaussDB(DWS) User-Defined Functions
java.util.logging.Level GaussDB(DWS) Log Level
FINE DEBUG1
FINER DEBUG2
FINEST DEBUG3

You can change Java Logger levels. For example, if the Java Logger level is
changed to SEVERE by the following Java code, log messages (msg) will not be
recorded in GaussDB(DWS) logs during WARNING logging.

Logger log = Logger.getAnonymousLogger();
Log.setLevel(Level. SEVERE);
log.log(Level WARNING, msg);

Security Issues

In GaussDB(DWS), PL/Java is an untrusted language. Only user sysadmin can
create PL/Java functions. The user can grant other users the permission for using
the PL/Java functions. For details, see Authorize permissions for functions.

In addition, PL/Java controls user access to file systems, forbidding users from
reading most system files, or writing, deleting, or executing any system files in
Java methods.

8.2 GaussDB(DWS) PL/pgSQL Functions

PL/pgSQL is similar to PL/SQL of Oracle. It is a loadable procedural language.

The functions created using PL/pgSQL can be used in any place where you can use
built-in functions. For example, you can create calculation functions with complex
conditions and use them to define operators or use them for index expressions.

SQL is used by most databases as a query language. It is portable and easy to
learn. Each SQL statement must be executed independently by a database server.

In this case, when a client application sends a query to the server, it must wait for
it to be processed, receive and process the results, and then perform some
calculation before sending more queries to the server. If the client and server are
not on the same machine, all these operations will cause inter-process
communication and increase network loads.

PL/pgSQL enables a whole computing part and a series of queries to be grouped
inside a database server. This makes procedural language available and SQL easier
to use. In addition, the client/server communication cost is reduced.

e Extra round-trip communication between clients and servers is eliminated.

e Intermediate results that are not required by clients do not need to be sorted
or transmitted between the clients and servers.

e Parsing can be skipped in multiple rounds of queries.

PL/pgSQL can use all data types, operators, and functions in SQL.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 136

Data Warehouse Service
Developer Guide 8 GaussDB(DWS) User-Defined Functions

For details about the PL/pgSQL syntax for creating functions, sece CREATE
FUNCTION. As mentioned earlier, PL/pgSQL is similar to PL/SQL of Oracle and is a
loadable procedural language. Its application method is similar to that of
GaussDB(DWS) Stored Procedure. There is only one difference. Stored
procedures have no return values but the functions have.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 137

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

GaussDB(DWS) Stored Procedure

9.1 Overview

What Is a GaussDB(DWS) Stored Procedure?

In GaussDB(DWS), business rules and logics are saved as stored procedures.

A stored procedure is a combination of SQL, PL/SQL, and Java statements. Stored
procedures can move the code that executes business rules from applications to
databases. In this way, code can be used by multiple programs at a time.

For details about how to create and call a stored procedure, see CREATE
PROCEDURE.

The functions created using the PL/pgSQL language mentioned in GaussDB(DWS)
PL/pgSQL Functions are similar to the application methods of stored procedures.
Unless otherwise specified, the following sections apply to stored procedures and
PL/pgSQL functions.

GaussDB(DWS) Stored Procedure Data Types

A data type refers to a value set and an operation set defined on the value set. A
GaussDB(DWS) database consists of tables, each of which is defined by its own
columns. Each column corresponds to a data type. GaussDB(DWS) uses
corresponding functions to perform operations on data based on data types. For
example, GaussDB(DWS) can perform addition, subtraction, multiplication, and
division operations on data of numeric values.

9.2 Converting Data Types in GaussDB(DWS) Stored
Procedures

Certain data types in the database support implicit data type conversions, such as
assignments and parameters invoked by functions. For other data types, you can
use the type conversion functions provided by GaussDB(DWS), such as the CAST
function, to forcibly convert them.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 138

https://support.huaweicloud.com/en-us/sqlreference-dws/dws_06_0170.html
https://support.huaweicloud.com/en-us/sqlreference-dws/dws_06_0170.html

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

Table 9-1 lists common implicit data type conversions in GaussDB(DWS).

NOTICE

The valid value range of DATE supported by GaussDB(DWS) is from 4713 B.C. to

294276 A.D.

Table 9-1 Implicit data type conversions

Raw Data Type Target Data Type Remarks

CHAR VARCHAR2 -

CHAR NUMBER Raw data must consist of
digits.

CHAR DATE Raw data cannot exceed
the valid date range.

CHAR RAW -

CHAR CLOB -

VARCHAR2 CHAR -

VARCHAR2 NUMBER Raw data must consist of
digits.

VARCHAR2 DATE Raw data cannot exceed
the valid date range.

VARCHAR2 CLOB -

NUMBER CHAR -

NUMBER VARCHAR2 -

DATE CHAR -

DATE VARCHAR2 -

RAW CHAR -

RAW VARCHAR2 -

CLOB CHAR -

CLOB VARCHAR2 -

CLOB NUMBER Raw data must consist of
digits.

INT4 CHAR -

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 139

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

9.3 GaussDB(DWS) Stored Procedure Array and Record

9.3.1 Arrays

Use of Array Types
Before the use of arrays, an array type needs to be defined:

Define an array type immediately after the AS keyword in a stored procedure. Run

the following statement:
TYPE array_type IS VARRAY (size) OF data_type [NOT NULL];

Its parameters are as follows:

e array_type: indicates the name of the array type to be defined.
e VARRAY: indicates the array type to be defined.

e size: indicates the maximum number of members in the array type to be
defined. The value is a positive integer.

e data_type: indicates the types of members in the array type to be created.

e NOT NULL: an optional constraint. It can be used to ensure that none of the
elements in the array is NULL.

(1 NOTE

e In GaussDB(DWS), an array automatically increases. If an access violation occurs, a null
value will be returned, and no error message will be reported. If out-of-bounds write
occurs in an array, the message Subscript outside of limit is displayed.

e The scope of an array type defined in a stored procedure takes effect only in this storage
process.

e It is recommended that you use one of the preceding methods to define an array type. If
both methods are used to define the same array type, GaussDB(DWS) prefers the array
type defined in a stored procedure to declare array variables.

In GaussDB(DWS) 8.1.0 and earlier versions, the system does not verify the length
of array elements and out-of-bounds write because the array can automatically
increase. This version adds related constraints to be compatible with Oracle
databases. If out-of-bounds write exists, you can configure varray_verification in
the parameter behavior_compat_options to be compatible with previously
unverified operations.

Example:

-- Declare an array in a stored procedure.
CREATE OR REPLACE PROCEDURE array_proc
AS

TYPE ARRAY_INTEGER IS VARRAY(1024) OF INTEGER;--Define the array type.

TYPE ARRAY_INTEGER_NOT_NULL IS VARRAY(1024) OF INTEGER NOT NULL;-- Defines non-null array
types.

ARRINT ARRAY_INTEGER: = ARRAY_INTEGER(); --Declare the variable of the array type.
BEGIN

ARRINT.extend(10);

FORI'IN 1..10 LOOP

ARRINT(I) = 1;

END LOOP;

DBMS_OUTPUT.PUT_LINE(ARRINT.COUNT);

DBMS_OUTPUT.PUT_LINE(ARRINT(1));

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 140

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

DBMS_OUTPUT.PUT_LINE(ARRINT(10));
DBMS_OUTPUT.PUT_LINE(ARRINT(ARRINTFIRST));
DBMS_OUTPUT.PUT_LINE(ARRINT(ARRINT.last));
END;
/

-- Invoke the stored procedure.
CALL array_proc();
10

1

10

1

10

-- Delete the stored procedure.
DROP PROCEDURE array_proc;

Declaration and Use of Rowtype Arrays

In addition to the declaration and use of common arrays and non-null arrays in
the preceding example, the array also supports the declaration and use of rowtype
arrays.

Example:

-- Use the COUNT function on an array in a stored procedure.
CREATE TABLE tbl (a int, b int);
INSERT INTO tbl VALUES(1, 2),(2, 3),(3, 4);
CREATE OR REPLACE PROCEDURE array_proc
AS
CURSOR all_tbl IS SELECT * FROM tbl ORDER BY g;
TYPE tbl_array_type IS varray(50) OF tbl%rowtype; -- Defines the array of the rowtype type. tbl indicates
any table.
tbl_array tbl_array_type;
tbl_item tbl%rowtype;
inx1 int;
BEGIN
tbl_array := tbl_array_type();
inx1 :=0;
FOR tbl_item IN all_tbl LOOP
inx1 :=inx1 + 1;
tbl_array(inx1) := tbl_item;
END LOOP;
WHILE inx1 IS NOT NULL LOOP
DBMS_OUTPUT.PUT_LINE('tbl_array(inx1).a="|| tbl_array(inx1).a || ' tbl_array(inx1).b="||
tbl_array(inx1).b);
inx1 := tbl_array.PRIOR(inx1);
END LOOP;
END;
/

The execution output is as follows:
call array_proc();
tbl_array(inx1).a=3 tbl_array(inx1).b=4

tbl_array(inx1).a=2 tbl_array(inx1).b=3
tbl_array(inx1).a=1 tbl_array(inx1).b=2

Array Related Functions

GaussDB(DWS) supports Oracle-related array functions. You can use the following
functions to obtain array attributes or perform operations on the array content.

COUNT

Returns the number of elements in the current array. Only the initialized elements
or the elements extended by the EXTEND function are counted.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 141

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Use:
varray.COUNT or varray.COUNT()

Example:

-- Use the COUNT function on an array in a stored procedure.
CREATE OR REPLACE PROCEDURE test_varray
AS
TYPE varray_type IS VARRAY(20) OF INT;
v_varray varray._type;
BEGIN
v_varray := varray_type(1, 2, 3);
DBMS_OUTPUT.PUT_LINE('v_varray.count=" || v_varray.count);
v_varray.extend;
DBMS_OUTPUT.PUT_LINE('v_varray.count=' || v_varray.count);
END;
/

The execution output is as follows:

call test_varray();
v_varray.count=3
v_varray.count=4

FIRST and LAST

The FIRST function can return the subscript of the first element. The LAST function
can return the subscript of the last element.

Use:
varray.FIRST or varray.FIRST()
varray.LAST or varray.LAST()

Example:

-- Use the FIRST and LAST functions on an array in a stored procedure.
CREATE OR REPLACE PROCEDURE test_varray
AS
TYPE varray_type IS VARRAY(20) OF INT;
v_varray varray_type;
BEGIN
v_varray := varray_type(1, 2, 3);
DBMS_OUTPUT.PUT_LINE('v_varray.first="|| v_varray.first);
DBMS_OUTPUT.PUT_LINE('v_varray.last=' || v_varray.last);
END;
/

The execution output is as follows:
call test_varray();

v_varray.first=1
v_varray.last=3

EXTEND
(11 NOTE

The EXTEND function is used to be compatible with two Oracle database operations. In
GaussDB(DWS), an array automatically grows, and the EXTEND function is not necessary.
For a newly written stored procedure, you do not need to use the EXTEND function.

The EXTEND function can extend arrays. The EXTEND function can be invoked in
either of the following ways:

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 142

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

e Method 1:

EXTEND contains an integer input parameter, indicating that the array size is
extended by the specified length. After executing the EXTEND function, the
values of the COUNT and LAST functions change accordingly.

Use:
varray.EXTEND (size)

By default, one bit is added to the end of varray.EXTEND, which is equivalent
to varray.EXTEND(1).

e Method 2:

EXTEND contains two integer input parameters. The first parameter indicates
the length of the extended size. The second parameter indicates that the
value of the extended array element is the same as that of the element with
the index subscript.

Use:
varray.EXTEND size, index)

Example:

-- Use the EXTEND function on an array in a stored procedure.

CREATE OR REPLACE PROCEDURE test_varray

AS
TYPE varray_type IS VARRAY(20) OF INT;
v_varray varray_type;

BEGIN
v_varray = varray_type(1, 2, 3);
v_varray.extend(3);
DBMS_OUTPUT.PUT_LINE('v_varray.count=' || v_varray.count);
v_varray.extend(2,3);
DBMS_OUTPUT.PUT_LINE('v_varray.count=' || v_varray.count);
DBMS_OUTPUT.PUT_LINE('v_varray(7)="|| v_varray(7));
DBMS_OUTPUT.PUT_LINE('v_varray(8)="|| v_varray(7));

END;

/

The execution output is as follows:

call test_varray();
v_varray.count=6
v_varray.count=8
v_varray(7)=3
v_varray(8)=3

NEXT and PRIOR

The NEXT and PRIOR functions are used for cyclic array traversal. The NEXT
function returns the subscript of the next array element based on the input
parameter index. If the subscript reaches the maximum value, NULL is returned.
The PRIOR function returns the subscript of the previous array element based on
the input parameter index. If the minimum value of the array subscript is reached,
NULL is returned.

Use:
varray.NEXT (index)
varray.PRIOR (index)

Example:

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 143

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

EXISTS

TRIM

-- Use the NEXT and PRIOR functions on an array in a stored procedure.
CREATE OR REPLACE PROCEDURE test_varray
AS
TYPE varray_type IS VARRAY(20) OF INT;
v_varray varray_type;
iint;
BEGIN
v_varray := varray_type(1, 2, 3);

i := v_varray.COUNT;

WHILE i IS NOT NULL LOOP
DBMS_OUTPUT.PUT_LINE('test prior v_varray('[|i||")="|| v_varray(i));
i := v_varray.PRIOR(i);

END LOOP;

i=1;
WHILE i IS NOT NULL LOOP
DBMS_OUTPUT.PUT_LINE('test next v_varray('[li||")="|| v_varray(i));
i := v_varray.NEXT (i);
END LOOP;
END;
/

The execution output is as follows:

call test_varray();

test prior v_varray(3)=3
test prior v_varray(2)=2
test prior v_varray(1)=1
test next v_varray(1)=1
test next v_varray(2)=2
test next v_varray(3)=3

Determines whether an array subscript exists.
Use:
varray.EXISTS(index)

Example:

-- Use the EXISTS function on an array in a stored procedure.
CREATE OR REPLACE PROCEDURE test_varray
AS
TYPE varray_type IS VARRAY(20) OF INT;
v_varray varray_type;
BEGIN
v_varray := varray_type(1, 2, 3);
IF v_varray.EXISTS(1) THEN
DBMS_OUTPUT.PUT_LINE('v_varray.EXISTS(1)");
END IF;
IF NOT v_varray.EXISTS(10) THEN
DBMS_OUTPUT.PUT_LINE('NOT v_varray.EXISTS(10)");
END IF;
END;
/

The execution output is as follows:
call test_varray();

v_varray.EXISTS(1)
NOT v_varray.EXISTS(10)

Deletes a specified number of elements from the end of an array.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

144

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

DELETE

LIMIT

Use:

varray.TRIM(size)

varray.TRIM is equivalent to varray.TRIM(1), because the default input parameter

is1.
Example:

-- Use the TRIM function on an array in a stored procedure.
CREATE OR REPLACE PROCEDURE test_varray
AS
TYPE varray_type IS VARRAY(20) OF INT;
v_varray varray_type,
BEGIN
v_varray := varray_type(1, 2, 3, 4, 5);
v_varray.trim(3);
DBMS_OUTPUT.PUT_LINE('v_varray.count' || v_varray.count);
v_varray.trim;
DBMS_OUTPUT.PUT_LINE('v_varray.count:' || v_varray.count);
END;
/

The execution output is as follows:
call test_varray();

v_varray.count:2
v_varray.count:1

Deletes all elements from an array.
Use:
varray.DELETE or varray.DELETE()

Example:

-- Use the DELETE function on an array in a stored procedure.
CREATE OR REPLACE PROCEDURE test_varray
AS

TYPE varray_type IS VARRAY(20) OF INT;

v_varray varray_type;
BEGIN

v_varray := varray_type(1, 2, 3, 4, 5);

v_varray.delete;

DBMS_OUTPUT.PUT_LINE('v_varray.count:' || v_varray.count);
END;
/

The execution output is as follows:

call test_varray();
v_varray.count:0

Returns the allowed maximum length of an array.
Use:
varray.LIMIT or varray.LIMIT()

Example:

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

145

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

-- Use the LIMIT function on an array in a stored procedure.
CREATE OR REPLACE PROCEDURE test_varray
AS
TYPE varray_type IS VARRAY(20) OF INT;
v_varray varray_type;
BEGIN
v_varray := varray_type(1, 2, 3, 4, 5);
DBMS_OUTPUT.PUT_LINE('v_varray.limit:' || v_varray.limit);
END;
/

The execution output is as follows:

call test_varray();
v_varray.limit:20

9.3.2 record

record Variables

Syntax

Perform the following operations to create a record variable:

Define a record type and use this type to declare a variable.

For the syntax of the record type, see Figure 9-1.

Figure 9-1 Syntax of the record type

record _type_definition i:=

- TveE }{wu_w}@-i RECORD }@-A{]eﬁ_«ﬁmm}ﬁm—'—@o

field_definition 1=

() @)

The syntax is described as follows:

e record_type: record name

e field: record columns

e datatype: record data type

e expression: expression for setting a default value

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

146

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

Examples

(11 NOTE

e When assigning values to record variables, you can:

° Declare a record type and define member variables of this type when you declare a

function or stored procedure.
e Assign the value of a record variable to another record variable.
e Use SELECT INTO or FETCH to assign values to a record type.
e Assign the NULL value to a record variable.

e The INSERT and UPDATE statements cannot use a record variable to insert or update

data.

e Just like a variable, a record column of the compound type does not have a default

value in the declaration.

The table used in the following stored procedure is defined as follows:
CREATE TABLE emp_rec

(
empno numeric(4,0),
ename character varying(10),
job character varying(9),
mgr numeric(4,0),
hiredate timestamp(0) without time zone,
sal numeric(7,2),
comm numeric(7,2),
deptno numeric(2,0)

)

with (orientation = column,compression=middle)
distribute by hash (sal);

\d emp_rec
Table "public.emp_rec"
Column | Type | Modifiers
empno | numeric(4,0) | not null

ename | character varying(10) |
job | character varying(9) |

mgr | numeric(4,0) |
hiredate | timestamp(0) without time zone |
sal | numeric(7,2) |

comm | numeric(7,2) |
deptno | numeric(2,0) |

-- Perform array operations in the stored procedure.

CREATE OR REPLACE FUNCTION regress_record(p_w VARCHAR2)
RETURNS

VARCHAR2 AS $$

DECLARE

-- Declare a record type.
type rec_type is record (name varchar2(100), epno int);
employer rec_type;

-- Use %type to declare the record type.
type rec_type1 is record (name emp_rec.ename%type, epno int not null :=10);
employer1 rec_typeT;

-- Declare a record type with a default value.
type rec_type2 is record (
name varchar2 not null := 'SCOTT',
epno int not null :=10);
employer2 rec_type2;
CURSOR C1 IS select ename,empno from emp_rec order by 1 limit 1;

BEGIN
-- Assign a value to a member record variable.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

147

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

employer.name := 'WARD;
employer.epno = 18;
raise info 'employer name: % , epno:%', employer.name, employer.epno;

-- Assign the value of a record variable to another variable.
employer1 := employer;
raise info 'employer1 name: % , epno: %',employer1.name, employer1.epno;

-- Assign the NULL value to a record variable.
employer1 := NULL;
raise info 'employer1 name: % , epno: %',employer1.name, employer1.epno;

-- Obtain the default value of a record variable.
raise info 'employer2 name: % ,epno: %', employer2.name, employer2.epno;

-- Use a record variable in the FOR loop.
for employer in select ename,empno from emp_rec order by 1 limit 1
loop
raise info 'employer name: % , epno: %', employer.name, employer.epno;
end loop;

-- Use a record variable in the SELECT INTO statement.
select ename,empno into employer2 from emp_rec order by 1 limit 1;
raise info 'employer name: % , epno: %', employer2.name, employer2.epno;

-- Use a record variable in a cursor.
OPEN C1;
FETCH C1 INTO employer2;
raise info 'employer name: % , epno: %', employer2.name, employer2.epno;
CLOSE C1;
RETURN employer.name;
END;
$$
LANGUAGE plpgsql;

-- Invoke the stored procedure.

CALL regress_record(‘abc');

INFO: employer name: WARD , epno:18

INFO: employer1 name: WARD , epno: 18

INFO: employer1 name: <NULL>, epno: <NULL>
INFO: employer2 name: SCOTT ,epno: 10

-- Delete the stored procedure.

DROP PROCEDURE regress_record;

9.4 GaussDB(DWS) Stored Procedure Declaration
Syntax

Basic Structure

A PL/SQL block can contain a sub-block which can be placed in any section. The
following describes the architecture of a PL/SQL block:

e DECLARE: declares variables, types, cursors, and regional stored procedures

and functions used in the PL/SQL block.
DECLARE

(1] NOTE

This part is optional if no variable needs to be declared.

e An anonymous block may omit the DECLARE keyword if no variable needs to be
declared.

e For a stored procedure, AS is used, which is equivalent to DECLARE. The AS
keyword must be reserved even if there is no variable declaration part.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 148

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

e EXECUTION: specifies procedure and SQL statements. It is the main part of a
program. It is mandatory.

BEGIN

e EXCEPTION: processes errors. It is optional.
EXCEPTION

e END
END;

/

NOTICE

You are not allowed to use consecutive tabs in the PL/SQL block, because they
may result in an exception when the parameter -r is executed using the gsql
tool.

PL/SQL Block Classification

PL/SQL blocks are classified into the following types:

e Anonymous block: a dynamic block that can be executed only for once. For
details about the syntax, see Anonymous Block.

e Subprogram: a stored procedure, function, operator, or packages stored in a
database. A subprogram created in a database can be called by other
programs.

Anonymous Block

An anonymous block applies to a script infrequently executed or a one-off activity.
An anonymous block is executed in a session and is not stored.

Syntax

Figure 9-2 shows the syntax diagrams for an anonymous block.

Figure 9-2 anonymous_block::=

ﬁv[DECLARE]—T-[declaration_statements]77—j

(v[BEGIN F+{ execution_statements]—>
B

Details about the syntax diagram are as follows:

e The execute part of an anonymous block starts with a BEGIN statement, has
a break with an END statement, and ends with a semicolon (;). Type a slash
(/) and press Enter to execute the statement.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 149

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

Subprogram

NOTICE

The terminator "/" must be written in an independent row.

e The declaration section includes the variable definition, type, and cursor
definition.

e A simplest anonymous block does not execute any commands. At least one

statement, even a null statement, must be presented in any implementation
blocks.

Examples

The following lists basic anonymous block programs:

-- Null statement block:
BEGIN
NULL;
END;
/

-- Print information to the console:
BEGIN

dbms_output.put_line('hello world!");
END;
/

-- Print variable contents to the console:
DECLARE
my_var VARCHAR2(30);
BEGIN
my_var :='world’;
dbms_output.put_line(‘hello'||my_var);
END;
/

A subprogram stores stored procedures, functions, operators, and advanced
packages. A subprogram created in a database can be called by other programs.

9.5 Basic Statements of GaussDB(DWS) Stored
Procedures

Variable Definition Statement

This section describes the declaration of variables in the PL/SQL and the scope of
this variable in codes.

Variable declaration

For the variable declaration syntax, see Figure 9-3.

Figure 9-3 declare_variable::=
—{ variable_name }+{type]—>
NOT NULL =) 8

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 150

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

The above syntax diagram is explained as follows:

e variable name indicates the name of a variable.
e type indicates the type of a variable.

e value indicates the initial value of the variable. (If the initial value is not
given, NULL is taken as the initial value.) value can also be an expression.

Examples

DECLARE
emp_id INTEGER := 7788; -- Define a variable and assign a value to it.
BEGIN
emp_id := 5*7784; -- Assign a value to the variable.
END;
/

In addition to the declaration of basic variable types, %TYPE and %ROWTYPE can
be used to declare variables related to table columns or table structures.

%TYPE attribute

%TYPE declares a variable to be of the same data type as a previously declared
variable (for example, a column in a table). For example, if you want to define a
my_name variable that has the same data type as the firstname column in the
employee table, you can define the variable as follows:

my_name employee.firstname%TYPE

In this way, you can declare my_name even if you do not know the data type of
firstname in employee, and the data type of my_name can be automatically
updated when the data type of firstname changes.

%ROWTYPE attribute

%ROWTYPE declares data types of a set of data. It stores a row of table data or
results fetched from a cursor. For example, if you want to define a set of data with
the same column names and column data types as the employee table, you can
define the data as follows:

my_employee employee%ROWTYPE

NOTICE

If multiple CNs are used, the %ROWTYPE and %TYPE attributes of temporary
tables cannot be declared in a stored procedure, because a temporary table is
valid only in the current session and is invisible to other CNs in the compilation
phase. In this case, a message is displayed indicating that the temporary table
does not exist.

Variable scope

The scope of a variable indicates the accessibility and availability of a variable in
code block. In other words, a variable takes effect only within its scope.

e To define a function scope, a variable must declare and create a BEGIN-END
block in the declaration section. The necessity of such declaration is also
determined by block structure, which requires that a variable has different
scopes and lifetime during a process.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 151

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

e Avariable can be defined multiple times in different scopes, and inner
definition can cover outer one.

e A variable defined in an outer block can also be used in a nested block.
However, the outer block cannot access variables in the nested block.

Examples

DECLARE
emp_id INTEGER :=7788; -- Define a variable and assign a value to it.
outer_var INTEGER :=6688; -- Define a variable and assign a value to it.
BEGIN
DECLARE
emp_id INTEGER :=7799; -- Define a variable and assign a value to it.
inner_var INTEGER :=6688; -- Define a variable and assign a value to it.
BEGIN
dbms_output.put_line(‘inner emp_id ='||emp_id); -- Display the value as 7799.
dbms_output.put_line(‘outer_var ='||outer_var); -- Cite variables of an outer block.
END;
dbms_output.put_line('outer emp_id ='||emp_id); -- Display the value as 7788.
END;
/

Assignment Statement

Syntax

Figure 9-4 shows the syntax diagram for assigning a value to a variable.

Figure 9-4 assignment_value::=

—+{ variable_name |+ =] ;]

The above syntax diagram is explained as follows:

e variable_name indicates the name of a variable.

e value can be a value or an expression. The type of value must be compatible
with the type of variable_name.

Examples

DECLARE
emp_id INTEGER := 7788;-- Value assignment
BEGIN
emp_id := 5;-- Value assignment
emp_id := 5*7784;
END;
/

Call Statement

Syntax

Figure 9-5 shows the syntax diagram for calling a clause.

Figure 9-5 call_clause::=

—+{CALL }+ procedure_name

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 152

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

The above syntax diagram is explained as follows:

e procedure_name specifies the name of a stored procedure.

e parameter specifies the parameters for the stored procedure. You can set no
parameter or multiple parameters.

Examples

-- Create the stored procedure proc_staffs:
CREATE OR REPLACE PROCEDURE proc_staffs
(

section NUMBER(6),

salary_sum out NUMBER(8,2),

staffs_count out INTEGER

)

IS

BEGIN

SELECT sum(salary), count(*) INTO salary_sum, staffs_count FROM staffs where section_id = section;
END;

/

-- Create the stored procedure proc_return:
CREATE OR REPLACE PROCEDURE proc_return
AS

v_num NUMBER(8,2);

v_sum INTEGER;

BEGIN

proc_staffs(30, v_sum, v_num); --Call a statement.
dbms_output.put_line(v_sum||'#'||v_num);
RETURN; --Return a statement.

END;

/

-- Invoke a stored procedure proc_return:
CALL proc_return();

-- Delete a stored procedure:
DROP PROCEDURE proc_staffs;
DROP PROCEDURE proc_return;

--Create the function func_return.

CREATE OR REPLACE FUNCTION func_return returns void
language plpgsql

AS $$

DECLARE

v_num INTEGER := 1;

BEGIN

dbms_output.put_line(v_num);

RETURN; --Return a statement.

END $$;

-- Invoke the function func_return.
CALL func_return();
1

-- Delete the function:
DROP FUNCTION func_return;

9.6 Dynamic Statements of GaussDB(DWS) Stored
Procedures

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 153

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

9.6.1 Executing Dynamic Query Statements

You can perform dynamic queries using EXECUTE IMMEDIATE or OPEN FOR in
GaussDB(DWS). EXECUTE IMMEDIATE dynamically executes SELECT statements
and OPEN FOR combines use of cursors. If you need to store query results in a
data set, use OPEN FOR.

EXECUTE IMMEDIATE

Figure 9-6 shows the syntax diagram.

Figure 9-6 EXECUTE IMMEDIATE dynamic_select_clause::=

—{ EXECUTE |+ IMMEDIATE |+ dvnamic_select_string]—)
[INTO | define wvariable

usmg clause

Figure 9-7 shows the syntax diagram for using_clause.

Figure 9-7 using_clause-1

USING
+ IN

bind argument
1 OouT

Tl
L=t

The above syntax diagram is explained as follows:

e define_variable: specifies variables to store single-line query results.

e USING IN bind_argument: specifies where the variable passed to the
dynamic SQL value is stored, that is, in the dynamic placeholder of
dynamic_select_string.

e USING OUT bind_argument: specifies where the dynamic SQL returns the
value of the variable.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 154

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

OPEN FOR

NOTICE

e In query statements, INTO and OUT cannot coexist.

e A placeholder name starts with a colon (:) followed by digits, characters, or
strings, corresponding to bind_argument in the USING clause.

e bind_argument can only be a value, variable, or expression. It cannot be a
database object such as a table name, column name, and data type. That
is, bind_argument cannot be used to transfer schema objects for dynamic
SQL statements. If a stored procedure needs to transfer database objects
through bind_argument to construct dynamic SQL statements (generally,
DDL statements), you are advised to use double vertical bars (||) to
concatenate dynamic_select clause with a database object.

e A dynamic PL/SQL block allows duplicate placeholders. That is, a
placeholder can correspond to only one bind_argument in the USING
clause.

Example

--Retrieve values from dynamic statements (INTO clause).
DECLARE

staff_count VARCHAR2(20);
BEGIN

EXECUTE IMMEDIATE 'select count(*) from staffs'

INTO staff_count;

dbms_output.put_line(staff_count);
END;
/

--Pass and retrieve values (the INTO clause is used before the USING clause).
CREATE OR REPLACE PROCEDURE dynamic_proc
AS
staff id NUMBER(6) := 200;
first_name VARCHAR2(20);
salary NUMBER(8,2);
BEGIN
EXECUTE IMMEDIATE 'select first_name, salary from staffs where staff_id = :1'
INTO first_name, salary
USING IN staff_id;
dbms_output.put_line(first_name || ' ' || salary);
END;
/

-- Invoke the stored procedure.
CALL dynamic_proc();

-- Delete the stored procedure.
DROP PROCEDURE dynamic_proc;

Dynamic query statements can be executed by using OPEN FOR to open dynamic
cursors.

For details about the syntax, see Figure 9-8.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 155

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

Figure 9-8 open_for:=

—+{ OPEN |+ cursor_name |+ FOR |+ dvnamic_string]—)
USING value 8
8

Parameter description:

e cursor_name: specifies the name of the cursor to be opened.
e dynamic_string: specifies the dynamic query statement.

e USING value applies when a placeholder exists in dynamic_string.

For use of cursors, see GaussDB(DWS) Stored Procedure Cursor.

Example

DECLARE
name VARCHAR2(20);
phone_number VARCHAR2(20);
salary NUMBER(8,2);
sqlstr VARCHAR2(1024);

TYPE app_ref_cur_type IS REF CURSOR; -- Define the cursor type.
my_cur app_ref_cur_type; -- Define the cursor variable.

BEGIN
sqlstr := 'select first_name,phone_number,salary from staffs
where section_id = :1";
OPEN my_cur FOR sqlstr USING '30'; -- Open the cursor. using is optional.
FETCH my_cur INTO name, phone_number, salary; -- Retrieve the data.
WHILE my_cur%FOUND LOOP
dbms_output.put_line(name||'#'||phone_number||'#'||salary);
FETCH my_cur INTO name, phone_number, salary;
END LOOP;
CLOSE my_cur; -- Close the cursor.
END;
/

9.6.2 Executing Dynamic Non-query Statements

Syntax

Figure 9-9 shows the syntax diagram.

Figure 9-9 noselect::=

—{ EXECUTE -+ IMMEDIATE |+ dynamic_noselect_string]—)

%—{ using_clause }7—r

Figure 9-10 shows the syntax diagram for using_clause.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

156

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Figure 9-10 using_clause-2

USING bind_argument } »

argument J+—_ |

The above syntax diagram is explained as follows:

USING IN bind_argument is used to specify the variable that transfers values to
dynamic SQL statements. It is used when a placeholder exists in
dynamic_noselect_string. That is, a placeholder is replaced by the corresponding
bind_argument when a dynamic SQL statement is executed. Note that
bind_argument can only be a value, variable, or expression, and cannot be a
database object such as a table name, column name, and data type. If a stored
procedure needs to transfer database objects through bind_argument to construct
dynamic SQL statements (generally, DDL statements), you are advised to use
double vertical bars (||) to concatenate dynamic_select clause with a database
object. In addition, a dynamic PL/SQL block allows duplicate placeholders. That is,
a placeholder can correspond to only one bind_argument.

Examples

-- Create a table:

CREATE TABLE sections_t1

(
section NUMBER(4) ,
section_name VARCHAR2(30),
manager_id NUMBER(6),
place_id NUMBER(4)

)
DISTRIBUTE BY hash(manager_id);

--Declare a variable:
DECLARE
section NUMBER(4) := 280;
section_name VARCHAR2(30) :='Info support’;
manager_id NUMBER(6) := 103;
place_id NUMBER(4) := 1400;
new_colname VARCHAR2(10) := 'sec_name';
BEGIN
-- Execute the query:
EXECUTE IMMEDIATE 'insert into sections_t1 values(:1, :2, :3, :4)'
USING section, section_name, manager_id,place_id;
-- Execute the query (duplicate placeholders):
EXECUTE IMMEDIATE 'insert into sections_t1 values(:1, :2, :3, :1)'
USING section, section_name, manager_id;
-- Run the ALTER statement. (You are advised to use double vertical bars (||) to concatenate the dynamic
DDL statement with a database object.)
EXECUTE IMMEDIATE 'alter table sections_t1 rename section_name to ' || new_colname;
END;
/

-- Query data:
SELECT * FROM sections_t1;

--Delete the table.
DROP TABLE sections_t1;

9.6.3 Dynamically Calling Stored Procedures

This section describes how to dynamically call store procedures. You must use
anonymous statement blocks to package stored procedures or statement blocks

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 157

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

Syntax

Examples

and append IN and OUT behind the EXECUTE IMMEDIATE...USING statement to
input and output parameters.

Figure 9-11 shows the syntax diagram.

Figure 9-11 call_procedure::=

—+{ EXECUTE -+ IMMEDIATE |+ }+{CALL }+ procedure_name]—>
[placeholder

|-.=_J=

Figure 9-12 shows the syntax diagram for using_clause.

Figure 9-12 using_clause-3

USING

=@ + bind_argument
OuUT
@:

The above syntax diagram is explained as follows:

e CALL procedure_name: calls the stored procedure.

e [:placeholder1i,:placeholder2,...]: specifies the placeholder list of the stored
procedure parameters. The numbers of the placeholders and the parameters
are the same.

e USING [INJOUT|IN OUT]bind_argument: specifies where the variable passed
to the stored procedure parameter value is stored. The modifiers in front of
bind_argument and of the corresponding parameter are the same.

--Create the stored procedure proc_add:
CREATE OR REPLACE PROCEDURE proc_add
(

param1 in INTEGER,

param2 out INTEGER,

param3 in INTEGER

)
AS

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 158

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

BEGIN

param2:= param1 + param3;
END;
/

DECLARE
input1 INTEGER:=1;
input2 INTEGER:=2;
statement VARCHAR2(200);
param2 INTEGER;
BEGIN
--Declare the call statement:
statement := 'call proc_add(:col_1, :col_2, :col_3)";
--Execute the statement:
EXECUTE IMMEDIATE statement
USING IN input1, OUT param2, IN input2;
dbms_output.put_line('result is: '||to_char(param?2));
END;

/

-- Delete the stored procedure.
DROP PROCEDURE proc_add;

9.6.4 Dynamically Calling Anonymous Blocks
This section describes how to execute anonymous blocks in dynamic statements.

Append IN and OUT behind the EXECUTE IMMEDIATE...USING statement to
input and output parameters.

Syntax

Figure 9-13 shows the syntax diagram.

Figure 9-13 call_anonymous_block::=

—{EXECUTE -+ IMMEDIATE %

%»[DECLARE]—Tb[declaration_statements]771

QD[BEGIN }+{ execution_statements]—)

%-[EXCEPTION |+ exception_handling_statements]7j

(END (- J+{)

Figure 9-14 shows the syntax diagram for using_clause.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 159

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

Example

Figure 9-14 using_clause-4

USING

o IN + bind_argument

IN OUT

Mle
L= J

The above syntax diagram is explained as follows:

e The execute part of an anonymous block starts with a BEGIN statement, has
a break with an END statement, and ends with a semicolon (;).

e USING [IN|JOUT|IN OUT]bind_argument: specifies where the variable passed
to the stored procedure parameter value is stored. The modifiers in front of
bind_argument and of the corresponding parameter are the same.

e The input and output parameters in the middle of an anonymous block are
designated by placeholders. The numbers of the placeholders and the
parameters are the same. The sequences of the parameters corresponding to
the placeholders and the USING parameters are the same.

e Currently in GaussDB(DWS), when dynamic statements call anonymous
blocks, placeholders cannot be used to pass input and output parameters in
an EXCEPTION statement.

--Create the stored procedure dynamic_proc.
CREATE OR REPLACE PROCEDURE dynamic_proc
AS

staff id NUMBER(6) := 200;

first_name VARCHAR2(20);

salary NUMBER(8,2);
BEGIN
--Execute the anonymous block.

EXECUTE IMMEDIATE 'begin select first_name, salary into :first_name, :salary from staffs where
staff_id=:dno; end;'

USING OUT first_name, OUT salary, IN staff_id;

dbms_output.put_line(first_name|| ' ' || salary);
END;
/

-- Invoke the stored procedure.
CALL dynamic_proc();

-- Delete the stored procedure.
DROP PROCEDURE dynamic_proc;

9.7 GaussDB(DWS) Stored Procedure Control
Statements

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 160

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

9.7.1 RETURN Statements

RETURN

GaussDB(DWS) provides two methods for returning data: RETURN (or RETURN
NEXT) and RETURN QUERY. RETURN NEXT and RETURN QUERY are used only
for functions and cannot be used for stored procedures.

Syntax

Figure 9-15 shows the syntax diagram for a return statement.

Figure 9-15 return_clause:=

RETURN }+{:)

The syntax details are as follows:
This statement returns control from a stored procedure or function to a caller.

Examples

-- Create the stored procedure proc_staffs:
CREATE OR REPLACE PROCEDURE proc_staffs
(

section NUMBER(6),

salary_sum out NUMBER(8,2),

staffs_count out INTEGER

)

IS

BEGIN

SELECT sum(salary), count(*) INTO salary_sum, staffs_count FROM staffs where section_id = section;
END;

/

-- Create the stored procedure proc_return:
CREATE OR REPLACE PROCEDURE proc_return
AS

v_num NUMBER(8,2);

v_sum INTEGER;

BEGIN

proc_staffs(30, v_sum, v_num); --Call a statement.
dbms_output.put_line(v_sum||'#'||v_num);
RETURN; --Return a statement.

END;

/

-- Invoke a stored procedure proc_return:
CALL proc_return();

-- Delete a stored procedure:
DROP PROCEDURE proc_staffs;
DROP PROCEDURE proc_return;

--Create the function func_return.

CREATE OR REPLACE FUNCTION func_return returns void
language plpgsql

AS $$

DECLARE

v_num INTEGER = 1;

BEGIN

dbms_output.put_line(v_num);

RETURN; --Return a statement.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 161

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

END $$;

-- Invoke the function func_return.
CALL func_return();
1

-- Delete the function:
DROP FUNCTION func_return;

RETURN NEXT and RETURN QUERY

Syntax
When creating a function, specify SETOF datatype for the return values.

return_next_clause::=

—I[RETURM NEXT]—b[EXPression J—DE]

return_query_clause:=

—5[RETURM QUERY H query]‘B

The syntax details are as follows:

If a function needs to return a result set, use RETURN NEXT or RETURN QUERY
to add results to the result set, and then continue to execute the next statement
of the function. As the RETURN NEXT or RETURN QUERY statement is executed
repeatedly, more and more results will be added to the result set. After the
function is executed, all results are returned.

RETURN NEXT can be used for scalar and compound data types.

RETURN QUERY has a variant RETURN QUERY EXECUTE. You can add dynamic
queries and add parameters to the queries by using USING.

Examples

CREATE TABLE t1(a int);
INSERT INTO t1 VALUES(1),(10);

--RETURN NEXT
CREATE OR REPLACE FUNCTION fun_for_return_next() RETURNS SETOF t1 AS $$
DECLARE
r t1%ROWTYPE;
BEGIN
FOR r IN select * from t1
LOOP
RETURN NEXT r;
END LOOP;
RETURN;
END;
$$ LANGUAGE PLPGSQL;
call fun_for_return_next();
a
1
10
(2 rows)

-- RETURN QUERY

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 162

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

CREATE OR REPLACE FUNCTION fun_for_return_query() RETURNS SETOF t1 AS $$
DECLARE
r t1%ROWTYPE;
BEGIN
RETURN QUERY select * from t1;
END;
$$
language plpgsql;
call fun_for_return_next();
a
1
10
(2 rows)

9.7.2 Conditional Statements

Conditional statements are used to decide whether given conditions are met.
Operations are executed based on the decisions made.

GaussDB(DWS) supports five usages of IF:
e |F_THEN

Figure 9-16 IF_THEN::=

boolean_expression -+ THEN]—>
(r[statements |+ END £}

IF_THEN is the simplest form of IF. If the condition is true, statements are

executed. If it is false, they are skipped.

Example

IF v_user_id <> 0 THEN
UPDATE users SET email = v_email WHERE user_id = v_user_id;
END IF;

e |IF_THEN_ELSE

Figure 9-17 IF_THEN_ELSE::=

boolean_expression -+ THEN]—>
(r[statements |+ ELSE |+ statements |+ END ;]

IF-THEN-ELSE statements add ELSE branches and can be executed if the
condition is false.

Example

IF parentid IS NULL OR parentid ="
THEN
RETURN;
ELSE
hp_true_filename(parentid); -- Call the stored procedure.
END IF;

e |F_THEN_ELSE IF
IF statements can be nested in the following way:

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

163

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

IF gender = 'm' THEN

pretty_gender := 'man’;
ELSE

IF gender = 'f' THEN

pretty_gender := 'woman’;

END IF;
END IF;
Actually, this is a way of an IF statement nesting in the ELSE part of another
IF statement. Therefore, an END IF statement is required for each nesting IF
statement and another END IF statement is required to end the parent IF-

ELSE statement. To set multiple options, use the following form:
e |F_THEN_ELSIF_ELSE

Figure 9-18 IF_THEN_ELSIF_ELSE::=

boolean_expression |+ THEN |+ statements]—>

(
<—[statements j+— THEN s+ boolean_expression j+—{ ELSIF]4->]
%—[ELSE j+{statement }—+(END B

Example

IF number_tmp = 0 THEN
result := 'zero';

ELSIF number_tmp > 0 THEN
result := 'positive';

ELSIF number_tmp < 0 THEN
result := 'negative’;

ELSE
result := 'NULL";

END IF;

e |F_ THEN_ELSEIF_ELSE
ELSEIF is an alias of ELSIF.

Example
CREATE OR REPLACE PROCEDURE proc_control_structure(i in integer)
AS
BEGIN
IFi>0THEN
raise info 'i:% is greater than 0. ',j;
ELSIF i < 0 THEN
raise info 'i:% is smaller than 0. ',i;
ELSE
raise info 'i:% is equal to 0. ',i;
END IF;
RETURN;
END;
/

CALL proc_control_structure(3);

-- Delete the stored procedure:
DROP PROCEDURE proc_control_structure;

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 164

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

9.7.3 Loop Statements

Simple LOOP Statements

The syntax diagram is as follows.

Figure 9-19 loop::=

—[LOOP |-+ statements |-+ END }+{LOOP |+{: }»

Example:

CREATE OR REPLACE PROCEDURE proc_loop(i in integer, count out integer)
AS
BEGIN
count:=0;
LOOP
IF count > i THEN
raise info 'count is %. ', count;
EXIT;
ELSE
count:=count+1;
END IF;
END LOOP;
END;
/

CALL proc_loop(10,5);

NOTICE

The loop must be exploited together with EXIT; otherwise, a dead loop occurs.

WHILE-LOOP Statements

The syntax diagram is as follows.

Figure 9-20 while_loop::=

—+{ WHILE }+ condition }-+{LOOP]—>

(END }-+{TOOP J+{7}»

If the conditional expression is true, a series of statements in the WHILE statement
are repeatedly executed and the condition is decided each time the loop body is
executed.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 165

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Examples

CREATE TABLE integertable(c1 integer) DISTRIBUTE BY hash(c1);
CREATE OR REPLACE PROCEDURE proc_while_loop(maxval in integer)
AS
DECLARE
iint:=1;
BEGIN
WHILE i < maxval LOOP
INSERT INTO integertable VALUES(i);
ir=i+1;
END LOOP;
END;
/

-- Invoke a function:
CALL proc_while_loop(10);

-- Delete the stored procedure and table:
DROP PROCEDURE proc_while_loop;
DROP TABLE integertable;

FOR_LOOP (/nteger variable) Statement

The syntax diagram is as follows.

Figure 9-21 for_loop::=

—+{FOR }+{name }+{IN}<—+REVERSE }—+{Iower_bound]_'@j
Q,[upper_bound]_T.[BY]_-{ step]7>[LDDP }+{ staements]—)
(END }+(TOOP }+{_}»

(11 NOTE

e The variable name is automatically defined as the integer type and exists only in this
loop. The variable name falls between lower_bound and upper_bound.

e When the keyword REVERSE is used, the lower bound must be greater than or equal to
the upper bound; otherwise, the loop body is not executed.

Example:

-- Loop from 0 to 5:
CREATE OR REPLACE PROCEDURE proc_for_loop()
AS
BEGIN
FOR I IN 0..5 LOOP
DBMS_OUTPUT.PUT_LINE('It is '|[to_char(l) || ' time;') ;
END LOOP;
END;
/

-- Invoke a function:
CALL proc_for_loop();

-- Delete the stored procedure:
DROP PROCEDURE proc_for_loop;

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 166

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

FOR_LOOP Query Statements

The syntax diagram is as follows.

Figure 9-22 for_loop_query::=

—+{FOR |+ target query +{LOOP]—)

C(END }-+{TOOP }+{1}+

(11 NOTE

The variable target is automatically defined, its type is the same as that in the query result,
and it is valid only in this loop. The target value is the query result.

Example:

-- Display the query result from the loop:
CREATE OR REPLACE PROCEDURE proc_for_loop_query()
AS
record VARCHAR2(50);
BEGIN
FOR record IN SELECT spcname FROM pg_tablespace LOOP
dbms_output.put_line(record);
END LOOP;
END;
/

-- Invoke a function.
CALL proc_for_loop_query();

-- Delete the stored procedure.
DROP PROCEDURE proc_for_loop_query;

FORALL Batch Query Statements

The syntax diagram is as follows.

Figure 9-23 forall::=

—+FORALL]—-{indexREVERSE]7->[lmv_baund]—j
Q—E]——[upper_bound |+ DML]—»@-»

(11 NOTE

The variable index is automatically defined as the integer type and exists only in this loop.
The index value falls between low_bound and upper_bound.

Example:

CREATE TABLE hdfs_t1 (
title NUMBER(6),

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 167

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

did VARCHAR2(20),
data_peroid VARCHAR2(25),
kind VARCHAR2(25),
interval VARCHAR2(20),
time DATE,

isModified VARCHAR2(10)

)
DISTRIBUTE BY hash(did);

INSERT INTO hdfs_t1 VALUES(8, 'Donald', 'OConnell', 'DOCONNEL', '650.507.9833', to_date('21-06-1999',
'dd-mm-yyyy'), 'SH_CLERK");
CREATE OR REPLACE PROCEDURE proc_forall()
AS
BEGIN

FORALL i IN 100..120

insert into hdfs_t1(title) values(i);

END;
/

-- Invoke a function:
CALL proc_forall();

-- Query the invocation result of the stored procedure:
SELECT * FROM hdfs_t1 WHERE title BETWEEN 100 AND 120;

-- Delete the stored procedure and table:
DROP PROCEDURE proc_forall;
DROP TABLE hdfs_t1;

9.7.4 Branch Statements

Syntax

Figure 9-24 shows the syntax diagram.

Figure 9-24 case_when::=

CASE case_expression]7—>[‘.]»’HEN F+ when_expression]—)

Q,[THEN statement when_clause

END | +(CASE }+(-}»
Savend

Figure 9-25 shows the syntax diagram for when_clause.

Figure 9-25 when_clause::=

—+{WHEN |+ when_expression -+ THEN
_I‘

Parameter description:

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 168

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

Examples

case_expression: specifies the variable or expression.

when_expression: specifies the constant or conditional expression.

statement: specifies the statement to execute.

CREATE OR REPLACE PROCEDURE proc_case_branch(pi_result in integer, pi_return out integer)

AS
BEGIN
CASE pi_result
WHEN 1 THEN
pi_return := 111;
WHEN 2 THEN
pi_return := 222;
WHEN 3 THEN
pi_return := 333;
WHEN 6 THEN
pi_return := 444;
WHEN 7 THEN
pi_return := 555;
WHEN 8 THEN
pi_return := 666;
WHEN 9 THEN
pi_return := 777;
WHEN 10 THEN
pi_return := 888;
ELSE
pi_return := 999;
END CASE;
raise info 'pi_return : %',pi_return ;
END;
/

CALL proc_case_branch(3,0);

-- Delete the stored procedure:
DROP PROCEDURE proc_case_branch;

9.7.5 NULL Statements

In PL/SQL programs, a NULL statement can be used to indicate "do nothing",

Syntax

9.7.6 Error Trapping Statements

which is also known as an empty statement.

A NULL statement acts as a placeholder and can give meaning to certain
statements, improving the readability of the program.

Here are some examples of how to use NULL statements.

DECLARE

BEGIN

IF v_num IS NULL THEN
NULL; --No data needs to be processed.

END IF;

END;
/

By default, any error occurring in a PL/SQL function aborts execution of the
function, and indeed of the surrounding transaction as well. You can trap errors

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 169

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

and restore from them by using a BEGIN block with an EXCEPTION clause. The
syntax is an extension of the normal syntax for a BEGIN block:
[<<labelt>]
[DECLARE
declarations)
BEGIN
statements
EXCEPTION
WHEN condition [OR condition ...] THEN
handler_statements
[WHEN condition [OR condition ..] THEN
handler_statements

.
END;

If no error occurs, this form of block simply executes all the statements, and then
control passes to the next statement after END. But if an error occurs inside the
executed statement, the statement rolls back and goes to the EXCEPTION list to
find the first condition that matches the error. If a match is found, the
corresponding handler_statements are executed, and then control passes to the
next statement after END. If no match is found, the error propagates out as
though the EXCEPTION clause were not there at all:

The error can be caught by an enclosing block with EXCEPTION, or if there is
none it aborts processing of the function.

The condition name can be any of those shown in SQL standard error codes. The
special condition name OTHERS matches every error type except
QUERY_CANCELED.

If a new error occurs within the selected handler_statements, it cannot be caught
by this EXCEPTION clause, but is propagated out. A surrounding EXCEPTION
clause could catch it.

When an error is caught by an EXCEPTION clause, the local variables of the
PL/SQL function remain as they were when the error occurred, but all changes to
persistent database state within the block are rolled back.

Example:
CREATE TABLE mytab(id INT,firstname VARCHAR(20),lastname VARCHAR(20)) DISTRIBUTE BY hash(id);
INSERT INTO mytab(firstname, lastname) VALUES('Tom', 'Jones');

CREATE FUNCTION fun_exp() RETURNS INT
AS $3%
DECLARE
X INT :=0;
y INT;
BEGIN
UPDATE mytab SET firstname = 'Joe' WHERE lastname = 'Jones';
X=x+1;
y=x/0;
EXCEPTION
WHEN division_by_zero THEN
RAISE NOTICE 'caught division_by_zero';
RETURN x;
END;$$
LANGUAGE plpgsql;

CALL fun_exp();
NOTICE: caught division_by_zero
fun_exp

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 170

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

(1 row)

SELECT * FROM mytab;

id | firstname | lastname
| Tom | Jones

(1 row)

DROP FUNCTION fun_exp();
DROP TABLE mytab;

When control reaches the assignment to y, it will fail with a division_by_zero
error. This will be caught by the EXCEPTION clause. The value returned in the
RETURN statement will be the incremented value of x.

(11 NOTE

A block containing an EXCEPTION clause is more expensive to enter and exit than a block
without one. Therefore, do not use EXCEPTION without need.

In the following scenario, an exception cannot be caught, and the entire transaction rolls
back. The threads of the nodes participating the stored procedure exit abnormally due to
node failure and network fault, or the source data is inconsistent with that of the table
structure of the target table during the COPY FROM operation.

Example: Exceptions with UPDATE/INSERT

This example uses exception handling to perform either UPDATE or INSERT, as
appropriate:

CREATE TABLE db (a INT, b TEXT);

CREATE FUNCTION merge_db(key INT, data TEXT) RETURNS VOID AS
$$
BEGIN

LOOP

-- Try updating the key:
UPDATE db SET b = data WHERE a = key;
IF found THEN
RETURN;
END IF;
-- Not there, so try to insert the key. If someone else inserts the same key concurrently, there could be a
unique-key failure.
BEGIN
INSERT INTO db(a,b) VALUES (key, data);
RETURN;
EXCEPTION WHEN unique_violation THEN
-- Loop to try the UPDATE again:
END;
END LOOP;
END;
$$
LANGUAGE plpgsql;

SELECT merge_db(1, 'david');
SELECT merge_db(1, 'dennis');

-- Delete FUNCTION and TABLE:

DROP FUNCTION merge_db;
DROP TABLE db ;

9.7.7 GOTO Statements

The GOTO statement unconditionally transfers the control from the current
statement to a labeled statement. The GOTO statement changes the execution

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 171

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

Syntax

Examples

Constraints

logic. Therefore, use this statement only when necessary. Alternatively, you can use
the EXCEPTION statement to handle issues in special scenarios. To run the GOTO
statement, the labeled statement must be unique.

label declaration ::=

QDO

goto statement ::=

— GOTO —){:Iabel_nam:-:)—o

CREATE OR REPLACE PROCEDURE GOTO_test()
AS

DECLARE
vl int;
BEGIN
vl =0;
LOOP
EXIT WHEN v1 > 100;
vl =vl +2;
if v1 > 25 THEN
GOTO pos1;
END IF;
END LOOP;
<<pos1>>
vl :=v1+10;
raise info 'v1 is %. ', v1;
END;
/

call GOTO_test();
DROP PROCEDURE GOTO_test();

The GOTO statement has the following constraints:

e The GOTO statement does not allow multiple labeled statements even if they

are in different blocks.
BEGIN
GOTO pos1;
<<pos1>>
SELECT * FROM ...
<<pos1>>
UPDATE t1 SET ...
END;

e The GOTO statement cannot transfer control to the IF, CASE, or LOOP

statement.
BEGIN
GOTO pos1;
IF valid THEN
<<pos1>>
SELECT * FROM ...
END IF;
END;

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 172

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

The GOTO statement cannot transfer control from one IF clause to another,

or from one WHEN clause in the CASE statement to another.
BEGIN
IF valid THEN
GOTO posT;
SELECT * FROM ...
ELSE
<<pos1>>
UPDATE t1 SET ...
END IF;
END;

The GOTO statement cannot transfer control from an outer block to an inner

BEGIN-END block.
BEGIN
GOTO pos1;
BEGIN
<<pos1>>
UPDATE t1 SET ...
END;
END;

The GOTO statement cannot transfer control from an EXCEPTION block to

the current BEGIN-END block but can transfer to an outer BEGIN-END block.
BEGIN

<<pos'|>>

UPDATE t1 SET ...

EXCEPTION

WHEN condition THEN

GOTO pos1;
END;

If the labeled statement in the GOTO statement does not exist, you need to

add the NULL statement.
DECLARE
done BOOLEAN;
BEGIN
FOR i IN 1..50 LOOP
IF done THEN
GOTO end_loop;
END IF;
<<end_loop>> -- not allowed unless an executable statement follows
NULL; -- add NULL statement to avoid error
END LOOP; -- raises an error without the previous NULL
END;
/

9.8 Other Statements in a GaussDB(DWS) Stored

Procedure

Lock Operations

GaussDB(DWS) provides multiple lock modes to control concurrent accesses to
table data. These modes are used when Multi-Version Concurrency Control
(MVCC) cannot give expected behaviors. Alike, most GaussDB(DWS) commands
automatically apply appropriate locks to ensure that called tables are not deleted
or modified in an incompatible manner during command execution. For example,
when concurrent operations exist, ALTER TABLE cannot be executed on the same
table.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 173

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Cursor Operations

GaussDB(DWS) provides cursors as a data buffer for users to store execution
results of SQL statements. Each cursor region has a name. Users can use SQL
statements to obtain records one by one from cursors and grant them to master
variables, then being processed further by host languages.

Cursor operations include cursor definition, open, fetch, and close operations.

For the complete example of cursor operations, see Explicit Cursor.

9.9 GaussDB(DWS) Stored Procedure Cursor

9.9.1 Overview

To process SQL statements, the stored procedure process assigns a memory
segment to store context association. Cursors are handles or pointers to context
areas. With cursors, stored procedures can control alterations in context areas.

NOTICE

If JDBC is used to call a stored procedure whose returned value is a cursor, the
returned cursor is not available.

Cursors are classified into explicit cursors and implicit cursors. Table 9-2 shows the
usage conditions of explicit and implicit cursors for different SQL statements.

Table 9-2 Cursor usage conditions

SQL Statement Cursor
Non-query statements Implicit

Query statements with single-line Implicit or explicit
results

Query statements with multi-line Explicit

results

9.9.2 Explicit Cursor

An explicit cursor is used to process query statements, particularly when the query
results contain multiple records.

Procedure

An explicit cursor performs the following six PL/SQL steps to process query
statements:

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 174

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

Step 1

Step 2

Define a static cursor: Define a cursor name and its corresponding SELECT
statement.

Figure 9-26 shows the syntax diagram for defining a static cursor.

Figure 9-26 static_cursor_define::=

—+{ CURSOR -+ cursor_name

select_statement]—-@-»

Parameter description:

e cursor_name: defines a cursor name.

e parameter: specifies cursor parameters. Only input parameters are allowed in

the following format:
parameter_name datatype

e select_statement: specifies a query statement.

(11 NOTE

The system automatically determines whether the cursor can be used for backward fetches
based on the execution plan.

Define a dynamic cursor: Define a ref cursor, which means that the cursor can be
opened dynamically by a set of static SQL statements. Define the type of the ref
cursor first and then the cursor variable of this cursor type. Dynamically bind a
SELECT statement through OPEN FOR when the cursor is opened.

Figure 9-27 and Figure 9-28 show the syntax diagrams for defining a dynamic
cursor.

Figure 9-27 cursor_typename:=

—+{TYPE }+{ decl_typename }+{IS }+{REF |+ CURSOR }+{: }»

GaussDB(DWS) supports the dynamic cursor type sys_refcursor. A function or
stored procedure can use the sys_refcursor parameter to pass on or pass out the
cursor result set. A function can return sys_refcursor to return the cursor result
set.

Figure 9-28 dynamic_cursor_define:=

—{ cursor_name |+ decl tvpename]—-E}v

Open the static cursor: Execute the SELECT statement corresponding to the
cursor. The query result is placed in the work area and the pointer directs to the

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 175

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

Step 3

Step 4
Step 5
Step 6

head of the work area to identify the cursor result set. If the cursor query
statement contains the FOR UPDATE option, the OPEN statement locks the data
row corresponding to the cursor result set in the database table.

Figure 9-29 shows the syntax diagram for opening a static cursor.

Figure 9-29 open_static_cursor:=

—+{ OPEN -+ cursor_name

Open the dynamic cursor: Use the OPEN FOR statement to open the dynamic
cursor and the SQL statement is dynamically bound.

Figure 9-30 shows the syntax diagram for opening a dynamic cursor.

Figure 9-30 open_dynamic_cursor::=

—+{ OPEN |+ cursor_name |+ FOR]—>

‘wselect_statment ll

A PL/SQL program cannot use the OPEN statement to repeatedly open a cursor.

Fetch cursor data: Retrieve data rows in the result set and place them in specified
output variables.

Figure 9-31 shows the syntax diagram for fetching cursor data.

Figure 9-31 fetch_cursor::=

—{ FETCH }+{ cursor_name +{INTO]—)
8

™ e
=

Process the record.
Continue to process until the active set has no record.

Close the cursor: When fetching and finishing the data in the cursor result set,
close the cursor immediately to release system resources used by the cursor and
invalidate the work area of the cursor so that the FETCH statement cannot be
used to fetch data any more. A closed cursor can be reopened using the OPEN
statement.

Figure 9-32 shows the syntax diagram for closing a cursor.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 176

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

Figure 9-32 close_cursor::=

—+{CLOSE }+{ cursor_name |+ }»

--—-End

Cursor attributes are used to control program procedures or learn about program
status. When a DML statement is executed, the PL/SQL opens a built-in cursor and
processes its result. A cursor is a memory segment for maintaining query results. It
is opened when a DML statement is executed and closed when the execution is
finished. An explicit cursor has the following attributes:

Attributes
[
[]
[
Examples

%FOUND: Boolean attribute, which returns TRUE if the last fetch returns a
row.

%NOTFOUND: Boolean attribute, which works opposite to the %FOUND
attribute.

%ISOPEN: Boolean attribute, which returns TRUE if the cursor has been
opened.

%ROWCOUNT: numeric attribute, which returns the number of records
fetched from the cursor.

-- Specify the method for passing cursor parameters:
CREATE OR REPLACE PROCEDURE cursor_proc1()

AS

DECLARE

DEPT_NAME VARCHAR(100);
DEPT_LOC NUMBER(4);
-- Define a cursor:
CURSOR C1 IS
SELECT section_name, place_id FROM sections WHERE section_id <= 50;
CURSOR C2(sect_id INTEGER) IS
SELECT section_name, place_id FROM sections WHERE section_id <= sect_id;
TYPE CURSOR_TYPE IS REF CURSOR;
C3 CURSOR_TYPE;
SQL_STR VARCHAR(100);

BEGIN

OPEN C1;-- Open the cursor:
LOOP
-- Fetch data from the cursor:
FETCH C1 INTO DEPT_NAME, DEPT_LOC;
EXIT WHEN C1%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(DEPT_NAME||'---'||DEPT_LOC);
END LOOP;
CLOSE C1;-- Close the cursor.

OPEN C2(10);
LOOP
FETCH C2 INTO DEPT_NAME, DEPT_LOG;
EXIT WHEN C2%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(DEPT_NAME||'---'[|DEPT_LOC);
END LOOP;
CLOSE C2;

SQL_STR := 'SELECT section_name, place_id FROM sections WHERE section_id <= :DEPT_NO;';
OPEN C3 FOR SQL_STR USING 50;
LOOP

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 177

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

FETCH C3 INTO DEPT_NAME, DEPT_LOG;
EXIT WHEN C3%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(DEPT_NAME]||'---'|| DEPT_LOC);
END LOOP;
CLOSE C3;
END;
/

CALL cursor_proc1();

DROP PROCEDURE cursor_procT;
-- Increase the salary of employees whose salary is lower than CNY3000 by CNY500:
CREATE TABLE staffs_t1 AS TABLE staffs;

CREATE OR REPLACE PROCEDURE cursor_proc2()
AS
DECLARE
V_EMPNO NUMBER(6);
V_SAL NUMBER(8,2);
CURSOR C IS SELECT staff_id, salary FROM staffs_t1;
BEGIN
OPEN G;
LOOP
FETCH C INTO V_EMPNO, V_SAL;
EXIT WHEN C%NOTFOUND;
IF V_SAL<=3000 THEN
UPDATE staffs_t1 SET salary =salary + 500 WHERE staff_id = V_EMPNO;
END IF;
END LOOP;
CLOSE G
END;
/

CALL cursor_proc2();

-- Drop the stored procedure:

DROP PROCEDURE cursor_proc2;

DROP TABLE staffs_t1;

-- Use function parameters of the SYS_REFCURSOR type:

CREATE OR REPLACE PROCEDURE proc_sys_ref(O OUT SYS_REFCURSOR)
IS

C1 SYS_REFCURSOR,;

BEGIN

OPEN C1 FOR SELECT section_ID FROM sections ORDER BY section_ID;
O :=C1;

END;

/

DECLARE

C1 SYS_REFCURSOR;

TEMP NUMBER(4);

BEGIN

proc_sys_ref(C1);

LOOP
FETCH C1 INTO TEMP;
DBMS_OUTPUT.PUT_LINE(C1%ROWCOUNT);
EXIT WHEN C1%NOTFOUND;

END LOOP;

END;

/

-- Drop the stored procedure:
DROP PROCEDURE proc_sys_ref;

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

178

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

9.9.3 Implicit Cursor

Overview

Attributes

Examples

The system automatically sets implicit cursors for non-query statements, such as
ALTER and DROP, and creates work areas for these statements. These implicit
cursors are named SQL, which is defined by the system.

Implicit cursor operations, such as definition, opening, value-grant, and closing,
are automatically performed by the system. Users can use only the attributes of
implicit cursors to complete operations. The data stored in the work area of an
implicit cursor is the latest SQL statement, and is not related to the user-defined
explicit cursors.

Format call: SQL%

(11 NOTE

INSERT, UPDATE, DROP, and SELECT statements do not require defined cursors.

An implicit cursor has the following attributes:

e SQL%FOUND: Boolean attribute, which returns TRUE if the last fetch returns
a row.

e SQL%NOTFOUND: Boolean attribute, which works opposite to the SQL
%FOUND attribute.

e SQL%ROWCOUNT: numeric attribute, which returns the number of records
fetched from the cursor.

e SQL%ISOPEN: Boolean attribute, whose value is always FALSE. Close implicit
cursors immediately after an SQL statement is executed.

-- Delete all employees in a department from the EMP table. If the department has no employees, delete
the department from the DEPT table.

CREATE TABLE staffs_t1 AS TABLE staffs;

CREATE TABLE sections_t1 AS TABLE sections;

CREATE OR REPLACE PROCEDURE proc_cursor3()
AS
DECLARE
V_DEPTNO NUMBER(4) := 100;
BEGIN
DELETE FROM staffs WHERE section_ID = V_DEPTNO;
-- Proceed based on cursor status:
IF SQL%NOTFOUND THEN
DELETE FROM sections_t1 WHERE section_ID = V_DEPTNO;
END IF;
END;
/

CALL proc_cursor3();

-- Drop the stored procedure and the temporary table:
DROP PROCEDURE proc_cursor3;

DROP TABLE staffs_t1;

DROP TABLE sections_t1;

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 179

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

9.9.4 Cursor Loop

Syntax

Precautions

Examples

The use of cursors in WHILE and LOOP statements is called a cursor loop.
Generally, OPEN, FETCH, and CLOSE statements are needed in cursor loop. The
following describes a loop that is applicable to a static cursor loop without
executing the four steps of a static cursor.

Figure 9-33 shows the syntax diagram for the FOR AS loop.

Figure 9-33 FOR_AS_loop::=

—+{FOR }+ loop_name select_statement |-+ LOOP]—)

statement END LOOP |+{:}»

e The UPDATE operation for the queried table is not allowed in the loop
statement.

e The variable loop_name is automatically defined and is valid only in this loop.
The type and value of loop name are the same as those of the query result of
select statement.

e The %FOUND, %NOTFOUND, and %ROWCOUNT attributes access the same
internal variable in GaussDB(DWS). Transactions and anonymous blocks
cannot be accessed by multiple cursors at the same time.

BEGIN
FOR ROW_TRANS IN
SELECT first_name FROM staffs
LOOP
DBMS_OUTPUT.PUT_LINE (ROW_TRANS first_name);
END LOOP;
END;
/

-- Create a table:

CREATE TABLE integerTable1(A INTEGER) DISTRIBUTE BY hash(A);
CREATE TABLE integerTable2(B INTEGER) DISTRIBUTE BY hash(B);
INSERT INTO integerTable2 VALUES(2);

-- Multiple cursors share the parameters of cursor attributes:
DECLARE
CURSOR C1 IS SELECT A FROM integerTable1;--Declare the cursor.
CURSOR C2 IS SELECT B FROM integerTable2;
PI_A INTEGER;
PI_B INTEGER;
BEGIN
OPEN C1;-- Open the cursor.
OPEN C2;
FETCH C1 INTO PI_A; ---- The value of C1%FOUND and C2%FOUND is FALSE.
FETCH C2 INTO PI_B; ---- The value of C1%FOUND and C2%FOUND is TRUE.
-- Determine the cursor status:

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 180

Data Warehouse Service
Developer Guide

9 GaussDB(DWS) Stored Procedure

IF C1%FOUND THEN
IF C2%FOUND THEN

DBMS_OUTPUT.PUT_LINE('Dual cursor share paremeter.");

END IF;
END IF;
CLOSE C1;-- Close the cursor.
CLOSE C2;
END;
/

-- Drop the temporary table:
DROP TABLE integerTable1;
DROP TABLE integerTable2;

9.10 GaussDB(DWS) Stored Procedure Advanced

Package

9.10.1 DBMS_LOB

Related Interfaces

Table 9-3 provides all interfaces supported by the DBMS_LOB package.

Table 9-3 DBMS_LOB

API

Description

DBMS_LOB.GETLENGTH

Obtains and returns the specified length of a LOB
object.

DBMS_LOB.OPEN

Opens a LOB and returns a LOB descriptor.

DBMS_LOB.READ

Loads a part of LOB contents to BUFFER area
according to the specified length and initial
position offset.

DBMS_LOB.WRITE

Copies contents in BUFFER area to LOB according
to the specified length and initial position offset.

DBMS_LOB.WRITEAPPEN
D

Copies contents in BUFFER area to the end part of
LOB according to the specified length.

DBMS_LOB.COPY

Copies contents in BLOB to another BLOB
according to the specified length and initial
position offset.

DBMS_LOB.ERASE

Deletes contents in BLOB according to the
specified length and initial position offset.

DBMS_LOB.CLOSE

Closes a LOB descriptor.

DBMS_LOB.INSTR

Returns the position of the Nth occurrence of a
character string in LOB.

DBMS_LOB.COMPARE

Compares two LOBs or a certain part of two LOBs.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 181

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

API Description

DBMS_LOB.SUBSTR Reads the substring of a LOB and returns the
number of read bytes or the number of characters.

DBMS_LOB.TRIM Truncates the LOB of a specified length. After the

execution is complete, the length of the LOB is set
to the length specified by the newlen parameter.

DBMS_LOB.CREATETEMP | Creates a temporary BLOB or CLOB.
ORARY

DBMS_LOB.APPEND Adds the content of a LOB to another LOB.

DBMS_LOB.GETLENGTH

Specifies the length of a LOB type object obtained and returned by the stored
procedure GETLENGTH.

The function prototype of DBMS_LOB.GETLENGTH is:

DBMS_LOB.GETLENGTH (
lob_loc IN BLOB)
RETURN INTEGER;

DBMS_LOB.GETLENGTH (

lob_loc IN CLOB)
RETURN INTEGER;

Table 9-4 DBMS_LOB.GETLENGTH interface parameters

Parameter Description

lob_loc LOB type object whose length is to be obtained

DBMS_LOB.OPEN

A stored procedure opens a LOB and returns a LOB descriptor. This process is
used only for compatibility.

The function prototype of DBMS_LOB.OPEN is:

DBMS_LOB.LOB (
lob_loc INOUT BLOB,
open_mode IN BINARY_INTEGER);

DBMS_LOB.LOB (

lob_loc INOUT CLOB,
open_mode IN BINARY_INTEGER);

Table 9-5 DBMS_LOB.OPEN interface parameters

Parameter Description

lob_loc BLOB or CLOB descriptor that is opened

open_mode IN | Open mode (currently, DBMS_LOB.LOB_READWRITE is
BINARY_INTEG | supported)
ER

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 182

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

DBMS_LOB.READ

The stored procedure READ loads a part of LOB contents to BUFFER according

to the specified length and initial position offset.

The function prototype of DBMS_LOB.READ is:
DBMS_LOB.READ (

lob_loc IN BLOB,
amount IN INTEGER,
offset IN INTEGER,
buffer ouT RAW);
DBMS_LOB.READ (

lob_loc IN CLOB,
amount IN OUT INTEGER,
offset IN INTEGER,
buffer OUT VARCHAR?2);

Table 9-6 DBMS_LOB.READ interface parameters

Parameter Description
lob_loc LOB type object to be loaded
amount Load data length

NOTE

If the read length is negative, the error message "ERROR:
argument 2 is null, invalid, or out of range." is displayed.

offset Indicates where to start reading the LOB contents, that
is, the offset bytes to initial position of LOB contents.

buffer Target buffer to store the loaded LOB contents

DBMS_LOB.WRITE

The stored procedure WRITE copies contents in BUFFER to LOB variables
according to the specified length and initial position offset.
The function prototype of DBMS_LOB.WRITE is:

DBMS_LOB.WRITE (
lob_loc INOUT BLOB,

amount IN INTEGER,
offset IN INTEGER,
buffer IN RAW);

DBMS_LOB.WRITE (
lob_loc INOUT CLOB,

amount IN INTEGER,
offset IN INTEGER,
buffer IN VARCHAR2);

Table 9-7 DBMS_LOB.WRITE interface parameters

Parameter Description

lob_loc LOB type object to be written

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

183

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

Parameter Description
amount Write data length
NOTE
If the write data is shorter than 1 or longer than the contents to
be written, an error is reported.
offset Indicates where to start writing the LOB contents, that is,
the offset bytes to initial position of LOB contents.
NOTE
If the offset is shorter than 1 or longer than the maximum
length of LOB type contents, an error is reported.
buffer Content to be written

DBMS_LOB.WRITEAPPEND

The stored procedure WRITEAPPEND copies contents in BUFFER to the end
part of LOB according to the specified length.

The function prototype of DBMS_LOB.WRITEAPPEND is:
DBMS_LOB.WRITEAPPEND (

lob_loc INOUT BLOB,
amount IN INTEGER,
buffer IN RAW);
DBMS_LOB.WRITEAPPEND (
lob_loc INOUT CLOB,
amount IN INTEGER,
buffer IN VARCHAR?2);

Table 9-8 DBMS_LOB.WRITEAPPEND interface parameters

Parameter Description
lob_loc LOB type object to be written
amount Write data length
NOTE
If the write data is shorter than 1 or longer than the contents to
be written, an error is reported.
buffer Content to be written

DBMS_LOB.COPY

The stored procedure COPY copies contents in BLOB to another BLOB
according to the specified length and initial position offset.

The function prototype of DBMS_LOB.COPY is:
DBMS_LOB.COPY (

dest_lob
src_lob
amount

dest_offset IN

src_offset

IN OUT BLOB,
IN BLOB,
IN INTEGER,

INTEGER DEFAULT 1,

IN INTEGER DEFAULT 1);

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 184

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

Table 9-9 DBMS_LOB.COPY interface parameters

Parameter Description

dest_lob BLOB type object to be pasted
src_lob BLOB type object to be copied
amount Length of the copied data

NOTE
If the copied data is shorter than 1 or longer than the maximum
length of BLOB type contents, an error is reported.

dest_offset

Indicates where to start pasting the BLOB contents, that
is, the offset bytes to initial position of BLOB contents.
NOTE

If the offset is shorter than 1 or longer than the maximum
length of BLOB type contents, an error is reported.

src_offset

Indicates where to start copying the BLOB contents, that
is, the offset bytes to initial position of BLOB contents.
NOTE

If the offset is shorter than 1 or longer than the length of source
BLOB, an error is reported.

DBMS_LOB.ERASE

The stored procedure ERASE deletes contents in BLOB according to the
specified length and initial position offset.

The function prototype of DBMS_LOB.ERASE is:

DBMS_LOB.ERASE (

lob_loc IN OUT BLOB,
amount IN OUT INTEGER,
offset IN INTEGER DEFAULT 1);

Table 9-10 DBMS_LOB.ERASE interface parameters

Parameter

Description

lob_loc

BLOB type object whose contents are to be deleted

amount

Length of contents to be deleted

NOTE
If the deleted data is shorter than 1 or longer than the
maximum length of BLOB type contents, an error is reported.

offset

Indicates where to start deleting the BLOB contents, that
is, the offset bytes to initial position of BLOB contents.
NOTE

If the offset is shorter than 1 or longer than the maximum
length of BLOB type contents, an error is reported.

DBMS_LOB.CLOSE

The procedure CLOSE disables the enabled contents of LOB according to the
specified length and initial position offset.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 185

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

The function prototype of DBMS_LOB.CLOSE is:

DBMS_LOB.CLOSE(
src_lob IN BLOB);

DBMS_LOB.CLOSE (
src_lob IN CLOB);

Table 9-11 DBMS_LOB.CLOSE interface parameters

Parameter Description

src_loc LOB type object to be disabled

DBMS_LOB.INSTR

This function returns the Nth occurrence position in LOB. If invalid values are
entered, NULL is returned. The invalid values include offset < 1 or offset >
LOBMAXSIZE, nth < 1, and nth > LOBMAXSIZE.

The function prototype of DBMS_LOB.INSTR is:

DBMS_LOB.INSTR (

lob_loc IN BLOB,
pattern IN RAW,

offset IN INTEGER =1,
nth IN INTEGER = 1)
RETURN INTEGER;

DBMS_LOB.INSTR (

lob_loc IN CLOB,
pattern IN VARCHAR2,
offset IN INTEGER =1,
nth IN INTEGER :=1)
RETURN INTEGER;

Table 9-12 DBMS_LOB.INSTR interface parameters

Parameter Description

lob_loc LOB descriptor to be searched for

pattern Matched pattern. It is RAW for BLOB and TEXT for CLOB.
offset For BLOB, the absolute offset is in the unit of byte. For

CLOB, the offset is in the unit of character. The matching
start position is 1.

nth Number of pattern matching times. The minimum value
is 1.

DBMS_LOB.COMPARE
This function compares two LOBs or a certain part of two LOBs.

- If the two parts are equal, 0 is returned. Otherwise, a non-zero value is
returned.

- If the first CLOB is smaller than the second, -1 is returned. If the first
CLOB is larger than the second, 1 is returned.

- If any of the amount, offset_1, and offset_2 parameters is invalid, NULL
is returned. The valid offset range is 1 to LOBMAXSIZE.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 186

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

The function prototype of DBMS_LOB.READ is:

DBMS_LOB.COMPARE (

lob.1 IN BLOB,

lob2 IN BLOB,

amount IN INTEGER := DBMS_LOB.LOBMAXSIZE,
offset 1 IN INTEGER =1,

offset 2 IN INTEGER :=1)

RETURN INTEGER,;

DBMS_LOB.COMPARE (

lob.1 IN CLOB,

lob 2 IN CLOB,

amount IN INTEGER := DBMS_LOB.LOBMAXSIZE,
offset 1 IN INTEGER =1,

offset 2 IN INTEGER :=1)

RETURN INTEGER,;

Table 9-13 DBMS_LOB.COMPARE interface parameters

Parameter Description

lob_1 First LOB descriptor to be compared

lob_2 Second LOB descriptor to be compared

amount Number of characters or bytes to be compared. The
maximum value is DBMS_LOB.LOBMAXSIZE.

offset_1 Offset of the first LOB descriptor. The initial position is 1.

offset_2 Offset of the second LOB descriptor. The initial position
is 1.

e DBMS_LOB.SUBSTR

This function reads the substring of a LOB and returns the number of read
bytes or the number of characters. If amount > 1, amount < 32767, offset < 1,
or offset > LOBMAXSIZE, NULL is returned.

The function prototype of DBMS_LOB.SUBSTR is:

DBMS_LOB.SUBSTR (

lob_loc IN BLOB,

amount IN INTEGER := 32767,
offset IN INTEGER :=1)
RETURN RAW;

DBMS_LOB.SUBSTR (

lob_loc IN CLOB,

amount IN INTEGER := 32767,
offset IN INTEGER :=1)
RETURN VARCHAR?2;

Table 9-14 DBMS_LOB.SUBSTR interface parameters

Parameter Description

lob_loc LOB descriptor of the substring to be read. For BLOB, the
return value is the number of read bytes. For CLOB, the
return value is the number of characters.

offset Number of bytes or characters to be read.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 187

Data Warehouse Service

Developer Guide 9 GaussDB(DWS) Stored Procedure
Parameter Description
buffer Number of characters or bytes offset from the start
position.

e DBMS_LOB.TRIM

This stored procedure truncates the LOB of a specified length. After this stored
procedure is executed, the length of the LOB is set to the length specified by
the newlen parameter. If an empty LOB is truncated, no execution result is
displayed. If the specified length is longer than the length of LOB, an
exception occurs.

The function prototype of DBMS_LOB.TRIM is:

DBMS_LOB.TRIM (
lob_loc INOUT BLOB,
newlen IN INTEGER);

DBMS_LOB.TRIM (

lob_loc IN OUT CLOB,
newlen IN INTEGER);

Table 9-15 DBMS_LOB.TRIM interface parameters

Parame | Description
ter

lob_loc | BLOB type object to be read

newlen | After truncation, the new LOB length for BLOB is in the unit of
byte and that for CLOB is in the unit of character.

e DBMS_LOB.CREATETEMPORARY

This stored procedure creates a temporary BLOB or CLOB and is used only for
syntax compatibility.
The function prototype of DBMS_LOB.CREATETEMPORARY is:

DBMS_LOB.CREATETEMPORARY (
lob_loc IN OUT BLOB,

cache IN BOOLEAN,
dur IN INTEGER);

DBMS_LOB.CREATETEMPORARY (
lob_loc INOUT CLOB,

cache IN BOOLEAN,

dur IN INTEGER);

Table 9-16 DBMS_LOB.CREATETEMPORARY interface parameters

Parameter Description

lob_loc LOB descriptor

cache This parameter is used only for syntax compatibility.
dur This parameter is used only for syntax compatibility.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 188

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

Examples

e DBMS_LOB.APPEND

The stored procedure READ loads a part of BLOB contents to BUFFER

according to the specified length and initial position offset.

The function prototype of DBMS_LOB.APPEND is:

DBMS_LOB.APPEND (
dest_lob IN OUT BLOB,
src_lob IN BLOB);

DBMS_LOB.APPEND (

dest_lob IN OUT CLOB,
src_lob IN CLOB);

Table 9-17 DBMS_LOB.APPEND interface parameters

Parameter Description
dest_lob LOB descriptor to be written
src_lob LOB descriptor to be read

-- Obtain the length of the character string.
SELECT DBMS_LOB.GETLENGTH('12345678');

DECLARE

myraw RAW(100);

amount INTEGER :=2;

buffer INTEGER :=1;

begin
DBMS_LOB.READ('123456789012345',amount,buffer,myraw);
dbms_output.put_line(myraw);

end;

/

CREATE TABLE blob_Table (t1 blob) DISTRIBUTE BY REPLICATION;
CREATE TABLE blob_Table_bak (t2 blob) DISTRIBUTE BY REPLICATION;
INSERT INTO blob_Table VALUES('abcdef');

INSERT INTO blob_Table_bak VALUES('22222");

DECLARE

str varchar2(100) := 'abcdef";
source raw(100);

dest blob;

copyto blob;

amount int;

PSV_SQL varchar2(100);
PSV_SQL1 varchar2(100);
aint:=1;

len int;

BEGIN

source := utl_raw.cast_to_raw(str);
amount := utl_raw.length(source);

PSV_SQL :='select * from blob_Table for update’;
PSV_SQL1 :='select * from blob_Table_bak for update';

EXECUTE IMMEDIATE PSV_SQL into dest;
EXECUTE IMMEDIATE PSV_SQL1 into copyto;

DBMS_LOB.WRITE(dest, amount, 1, source);
DBMS_LOB.WRITEAPPEND (dest, amount, source);

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

189

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

DBMS_LOB.ERASE(dest, a, 1);
DBMS_OUTPUT.PUT_LINE(a);
DBMS_LOB.COPY(copyto, dest, amount, 10, 1);
DBMS_LOB.CLOSE(dest);

RETURN;

END;

/

--Delete the table.
DROP TABLE blob_Table;
DROP TABLE blob_Table_bak;

9.10.2 DBMS_RANDOM

Related Interfaces

Table 9-18 provides all interfaces supported by the DBMS_RANDOM package.

Table 9-18 DBMS_RANDOM interface parameters

Interface Description

DBMS_RANDOM.SEED Sets a seed for a random number.

DBMS_RANDOM.VALUE Generates a random number between a
specified low and a specified high.

DBMS_RANDOM.SEED

The stored procedure SEED is used to set a seed for a random number. The
DBMS_RANDOM.SEED function prototype is:

DBMS_RANDOM.SEED (seed IN INTEGER);

Table 9-19 DBMS_RANDOM.SEED interface parameters

Parameter Description

seed Generates a seed for a random number.

DBMS_RANDOM.VALUE

The stored procedure VALUE generates a random number between a specified
low and a specified high. The DBMS_RANDOM.VALUE function prototype is:
DBMS_RANDOM.VALUE(

low IN NUMBER,

high IN NUMBER)
RETURN NUMBER;

Table 9-20 DBMS_RANDOM.VALUE interface parameters

Paramet | Description
er

low Sets the low bound for a random number. The generated
random number is greater than or equal to the low.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 190

Data Warehouse Service

Developer Guide 9 GaussDB(DWS) Stored Procedure
Paramet | Description
er
high Sets the high bound for a random number. The generated
random number is less than the high.
(1O NOTE

The only requirement is that the parameter type is NUMERIC regardless of the right and
left bound values.

Example

Generate a random number between 0 and 1.

SELECT DBMS_RANDOM.VALUE(0,1);

Specify the low and high parameters to an integer within the specified range and
intercept smaller values from the result. (The maximum value cannot be a
possible value.) Therefore, use the following code for an integer between 0 and
99:

SELECT TRUNC(DBMS_RANDOM.VALUE(0,100));

9.10.3 DBMS_OUTPUT

Related Interfaces
Table 9-21 provides all interfaces supported by the DBMS_OUTPUT package.

Table 9-21 DBMS_OUTPUT

API Description

DBMS_OUTP | Outputs the specified text. The text length cannot exceed
UT.PUT_LINE | 32,767 bytes.

DBMS_OUTP | Outputs the specified text to the front of the specified text
UT.PUT without adding a line break. The text length cannot exceed
32,767 bytes.

DBMS_OUTP | Sets the buffer area size. If this interface is not specified, the
UT.ENABLE maximum buffer size is 20,000 bytes and the minimum buffer
size is 2000 bytes. If the specified buffer size is less than 2000
bytes, the default minimum buffer size is applied.

e DBMS_OUTPUTPUT_LINE

The PUT_LINE procedure writes a row of text carrying a line end symbol in the
buffer. The DBMS_OUTPUT.PUT_LINE function prototype is:

DBMS_OUTPUT.PUT_LINE (
item IN VARCHAR2);

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 191

Data Warehouse Service
Developer Guide

9 GaussDB(DWS) Stored Procedure

Table 9-22 DBMS_OUTPUT.PUT_LINE interface parameters

Parameter

Description

item

Specifies the text that was written to the buffer.

e DBMS_OUTPUT.PUT

The stored procedure PUT outputs the specified text to the front of the specified
text without adding a linefeed. The DBMS_OUTPUT.PUT function prototype is:

DBMS_OUTPUT.PUT (
item IN VARCHAR2);

Table 9-23 DBMS_OUTPUT.PUT interface parameters

Parameter

Description

item

Specifies the text that was written to the specified text.

e DBMS_OUTPUT.ENABLE

The stored procedure ENABLE sets the output buffer size. If the size is not
specified, it contains a maximum of 20,000 bytes. The DBMS_OUTPUT.ENABLE
function prototype is:

DBMS_OUTPUT.ENABLE (

buf IN INTEGER);

Table 9-24 DBMS_OUTPUT.ENABLE interface parameters

Parameter

Description

buf

Sets the buffer area size.

Examples
BEGIN

DBMS_OUTPUT.ENABLE(50);
DBMS_OUTPUT.PUT ('hello, ');
DBMS_OUTPUT.PUT_LINE('database!');-- Displaying "hello, database!"

END;
/

9.10.4 UTL_RAW

Related Interfaces

Table 9-25 provides all interfaces supported by the UTL_RAW package.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 192

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

Table 9-25 UTL_RAW

API Description

UTL_RAW.CAST_FROM_BI | Converts an INTEGER type value to a binary
NARY_INTEGER representation (RAW type).
UTL_RAW.CAST_TO_BINA | Converts a binary representation (RAW type) to an
RY_INTEGER INTEGER type value.

UTL_RAW.LENGTH Obtains the length of the RAW type object.

UTL_RAW.CAST_TO_RAW | Converts a VARCHAR?2 type value to a binary

expression (RAW type).

NOTICE

The external representation of the RAW type data is hexadecimal and its internal
storage form is binary. For example, the representation of the RAW type data
11001011 is 'CB'. The input of the actual type conversion is 'CB'.

UTL_RAW.CAST_FROM_BINARY_INTEGER

The stored procedure CAST_FROM_BINARY_INTEGER converts an INTEGER
type value to a binary representation (RAW type).

The UTL_RAW.CAST_FROM_BINARY_INTEGER function prototype is:

UTL_RAW.CAST_FROM_BINARY_INTEGER (
n IN INTEGER,

endianess IN INTEGER)

RETURN RAW;

Table 9-26 UTL_RAW.CAST_FROM_BINARY_INTEGER interface parameters

Paramete | Description
r

n Specifies the INTEGER type value to be converted to the RAW
type.

endianess | Specifies the INTEGER type value 1 or 2 of the byte sequence.
(1 indicates BIG_ENDIAN and 2 indicates LITTLE-ENDIAN.)

UTL_RAW.CAST_TO_BINARY_INTEGER

The stored procedure CAST_TO_BINARY_INTEGER converts an INTEGER type
value in a binary representation (RAW type) to the INTEGER type.

The UTL_RAW.CAST_TO_BINARY_INTEGER function prototype is:

UTL_RAW.CAST_TO_BINARY_INTEGER (
r IN RAW,

endianess IN INTEGER)

RETURN BINARY_INTEGER;

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 193

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

Example

Table 9-27 UTL_RAW.CAST_TO_BINARY_INTEGER interface parameters

Parameter | Description

r Specifies an INTEGER type value in a binary representation
(RAW type).

endianess Specifies the INTEGER type value 1 or 2 of the byte sequence.
(1 indicates BIG_ENDIAN and 2 indicates LITTLE-ENDIAN.)

UTL_RAW.LENGTH
The stored procedure LENGTH returns the length of a RAW type object.

The UTL_RAW.LENGTH function prototype is:

UTL_RAW.LENGTH(
r IN RAW)
RETURN INTEGER;

Table 9-28 UTL_RAW.LENGTH interface parameters

Parameter | Description

r Specifies a RAW type object.

e UTL_RAW.CAST_TO_RAW

The stored procedure CAST_TO_RAW converts a VARCHAR2 type object to the

RAW type.

The UTL_RAW.CAST_TO_RAW function prototype is:

UTL_RAW.CAST_TO_RAW(
C IN VARCHAR?2)
RETURN RAW;

Table 9-29 UTL_RAW.CAST_TO_RAW interface parameters

Parameter | Description

d Specifies a VARCHAR2 type object to be converted.

Perform operations on RAW data in a stored procedure.

CREATE OR REPLACE PROCEDURE proc_raw

AS

str varchar2(100) := 'abcdef";

source raw(100);

amount integer;

BEGIN

source := utl_raw.cast_to_raw(str);--Convert the type.
amount := utl_raw.length(source);--Obtain the length.
dbms_output.put_line(amount);

END;

/

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

194

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Call the stored procedure.

CALL proc_raw();

9.10.5 DBMS_JOB

Related Interfaces
Table 9-30 lists all interfaces supported by the DBMS_JOB package.

Table 9-30 DBMS_JOB

Interface Description

DBMS_JOB.SUBMIT | Submits a job to the job queue. The job number is
automatically generated by the system.

DBMS_JOB.ISUBMI | Submits a job to the job queue. The job number is

T specified by the user.

DBMS_JOB.REMOV | Removes a job from the job queue by job number.

E

DBMS_JOB.BROKE | Disables or enables job execution.

N

DBMS_JOB.CHANG | Modifies user-definable attributes of a job, including the

E job description, next execution time, and execution
interval.

DBMS_JOB.WHAT | Modifies the job description of a job.

DBMS_JOB.NEXT_D | Modifies the next execution time of a job.
ATE

DBMS_JOB.INTERV | Modifies the execution interval of a job.
AL

DBMS_JOB.CHANG | Modifies the owner of a job.
E_OWNER

e DBMS_JOB.SUBMIT
The stored procedure SUBMIT submits a job provided by the system.

A prototype of the DBMS_JOB.SUBMIT function is as follows:

DMBS_JOB.SUBMIT(

what IN TEXT,

next_date IN TIMESTAMP DEFAULT sysdate,
job_interval IN TEXT DEFAULT 'null,

job OUT INTEGER);

(1] NOTE

When a job is created (using DBMS_JOB), the system binds the current database and
the username to the job by default. This function can be invoked by using call or
select. If you invoke this function by using select, there is no need to specify output
parameters. To invoke this function within a stored procedure, use perform.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 195

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Table 9-31 DBMS_JOB.SUBMIT interface parameters

Parame | Typ | Input/ Can Description
ter e Output | Be
Parame | Empt
ter y

what text | IN No SQL statement to be executed. One or
multiple DMLs, anonymous blocks, and
SQL statements that invoke stored
procedures, or all three combined are
supported.

next_dat | tim | IN No Specifies the next time the job will be
e esta executed. The default value is the

mp current system time (sysdate). If the
specified time has past, the job is
executed at the time it is submitted.

interval | text | IN Yes Calculates the next time to execute the
job. It can be an interval expression, or
sysdate followed by a numeric value,
for example, sysdate+1.0/24. If this
parameter is left blank or set to null,
the job will be executed only once, and
the job status will change to 'd'
afterward.

job inte | OUT No Specifies the job number. The value
ger ranges from 1 to 32767. When
dbms.submit is invoked using select,
this parameter can be skipped.

For example:
select DBMS_JOB.SUBMIT ('call pro_xxx();', to_date('20180101','yyyymmdd'),'sysdate+1');

select DBMS_JOB.SUBMIT ('call pro_xxx();', to_date('20180101','yyyymmdd'),'sysdate+1.0/24");

CALL DBMS_JOB.SUBMIT('INSERT INTO T_JOB VALUES(1); call pro_1(); call pro_2();',
add_months(to_date('201701','yyyymm’),1), 'date_trunc("day",SYSDATE) + 1 +(8*60+30.0)/
(24*60)' ,:jobid);

e DBMS_JOB.ISUBMIT

ISUBMIT has the same syntax function as SUBMIT, but the first parameter of
ISUBMIT is an input parameter, that is, a specified job number. In contrast,
that last parameter of SUBMIT is an output parameter, indicating the job
number automatically generated by the system.
For example:
CALL dbms_job.isubmit(101, 'insert_msg_statistic1;', sysdate, 'sysdate+3.0/24');

e DBMS_JOB.REMOVE
The stored procedure REMOVE deletes a specified job.

A prototype of the DBMS_JOB.REMOVE function is as follows:
REMOVE(job IN INTEGER);

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 196

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

Table 9-32 DBMS_JOB.REMOVE interface parameters

Para | Type | Input/ Can Be Description
mete Output Empty
r Paramet
er
job integ | IN No Specifies the job number.
er

For example:

CALL dbms_job.remove(101);
DBMS_JOB.BROKEN

The stored procedure BROKEN sets the broken flag of a job.

A prototype of the DBMS_JOB.BROKEN function is as follows:
DMBS_JOB.BROKEN(

job
broken
next_date

IN INTEGER,
IN BOOLEAN,

IN TIMESTAMP DEFAULT sysdate);

Table 9-33 DBMS_JOB.BROKEN interface parameters

Param
eter

Type

Input/
Outpu
t
Param
eter

Ca
n
Be
Em

pty

Description

job

integer

IN

No

Specifies the job number.

broken

boolean

IN

No

Specifies the status flag, true for
broken and false for not broken.
Setting this parameter to true or false
updates the current job. If the
parameter is left blank, the job status
remains unchanged.

next_da
te

timesta
mp

Yes

Specifies the next execution time. The
default is the current system time. If
broken is set to true, next_date is
updated to '4000-1-1'. If broken is
false and next_date is not empty,
next_date is updated for the job. If
next_date is empty, it will not be
updated. This parameter can be
omitted, and its default value will be
used in this case.

For example:

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

197

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

CALL dbms_job.broken(101, true);
CALL dbms_job.broken(101, false, sysdate);

e DBMS_JOB.CHANGE

The stored procedure CHANGE modifies user-definable attributes of a job,
including the job content, next-execution time, and execution interval.

A prototype of the DBMS_JOB.CHANGE function is as follows:

DMBS_JOB.CHANGE(

job IN INTEGER,
what IN TEXT,
next_date IN TIMESTAMP,
interval IN TEXT);

Table 9-34 DBMS_JOB.CHANGE interface parameters

Para | Type | Input/ Can Be Description
met Output | Empty
er Paramet
er

job |integ | IN No Specifies the job number.
er

wha |text |IN Yes Specifies the name of the stored

t procedure or SQL statement block
that is executed. If this parameter is
left blank, the system does not update
the what parameter for the specified
job. Otherwise, the system updates
the what parameter for the specified
job.

next | time |IN Yes Specifies the next execution time. If
_dat | stam this parameter is left blank, the

e p system does not update the
next_date parameter for the specified
job. Otherwise, the system updates
the next_date parameter for the
specified job.

inter | text | IN Yes Specifies the time expression for

val calculating the next time the job will
be executed. If this parameter is left
blank, the system does not update the
interval parameter for the specified
job. Otherwise, the system updates
the interval parameter for the
specified job after necessary validity
check. If this parameter is set to null,
the job will be executed only once,
and the job status will change to 'd’
afterward.

For example:

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 198

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

CALL dbms_job.change(101, 'call userproc();', sysdate, 'sysdate + 1.0/1440');
CALL dbms_job.change(101, 'insert into tbl_a values(sysdate);', sysdate, 'sysdate + 1.0/1440');

DBMS_JOB.WHAT
The stored procedure WHAT modifies the procedures to be executed by a
specified job.
A prototype of the DBMS_JOB.WHAT function is as follows:

DMBS_JOB.WHAT(
IN INTEGER,
IN TEXT);

job
what

Table 9-35 DBMS_JOB.WHAT interface parameters

Par | Type | Input/ Can Be Description
am Output Empty
ete Paramet
r er
job [intege | IN No Specifies the job number.
r
wh | text IN No Specifies the name of the stored
at procedure or SQL statement
block that is executed.

(10 NOTE

e If the value specified by the what parameter is one or multiple executable SQL
statements, program blocks, or stored procedures, this procedure can be executed
successfully; otherwise, it will fail to be executed.

e If the what parameter is a simple statement such as insert and update, a schema
name must be added in front of the table name.

For example:

CALL dbms_job.what(101, 'call userproc();');
CALL dbms_job.what (101, 'insert into tbl_a values(sysdate);");

DBMS_JOB.NEXT_DATE

The stored procedure NEXT_DATE modifies the next-execution time attribute
of a job.
A prototype of the DBMS_JOB.NEXT_DATE function is as follows:

DMBS_JOB.NEXT_DATE(
job IN INTEGER,
next_date IN TIMESTAMP);

Table 9-36 DBMS_JOB.NEXT_DATE interface parameters

Parame | Type Input/ | Can Be Description
ter Output | Empty
Param
eter
job integer | IN No Specifies the job number.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

199

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

Parame | Type Input/ [Can Be Description
ter Output | Empty
Param
eter
next_da | timesta |IN No Specifies the next execution
te mp time.
(1 NOTE

If the specified next_date value is earlier than the current date, the job is executed
once immediately.

For example:

CALL dbms_job.next_date(101, sysdate);

DBMS_JOB.INTERVAL

The stored procedure INTERVAL modifies the execution interval attribute of a
job.

A prototype of the DBMS_JOB.INTERVAL function is as follows:

DMBS_JOB.INTERVAL(
job IN INTEGER,
interval IN TEXT);

Table 9-37 DBMS_JOB.INTERVAL interface parameters

Parame | Type | Input | Can Be Description
ter / Empty
Outp
ut
Para
meter
job intege | IN No Specifies the job number.
r
interval | text IN Yes Specifies the time expression for

calculating the next time the job
will be executed. If this parameter is
left blank or set to null, the job will
be executed only once, and the job
status will change to 'd" afterward.
interval must be a valid time or
interval type.

For example:
CALL dbms_job.interval(101, 'sysdate + 1.0/1440");

(11 NOTE

For a job that is currently running (that is, job_status is 'r'), it is not allowed to use
remove, change, next_date, what, or interval to delete or modify job parameters.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 200

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

Constraints

DBMS_JOB.CHANGE_OWNER
The stored procedure CHANGE_OWNER modifies the owner of a job.

A prototype of the DBMS_JOB.CHANGE_OWNER function is as follows:

DMBS_JOB.CHANGE_OWNER(
job IN INTEGER,
new_owner IN NAME);

Table 9-38 DBMS_JOB.CHANGE_OWNER interface parameters

Paramet | Type Input/ Can Be Description
er Output Empty

Paramet

er
job integer IN No Specifies the job number.
new_own | name IN No Specifies the new username.
er

For example:
CALL dbms_job.change_owner(101, 'alice');

After a new job is created, this job belongs to the current coordinator only,
that is, this job can be scheduled and executed only on the current
coordinator. Other coordinators will not schedule or execute this job. All
coordinators can query, modify, and delete jobs created on other CNs.

Create, update, and delete jobs only using the procedures provided by the
DBMS_JOB package. These procedures synchronize job information between
different CNs and associate primary keys between the pg_jobs tables. If you
use DML statements to add, delete, or modify records in the pg_jobs table,
job information will become inconsistent between CNs and system tables may
fail to be associated, compromising internal job management.

Each user-created task is bound to a CN. If the automatic migration function
is not enabled, task statuses cannot be updated in real time when the CN is
faulty during task execution. When a CN fails, all jobs on this CN cannot be
scheduled or executed until the CN is restored manually. Enable the
automatic migration function on CNs, so that jobs on the faulty CN will be
migrated to other CNs for scheduling.

For each job, the hosting CN updates the real-time job information (including
the job status, last execution start time, last execution end time, next
execution start time, the number of execution failures if any) to the pg_jobs
table, and synchronizes the information to other CNs, ensuring consistent job
information between different CNs. In the case of CN failures, job information
synchronization is reattempted by the hosting CNs, which increases job
execution time. Although job information fails to be synchronized between
CNs, job information can still be properly updated in the pg_jobs table on the
hosting CNs, and jobs can be executed successfully. After a CN recovers, job
information such as job execution time and status in its pg_jobs table may be

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 201

Data Warehouse Service

Developer Guide 9 GaussDB(DWS) Stored Procedure

incorrect and will be updated only after the jobs are executed again on
related CNs.

5. For each job, a thread is established to execute it. If multiple jobs are
triggered concurrently as scheduled, the system will need some time to start
the required threads, resulting in a latency of 0.1 ms in job execution.

6. The length of the SQL statement to be executed in a job is limited. The
maximum length is 8 KB.

9.10.6 DBMS_SQL

Related Interfaces

Table 9-39 lists interfaces supported by the DBMS_SQL package.

Table 9-39 DBMS_SQL

API Description

DBMS_SQL.OPEN_CURSOR

Opens a cursor.

DBMS_SQL.CLOSE_CURSOR

Closes an open cursor.

DBMS_SQL.PARSE

Transmits a group of SQL
statements to a cursor. Currently,
only the SELECT statement is
supported.

DBMS_SQL.EXECUTE

Performs a set of dynamically
defined operations on the cursor.

DBMS_SQL.FETCHE_ROWS

Reads a row of cursor data.

DBMS_SQL.DEFINE_COLUMN

Dynamically defines a column.

DBMS_SQL.DEFINE_COLUMN_CHAR

Dynamically defines a column of
the CHAR type.

DBMS_SQL.DEFINE_COLUMN_INT

Dynamically defines a column of
the INT type.

DBMS_SQL.DEFINE_COLUMN_LONG

Dynamically defines a column of
the LONG type.

DBMS_SQL.DEFINE_COLUMN_RAW

Dynamically defines a column of
the RAW type.

DBMS_SQL.DEFINE_COLUMN_TEXT

Dynamically defines a column of
the TEXT type.

N

DBMS_SQL.DEFINE_COLUMN_UNKNOW

Dynamically defines a column of
an unknown type.

DBMS_SQL.COLUMN_VALUE

Reads a dynamically defined
column value.

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

202

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

API

Description

DBMS_SQL.COLUMN_VALUE_CHAR

Reads a dynamically defined
column value of the CHAR type.

DBMS_SQL.COLUMN_VALUE_INT

Reads a dynamically defined
column value of the INT type.

DBMS_SQL.COLUMN_VALUE_LONG

Reads a dynamically defined
column value of the LONG type.

DBMS_SQL.COLUMN_VALUE_RAW

Reads a dynamically defined
column value of the RAW type.

DBMS_SQL.COLUMN_VALUE_TEXT

Reads a dynamically defined
column value of the TEXT type.

DBMS_SQL.COLUMN_VALUE_UNKNOWN

Reads a dynamically defined
column value of an unknown type.

DBMS_SQL.IS_OPEN

Checks whether a cursor is
opened.

(10 NOTE

e You are advised to use dbms_sql.define_column and dbms_sql.column_value to define

columns.

e If the size of the result set is greater than the value of work_mem, the result set will be
flushed to disk. The value of work_mem must be no greater than 512 MB.

e DBMS_SQL.OPEN_CURSOR

This function opens a cursor and is the prerequisite for the subsequent
dbms_sql operations. This function does not transfer any parameter. It
automatically generates cursor IDs in an ascending order and returns values

to integer variables.

The function prototype of DBMS_SQL.OPEN_CURSOR is:

DBMS_SQL.OPEN_CURSOR (

)
RETURN INTEGER,;

e DBMS_SQL.CLOSE_CURSOR

This function closes a cursor. It is the end of each dbms_sql operation. If this
function is not invoked when the stored procedure ends, the memory is still
occupied by the cursor. Therefore, remember to close a cursor when you do
not need to use it. If an exception occurs, the stored procedure exits but the
cursor is not closed. Therefore, you are advised to include this interface in the
exception handling of the stored procedure.

The function prototype of DBMS_SQL.CLOSE_CURSOR is:

DBMS_SQL.CLOSE_CURSOR (
cursorid IN INTEGER

)
RETURN INTEGER,;

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 203

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Table 9-40 DBMS_SQL.CLOSE_CURSOR interface parameters

Parameter Name Description

cursorid ID of the cursor to be closed

e DBMS_SQL.PARSE

This function parses the query statement of a given cursor. The input query
statement is executed immediately. Currently, only the SELECT query
statement can be parsed. The statement parameters can be transferred only
through the TEXT type. The length cannot exceed 1 GB.

The function prototype of DBMS_SQL.PARSE is:
DBMS_SQL.PARSE (

cursorid IN INTEGER,

query_string IN TEXT,

label IN INTEGER

)
RETURN BOOLEAN;

Table 9-41 DBMS_SQL.PARSE interface parameters

Parameter Name Description

cursorid ID of the cursor whose query
statement is parsed

query_string Query statements to be parsed

language_flag Version language number. Currently,

only 1 is supported.

e DBMS_SQL.EXECUTE

This function executes a given cursor. This function receives a cursor ID. The
obtained data after is used for subsequent operations. Currently, only the
SELECT query statement can be executed.

The function prototype of DBMS_SQL.EXECUTE is:
DBMS_SQL.EXECUTE(
cursorid IN INTEGER,

)
RETURN INTEGER,;

Table 9-42 DBMS_SQL.EXECUTE interface parameters

Parameter Name Description

cursorid ID of the cursor whose query
statement is parsed

e DBMS_SQL.FETCHE_ROWS

This function returns the number of data rows that meet query conditions.
Each time the interface is executed, the system obtains a set of new rows
until all data is read.

The function prototype of DBMS_SQL.FETCHE_ROWS is:

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 204

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

DBMS_SQL.FETCHE_ROWS(
cursorid IN INTEGER,

)
RETURN INTEGER;

Table 9-43 DBMS_SQL.FETCH_ROWS interface parameters

Parameter Name Description

curosorid ID of the cursor to be executed

DBMS_SQL.DEFINE_COLUMN

This function defines columns returned from a given cursor and can be used
only for the cursors defined by SELECT. The defined columns are identified by
the relative positions in the query list. The data type of the input variable
determines the column type.

The function prototype of DBMS_SQL.DEFINE_COLUMN is:
DBMS_SQL.DEFINE_COLUMN(

cursorid IN INTEGER,

position IN INTEGER,

column_ref IN ANYELEMENT,

column_size IN INTEGER default 1024

)

RETURN INTEGER;

Table 9-44 DBMS_SQL.DEFINE_COLUMN interface parameters

Parameter Name Description
cursorid ID of the cursor to be executed
position Position of a dynamically defined

column in the query

column_ref Variable of any type. You can select
an appropriate interface to
dynamically define columns based
on variable types.

column_size Length of a defined column

DBMS_SQL.DEFINE_COLUMN_CHAR

This function defines columns of the CHAR type returned from a given cursor
and can be used only for the cursors defined by SELECT. The defined columns
are identified by the relative positions in the query list. The data type of the
input variable determines the column type.

The function prototype of DBMS_SQL.DEFINE_COLUMN_CHAR is:
DBMS_SQL.DEFINE_COLUMN_CHAR(

cursorid IN INTEGER,

position IN INTEGER,

column IN TEXT,

column_size IN INTEGER

)
RETURN INTEGER,;

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 205

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

Table 9-45 DBMS_SQL.DEFINE_COLUMN_CHAR interface parameters

Parameter Name Description

cursorid ID of the cursor to be executed

position Position of a dynamically defined
column in the query

column Parameter to be defined

column_size Length of a dynamically defined
column

DBMS_SQL.DEFINE_COLUMNL_INT

This function defines columns of the INT type returned from a given cursor
and can be used only for the cursors defined by SELECT. The defined columns
are identified by the relative positions in the query list. The data type of the
input variable determines the column type.

The function prototype of DBMS_SQL.DEFINE_COLUMNL_INT is:
DBMS_SQL.DEFINE_COLUMN_INT(

cursorid IN INTEGER,

position IN INTEGER

)
RETURN INTEGER;

Table 9-46 DBMS_SQL.DEFINE_COLUMNL_INT interface parameters

Parameter Name Description

cursorid ID of the cursor to be executed

position Position of a dynamically defined
column in the query

DBMS_SQL.DEFINE_COLUMN_LONG

This function defines columns of a long type (not LONG) returned from a
given cursor and can be used only for the cursors defined by SELECT. The
defined columns are identified by the relative positions in the query list. The
data type of the input variable determines the column type. The maximum
size of a long column is 1 GB.

The function prototype of DBMS_SQL.DEFINE_COLUMN_LONG is:
DBMS_SQL.DEFINE_COLUMN_LONG(

cursorid IN INTEGER,

position IN INTEGER

)
RETURN INTEGER,;

Table 9-47 DBMS_SQL.DEFINE_COLUMN_LONG interface parameters

Parameter Name Description

cursorid ID of the cursor to be executed

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 206

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

Parameter Name Description

position Position of a dynamically defined
column in the query

DBMS_SQL.DEFINE_COLUMN_RAW

This function defines columns of the RAW type returned from a given cursor
and can be used only for the cursors defined by SELECT. The defined columns
are identified by the relative positions in the query list. The data type of the
input variable determines the column type.

The function prototype of DBMS_SQL.DEFINE_COLUMN_RAW is:
DBMS_SQL.DEFINE_COLUMN_RAW/(

cursorid IN INTEGER,

position IN INTEGER,

column IN BYTEA,

column_size IN INTEGER

)
RETURN INTEGER,;

Table 9-48 DBMS_SQL.DEFINE_COLUMN_RAW interface parameters

Parameter Name Description

cursorid ID of the cursor to be executed

position Position of a dynamically defined
column in the query

column Parameter of the RAW type

column_size Column length

DBMS_SQL.DEFINE_COLUMN_TEXT

This function defines columns of the TEXT type returned from a given cursor
and can be used only for the cursors defined by SELECT. The defined columns
are identified by the relative positions in the query list. The data type of the
input variable determines the column type.

The function prototype of DBMS_SQL.DEFINE_COLUMN_TEXT is:
DBMS_SQL.DEFINE_COLUMN_CHAR(

cursorid IN INTEGER,

position IN INTEGER,

max_size IN INTEGER

)
RETURN INTEGER;

Table 9-49 DBMS_SQL.DEFINE_COLUMN_TEXT interface parameters

Parameter Name Description

cursorid ID of the cursor to be executed

position Position of a dynamically defined
column in the query

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 207

Data Warehouse Service

Developer Guide 9 GaussDB(DWS) Stored Procedure
Parameter Name Description
max_size Maximum length of the defined
TEXT type

e DBMS_SQL.DEFINE_COLUMN_UNKNOWN

This function processes columns of unknown data types returned from a given
cursor and is used only for the system to report an error and exist when the
type cannot be identified.

The function prototype of DBMS_SQL.DEFINE_COLUMN_UNKNOWN is:
DBMS_SQL.DEFINE_COLUMN_CHAR(

cursorid IN INTEGER,

position IN INTEGER,

column IN TEXT

)

RETURN INTEGER;

Table 9-50 DBMS_SQL.DEFINE_COLUMN_UNKNOWN interface parameters

Parameter Name Description
cursorid ID of the cursor to be executed
position Position of a dynamically defined

column in the query

column Dynamically defined parameter

e DBMS_SQL.COLUMN_VALUE

This function returns the cursor element value specified by a cursor and
accesses the data obtained by DBMS_SQL.FETCH_ROWS.

The function prototype of DBMS_SQL.COLUMN_VALUE is:
DBMS_SQL.COLUMN_VALUE(

cursorid IN INTEGER,
position IN INTEGER,
column_value INOUT ANYELEMENT

)
RETURN ANYELEMENT;

Table 9-51 DBMS_SQL.COLUMN_VALUE interface parameters

Parameter Name Description
cursorid ID of the cursor to be executed
position Position of a dynamically defined

column in the query

column_value Return value of a defined column

e DBMS_SQL.COLUMN_VALUE_CHAR

This function returns the value of the CHAR type in a specified position of a
cursor and accesses the data obtained by DBMS_SQL.FETCH_ROWS.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 208

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

The function prototype of DBMS_SQL.COLUMN_VALUE_CHAR is:
DBMS_SQL.COLUMN_VALUE_CHAR(

cursorid IN INTEGER,

position IN INTEGER,

column_value INOUT CHARACTER,
err_num INOUT NUMERIC default 0,
actual_length INOUT INTEGER default 1024

)
RETURN RECORD;

Table 9-52 DBMS_SQL.COLUMN_VALUE_CHAR interface parameters

Parameter Name Description

cursorid ID of the cursor to be executed

position Position of a dynamically defined
column in the query

column_value Return value

err_num Error No. It is an output parameter

and the argument must be a
variable. Currently, the output value
is -1 regardless of the argument.

actual_length Length of a return value

e DBMS_SQL.COLUMN_VALUE_INT

This function returns the value of the INT type in a specified position of a
cursor and accesses the data obtained by DBMS_SQL.FETCH_ROWS. The

function prototype of DBMS_SQL.COLUMN_VALUE_INT is:
DBMS_SQL.COLUMN_VALUE_INT(
cursorid IN INTEGER,
position IN INTEGER

)
RETURN INTEGER,;

Table 9-53 DBMS_SQL.COLUMN_VALUE_INT interface parameters

Parameter Name Description

cursorid ID of the cursor to be executed

position Position of a dynamically defined
column in the query

e DBMS_SQL.COLUMN_VALUE_LONG

This function returns the value of a long type (not LONG or BIGINT) in a
specified position of a cursor and accesses the data obtained by
DBMS_SQL.FETCH_ROWS.

The function prototype of DBMS_SQL.COLUMN_VALUE_LONG is:
DBMS_SQL.COLUMN_VALUE_LONG(

cursorid IN INTEGER,
position IN INTEGER,
length IN INTEGER,
off_set IN INTEGER,

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 209

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

column_value INOUT TEXT,
actual_length INOUT INTEGER default 1024

)
RETURN RECORD;

Table 9-54 DBMS_SQL.COLUMN_VALUE_LONG interface parameters

Parameter Name Description

cursorid ID of the cursor to be executed

position Position of a dynamically defined
column in the query

length Length of a return value

off_set Start position of a return value

column_value Return value

actual_length Length of a return value

e DBMS_SQL.COLUMN_VALUE_RAW

This function returns the value of the RAW type in a specified position of a
cursor and accesses the data obtained by DBMS_SQL.FETCH_ROWS.

The function prototype of DBMS_SQL.COLUMN_VALUE_RAW is:
DBMS_SQL.COLUMN_VALUE_RAW(

cursorid IN INTEGER,

position IN INTEGER,

column_value INOUT BYTEA,

err_num INOUT NUMERIC default 0,
actual_length INOUT INTEGER default 1024

)
RETURN RECORD;

Table 9-55 DBMS_SQL.COLUMN_VALUE_RAW interface parameters

Parameter Name Description

cursorid ID of the cursor to be executed

position Position of a dynamically defined
column in the query

column_value Returned column value

err_num Error No. It is an output parameter

and the argument must be a
variable. Currently, the output value
is -1 regardless of the argument.

actual_length Length of a return value. The value
longer than this length will be
truncated.

e DBMS_SQL.COLUMN_VALUE_TEXT

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 210

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

This function returns the value of the TEXT type in a specified position of a
cursor and accesses the data obtained by DBMS_SQL.FETCH_ROWS.

The function prototype of DBMS_SQL.COLUMN_VALUE_TEXT is:
DBMS_SQL.COLUMN_VALUE_TEXT(

cursorid IN INTEGER,

position IN INTEGER

)
RETURN TEXT;

Table 9-56 DBMS_SQL.COLUMN_VALUE_TEXT interface parameters

Parameter Name Description

cursorid ID of the cursor to be executed

position Position of a dynamically defined
column in the query

e DBMS_SQL.COLUMN_VALUE_UNKNOWN

This function returns the value of an unknown type in a specified position of a
cursor. This is an error handling interface when the type is not unknown.

The function prototype of DBMS_SQL.COLUMN_VALUE_UNKNOWN is:
DBMS_SQL.COLUMN_VALUE_UNKNOWN(

cursorid IN INTEGER,
position IN INTEGER,
COLUMN_TYPE IN TEXT

)
RETURN TEXT;

Table 9-57 DBMS_SQL.COLUMN_VALUE_UNKNOWN interface parameters

Parameter Name Description
cursorid ID of the cursor to be executed
position Position of a dynamically defined

column in the query

column_type Returned parameter type

e DBMS_SQL.IS_OPEN

This function returns the status of a cursor: open, parse, execute, or define. The
value is TRUE. If the status is unknown, an error is reported. In other cases, the
value is FALSE.

The function prototype of DBMS_SQL.IS_OPEN is:
DBMS_SQL.IS_OPEN(
cursorid IN INTEGER

)
RETURN BOOLEAN;

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 211

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

Examples

9.11 GaussDB(DWS) Stored Procedure

Syntax

Table 9-58 DBMS_SQL.IS_OPEN interface parameters

Parameter Name Description

cursorid ID of the cursor to be queried

-- Perform operations on RAW data in a stored procedure.

create or replace procedure pro_dbms_sql_all_02(in_raw raw,v_in int,v_offset int)

as
cursorid int;

v_id int;

v_info bytea :=1;

query varchar(2000);

execute_ret int;

define_column_ret_raw bytea :='1";

define_column_ret int;

begin

drop table if exists pro_dbms_sql_all_tb1_02 ;

create table pro_dbms_sql_all_tb1_02(a int ,b blob);

insert into pro_dbms_sql_all_tb1_02 values(1,HEXTORAW ('DEADBEEE"));
insert into pro_dbms_sql_all_tb1_02 values(2,in_raw);

query = 'select * from pro_dbms_sql_all_tb1_02 order by 1

-- Open a cursor.

cursorid := dbms_sqgl.open_cursor();

-- Compile the cursor.

dbms_sql.parse(cursorid, query, 1);

-- Define a column.

define_column_ret:= dbms_sql.define_column(cursorid,1,v_id);
define_column_ret_raw:= dbms_sql.define_column_raw(cursorid,2,v_info,10);
-- Execute the cursor.

execute_ret ;= dbms_sqgl.execute(cursorid);

loop

exit when (dbms_sql.fetch_rows(cursorid) <= 0);

-- Obtain values.

dbms_sql.column_value(cursorid,1,v_id);
dbms_sql.column_value_raw(cursorid,2,v_info,v_in,v_offset);
-- Output the result.

dbms_output.put_line('id:'|| v_id || ' info:' || v_info);

end loop;

-- Close the cursor.

dbms_sql.close_cursor(cursorid);

end;

/

-- Invoke the stored procedure.

call pro_dbms_sql_all_02(HEXTORAW ('DEADBEEF'),0,1);

-- Delete the stored procedure.
DROP PROCEDURE pro_dbms_sql_all_02;

RAISE has the following five syntax formats:

Debugging

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

212

Data Warehouse Service
Developer Guide 9 GaussDB(DWS) Stored Procedure

Figure 9-34 raise_format::=

—{RAISE ' '.
8

(T{USING]—(ﬂ option = expression
[la
[, s

Figure 9-35 raise_condition::=

—-{RAISE level condition_name]—)

(TUSING]—(>[option = expression

Figure 9-36 raise_sqlstate::=

—(RATSE }~—+{Tevel }—~{SQLSTATE () 8

(TUEING]_(>[option = expression

Figure 9-37 raise_option::=

—{RAISE]—@——[US[NG]Tb[option = expression }—T@
[
(. Js

Figure 9-38 raise::=

RAISE }+:)

Parameter description:

e The level option is used to specify the error level, that is, DEBUG, LOG, INFO,
NOTICE, WARNING, or EXCEPTION (default). EXCEPTION throws an error
that normally terminates the current transaction and the others only generate
information at their levels. The log_min_messages and client_min_messages
parameters control whether the error messages of specific levels are reported
to the client and are written to the server log.

e format: specifies the error message text to be reported, a format character
string. The format character string can be appended with an expression for

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 213

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

Examples

insertion to the message text. In a format character string, % is replaced by
the parameter value attached to format and %% is used to print %. For
example:
--v_job_id replaces % in the character string.
RAISE NOTICE 'Calling cs_create_job(%)',v_job_id;

e option = expression: inserts additional information to an error report. The
keyword option can be MESSAGE, DETAIL, HINT, or ERRCODE, and each
expression can be any character string.

- MESSAGE: specifies the error message text. This option cannot be used in
a RAISE statement that contains a format character string in front of
USING.

- DETAIL: specifies detailed information of an error.
- HINT: prints hint information.

- ERRCODE: designates an error code (SQLSTATE) to a report. A condition
name or a five-character SQLSTATE error code can be used.

e condition_name: specifies the condition name corresponding to the error
code.

e sqlstate: specifies the error code.

If neither a condition name nor an SQLSTATE is designated in a RAISE
EXCEPTION command, the RAISE EXCEPTION (P0001) is used by default. If no
message text is designated, the condition name or SQLSTATE is used as the
message text by default.

NOTICE

If the SQLSTATE designates an error code, the error code is not limited to a
defined error code. It can be any error code containing five digits or ASCII
uppercase rather than 00000. Avoid using error codes that end in three zeros
because they are category codes and can be captured by the entire category.

(11 NOTE

The syntax described in Figure 9-38 does not append any parameter. This form is used only
for the EXCEPTION statement in a BEGIN block so that the error can be re-processed.

Display error and hint information when a transaction terminates:
CREATE OR REPLACE PROCEDURE proc_raise1(user_id in integer)

AS

BEGIN

RAISE EXCEPTION 'Noexistence ID --> %',user_id USING HINT = 'Please check your user ID';
END;

/

CALL proc_raise1(300011);
ERROR: Noexistence ID --> 300011
HINT: Please check your user ID

Two methods are available for setting SQLSTATE:
CREATE OR REPLACE PROCEDURE proc_raise2(user_id in integer)
AS

BEGIN

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 214

Data Warehouse Service

Developer Guide

9 GaussDB(DWS) Stored Procedure

RAISE 'Duplicate user ID: %',user_id USING ERRCODE = 'unique_violation’;
END;
/

\set VERBOSITY verbose
CALL proc_raise2(300011);

ERROR: Duplicate user ID: 300011
SQLSTATE: 23505
LOCATION: exec_stmt_raise, pl_exec.cpp:3482

If the main parameter is a condition name or SQLSTATE, the following applies:

RAISE division_by_zero;
RAISE SQLSTATE '22012";

For example:

CREATE OR REPLACE PROCEDURE division(div in integer, dividend in integer)
AS
DECLARE
res int;
BEGIN
IF dividend=0 THEN
RAISE division_by_zero;
RETURN;
ELSE
res := div/dividend;
RAISE INFO 'division result: %', res;
RETURN;
END IF;
END;
/
call division(3,0);
ERROR: division_by_zero

Alternatively:
RAISE unique_violation USING MESSAGE = 'Duplicate user ID: ' || user_id;

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 215

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Using PostGIS Extension

10.1 PostGIS

(11 NOTE

e The third-party software that the PostGIS Extension depends on needs to be installed
separately. If you need to use PostGlIS, submit a service ticket or contact technical
support to submit an application.

e If the error message "ERROR: EXTENSION is not yet supported.” is displayed, the
PostGIS software package is not installed. Contact technical support.

GaussDB(DWS) provides PostGIS Extension (PostGlIS-2.4.2). PostGIS Extension is a
spatial database extender for PostgreSQL. It provides the following spatial
information services: spatial objects, spatial indexes, spatial functions, and spatial
operators. PostGIS Extension complies with the OpenGlIS specifications.

In GaussDB(DWS), PostGIS Extension depends on the listed third-party open-
source software.

e Geos 36.2

e Proj49.2

e Json 0.12.1

e Libxml2 2.7.1
e Gdal 1.11.0

10.2 Using PostGIS

(10 NOTE

e The third-party software that the PostGIS Extension depends on needs to be installed
separately. If you need to use PostGlIS, submit a service ticket or contact technical
support to submit an application.

e If the error message "ERROR: EXTENSION is not yet supported.” is displayed, the
PostGIS software package is not installed. Contact technical support.

e The uuid-ossp extension has been preloaded in GaussDB(DWS). You can directly use the
uuid function supported by GaussDB(DWS) without running the CREATE EXTENSION
uuid-ossp command.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 216

Data Warehouse Service

Developer Guide

10 Using PostGIS Extension

Creating PostGIS Extension

Run the CREATE EXTENSION command to create PostGIS Extension.

CREATE EXTENSION postgis;

Using PostGIS Extension

Use the following function to invoke a PostGIS Extension:

SELECT GisFunction (Param1, Param2,......);

GisFunction is the function, and Param1 and Param2 are function parameters.
The following SQL statements are a simple illustration for PostGIS use. For details
about related functions, see PostGIS 2.4.2 Manual.

Example 1: Create a geometry table.

CREATE TABLE cities (id integer, city_name varchar(50));
SELECT AddGeometryColumn('cities', 'position', 4326, 'POINT', 2);

Example 2: Insert geometry data.
INSERT INTO cities (id, position, city_name) VALUES (1,ST_GeomFromText('POINT(-9.5 23)',4326),'CityA');

INSERT INTO cities (id, position, city_name) VALUES (2,ST_GeomFromText('POINT(-10.6 40.3)',4326),'CityB');
INSERT INTO cities (id, position, city_name) VALUES (3,ST_GeomFromText('POINT(20.8 30.3)',4326), 'CityC');

Example 3: Calculate the distance between any two cities among three cities.

SELECT p1.city_name,p2.city_name,ST_Distance(p1.position,p2.position) FROM cities AS p1, cities AS p2
WHERE p1.id > p2.id;

Deleting PostGIS Extension

Run the following command to delete PostGIS Extension from GaussDB(DWS):
DROP EXTENSION postgis [CASCADE];

(10 NOTE

If PostGIS Extension is the dependee of other objects (for example, geometry tables), you
need to add the CASCADE keyword to delete all these objects.

10.3 PostGIS Support and Constraints

Supported Data Types

In GaussDB(DWS), PostGIS Extension support the following data types:

e box2d

e box3d

e geometry_dump
e geometry

e geography

e raster

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 217

https://download.osgeo.org/postgis/docs/postgis-2.4.2.pdf

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

(11 NOTE

If PostGIS is used by a user other than the creator of the PostGIS, set the following GUC
parameters:
SET behavior_compat_options = 'bind_procedure_searchpath’;

Supported Operators and Functions

Table 10-1 Operators and functions supported by PostGIS

Category Function
Management AddGeometryColumn, DropGeometryColumn,
functions DropGeometryTable, PostGIS_Full_Version,

PostGIS_GEQOS_Version, PostGIS_Liblwgeom_Version,
PostGIS_Lib_Build_Date, PostGIS_Lib_Version,
PostGIS_PROJ_Version, PostGIS_Scripts_Build_Date,
PostGIS_Scripts_Installed, PostGIS_Version,
PostGIS_LibXML_Version, PostGIS_Scripts_Released,
Populate_Geometry_Columns, UpdateGeometrySRID

Geometry ST_BdPolyFromText, ST_BdMPolyFromText,

constructors ST_Box2dFromGeoHash, ST_GeogFromText,
ST_GeographyFromText, ST_GeogFromWKB,
ST_GeomCollFromText, ST_GeomFromEWKB,
ST_GeomFromEWKT, ST_GeometryFromText,
ST_GeomFromGeoHash, ST_GeomFromGMIL,
ST_GeomFromGeoJSON, ST_GeomFromKML, ST_GMLToSQL,
ST_GeomFromText, ST_GeomFromWAKB,

ST _LineFromMultiPoint, ST_LineFromText, ST_LineFromWAKB,
ST_LinestringFromWKB, ST_MakeBox2D, ST_3DMakeBox,
ST_MakeEnvelope, ST_MakePolygon, ST_MakePoint,
ST_MakePointM, ST_MLineFromText, ST_MPointFromText,
ST_MPolyFromText, ST_Point, ST_PointFromGeoHash,
ST_PointFromText, ST_PointFromWKB, ST_Polygon,
ST_PolygonFromText, ST_WKBToSQL, ST_WKTToSQL

Geometry GeometryType, ST_Boundary, ST_CoordDim, ST_Dimension,
accessors ST_EndPoint, ST_Envelope, ST_ExteriorRing, ST_GeometryN,
ST_GeometryType, ST_InteriorRingN, ST_IsClosed,
ST_IsCollection, ST_IsEmpty, ST_IsRing, ST_IsSimple,

ST IsValid, ST_IsValidReason, ST_IsValidDetail, ST_M,
ST_NDims, ST_NPoints, ST_NRings, ST_NumGeometries,
ST_NuminteriorRings, ST_NuminteriorRing, ST_NumPatches,
ST_NumPoints, ST_PatchN, ST_PointN, ST_SRID,
ST_StartPoint, ST_Summary, ST_X, ST_XMax, ST_XMin, ST_Y,
ST_YMax, ST_YMin, ST_Z, ST_ZMax, ST_Zmflag, ST_ZMin

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 218

Data Warehouse Service
Developer Guide

10 Using PostGIS Extension

Category

Function

Geometry editors

ST_AddPoint, ST_Affine, ST _Force2D, ST_Force3D,

ST _Force3DZ, ST_Force3DM, ST_Force4D, ST_ForceCollection,
ST_ForceSFS, ST_ForceRHR, ST_LineMerge,
ST_CollectionExtract, ST_CollectionHomogenize, ST_Multi,
ST_RemovePoint, ST_Reverse, ST_Rotate, ST_RotateX,
ST_RotateY, ST_RotateZ, ST_Scale, ST_Segmentize,
ST_SetPoint, ST_SetSRID, ST_SnapToGrid, ST_Snap,

ST Transform, ST _Translate, ST _TransScale

Geometry
outputs

ST_AsBinary, ST_ASEWKB, ST_ASEWKT, ST_AsGeoJSON,
ST_AsGML, ST_AsHEXEWKB, ST_AsKML, ST_AsLatLonText,
ST _AsSVG, ST _AsText, ST_AsX3D, ST_GeoHash

Operators

&&, &&&, &<, &<|, &>, <<, <<, =, >>, @, |&>, [>>, ~, ~=, <->,
<#>

Spatial
relationships and
measurements

ST _3DClosestPoint, ST_3DDistance, ST_3DDWithin,
ST_3DDFullyWithin, ST_3DIntersects, ST_3DLongestLine,
ST_3DMaxDistance, ST_3DShortestLine, ST_Area,

ST _Azimuth, ST_Centroid, ST_ClosestPoint, ST_Contains,
ST_ContainsProperly, ST_Covers, ST_CoveredBy, ST_Crosses,
ST_LineCrossingDirection, ST_Disjoint, ST_Distance,
ST_HausdorffDistance, ST_MaxDistance, ST_DistanceSphere,
ST_DistanceSpheroid, ST_DFullyWithin, ST_DWithin,
ST_Equals, ST_HasArc, ST_Intersects, ST_Length,
ST_Length2D, ST_3DLength, ST_Length_Spheroid,
ST_Length2D_Spheroid, ST_3DLength_Spheroid,
ST_LongestLine, ST_OrderingEquals, ST_Overlaps,
ST_Perimeter, ST_Perimeter2D, ST_3DPerimeter,
ST_PointOnSurface, ST_Project, ST_Relate, ST_RelateMatch,
ST ShortestLine, ST_Touches, ST_Within

Geometry
processing

ST _Buffer, ST_BuildArea, ST_Collect, ST_ConcaveHull,
ST_ConvexHull, ST_CurveTolLine, ST_DelaunayTriangles,
ST_Difference, ST_Dump, ST_DumpPoints, ST_DumpRings,
ST_FlipCoordinates, ST_Intersection, ST_LineToCurve,
ST_MakeValid, ST_MemUnion, ST_MinimumBoundingCircle,
ST_Polygonize, ST_Node, ST_OffsetCurve,
ST_RemoveRepeatedPoints, ST_SharedPaths,
ST_Shift_Longitude, ST_Simplify, ST_SimplifyPreserveTopolo-
gy, ST_Split, ST_SymDifference, ST_Union, ST_UnaryUnion

Linear
referencing

ST_LinelnterpolatePoint, ST_LineLocatePoint,
ST_LineSubstring, ST_LocateAlong, ST_LocateBetween,
ST_LocateBetweenElevations, ST_InterpolatePoint,
ST_AddMeasure

Miscellaneous

ST_Accum, Box2D, Box3D, ST_Expand, ST_Extent,

functions ST _3Dextent, Find_SRID, ST_MemSize
Exceptional PostGIS_AddBBox, PostGIS_DropBBox, PostGIS_HasBBox
functions

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

219

Data Warehouse Service
Developer Guide

10 Using PostGIS Extension

Category Function

Raster AddRasterConstraints, DropRasterConstraints,

Management AddOverviewConstraints, DropOverviewConstraints,

Functions PostGIS_GDAL_Version, PostGIS_Raster_Lib_Build_Date,
PostGIS_Raster_Lib_Version, and ST_GDALDrivers, and
UpdateRasterSRID

Raster ST_AddBand, ST_AsRaster, ST_Band, ST_MakeEmptyRaster,

Constructors ST Tile, and ST_FromGDALRaster

Raster Accessors

ST_GeoReference, ST_Height, ST_IsEmpty, ST_MetaData,
ST_NumBands, ST_PixelHeight, ST_PixelWidth, ST_ScaleX,
ST ScaleY, ST_RasterToWorldCoord,
ST_RasterToWorldCoordX, ST_RasterToWorldCoordY,
ST_Rotation, ST_SkewX, ST_SkewyY, ST_SRID, ST_Summary,
ST_UpperLeftX, ST_UpperLeftY, ST_Width,

ST WorldToRasterCoord, ST_WorldToRasterCoordX,

ST _WorldToRasterCoordY

Raster Band

ST _BandMetaData, ST _BandNoDataValue,

Accessors ST_BandlIsNoData, ST_BandPath, ST_BandPixelType, and
ST_HasNoBand
Raster Pixel ST_PixelAsPolygon, ST_PixelAsPolygons, ST_PixelAsPoint,

Accessors and
Setters

ST_PixelAsPoints, ST_PixelAsCentroid, ST_PixelAsCentroids,
ST_Value, ST_NearestValue, ST_Neighborhood, ST_SetValue,
ST_SetValues, ST_DumpValues, and ST_PixelOfValue

Raster Editors

ST SetGeoReference, ST_SetRotation, ST _SetScale,
ST_SetSkew, ST_SetSRID, ST_SetUpperLeft, ST_Resample,
ST_Rescale, ST_Reskew, and ST_SnapToGrid, ST_Resize, and
ST _Transform

Raster Band
Editors

ST _SetBandNoDataValue and ST_SetBandlsNoData

Raster Band
Statistics and
Analytics

ST_Count, ST_CountAgg, ST_Histogram, ST_Quantile,
ST_SummaryStats, ST_SummaryStatsAgg, and
ST ValueCount

Raster Outputs

ST_AsBinary, ST_AsGDALRaster, ST_AsJPEG, ST_AsPNG, and
ST_AsTIFF

Raster Processing

ST_Clip, ST_ColorMap, ST_Intersection, ST_MapAlgebra,

ST _Reclass, and ST_Union ST_Distinct4ma,
ST_InvDistWeight4ma, ST_Max4ma, ST_Mean4ma,
ST_Mindma, ST_MinDist4ma, ST_Range4ma, ST_StdDev4ma,
and ST _Sum4ma, ST_Aspect, ST_HillShade, ST_Roughness,
ST_Slope, ST_TPI, ST_TRI, Box3D, ST_ConvexHull,
ST_DumpAsPolygons, and ST_ Envelope, ST_MinConvexHull,
ST_Polygon, ST_Contains, ST_ContainsProperly, ST_Covers,
ST_CoveredBy, ST_Disjoint, ST_Intersects, and ST_Overlaps,
ST_Touches, ST_SameAlignment, ST_NotSameAlignmentRea-
son, ST_Within, ST_DWithin, and ST_DFullyWithin

Issue 03 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

220

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

Category Function

Raster Operators | &&, &<, &>, =, @, ~=, and ~

Spatial Indexes

In GaussDB(DWS), PostGIS Extension supports Generalized Search Tree (GIST)
spatial indexes. This index type is inapplicable to partitioned tables. Different from
B-tree indexes, GIS indexes are adaptable to all kinds of irregular data structures,
which can effectively improve the retrieval efficiency for geometry and geographic
data.

Run the following command to create a GiST index:

CREATE INDEX /indexname ON tablename USING GIST (geometryfield);

Extension Constraints
e Only row-store tables are supported.
e Only Oracle-compatible databases are supported.
e The topology object management module, Topology, is not supported.
e BRIN indexes are not supported.
e The spatial_ref_sys table can only be queried during scale-out.

10.4 OPEN SOURCE SOFTWARE NOTICE (For PostGIS)

This document contains open source software notice for the product. And this
document is confidential information of copyright holder. Recipient shall protect it
in due care and shall not disseminate it without permission.

Warranty Disclaimer

This document is provided "as is" without any warranty whatsoever, including the
accuracy or comprehensiveness. Copyright holder of this document may change
the contents of this document at any time without prior notice, and copyright
holder disclaims any liability in relation to recipient's use of this document.

Open source software is provided by the author "as is" and any express or implied
warranties, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose are disclaimed. In no event shall the author be
liable for any direct, indirect, incidental, special, exemplary, or consequential
damages (including, but not limited to, procurement of substitute goods or
services; loss of data or profits; or business interruption) however caused and on
any theory of liability, whether in contract, strict liability, or tort (including
negligence or otherwise) arising in any way out of the use of open source
software, even if advised of the possibility of such damage.

Copyright Notice And License Texts
Software: postgis-2.4.2
Copyright notice:

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 221

Data Warehouse Service

Developer Guide

10 Using PostGIS Extension

"Copyright (C) 1996-2015 Free Software Foundation, Inc.
Copyright (C) 1989, 1991 Free Software Foundation, Inc.,

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301

Copyright 2008 Kevin Neufeld

Copyright (c) 2009 Walter Bruce Sinclair

Copyright 2006-2013 Stephen Woodbridge.

Copyright (c) 2008 Walter Bruce Sinclair

Copyright (c) 2012 TJ Holowaychuk <tj@vision-media.ca>
Copyright (c) 2008, by Attractive Chaos <attractivechaos@aol.co.uk>
Copyright (c) 2001-2012 Walter Bruce Sinclair

Copyright (c) 2010 Walter Bruce Sinclair

Copyright 2006 Stephen Woodbridge

Copyright 2006-2010 Stephen Woodbridge.

Copyright (c) 2006-2014 Stephen Woodbridge.

Copyright (c) 2017, Even Rouault <even.rouault at spatialys.com>
Copyright (C) 2004-2015 Sandro Santilli <strk@kbt.io>

Copyright (C) 2008-2011 Paul Ramsey <pramsey@cleverelephant.ca>
Copyright (C) 2008 Mark Cave-Ayland <mark.cave-ayland@siriusit.co.uk>
Copyright 2015 Nicklas Avén <nicklas.aven@jordogskog.no>
Copyright 2008 Paul Ramsey

Copyright (C) 2012 Sandro Santilli <strk@kbt.io>

Copyright 2012 Sandro Santilli <strk@kbt.io>

Copyright (C) 2014 Sandro Santilli <strk@kbt.io>

Copyright 2013 Olivier Courtin <olivier.courtin@oslandia.com>
Copyright 2009 Paul Ramsey <pramsey@cleverelephant.ca>
Copyright 2008 Paul Ramsey <pramsey@cleverelephant.ca>
Copyright 2011 Sandro Santilli <strk@kbt.io>

Copyright 2015 Daniel Baston

Copyright 2009 Olivier Courtin <olivier.courtin@oslandia.com>
Copyright 2014 Kashif Rasul <kashif.rasul@gmail.com> and
Shoaib Burqg <saburg@gmail.com>

Copyright 2013 Sandro Santilli <strk@kbt.io>

Copyright 2010 Paul Ramsey <pramsey@cleverelephant.ca>

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

222

Data Warehouse Service

Developer Guide

10 Using PostGIS Extension

Copyright (C) 2017 Sandro Santilli <strk@kbt.io>

Copyright (C) 2015 Sandro Santilli <strk@kbt.io>

Copyright (C) 2009 Paul Ramsey <pramsey@cleverelephant.ca>
Copyright (C) 2011 Sandro Santilli <strk@kbt.io>

Copyright 2010 Olivier Courtin <olivier.courtin@oslandia.com>
Copyright 2014 Nicklas Avén

Copyright 2011-2016 Regina Obe

Copyright (C) 2008 Paul Ramsey

Copyright (C) 2011-2015 Sandro Santilli <strk@kbt.io>
Copyright 2010-2012 Olivier Courtin <olivier.courtin@oslandia.com>
Copyright (C) 2015 Daniel Baston <dbaston@gmail.com>
Copyright (C) 2013 Nicklas Avén

Copyright (C) 2016 Sandro Santilli <strk@kbt.io>

Copyright 2017 Darafei Praliaskouski <me@komzpa.net>
Copyright (c) 2016, Paul Ramsey <pramsey@cleverelephant.ca>
Copyright (C) 2011-2012 Sandro Santilli <strk@kbt.io>
Copyright (C) 2011 Paul Ramsey <pramsey@cleverelephant.ca>
Copyright (C) 2007-2008 Mark Cave-Ayland

Copyright (C) 2001-2006 Refractions Research Inc.

Copyright 2015 Daniel Baston <dbaston@gmail.com>
Copyright 2009 David Skea <David.Skea@gov.bc.ca>

Copyright (C) 2012-2015 Paul Ramsey <pramsey@cleverelephant.ca>
Copyright (C) 2012-2015 Sandro Santilli <strk@kbt.io>
Copyright 2001-2006 Refractions Research Inc.

Copyright (C) 2004 Refractions Research Inc.

Copyright 2011-2014 Sandro Santilli <strk@kbt.io>

Copyright 2009-2010 Sandro Santilli <strk@kbt.io>

Copyright 2015-2016 Daniel Baston <dbaston@gmail.com>
Copyright 2011-2015 Sandro Santilli <strk@kbt.io>

Copyright 2007-2008 Mark Cave-Ayland

Copyright 2012-2013 Oslandia <infos@oslandia.com>
Copyright (C) 2015-2017 Sandro Santilli <strk@kbt.io>
Copyright (C) 2001-2003 Refractions Research Inc.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

223

Data Warehouse Service

Developer Guide

10 Using PostGIS Extension

Copyright 2016 Sandro Santilli <strk@kbt.io>

Copyright 2011 Kashif Rasul <kashif.rasul@gmail.com>

Copyright (C) 2014 Nicklas Avén

Copyright (C) 2010 Paul Ramsey <pramsey@cleverelephant.ca>
Copyright (C) 2010-2015 Paul Ramsey <pramsey@cleverelephant.ca>
Copyright (C) 2011 Sandro Santilli <strk@kbt.io>

Copyright (C) 2011-2014 Sandro Santilli <strk@kbt.io>

Copyright (C) 1984, 1989-1990, 2000-2015 Free Software Foundation, Inc.
Copyright (C) 2011 Paul Ramsey

Copyright 2001-2003 Refractions Research Inc.

Copyright 2009-2010 Olivier Courtin <olivier.courtin@oslandia.com>
Copyright 2010-2012 Oslandia

Copyright 2006 Corporacion Autonoma Regional de Santander
Copyright 2013 Nicklas Avén

Copyright 2011-2016 Arrival 3D, Regina Obe

Copyright (C) 2009 David Skea <David.Skea@gov.bc.ca>

Copyright (C) 2017 Sandro Santilli <strk@kbt.io>

Copyright (C) 2009-2012 Paul Ramsey <pramsey@cleverelephant.ca>
Copyright (C) 2010 - Oslandia

Copyright (C) 2006 Mark Leslie <mark.leslie@lisasoft.com>

Copyright (C) 2008-2009 Mark Cave-Ayland <mark.cave-ayland@siriusit.co.uk>

Copyright (C) 2009-2015 Paul Ramsey <pramsey@cleverelephant.ca>
Copyright (C) 2010 Olivier Courtin <olivier.courtin@camptocamp.com>
Copyright 2010 Nicklas Avén

Copyright 2012 Paul Ramsey

Copyright 2011 Nicklas Avén

Copyright 2002 Thamer Alharbash

Copyright 2011 OSGeo

Copyright (C) 2009-2011 Paul Ramsey <pramsey@cleverelephant.ca>
Copyright (C) 2008 Mark Cave-Ayland <mark.cave-ayland@siriusit.co.uk>
Copyright (C) 2004-2007 Refractions Research Inc.

Copyright 2010 LISAsoft Pty Ltd

Copyright 2010 Mark Leslie

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

224

Data Warehouse Service

Developer Guide

10 Using PostGIS Extension

Copyright (c) 1999, Frank Warmerdam

Copyright 2009 Mark Cave-Ayland <mark.cave-ayland@siriusit.co.uk>
Copyright (c) 2007, Frank Warmerdam

Copyright 2008 OpenGeo.org

Copyright (C) 2008 OpenGeo.org

Copyright (C) 2009 Mark Cave-Ayland <mark.cave-ayland@siriusit.co.uk>

Copyright 2010 LISAsoft

Copyright (C) 2010 Mark Cave-Ayland <mark.cave-ayland@siriusit.co.uk>

Copyright (c) 1999, 2001, Frank Warmerdam

Copyright (C) 2016-2017 Bj?rn Harrtell <bjorn@wololo.org>
Copyright (C) 2017 Danny G?tte <danny.goette@fem.tu-ilmenau.de>
Copyright 2009-2011 Paul Ramsey <pramsey@cleverelephant.ca>
AcopyrightA

Copyright 2012 (C) Paul Ramsey <pramsey@cleverelephant.ca>
Copyright (C) 2006 Refractions Research Inc.

Copyright 2009 Paul Ramsey <pramsey@opengeo.org>

Copyright 2001-2009 Refractions Research Inc.

Copyright (C) 2010 Olivier Courtin <olivier.courtin@oslandia.com>
By Nathan Wagner, copyright disclaimed,

this entire file is in the public domain

Copyright 2009-2011 Olivier Courtin <olivier.courtin@oslandia.com>
Copyright (C) 2001-2005 Refractions Research Inc.

Copyright 2001-2011 Refractions Research Inc.

Copyright 2009-2014 Sandro Santilli <strk@kbt.io>

Copyright (C) 2008 Paul Ramsey <pramsey@cleverelephant.ca>
Copyright (C) 2007 Refractions Research Inc.

Copyright (C) 2010 Sandro Santilli <strk@kbt.io>

Copyright 2012 J Smith <dark.panda@gmail.com>

Copyright 2009 - 2010 Oslandia

Copyright 2009 Oslandia

Copyright 2001-2005 Refractions Research Inc.

Copyright 2016 Paul Ramsey <pramsey@cleverelephant.ca>
Copyright 2016 Daniel Baston <dbaston@gmail.com>

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

225

Data Warehouse Service

Developer Guide

10 Using PostGIS Extension

Copyright (C) 2011 OpenGeo.org

Copyright (c) 2003-2017, Troy D. Hanson http:troydhanson.github.com/uthash/

Copyright (C) 2011 Regents of the University of California

Copyright (C) 2011-2013 Regents of the University of California
Copyright (C) 2010-2011 Jorge Arevalo <jorge.arevalo@deimos-space.com>
Copyright (C) 2010-2011 David Zwarg <dzwarg@azavea.com>
Copyright (C) 2009-2011 Pierre Racine <pierre.racine@sbf.ulaval.ca>
Copyright (C) 2009-2011 Mateusz Loskot <mateusz@loskot.net>
Copyright (C) 2008-2009 Sandro Santilli <strk@kbt.io>

Copyright (C) 2013 Nathaneil Hunter Clay <clay.nathaniel@gmail.com
Copyright (C) 2013 Nathaniel Hunter Clay <clay.nathaniel@gmail.com>
Copyright (C) 2013 Bborie Park <dustymugs@gmail.com>

Copyright (C) 2013 Nathaniel Hunter Clay <clay.nathaniel@gmail.com>
(C) 2009 Mateusz Loskot <mateusz@loskot.net>

Copyright (C) 2009 Mateusz Loskot <mateusz@loskot.net>

Copyright (C) 2009-2010 Mateusz Loskot <mateusz@loskot.net>
Copyright (C) 2009-2010 Jorge Arevalo <jorge.arevalo@deimos-space.com>
Copyright (C) 2012 Regents of the University of California

Copyright (C) 2013 Regents of the University of California

Copyright (C) 2012-2013 Regents of the University of California
Copyright (C) 2009 Sandro Santilli <strk@kbt.io>

License: The GPL v2 License.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share

and change it. By contrast, the GNU General Public License is intended to

guarantee your freedom to share and change free software--to make sure the

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

226

Data Warehouse Service
Developer Guide 10 Using PostGIS Extension

software is free for all its users. This General Public License applies to most of the
Free Software Foundation's software and to any other program whose authors
commit to using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to your
programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish), that you
receive source code or can get it if you want it, that you can change the software
or use pieces of it in new free programs; and that you know you can do these
things.

To protect your rights, we need to make restrictions that forbid anyone to deny
you these rights or to ask you to surrender the rights. These restrictions translate
to certain responsibilities for you if you distribute copies of the software, or if you
modify it.

For example, if you distribute copies of such a program, whether gratis or for a
fee, you must give the recipients all the rights that you have. You must make sure
that they, too, receive or can get the source code. And you must show them these
terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer
you this license which gives you legal permission to copy, distribute and/or modify
the software.

Also, for each author's protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the
software is modified by someone else and passed on, we want its recipients to
know that what they have is not the original, so that any problems introduced by
others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to
avoid the danger that redistributors of a free program will individually obtain
patent licenses, in effect making the program proprietary. To prevent this, we have
made it clear that any patent must be licensed for everyone's free use or not
licensed at all.

The precise terms and conditions for copying, distribution and modification follow.
GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms of this
General Public License. The "Program", below, refers to any such program or work,
and a "work based on the Program" means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications and/or translated into another

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 227

Data Warehouse Service

Developer Guide

10 Using PostGIS Extension

language. (Hereinafter, translation is included without limitation in the term
"modification".) Each license is addressed as "you".

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not
restricted, and the output from the Program is covered only if its contents
constitute a work based on the Program (independent of having been made by
running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as
you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty;
keep intact all the notices that refer to this License and to the absence of any
warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifications
or work under the terms of Section 1 above, provided that you also meet all of
these conditions:

a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

¢) If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright
notice and a notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions,
and telling the user how to view a copy of this License. (Exception: if the Program
itself is interactive but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole, and thus to each
and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control
the distribution of derivative or collective works based on the Program.

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 228

Data Warehouse Service

Developer Guide

10 Using PostGIS Extension

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or
distribution medium does not bring the other work under the scope of this
License.

3. You may copy and distribute the Program (or a work based on it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above
provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing source
distribution, a complete machine-readable copy of the corresponding source code,
to be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

¢) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable
form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all the
source code for all modules it contains, plus any associated interface definition
files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not
include anything that is normally distributed (in either source or binary form) with
the major components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from
the same place counts as distribution of the source code, even though third parties
are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically terminate your
rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Program
or its derivative works. These actions are prohibited by law if you do not accept
this License. Therefore, by modifying or distributing the Program (or any work
based on the Program), you indicate your acceptance of this License to do so, and

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 229

Data Warehouse Service

Developer Guide

10 Using PostGIS Extension

all its terms and conditions for copying, distributing or modifying the Program or
works based on it.

6. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor to copy,
distribute or modify the Program subject to these terms and conditions. You may
not impose any further restrictions on the recipients' exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this
License.

7. If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not
distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly
or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system,
which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that
system in reliance on consistent application of that system; it is up to the author/
donor to decide if he or she is willing to distribute software through any other
system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder who
places the Program under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and "any later version", you

Issue 03 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 230

Data Warehouse Service

Developer Guide

10 Using PostGIS Extension

have the option of following the terms and conditions either of that version or of
any later version published by the Free Software Foundation. If the Program does
not specify a version number of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for
permission. For software which is copyrighted by the Free Software Foundation,
write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of all
derivatives of our free software and of promoting the sharing and reuse of
software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES,INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY