
GaussDB(DWS) 3.0

Developer Guide

Issue 02

Date 2024-07-19

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Contents

1 Reading Guide.. 1

2 Introduction to GaussDB(DWS) 3.0.. 2

3 Support and Constraints.. 6

4 SQL Syntax Reference.. 12
4.1 CREATE TABLE..12
4.2 CREATE EXTERNAL SCHEMA.. 29
4.3 ALTER EXTERNAL SCHEMA... 31
4.4 ALTER TABLE... 32

5 Function...48

6 System Catalogs.. 63
6.1 PG_CLASS...63
6.2 PG_CONSTRAINT.. 68
6.3 PG_EXTERNAL_NAMESPACE... 70
6.4 PG_NAMESPACE.. 71
6.5 PG_PARTITION... 71
6.6 PG_REWRITE... 73
6.7 PG_TRIGGER... 74
6.8 PGXC_GROUP... 75
6.9 PGXC_NODE..77

7 System Views..79
7.1 PGXC_DISK_CACHE_STATS...79
7.2 PGXC_DISK_CACHE_PATH_INFO..80
7.3 PGXC_DISK_CACHE_ALL_STATS... 80
7.4 PGXC_OBS_IO_SCHEDULER_STATS...82
7.5 PGXC_OBS_IO_SCHEDULER_PERIODIC_STATS... 83

8 GUC Parameters...86

9 Development Practices...95
9.1 Data Reading/Writing Across Logical Clusters... 95
9.2 Data Lakehouse... 97

GaussDB(DWS) 3.0
Developer Guide Contents

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

9.2.1 Accessing HiveMetaStore Across Clusters... 97

GaussDB(DWS) 3.0
Developer Guide Contents

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

1 Reading Guide

This document describes how to develop and use the cloud-native data warehouse
GaussDB(DWS) 3.0 (DWS 3.0 for short). Sections in this document such as Syntax
Reference, System Tables, and GUC Parameters in this document describe only the
data warehouse GaussDB(DWS) 3.0.

Other common syntaxes, system catalogs, views, functions, and GUC parameters
are not described in this document.For details, see Development Guide and SQL
Syntax Reference for GaussDB(DWS) 2.0.

GaussDB(DWS) 3.0
Developer Guide 1 Reading Guide

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

2 Introduction to GaussDB(DWS) 3.0

The newly released GaussDB(DWS) 3.0 version provides resource pooling, massive
storage, and the MPP architecture with decoupled computing and storage. This
enables high elasticity, real-time data import and sharing, and lake warehouse
integration.

Description
GaussDB(DWS) 3.0 uses decoupled computing and storage, which enables
independent scaling of compute and storage resources. This feature enables users
to quickly and independently scale computing capabilities during peak and off-
peak hours. Storage can be expanded without limitation and paid on-demand to
quickly and agilely responds to service changes with higher cost-effectiveness.

GaussDB(DWS) 3.0 has the following advantages:

● Lakehouse: GaussDB(DWS) 3.0 provides an integrated lakehouse that is
easier to maintain and operate. It seamlessly interconnects with DLI, supports
automatic metadata import, external table query acceleration, joined query of
internal and external tables, data lake format read and write, and simpler
data import.

● High elasticity: Computing resources can be quickly scaled, storage space can
be used on demand, greatly reducing the cost. Historical data does not need
to be migrated to other storage media, enabling one-stop data analysis for
industries such as finance and Internet.

● Data sharing: Multiple loads share one copy of data in real time, while the
computing resources are isolated. Multiple writes and reads are supported.

GaussDB(DWS) 3.0
Developer Guide 2 Introduction to GaussDB(DWS) 3.0

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

Architecture

Figure 2-1 GaussDB(DWS) 3.0 architecture

● Serverless and cloud native
– Decoupled storage, computing, and management layers; independent,

flexible, and fast scaling of computing and storage resources
– Cost-effective, meeting diverse workload requirements and strict load

isolation requirements
● Highly scalable

– Logical clusters (virtual warehouses) can be scaled in or out in many
ways.

– Data is shared among multiple logical clusters in real time. Multiple loads
share one copy of data.

– Logical clusters are used to linearly improve throughput and concurrency,
and provide good read/write isolation and load isolation capabilities.

● Data lakehouse
– Seamless hybrid query across data lakes and data warehouses
– In data lake analysis, you can enjoy the ultimate performance and precise

control of data warehouses.

GaussDB(DWS) 3.0
Developer Guide 2 Introduction to GaussDB(DWS) 3.0

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

Version Differences

Table 2-1 Differences between GaussDB(DWS) 3.0 and GaussDB(DWS) 2.0

Version DWS 2.0 DWS 3.0

Application
scenarios

Converged data analysis using
OLAP. It is used in sectors such
as finance, government and
enterprise, e-commerce, and
energy.

Converged analysis, and
offline integrated OLAP
analysis. Optimized for
Internet scenarios.

Advantages High cost-effectiveness
Tot and cold data analysis and
elastic scaling of storage and
computing resources.

Low cost and high
concurrency.
Decoupled storage and
compute, on-demand storage
usage, rapid computing
scaling, unlimited computing
power, and unlimited capacity.
Data sharing and lake
warehouse integration.

Features Excellent performance in
interactive analysis and offline
processing of massive data, as
well as complex data mining.

Real-time data import, real-
time analysis, offline
processing, interactive query,
and high performance for
large-scale data and complex
data mining.

SQL syntax Compatible with the SQL
syntax of the cloud data
warehouse.

Compatible with the SQL
syntax of the cloud data
warehouse.

GUC
parameter

You can configure a wide
variety of GUC parameters to
tailor your data warehouse
environment.

You can configure a wide
variety of GUC parameters to
tailor your data warehouse
environment.

Application Scenarios
● Data lakehouse

Seamless access to the data lake
– With the interconnection with Hive Metastore metadata management,

you can directly access the data table definitions in the data lake. You do
not need to create a foreign table. You only need to create an external
schema.

– The following data formats are supported: ORC and Parquet.
Convergent query

– Hybrid query of any data in the data lake and warehouse
– The query result is directly sent to the warehouse or data lake. No data

needs to be transferred or copied.

GaussDB(DWS) 3.0
Developer Guide 2 Introduction to GaussDB(DWS) 3.0

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

Excellent query performance
– High-quality query plans and efficient execution engines
– Precise load management methods

● Highly scalable
Computing resources can be quickly scaled, storage space can be used on
demand, greatly reducing cost. It is applicable to stable services and sensitive
services.
– Two scaling modes are provided. You can scale in or out the current

cluster or add a logical cluster.
– The scaling is performed very quickly without data redistribution or copy.
– A logical cluster can improve concurrency and throughput. It can also be

used to bind different services to different VWs to implement read/write
isolation. It is applicable to scenarios where service loads change
periodically, for example, batch service increase from 00:00 to 07:00.

● Data sharing
One copy of data carries various loads. Data can be shared in real time, and
data of different services can be quickly shared.
– Any logical cluster can carry read and write loads.
– Data is visible shared among multiple logical clusters and does not need

to be copied.

GaussDB(DWS) 3.0
Developer Guide 2 Introduction to GaussDB(DWS) 3.0

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

3 Support and Constraints

The differences between operations supported by GaussDB(DWS) 3.0 lie in the
management console and database operations.

For details about the operation differences supported on the management
console, see Table 3-1. For details about the supported database capabilities, see
Table 3-2.

Table 3-1 Console Operation

Module Function DWS 2.0 DWS 3.0

Navigation menu Dashboard Yes Yes

Cluster
Management

Yes Yes

DR management Yes No

Snapshot
management

Yes Yes

Parameters Yes Yes

Incident
management

Yes Yes

Alarm
management

Yes Yes

Client connections Yes Yes

Dashboard Resources Yes Yes

Alarms Yes Yes

Recent events Yes Yes

Cluster
monitoring
metrics (DMS)

Yes Yes

GaussDB(DWS) 3.0
Developer Guide 3 Support and Constraints

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

Module Function DWS 2.0 DWS 3.0

Cluster
management

Monitoring panel
(DMS)

Yes Yes

Monitoring
metrics (Cloud
Eye)

Yes Yes

Restart Yes Yes

Scaling Yes Yes

Redistributing
data

Yes Yes

Viewing
redistribution
details

Yes Yes

Resetting
passwords

Yes Yes

Creating
snapshots

Yes Yes

Canceling read-
only status

Yes Yes

Deletion Yes Yes

Managing CNs Yes Yes

Storage space
scaling

Yes Yes

Basic Information Basic information Yes Yes

ELB Yes Yes

Resource pool Yes Yes

Logical cluster Yes Yes

Snapshot Yes Yes

Parameter
modifications

Yes Yes

Security settings Yes Yes

MRS data sources Yes Yes

Monitoring Panel Yes Yes

Tags Yes Yes

Node
management

Yes Yes

GaussDB(DWS) 3.0
Developer Guide 3 Support and Constraints

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

Module Function DWS 2.0 DWS 3.0

DR management DR management Yes No

Snapshot
management

Restoration Yes Yes

Deletion Yes Yes

Copy Yes Yes

Incident
management

Event
management
(general)

Yes Yes

Alarm
management

Alarm
management

Yes Yes

Client connections Client connections Yes Yes

Others Inspection Yes Yes

Intelligent O&M Yes Yes

Node restoration Yes Yes

Warm backup on
the tenant side

Yes Yes

OpenApi Yes No

Table 3-2 Database operations

Typ
e

Syntax Supported

Bas
ic
fun
ctio
ns

CREATE TABLE Yes

CREATE TABLE LIKE Yes

DROP TABLE Yes

INSERT Yes

COPY Yes

SELECT Yes

TRUNCATE Yes

EXPLAIN Yes

ANALYZE Yes

VACUUM Yes

ALTER TABLE DROP PARTITION Yes

ALTER TABLE ADD PARTITION Yes

GaussDB(DWS) 3.0
Developer Guide 3 Support and Constraints

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

Typ
e

Syntax Supported

ALTER TABLE SET WITH OPTION Yes

ALTER TABLE DROP COLUMN Yes

ALTER TABLE ADD COLUMN Yes

ALTER TABLE ADD NODELIST Yes

ALTER TABLE CHANGE OWNER Yes

ALTER TABLE RENAME COLUMN Yes

ALTER TABLE TRUNCATE
PARTITION

Yes

Other ALTER TABLE syntax Yes

CREATE INDEX Yes

DROP INDEX Yes

DELETE Yes

ALTER INDEX Yes

MERGE Yes

SELECT INTO Yes

UPDATE Yes

CREATE TABLE AS Yes

Webhook No

PRIMARY KEY Yes

UNIQUE CONSTRAINT Yes

UNLOG tables Yes

Custom types No

Explicit cursors Yes

Tra
nsa
ctio
n
cap
abil
ity

Sub-transactions Yes

Transaction Isolation Levels Yes

GaussDB(DWS) 3.0
Developer Guide 3 Support and Constraints

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

Typ
e

Syntax Supported

Adv
anc
ed
fun
ctio
ns

Materialized views No

Stored procedures No

AUTO VACUUM Yes

AUTO ANALYZE Yes

GIS No

Table 3-3 Data types supported by column-store tables

Category Data Type Description Length

Numeric Type smallint Small integer, also
called INT2

2

integer Typical choice for
integer, also called
INT4

4

bigint Big integer, also called
INT8

8

decimal Arbitrary precision
type

Variable
length

numeric Arbitrary precision
type

Variable
length

real Single-precision
floating point

4

double precision Double-precision
floating point

8

smallserial Two-byte auto-
incrementing integer

2

serial Four-byte auto-
incrementing integer

4

bigserial Eight-byte auto-
incrementing integer

8

Monetary
Type

money Currency amount 8

Character
Type

character varying(n),
varchar(n)

Variable-length string Variable
length

character(n), char(n) Fixed-length string n

GaussDB(DWS) 3.0
Developer Guide 3 Support and Constraints

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

Category Data Type Description Length

character, char Single-byte internal
type

1

text Variable-length string Variable
length

nvarchar2 Variable-length string Variable
length

clob A big text object Variable
length

Date/Time
Type

timestamp with time
zone

Date and time (with
time zone)

8

timestamp without
time zone

Date and time 8

date Date and time (Oracle
compatibility mode);
date (other
compatibility modes)

When using
Oracle
compatibility
mode, the
storage space
is 8 bytes,
whereas in
other
compatibility
modes, it is 4
bytes.

time without time
zone

Time within one day. 8

time with time zone Time within one day
(with time zone)

12

interval Time interval 16

GaussDB(DWS) 3.0
Developer Guide 3 Support and Constraints

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

4 SQL Syntax Reference

4.1 CREATE TABLE

Function
Creates a new empty table in the current database.

This table is owned by the user who executes the command. However, if the
system administrator creates a table in the schema with the same name as a
common user, the owner of the table is the user (not the system administrator).

Precautions
● For details about the data types supported by column-store tables, see Table

3-3.
● It is recommended that the number of column-store and HDFS partitioned

tables do not exceed 1000.
● The primary key constraint and unique constraint in the table must contain a

distribution column.
● A system column cannot be set as a primary key in a row-store REPLICATION

distributed table.
● If an error occurs during table creation, after it is fixed, the system may fail to

delete the empty disk files created before the last automatic clearance. This
problem seldom occurs.

● Column-store tables support the PARTIAL CLUSTER KEY and table-level
primary key and unique constraints, but do not support table-level foreign key
constraints.

● Only the NULL, NOT NULL, and DEFAULT constant values can be used as
column-store table column constraints.

● Whether column-store tables support a delta table is specified by the
enable_delta parameter. The threshold for storing data into a delta table is
specified by the deltarow_threshold parameter.

● Multi-temperature tables support only partitioned column-store tables and
depend on available OBS tablespaces.

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

● Multi-temperature tables support only the default tablespace
default_obs_tbs. If you need to add an OBS tablespace, contact technical
support.

● The cloud native 3.0 version is compatible with all column-store versions.
When creating a table, you need to explicitly specify the value of colversion
(1.0, 2.0, or 3.0). If colversion is set to 3.0, a table in decoupled storage and
computing mode is created. If colversion is not explicitly specified, a column-
store table of version 3.0 is created by default. When creating a table in
decoupled storage and computing mode, set colversion to 3.0 and set
orientation to column.

● The tables in decoupled storage and computing mode in the cloud native 3.0
version does not support delta tables. Even if the table-level parameter
enable_delta is enabled, data is still inserted into the primary table.
Therefore, no action is performed when vacuum deltamerge is executed on
the table.

● Tables in decoupled storage and computing mode in the cloud native 3.0
version do not support Hstore tables, hot and cold tables, or time series
tables.

● Tables in decoupled storage and computing mode in the cloud native 3.0
version support only column-store tables and depend on OBS. The default
OBS tablespace is cu_obs_tbs.

● To create a table in decoupled storage and computing mode in the cloud
native 3.0 version, you must have the USAGE permission on the default
schema (named CSTORE).

● Temporary tables cannot be created for tables in decoupled storage and
computing mode in the cloud native 3.0 version. The created temporary tables
are automatically converted to column-store tables whose colversion is 2.0.

Syntax
CREATE [[GLOBAL | LOCAL | VOLATILE] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT EXISTS]
table_name
 { ({ column_name data_type [compress_mode] [COLLATE collation] [column_constraint [...]]
 | table_constraint
 | LIKE source_table [like_option [...]] }
 [, ...])|
 LIKE source_table [like_option [...]] }
 [WITH ({storage_parameter = value} [, ...])]
 [ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
 [COMPRESS | NOCOMPRESS]
 [DISTRIBUTE BY { REPLICATION | ROUNDROBIN | { HASH (column_name [,...]) } }]
 [TO { GROUP groupname | NODE (nodename [, ...]) }]
 [COMMENT [=] 'text'];

● column_constraint is as follows:
[CONSTRAINT constraint_name]
{ NOT NULL |
 NULL |
 CHECK (expression) |
 DEFAULT default_expr |
 ON UPDATE on_update_expr |
 COMMENT 'text' |
 UNIQUE [NULLS [NOT] DISTINCT | NULLS IGNORE] index_parameters |
 PRIMARY KEY index_parameters }
[DEFERRABLE | NOT DEFERRABLE | INITIALLY DEFERRED | INITIALLY IMMEDIATE]

● compress_mode of a column is as follows:
{ DELTA | PREFIX | DICTIONARY | NUMSTR | NOCOMPRESS }

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

● table_constraint is as follows:
[CONSTRAINT constraint_name]
{ CHECK (expression) |
 UNIQUE [NULLS [NOT] DISTINCT | NULLS IGNORE] (column_name [, ...]) index_parameters |
 PRIMARY KEY (column_name [, ...]) index_parameters |
 PARTIAL CLUSTER KEY (column_name [, ...]) }
[DEFERRABLE | NOT DEFERRABLE | INITIALLY DEFERRED | INITIALLY IMMEDIATE]

● like_option is as follows:
{ INCLUDING | EXCLUDING } { DEFAULTS | CONSTRAINTS | INDEXES | STORAGE | COMMENTS |
PARTITION | RELOPTIONS | DISTRIBUTION | DROPCOLUMNS | ALL }

● index_parameters is as follows:
[WITH ({storage_parameter = value} [, ...])]

Parameters
● UNLOGGED

If this key word is specified, the created table is not a log table. Data written
to unlogged tables is not written to the write-ahead log, which makes them
considerably faster than ordinary tables. However, an unlogged table is
automatically truncated after a crash or unclean shutdown, incurring data
loss risks. The contents of an unlogged table are also not replicated to
standby servers. Any indexes created on an unlogged table are not
automatically logged as well.
Usage scenario: Unlogged tables do not ensure safe data. Users can back up
data before using unlogged tables; for example, users should back up the
data before a system upgrade.
Troubleshooting: If data is missing in the indexes of unlogged tables due to
some unexpected operations such as an unclean shutdown, users should re-
create the indexes with errors.

NO TICE

The unlogged table uses no primary/standby mechanism. In the case of
system faults or abnormal breakpoints, data loss may occur. Therefore, the
UNLOGGED table cannot be used to store basic data.

● GLOBAL | LOCAL | VOLATILE
When creating a temporary table, you can specify the GLOBAL, LOCAL, or
VOLATILE before TEMP or TEMPORARY. Currently, the keywords GLOBAL
and LOCAL are introduced for standard SQL compatibility. No matter whether
GLOBAL or LOCAL is specified, the GaussDB(DWS) creates a LOCAL
temporary table. If VOLATILE is specified, a VOLATILE temporary table is
created.

● TEMPORARY | TEMP
If TEMP or TEMPORARY is specified, the created table is a temporary table.
Temporary tables are automatically dropped at the end of a session, or
optionally at the end of the current transaction. Therefore, apart from CN and
other CN errors connected by the current session, you can still create and use
temporary table in the current session. Temporary tables are created only in
the current session. If a DDL statement involves operations on temporary
tables, a DDL error will be generated. Therefore, you are not advised to
perform operations on temporary tables in DDL statements. TEMP is
equivalent to TEMPORARY.

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

NO TICE

● Local or volatile temporary tables are visible to the current session through
schema of the pg_temp start. Users should not delete schema started with
pg_temp, pg_toast_temp.

● If TEMPORARY or TEMP is not specified when you create a table and the
schema of the specified table starts with pg_temp_, the table is created as
a temporary table.

● Similar to common tables, all metadata of local temporary tables is stored
in system catalogs. Volatile temporary tables store table structure
metadata in memory, except the schema metadata. Compared with local
temporary tables, volatile temporary tables have the following constraints:
● After a CN or DN is restarted, data in its memory will be lost, and

accordingly, volatile temporary tables on it will become invalid.
● Currently, volatile temporary tables do not support table structure

modification, such as ALTER and GRANT.
● Volatile temporary tables and local temporary tables share temporary

schemas. Therefore, in the same session, the VOLATILE temporary
table and local temporary table cannot have the same name.

● Volatile temporary table information is not stored in system catalogs.
Therefore, Volatile metadata cannot be queried by running DML
statements in system catalogs.

● Volatile temporary tables support only common row-store and
column-store tables. Delta tables, time series tables, and cold and hot
tables are not supported.

● Views cannot be created based on volatile temporary tables.
● A tablespace cannot be specified when a temporary table is created.

The default tablespace of a volatile temporary table is pg_volatile.
● The following constraints cannot be specified when a volatile

temporary table is created: CHECK, UNIQUE, PRIMARY KEY, TRIGGER,
EXCLUDE, and PARTIAL CLUSTER.

● IF NOT EXISTS
If IF NOT EXISTS is specified, a table will be created if there is no table using
the specified name. If there is already a table using the specified name, no
error will be reported. A message will be displayed indicating that the table
already exists, and the database will skip table creation.

● table_name
Specifies the name of the table to be created.
The table name can contain a maximum of 63 characters, including letters,
digits, underscores (_), dollar signs ($), and number signs (#). It must start
with a letter or underscore (_).

● column_name
Specifies the name of a column to be created in the new table.
The column name can contain a maximum of 63 characters, including letters,
digits, underscores (_), dollar signs ($), and number signs (#). It must start
with a letter or underscore (_).

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

● data_type
Specifies the data type of the column.

NO TE

In a database compatible with Teradata or MySQL syntax, if the data type of a column
is set to DATE, the DATE type is returned. Otherwise, the TIMESTAMP type is returned.

● compress_mode
Specifies the compress option of the table, only available for row-store table.
The option specifies the algorithm preferentially used by table columns.
Value range: DELTA, PREFIX, DICTIONARY, NUMSTR, NOCOMPRESS

● COLLATE collation
Assigns a collation to the column (which must be of a collatable data type). If
no collation is specified, the default collation is used.

● LIKE source_table [like_option ...]
Specifies a table from which the new table automatically copies all column
names, their data types, and their not-null constraints.
The new table and the source table are decoupled after creation is complete.
Changes to the source table will not be applied to the new table, and it is not
possible to include data of the new table in scans of the source table.
Columns and constraints copied by LIKE are not merged with the same name.
If the same name is specified explicitly or in another LIKE clause, an error is
reported.
– The default expressions or the ON UPDATE expressions are copied from

the source table to the new table only if INCLUDING DEFAULTS is
specified. The default behavior is to exclude default expressions, resulting
in the copied columns in the new table having default values NULL.

– The CHECK constraints are copied from the source table to the new table
only when INCLUDING CONSTRAINTS is specified. Other types of
constraints are never copied to the new table. NOT NULL constraints are
always copied to the new table. These rules also apply to column
constraints and table constraints.

– Any indexes on the source table will not be created on the new table,
unless the INCLUDING INDEXES clause is specified.

– STORAGE settings for the copied column definitions are copied only if
INCLUDING STORAGE is specified. The default behavior is to exclude
STORAGE settings.

– If INCLUDING COMMENTS is specified, comments for the copied
columns, constraints, and indexes are copied. The default behavior is to
exclude comments.

– If INCLUDING PARTITION is specified, the partition definitions of the
source table are copied to the new table, and the new table no longer
uses the PARTITION BY clause. The default behavior is to exclude
partition definition of the source table.

– If INCLUDING RELOPTIONS is specified, the storage parameter (WITH
clause of the source table) of the source table is copied to the new table.
The default behavior is to exclude partition definition of the storage
parameter of the source table.

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

– If INCLUDING DISTRIBUTION is specified, the distribution information of
the source table is copied to the new table, including distribution type
and column, and the new table no longer use the DISTRIBUTE BY clause.
The default behavior is to exclude distribution information of the source
table.

– If INCLUDING DROPCOLUMNS is specified, the deleted column
information in the source table is copied to the new table. By default, the
deleted column information of the source table is not copied.

– INCLUDING ALL contains the meaning of INCLUDING DEFAULTS,
INCLUDING CONSTRAINTS, INCLUDING INDEXES, INCLUDING
STORAGE, INCLUDING COMMENTS, INCLUDING PARTITION,
INCLUDING RELOPTIONS, INCLUDING DISTRIBUTION, and INCLUDING
DROPCOLUMNS.

– If EXCLUDING is specified, the specified parameters are not included.
– For an OBS multi-temperature table, all partitions of the new table are

local hot partitions after INCLUDING PARTITION is specified.

NO TICE

● If the source table contains a sequence with the SERIAL, BIGSERIAL, or
SMALLSERIAL data type, or a column in the source table is a sequence by
default and the sequence is created for this table by using CREATE
SEQUENCE... OWNED BY, these sequences will not be copied to the new
table, and another sequence specific to the new table will be created. This
is different from earlier versions. To share a sequence between the source
table and new table, create a shared sequence (do not use OWNED BY)
and set a column in the source table to this sequence.

● You are not advised to set a column in the source table to the sequence
specific to another table especially when the table is distributed in specific
Node Groups, because doing so may result in CREATE TABLE ... LIKE
execution failures. In addition, doing so may cause the sequence to
become invalid in the source sequence because the sequence will also be
deleted from the source table when it is deleted from the table that the
sequence is specific to. To share a sequence among multiple tables, you are
advised to create a shared sequence for them.

● WITH ({ storage_parameter = value } [, ...])
Specifies an optional storage parameter for a table or an index.

NO TE

Using Numeric of any precision to define column, specifies precision p and scale s.
When precision and scale are not specified, the input will be displayed.

The description of parameters is as follows:
– FILLFACTOR

The fillfactor of a table is a percentage between 10 and 100. 100
(complete packing) is the default value. When a smaller fillfactor is
specified, INSERT operations pack table pages only to the indicated
percentage. The remaining space on each page is reserved for updating
rows on that page. This gives UPDATE a chance to place the updated

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

copy of a row on the same page, which is more efficient than placing it
on a different page. For a table whose records are never updated, setting
the fillfactor to 100 (complete packing) is the appropriate choice, but in
heavily updated tables smaller fillfactors are appropriate. The parameter
has no meaning for column–store tables.
Value range: 10 to 100

– ORIENTATION
Specifies the storage mode (row-store, column-store) for table data. This
parameter cannot be modified once it is set.
Valid value:

▪ ROW indicates that table data is stored in rows.
ROW applies to OLTP service, which has many interactive
transactions. An interaction involves many columns in the table.
Using ROW can improve the efficiency.

▪ COLUMN indicates that the data is stored in columns.
COLUMN applies to the data warehouse service, which has a large
amount of aggregation computing, and involves a few column
operations.

Default value: ROW (row-store)

NO TE

In cluster 8.1.3 and later versions, the GUC parameter default_orientation
(default value: row) is added. If the storage mode is not specified when a table is
created, by default, the table is created based on the value of the parameter
(row, column, column enabledelta).

– COMPRESSION
Specifies the compression level of the table data. It determines the
compression ratio and time. Generally, the higher the level of
compression, the higher the ratio, the longer the time, and the lower the
level of compression, the lower the ratio, the shorter the time. The actual
compression ratio depends on the distribution characteristics of loading
table data.
Valid value:
The valid values for column-store tables are YES/NO and LOW/MIDDLE/
HIGH, and the default is LOW. When this parameter is set to YES, the
compression level is LOW by default.

NO TE

● Currently, row-store table compression is not supported.

● To determine the size of a new GaussDB(DWS) cluster, consider the size of
ORC data compressed and migrated to column-store tables in
GaussDB(DWS). If the compression level is low, the size of a copy is about 1.5
to 2 times that of ORC. If the compression level is high, the size of a copy is
basically the same as that of ORC.

● The middle compression of column-stores uses dictionary compression. For
data not suitable for dictionary compression, the file size after middle
compression may be greater than that of after low compression.

GaussDB(DWS) provides the following compression algorithms:

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

Table 4-1 Compression algorithms for column-based storage

COMPRESSI
ON

NUMERIC STRING INT

LOW Delta
compression +
RLE compression

LZ4 compression Delta compression
(RLE is optional.)

MIDDLE Delta
compression +
RLE compression
+ LZ4
compression

dict compression
or LZ4
compression

Delta compression
or LZ4
compression (RLE
is optional)

HIGH Delta
compression +
RLE compression
+ zlib
compression

dict compression
or zlib
compression

Delta compression
or zlib
compression (RLE
is optional)

– COMPRESSLEVEL

Specifies the compression level of the table data. It determines the
compression ratio and time. This divides a compression level into
sublevels, providing you with more choices for compression rate and
duration. As the value becomes greater, the compression rate becomes
higher and duration longer at the same compression level. The parameter
is only valid for column-store tables.
Value range: 0–3.
Default value: 0

– MAX_BATCHROW
Specifies the maximum of a storage unit during data loading process. The
parameter is only valid for column-store tables.
Value range: 10000 to 60000
Default value: 60000

– PARTIAL_CLUSTER_ROWS
Specifies the number of records to be partial cluster stored during data
loading process. The parameter is only valid for column-store tables.
Value range: 600000 to 2147483647

– enable_delta
Specifies whether to enable delta tables in column-store tables. The
parameter is only valid for column-store tables.
Default value: off

– enable_hstore
Specifies whether an H-Store table will be created (based on column-
store tables). The parameter is only valid for column-store tables. This
parameter is supported by version 8.2.0.100 or later clusters. Currently,
cloud native 3.0 does not support this parameter.
Default value: off

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

NO TE

If this parameter is enabled, the following GUC parameters must be set to ensure
that H-Store tables are cleared.
autovacuum=on, autovacuum_max_workers=6,
autovacuum_max_workers_hstore=3.

– enable_disaster_cstore
Specifies whether fine-grained DR will be enabled for column-store
tables. This parameter only takes effect on column-store tables whose
COLVERSION is 2.0 and cannot be set to true if enable_hstore is true.
This parameter is supported by version 8.2.0.100 or later clusters.
Currently, it is not supported by cloud native 3.0.

– fine_disaster_table_role
Specifies whether the fine-grained DR table will be set as a primary or
secondary table. This parameter can be true only when the
enable_disaster_cstore parameter has been set to true. Currently, cloud
native 3.0 does not support this parameter.
This parameter is supported by version 8.2.0.100 or later clusters.
Valid value:

▪ primary: Specifies the primary fine-grained DR table.

▪ standby: Specifies the standby fine-grained DR table.

– DELTAROW_THRESHOLD
Specifies the upper limit of to-be-imported rows for triggering the data
import to a delta table when data is to be imported to a column-store
table. This parameter takes effect only if the enable_delta table
parameter is set to on. The parameter is only valid for column-store
tables.
Value range: 0 to 60000
Default value: 6000

– COLVERSION
Specifies the version of the column-store format. You can switch between
different storage formats.
Valid value:
1.0: Each column in a column-store table is stored in a separate file. The
file name is relfilenode.C1.0, relfilenode.C2.0, relfilenode.C3.0, or
similar.
2.0: All columns of a column-store table are combined and stored in a
file. The file is named relfilenode.C1.0.
3.0: Each column of a column-store table is stored in a file. The file is
stored in the OBS file system and named C1_fileid.0.
Default value: 2.0 for the data warehouse 2.0 version and 3.0 for the
cloud native 3.0 version

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

NO TE

● OBS cold and hot tables support only the COLVERSION 2.0 format.
● For clusters of version 8.1.0, the default value of this parameter is 1.0. For

clusters of version 8.1.1 or later, the default value of this parameter is 2.0. If
the cluster version is upgraded from 8.1.0 to 8.1.1 or later, the default value of
this parameter changes from 1.0 to 2.0.

● When creating a column-store table, set COLVERSION to 2.0. Compared with
the 1.0 storage format, the performance is significantly improved:
● The time required for creating a column-store wide table is significantly

reduced.
● In the Roach data backup scenario, the backup time is significantly

reduced.
● The build and catch up time is greatly reduced.
● The occupied disk space decreases significantly.

● The cloud native 3.0 version is compatible with all column-store versions.
When creating a table, you need to explicitly specify the value of colversion
(1.0, 2.0, or 3.0). If colversion is set to 3.0, a table in decoupled storage and
computing mode is created. If colversion is not explicitly specified, a column-
store table of version 3.0 is created by default. When creating a table in
decoupled storage and computing mode, set colversion to 3.0 and set
orientation to column.

● In cloud native 3.0 mode, the colversion of a table in decoupled storage and
computing mode cannot be changed (for example, from 2.0 to 3.0) using
ALTER TABLE.

– analyze_mode
Specifies the mode of table-level auto-analyze.
Valid value:

▪ frozen: disables all ANALYZE operations (dynamic sampling can still
be triggered when no statistics are collected).

▪ backend: allows only ANALYZE triggered by AUTOVACUUM polling.

▪ runtime: allows only runtime ANALYZE triggered by the optimizer.

▪ all: Both backend and runtime AUTO-ANALYZE can be triggered.
Default value: all

– SKIP_FPI_HINT
Indicates whether to skip the hint bits operation when the full-page
writes (FPW) log needs to be written during sequential scanning.
Default value: false

NO TE

If SKIP_FPI_HINT is set to true and the checkpoint operation is performed on a
table, no Xlog will be generated when the table is sequentially scanned. This
applies to intermediate tables that are queried less frequently, reducing the size
of Xlogs and improving query performance.

– cache_policy (supported only in cloud native 3.0)
Specifies the cache mode of tables or partitioned tables (disks). If one of
the following values is specified in the cache policy, hot cache is used.
Otherwise, cold cache is used. Hot cache occupies more space than cold
cache and uses more complex replacement policies.

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

Value range:

▪ ALL: Hot cache is used for the entire table.

▪ NONE: Cold cache is used for the entire table.

▪ HPN : N: The first N partitions in a partitioned table use hot cache.
The rest of the partitions use cold cache.

▪ HPL : P1, P2, ...: In a partitioned table, the specified partitions use hot
cache. The rest of the partitions use cold cache.

Default value: ALL

NO TE

● For foreign tables and non-partitioned tables, only the ALL and NONE cache
policies are supported.

● Only range-partitioned and list-partitioned internal tables support HPN and
HPL cache policies.

● ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }
ON COMMIT determines what to do when you commit a temporary table
creation operation. The three options are as follows. Currently, only PRESERVE
ROWS and DELETE ROWS can be used.
– PRESERVE ROWS (Default): No special action is taken at the ends of

transactions. The temporary table and its table data are unchanged.
– DELETE ROWS: All rows in the temporary table will be deleted at the end

of each transaction block.
– DROP: The temporary table will be dropped at the end of the current

transaction block.
● COMPRESS | NOCOMPRESS

If you specify COMPRESS in the CREATE TABLE statement, the compression
feature is triggered in the case of a bulk INSERT operation. If this feature is
enabled, a scan is performed for all tuple data within the page to generate a
dictionary and then the tuple data is compressed and stored. If
NOCOMPRESS is specified, the table is not compressed.
Default value: NOCOMPRESS, tuple data is not compressed before storage.

● DISTRIBUTE BY
Specifies how the table is distributed or replicated between DNs.
Valid value:
– REPLICATION: Each row in the table exists on all DNs, that is, each DN

has complete table data.
– ROUNDROBIN: Each row in the table is sent to each DN in turn.

Therefore, data is evenly distributed on each DN. This value is supported
only in 8.1.2 or later.

– HASH (column_name): Each row of the table will be placed into all the
DNs based on the hash value of the specified column.

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

NO TE

● When DISTRIBUTE BY HASH (column_name) is specified, the primary key
and its unique index must contain the column_name column.

● When DISTRIBUTE BY HASH (column_name) in a referenced table is
specified, the foreign key of the reference table must contain the
column_name column.

● If TO GROUP is set to a replication table node group (supported in 8.1.2 or
later), DISTRIBUTE BY must be set to REPLICATION. If DISTRIBUTE BY is not
specified, the created table is automatically set as a replication table.

● The hybrid data warehouse (standalone) has only one DN. Therefore, the
distribution rule is ignored and cannot be modified.

Default value: determined by the GUC parameter default_distribution_mode
– When default_distribution_mode is set to roundrobin, the default value

of DISTRIBUTE BY is selected according to the following rules:

i. If the primary key or unique constraint is included during table
creation, hash distribution is selected. The distribution column is the
column corresponding to the primary key or unique constraint.

ii. If the primary key or unique constraint is not included during table
creation, round-robin distribution is selected.

– When default_distribution_mode is set to hash, the default value of
DISTRIBUTE BY is selected according to the following rules:

i. If the primary key or unique constraint is included during table
creation, hash distribution is selected. The distribution column is the
column corresponding to the primary key or unique constraint.

ii. If the primary key or unique constraint is not included during table
creation but there are columns whose data types can be used as
distribution columns, hash distribution is selected. The distribution
column is the first column whose data type can be used as a
distribution column.

iii. If the primary key or unique constraint is not included during table
creation and no column whose data type can be used as a
distribution column exists, round-robin distribution is selected.

The following data types can be used as distribution columns:
– Integer types: TINYINT, SMALLINT, INT, BIGINT, and NUMERIC/

DECIMAL
– Character types: CHAR, BPCHAR, VARCHAR, VARCHAR2, NVARCHAR2,

and TEXT
– Date/time types: DATE, TIME, TIMETZ, TIMESTAMP, TIMESTAMPTZ,

INTERVAL, and SMALLDATETIME

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

NO TE

When you create a table, the choices of distribution keys and partition keys have
major impact on SQL query performance. Therefore, choosing proper distribution
column and partition key with strategies.

● Selecting an Appropriate Distribution Column

In the data distributed table using Hash, an appropriate distributed array should be
used to distribute and store data on multiple DNs evenly, preventing data skew
(uneven data distribution across several DNs). Determine the proper distribution
column based on the following principles:

1. Determine whether data is skewed.

Connect to the database and run the following statements to check the number
of tuples on each DN: Replace tablename with the actual name of the table to
be analyzed.
SELECT a.count,b.node_name FROM (SELECT count(*) AS count,xc_node_id FROM
tablename GROUP BY xc_node_id) a, pgxc_node b WHERE a.xc_node_id=b.node_id
ORDER BY a.count DESC;

If tuple numbers vary greatly (several times or tenfold) in each DN, a data
skew occurs. Change the data distribution key based on the following
principles:

2. Run the ALTER TABLE statement to adjust the distribution column. The rules for
selecting a distribution column are as follows:

The column value of the distribution column should be discrete so that data
can be evenly distributed on each DN. For example, you are advised to select
the primary key of a table as the distribution column, and the ID card number
as the distribution column in a personnel information table.

With the above principles met, you can select join conditions as distribution
keys so that join tasks can be pushed down to DNs, reducing the amount of
data transferred between the DNs.

3. If a proper distribution column cannot be found to make data evenly
distributed on each DN, you can use the REPLICATION or ROUNDROBIN data
distribution mode. The REPLICATION data distribution mode stores complete
data on each DN. Therefore, if a table is large and no proper distribution
column can be found, the ROUNDROBIN data distribution mode is
recommended. The ROUNDROBIN data distribution mode is supported in 8.1.2
or later.

● Selecting appropriate partition keys

In range partitioning, the table is partitioned into ranges defined by a key column
or set of columns, with no overlap between the ranges of values assigned to
different partitions. Each range has a dedicated partition for data storage.

Modify partition keys to make the query result stored in the same or least
partitions (partition pruning). Obtaining consecutive I/O to improve the query
performance.

In actual services, time is used to filter query objects. Therefore, you can use time
as a partition key, and change the key value based on the total data volume and
single data query volume.

● TO { GROUP groupname | NODE (nodename [, ...]) }
TO GROUP specifies the Node Group in which the table is created. Currently,
it cannot be used for HDFS tables. TO NODE is used for internal scale-out
tools.
In logical cluster mode, if a user creates a table without specifying TO
GROUP, the table will be created in the node group bound to the user by
default. If the user (for example, an administrator or a common user) is not
bound to any logical clusters, the table will be created in the logical cluster

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

specified by the GUC parameter default_storage_nodegroup by default. If
default_storage_nodegroup is set to installation, tables will be created in
the first logical cluster (the logical cluster with the smallest OID in
pgxc_group).
If the node group specified by TO GROUP is a replication table node group,
the table is created on all CNs and DNs, but the replication table data is
distributed only on the DNs in the replication table node group.
Cloud native 3.0 supports read-only logical clusters. If a user is not bound to
any read-only logical clusters but sets TO GROUP to a logical cluster in a
table creation statement, an error will be reported during table creation. If a
user bound to a read-only logical cluster creates a table, the table will be
created in the logical cluster specified by the GUC parameter
default_storage_nodegroup. If default_storage_nodegroup is set to
installation, tables will be created in the first logical cluster.

● COMMENT [=] 'text'
The COMMENT clause can specify table comments during table creation.

● CONSTRAINT constraint_name
Specifies a name for a column or table constraint. The optional constraint
clauses specify constraints that new or updated rows must satisfy for an insert
or update operation to succeed.
There are two ways to define constraints:
– A column constraint is defined as part of a column definition, and it is

bound to a particular column.
– A table constraint is not bound to any particular columns but can apply

to more than one column.
● NOT NULL

Indicates that the column is not allowed to contain NULL values.
● NULL

The column is allowed to contain NULL values. This is the default setting.
This clause is only provided for compatibility with non-standard SQL
databases. You are advised not to use this clause.

● CHECK (expression)
Specifies an expression producing a Boolean result which new or updated
rows must satisfy for an insert or update operation to succeed. Expressions
evaluating to TRUE or UNKNOWN succeed. If any row of an insert or update
operation produces a FALSE result, an error exception is raised and the insert
or update does not alter the database.
A check constraint specified as a column constraint should reference only the
column's values, while an expression appearing in a table constraint can
reference multiple columns.

NO TE

<>NULL and !=NULL are invalid in an expression. Change them to IS NOT NULL.

● DEFAULT default_expr
Assigns a default data value for a column. The value can be any variable-free
expressions (Subqueries and cross-references to other columns in the current
table are not allowed). The data type of the default expression must match
the data type of the column.

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

The default expression will be used in any insert operation that does not
specify a value for the column. If there is no default value for a column, then
the default value is NULL.

● ON UPDATE on_update_expr

The ON UPDATE clause specifies a timestamp function for a column. Ensure
that the data type of the column for which the ON UPDATE clause specifies a
timestamp function is timestamp or timestamptz.

When an SQL statement containing the UPDATE operation is executed, this
column is automatically updated to the time specified by the timestamp
function.

NO TE

The on_update_expr function supports only CURRENT_TIMESTAMP, CURRENT_TIME,
CURRENT_DATE, LOCALTIME, LOCALTIMESTAMP.

● COMMENT 'text'

The COMMENT clause can specify a comment for a column.

● UNIQUE [NULLS [NOT] DISTINCT | NULLS IGNORE] index_parameters

UNIQUE [NULLS [NOT] DISTINCT | NULLS IGNORE] (column_name
[, ...]) index_parameters

Specifies that a group of one or more columns of a table can contain only
unique values.

The [NULLS [NOT] DISTINCT | NULLS IGNORE] field is used to specify
how to process null values in the index column of the Unique index.

Default value: This parameter is left empty by default. NULL values can be
inserted repeatedly.

When the inserted data is compared with the original data in the table, the
NULL value can be processed in any of the following ways:

– NULLS DISTINCT: NULL values are unequal and can be inserted
repeatedly.

– NULLS NOT DISTINCT: NULL values are equal. If all index columns are
NULL, NULL values cannot be inserted repeatedly. If some index columns
are NULL, data can be inserted only when non-null values are different.

– NULLS IGNORE: NULL values are skipped during the equivalent
comparison. If all index columns are NULL, NULL values can be inserted
repeatedly. If some index columns are NULL, data can be inserted only
when non-null values are different.

The following table lists the behaviors of the three processing modes.

Table 4-2 Processing of NULL values in index columns in unique indexes

Constraint All Index
Columns Are
NULL

Some Index Columns Are
NULL.

NULLS DISTINCT Can be inserted
repeatedly.

Can be inserted repeatedly.

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

Constraint All Index
Columns Are
NULL

Some Index Columns Are
NULL.

NULLS NOT DISTINCT Cannot be
inserted
repeatedly.

Cannot be inserted if the non-
null values are equal. Can be
inserted if the non-null values
are not equal.

NULLS IGNORE Can be inserted
repeatedly.

Cannot be inserted if the non-
null values are equal. Can be
inserted if the non-null values
are not equal.

NO TE

If DISTRIBUTE BY REPLICATION is not specified, the column table that contains only
unique values must contain distribution columns.

● PRIMARY KEY index_parameters
PRIMARY KEY (column_name [, ...]) index_parameters
Specifies the primary key constraint specifies that a column or columns of a
table can contain only unique (non-duplicate) and non-null values.
Only one primary key can be specified for a table.

NO TE

If DISTRIBUTE BY REPLICATION is not specified, the column set with a primary key
constraint must contain distributed columns.

● DEFERRABLE | NOT DEFERRABLE
Controls whether the constraint can be deferred. A constraint that is not
deferrable will be checked immediately after every command. Checking of
constraints that are deferrable can be postponed until the end of the
transaction using the SET CONSTRAINTS command. NOT DEFERRABLE is the
default value. Currently, only UNIQUE and PRIMARY KEY constraints of row-
store tables accept this clause. All the other constraints are not deferrable.

● PARTIAL CLUSTER KEY
Specifies a partial cluster key for storage. When importing data to a column-
store table, you can perform local data sorting by specified columns (single or
multiple).

● INITIALLY IMMEDIATE | INITIALLY DEFERRED
If a constraint is deferrable, this clause specifies the default time to check the
constraint.
– If the constraint is INITIALLY IMMEDIATE (default value), it is checked

after each statement.
– If the constraint is INITIALLY DEFERRED, it is checked only at the end of

the transaction.
The constraint check time can be altered using the SET CONSTRAINTS
command.

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

Examples
Specify the cache policy when creating a table (supported only in cloud native
3.0).

CREATE TABLE Sports
(
 N_NATIONKEY INT NOT NULL
 , N_NAME CHAR(25) NOT NULL
 , N_REGIONKEY INT NOT NULL
 , N_COMMENT VARCHAR(152)
) WITH (orientation = column, colversion = 3.0, cache_policy = 'HPL: Balls, Basketball')
tablespace cu_obs_tbs
DISTRIBUTE BY ROUNDROBIN
partition by list(N_NAME)
(
 partition Balls values ('Basketball', 'football', 'badminton'),
 partition Athletics values ('High jump', 'long jump', 'javelin'),
 partition Water_Sports values ('Surfing', 'diving', 'swimming'),
 partition Shooting values ('air guns', 'Rifles', 'archery'),
 partition rest values (DEFAULT)
);

Define a unique column constraint for the table.

CREATE TABLE CUSTOMER
(
 C_CUSTKEY BIGINT NOT NULL CONSTRAINT C_CUSTKEY_pk PRIMARY KEY ,
 C_NAME VARCHAR(25) ,
 C_ADDRESS VARCHAR(40) ,
 C_NATIONKEY INT ,
 C_PHONE CHAR(15) ,
 C_ACCTBAL DECIMAL(15,2)
)
DISTRIBUTE BY HASH(C_CUSTKEY);

Define a primary key table constraint for the table. You can define a primary key
table constraint on one or more columns of a table.

CREATE TABLE CUSTOMER
(
 C_CUSTKEY BIGINT ,
 C_NAME VARCHAR(25) ,
 C_ADDRESS VARCHAR(40) ,
 C_NATIONKEY INT ,
 C_PHONE CHAR(15) ,
 C_ACCTBAL DECIMAL(15,2) ,
 CONSTRAINT C_CUSTKEY_KEY PRIMARY KEY(C_CUSTKEY,C_NAME)
)
DISTRIBUTE BY HASH(C_CUSTKEY,C_NAME);

Define the CHECK column constraint.

CREATE TABLE CUSTOMER
(
 C_CUSTKEY BIGINT NOT NULL CONSTRAINT C_CUSTKEY_pk PRIMARY KEY ,
 C_NAME VARCHAR(25) ,
 C_ADDRESS VARCHAR(40) ,
 C_NATIONKEY INT NOT NULL CHECK (C_NATIONKEY > 0)
)
DISTRIBUTE BY HASH(C_CUSTKEY);

Define the CHECK table constraint.

CREATE TABLE CUSTOMER
(
 C_CUSTKEY BIGINT NOT NULL CONSTRAINT C_CUSTKEY_pk PRIMARY KEY ,
 C_NAME VARCHAR(25) ,
 C_ADDRESS VARCHAR(40) ,

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

 C_NATIONKEY INT ,
 CONSTRAINT C_CUSTKEY_KEY2 CHECK(C_CUSTKEY > 0 AND C_NAME <> '')
)
DISTRIBUTE BY HASH(C_CUSTKEY);

Create a column-store table and specify the storage format and compression
mode.

CREATE TABLE customer_address
(
 ca_address_sk INTEGER NOT NULL ,
 ca_address_id CHARACTER(16) NOT NULL ,
 ca_street_number CHARACTER(10) ,
 ca_street_name CHARACTER varying(60) ,
 ca_street_type CHARACTER(15) ,
 ca_suite_number CHARACTER(10)
)
WITH (ORIENTATION = COLUMN, COMPRESSION=HIGH,COLVERSION=2.0)
DISTRIBUTE BY HASH (ca_address_sk);

Use DEFAULT to declare a default value for column W_STATE.

CREATE TABLE warehouse_t
(
 W_WAREHOUSE_SK INTEGER NOT NULL,
 W_WAREHOUSE_ID CHAR(16) NOT NULL,
 W_WAREHOUSE_NAME VARCHAR(20) UNIQUE DEFERRABLE,
 W_WAREHOUSE_SQ_FT INTEGER ,
 W_COUNTY VARCHAR(30) ,
 W_STATE CHAR(2) DEFAULT 'GA',
 W_ZIP CHAR(10)
);

Create the CUSTOMER_bk table in LIKE mode.

CREATE TABLE CUSTOMER_bk (LIKE CUSTOMER INCLUDING ALL);

4.2 CREATE EXTERNAL SCHEMA

Description
Creates an EXTERNAL schema.

This syntax is used to create EXTERNAL SCHEMA to access the table created in
Hive. You can use an external schema name as the prefix for access. If there is no
schema name prefix, you can access the named objects in the current schema.

NO TE

Only DWS 3.0 supports the CREATE EXTERNAL SCHEMA syntax.

Important Notes
● A user who has the CREATE permission on the current database can create a

foreign schema.
● When creating a named object, do not use EXTERNAL SCHEMA as the prefix.

Objects cannot be created in EXTERNAL SCHEMA. Currently, only EXTERNAL
SCHEMA can be used to perform SELECT, INSERT, and INSERT OVERWRITE
operations on tables created in Hive.

● CREATE EXTERNAL SCHEMA does not support subcommands for creating
objects in the new schema.

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

Syntax
● Create an external schema with a specified name.

CREATE EXTERNAL SCHEMA schema_name
 WITH SOURCE source_type
 DATABASE 'db_name'
 SERVER srv_name
 METAADDRESS 'address'
 CONFIGURATION 'confpath';

Parameters
● schema_name

Name of an external schema.
Value range: a string. It must comply with the naming convention.

NO TICE

● The name must be unique,
● and cannot start with pg_.

● SOURCE
Type of the external metadata storage engine. Currently, source_type can
only be Hive.

● DATABASE
Hive database corresponding to the external schema.
There is a many-to-one mapping between external schemas and Hive
databases.

● SERVER
Value range: an existing foreign server.
You can associate an external schema with a foreign server to access external
data.

● METAADDRESS
Hivemetastore communication interface.

● CONFIGURATION
Path for storing hivemetastore configuration files.

NO TE

If objects in the schema on the current search path are with the same name, specify the
schemas different objects are in. You can run the SHOW SEARCH_PATH command to check
the schemas on the current search path.

Examples
Create an EXTERNAL SCHEMA ex1:

CREATE EXTERNAL SCHEMA ex1
 WITH SOURCE hive
 DATABASE 'demo'
 SERVER hdfs_server
 METAADDRESS '***.***.***.***:***'
 CONFIGURATION '/MRS/config'

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

Helpful Links
ALTER EXTERNAL SCHEMA

4.3 ALTER EXTERNAL SCHEMA

Function
Modifies EXTERNAL SCHEMA.

NO TE

Only DWS 3.0 supports the ALTER EXTERNAL SCHEMA syntax.

Syntax
● Modifies an external schema based on the specified name.

ALTER EXTERNAL SCHEMA schema_name
 WITH SOURCE source_type
 DATABASE 'db_name'
 SERVER srv_name
 METAADDRESS 'address'
 CONFIGURATION 'confpath';

Parameters
● schema_name

Name of an external schema.
Value range: a string. It must comply with the naming convention.

NO TICE

● The name must be unique,
● and cannot start with pg_.

● SOURCE
Type of the external metadata storage engine. Currently, source_type can
only be Hive.

● DATABASE
Hive database corresponding to the external schema.
There is a many-to-one mapping between external schemas and Hive
databases.

● SERVER
Value range: an existing foreign server.
You can associate an external schema with a foreign server to access external
data.

● METAADDRESS
Hivemetastore communication interface.

● CONFIGURATION

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

Path for storing hivemetastore configuration files.

NO TE

If objects in the schema on the current search path are with the same name, specify the
schemas different objects are in. You can run the SHOW SEARCH_PATH command to check
the schemas on the current search path.

Example

Modify the database and FOREIGN SERVER corresponding to ex1.

ALTER EXTERNAL SCHEMA ex1
 WITH DATABASE 'hms'
 SERVER obs_server;

4.4 ALTER TABLE

Function

ALTER TABLE is used to modify tables, including modifying table definitions,
renaming tables, renaming specified columns in tables, renaming table constraints,
setting table schemas, enabling or disabling row-level access control, and adding
or updating multiple columns.

Precautions
● Only the owner of a table, a user granted with the ALTER permission for the

table, or a system administrator has the permission to run the ALTER TABLE
statement. To change the owner or schema of a table, you must be the owner
of the table or a system administrator.

● The storage parameter ORIENTATION cannot be modified.
● Currently, SET SCHEMA can only set schemas to user schemas. It cannot set a

schema to a system internal schema.
● Column-store tables support PARTIAL CLUSTER KEY but do not support

table-level foreign key constraints. In 8.1.1 or later, column-store tables
support the PRIMARY KEY constraint and table-level UNIQUE constraint.

● In a column-store table, you can perform ADD COLUMN, ALTER TYPE, SET
STATISTICS, DROP COLUMN operations. The data types of the new and
modified columns should be supported by column storage. The USING option
of ALTER TYPE only supports constant expression and expression involved in
the column.

● The column constraints supported by column-store tables include NULL, NOT
NULL, and DEFAULT constant values. Only the DEFAULT value can be
modified (SET DEFAULT and DROP DEFAULT), and only the NOT NULL
constraint can be deleted.

● The NOT NULL constraint and PRIMARY KEY constraint can be added to
column-store tables. This constraint is supported by version 8.2.0 or later
clusters.

● When you modify the COLVERSION or enable_delta parameter of a column-
store table, other ALTER operations cannot be performed.

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

● Auto-increment columns cannot be added, or a column in which the DEFAULT
value contains the nextval() expression cannot be added either.

● Row-level access control cannot be enabled for HDFS tables, foreign tables,
and temporary tables.

● If you delete the PRIMARY KEY constraint by specifying the constraint name,
the NOT NULL constraint is not deleted. You can manually delete the NOT
NULL constraint as needed.

● The cold_tablespace and storage_policy parameters of ALTER RESET cannot
be used in OBS multi-temperature tables, and COLVERSION cannot be
changed to 1.0 for such tables.

● You can change a column-store table whose COLVERSION parameter is 2.0 to
an OBS multi-temperature table. The COLD_TABLESPACE and
STORAGE_POLICY parameters must be added.

● You can use ALTER TABLE to change the values of STORAGE_POLICY for
RELOPTIONS. After the cold/hot switchover policy is changed, the cold/hot
attribute of the existing cold data will not change. The new policy takes effect
for the next cold/hot switchover.

● When an ALTER TABLE operation is performed on a table, it triggers table
rebuilding. During this rebuilding process, data is dumped into a new data file.
Once the rebuilding is complete, the original file is deleted. However, it is
important to note that if the table is large, the rebuilding process can
consume a significant amount of disk space. When the disk space is
insufficient, exercise caution when performing the ALTER TABLE operation on
large tables to prevent the cluster from being read-only.
– Change the data type of a column.
– Add columns (including the oid column) to a row-store table.
– Modify COLVERSION for a column-store table.
– Specify the DEFAULT constant values for a column added to a column-

store table, while the DEFAULT values contain volatile functions or the
DEFAULT values are not NULL and do not belong to a specific data type.

Syntax
● ALTER TABLE modifies the definition of a table.

ALTER TABLE [IF EXISTS] { table_name [*] | ONLY table_name | ONLY (table_name) }
 action [, ...];

There are several clauses of action:
column_clause
 | ADD table_constraint [NOT VALID]
 | ADD table_constraint_using_index
 | VALIDATE CONSTRAINT constraint_name
 | DROP CONSTRAINT [IF EXISTS] constraint_name [RESTRICT | CASCADE]
 | CLUSTER ON index_name
 | SET WITHOUT CLUSTER
 | SET ({storage_parameter = value} [, ...])
 | RESET (storage_parameter [, ...])
 | OWNER TO new_owner
 | SET TABLESPACE new_tablespace
 | SET {COMPRESS|NOCOMPRESS}
 | DISTRIBUTE BY { REPLICATION | ROUNDROBIN | { HASH (column_name [,...]) } }
 | TO { GROUP groupname | NODE (nodename [, ...]) }
 | ADD NODE (nodename [, ...])
 | DELETE NODE (nodename [, ...])
 | DISABLE TRIGGER [trigger_name | ALL | USER]
 | ENABLE TRIGGER [trigger_name | ALL | USER]

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

 | ENABLE REPLICA TRIGGER trigger_name
 | ENABLE ALWAYS TRIGGER trigger_name
 | DISABLE ROW LEVEL SECURITY
 | ENABLE ROW LEVEL SECURITY
 | FORCE ROW LEVEL SECURITY
 | NO FORCE ROW LEVEL SECURITY
 | REFRESH STORAGE

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

NO TE

● ADD table_constraint [NOT VALID]
Adds a new table constraint.

● ADD table_constraint_using_index
Adds primary key constraint or unique constraint based on the unique index.

● VALIDATE CONSTRAINT constraint_name
Validates a foreign key or check constraint that was previously created as NOT
VALID, by scanning the table to ensure there are no rows for which the constraint
is not satisfied. Nothing happens if the constraint is already marked valid.

● DROP CONSTRAINT [IF EXISTS] constraint_name [RESTRICT | CASCADE]
Drops a table constraint.

● CLUSTER ON index_name
Selects the default index for future CLUSTER operations. It does not actually re-
cluster the table.

● SET WITHOUT CLUSTER
Removes the most recently used CLUSTER index specification from the table. This
operation affects future cluster operations that do not specify an index.

● SET ({storage_parameter = value} [, ...])
Changes one or more storage parameters for the table.

● RESET (storage_parameter [, ...])
Resets one or more storage parameters to their defaults. As with SET, a table
rewrite might be needed to update the table entirely.

● OWNER TO new_owner
Changes the owner of the table, sequence, or view to the specified user.

● SET {COMPRESS|NOCOMPRESS}
Sets the compression feature of a table. The table compression feature affects only
the storage mode of data inserted in a batch subsequently and does not affect
storage of existing data. Setting the table compression feature will result in the
fact that there are both compressed and uncompressed data in the table.

● DISTRIBUTE BY { REPLICATION | ROUNDROBIN | { HASH (column_name
[,...]) } }
Changing a table's distribution mode will physically redistribute the table data
based on the new distribution mode. After the distribution mode is changed, you
are advised to manually run the ANALYZE statement to collect new statistics about
the table.

NO TE

● This operation is a major change operation, involving table distribution
information modification and physical data redistribution. During the
modification, services are blocked. After the modification, the original
execution plan of services will change. Perform this operation according to
the standard change process.

● This operation is a resource-intensive operation. If you need to modify the
distribution mode of large tables, perform the operation when the
computing and storage resources are sufficient. Ensure that the remaining
space of the entire cluster and the tablespace where the original table is
located is sufficient to store a table that has the same size as the original
table and is distributed in the new distribution mode.

● TO { GROUP groupname | NODE (nodename [, ...]) }
The syntax is only available in extended mode (when GUC parameter
support_extended_features is on). Exercise caution when enabling the mode. It is

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

used for tools like internal dilatation tools. Common users should not use the
mode.

● ADD NODE (nodename [, ...])

It is only available for tools like internal dilatation. General users should not use
the mode.

● DELETE NODE (nodename [, ...])

It is only available for internal scale-in tools. Common users should not use the
syntax.

● DISABLE TRIGGER [trigger_name | ALL | USER]

Disables a single trigger specified by trigger_name, disables all triggers, or
disables only user triggers (excluding internally generated constraint triggers, for
example, deferrable unique constraint triggers and exclusion constraints triggers).

NO TE

Exercise caution when using this function because data integrity cannot be
ensured as expected if the triggers are not executed.

● ENABLE TRIGGER [trigger_name | ALL | USER]

Enables a single trigger specified by trigger_name, enables all triggers, or enables
only user triggers.

● ENABLE REPLICA TRIGGER trigger_name

Determines that the trigger firing mechanism is affected by the configuration
variable session_replication_role. When the replication role is origin (default
value) or local, a simple trigger is fired.

When ENABLE REPLICA is configured for a trigger, it is fired only when the session
is in replica mode.

● ENABLE ALWAYS TRIGGER trigger_name

Determines that all triggers are fired regardless of the current replication mode.

● DISABLE/ENABLE ROW LEVEL SECURITY

Enables or disables row-level access control for a table.

If row-level access control is enabled for a data table but no row-level access
control policy is defined, the row-level access to the data table is not affected. If
row-level access control for a table is disabled, the row-level access to the table is
not affected even if a row-level access control policy has been defined. For details,
see section CREATE ROW LEVEL SECURITY POLICY.

● NO FORCE/FORCE ROW LEVEL SECURITY

Forcibly enables or disables row-level access control for a table.

By default, the table owner is not affected by the row-level access control feature.
However, if row-level access control is forcibly enabled, the table owner (excluding
system administrators) will be affected. System administrators are not affected by
any row-level access control policies.

● REFRESH STORAGE

Changes the local hot partitions that meet the criteria specified in the
storage_policy parameter of an OBS multi-temperature table to the cold partitions
stored in the OBS.

For example, if storage_policy is set to 'LMT:10' for an OBS multi-temperature
table when it is created, the partitions that are not updated within the last 10 days
are switched to cold partitions in the OBS.

– There are several clauses of column_clause:
ADD [COLUMN] column_name data_type [compress_mode] [COLLATE collation]
[column_constraint [...]]
 | MODIFY [COLUMN] column_name data_type
 | MODIFY [COLUMN] column_name [CONSTRAINT constraint_name] NOT NULL
[ENABLE]

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

 | MODIFY [COLUMN] column_name [CONSTRAINT constraint_name] NULL
 | MODIFY [COLUMN] column_name DEFAULT default_expr
 | MODIFY [COLUMN] column_name ON UPDATE on_update_expr
 | MODIFY [COLUMN] column_name COMMENT comment_text
 | DROP [COLUMN] [IF EXISTS] column_name [RESTRICT | CASCADE]
 | ALTER [COLUMN] column_name [SET DATA] TYPE data_type [COLLATE collation]
[USING expression]
 | ALTER [COLUMN] column_name { SET DEFAULT expression | DROP DEFAULT }
 | ALTER [COLUMN] column_name { SET | DROP } NOT NULL
 | ALTER [COLUMN] column_name SET STATISTICS [PERCENT] integer
 | ADD STATISTICS ((column_1_name, column_2_name [, ...]))
 | ADD { INDEX | UNIQUE [INDEX] } [index_name] ({ { column_name | (expression) }
[COLLATE collation] [opclass] [ASC | DESC] [NULLS LAST] } [, ...]) [USING method]
[NULLS [NOT] DISTINCT | NULLS IGNORE] [COMMENT 'text'] LOCAL [({ PARTITION
index_partition_name } [, ...])] [WITH ({ storage_parameter = value } [, ...])]
 | ADD { INDEX | UNIQUE [INDEX] } [index_name] ({ { column_name | (expression) }
[COLLATE collation] [opclass] [ASC | DESC] [NULLS { FIRST | LAST }] }[, ...]) [USING
method] [NULLS [NOT] DISTINCT | NULLS IGNORE] [COMMENT 'text'] [WITH
({storage_parameter = value} [, ...])] [WHERE predicate]
 | DROP { INDEX | KEY } index_name
 | CHANGE [COLUMN] old_column_name new_column_name data_type [[CONSTRAINT
constraint_name] NOT NULL [ENABLE] |
 [CONSTRAINT constraint_name] NULL | DEFAULT default_expr | COMMENT 'text']
 | DELETE STATISTICS ((column_1_name, column_2_name [, ...]))
 | ALTER [COLUMN] column_name SET ({attribute_option = value} [, ...])
 | ALTER [COLUMN] column_name RESET (attribute_option [, ...])
 | ALTER [COLUMN] column_name SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN }

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

NO TE

● ADD [COLUMN] column_name data_type [compress_mode] [COLLATE
collation] [column_constraint [...]]
Adds a column to a table. If a column is added with ADD COLUMN, all
existing rows in the table are initialized with the column's default value
(NULL if no DEFAULT clause is specified).

● ADD ({ column_name data_type [compress_mode] } [, ...])
Adds columns in the table.

● MODIFY [COLUMN] column_name data_type
Modifies the data type of an existing field in a table.

● MODIFY [COLUMN] column_name [CONSTRAINT constraint_name]
NOT NULL [ENABLE]
Adds a NOT NULL constraint to a column of a table. Currently, this clause is
unavailable to column-store tables.

● MODIFY [COLUMN] column_name [CONSTRAINT constraint_name]
NULL
Deletes the NOT NULL constraint to a certain column in the table.

● MODIFY [COLUMN] column_name DEFAULT default_expr
Changes the default value of the table.

● MODIFY [COLUMN] column_name ON UPDATE on_update_expr
Modifies the ON UPDATE expression of a specified column in a table. The
column must be of the timestamp or timestamptz type. If on_update_expr is
NULL, the ON UPDATE clause is deleted.

● MODIFY [COLUMN] column_name COMMENT comment_text
Modifies the comment of the table.

● DROP [COLUMN] [IF EXISTS] column_name [RESTRICT | CASCADE]
Drops a column from a table. Index and constraint related to the column are
automatically dropped. If an object not belonging to the table depends on the
column, CASCADE must be specified, such as foreign key reference and view.
The DROP COLUMN form does not physically remove the column, but simply
makes it invisible to SQL operations. Subsequent insert and update operations
in the table will store a NULL value for the column. Therefore, column
deletion takes a short period of time but does not immediately release the
table space on the disks, because the space occupied by the deleted column is
not reclaimed. The space will be reclaimed when VACUUM is executed.

● ALTER [COLUMN] column_name [SET DATA] TYPE data_type
[COLLATE collation] [USING expression]
Change the data type of a field in the table. Only the type conversion of the
same category (between values, character strings, and time) is allowed.
Indexes and simple table constraints on the column will automatically use the
new data type by reparsing the originally supplied expression.
ALTER TYPE requires an entire table be rewritten. This is an advantage
sometimes, because it frees up unnecessary space from a table. For example,
to reclaim the space occupied by a deleted column, the fastest method is to
use the command.
ALTER TABLE table ALTER COLUMN anycol TYPE anytype;

In this command, anycol indicates any column existing in the table and
anytype indicates the type of the prototype of the column. ALTER TYPE does
not change the table except that the table is forcibly rewritten. In this way,
the data that is no longer used is deleted.

● ALTER [COLUMN] column_name { SET DEFAULT expression | DROP
DEFAULT }

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

Sets or removes the default value for a column. The default values only apply
to subsequent INSERT commands; they do not cause rows already in the
table to change. Defaults can also be created for views, in which case they are
inserted into INSERT statements on the view before the view's ON INSERT
rule is applied.

● ALTER [COLUMN] column_name { SET | DROP } NOT NULL
Changes whether a column is marked to allow NULL values or to reject NULL
values. You can only use SET NOT NULL when the column contains no NULL
values.

● ALTER [COLUMN] column_name SET STATISTICS [PERCENT] integer
Specifies the per-column statistics-gathering target for subsequent ANALYZE
operations. The value ranges from 0 to 10000. Set it to -1 to revert to using
the default system statistics target.

● ADD { INDEX | UNIQUE [INDEX] } [index_name] ({ { column_name |
(expression) } [COLLATE collation] [opclass] [ASC | DESC] [NULLS
LAST] } [, ...]) [USING method] [NULLS [NOT] DISTINCT | NULLS
IGNORE] [COMMENT 'text'] LOCAL [({ PARTITION
index_partition_name } [, ...])] [WITH ({ storage_parameter = value }
[, ...])]
Create an index for the partitioned table. For details about the parameters,
see CREATE INDEX.

● ADD { INDEX | UNIQUE [INDEX] } [index_name] ({ { column_name |
(expression) } [COLLATE collation] [opclass] [ASC | DESC] [NULLS
{ FIRST | LAST }] }[, ...]) [USING method] [NULLS [NOT] DISTINCT |
NULLS IGNORE] [COMMENT 'text'] [WITH ({storage_parameter =
value} [, ...])] [WHERE predicate]
Create an index on the table. For details about the parameters, see CREATE
INDEX.

● DROP { INDEX | KEY } index_name
Deletes an index from a table.

● CHANGE [COLUMN] old_column_name new_column_name data_type
[[CONSTRAINT constraint_name] NOT NULL [ENABLE] |
[CONSTRAINT constraint_name] NULL | DEFAULT default_expr |
COMMENT 'text']
Modifies the column information in the table, such as column names and
column field information.

● {ADD | DELETE} STATISTICS ((column_1_name, column_2_name [, ...]))
Adds or deletes the declaration of collecting multi-column statistics to collect
multi-column statistics as needed when ANALYZE is performed for a table or
a database. The statistics about a maximum of 32 columns can be collected
at a time. You are not allowed to add or delete the declaration for system
tables or foreign tables

● ALTER [COLUMN] column_name SET ({attribute_option = value} [, ...])
ALTER [COLUMN] column_name RESET (attribute_option [, ...])
Sets or resets per-attribute options.
The attribute option parameters are n_distinct, n_distinct_inherited, and
cstore_cu_sample_ratio. n_distinct specifies and fixes the statistics of a
table's distinct values. n_distinct_inherited specifies and inherits the distinct
value statistics. cstore_cu_sample_ratio specifies the CU ratio for ANALYZE
on a column-store table. Currently, the n_distinct_inherited parameter
cannot be SET or RESET.
● n_distinct

Sets the distinct value statistics of the column.
Value range: -1.0 to INT_MAX

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

Default value: 0, indicating that this parameter is not set.
● n_distinct_inherited

Sets the distinct value statistics of the column in an inherited table.
Value range: -1.0 to INT_MAX
Default value: 0, indicating that this parameter is not set.

● cstore_cu_sample_ratio
Specifies the expansion multiple in the calculation of CUs to be sampled
during ANALYZE on a column-store table.
Value range: 1.0-10000.0
Default value: 1.0

● ALTER [COLUMN] column_name SET STORAGE { PLAIN | EXTERNAL |
EXTENDED | MAIN }
Sets the storage mode for a column. This clause specifies whether this column
is held inline or in a secondary TOAST table, and whether the data should be
compressed. This statement can only be used for row-based tables. SET
STORAGE only sets the strategy to be used for future table operations.

▪ column_constraint is as follows:
[CONSTRAINT constraint_name]
 { NOT NULL |
 NULL |
 CHECK (expression) |
 DEFAULT default_expr |
 UNIQUE [NULLS [NOT] DISTINCT | NULLS IGNORE] index_parameters |
 PRIMARY KEY index_parameters }
 [DEFERRABLE | NOT DEFERRABLE | INITIALLY DEFERRED | INITIALLY IMMEDIATE]

▪ compress_mode of a column is as follows:
[DELTA | PREFIX | DICTIONARY | NUMSTR | NOCOMPRESS]

– table_constraint_using_index used to add the primary key constraint or
unique constraint based on the unique index is as follows:
[CONSTRAINT constraint_name]
 { UNIQUE | PRIMARY KEY } USING INDEX index_name
 [DEFERRABLE | NOT DEFERRABLE | INITIALLY DEFERRED | INITIALLY IMMEDIATE]

– table_constraint is as follows:
[CONSTRAINT constraint_name]
 { CHECK (expression) |
 UNIQUE [NULLS [NOT] DISTINCT | NULLS IGNORE] (column_name [, ...])
index_parameters |
 PRIMARY KEY (column_name [, ...]) index_parameters }

 [DEFERRABLE | NOT DEFERRABLE | INITIALLY DEFERRED | INITIALLY IMMEDIATE]

index_parameters is as follows:
[WITH ({storage_parameter = value} [, ...])]
 [USING INDEX TABLESPACE tablespace_name]

● Changes the data type of an existing column in the table. Only the type
conversion of the same category (between values, strings, and time) is
allowed.
ALTER TABLE [IF EXISTS] table_name
 MODIFY ({ column_name data_type | [CONSTRAINT constraint_name] NOT NULL [ENABLE] |
 [CONSTRAINT constraint_name] NULL | DEFAULT default_expr | COMMENT 'text' } [, ...]);

● Rename the table. Changing the table name does not affect the stored data.
The new table name can be prefixed with the schema name of the original
table. The schema name cannot be changed at the same time.
ALTER TABLE [IF EXISTS] table_name
 RENAME TO new_table_name;
ALTER TABLE [IF EXISTS] table_name
 RENAME TO schema.new_table_name;

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

● Rename the specified column in the table.
ALTER TABLE [IF EXISTS] { table_name [*] | ONLY table_name | ONLY (table_name)}
 RENAME [COLUMN] column_name TO new_column_name;

● Rename the constraint of the table.
ALTER TABLE { table_name [*] | ONLY table_name | ONLY (table_name) }
 RENAME CONSTRAINT constraint_name TO new_constraint_name;

● Set the schema of the table.
ALTER TABLE [IF EXISTS] table_name
 SET SCHEMA new_schema;

NO TE

● The schema setting moves the table into another schema. Associated indexes and
constraints owned by table columns are migrated as well. Currently, the schema for
sequences cannot be changed. If the table has sequences, delete the sequences,
and create them again or delete the ownership between the table and sequences.
In this way, the table schema can be changed.

● To change the schema of a table, you must also have CREATE privilege on the new
schema. To add the table as a new child of a parent table, you must own the
parent table as well. To alter the owner, you must also be a direct or indirect
member of the new owning role, and that role must have CREATE permission on
the table's schema. These restrictions enforce that altering the owner does not do
anything you could not do by dropping and recreating the table. However, a
system administrator can alter ownership of any table anyway.

● All the actions except for RENAME and SET SCHEMA can be combined into a list
of multiple alterations to apply in parallel. For example, it is possible to add several
columns or alter the type of several columns in a single command. This is useful
with large tables, since only one pass over the table need be made.

● Adding a CHECK or NOT NULL constraint requires scanning the table to verify that
existing rows meet the constraint.

● Adding a column with a non-null default or changing the type of an existing
column will require the entire table to be rewritten. Table rebuilding may take a
significant amount of time for a large table; and will temporarily require as much
as double the disk space.

● Add columns.
ALTER TABLE [IF EXISTS] table_name
 ADD ({ column_name data_type [compress_mode] [COLLATE collation] [column_constraint
[...]]} [, ...]);

● Update columns.
ALTER TABLE [IF EXISTS] table_name
 MODIFY ({ column_name data_type | column_name [CONSTRAINT constraint_name] NOT NULL
[ENABLE] | column_name [CONSTRAINT constraint_name] NULL } [, ...]);

Parameter Description
● IF EXISTS

Sends a notification instead of an error if no tables have identical names. The
notification prompts that the table you are querying does not exist.

● table_name [*] | ONLY table_name | ONLY (table_name)
table_name is the name of table that you need to modify.
If ONLY is specified, only the table is modified. If ONLY is not specified, the
table and all subtables will be modified. You can add the asterisk (*) option
following the table name to specify that all subtables are scanned, which is
the default operation.

● constraint_name
Specifies the name of an existing constraint to drop.

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

● index_name
Specifies the name of this index.

● storage_parameter
Specifies the name of a storage parameter.
The following options are added for partition management:
– PERIOD (interval type)

Sets the period for automatically creating partitions in partition
management.
For details about the value range of PERIOD and the restrictions on
enabling this function, see "CREATE TABLE PARTITION".

NO TE

● If this parameter is not configured when you create a table, you can run the
set statements to configure this parameter and enable automatic partition
creation. If this parameter has been configured before, you can run the set
statements to modify this parameter.

● You can run the reset command to disable the automatic partition creation.
However, if the automatic partition deletion is enabled, the automatic
partition creation cannot be disabled.

– TTL (interval type)
Set the partition expiration time for automatically deleting partitions in
partition management.
For details about the TTL range and restrictions on enabling this function,
see "CREATE TABLE PARTITION".

NO TE

● If this parameter is not configured when you create a table, you can run the
set statements to configure this parameter and enable automatic partition
deletion. If this parameter has been configured before, you can run the set
statements to modify this parameter.

● You can run the reset command to disable the automatic partition deletion.

● new_owner
Specifies the name of the new table owner.

● new_tablespace
Specifies the new name of the tablespace to which the table belongs.

● column_name, column_1_name, column_2_name
Specifies the name of a new or an existing column.

● data_type
Specifies the type of a new column or a new type of an existing column.

● compress_mode
Specifies the compress options of the table, only available for row-based
tables. The clause specifies the algorithm preferentially used by the column.

● collation
Specifies the collation rule name of a column. The optional COLLATE clause
specifies a collation for the new column; if omitted, the collation is the default
for the new column.

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

● USING expression
A USING clause specifies how to compute the new column value from the
old; if omitted, the default conversion is an assignment cast from old data
type to new. A USING clause must be provided if there is no implicit or
assignment cast from the old to new type.

NO TE

USING in ALTER TYPE can specify any expression involving the old values of the row;
that is, it can refer to any columns other than the one being converted. This allows
very general conversions to be done with the ALTER TYPE syntax. Because of this
flexibility, the USING expression is not applied to the column's default value (if any);
the result might not be a constant expression as required for a default. This means
that when there is no implicit or assignment cast from old to new type, ALTER TYPE
might fail to convert the default even though a USING clause is supplied. In such
cases, drop the default with DROP DEFAULT, perform the ALTER TYPE, and then use
SET DEFAULT to add a suitable new default. Similar considerations apply to indexes
and constraints involving the column.

● NOT NULL | NULL
Sets whether the column allows null values.

● integer
Specifies the constant value of an integer with a sign. If PERCENT is used, the
range of integer is from 0 to 100.

● attribute_option
Specifies an attribute option.

● PLAIN | EXTERNAL | EXTENDED | MAIN
Specifies a column storage mode.
– PLAIN must be used for fixed-length values (such as integers). It must be

inline and uncompressed.
– MAIN is for inline, compressible data.
– EXTERNAL is for external, uncompressed data. Use of EXTERNAL will

make substring operations on text and bytea values run faster, at the
penalty of increased storage space.

– EXTENDED is for external, compressed data. EXTENDED is the default for
most data types that support non-PLAIN storage.

● CHECK (expression)
New or updated rows must satisfy for an insert or update operation to
succeed. Expressions evaluating to TRUE succeed. If any row of an insert or
update operation produces a FALSE result, an error exception is raised and the
insert or update does not alter the database.
A check constraint specified as a column constraint should reference only the
column's values, while an expression appearing in a table constraint can
reference multiple columns.
Currently, CHECK expression does not include subqueries and cannot use
variables apart from the current column.

● DEFAULT default_expr
Assigns a default data value for a column.
The data type of the default expression must match the data type of the
column.

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

The default expression will be used in any insert operation that does not
specify a value for the column. If there is no default value for a column, then
the default value is NULL.
If a suffix operator, such as (!), is used in default_expr, enclose the operator
in parentheses.

● UNIQUE [NULLS [NOT] DISTINCT | NULLS IGNORE] index_parameters
UNIQUE (column_name [, ...]) [NULLS [NOT] DISTINCT | NULLS
IGNORE] index_parameters
The UNIQUE constraint specifies that a group of one or more columns of a
table can contain only unique values.
The [NULLS [NOT] DISTINCT | NULLS IGNORE] field is used to specify
how to process null values in the index column of the Unique index.
Default value: This parameter is left empty by default. NULL values can be
inserted repeatedly.
When the inserted data is compared with the original data in the table, the
NULL value can be processed in any of the following ways:
– NULLS DISTINCT: NULL values are unequal and can be inserted

repeatedly.
– NULLS NOT DISTINCT: NULL values are equal. If all index columns are

NULL, NULL values cannot be inserted repeatedly. If some index columns
are NULL, data can be inserted only when non-null values are different.

– NULLS IGNORE: NULL values are skipped during the equivalent
comparison. If all index columns are NULL, NULL values can be inserted
repeatedly. If some index columns are NULL, data can be inserted only
when non-null values are different.

The following table lists the behaviors of the three processing modes.

Table 4-3 Processing of NULL values in index columns in unique indexes

Constraint All Index
Columns Are
NULL

Some Index Columns Are
NULL.

NULLS DISTINCT Can be inserted
repeatedly.

Can be inserted repeatedly.

NULLS NOT DISTINCT Cannot be
inserted
repeatedly.

Cannot be inserted if the non-
null values are equal. Can be
inserted if the non-null values
are not equal.

NULLS IGNORE Can be inserted
repeatedly.

Cannot be inserted if the non-
null values are equal. Can be
inserted if the non-null values
are not equal.

● PRIMARY KEY index_parameters

PRIMARY KEY (column_name [, ...]) index_parameters
The primary key constraint specifies that a column or columns of a table can
contain only unique (non-duplicate) and non-null values.

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

● DEFERRABLE | NOT DEFERRABLE | INITIALLY DEFERRED | INITIALLY
IMMEDIATE
Sets whether the constraint is deferrable. This option is unavailable to
column-store tables.
– DEFERRABLE: deferrable can be postponed until the end of the

transaction using the SET CONSTRAINTS command.
– NOT DEFERRABLE: checks immediately after the execution of each

command.
– INITIALLY IMMEDIATE: checks immediately after the execution of each

statement.
– INITIALLY DEFERRED: checks when the transaction ends.

● WITH ({storage_parameter = value} [, ...])
Specifies an optional storage parameter for a table or an index.

● COMPRESS|NOCOMPRESS
– NOCOMPRESS: If the NOCOMPRESS keyword is specified, the existing

compression feature of the table is not changed.
– COMPRESS: If the COMPRESS keyword is specified, the table

compression feature is triggered if tuples are inserted in a batch.
● new_table_name

Specifies the new table name.
● new_column_name

Specifies the new name of a specific column in a table.
● new_constraint_name

Specifies the new name of a table constraint.
● new_schema

Specifies the new schema name.
● CASCADE

Automatically drops objects that depend on the dropped column or constraint
(for example, views referencing the column).

● RESTRICT
Refuses to drop the column or constraint if there are any dependent objects.
This is the default behavior.

● schema_name
Specifies the schema name of a table.

● cache_policy
Table cache policy. It is supported only in cloud native 3.0. For details, see
cache_policy.

Table Operation Examples
Rename a table:

ALTER TABLE CUSTOMER RENAME TO CUSTOMER_t;

Add a new table constraint:

ALTER TABLE customer_address ADD PRIMARY KEY(ca_address_sk);

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

Adds primary key constraint or unique constraint based on the unique index.

Create an index CUSTOMER_constraint1 for the table CUSTOMER. Then add
primary key constraints, and rename the created index.

CREATE UNIQUE INDEX CUSTOMER_constraint1 ON CUSTOMER(C_CUSTKEY);
ALTER TABLE CUSTOMER ADD CONSTRAINT CUSTOMER_constraint2 PRIMARY KEY USING INDEX
CUSTOMER_constraint1;

Rename a table constraint:

ALTER TABLE CUSTOMER RENAME CONSTRAINT CUSTOMER_constraint2 TO CUSTOMER_constraint;

Delete a table constraint:

ALTER TABLE CUSTOMER DROP CONSTRAINT CUSTOMER_constraint;

Add a table index:

ALTER TABLE CUSTOMER ADD INDEX CUSTOMER_index(C_CUSTKEY);

Delete a table index:

ALTER TABLE CUSTOMER DROP INDEX CUSTOMER_index;
ALTER TABLE CUSTOMER DROP KEY CUSTOMER_index;

Add a partial cluster key to a column-store table:

ALTER TABLE customer_address ADD CONSTRAINT customer_address_cluster PARTIAL CLUSTER
KEY(ca_address_sk);

Delete a partial cluster key from a column-store table:

ALTER TABLE customer_address DROP CONSTRAINT customer_address_cluster;

Change the storage format of a column-store table:

ALTER TABLE customer_address SET (COLVERSION = 1.0);

Change the distribution mode of a table:

ALTER TABLE customer_address DISTRIBUTE BY REPLICATION;

Change the schema of a table:

ALTER TABLE customer_address SET SCHEMA tpcds;

Change the data temperature for a single table:

ALTER TABLE cold_hot_table REFRESH STORAGE;

Change a column-store partitioned table to a hot and cold table.

CREATE table test_1(id int,d_time date)
WITH(ORIENTATION=COLUMN)
DISTRIBUTE BY HASH (id)
PARTITION BY RANGE (d_time)
(PARTITION p1 START('2022-01-01') END('2022-01-31') EVERY(interval '1 day'))

ALTER TABLE test_1 SET (storage_policy = 'LMT:100');

Modify the table cache policy (supported only in cloud native 3.0):

ALTER TABLE orders SET (cache_policy = 'NONE');

Column Operation Examples
Add a column to a table:

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

ALTER TABLE warehouse_t ADD W_GOODS_CATEGORY int;

Modify the column name and column information in the table:

ALTER TABLE warehouse_t CHANGE W_GOODS_CATEGORY W_GOODS_CATEGORY2 DECIMAL NOT NULL
COMMENT 'W_GOODS_CATEGORY';

Add a primary key to a table:

ALTER TABLE warehouse_t ADD PRIMARY KEY(w_warehouse_name);

Rename a column:

ALTER TABLE CUSTOMER RENAME C_PHONE TO new_C_PHONE;

Add columns to a table:

ALTER TABLE CUSTOMER ADD (C_COMMENT VARCHAR(117) NOT NULL, C_COUNT int);

Change the data type of a column in the table and set the column constraint to
NOT NULL:

ALTER TABLE CUSTOMER MODIFY C_MKTSEGMENT varchar(20) NOT NULL;

Add the NOT NULL constraint to a certain column in the table:

ALTER TABLE CUSTOMER ALTER COLUMN C_PHONE SET NOT NULL;

Delete a column from a table:

ALTER TABLE CUSTOMER DROP COLUMN C_COUNT;

Add an index to a column in the table:

ALTER TABLE customer_address MODIFY ca_address_id varchar(20) CONSTRAINT ca_address_index CHECK
(ca_address_id > 0);

Add a timestamp column with the ON UPDATE expression to the
customer_address table:

ALTER TABLE customer_address ADD COLUMN C_TIME timestamp on update current_timestamp;

Delete the timestamp column with the ON UPDATE expression from the
customer_address:

ALTER TABLE customer_address MODIFY COLUMN C_TIME timestamp on update NULL;

GaussDB(DWS) 3.0
Developer Guide 4 SQL Syntax Reference

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

5 Function

get_meta_version(Oid)
Description: Obtains the metadata version information cached in a session on a
DN. The input parameter is the OID of the primary table. The output parameter is
the version information of all auxiliary tables related to the primary table,
including the index, partition, and primary table.

Return type: record

The following table describes return columns.

Column Type Description

obj_oid Oid Oid of the metadata object

obj_type char Metadata type. The options are p (partition), i
(index), and r (relation).

obj_parent_oi
d

Oid OID of the primary table attached to the
metadata object

meta_version Xid Version information of the metadata object

Example:

SELECT * FROM get_meta_version(16972);
 obj_oid | obj_type | obj_parent_oid | meta_version
---------+----------+----------------+--------------
 16972 | r | 16972 | 267910
 16952 | p | 16972 | 267910
 16958 | p | 16972 | 267910
(3 row)

get_meta_version()
Description: Obtains all metadata version information cached in a session on a
DN. The output is the version information of all primary tables and related
auxiliary tables, including indexes, partitions, and primary tables.

Return type: record

GaussDB(DWS) 3.0
Developer Guide 5 Function

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

The following table describes return columns.

Column Type Description

obj_oid Oid Oid of the metadata object

obj_type char Metadata type. The options are p (partition), i
(index), and r (relation)

obj_parent_oi
d

Oid OID of the primary table attached to the
metadata object

meta_version Xid Version information of the metadata object

Example:

SELECT * FROM get_meta_version();
 obj_oid | obj_type | obj_parent_oid | meta_version
---------+----------+----------------+--------------
 16972 | r | 16972 | 267910
 16952 | p | 16972 | 267910
 16958 | p | 16972 | 267910
(3 row)

pgxc_get_meta_version(schemaname, relname)
Description: Obtains the version information of specified metadata cached in
sessions on all DNs. The input parameters are the schema name and table name
of the primary table. The output parameters are the version information of all
auxiliary tables related to the primary table, including the index, partition, and
primary table.

Return type: record

The following table describes return columns.

Column Type Description

node_name text DN name

obj_oid Oid Oid of the metadata object

obj_type char Metadata type. The options are p (partition), i
(index), and r (relation).

obj_parent_oi
d

Oid OID of the primary table attached to the
metadata object

meta_version Xid Version information of the metadata object

Example:

SELECT * FROM pgxc_get_meta_version('mtc', 't1');
 node_name | obj_oid | obj_type | obj_parent_oid | meta_version
-----------|---------+----------+----------------+--------------
 datanode1 | 16972 | r | 16972 | 267910

GaussDB(DWS) 3.0
Developer Guide 5 Function

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

 datanode1 | 16952 | p | 16972 | 267910
 datanode1 | 16958 | p | 16972 | 267910
 datanode2 | 16972 | r | 16972 | 267910
 datanode2 | 16952 | p | 16972 | 267910
 datanode2 | 16958 | p | 16972 | 267910
 datanode3 | 16972 | r | 16972 | 267910
 datanode3 | 16952 | p | 16972 | 267910
 datanode3 | 16958 | p | 16972 | 267910
(9 row)

pgxc_get_meta_version()

Description: Obtains all metadata version information cached in sessions on all
DNs. The output is the version information of all auxiliary tables related to the
primary table, including the index, partition, and primary table itself.

Return type: record

The following table describes return columns.

Column Type Description

node_name text DN Name

obj_oid Oid Oid of the metadata object

obj_type char Metadata type. The options are p (partition), i
(index), and r (relation).

obj_parent_oi
d

Oid OID of the primary table attached to the
metadata object

meta_version Xid Version information of the metadata object

Example:

SELECT * FROM pgxc_get_meta_version();
 node_name | obj_oid | obj_type | obj_parent_oid | meta_version
-----------|---------+----------+----------------+--------------
 datanode1 | 16972 | r | 16972 | 267910
 datanode1 | 16952 | p | 16972 | 267910
 datanode1 | 16958 | p | 16972 | 267910
 datanode2 | 16972 | r | 16972 | 267910
 datanode2 | 16952 | p | 16972 | 267910
 datanode2 | 16958 | p | 16972 | 267910
 datanode3 | 16972 | r | 16972 | 267910
 datanode3 | 16952 | p | 16972 | 267910
 datanode3 | 16958 | p | 16972 | 267910
(9 row)

clean_dn_metadata(int)

Description: Clears all metadata cached in DN sessions. If this parameter is set to
1, the metadata cached in all sessions is cleared. If this parameter is set to other
values, the metadata cached in the current session is cleared.

Return type: int

The following table describes return columns.

GaussDB(DWS) 3.0
Developer Guide 5 Function

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

Column Type Description

cleaned_num int Number of deleted metadata caches

Example:

ELECT * FROM clean_dn_metadata(1);
 cleaned_num

 2
(1 row)

pgxc_clean_dn_metadata(int)

Description: Clears all metadata cached in all DN sessions. If this parameter is set
to 1, the metadata cached in all sessions is cleared. If this parameter is set to
other values, the metadata cached in the current session is cleared.

Return type: record

The following table describes return columns.

Column Type Description

node_name text DN name

cleaned_num int Number of deleted metadata caches

Example:

SELECT * FROM pgxc_clean_dn_metadata(1);
node_name	cleaned_num
 datanode1 | 2
 datanode2 | 2
 datanode3 | 2
(3 row)

get_global_meta_cache(int)

Description: Obtains the global cache metadata on a DN. The input parameter is
the bucket number, which ranges from 0 to 511.

Return type: record

The following table describes return columns.

Column Type Description

bucket_idx int ID of the bucket where the metadata object
resides

meta_seq int Location of the metadata object in the bucket

GaussDB(DWS) 3.0
Developer Guide 5 Function

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

Column Type Description

db_oid Oid OID of the database where the metadata
object is located

meta_oid Oid Oid of the metadata object

meta_part_n
um

int Number of partitions contained in a metadata
object

meta_idx_nu
m

int Number of indexes contained in a metadata
object

meta_version text Version information of the metadata object

Example:

EXECUTE DIRECT ON (datanode5) 'SELECT * FROM get_global_meta_cache(1)';
 bucket_idx | meta_seq | db_oid | meta_oid | meta_part_num | meta_idx_num | meta_version
------------+----------+--------+----------+---------------+--------------+----------------
 1 | 1 | 16852 | 18552 | 0 | 0 | 18552 2394152 ,
(1 row)

get_global_meta_cache()
Description: Obtains the global cache metadata on a DN.

Return type: record

The following table describes return columns.

Column Type Description

bucket_idx int ID of the bucket where the metadata object
resides

meta_seq int Location of the metadata object in the bucket

db_oid Oid OID of the database where the metadata
object is located

meta_oid Oid Oid of the metadata object

meta_part_n
um

int Number of partitions contained in a metadata
object

meta_idx_nu
m

int Number of indexes contained in a metadata
object

meta_version text Version information of the metadata object

Example:

EXECUTE DIRECT ON (datanode5) 'SELECT * FROM get_global_meta_cache()';
 bucket_idx | meta_seq | db_oid | meta_oid | meta_part_num | meta_idx_num | meta_version
------------+----------+--------+----------+---------------+--------------+----------------

GaussDB(DWS) 3.0
Developer Guide 5 Function

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

 1 | 1 | 16852 | 18552 | 0 | 0 | 18552 2394152 ,
(1 row)

pgxc_get_global_meta_cache()
Description: Obtains the global cache metadata on all DNs.

Return type: record

The following table describes return columns.

Column Type Description

node_name text DN name

bucket_idx int ID of the bucket where the metadata object
resides

meta_seq int Location of the metadata object in the bucket

db_oid Oid OID of the database where the metadata
object is located

meta_oid Oid Oid of the metadata object

meta_part_n
um

int Number of partitions contained in a metadata
object

meta_idx_nu
m

int Number of indexes contained in a metadata
object

meta_version text Version information of the metadata object

Example:

SELECT * FROM pgxc_get_global_meta_cache();
 node_name | bucket_idx | meta_seq | db_oid | meta_oid | meta_part_num | meta_idx_num | meta_version
-----------+------------+----------+--------+----------+---------------+--------------+----------------
 datanode1 | 1 | 1 | 16852 | 18552 | 0 | 0 | 18552 2394152 ,
 datanode2 | 1 | 1 | 16852 | 18552 | 0 | 0 | 18552 2394152 ,
 datanode3 | 1 | 1 | 16852 | 18552 | 0 | 0 | 18552 2394152 ,
(3 row)

global_meta_cache_reset()
Description: Clears global cached metadata on DNs.

Return type: record

The following table describes return columns.

Column Type Description

meta_num int Number of metadata records to be deleted

Example:

GaussDB(DWS) 3.0
Developer Guide 5 Function

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

ELECT * FROM global_meta_cache_reset();
 meta_num

 1
(1 row)

pgxc_global_meta_cache_reset()
Description: Clears the global cache metadata on all DNs.

Return type: record

The following table describes return columns.

Column Type Description

node_name text DN name

meta_num int Number of metadata records to be deleted

Example:

SELECT * FROM pgxc_global_meta_cache_reset();
 node_name | meta_num
-----------+----------
 datanode1 | 1
 datanode2 | 1
 datanode3 | 1
(3 row)

pg_obs_file_size(scheme_name.tablename)
Description: Obtains the CU file name and size of a table or partition on OBS. This
function is valid only for tables whose colversion is 3.

Return type: record

The function parameter fields are as follows:

Column Type Description

scheme_nam
e.tablename

regclass schema.tablename/tablename/oid of the
primary table or OID of the partitioned table.
If the OID of the primary table is the same as
that of the partition, you are advised to use
the table name as the input parameter.

Example:

-- The input parameter is tablename.
elect pg_obs_file_size('t2_col_part_obs');
 pg_obs_file_size

 (C1_16777266462721.0,1024)
 (C1_16777266429953.0,1024)
 (C1_16777249734657.0,1024)
 (C1_16777249701889.0,1024)

GaussDB(DWS) 3.0
Developer Guide 5 Function

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

(4 rows)
-- The input parameter is schema.tablename.
select pg_obs_file_size('public.t2_col_part_obs');
 pg_obs_file_size

 (C1_16777266462721.0,1024)
 (C1_16777266429953.0,1024)
 (C1_16777249734657.0,1024)
 (C1_16777249701889.0,1024)
(4 rows)
-- The input parameter is oid.
select pg_obs_file_size(16593);
 pg_obs_file_size

 (C1_16777266462721.0,1024)
 (C1_16777266429953.0,1024)
 (C1_16777249734657.0,1024)
 (C1_16777249701889.0,1024)
(4 rows)

pg_obs_file_size(scheme_name.tablename,partition_name)
Description: Obtains the column-store CU file name and file size of a partitioned
table on OBS. This function is valid only for column-store tables whose colversion
is 3.

Return type: record

The function parameter fields are as follows:

Column Type Description

scheme_nam
e.tablename

regclass schema.tablename/tablename/oid of the
primary table

partition_na
me

cstring Partition table name

Example:

elect pg_obs_file_size('public.t2_col_part_obs','p1');
 pg_obs_file_size

 (C1_16777266462721.0,1024)
 (C1_16777266429953.0,1024)
 (C1_16777249734657.0,1024)
 (C1_16777249701889.0,1024)
(4 rows)

pg_scan_residualfiles()
Description: Scans all residual file records in the database where the current node
resides. When it is executed on a CN, it scans the database of the CN and OBS for
residual files. When it is executed on a CN, it scans the database of the DN for
residual files. This function is a database-level function and applies only to the
current database. This function cannot be executed on the standby node.

Return type: record

The following table describes return columns.

GaussDB(DWS) 3.0
Developer Guide 5 Function

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

Column Type Description

pgscrf text Local path of the metadata file that records
residual file information

Example:
select * from pg_scan_residualfiles();
 pgscrf

 pg_residualfiles/pgscrf_meta_15842_20230912182912146379
(1 row)

pgxc_scan_residualfiles()

Description: Scans all nodes for the residual files of the current database. This
function is a cluster-level function and can be executed only on a CN. It is related
to the database where the CN is located. This function cannot be executed on the
standby node.

Parameter type: none

Return type: record

The following table describes return columns.

Column Type Description

node_name text Unified name shared by the active and standby
nodes

instance_id text Name of the node where the residual file is.

pgscrf text Local path of the metadata file that records
residual file information

Example:
select * from pgxc_scan_residualfiles();
 node_name | instance_id | pgscrf
--------------+--------------+---
 datanode1 | datanode1 | pg_residualfiles/pgscrf_meta_15854_20231106095437555205
 coordinator1 | coordinator1 | pg_residualfiles/pgscrf_meta_15854_20231106095438240991
(1 row)

pg_get_scan_residualfiles()

Description: Obtains all residual file records of the current node. This function is
an instance-level function and is irrelevant to the current database. It can run on
any instance. This function cannot be executed on the standby node.

Return type: record

The following table describes return columns.

GaussDB(DWS) 3.0
Developer Guide 5 Function

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

Column Type Description

handled bool Whether the residual file has been handled

dbname text Database name

residualfile text Path of the residual file

size int Size of the residual file. The value of this
parameter is 0 for residual files in the OBS
path.

inode int Index node ID of the residual file in the file
system. The index node ID of the residual file
on OBS is 0.

atime time Last access time of the residual file. This
parameter is left blank for residual files in an
OBS path.

mtime time Last modified time of the residual file. This
parameter is left blank for residual files in an
OBS path.

ctime time Last status change time of the residual file.
This parameter is left blank for residual files in
an OBS path.

filepath text Local path of the metadata file that records
residual file information

notes text Notes

Example:
 select * from pg_get_scan_residualfiles();
 handled | dbname |
residualfile | size | inode | atime | mtime | ctime |
filepath |
notes
---------+----------
+--
--+------+-------+-------+-------+-------+--+-

 f | postgres | /test/obsview/cudesc_check/user1/obs.xxx.com/cu_obs_tbs/tablespace_secondary/
15854/19865 | 0 | 0 | | | | pgscrf_meta_15854_20231106095438240991 |
(1 row)

pgxc_get_scan_residualfiles()

Description: Obtains residual file records on all nodes. This function is a cluster-
level function and can be executed only on CNs. It is irrelevant to the current
database. This function cannot be executed on the standby node.

Return type: record

The following table describes return columns.

GaussDB(DWS) 3.0
Developer Guide 5 Function

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

Column Type Description

node_name text Unified name shared by the active and standby
nodes

instance_id text Name of the node where the residual file is.

handled bool Whether the residual file has been handled

dbname text Database name

residualfile text Path of the residual file

size int Size of the residual file. The value of this
parameter is 0 for residual files on OBS.

inode int Index node ID of the residual file in the file
system. The value of this parameter is 0 for
residual file ins an OBS path.

atime time Last access time of the residual file. This
parameter is left blank for residual files in an
OBS path.

mtime time Last modified time of the residual file. This
parameter is left blank for residual files in an
OBS path.

ctime time Last status change time of the residual file.
This parameter is left blank for residual files in
an OBS path.

filepath text Local path of the metadata file that records
residual file information

notes text Notes

Example:
 select * from pgxc_get_scan_residualfiles();
 node_name | instance_id | handled | dbname |
residualfile | size | inode | atime |
mtime | ctime | filepath | notes
--------------+--------------+---------+----------
+--
--+------+---------+------------------------+------------------------+------------------------
+--+-------
 datanode1 | datanode1 | f | postgres | base/
15854/19863 | 0 | 2939427 |
2023-11-06 09:54:15+08 | 2023-11-06 09:54:15+08 | 2023-11-06 09:54:15+08 |
pgscrf_meta_15854_20231106095437555205 |
 coordinator1 | coordinator1 | f | postgres | /test/obsview/cudesc_check/user1/obs.xxx.com/cu_obs_tbs/
tablespace_secondary/15854/19865 | 0 | 0 | | | |
pgscrf_meta_15854_20231106095438240991 |
(2 rows)

GaussDB(DWS) 3.0
Developer Guide 5 Function

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

pg_archive_scan_residualfiles()
Description: Archives all residual file records of the current node. This function is
an instance-level function and is irrelevant to the current database. It can run on
any instance. This function cannot be executed on the standby node.

Return type: record

The following table describes return columns.

Column Type Description

archive text Archived folder path Residual files in the OBS
path are archived in the corresponding OBS
database directory.

count int Number of files in the archived folder

size int Size of the file in the archived folder

Example:
select * from pg_archive_scan_residualfiles();
 archive | count | size
---+--------+------
 pg_residualfiles/archive/pgscrf_archive_15842_20230912182934335330| 1 | 0
(1 row)

pgxc_archive_scan_residualfiles()
Description: Archives residual file records on all nodes. This function is a cluster-
level function and can be executed only on CNs. It is irrelevant to the current
database. This function cannot be executed on the standby node.

Return type: record

The following table describes return columns.

Column Type Description

node_name text Unified name shared by the active and standby
nodes

instance_id text Name of the node where the residual file is.

archive text Archived folder path Residual files in the OBS
path are archived in the corresponding OBS
database directory.

count int Number of files in the archived folder

size int Size of the file in the archived folder

Example:
select * from pgxc_archive_scan_residualfiles();
 node_name | instance_id | archive | count | size

GaussDB(DWS) 3.0
Developer Guide 5 Function

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

--------------+--------------+--+-------+------
 datanode1 | datanode1 | pg_residualfiles/archive/pgscrf_archive_20231106103246489550 | 1 | 0
 coordinator1 | coordinator1 | pg_residualfiles/archive/pgscrf_archive_20231106103246592449 | 1 | 0
(2 rows)

pg_rm_scan_residualfiles_archive()
Description: Deletes files from the archived file list on the current instance. This
function is an instance-level function and is irrelevant to the current database. It
can run on any instance. This function cannot be executed on the standby node.

Return type: record

The following table describes return columns.

Column Type Description

count int Number of deleted residual files. For residual
files in the local path, the number of deleted
files is counted. For residual files in the OBS
path, the number of deleted table directories is
counted.

size int Total size of local files in the deleted residual
files. The value of this parameter is 0 for all
residual files in the OBS path.

Example:
select * from pg_rm_scan_residualfiles_archive();
 count | size
-------+------
 1 | 0
(1 row)

pgxc_rm_scan_residualfiles_archive()
Description: Deletes files in the archive directory from all nodes. This function is a
cluster-level function and can be executed only on CNs. It is irrelevant to the
current database. This function cannot be executed on the standby node.

Return type: record

The following table describes return columns.

Column Type Description

node_name text Unified name shared by the active and standby
nodes

instance_id text Name of the node where the residual file is.

GaussDB(DWS) 3.0
Developer Guide 5 Function

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

Column Type Description

count int Number of deleted residual files. For residual
files in the local path, the number of deleted
files is counted. For residual files in the OBS
path, the number of deleted table directories is
counted.

size int Total size of local files in the deleted residual
files. The value of this parameter is 0 for all
residual files in the OBS path.

Example:
select * from pgxc_rm_scan_residualfiles_archive();
 node_name | instance_id | count | size
--------------+--------------+-------+------
 datanode1 | datanode1 | 1 | 0
 coordinator1 | coordinator1 | 1 | 0
(2 rows)

analyze_table(scheme_name, rel_name, sample_rate, random_rate default
null, prarallel_degree default null)

Description: Samples data to a temporary table in parallel, performs Full Analyze
on the temporary table, and updates statistics.

Return type: record

The function parameter columns are as follows:

Column Type Description

scheme_nam
e

name Scheme name of the primary table.

rel_name name Primary table name

sample_rate float8 Sampling rate percentage. The value ranges
from 0 to 100. Calculation: min((10w/
total_rows of the table) x 100%)

random_seed float8 Random seed. If it is not set, the default value
0 is used.

prarallel_deg
ree

int Concurrency. If it is not set, the default value is
10.

Example:

call analyze_table('public','t1_col_obs',10,0,20);

pgxc_clear_disk_cache()
Description: Deletes all disk cache files.

GaussDB(DWS) 3.0
Developer Guide 5 Function

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

Return type: void

Example:

postgres=# select pgxc_clear_disk_cache();
 pgxc_clear_disk_cache

(1 row)

GaussDB(DWS) 3.0
Developer Guide 5 Function

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

6 System Catalogs

6.1 PG_CLASS
PG_CLASS records database objects and their relations.

Table 6-1 PG_CLASS columns

Name Type Description

oid oid Row identifier (hidden attribute; must be explicitly
selected)

relname name Name of an object, such as a table, index, or view

relnamespace oid OID of the namespace that contains the
relationship

reltype oid Data type that corresponds to this table's row type
(the index is 0 because the index does not have
pg_type record)

reloftype oid OID is of composite type. 0 indicates other types.

relowner oid Owner of the relationship

relam oid Specifies the access method used, such as B-tree
and hash, if this is an index

relfilenode oid Name of the on-disk file of this relationship. If such
file does not exist, the value is 0.

reltablespace oid Tablespace in which this relationship is stored. If its
value is 0, the default tablespace in this database is
used. This column is meaningless if the relationship
has no on-disk file.

relpages double
precisio
n

Size of the on-disk representation of this table in
pages (of size BLCKSZ). This is only an estimate
used by the optimizer.

GaussDB(DWS) 3.0
Developer Guide 6 System Catalogs

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

Name Type Description

reltuples double
precisio
n

Number of rows in the table. This is only an
estimate used by the optimizer.

relallvisible integer Number of pages marked as all visible in the table.
This column is used by the optimizer for optimizing
SQL execution. It is updated by VACUUM,
ANALYZE, and a few DDL statements such as
CREATE INDEX.

reltoastrelid oid OID of the TOAST table associated with this table.
The OID is 0 if no TOAST table exists.
The TOAST table stores large columns "offline" in a
secondary table.

reltoastidxid oid OID of the index for a TOAST table. The OID is 0
for a table other than a TOAST table.

reldeltarelid oid OID of a Delta table
Delta tables belong to column-store tables. They
store long tail data generated during data import.

reldeltaidx oid OID of the index for a Delta table

relcudescrelid oid OID of a CU description table
CU description tables (Desc tables) belong to
column-store tables. They control whether storage
data in the HDFS table directory is visible.

relcudescidx oid OID of the index for a CU description table

relhasindex boolean Its value is true if this column is a table and has (or
recently had) at least one index.
It is set by CREATE INDEX but is not immediately
cleared by DROP INDEX. If the VACUUM process
detects that a table has no index, it clears the
relhasindex column and sets the value to false.

relisshared boolean Its value is true if the table is shared across all
databases in the cluster. Only certain system
catalogs (such as pg_database) are shared.

relpersistence "char" ● p indicates a permanent table.
● u indicates a non-log table.
● t indicates a temporary table.

GaussDB(DWS) 3.0
Developer Guide 6 System Catalogs

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

Name Type Description

relkind "char" ● r indicates an ordinary table.
● i indicates an index.
● S indicates a sequence.
● v indicates a view.
● c indicates the composite type.
● t indicates a TOAST table.
● f indicates a foreign table.

relnatts smallint Number of user columns in the relationship
(excluding system columns) pg_attribute has the
same number of rows corresponding to the user
columns.

relchecks smallint Number of constraints on a table. For details, see
PG_CONSTRAINT.

relhasoids boolean Its value is true if an OID is generated for each row
of the relationship.

relhaspkey boolean Its value is true if the table has (or once had) a
primary key.

relhasrules boolean Its value is true if the table has rules. See table
PG_REWRITE to check whether it has rules.

relhastriggers boolean Its value is true if the table has (or once had)
triggers. See PG_TRIGGER.

relhassubclass boolean Its value is true if the table has (or once had) any
inheritance child table.

relcmprs tinyint Whether the compression feature is enabled for the
table. Note that only batch insertion triggers
compression so ordinary CRUD does not trigger
compression.
● 0 indicates other tables that do not support

compression (primarily system tables, on which
the compression attribute cannot be modified).

● 1 indicates that the compression feature of the
table data is NOCOMPRESS or has no specified
keyword.

● 2 indicates that the compression feature of the
table data is COMPRESS.

relhasclusterkey boolean Whether the local cluster storage is used

GaussDB(DWS) 3.0
Developer Guide 6 System Catalogs

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

Name Type Description

relrowmoveme
nt

boolean Whether the row migration is allowed when the
partitioned table is updated
● true indicates that the row migration is allowed.
● false indicates that the row migration is not

allowed.

parttype "char" Whether the table or index has the property of a
partitioned table
● p indicates that the table or index has the

property of a partitioned table.
● n indicates that the table or index does not have

the property of a partitioned table.
● v indicates that the table is the value partitioned

table in the HDFS.

relfrozenxid xid32 All transaction IDs before this one have been
replaced with a permanent ("frozen") transaction
ID in this table. This column is used to track
whether the table needs to be vacuumed in order
to prevent transaction ID wraparound (or to allow
pg_clog to be shrunk). The value is 0
(InvalidTransactionId) if the relationship is not a
table.
To ensure forward compatibility, this column is
reserved. The relfrozenxid64 column is added to
record the information.

relacl aclite
m[]

Access permissions
The command output of the query is as follows:
rolename=xxxx/yyyy --Assigning privileges to a role
=xxxx/yyyy --Assigning the permission to public

xxxx indicates the assigned privileges, and yyyy
indicates the roles that are assigned to the
privileges. For details about permission descriptions,
see Table 6-2.

reloptions text[] Access-method-specific options, as
"keyword=value" strings

relfrozenxid64 xid All transaction IDs before this one have been
replaced with a permanent ("frozen") transaction
ID in this table. This column is used to track
whether the table needs to be vacuumed in order
to prevent transaction ID wraparound (or to allow
pg_clog to be shrunk). The value is 0
(InvalidTransactionId) if the relationship is not a
table.

GaussDB(DWS) 3.0
Developer Guide 6 System Catalogs

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

Table 6-2 Description of privileges

Parameter Description

r SELECT (read)

w UPDATE (write)

a INSERT (insert)

d DELETE

D TRUNCATE

x REFERENCES

t TRIGGER

X EXECUTE

U USAGE

C CREATE

c CONNECT

T TEMPORARY

A ANALYZE|ANALYSE

L ALTER

P DROP

v VACUUM

arwdDxtA, vLP ALL PRIVILEGES (used for tables)

* Authorization options for preceding permissions

Examples

View the OID and relfilenode of a table.

SELECT oid,relname,relfilenode FROM pg_class WHERE relname = 'table_name';

Count row-store tables.

SELECT 'row count:'||count(1) as point FROM pg_class WHERE relkind = 'r' and oid > 16384 and
reloptions::text not like '%column%' and reloptions::text not like '%internal_mask%';

Count column-store tables.

SELECT 'column count:'||count(1) as point FROM pg_class WHERE relkind = 'r' and oid > 16384 and
reloptions::text like '%column%';

Query the comments of all tables in the database.

SELECT relname as tabname,obj_description(relfilenode,'pg_class') as comment FROM pg_class;

GaussDB(DWS) 3.0
Developer Guide 6 System Catalogs

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

6.2 PG_CONSTRAINT
PG_CONSTRAINT records check, primary key, unique, and foreign key constraints
on the tables.

Table 6-3 PG_CONSTRAINT columns

Name Type Description

conname name Constraint name (not necessarily unique)

connamespace oid OID of the namespace that contains the
constraint

contype "char" ● c indicates check constraints.
● f indicates foreign key constraints.
● p indicates primary key constraints.
● u indicates unique constraints.
● t indicates trigger constraints.

condeferrable boolean Whether the constraint can be deferrable

condeferred boolean Whether the constraint can be deferrable by
default

convalidated boolean Whether the constraint is valid Currently,
only foreign key and check constraints can
be set to false.

conrelid oid Table containing this constraint. The value is
0 if it is not a table constraint.

contypid oid Domain containing this constraint. The value
is 0 if it is not a domain constraint.

conindid oid ID of the index associated with the constraint

confrelid oid Referenced table if this constraint is a foreign
key; otherwise, the value is 0.

confupdtype "char" Foreign key update action code
● a indicates no action.
● r indicates restriction.
● c indicates cascading.
● n indicates that the parameter is set to

null.
● d indicates that the default value is used.

GaussDB(DWS) 3.0
Developer Guide 6 System Catalogs

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

Name Type Description

confdeltype "char" Foreign key deletion action code
● a indicates no action.
● r indicates restriction.
● c indicates cascading.
● n indicates that the parameter is set to

null.
● d indicates that the default value is used.

confmatchtype "char" Foreign key match type
● f indicates full match.
● p indicates partial match.
● u indicates simple match (not specified).

conislocal boolean Whether the local constraint is defined for
the relationship

coninhcount integer Number of direct inheritance parent tables
this constraint has. When the number is not
0, the constraint cannot be deleted or
renamed.

connoinherit boolean Whether the constraint can be inherited

consoft boolean Whether the column indicates an
informational constraint.

conopt boolean Whether you can use Informational
Constraint to optimize the execution plan.

conkey smallint[] Column list of the constrained control if this
column is a table constraint

confkey smallint[] List of referenced columns if this column is a
foreign key

conpfeqop oid[] ID list of the equality operators for PK = FK
comparisons if this column is a foreign key

conppeqop oid[] ID list of the equality operators for PK = PK
comparisons if this column is a foreign key

conffeqop oid[] ID list of the equality operators for FK = FK
comparisons if this column is a foreign key

conexclop oid[] ID list of the per-column exclusion operators
if this column is an exclusion constraint

conbin pg_node_tr
ee

Internal representation of the expression if
this column is a check constraint

GaussDB(DWS) 3.0
Developer Guide 6 System Catalogs

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

Name Type Description

consrc text Human-readable representation of the
expression if this column is a check
constraint

NO TICE

● consrc is not updated when referenced objects change; for example, it will not
track renaming of columns. Rather than relying on this field, it's best to use
pg_get_constraintdef() to extract the definition of a check constraint.

● pg_class.relchecks must be consistent with the number of check-constraint
entries in this table for each relationship.

6.3 PG_EXTERNAL_NAMESPACE
Stores EXTERNAL SCHEMA information. This system catalog is supported only by
DWS 3.0.

Table 6-4 PG_EXTERNAL_NAMESPACE columns

Column Type Description

nspid Oid EXTERNAL Schema Oid

srvname text Name of the foreign server

source text Metadata service type

address text Metadata service address

database text Metadata server database

confpath text Path of the configuration file of the metadata
server

ensoptions text[] Reserved field, which is left empty currently.

catalog text Metadata server catalog

Examples
Query the created EXTERNAL SCHEMA ex1:

SELECT * FROM pg_external_namespace WHERE nspid = (SELECT oid FROM pg_namespace WHERE
nspname = 'ex1');

GaussDB(DWS) 3.0
Developer Guide 6 System Catalogs

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

6.4 PG_NAMESPACE
PG_NAMESPACE records the namespaces, that is, schema-related information.
The nsptype column is added to the cloud native data warehouse 3.0 to
distinguish external schemas from common schemas. The value of external
schema is e, and the value of common schema is i.

Table 6-5 PG_NAMESPACE columns

Column Type Description

nspname name Name of the namespace

nspowner oid Owner of the namespace

nsptimeline bigint Timeline when the namespace is created on the
DN This column is for internal use and valid only
on the DN.

nspacl aclitem[] Access permissions. For details, see GRANT and
REVOKE.

permspace bigint Quota of a schema's permanent tablespace

usedspace bigint Used size of a schema's permanent tablespace

nsptype char Distinguishes external schemas from common
schemas.

6.5 PG_PARTITION
PG_PARTITION records all partitioned tables, table partitions, toast tables on
table partitions, and index partitions in the database. Partitioned index
information is not stored in the PG_PARTITION system catalog.

Table 6-6 PG_PARTITION columns

Name Type Description

relname name Names of the partitioned tables, table
partitions, TOAST tables on table partitions,
and index partitions

parttype "char" Object type
● r indicates a partitioned table.
● p indicates a table partition.
● x indicates an index partition.
● t indicates a TOAST table.

GaussDB(DWS) 3.0
Developer Guide 6 System Catalogs

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

Name Type Description

parentid oid OID of the partitioned table in PG_CLASS
when the object is a partitioned table or table
partition
OID of the partitioned index when the object
is an index partition

rangenum integer Reserved field.

intervalnum integer Reserved field.

partstrategy "char" Partition policy of the partitioned table. The
following policies are supported:
r indicates the range partition.
v indicates the numeric partition.
l: indicates the list partition.

relfilenode oid Physical storage locations of the table
partition, index partition, and TOAST table on
the table partition.

reltablespace oid OID of the tablespace containing the table
partition, index partition, TOAST table on the
table partition

relpages double
precision

Statistics: numbers of data pages of the table
partition and index partition

reltuples double
precision

Statistics: numbers of tuples of the table
partition and index partition

relallvisible integer Statistics: number of visible data pages of the
table partition and index partition

reltoastrelid oid OID of the TOAST table corresponding to the
table partition

reltoastidxid oid OID of the TOAST table index corresponding
to the table partition

indextblid oid OID of the table partition corresponding to
the index partition

indisusable boolean Whether the index partition is available

reldeltarelid oid OID of a Delta table

reldeltaidx oid OID of the index for a Delta table

relcudescrelid oid OID of a CU description table

relcudescidx oid OID of the index for a CU description table

GaussDB(DWS) 3.0
Developer Guide 6 System Catalogs

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

Name Type Description

relfrozenxid xid32 Frozen transaction ID
To ensure forward compatibility, this column
is reserved. The relfrozenxid64 column is
added to record the information.

intspnum integer Number of tablespaces that the interval
partition belongs to

partkey int2vector Column number of the partition key

intervaltablespace oidvector Tablespace that the interval partition belongs
to. Interval partitions fall in the tablespaces in
the round-robin manner.

interval text[] Interval value of the interval partition

boundaries text[] Upper boundary of the range partition and
interval partition

transit text[] Transit of the interval partition

reloptions text[] Storage property of a partition used for
collecting online scale-out information. Same
as pg_class.reloptions, it is a keyword=value
string.

relfrozenxid64 xid Frozen transaction ID

boundexprs pg_node_t
ree

Partition boundary expression.
● For range partitioning, it is the upper

boundary expression of a partition.
● For list partitioning, it is a collection of

partition boundary enumeration values.
The pg_node_tree data is not readable. You
can use the expression pg_get_expr to
translate the current column into readable
information.
SELECT pg_get_expr(boundexprs, 0) FROM pg_partition
WHERE relname = 'country_202201';
pg_get_expr

ROW(202201, 'city1'::text), ROW(202201, 'city2'::text)
(1 row)

6.6 PG_REWRITE
PG_REWRITE records rewrite rules defined for tables and views.

GaussDB(DWS) 3.0
Developer Guide 6 System Catalogs

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

Table 6-7 PG_REWRITE columns

Name Type Description

rulename name Rule name

ev_class oid Name of the table that uses the rule

ev_attr smallint Column this rule is for (always 0 to indicate
the entire table)

ev_type "char" Event type for this rule:
● 1 = SELECT
● 2 = UPDATE
● 3 = INSERT
● 4 = DELETE

ev_enabled "char" Controls in which mode the rule fires
● O: The rule fires in "origin" and "local"

modes.
● D: The rule is disabled.
● R: The rule fires in "replica" mode.
● A: The rule always fires.

is_instead boolean Its value is true if the rule is an INSTEAD
rule.

ev_qual pg_node_tr
ee

Expression tree (in the form of a
nodeToString() representation) for the rule's
qualifying condition

ev_action pg_node_tr
ee

Query tree (in the form of a nodeToString()
representation) for the rule's action

6.7 PG_TRIGGER
PG_TRIGGER records the trigger information.

Name Type Description

tgrelid oid OID of the table where the trigger is located.

tgname name Trigger name.

tgfoid oid Trigger OID.

tgtype smallint Trigger type

GaussDB(DWS) 3.0
Developer Guide 6 System Catalogs

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

Name Type Description

tgenabled "char" O: The trigger fires in "origin" or "local" mode.
D: The trigger is disabled.
R: The trigger fires in "replica" mode.
A: The trigger always fires.

tgisinternal boolean Internal trigger ID. If the value is true, it
indicates an internal trigger.

tgconstrrelid oid The table referenced by the integrity constraint

tgconstrindid oid Index of the integrity constraint

tgconstraint oid OID of the constraint trigger in the
pg_constraint

tgdeferrable boolean The constraint trigger is of the DEFERRABLE
type.

tginitdeferred boolean whether the trigger is of the INITIALLY
DEFERRED type

tgnargs smallint Input parameters number of the trigger
function

tgattr int2vector Column ID specified by the trigger. If no
column is specified, an empty array is used.

tgargs bytea Parameter transferred to the trigger

tgqual pg_node_tree Indicates the WHEN condition of the trigger. If
the WHEN condition does not exist, the value
is null.

6.8 PGXC_GROUP
PGXC_GROUP records node group information. In DWS 3.0, each node group in a
logical cluster is called a VW. At the storage KV layer, each VW corresponds to a
vgroup.

Table 6-8 PGXC_GROUP columns

Column Type Description

group_name name Specifies the name of a node group.

GaussDB(DWS) 3.0
Developer Guide 6 System Catalogs

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

Column Type Description

in_redistribution "char" Whether redistribution is required.
● n indicates that the Node Group is

not redistributed.
● y indicates the source Node Group

in redistribution.
● t indicates the destination Node

Group in redistribution.

group_members oidvector_ex
tend

DN node OID list of in a node group

group_buckets text Distributed data bucket group

is_installation boolean Indicates whether the node group is
an installation node group.

group_acl aclitem[] Access permissions

group_kind "char" Node group type.
● i indicates the installation node

group, which contains all DNs.
● n indicates a common non-logical

cluster node group.
● v indicates a logical cluster node

group.
● e indicates the elastic cluster node

group.
● r indicates a replication table node

group, which can only be used to
create replication tables and can
contain one or more logical cluster
node groups.

group_ckpt_csn xid CSN of the last incremental extraction
performed on a node group.

vgroup_id xid ID of the vgroup corresponding to the
node group.

vgroup_bucket_count oid Number of buckets in the vgroup
corresponding to the node group.

group_ckpt_time timestamp
with time
zone

Physical time when the last
incremental extraction is performed
on a node group.

apply_kv_duration integer Duration of incremental scanning in
the last incremental extraction of a
node group, in seconds.

GaussDB(DWS) 3.0
Developer Guide 6 System Catalogs

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

Column Type Description

ckpt_duration integer Checkpoint duration in the last
incremental extraction of a node
group, in seconds.

group_flags integer Node group flag. Currently, only the
first flag is valid. Other flags are not
used in the current version.
● Flag 1: If the value is 1, the node

group is a read-only logical cluster.
If the value is 0, the node group is
a read-write logical cluster.

6.9 PGXC_NODE
PGXC_NODE records information about cluster nodes.

Table 6-9 PGXC_NODE columns

Name Type Description

node_name name Node name

node_type "char" Node type
C: CN
D: DN

node_port integer Port ID of the node

node_host name Host name or IP address of a node. (If a virtual
IP address is configured, its value is a virtual IP
address.)

node_port1 integer Port number of a replication node

node_host1 name Host name or IP address of a replication node.
(If a virtual IP address is configured, its value is
a virtual IP address.)

hostis_primary boolean Whether a switchover occurs between the
primary and the standby server on the current
node

nodeis_primary boolean Whether the current node is preferred to
execute non-query operations in the replication
table

nodeis_preferre
d

boolean Whether the current node is preferred to
execute queries in the replication table

node_id integer Node identifier

GaussDB(DWS) 3.0
Developer Guide 6 System Catalogs

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

Name Type Description

sctp_port integer Specifies the port used by the TCP proxy
communication library or SCTP communication
library of the primary node to listen to the data
channel.

control_port integer Specifies the port used by the TCP proxy
communication library or SCTP communication
library of the primary node to listen to the
control channel.

sctp_port1 integer Specifies the port used by the TCP proxy
communication library or SCTP communication
library of the standby node to listen to the data
channel.

control_port1 integer Specifies the port used by the TCP proxy
communication library or SCTP communication
library of the standby node to listen to the
control channel.

nodeis_central boolean Indicates that the current node is the central
node.

Examples
Query the CN and DN information of the cluster.

select * from pgxc_node;
 node_name | node_type | node_port | node_host | node_port1 | node_host1 | hostis_primary |
nodeis_primary | nodeis_preferred
 | node_id | sctp_port | control_port | sctp_port1 | control_port1 | nodeis_central
--------------+-----------+-----------+----------------+------------+----------------+----------------+----------------
+-----------------
-+-------------+-----------+--------------+------------+---------------+----------------
 dn_6001_6002 | D | 40000 | 192.**.***.**1 | 45000 | 192.**.**.**2 | t | f | f
 | 1644780306 | 40002 | 40003 | 45002 | 45003 | f
 dn_6003_6004 | D | 40000 | 192.**.**.**2 | 45000 | 192.**.**.**3 | t | f | f
 | -966646068 | 40002 | 40003 | 45002 | 45003 | f
 dn_6005_6006 | D | 40000 | 192.**.**.**3 | 45000 | 192.**.***.**1 | t | f | f
 | 868850011 | 40002 | 40003 | 45002 | 45003 | f
 cn_5001 | C | 8000 | 192.**.***.**1 | 8000 | 192.**.***.**1 | t | f | f
 | 1120683504 | 8002 | 8003 | 0 | 0 | f
 cn_5002 | C | 8000 | 192.**.**.**2 | 8000 | 192.**.**.**2 | t | f | f
 | -1736975100 | 8002 | 8003 | 0 | 0 | f
 cn_5003 | C | 8000 | localhost | 8000 | localhost | t | f | f
 | -125853378 | 8002 | 8003 | 0 | 0 | t
(6 rows)

GaussDB(DWS) 3.0
Developer Guide 6 System Catalogs

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

7 System Views

7.1 PGXC_DISK_CACHE_STATS
Records the usage of the file cache. This system view is supported only by DWS
3.0.

Table 7-1 PGXC_DISK_CACHE_STATS columns

Column Type Description

node_name text Node name

total_read bigint Total number of times
that the disk cache is
accessed

local_read bigint Total number of times
that the disk cache reads
the local disk

remote_read bigint Total number of times
that the disk cache reads
data from the remote
storage.

hit_rate numeric(5,2) Hit ratio of the disk
cache

cache_size bigint Total size of data stored
in the disk cache (KB)

fill_rate numeric(5,2) Disk cache filling rate

Example
Run the following command to query the hit ratio of the disk cache on each node:
SELECT hit_rate FROM pgxc_disk_cache_stats;
 hit_rate

GaussDB(DWS) 3.0
Developer Guide 7 System Views

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

 56.91
 56.85
 NaN
 NaN
 NaN
 NaN
(6 rows)

7.2 PGXC_DISK_CACHE_PATH_INFO
Records the information about the hard disk where the file cache is located. This
system view is supported only by DWS 3.0.

Table 7-2 PGXC_DISK_CACHE_PATH_INFO columns

Column Type Description

path_name text Path name.

node_name text Name of the node to which the hard disk
belongs

cache_size bigint Total size of cache files on the hard disk
(bytes)

disk_available bigint Available space of the hard disk (bytes)

disk_size bigint Total capacity of the hard disk (bytes)

disk_use_ratio double
precision

Disk space usage

Example
Query information about the hard disk used by the file cache:

select * from pgxc_disk_cache_path_info order by 1;
 path_name | node_name | cache_size | disk_available | disk_size | disk_use_ratio
----------------+--------------+------------+----------------+--------------+------------------
 dn_6001_6002_0 | dn_6001_6002 | 19619 | 137401716736 | 160982630400 | .146481105479564
 dn_6001_6002_1 | dn_6001_6002 | 35968 | 137401716736 | 160982630400 | .146481105479564
 dn_6003_6004_0 | dn_6003_6004 | 27794 | 121600655360 | 160982630400 | .244634933235629
 dn_6003_6004_1 | dn_6003_6004 | 26158 | 121600655360 | 160982630400 | .244634933235629
 dn_6005_6006_0 | dn_6005_6006 | 24533 | 134394839040 | 160982630400 | .165159379579873
 dn_6005_6006_1 | dn_6005_6006 | 31065 | 134394839040 | 160982630400 | .165159379579873

7.3 PGXC_DISK_CACHE_ALL_STATS
Records the usage of the file cache. This system view is supported only in cloud
native 3.0.

GaussDB(DWS) 3.0
Developer Guide 7 System Views

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

Table 7-3 PGXC_DISK_CACHE_ALL_STATS columns

Column Type Description

node_name text Node name

total_read bigint Total number of times that
the disk cache is accessed

local_read bigint Total number of times that
the disk cache accesses the
local disk.

remote_read bigint Total number of times that
the disk cache accesses the
remote storage.

hit_rate numeric(5,2) Hit ratio of the disk cache

cache_size bigint Total size of data stored in
the disk cache (KB)

fill_rate numeric(5,2) Disk cache filling rate

temp_file_size bigint Total size of temporary/cold
cache files (KB)

a1in_size bigint Total size of data stored in
the a1in queue in the disk
cache (KB)

a1out_size bigint Total size of data stored in
the a1out queue in the disk
cache (KB)

am_size bigint Total size of data stored in
the am queue in the disk
cache (KB)

a1in_fill_rate numeric(5,2) Filling rate of the a1in
queue in the disk cache

a1out_fill_rate numeric(5,2) Filling rate of the a1out
queue in the disk cache

am_fill_rate numeric(5,2) Filling rate of the am queue
in the disk cache

fd integer Number of file descriptors
that are being used by the
disk cache

Example
Query the number of file descriptors used by the disk cache on each node:
SELECT fd FROM pgxc_disk_cache_all_stats;
 fd

GaussDB(DWS) 3.0
Developer Guide 7 System Views

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

 1000
 1000
 0
 0
 0
 0
(6 rows)

7.4 PGXC_OBS_IO_SCHEDULER_STATS
Queries the latest real-time statistics about read/write requests of the OBS I/O
Scheduler. This system view is supported only by DWS 3.0.

Table 7-4 PGXC_OBS_IO_SCHEDULER_STATS columns

Column Type Description

node_name text Node

io_type char I/O type.
● r indicates read.
● w indicates write.
● s indicates file operations.

current_bps int8 Current bandwidth rate (KB/s)

best_bps int8 Optimal bandwidth rate reached recently
(KB/s)

waiting_request_n
um

int Number of queuing requests

mean_request_size int8 Average length of recently processed requests
(KB)

total_token_num int Total number of I/O tokens

available_token_n
um

int Number of available I/O tokens

total_worker_num int Total number of working threads

idle_worker_num int Number of idle working threads

Example

Step 1 Query statistics about read requests of OBS I/O Scheduler on each node:

According to the result, this is a snapshot of the statistics at a certain time point
when the current I/O scheduler reads I/Os. At this time, the bandwidth is
increasing, and current_bps is equal to best_bps. Take dn_6003_6004 as an
example. You can see that there are queuing requests on the current DN. The
value of total_token_num is the same as that of available_token_num,

GaussDB(DWS) 3.0
Developer Guide 7 System Views

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

indicating that the I/O scheduler has not started to process these requests when
the view is queried.
SELECT * FROM pgxc_obs_io_scheduler_stats WHERE io_type = 'r' ORDER BY node_name;

 node_name | io_type | current_bps | best_bps | waiting_request_num | mean_request_size |
total_token_num | available_token_num | total_worker_num | idle_worker_num
--------------+---------+-------------+----------+---------------------+-------------------+-----------------
+---------------------+------------------+-----------------
 dn_6001_6002 | r | 26990 | 26990 | 0 | 215 | 18 | 16
| 12 | 10
 dn_6003_6004 | r | 21475 | 21475 | 10 | 190 | 30 | 30
| 20 | 20
 dn_6005_6006 | r | 12384 | 12384 | 36 | 133 | 30 | 27
| 20 | 17

Step 2 Wait for a while and initiate the query again.

At this time, there is no queuing request in the queue, and available_token_num
is equal to total_token_num, indicating that the IO Scheduler has processed all
requests and no new request needs to be processed. However, the value of
current_bps is not 0 because the period for collecting bps statistics is 3 seconds,
and the result was generated 3 seconds ago.
SELECT * FROM pgxc_obs_io_scheduler_stats WHERE io_type = 'r' ORDER BY node_name;

 node_name | io_type | current_bps | best_bps | waiting_request_num | mean_request_size |
total_token_num | available_token_num | total_worker_num | idle_worker_num
--------------+---------+-------------+----------+---------------------+-------------------+-----------------
+---------------------+------------------+-----------------
 dn_6001_6002 | r | 13228 | 26990 | 0 | 609 | 18 | 18
| 12 | 12
 dn_6003_6004 | r | 15717 | 21475 | 0 | 622 | 30 | 30
| 20 | 20
 dn_6005_6006 | r | 18041 | 21767 | 0 | 609 | 30 | 30
| 20 | 20

Step 3 After a short period of time, the query result is as follows. The value of
current_bps changes to 0.
SELECT * FROM pgxc_obs_io_scheduler_stats WHERE io_type = 'r' ORDER BY node_name;

 node_name | io_type | current_bps | best_bps | waiting_request_num | mean_request_size |
total_token_num | available_token_num | total_worker_num | idle_worker_num
--------------+---------+-------------+----------+---------------------+-------------------+-----------------
+---------------------+------------------+-----------------
 dn_6001_6002 | r | 0 | 26990 | 0 | 609 | 18 | 18
| 12 | 12
 dn_6003_6004 | r | 0 | 21475 | 0 | 622 | 30 | 30
| 20 | 20
 dn_6005_6006 | r | 0 | 21767 | 0 | 609 | 30 | 30
| 20 | 20

----End

7.5 PGXC_OBS_IO_SCHEDULER_PERIODIC_STATS
Collects statistics on the number of requests and flow control information of
different request types (including read, write, and file operations) of OBS I/O
Scheduler. This view is supported only by the cloud native data warehouse 3.0.

The first query result displays the statistics from the time when the cluster is
started to the time when the query is performed. For details about the columns,
see the following table.

GaussDB(DWS) 3.0
Developer Guide 7 System Views

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

Table 1 PGXC_OBS_IO_SCHEDULER_PERIODIC_STATS table columns

Column Type Description

node_name name Name of a CN or DN, for
example, dn_6001_6002.

io_type char I/O type. The options are
as follows:
● R (Read)
● W (Write)
● S (File operation)

recent_throttled_req_nu
m

int Number of traffic
limiting times between
two queries to the view

total_throttled_req_num int Total number of traffic
limiting times

last_throttled_dur(s) int8 Time since the last traffic
limiting

waiting_req_num int Number of queuing
requests

mean_tps numeric(7,2) Average TPS of the two
queries to the view. TPS
indicates the number of
requests processed per
second.

mean_req_size(KB) int8 Average length of
requests between two
queries to the view. The
unit is KB.

mean_req_latency(ms) int8 Average latency of
requests between two
queries to the view. The
unit is ms.

max_req_latency(ms) int8 Maximum latency of
requests before two
queries to the view. The
unit is ms.

mean_bps(KB/s) int8 Average speed of read or
write requests between
two queries to the view.
The unit is KB/s.

duration(s) int Interval between two
queries to the view. The
unit is seconds.

GaussDB(DWS) 3.0
Developer Guide 7 System Views

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

Example
Run the SELECT * FROM pgxc_obs_io_scheduler_periodic_stats statement to
query the view content. The following is an example of the query result:
SELECT * FROM pgxc_obs_io_scheduler_periodic_stats;

 node_name | io_type | recent_throttled_req_num | total_throttled_req_num | last_throttled_dur(s) |
waiting_req_num | mean_tps | mean_req_size(KB) | mean_req_latency(ms) | max_req_latency(ms) |
mean_bps(KB/s) | duration(s)
--------------+---------+--------------------------+-------------------------+-----------------------+-----------------
+----------+-------------------+----------------------+---------------------+----------------+-------------
 dn_6001_6002 | S | 0 | 0 | 0 | 0 | 0.00
| 0 | 0 | 0 | 0 | 155
 dn_6001_6002 | R | 0 | 0 | 0 | 0 | 0.00
| 0 | 0 | 0 | 0 | 155
 dn_6001_6002 | W | 0 | 0 | 0 | 0 | 0.00
| 0 | 0 | 0 | 0 | 155
 cn_5001 | S | 0 | 0 | 0 | 0 | .03 |
0 | 207 | 519 | 0 | 155
 cn_5001 | R | 0 | 0 | 0 | 0 | 0.00 |
0 | 0 | 0 | 0 | 155
 cn_5001 | W | 0 | 0 | 0 | 0 | .01 |
0 | 288 | 288 | 0 | 155
(6 rows)

To display 0 before the decimal point in the value of mean_tps, execute set
behavior_compat_options='display_leading_zero'.

Run the select * from pgxc_obs_io_scheduler_periodic_stats statement. The
following information is displayed:
SELECT * FROM pgxc_obs_io_scheduler_periodic_stats;

 node_name | io_type | recent_throttled_req_num | total_throttled_req_num | last_throttled_dur(s) |
waiting_req_num | mean_tps | mean_req_size(KB) | mean_req_latency(ms) | max_req_latency(ms) |
mean_bps(KB/s) | duration(s)
--------------+---------+--------------------------+-------------------------+-----------------------+-----------------
+----------+-------------------+----------------------+---------------------+----------------+-------------
 dn_6001_6002 | S | 0 | 0 | 0 | 0 | 0.36
| 0 | 132 | 326 | 0 | 177
 dn_6001_6002 | R | 0 | 0 | 0 | 0 | 0.00
| 0 | 0 | 0 | 0 | 177
 dn_6001_6002 | W | 0 | 0 | 0 | 0 | 0.00
| 0 | 0 | 0 | 0 | 177
 cn_5001 | S | 0 | 0 | 0 | 0 | 0.00 |
0 | 0 | 0 | 0 | 177
 cn_5001 | R | 0 | 0 | 0 | 0 | 0.00 |
0 | 0 | 0 | 0 | 177
 cn_5001 | W | 0 | 0 | 0 | 0 | 0.00 |
0 | 0 | 0 | 0 | 177

GaussDB(DWS) 3.0
Developer Guide 7 System Views

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

8 GUC Parameters

force_read_from_rw
Parameter description: Forcibly reads data from another logical cluster (reads
data from the logical cluster where the table resides).

Parameter type: user

Value range: Boolean

Default value: off

Configurable or not: Configuration is not recommended.

kv_sync_up_timeout
Parameter description: Specifies the waiting timeout period for KV
synchronization.

Parameter type: user

Value range: an integer ranging from 0 to 2147483647

Default value: 10min

Configurable or not: configurable

enable_cudesc_streaming
Parameter description: Specifies whether to enable cross-logical cluster access
through the cudesc streaming path (obtaining cudesc and delta table data from
the logical cluster where the table resides).

Parameter type: superuser

Value range: enumerated values
● off: disables cudesc streaming.
● on: enables cudesc streaming, including read and write.
● only_read_on: enables cudesc streaming read.

Default value: on

GaussDB(DWS) 3.0
Developer Guide 8 GUC Parameters

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

Configurable or not: configurable

enable_cu_align_8k
Parameter description: Specifies whether to forcibly align CUs to 8 KB.

Parameter type: user

Value range: Boolean

Default value: off

Configurable or not: configurable

enable_cu_batch_insert
Parameter description: Specifies whether to enable batch insert for column
storage.

Parameter type: user

Value range: Boolean

Default value: on

Configurable or not: configurable

enable_disk_cache
Parameter description: Specifies whether to enable file cache.

Parameter type: user

Value range: Boolean

Default value: on

Configurable or not: configurable

enable_disk_cache_recovery
Parameter description: Specifies whether the file cache can be restored when the
cluster is restarted.

Parameter type: user

Value range: Boolean

Default value: on

Configurable or not: Configuration is not recommended.

disk_cache_block_size
Parameter description: Specifies the size of a single block cached in the file
system, in KB.

Parameter type: postmaster

GaussDB(DWS) 3.0
Developer Guide 8 GUC Parameters

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

Value range: an integer ranging from 8 KB to 1 TB

Default value: 1MB

Configurable or not: configurable

disk_cache_max_size
Parameter description: Specifies the total size limit of the file system cache, in
KB.

Parameter type: sighup

Value range: an integer ranging from 1 MB to 1 PB

Default value: 5GB

Configurable or not: configurable

disk_cache_max_open_fd
Parameter description: Specifies the maximum number of files that can be
concurrently opened in the file system cache.

Parameter type: postmaster

Value range: an integer ranging from 0 to INT_MAX

Default value: 1000

Configurable or not: configurable

dfs_max_memory
Parameter description: Specifies the upper limit (unit: KB) of the memory used
for reading and writing a foreign table.

Parameter type: user

Value range: an integer ranging from 131072 to 10485760

Default value: 256MB

Configurable: Yes

enable_aio_scheduler
Parameter description: Enables the user-mode I/O control framework. After this
function is enabled, all OBS I/O requests are taken over by the user-mode I/O
control framework. Also, enables asynchronous reads/writes.

Parameter type: sighup

Value range: Boolean

Default value: on

Configurable: Yes

GaussDB(DWS) 3.0
Developer Guide 8 GUC Parameters

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

obs_worker_pool_size
Parameter description: Specifies the maximum number of threads for the agent
to perform OBS read/write operations when the user-mode I/O management and
control framework is enabled.

Parameter type: postmaster

Value range: an integer ranging from 4 to 2048

Default value: 128

Configurable or not: Configuration is not recommended.

async_io_acc_max_memory
Parameter description: Queries the maximum memory (unit: KB) that can be
used by the asynchronous read/write acceleration feature in a single task thread.

Parameter type: user

Value range: an integer ranging from 4096 KB to INT_MAX/2 KB

Default value: 128MB

Configurable: Yes

enable_metaversion
Parameter description: Specifies whether to enable the DN global metadata
cache. After metadata is enabled on DNs, extra memory space is occupied. The
memory space is controlled by local_metacache_size and
global_metacache_size.

Parameter type: superuser

Value range: Boolean

Default value: off

Configurable or not: Configuration is not recommended.

local_metacache_size
Parameter description: Specifies the size of metadata cached in a local session on
a DN. In extreme scenarios, if the metadata memory used by an SQL statement
exceeds the value of this parameter, the SQL statement does not report an error.
After the SQL statement is executed, LRU elimination is performed until the
memory usage is less than the value of this parameter.

Parameter type: superuser

Value range: an integer ranging from 1024 KB to INT_MAX KB

Default value: 128MB

Configurable or not: Configuration is not recommended.

GaussDB(DWS) 3.0
Developer Guide 8 GUC Parameters

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

global_metacache_size
Parameter description: Specifies the size of the DN global metadata cache.

Parameter type: superuser

Value range: an integer ranging from 1024 KB to INT_MAX KB

Default value: 256MB

Configurable or not: Configuration is not recommended.

enable_metadata_partprune
Parameter description: Specifies whether to enable the metadata partition
pruning function. If this parameter is enabled, DNs do not cache pruned metadata.

Parameter type: superuser

Value range: Boolean

Default value: on

Configurable or not: Configuration is not recommended.

fast_tablesize
Parameter description: Enables fast table size calculation, which may cause
errors.

Parameter type: user

Value range: Boolean

Default value: off

Configurable: Yes

analyze_sample_multiplier
Parameter description: Specifies the multiplier of the ratio of the foreign table
stripe sampled using ANALYZE. The value 0 indicates that the stripe ratio is 100%.

Parameter type: superuser

Value range: an integer ranging from 0 to 100

Default value: 3

Configurable or not: Configuration is not recommended.

enable_parallel_analyze
Parameter description: Specifies whether to use the parallel sampling mode
when sampling internal and foreign tables using ANALYZE.

Parameter type: user

GaussDB(DWS) 3.0
Developer Guide 8 GUC Parameters

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

Value range: Boolean

Default value: on

Configurable: Yes

parallel_analyze_workers

Parameter description: Specifies the number of concurrent threads when the
parallel ANALYZE sampling mode is used.

Parameter type: user

Value range: an integer ranging from 0 to 64

Default value: 10

Configurable: Yes

pgxc_node_readonly

Parameter description: Specifies whether a CN or DN is read-only.

Parameter type: superuser

Value range: Boolean

Default value: off

Configurable: No

enable_foreign_meta_shipping

Parameter description: Specifies whether to enable the delivery of foreign table
metadata. If this parameter is enabled, the read cluster can read and write foreign
tables.

Parameter type: user

Value range: Boolean

Default value: on

Configurable: Yes

enable_batchsort_heapsort_opt

Parameter description: Specifies whether to enable heap sorting optimization,
which optimizes the Order By...Limit... queries.

Parameter type: user

Value range: Boolean

Default value: on

Configurable: Not recommended.

GaussDB(DWS) 3.0
Developer Guide 8 GUC Parameters

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

enable_batchsort_ips4o
Parameter description: Specifies whether to enable the IPS4O sorting algorithm
for Batchsortstate.

Parameter type: user

Value range: Boolean

Default value: off

Configurable: not recommended.

enable_batchsort_new_sorting
Parameter description: Specifies whether to enable new sort optimization for
Batchsortstate.

Parameter type: user

Value range: Boolean

Default value: on

Configurable: Not recommended.

enable_batchsort_specializations
Parameter description: Specifies whether to enable new professional
optimization for Batchsortstate. If enable_batchsort_new_sorting is disabled,
this parameter is invalid.

Parameter type: user

Value range: Boolean

Default value: on

Configurable: Not recommended,

force_disable_text_abbrev
Parameter description: Specifies whether to forcibly disable the Prefix Key sorting
optimization.

Parameter type: user

Value range: Boolean

Default value: off

Configurable: Not recommended.

enable_insert_dop
Parameter description: Specifies whether to enable DOP during data import. If
DOP is enabled, data import performance is high, but more CPU and memory
resources are consumed.

GaussDB(DWS) 3.0
Developer Guide 8 GUC Parameters

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

Parameter type: user

Value range: Boolean

Default value: off

Configurable or not: configurable

enable_insert_ft_dop
Parameter description: Specifies whether DOP is enabled when data is exported
to an OBS foreign table. If DOP is enabled, data export performance is high, but
more CPU and memory resources are consumed.

Parameter type: user

Value range: Boolean

Default value: off

Configurable or not: configurable

enable_insert_ft_dop_performance
Parameter description: This parameter takes effect only when
enable_insert_ft_dop is set to ON. Specifies whether to enable the high
performance mode when exporting data to an OBS partitioned foreign table. If
this parameter is enabled, the data export performance is high, but the memory
usage increases significantly. If you can evaluate that the number of partitions in
the partitioned foreign table is small and the memory resources are sufficient, you
can enable this parameter. Otherwise, you are advised to disable this parameter.

Parameter type: user

Value range: Boolean

Default value: off

Configurable or not: configurable

parquet_timestamp_skip_conversion
Parameter description: Specifies whether to convert the time to the local time
zone when a foreign table reads data in Parquet format and the timestamp in
int96 format.

● When this parameter is set to off:
When an int96 timestamp is read in the parquet file, it is converted from the
UTC time zone to the local time zone.

● When this parameter is set to on:
When an int96 timestamp is read in the parquet file, it is not converted from
the UTC time zone to the local time zone.

Parameter type: user

Value range: Boolean

Default value: off

GaussDB(DWS) 3.0
Developer Guide 8 GUC Parameters

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

Configurable or not: configurable

parquet_enable_integer_decimal
Parameter description: Specifies the conversion rule of the decimal/numeric
types when data is written to a parquet foreign table. In the decimal/numeric type
definition, if the range of precision is specified, the parameter semantics are as
follows:

● When this parameter is set to off:
– 1 ≤ precision < 39: Data is written to the fixed-length array

FIXED_LEN_BYTE_ARRAY. The format is the same as decimal in Apache
Hive and Apache Impala.

– precision ≥ 39: Data is written to the variable-length array BYTE_ARRAY.
● When this parameter is set to on:

– 1 ≤ precision < 39: Data is written to the Int64 type.
– 19 ≤ precision < 39: Data is written to the fixed-length array

FIXED_LEN_BYTE_ARRAY.
– precision ≥ 39: Data is written to the variable-length array BYTE_ARRAY.

Parameter type: user

Value range: Boolean

Default value: on

Configurable: Yes

GaussDB(DWS) 3.0
Developer Guide 8 GUC Parameters

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

9 Development Practices

9.1 Data Reading/Writing Across Logical Clusters
After an associated logical cluster user is created, the query or modification
(including Insert, Delete, and Update) submitted by the user is calculated and
executed in the associated logical cluster. If the user submits a query or
modification request to a table in a different logical cluster, the optimizer
generates a cross-logical cluster query or modification plan to enable the user to
query the table.

Figure 9-1 Querying data across logical clusters

GaussDB(DWS) 3.0
Developer Guide 9 Development Practices

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

Figure 9-2 Data writing across logical clusters

Step 1 Create a GaussDB(DWS) 3.0 cluster. After a cluster is created, it is converted to a
logical cluster v3_logical by default.

Step 2 Add three nodes to the elastic cluster, and then add the logical cluster lc2.

Step 3 Create user u1 and associate it with logical cluster v3_logical.
CREATE USER u1 with SYSADMIN NODE GROUP "v3_logical" password "Password@123";

Step 4 Create user u2 and associate it with logical cluster lc2.
CREATE USER u2 with SYSADMIN NODE GROUP "lc2" password "Password@123";

Step 5 Log in to the database as user u1, create tables t1 and t2, and insert test data
into the tables.
CREATE TABLE public.t1
(
id integer not null,
data integer,
age integer
)
WITH (ORIENTATION =COLUMN, COLVERSION =3.0)
DISTRIBUTE BY ROUNDROBIN;

CREATE TABLE public.t2
(
id integer not null,
data integer,
age integer
)
WITH (ORIENTATION = COLUMN, COLVERSION =3.0)
DISTRIBUTE BY ROUNDROBIN;

INSERT INTO public.t1 VALUES (1,2,10),(2,3,11);
INSERT INTO public.t2 VALUES (1,2,10),(2,3,11);

Step 6 Log in to the database as user u2 and run the following commands to query t1
and write data.

GaussDB(DWS) 3.0
Developer Guide 9 Development Practices

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

According to the result, user u2 can query and write data across logical clusters.
SELECT * FROM t1;
INSERT INTO t1 SELECT * FROM t2;

----End

9.2 Data Lakehouse

9.2.1 Accessing HiveMetaStore Across Clusters
To access data stored in MRS Hive (including the scenario where Hive
interconnects with HDFS and the scenario where Hive interconnects with OBS),
you can refer to this tutorial to create an external schema.

Preparing the Environment
● You have created a GaussDB(DWS) 3.0 cluster, and the MRS and

GaussDB(DWS) clusters are in the same region, AZ, and VPC subnet and that
the clusters can communicate with each other.

● You have obtained the AK and SK.

Constraints and Limitations
● Currently, only the SELECT, INSERT, and INSERT OVERWRITE operations can be

performed on tables in the Hive database through external schemas.
● MRS supports two types of data sources. For details, see Table 9-1.

Table 9-1 Operations supported by the two types of MRS data sources

Data
Sourc
e

Tabl
e
Typ
e

Operation TEXT CSV PARQUE
T

ORC

HDFS Non
-
parti
tion
ed
tabl
e

SELECT √ √ √ √

INSERT/
INSERT
OVERWRITE

x x x √

Parti
tion
ed
tabl
e

SELECT √ √ √ √

INSERT/
INSERT
OVERWRITE

x x x √

GaussDB(DWS) 3.0
Developer Guide 9 Development Practices

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

Data
Sourc
e

Tabl
e
Typ
e

Operation TEXT CSV PARQUE
T

ORC

OBS Non
-
parti
tion
ed
tabl
e

SELECT √ √ √ √

INSERT/
INSERT
OVERWRITE

x x x √

Parti
tion
ed
tabl
e

SELECT x x √ √

INSERT/
INSERT
OVERWRITE

x x x x

● Transaction atomicity is no longer ensured. If a transaction fails, data

consistency cannot be ensured. Rollback is not supported.
● GRANT and REVOKE operations cannot be performed on tables created on

Hive using external schemas.
● Concurrency support: Concurrent read and write operations on

GaussDB(DWS), Hive, and Spark may cause dirty reads. Concurrent operations
including INSERT OVERWRITE on the same non-partitioned table or the same
partition of the same partitioned table may not ensure the expected result.
Therefore, do not perform such operations.

● The HiveMetaStore features do not support the federation mechanism.

Procedure

This practice takes about 1 hour. The basic process is as follows:

1. Create an MRS analysis cluster. (Select the Hive component.)
2. Create a table on Hive.
3. Insert data on Hive, or upload a local TXT data file to an OBS bucket then

import the file to Hive through the OBS bucket, and import the file from the
TXT storage table to the ORC storage table.

4. Create an MRS data source connection.
5. Create a foreign server.
6. Create an external schema.
7. Use the external schema to import data to or read data from Hive tables.

Creating an MRS Analysis Cluster

Step 1 Log in to the management console, choose Analytics > MapReduce Service, click
Buy Cluster, select Custom Config, set the configuration parameters, and click
Next.

GaussDB(DWS) 3.0
Developer Guide 9 Development Practices

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

Table 9-2 MRS configuration

Parameter Value

Region Dublin

Cluster Name mrs_01

Database Type Normal

Cluster Version MRS 3.1.3 (recommended)
NOTE

● MRS clusters support 3.0.*, 3.1.*, and later versions (* indicates a
number).

Cluster Type Analysis cluster

Metadata Local

Step 2 Click Next to configure hardware parameters.

Table 9-3 Hardware configuration

Parameter Value

Billing Mode Pay-per-use

AZ AZ2

VPC vpc-01

Subnet subnet-01

Security Group Auto create

EIP 10.x.x.x

Enterprise Project default

Master 2

Analysis Core 3

Analysis Task 0

Step 3 Configure the advanced settings based on the following table, click Buy Now, and
wait for about 15 minutes for the cluster creation to complete.

Table 9-4 Advanced settings

Parameter Value

Tags test01

Hostname Prefix (Optional) Prefix for the name of an ECS or BMS in the
cluster.

GaussDB(DWS) 3.0
Developer Guide 9 Development Practices

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

Parameter Value

Auto scaling Retain the default value.

Bootstrap Action Retain the default value. MRS 3.x does not support this
parameter.

Agency Retain the default value.

Data Disk
Encryption

This function is disabled by default. Retain the default
value.

Alarms Retain the default value.

Rule Name Retain the default value.

Topic Name Select a topic.

Kerberos
Authentication

This parameter is enabled by default.

Username admin

Password This password is used to log in to the cluster management
page.

Confirm Password Enter the password of user admin again.

Login Mode Password

User root

Password This password is used to remotely log in to the ECS.

Confirm Password Enter the password of user root again.

Agency In Advanced Settings, set Agency to the preset agency
MRS_ECS_DEFAULT_AGENCY of MRS in IAM.

Secure
Communications

Select Enable.

----End

Preparing the ORC Table Data Source of MRS

Step 1 Create a product_info.txt file on the local PC, copy the following data to the file,
and save the file to the local PC.
100,XHDK-A-1293-#fJ3,2017-09-01,A,2017 Autumn New Shirt Women,red,M,328,2017-09-04,715,good
205,KDKE-B-9947-#kL5,2017-09-01,A,2017 Autumn New Knitwear Women,pink,L,584,2017-09-05,406,very
good!
300,JODL-X-1937-#pV7,2017-09-01,A,2017 autumn new T-shirt men,red,XL,1245,2017-09-03,502,Bad.
310,QQPX-R-3956-#aD8,2017-09-02,B,2017 autumn new jacket women,red,L,411,2017-09-05,436,It's really
super nice
150,ABEF-C-1820-#mC6,2017-09-03,B,2017 Autumn New Jeans Women,blue,M,1223,2017-09-06,1200,The
seller's packaging is exquisite
200,BCQP-E-2365-#qE4,2017-09-04,B,2017 autumn new casual pants men,black,L,997,2017-09-10,301,The
clothes are of good quality.
250,EABE-D-1476-#oB1,2017-09-10,A,2017 autumn new dress women,black,S,841,2017-09-15,299,Follow

GaussDB(DWS) 3.0
Developer Guide 9 Development Practices

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

the store for a long time.
108,CDXK-F-1527-#pL2,2017-09-11,A,2017 autumn new dress women,red,M,85,2017-09-14,22,It's really
amazing to buy
450,MMCE-H-4728-#nP9,2017-09-11,A,2017 autumn new jacket women,white,M,114,2017-09-14,22,Open
the package and the clothes have no odor
260,OCDA-G-2817-#bD3,2017-09-12,B,2017 autumn new woolen coat
women,red,L,2004,2017-09-15,826,Very favorite clothes
980,ZKDS-J-5490-#cW4,2017-09-13,B,2017 Autumn New Women's Cotton
Clothing,red,M,112,2017-09-16,219,The clothes are small
98,FKQB-I-2564-#dA5,2017-09-15,B,2017 autumn new shoes men,green,M,4345,2017-09-18,5473,The
clothes are thick and it's better this winter.
150,DMQY-K-6579-#eS6,2017-09-21,A,2017 autumn new underwear
men,yellow,37,2840,2017-09-25,5831,This price is very cost effective
200,GKLW-l-2897-#wQ7,2017-09-22,A,2017 Autumn New Jeans Men,blue,39,5879,2017-09-25,7200,The
clothes are very comfortable to wear
300,HWEC-L-2531-#xP8,2017-09-23,A,2017 autumn new shoes women,brown,M,403,2017-09-26,607,good
100,IQPD-M-3214-#yQ1,2017-09-24,B,2017 Autumn New Wide Leg Pants
Women,black,M,3045,2017-09-27,5021,very good.
350,LPEC-N-4572-#zX2,2017-09-25,B,2017 Autumn New Underwear Women,red,M,239,2017-09-28,407,The
seller's service is very good
110,NQAB-O-3768-#sM3,2017-09-26,B,2017 autumn new underwear
women,red,S,6089,2017-09-29,7021,The color is very good
210,HWNB-P-7879-#tN4,2017-09-27,B,2017 autumn new underwear women,red,L,3201,2017-09-30,4059,I
like it very much and the quality is good.
230,JKHU-Q-8865-#uO5,2017-09-29,C,2017 Autumn New Clothes with Chiffon
Shirt,black,M,2056,2017-10-02,3842,very good

Step 2 Log in to OBS Console, click Create Bucket, set the following parameters, and
click Create Now.

Table 9-5 Bucket parameters

Parameter Value

Region Dublin

Data Redundancy
Policy

Single-AZ storage

Bucket Name mrs-datasource

Default Storage
Class

Standard

Bucket Policy Private

Default Encryption Disable

Direct Reading Disable

Enterprise Project default

Tags -

Step 3 Wait until the bucket is created.

Step 4 Switch back to the MRS console and click the name of the created MRS cluster. On
the Dashboard page, click the Synchronize button next to IAM User Sync. The
synchronization takes about 5 minutes.

Step 5 Click Nodes and click a master node. On the displayed page, switch to the EIPs
tab, click Bind EIP, select an existing EIP, and click OK. If no EIP is available, create
one. Record the EIP.

GaussDB(DWS) 3.0
Developer Guide 9 Development Practices

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

Step 6 (Optional) Connect Hive to OBS.

NO TE

Perform this step when Hive interconnects with OBS. Skip this step when Hive interconnects
with HDFS.

1. Go back to the MRS cluster page. Click the cluster name. On the Dashboard
tab page of the cluster details page, click Access Manager. If a message is
displayed indicating that EIP needs to be bound, bind an EIP first.

2. In the Access MRS Manager dialog box, click OK. You will be redirected to
the MRS Manager login page. Enter the username admin and its password
for logging in to MRS Manager. The password is the one you entered when
creating the MRS cluster.

3. Interconnect Hive with OBS by referring to Interconnecting Hive with OBS.

Step 7 Download the client.

1. Go back to the MRS cluster page. Click the cluster name. On the Dashboard
tab page of the cluster details page, click Access Manager. If a message is
displayed indicating that EIP needs to be bound, bind an EIP first.

2. In the Access MRS Manager dialog box, click OK. You will be redirected to
the MRS Manager login page. Enter the username admin and its password
for logging in to MRS Manager. The password is the one you entered when
creating the MRS cluster.

3. Choose Services > Download Client. Set Client Type to Only configuration
files and set Download To to Server. Click OK.

Step 8 Log in to the active master node as user root and update the client configuration
of the active management node.

GaussDB(DWS) 3.0
Developer Guide 9 Development Practices

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

https://support.huaweicloud.com/eu/usermanual-mrs/mrs_01_1286.html

cd /opt/client

sh refreshConfig.sh /opt/client Full_path_of_client_configuration_file_package

In this tutorial, run the following command:

sh refreshConfig.sh /opt/client /tmp/MRS-client/MRS_Services_Client.tar

Step 9 Switch to user omm and go to the directory where the Hive client is located.

su - omm

cd /opt/client

Step 10 Create the product_info table whose storage format is TEXTFILE on Hive.

1. Import environment variables to the /opt/client directory.
source bigdata_env

NO TE

If find: 'opt/client/Hudi': Permission denied is displayed, ignore it. This does not
affect subsequent operations.

2. Log in to the Hive client.

a. If Kerberos authentication is enabled for the current cluster, run the
following command to authenticate the current user. The current user
must have the permission for creating Hive tables. . Configure a role with
the required permissions. . Bind a role to the user. If Kerberos
authentication is not enabled for the current cluster, you do not need to
run the following command:
kinit MRS cluster user

b. Run the following command to start the Hive client:
beeline

3. Run the following SQL commands in sequence to create a demo database and
the product_info table:
CREATE DATABASE demo;
USE demo;
DROP TABLE product_info;

CREATE TABLE product_info
(
 product_price int ,
 product_id char(30) ,
 product_time date ,
 product_level char(10) ,
 product_name varchar(200) ,
 product_type1 varchar(20) ,
 product_type2 char(10) ,
 product_monthly_sales_cnt int ,
 product_comment_time date ,
 product_comment_num int ,
 product_comment_content varchar(200)
)
row format delimited fields terminated by ','
stored as TEXTFILE;

Step 11 Import the product_info.txt file to Hive.
● Hive is interconnected with OBS: Go back to OBS Console, click the name of

the bucket, choose Objects > Upload Object, and upload the
product_info.txt file to the path of the product_info table in the OBS bucket.

GaussDB(DWS) 3.0
Developer Guide 9 Development Practices

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

● Hive is interconnected with HDFS: Import the product_info.txt file to the
HDFS path /user/hive/warehouse/demo.db/product_info/. For details about
how to import data to an MRS cluster, see section Managing Data Files in
the MapReduce Service User Guide..

Step 12 Create an ORC table and import data to the table.

1. Run the following SQL commands to create an ORC table:
DROP TABLE product_info_orc;

CREATE TABLE product_info_orc
(
 product_price int ,
 product_id char(30) ,
 product_time date ,
 product_level char(10) ,
 product_name varchar(200) ,
 product_type1 varchar(20) ,
 product_type2 char(10) ,
 product_monthly_sales_cnt int ,
 product_comment_time date ,
 product_comment_num int ,
 product_comment_content varchar(200)
)
row format delimited fields terminated by ','
stored as orc;

2. Insert data in the product_info table into the Hive ORC table
product_info_orc.
insert into product_info_orc select * from product_info;

3. Query whether the data import is successful.
select * from product_info_orc;

----End

Creating an MRS Data Source Connection

Step 1 Log in to the GaussDB(DWS) console and click the created data warehouse cluster.
Ensure that the GaussDB(DWS) and MRS clusters are in the same region, AZ, and
VPC subnet.

Step 2 Click the MRS Data Source tab and click Create MRS Cluster Connection.

Step 3 Set the following parameters and click OK.
● Data Source: mrs_server
● Configuration Mode: MRS Account
● MRS Data Source: Select the created mrs_01 cluster.
● MRS Account: admin
● Password: Enter the password of the admin user created for the MRS data

source.

GaussDB(DWS) 3.0
Developer Guide 9 Development Practices

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

https://support.huaweicloud.com/eu/usermanual-mrs/en-us_topic_0019489057.html

----End

Creating a Foreign Server
Perform this step only when Hive interconnects with OBS. Skip this step when Hive
interconnects with HDFS.

Step 1 Use Data Studio to connect to the created GaussDB(DWS) cluster.

Step 2 Run the following statement to create a foreign server. {AK value} and {SK value}
are obtained from Preparing the Environment.

NO TICE

Hard-coded or plaintext AK and SK are risky. For security purposes, encrypt your
AK and SK and store them in the configuration file or environment variables.

CREATE SERVER obs_servevr FOREIGN DATA WRAPPER DFS_FDW
OPTIONS
(
address'obs.xxx.com:5443', //Address for accessing OBS.

GaussDB(DWS) 3.0
Developer Guide 9 Development Practices

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

encrypt 'on',
access_key '{AK value}',
secret_access_key '{SK value}',
 type 'obs'
);

Step 3 Check the foreign server.
SELECT * FROM pg_foreign_server WHERE srvname='obs_server';

The server is successfully created if information similar to the following is
displayed:

 srvname | srvowner | srvfdw | srvtype | srvversion | srvacl
| srvoptions
--+----------+--------+---------+------------+--------
+---
 obs_server | 16476 | 14337 | | | |
{address=obs.xxx.com:5443,type=obs,encrypt=on,access_key=***,secret_access_key=***}
(1 row)

----End

Create an external schema.

Step 1 Obtain the internal IP address and port number of the Hive metastore service and
the name of the Hive database to be accessed.

1. Log in to the MRS console.
2. Choose Cluster > Active Cluster and click the name of the cluster to be

queried to enter the page displaying the cluster's basic information.
3. Click Go to manager on the O&M Management page and enter the

username and password to log in to the FusionInsight management page.
4. Click Cluster, Hive, Configuration, All Configurations, MetaStore, and Port

in sequence, and record the value of hive.metastore.port.
5. Click Cluster, Hive, and Instance in sequence, and record the MetaStore

management IP address of the host whose name contains master1.

Step 2 Create an external schema.
//When interconnecting Hive with OBS: Set Server to the name of the external server created in Step 2,
DATABASE to the database created on Hive, METAADDRESS to the IP address and port number of the Hive
metastore service recorded in Step 1, and CONFIGURATION to the default configuration path of the MRS
data source.
DROP SCHEMA IF EXISTS ex1;

CREATE EXTERNAL SCHEMA ex1
 WITH SOURCE hive
 DATABASE 'demo'
 SERVER obs_server
 METAADDRESS '***.***.***.***:***'
 CONFIGURATION '/MRS/gaussdb/mrs_server'

//When interconnecting Hive with HDFS: Set Server to mrs_server (name of the data source created in
Creating an MRS Data Source Connection), METAADDRESS to the IP address and port number of the
Hive metastore service recorded in Step 1, and CONFIGURATION to the default configuration path of the
MRS data source.
DROP SCHEMA IF EXISTS ex1;

CREATE EXTERNAL SCHEMA ex1
 WITH SOURCE hive
 DATABASE 'demo'
 SERVER mrs_server
 METAADDRESS '***.***.***.***:***'
 CONFIGURATION '/MRS/gaussdb/mrs_server'

GaussDB(DWS) 3.0
Developer Guide 9 Development Practices

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

Step 3 View the created external schema.
SELECT * FROM pg_namespace WHERE nspname='ex1';
SELECT * FROM pg_external_namespace WHERE nspid = (SELECT oid FROM pg_namespace WHERE
nspname = 'ex1');

 nspid | srvname | source | address | database | confpath
| ensoptions | catalog
--+----------+--------+---------+------------+--------
+---
 16393 | obs_server | hive | ***.***.***.***:*** | demo | ***
| |
(1 row)

----End

Importing Data

Step 1 Create a local table for data import.
DROP TABLE IF EXISTS product_info;
CREATE TABLE product_info
(
 product_price integer ,
 product_id char(30) ,
 product_time date ,
 product_level char(10) ,
 product_name varchar(200) ,
 product_type1 varchar(20) ,
 product_type2 char(10) ,
 product_monthly_sales_cnt integer ,
 product_comment_time date ,
 product_comment_num integer ,
 product_comment_content varchar(200)
) ;

Step 2 Import the target table from the Hive table.
INSERT INTO product_info SELECT * FROM ex1.product_info_orc;

Step 3 Query the import result.
SELECT * FROM product_info;

----End

Exporting Data

Step 1 Create a local source table.
DROP TABLE IF EXISTS product_info_export;
CREATE TABLE product_info_export
(
 product_price integer ,
 product_id char(30) ,
 product_time date ,
 product_level char(10) ,
 product_name varchar(200) ,
 product_type1 varchar(20) ,
 product_type2 char(10) ,
 product_monthly_sales_cnt integer ,
 product_comment_time date ,
 product_comment_num integer ,
 product_comment_content varchar(200)
) ;
INSERT INTO product_info_export SELECT * FROM product_info;

Step 2 Create a target table on Hive.

GaussDB(DWS) 3.0
Developer Guide 9 Development Practices

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

DROP TABLE product_info_orc_export;

CREATE TABLE product_info_orc_export
(
 product_price int ,
 product_id char(30) ,
 product_time date ,
 product_level char(10) ,
 product_name varchar(200) ,
 product_type1 varchar(20) ,
 product_type2 char(10) ,
 product_monthly_sales_cnt int ,
 product_comment_time date ,
 product_comment_num int ,
 product_comment_content varchar(200)
)
row format delimited fields terminated by ','
stored as orc;

Step 3 Import the local source table to the Hive table.
INSERT INTO ex1.product_info_orc_export SELECT * FROM product_info_export;

Step 4 Query the import result on Hive
SELECT * FROM product_info_orc_export;

----End

GaussDB(DWS) 3.0
Developer Guide 9 Development Practices

Issue 02 (2024-07-19) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

	Contents
	1 Reading Guide
	2 Introduction to GaussDB(DWS) 3.0
	3 Support and Constraints
	4 SQL Syntax Reference
	4.1 CREATE TABLE
	4.2 CREATE EXTERNAL SCHEMA
	4.3 ALTER EXTERNAL SCHEMA
	4.4 ALTER TABLE

	5 Function
	6 System Catalogs
	6.1 PG_CLASS
	6.2 PG_CONSTRAINT
	6.3 PG_EXTERNAL_NAMESPACE
	6.4 PG_NAMESPACE
	6.5 PG_PARTITION
	6.6 PG_REWRITE
	6.7 PG_TRIGGER
	6.8 PGXC_GROUP
	6.9 PGXC_NODE

	7 System Views
	7.1 PGXC_DISK_CACHE_STATS
	7.2 PGXC_DISK_CACHE_PATH_INFO
	7.3 PGXC_DISK_CACHE_ALL_STATS
	7.4 PGXC_OBS_IO_SCHEDULER_STATS
	7.5 PGXC_OBS_IO_SCHEDULER_PERIODIC_STATS

	8 GUC Parameters
	9 Development Practices
	9.1 Data Reading/Writing Across Logical Clusters
	9.2 Data Lakehouse
	9.2.1 Accessing HiveMetaStore Across Clusters

