
Document Database Service

Developer Guide

Issue 01

Date 2022-08-30

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2023. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. i

Contents

1 Database Usage Suggestions..1
1.1 Basic Commands... 1
1.1.1 Query... 1
1.1.2 Write/Update... 1
1.1.3 Delete... 2
1.2 Development Rules... 3
1.3 Design Rules.. 6

2 Database Usage... 8
2.1 Connecting a Database... 8
2.2 Creating and Managing Databases.. 9
2.3 Creating and Managing Collections... 10
2.4 Creating and Managing Indexes..12

3 Application Development..16
3.1 Development Process.. 17
3.2 Common Parameter Configuration on the Driver Side... 17
3.3 Java-based Development... 18
3.3.1 Driver Package and Environment Dependency... 18
3.3.2 Connecting to a Database.. 19
3.3.3 Accessing a Database...22
3.3.4 Complete Example.. 24
3.4 Python-based Development.. 24
3.4.1 PyMongo Package... 24
3.4.2 Connecting to a Database.. 25
3.4.3 Accessing a Database...25
3.4.4 Complete Example.. 27
3.5 Golang-based Development... 27
3.5.1 Driver Package..27
3.5.2 Connecting to a Database.. 28
3.5.3 Accessing a Database...29
3.5.4 Complete Example.. 30
3.6 More Tutorials.. 32

4 Managing Database Permissions...33

Document Database Service
Developer Guide Contents

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. ii

4.1 Default Permission Mechanism... 33
4.2 Role Management.. 33
4.2.1 Built-In Roles... 33
4.2.2 User-Defined Roles..36
4.2.3 Creating and Managing Roles...37
4.3 User Management.. 40
4.3.1 Creating a User.. 40
4.3.2 Updating a User... 42
4.3.3 Deleting a User.. 43

5 System Collections.. 44

6 Common Operations.. 45
6.1 Common CRUD Operations...45

Document Database Service
Developer Guide Contents

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. iii

1 Database Usage Suggestions

1.1 Basic Commands

1.1.1 Query
To avoid slow queries, analyze and optimize the execution process (query plan).

db.collection.find().explain()

For details, see Performance and official documents.

Precaution
● The returned query result is a cursor. After using the cursor, close it in time.

Otherwise, memory leaks accumulate.
● Create necessary indexes based on search criteria. For details about index

design, see Index.
– Do not use COLLSCAN to scan the entire table.
– Query conditions and index fields are matched in sequence.

● For cluster instances, shard tables properly based on service requirements. For
details about sharding, see Sharding.

● For sharded tables, query conditions must be based on shard keys to avoid
unnecessary queries such as scatter-gather. For details, see Distributed
Queries.

● You can specify a readConcern level for queries. For details, see Read
Concern.

● You can specify the readPerference parameter for queries. For details, see
Read Preference.

1.1.2 Write/Update
● Operations such as write, update, delete,and index insert and delete are

actually converted to write operations in the background. The underlying
storage engines (WiredTiger and RocksDB) use the appendOnly mechanism.
Only when the internal data status of the storage engine meets certain

Document Database Service
Developer Guide 1 Database Usage Suggestions

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 1

https://docs.mongodb.com/manual/reference/method/cursor.explain/
https://docs.mongodb.com/manual/core/distributed-queries/#read-operations-to-sharded-clusters
https://docs.mongodb.com/manual/core/distributed-queries/#read-operations-to-sharded-clusters
https://docs.mongodb.com/manual/reference/read-concern/
https://docs.mongodb.com/manual/reference/read-concern/
https://docs.mongodb.com/manual/core/read-preference/

conditions, the internal compaction operation is triggered to compress data
and release disk space. That is why sometimes the disk usage seems greater
than the actual data volume, but your services are not affected.

● The write/update operation involves synchronization to the standby node. You
can specify the writeConcern level for the operation. For details, see Write
Concern.

Precaution
● update and upsert: If you use upsert, the data you want to insert will be

queried first. If the data does not exist, it will be inserted. Otherwise, an
update operation is performed. In the preceding scenario, the update or insert
command is recommended.

● The update operation also needs to match the index.
– Do not use COLLSCAN to scan the entire table.
– Query conditions and index fields are matched in sequence.

● The size of the document involved in the insert or update command cannot
exceed 16 MB.

1.1.3 Delete
● The delete operation is classified into logical delete (condition-based remove)

and quick delete (dropCollection, dropDatabase).
● After a large number of delete operations are performed, the actual data

volume may not change, but the storage space usage increases. This is
because operations such as write, update, delete, and index insert and delete
are actually converted to write in the background. The underlying storage
engines (WiredTiger and RocksDB) use appendOnly. Only when the internal
data status of the storage engine meets certain conditions, the compaction
operation is triggered to compress data and release storage space.

● If the entire database is not required, you can run dropDatabase to delete it
instead of logically deleting it to quickly release disk space.

● The delete operation involves synchronization to the standby node. You can
specify the writeConcern level for the delete operation. For details, see Write
Concern.

Precaution
● Avoid mis-deletion. The delete command cannot be undone. Before the

deletion, run db to check whether the current database is opened.
● If data is deleted by mistake, restore the data:

a. Back up and restore data based on historical backup files.
b. If a backup instance is available, you can restore the deleted data by

referring to Migrating data using the export and import tools. If new
data is written during the restoration, restoring data may affect data
consistency.

c. Data generated from the last backup time to the time when the instance
is deleted by mistake cannot be restored.

● If the delete command is executed successfully, the deletion is successful. If
the delete command fails, some data may have been deleted. Do not use the

Document Database Service
Developer Guide 1 Database Usage Suggestions

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 2

https://docs.mongodb.com/manual/reference/write-concern/
https://docs.mongodb.com/manual/reference/write-concern/
https://docs.mongodb.com/manual/reference/write-concern/
https://docs.mongodb.com/manual/reference/write-concern/
https://support.huaweicloud.com/eu/usermanual-dds/dds_03_0006.html
https://support.huaweicloud.com/eu/usermanual-dds/dds_data_restore.html
https://support.huaweicloud.com/eu/usermanual-dds/dds_migration_overview.html

deleted database table. You are advised to continue to run the delete
command until the deletion is successful.

1.2 Development Rules

Database Connections

If the maximum number of mongod or mongos connections is reached, your client
cannot connect to the DDS instances. Each connection received by mongod or
mongos is processed by a single thread of 1 MB stack space. As the connections
increase, too many threads will increase the context switching overhead and
memory usage.

● If you connect to databases from clients, calculate the number of clients and
the size of the connection pool configured for each client. The total number
of connections cannot exceed 80% of the maximum number of connections
allowed by the current instance.

● The connection between the client and the database must be stable. It is
recommended that the number of new connections per second be less than
10.

● You are advised to set the connection timeout interval of the client to at least
three times the maximum service execution duration.

● For a replica set, the IP addresses of both the primary and standby nodes
must be configured on the client. For a cluster, at least two mongos IP
addresses must be configured.

● DDS uses user rwuser by default. When you log in as user rwuser, the
authentication database must be admin.

Reliability

Rules for setting write concern: For mission-critical services, set write concern to
{w:n},n>0. A larger value is better consistency but poorer performance.
● w:1 means that a confirmation message was returned after data was written

to the primary node.
● w:1,journal:true means that the result was returned after data was written to

the primary node and logs.
● w:majority means that the result was returned after data was written to

more than half of the total standby nodes.

NO TE

If data is not written using w:majority, the data that is not synchronized to the
standby node may be lost when a primary/standby switchover occurs.

If high reliability is required, deploy a cluster in three AZs.

Performance

Specification
● The service program is not allowed to perform full table scanning.

Document Database Service
Developer Guide 1 Database Usage Suggestions

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 3

● During the query, select only the fields that need to be returned. In this way,
the network and thread processing loads are reduced. If you need to modify
data, modify only the fields that need to be modified. Do not directly modify
the entire object.

● Do not use $not. DDS does not index missing data. The $not query requires
that all records be scanned in a single result collection. If $not is the only
query condition, a full table scan will be performed on the collection.

● If you use $and, put the conditions with the fewest matches before other
conditions. If you use $or, put the conditions with the more matches first.

● In a single instance, the total number of databases cannot exceed 200, and
the total number of collections cannot exceed 500.

● Before bringing a service online, perform a load test to measure the
performance of the database in peak hours.

● Do not execute a large number of concurrent transactions at the same time
or leave a transaction uncommitted for a long time.

● Before rolling out services, check the performance of all query types through
the execution of query plans.

Suggestion
● Each connection is processed by an independent thread in the background.

Each thread is allocated with 1 MB stack memory. The number of connections
should not be too large. Otherwise, too much memory is occupied.

● Use the connection pool to avoid frequent connection and disconnection.
Otherwise, the CPU usage is too high.

● Reduce disk read and write operations: Reduce unnecessary upsert operations.
● Optimize data distribution: Data is sharded and hot data is distributed evenly

between shards.
● Reduce lock conflicts: Do not perform operations on the same key too

frequently.
● Reduce lock wait time: Do not create indexes on the frontend.

Notice

During the development process, each execution on a collection must be checked
using explain() to view its execution plan. Example:

db.T_DeviceData.find({"deviceId":"ae4b5769-896f"}).explain();

db.T_DeviceData.find({"deviceId":"77557c2-31b4"}).explain("executionStats")
;

A covered query does not have to read a document and returns a result from an
index, so using a covered query can greatly improve query efficiency. If the output
of explain() shows that indexOnly is true, the query is covered by an index.

Execution plan parsing:

1. Check the execution time. The smaller the values of the following parameters,
the better the performance:
executionStats.executionStages.executionTimeMillisEstimate and
executionStats.executionStages.inputStage. executionTimeMillisEstimate
– executionStats.executionTimeMillis specifies how much time the

database took to both select and execute the winning plan.

Document Database Service
Developer Guide 1 Database Usage Suggestions

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 4

– executionStats.executionStages.executionTimeMillisEstimate is the
execution completion time of the winning plan.

– executionStats.executionStages.inputStage.
executionTimeMillisEstimate is the execution completion time of the
child stage of the winning plan.

2. Check the number of scanned records. If the three items are the same, the
index is best used.
– executionStats. nReturned is the number of documents that match the

query condition.
– executionStats .totalKeysExamined indicates the number of scanned

index entries.
– executionStats .totalDocsExamined indicates the number of scanned

document entries.
3. Check the stage status. The following combinations of stages can provide

good performance.
– Fetch+IDHACK
– Fetch+ixscan
– Limit+ (Fetch+ixscan)
– PROJECTION+ixscan

Table 1-1 Status description

Status Name Description

COLLSCAN Full table scan

SORT In-memory sorting

IDHACK _id-based query

TEXT Full-text index

COUNTSCAN Number of unused indexes

FETCH Index scanning

LIMIT Using Limit to limit the number of returned records

SUBPLA $or query stage without using an index

PROJECTION Restricting the return of stage when a field is returned.

COUNT_SCAN Number of used indexes

Cursor Usage Rules
If a cursor is inactive for 10 minutes, it will be automatically closed. You can also
manually close it to save resources.

Document Database Service
Developer Guide 1 Database Usage Suggestions

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 5

Rules for Using Distributed Transactions in Version 4.2
● Spring Data MongoDB does not support the retry mechanism after a

transaction error is reported. If the client uses Spring Data MongoDB as the
client to connect to MongoDB, you need to use Spring Retry to retry the
transaction based on the reference file of Spring Data MongoDB. For details,
see the official document.

● The size of the distributed transaction operation data cannot exceed 16 MB.

1.3 Design Rules

Naming
● The name of a database object (database name, table name, field name, or

index name) has to start with a lowercase letter and must be followed by a
letter or digit. The length of the name cannot exceed 32 bytes.

● The database name cannot contain special characters ("".\$/*?~#:?|") or null
character (\0). The database name cannot be the system database name,
such as admin, local, and config.

● The database collection name can only contain letters and underscores (_).
The name cannot be prefixed with "system". The total length of <Database
name>.<Collection name> cannot exceed 120 characters.

Index

You can use indexes to avoid full table scans and improve query performance.

● A column index can have up to 512 bytes, an index name can have up to 64
characters, and a composite index can have up to16 columns.

● The total length of <Database name>.<Collection name>.$<Index name>
cannot exceed 128 characters.

● Create indexes for fields with high selectivity. If you create indexes for low
selective fields, large result sets may be returned. This should be avoided.

● Write operations on a collection will trigger more I/O operations on indexes in
the collection. Ensure that the number of indexes in a collection does not
exceed 32.

● Do not create indexes that will not be used. Unused indexes loaded to the
memory will cause a waste of memory. In addition, useless indexes generated
due to changes in service logic must be deleted in a timely manner.

● Indexes must be created in the background instead of foreground.
● An index must be created for the sort key. If a composite index is created, the

column sequence of the index must be the same as that of the sort key.
Otherwise, the index will not be used.

● Do not create an index based on the leading-edge column of a composite
index. If the leading-edge column of a composite index is the column used in
another index, the smaller index can be removed. For example, a composite
index based on "firstname" and "lastname" can be used for queries on
"firstname". In this case, creating another firstname-based index is
unnecessary.

Document Database Service
Developer Guide 1 Database Usage Suggestions

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 6

https://docs.spring.io/spring-data/mongodb/docs/current/reference/html/#mongo.transactions.behavior

Sharding
You can shard collections to maximize the cluster performance.

Suggestions for sharding collections:

● In scenarios where the data volume is large (more than one million rows) and
the write/read ratio is high, sharding is recommended if the data volume
increases with the service volume.

● If you shard a collection using a hashed shard key, pre-splitting the chunks of
the sharded collection can help reduce the impact of automatic balancing and
splitting on service running.

● If sharding is enabled for a non-empty collections, the time window for
enabling the balancer must be set during off-peak hours. Otherwise conflicts
may occur during data balancing between shards and service performance
will be affected.

● If you want to perform a sort query based on the shard key and new data is
evenly distributed based on the shard key, you can use ranged sharding. In
other scenarios, you can use hashed sharding.

● Properly design shard keys to prevent a large amount of data from using the
same shard key, which may lead to jumbo chunks.

● If a sharded cluster is used, you must run flushRouterConfig after running
dropDatabase. For details, see How Do I Prevent Mongos Cache Problem?

● The update request of the service must match the shard key. When a sharded
table is used, an error will be reported for the update request and "An upsert
on a sharded collection must contain the shard key and have the simple
collation" will be returned in the following scenarios:
– The filter field of the update request does not contain the shard key field

and the value of multi is false.
– The set field does not contain the shard key and the value of upsert is

true.

Document Database Service
Developer Guide 1 Database Usage Suggestions

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 7

https://support.huaweicloud.com/eu/bestpractice-dds/dds_0007.html

2 Database Usage

2.1 Connecting a Database
The following table lists the common methods for connecting to a DDS instance.

Table 2-1 Connection methods

Method IP
Address

Scenario Description

Private
network
connecti
on
(recom
mended
)

Private
IP
address

DDS provides a private IP address
by default.
● If your applications are

deployed on ECS and located in
the same region, AZ, and VPC
subnet as the DB instance, you
are advised to use a private IP
address to connect to the DB
instance.

● By default, a DDS instance is
not accessible from an ECS in a
different security group. Add an
inbound rule to the DDS
security group to allow access
of the ECS.

● The default DDS port is 8635.
You can change it if you want to
access DDS through another
port.

Secure and excellent
performance

Document Database Service
Developer Guide 2 Database Usage

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 8

Method IP
Address

Scenario Description

Public
network
connecti
on

EIP ● If your applications are running
on an ECS that is in a different
region from the one where the
DDS instance is located, use an
EIP to connect the ECS to your
DDS instances.

● If your applications are
deployed on other cloud
platforms, EIP is recommended.

Low security

Applicati
on
connecti
on

Private
IP
address

Connect to the database using
different applications.

● Connecting to
the Database
Using Java

● Connecting to
the Database
Using Python

2.2 Creating and Managing Databases
For details about the rules of the write/update and delete commands, see Write/
Update and Delete.

Procedure

Step 1 Create database info.

use info

Enter db. If the following information is displayed, the database is opened.

info

Step 2 Insert a data record into the database.

db.user.insert({"name": "joe"})

CA UTION

Implicit collection is a collection that is created after data is inserted. To create a
collection (table), you must insert a document (record) to make the collection
creation take effect.

Step 3 View the database

To view all databases, run the following command:

show dbs

The command output is as follows:

Document Database Service
Developer Guide 2 Database Usage

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 9

admin 0.000GB
config 0.000GB
info 0.000GB
local 0.083GB

Step 4 Delete the database. Run the following command to delete the info database:

db.dropDatabase()

The database is deleted if the following information is displayed:

{"dropped" : "info", "ok" : 1}

----End

2.3 Creating and Managing Collections
For details about the rules of the write/update and delete commands, see Write/
Update and Delete.

Creating a Collection

Step 1 Run db.createCollection(name, options) to create a collection.
db.createCollection(<name>, { capped: <boolean>,
 autoIndexId: <boolean>,
 size: <number>,
 max: <number>,
 storageEngine: <document>,
 validator: <document>,
 validationLevel: <string>,
 validationAction: <string>,
 indexOptionDefaults: <document>,
 viewOn: <string>,
 pipeline: <pipeline>,
 collation: <document>,
 writeConcern: <document>}

Table 2-2 Parameter description

Field Type Description

apped boolean Optional. If a capped
collection needs to be
created, the value is
true. If the value is true,
the size field needs to be
specified at the same
time.

autoIndexId boolean If this parameter is set to
false, an index cannot be
automatically created in
the _id field.

Document Database Service
Developer Guide 2 Database Usage

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 10

Field Type Description

size number Optional. For a capped
collection, this parameter
specifies the maximum
size of the collection.

max number Optional. For a capped
collection, this parameter
specifies the maximum
number of documents
that can be stored in the
collection.
For details, see the
official document.

If the following information is displayed, the creation is successful:

{ "ok" : 1 }

Step 2 Inserts a record into the collection.

db.coll.insert({"name": "sample"})

Step 3 View existing collections.

show collections

Step 4 Delete the collection.

db.coll.drop()

----End

Creating a Capped Collection
Capped collections are fixed-size collections. Once a collection is full, it makes
room for new documents by overwriting the oldest documents in the collection.

Run the following command to create a collection. The maximum size of the
collection is 5 MB, and the maximum number of documents is 5,000.

db.createCollection("log", { capped : true, size : 5242880, max : 5000 })

Creating a Sharded Collection
In the DDS cluster architecture, you can create shards to fully utilize database
performance. For details about the rules and suggestions for creating shards, see
Sharding.

Step 1 Enable sharding on the database.

sh.enableSharding("info")

Step 2 Create a sharded table and specify the shard key. The following command means
that the fruit collection in database info is sharded using shard key _id.

Document Database Service
Developer Guide 2 Database Usage

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 11

https://docs.mongodb.com/v4.0/reference/method/db.createCollection/

sh.shardCollection("info.fruit", {"_id": "hashed"})

NO TE

DDS sharded clusters support two types of sharding policy:
● Range-based sharding allows querying a range of rows by the shard key values.
● Hashed sharding evenly distributes writes to each shard.

----End

Deleting a Collection
Run db.collection_name.drop() to delete the collection.

2.4 Creating and Managing Indexes
DDS uses indexes to improve query efficiency. If there is no index, DDS must scan
each document in a collection to select the documents that match the query
statement. If a query has an appropriate index, DDS can use the index to limit the
number of documents it must examine.

● For details about the rules for creating indexes, see Index.
● For details about the rules of the write/update and delete commands, see

Write/Update and Delete.

Indexes
Index Description

Default index DDS creates a unique index on the _id field during the creation
of a collection. A unique index ensures that the indexed fields
do not store duplicate values. Do not delete the index from the
_id field.
In a sharded cluster, if you do not use the _id field as the shard
key, your application needs to ensure that the value in the _id
field is unique to prevent errors. This is usually done by using
the standard automatically generated ObjectId.

Single field
index

In addition to the _id index defined by DDS, DDS also supports
the creation of user-defined ascending/descending indexes on a
single field of a document.
For single-field indexing and sort operations, the sort order
(ascending or descending) of index keys is not important
because DDS can traverse the index from any direction.

Document Database Service
Developer Guide 2 Database Usage

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 12

Index Description

Compound
indexes

DDS also supports compound indexes where a single index field
contains references to multiple fields.
The order of the fields listed in a compound index is important.
For example, if there is a compound index {userid: 1, score: -1},
the index is first sorted by userid and then sorted by score
within each userid value.
The sort order (ascending or descending) of the index keys
determines whether the index supports sort operations.

Multikey
index

DDS uses a multikey index to index the content stored in arrays.
If the index contains fields with array values, DDS creates a
separate index entry for each element of the array. These
multikey indexes allow queries to select documents that contain
an array by matching one or more elements of the array. DDS
automatically determines whether to create a multi-key index. If
the index field contains an array value, you do not need to
explicitly specify the multikey type.

Index Name

The default name for an index is the concatenation of the indexed keys and each
key's direction in the index (i.e. 1 or -1) using underscores as a separator. For
example, an index created on { item : 1, quantity: -1 } has the name
item_1_quantity_-1.

You can create indexes with a custom name, such as one that is more human-
readable than the default. For example, consider an application that frequently
queries the products collection to populate data on existing inventory. The
following createIndex() method creates an index on item and quantity named
query for inventory:

db.products.createIndex({ item: 1, quantity: -1 } , { name: "query for
inventory" })

You can use the db.collection.getIndexes() method to view the index name. Once
an index is created, you cannot rename it. Instead, you must drop and recreate the
index with the new name.

DDS provides many different index types to support specific types of data and
queries.

Creating an Index

Step 1 Run the following command to create an index:

db.collection.createIndex(keys, options)

● key is the index field to be created. The value 1 indicates that the index is
created in ascending order, and the value -1 indicates that the index is created
in descending order.

Document Database Service
Developer Guide 2 Database Usage

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 13

● options receives optional parameters. The following table lists common
optional parameters.

Parameter Type Description

background Boolean The default value is
false.
The index creation
process blocks other
database operations.
You can specify the
background mode to
create indexes.

unique Boolean The default value is
false.
Whether the created
index is unique. If this
parameter is set to
true, a unique index is
created.

name string Index name. If this
parameter is not
specified, MongoDB
generates an index
name by joining the
index field name and
sorting order.

expireAfterSeconds integer TTL value in seconds.

Step 2 Create an index.
● Single field index

db.user.createIndex({"name": 1})
The preceding statement creates a single-field index for the name field, which
can accelerate various query requests on the name field. This is the most
common index type. The ID index created by default is also of this type.
{"name": 1} means that indexed items are sorted in ascending order. You can
also use {"name": -1} to sort index items in descending order. For a single-
field index, the effect of ascending order is the same as that of descending
order.

● Composite index
A composite index is an upgraded version of a single sub-index. It creates an
index for multiple fields. Documents are sorted by the first field, documents
with the same first field are sorted by the second field, and so on.
db.user.createIndex({"name": 1, "age": 1})

● Multikey index
– If an index field is an array, the created index is called a multikey index.
– A multikey index creates an index for each element of an array.

Document Database Service
Developer Guide 2 Database Usage

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 14

For example, if a habit field (array) is added to the user collection to describe
interests and hobbies, the multikey index of the habit field can be used to
query people with the same interests and hobbies.
{"name" : "jack", "age" : 19, habit: ["football, runnning"]} //This is a piece
of user information in the person table.
db.user.createIndex({"habit": 1}) //Multi-key indexes are automatically
created.
db.user.find({"habit": "football"}) //Query people with the same interests
and hobbies.

Step 3 View the collection index.

db.user.getIndexes()

Step 4 Deletes all indexes from a collection.

db.user.dropIndexes()

Step 5 Deletes a specified index from a collection. Run the following command to delete
the name index from the user collection:

db,user.dropIndex({"name": 1})

----End

Precaution
In addition to various types of indexes, DDS allows you to customize some special
attributes for indexes.

● Unique index: Ensure that the values of the fields corresponding to an index
are different. For example, the _id index is a unique index.

● TTL index: You can specify the expiration time of a document based on a time
field. The document expires after the specified time or at a specified time
point.

● Partial index: An index is created only for documents that meet a specific
condition.

● Sparse index: Indexes are created only for documents that have index fields,
which can be considered as a special case of partial indexes.

Document Database Service
Developer Guide 2 Database Usage

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 15

3 Application Development

Document Database Service
Developer Guide 3 Application Development

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 16

3.1 Development Process

3.2 Common Parameter Configuration on the Driver
Side

Common Configuration Items and Recommended Values for Connecting to a
DDS DB Instance

1. connectTimeoutMS: This connection timeout parameter prevents infinite
waiting of the driver during the connection. Recommended configuration:
connectTimeoutMS = 10000ms

2. socketTimeoutMS: This parameter prevents infinite waiting of TCP
communication. Recommended configuration:

Document Database Service
Developer Guide 3 Application Development

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 17

The duration is two to three times the maximum service duration. The
minimum duration is 10s.
socketTimeoutMS = max(10000ms, 3 times the maximum service time)

3. minPoolSize: minimum number of connections in the connection pool.
Recommended configuration:
minPoolSize = 10

4. maxPoolSize: maximum number of connections in the connection pool.
Recommended configuration:
maxPoolSize = 50 - 100

5. maxIdleTimeMS: maximum idle duration that a connection can remain in the
pool before it is deleted and closed. Recommended configuration:
maxIdleTimeMS = 10000ms

CA UTION

Do not use socketTimeoutMS to prevent an operation from running for a long
time on the database side. maxTimeMS is required so that the server can cancel
operations that have been abandoned by the client.

3.3 Java-based Development

3.3.1 Driver Package and Environment Dependency
DDS allows you to perform operations using Java. In this way, you can connect to
an instance through an SSL connection or an unencrypted connection. The SSL
connection encrypts data and is more secure.

SSL is disabled by default for a new DDS instance. To enable SSL, see Enabling
SSL.

Installing the Driver
1. Click the JAR driver download address to download mongo-java-

driver-3.12.9.jar, which provides APIs for accessing DDS DB instances.
2. To install the driver, see the official guide.

Environment
JDK1.8 must be configured for the client. JDK is cross-platform and supports
Windows and Linux.

The following uses Windows as an example to describe how to configure JDK:

Step 1 In the DOS window, run java -version to check the JDK version. Ensure that the
JDK version is 1.8. If JDK is not installed, download the installation package and
install it.

Step 2 Right-click the This PC icon on the desktop of the Windows OS and choose
Properties from the shortcut menu.

Document Database Service
Developer Guide 3 Application Development

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 18

https://support.huaweicloud.com/eu/usermanual-dds/dds_03_0074.html#section1
https://support.huaweicloud.com/eu/usermanual-dds/dds_03_0074.html#section1
https://repo1.maven.org/maven2/org/mongodb/mongo-java-driver/3.12.9/
https://mongodb.github.io/mongo-java-driver/4.2/driver/getting-started/installation/

Step 3 In the System window, click Advanced system settings in the navigation tree on
the left.

Step 4 In the dialog box that is displayed, click Environment Variables.

Step 5 In the displayed window, set the variables listed in the following table.

Variable Operation Value

JAVA_HOME ● If this parameter
exists, click Edit.

● If this parameter
does not exist, click
New.

Java installation directory.
For example, C:\Program Files\Java
\jdk1.8.0_131.

Path Click Edit. ● If JAVA_HOME is configured, add
%JAVA_HOME %\bin to the
beginning of the variable value.

● If JAVA_HOME is not configured,
add the following Java installation
path before the variable value.
C:\Program Files\Java
\jdk1.8.0_131\bin;

CLASSPATH Click New. .;%JAVA_HOME%\lib;%JAVA_HOME%
\lib\tools.jar;

Step 6 Click OK and close the windows in sequence.

----End

3.3.2 Connecting to a Database

Using an SSL Certificate
NO TE

Download the SSL certificate and verify the certificate before connecting to databases.

In the DB Instance Information area on the Basic Information page, click in the SSL
field to download the root certificate or certificate bundle.

Step 1 Use Java to connect to the MongoDB database.

● Connect to a single node:
mongodb://<username>:<password>@<instance_ip>:<instance_port>/<database_name>?
authSource=admin&ssl=true

● Connect to a replica set.
mongodb://<username>:<password>@<instance_ip>:<instance_port>/<database_name>?
authSource=admin&replicaSet=replica&ssl=true

● Connect to a cluster:
mongodb://<username>:<password>@<instance_ip>:<instance_port>/<database_name>?
authSource=admin&ssl=true

Document Database Service
Developer Guide 3 Application Development

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 19

Table 3-1 Parameter description

Parameter Description

<username> Current username

<password> Password for the current username

<instance_ip> If you access an instance from an ECS, instance_ip is the
private IP address of the instance.

If you access an instance through an EIP, instance_ip is
the EIP that has been bound to the instance.

<instance_port> Database port displayed on the Basic Information page.
Default value: 8635

<database_name
>

Name of the database to be connected.

authSource Authentication database. The value is admin.

ssl Connection mode. true indicates that SSL will be used.

Example script in Java:

import java.util.ArrayList;
import java.util.List;
import org.bson.Document;
import com.mongodb.MongoClient;
import com.mongodb.MongoCredential;
import com.mongodb.ServerAddress;
import com.mongodb.client.MongoDatabase;
import com.mongodb.client.MongoCollection;
import com.mongodb.MongoClientURI;
import com.mongodb.MongoClientOptions;
public class MongoDBJDBC {
public static void main(String[] args){
 try {
 System.setProperty("javax.net.ssl.trustStore", "/home/Mike/jdk1.8.0_112/jre/lib/
security/mongostore");
 System.setProperty("javax.net.ssl.trustStorePassword", "****");
 ServerAddress serverAddress = new ServerAddress("ip", port);
 List addrs = new ArrayList();
 addrs.add(serverAddress);
 MongoCredential credential = MongoCredential.createScramSha1Credential("rwuser",
"admin", "!rwuserPassword".toCharArray());
 List credentials = new ArrayList();
 credentials.add(credential);
 MongoClientOptions opts= MongoClientOptions.builder()
 .sslEnabled(true)
 .sslInvalidHostNameAllowed(true)
 .build();
 MongoClient mongoClient = new MongoClient(addrs,credentials,opts);
 MongoDatabase mongoDatabase = mongoClient.getDatabase("testdb");
 MongoCollection collection = mongoDatabase.getCollection("testCollection");
 Document document = new Document("title", "MongoDB").
 append("description", "database").
 append("likes", 100).
 append("by", "Fly");

Document Database Service
Developer Guide 3 Application Development

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 20

 List documents = new ArrayList();
 documents.add(document);
 collection.insertMany(documents);
 System.out.println("Connect to database successfully");
 } catch (Exception e) {
 System.err.println(e.getClass().getName() + ": " + e.getMessage());
 }
 }
}

Sample code:

javac -cp .:mongo-java-driver-3.2.0.jar MongoDBJDBC.java
java -cp .:mongo-java-driver-3.2.0.jar MongoDBJDBC

----End

Connection Without the SSL Certificate
NO TE

You do not need to download the SSL certificate because certificate verification on the
server is not required.

Step 1 Use Java to connect to the MongoDB database. The Java code format is as follows:
● Connect to a single node:

mongodb://<username>:<password>@<instance_ip>:<instance_port>/<database_name>?
authSource=admin

● Connect to a replica set.
mongodb://<username>:<password>@<instance_ip>:<instance_port>/<database_name>?
authSource=admin&replicaSet=replica

● Connect to a cluster:
mongodb://<username>:<password>@<instance_ip>:<instance_port>/<database_name>?
authSource=admin

Table 3-2 Parameter description

Parameter Description

<username> Current username

<password> Password for the current username

<instance_ip> If you access an instance from an ECS, instance_ip is the
private IP address of the instance.

If you access an instance through an EIP, instance_ip is
the EIP that has been bound to the instance.

<instance_port> Database port displayed on the Basic Information page.
Default value: 8635

<database_name
>

Name of the database to be connected.

authSource Authentication database. The value is admin.

Example script in Java:

Document Database Service
Developer Guide 3 Application Development

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 21

import com.mongodb.ConnectionString;
import com.mongodb.reactivestreams.client.MongoClients;
import com.mongodb.reactivestreams.client.MongoClient;
import com.mongodb.reactivestreams.client.MongoDatabase;
import com.mongodb.MongoClientSettings;
public class MyConnTest {
 final public static void main(String[] args) {
 try {
 // no ssl
 ConnectionString connString = new ConnectionString("mongodb://
rwuser:****@192.*.*.*:8635,192.*.*.*:8635/test? authSource=admin");
 MongoClientSettings settings = MongoClientSettings.builder()
 .applyConnectionString(connString)
 .retryWrites(true)
 .build();
 MongoClient mongoClient = MongoClients.create(settings);
 MongoDatabase database = mongoClient.getDatabase("test");
 System.out.println("Connect to database successfully");
 } catch (Exception e) {
 e.printStackTrace();
 System.out.println("Test failed");
 }
}
}

----End

3.3.3 Accessing a Database
Before accessing a database, import the following classes:

import com.mongodb.client.MongoClients;
import com.mongodb.client.MongoClient;
import com.mongodb.client.MongoCollection;
import com.mongodb.client.MongoDatabase;
import static com.mongodb.client.model.Filters.*;
import com.mongodb.client.model.CreateCollectionOptions;
import com.mongodb.client.model.ValidationOptions;

Accessing DataBase

If an initialized MongoClient instance exists, run the following command to access
a database:

MongoDatabase database = mongoClient.getDatabase("test");

Assessing a Collection

After obtaining a MongoDatabase instance, run the following command to obtain
a collection:

MongoCollection<Document> coll = database.getCollection("testCollection");

Creating a Collection

You can use the createCollection() method to create a collection and specify the
attributes of the collection.

database.createCollection("testCollection", new CreateCollectionOptions()..sizeInBytes(200000))

Document Database Service
Developer Guide 3 Application Development

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 22

Inserting Data
Document doc0 = new Document("name", "zhangsan")
 .append("age", 3)
 .append("sex", "male");

Document doc1 = new Document("name", "LiSi")
 .append("age", 2)
 .append("sex", "female");

Document doc2 = new Document("name", "wangmazi")
 .append("age", 5)
 .append("sex", "male");

List<Document> documents = new ArrayList<Document>();
documents.add(doc1);
documents.add(doc2);

collection.insertMany(documents);

Deleting Data
collection.deleteOne(eq("_id", new ObjectId("00000001")));

Deleting a Table
MongoCollection<Document> collection = database.getCollection("test");
collection.drop()

Reading Data
MongoCollection<Document> collection = database.getCollection("contacts");
MongoCursor<String> cursor = collection.find();
while (cursor.hasNext()) {
 Object result = cursor.next();
}

Query with Filter Criteria
MongoCollection<Document> collection = database.getCollection("test");
MongoCursor<String> cursor = collection.find(
 new Document("name","zhangsan")
 .append("age: 5));
while (cursor.hasNext()) {
 Object result = cursor.next();
}

Running Commands

Run buildInfo and collStats.

MongoClient mongoClient = MongoClients.create();
MongoDatabase database = mongoClient.getDatabase("test");

Document buildInfoResults = database.runCommand(new Document("buildInfo", 1));
System.out.println(buildInfoResults.toJson());

Document collStatsResults = database.runCommand(new Document("collStats", "restaurants"));
System.out.println(collStatsResults.toJson());

Document Database Service
Developer Guide 3 Application Development

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 23

Creating an Index
MongoClient mongoClient = MongoClients.create();
MongoDatabase database = mongoClient.getDatabase("test");
MongoCollection<Document> collection = database.getCollection("test");
collection.createIndex(Indexes.ascending("age"));

3.3.4 Complete Example
package mongodbdemo;
import org.bson.*;
import com.mongodb.*;
import com.mongodb.client.*;
public class MongodbDemo {
 public static void main(String[] args) {
 String mongoUri = "mongodb://mongouser:thepasswordA1@10.66.187.127:27017/admin";
 MongoClientURI connStr = new MongoClientURI(mongoUri);
 MongoClient mongoClient = new MongoClient(connStr);
 try {
 //Use the database named someonedb.
 MongoDatabase database = mongoClient.getDatabase("someonedb");
 //Obtain the someonetable handle of the collection/table.
 MongoCollection<Document> collection = database.getCollection("someonetable");
 //Prepare data to be written.
 Document doc = new Document();
 doc.append("key", "value");
 doc.append("username", "jack");
 doc.append("age", 31);
 //Write data.
 collection.insertOne(doc);
 System.out.println("insert document: " + doc);
 //Read data.
 BsonDocument filter = new BsonDocument();
 filter.append("username", new BsonString("jack"));
 MongoCursor<Document> cursor = collection.find(filter).iterator();
 while (cursor.hasNext()) {
 System.out.println("find document: " + cursor.next());
 }
 } finally {
 //Close the connection.
 mongoClient.close();
 }
 }
}

For more information about Java APIs, see the official documents.

3.4 Python-based Development

3.4.1 PyMongo Package
Python uses PyMongo to provide a unified API for accessing DDS databases.
Applications can perform operations based on PyMongo. PyMongo supports SSL
connections and uses a connection pool to support multithreaded applications.

To install PyMongo, see the official guide.

Document Database Service
Developer Guide 3 Application Development

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 24

https://mongodb.github.io/mongo-java-driver/3.12/driver/tutorials/connect-to-mongodb/
https://pymongo.readthedocs.io/en/stable/installation.html

3.4.2 Connecting to a Database
If you are connecting to an instance using Python, an SSL certificate is optional,
but downloading an SSL certificate and encrypting the connection will improve the
security of your instance.

SSL is disabled by default for a new DDS instance. To enable SSL, see Enabling
SSL.

Prerequisites
1. To connect an ECS to an instance, the ECS must be able to communicate with

the DDS instance. You can run the following command to connect to the IP
address and port of the instance server to test the network connectivity.
curl ip:port
If the message It looks like you are trying to access MongoDB over HTTP
on the native driver port is displayed, the ECS and DDS instance can
communicate with each other.

2. Install Python and third-party installation package pymongo on the ECS.
Pymongo 2.8 is recommended.

3. If SSL is enabled, download the root certificate and upload it to the ECS.

Connection Code
● Enabling SSL

dbs = connection.database_names()
connection = MongoClient(conn_urls,connectTimeoutMS=5000,ssl=True,
ssl_cert_reqs=ssl.CERT_REQUIRED,ssl_match_hostname=False,ssl_ca_certs=${path to
certificate authority file})
conn_urls="mongodb://rwuser:rwuserpassword@ip:port/{mydb}?authSource=admin"
from pymongo import MongoClient
import ssl
est_database
print "connect database success! database names is %s" % dbs

● Disabling SSL
import ssl
from pymongo import MongoClient
conn_urls="mongodb://rwuser:rwuserpassword@ip:port/{mydb}?authSource=admin"
connection = MongoClient(conn_urls,connectTimeoutMS=5000)
dbs = connection.database_names()
print "connect database success! database names is %s" % dbs

NO TE

The authentication database in the URL must be admin. Set authSource to admin.

3.4.3 Accessing a Database
Assume that the client application has connected to the database and a
MongoClient client is initialized.

Accessing DataBase
If an initialized MongoClient instance exists, run the following command to access
a database:

Document Database Service
Developer Guide 3 Application Development

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 25

https://support.huaweicloud.com/eu/usermanual-dds/dds_03_0074.html#section1
https://support.huaweicloud.com/eu/usermanual-dds/dds_03_0074.html#section1
https://pypi.python.org/pypi/pymongo/2.7#downloads

db=client.test_database

Alternatively, use the following method:

db=client["test_database"]

Assessing a Collection
collection=db.test_collection

Alternatively, use the following method:

collection=db["test_collection"]

Creating a Collection

You can use the createCollection() method to create a collection and specify the
attributes of the collection.

collection = db.create_collection("test")

Inserting Data
student = {
 'id': '20170101',
 'name': 'Jordan',
 'age': 20,
 'gender': 'male'
}
result = collection.insert(student);

Deleting Data
result = collection.delete_one({'name': 'Kevin'})

Deleting a Table
db.drop_collection("test")

Reading Data
result = collection.find_one({'name': 'Mike'})

Query with Filter Criteria
result = collection.find_one({"author":"Mike"}

Running Commands

Run buildInfo and collStats.

db.command("collstats","test")
db.command("buildinfo")

Counting
count = collection.find().count()db.command("buildinfo")

Document Database Service
Developer Guide 3 Application Development

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 26

Sorting
results = collection.find().sort('name', pymongo.ASCENDING)
print([result['name'] for result in results])

Creating an Index
 result=db.profiles.create_index([('user_id',pymongo.ASCENDING)],... unique=True)

3.4.4 Complete Example
#!/usr/bin/python
import pymongo
import random
mongodbUri = 'mongodb://mongouser:thepasswordA1@10.66.187.127:27017/admin'
client = pymongo.MongoClient(mongodbUri)
db = client.somedb
db.user.drop()
element_num=10
for id in range(element_num):
 name = random.choice(['R9','cat','owen','lee','J'])
 sex = random.choice(['male','female'])
 db.user.insert_one({'id':id, 'name':name, 'sex':sex})
content = db.user.find()
for i in content:
 print i

For more information about PyMongo APIs, see the official document.

3.5 Golang-based Development

3.5.1 Driver Package
DDS allows you to operate data using Go. You can connect to a DB instance
through an SSL connection or an unencrypted connection. SSL connection is more
secure.

SSL is disabled by default for a new DDS instance. To enable SSL, see Enabling
SSL.

Downloading the Driver

To download the driver, go mod is recommended.

require go.mongodb.org/mongo-driver v1.12.1

Import the go files.

import (
"go.mongodb.org/mongo-driver/bson"
"go.mongodb.org/mongo-driver/mongo"
"go.mongodb.org/mongo-driver/mongo/options"
"go.mongodb.org/mongo-driver/mongo/readpref"
)

Document Database Service
Developer Guide 3 Application Development

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 27

https://pymongo.readthedocs.io/en/stable/tutorial.html
https://support.huaweicloud.com/eu/usermanual-dds/dds_03_0074.html#section1
https://support.huaweicloud.com/eu/usermanual-dds/dds_03_0074.html#section1

3.5.2 Connecting to a Database

Prerequisites
1. To connect an ECS to an instance, the ECS must be able to communicate with

the DDS instance. You can run the following command to connect to the IP
address and port of the instance server to test the network connectivity.
curl ip:port
If the message It looks like you are trying to access MongoDB over HTTP
on the native driver port is displayed, the ECS and DDS instance can
communicate with each other.

2. If SSL is enabled, download the root certificate and upload it to the ECS.

Connection Code
● Enabling SSL

//Construct an authentication credential.
credential := options.Credential{
 AuthMechanism: "SCRAM-SHA-1",
 AuthSource: "admin",
 Username: "rwuser",
 Password: "*******",//Password for connecting to the DDS.
}
//HA URI. Note that SetDirect is set to false.
highProxyUri := "mongodb://host1:8635,host2:8635/?ssl=true"
clientOpts := options.Client().ApplyURI(highProxyUri)
clientOpts = clientOpts.SetTLSConfig(&tls.Config {
InsecureSkipVerify: true,
}).SetDirect(false).SetAuth(credential)
//URI of the direct connection. Note that SetDirect is set to true.
//directUri := "mongodb://host:8635/?ssl=true"
//clientOpts := options.Client().ApplyURI(highProxyUri)
//clientOpts = clientOpts.SetTLSConfig(&tls.Config {
// InsecureSkipVerify: true,
//}).SetDirect(true).SetAuth(credential)
// Connecting to an instance
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
client, err := mongo.Connect(ctx, clientOpts)
if err != nil {
 fmt.Println("Failed to connect to the mongo instance:", err)
 return
}
//Ping the primary node.
ctx, cancel = context.WithTimeout(context.Background(), 2*time.Second)
defer cancel()err = client.Ping(ctx, readpref.Primary())
if err != nil {fmt.Println ("Failed to ping the primary node: ",err)
 return
}
//Select the database and collection.
collection := client.Database("test").Collection("numbers")
//Insert a record.
ctx, cancel = context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
oneRes, err := collection.InsertOne(ctx, bson.D{{"name", "e"}, {"value", 2.718}})
if err != nil{fmt.Println("Failed to insert a record: ",err)
 return
}else {

Document Database Service
Developer Guide 3 Application Development

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 28

 fmt.Println(oneRes)
}
// Batch insert
ctx, cancel = context.WithTimeout(context.Background(), 100*time.Second)
defer cancel()
docs := make([]interface{}, 100)
for i := 0; i < 100; i++{
 docs[i] = bson.D{{"name", "name"+strconv.Itoa(i)}, {"value", i}}
}
manyRes, err := collection.InsertMany(ctx, docs)
if err != nil {
 fmt.Println("Batch insertion failed: ",err)
 return
}else {
 fmt.Println(manyRes)
}

● Disabling SSL
//HA connection. The value of readPreference is primary (by default), indicating that the
primary node is read-only. The value primaryPreferred indicates that the primary node is
preferred. If the primary node is unavailable, the secondary node is read.
// Secondary: read-only node. If the secondary node is unavailable, an error is reported.
secondaryPreferred: The secondary node is preferred. If the secondary node is
unavailable, the primary node is read.
highProxyUri := "mongodb://rwuser:your_password@host1:8635,host2:8635/?
authSource=admin&replicaSet=replica&readPreference=secondaryPreferred"
ctx, cancel := context.WithTimeout(context.Background(), 10*time.Second)
defer cancel()
clientOpts := options.Client().ApplyURI(highProxyUri)
client, err := mongo.Connect(ctx, clientOpts)
//Ping the primary node.
ctx, cancel = context.WithTimeout(context.Background(), 2*time.Second)
defer cancel()err = client.Ping(ctx, readpref.Primary())
if err != nil {
 fmt.Println("Failed to ping the primary node: ",err)
 return
}
//Select the database and collection.
collection := client.Database("test").Collection("numbers")
//Insert a record.
ctx, cancel = context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
res, err := collection.InsertOne(ctx, bson.D{{"name", "e"}, {"value", 2.718}})
if err != nil{
 fmt.Println("Failed to insert a record: ",err)
 return
}else {
 fmt.Println(res)
}

3.5.3 Accessing a Database

Accessing DataBase
If an initialized MongoClient instance exists, run the following command to access
a database:

db:= client.Database("test")

Document Database Service
Developer Guide 3 Application Development

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 29

Assessing a Collection
After obtaining a MongoDatabase instance, run the following command to obtain
a collection:

coll := db.Collection("testCollection")

Creating a Collection
You can use the CreateCollection() method to create a collection and specify the
attributes of the collection.

db:= client.Database("test")
ctx, cancel = context.WithTimeout(context.Background(), 5*time.Second)
defer cancel()
sizeInBytes := int64(200000)
testCollection :=
db.CreateCollection(ctx,"testCollection",&options.CreateCollectionOptions{SizeInBytes:
&sizeInBytes})

3.5.4 Complete Example

Precautions
1. It is recommended that the context timeout interval be set to a value no less

than 10 seconds.
2. MaxTimeMS must be set in the following business scenarios:

– Find
– FindAndModify
– DropIndexes
– Distinct
– Aggregate
– CreateIndexes
– Count

Sample Code
import (
 "context"
 "fmt"
 "strconv"
 "time"

 "go.mongodb.org/mongo-driver/bson"
 "go.mongodb.org/mongo-driver/mongo"
 "go.mongodb.org/mongo-driver/mongo/options"
 "go.mongodb.org/mongo-driver/mongo/readpref"
)

const (
 ConnectTimeout = 10 * time.Second
 SocketTimeout = 60 * time.Second
 MaxIdleTime = 10 * time.Second
 MaxPoolSize = 100
 MinPoolSize = 10

Document Database Service
Developer Guide 3 Application Development

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 30

 DefaultContextTimeOut = 10 * time.Second
 MaxTimeMS = 10 * time.Second
)

func main() {

 // HA connection string
 highProxyUri := "mongodb://rwuser:your_password@host1:8635,host2:8635/?
authSource=admin&replicaSet=replica&readPreference=secondaryPreferred"
 clientOpts := options.Client().ApplyURI(highProxyUri)
 clientOpts.SetConnectTimeout(ConnectTimeout)
 clientOpts.SetSocketTimeout(SocketTimeout)
 clientOpts.SetMaxConnIdleTime(MaxIdleTime)
 clientOpts.SetMaxPoolSize(MaxPoolSize)
 clientOpts.SetMinPoolSize(MinPoolSize)

 // Connect to a database.
 ConnectCtx, cancel := context.WithTimeout(context.Background(), ConnectTimeout)
 defer cancel()
 client, err := mongo.Connect(ConnectCtx, clientOpts)
 if err != nil {
 fmt.Println("Failed to connect to the mongo instance:", err)
 return
 }
 //Ping the primary node.
 ctx, cancel := context.WithTimeout(context.Background(), DefaultContextTimeOut)
 defer cancel()
 err = client.Ping(ctx, readpref.Primary())
 if err != nil {
 fmt.Println("Failed to ping the primary node:", err)
 return
 }
 //Select the database and collection.
 collection := client.Database("test").Collection("numbers")
 //Insert a data record.
 ctx, cancel = context.WithTimeout(context.Background(), DefaultContextTimeOut)
 defer cancel()
 oneRes, err := collection.InsertOne(ctx, bson.D{{"name", "e"}, {"value", 2.718}})
 if err != nil {
 fmt.Println("Failed to insert a data record:", err)
 return
 } else {
 fmt.Println(oneRes)
 }
 // Batch insert.
 ctx, cancel = context.WithTimeout(context.Background(), DefaultContextTimeOut)
 defer cancel()
 docs := make([]interface{}, 100)
 for i := 0; i < 100; i++ {
 docs[i] = bson.D{{"name", "name" + strconv.Itoa(i)}, {"value", i}}
 }
 manyRes, err := collection.InsertMany(ctx, docs)
 if err != nil {
 fmt.Println("Batch insertion failed:", err)
 return
 } else {
 fmt.Println(manyRes)
 }
 db := client.Database("test")
 // Query data by page.
 ctx, cancel = context.WithTimeout(context.Background(), DefaultContextTimeOut)
 defer cancel()

Document Database Service
Developer Guide 3 Application Development

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 31

 cursor, err := db.Collection("numbers").Find(ctx, struct{}{},
options.Find().SetBatchSize(100).SetMaxTime(MaxTimeMS).SetSkip(int64(1000)).SetLimit(100))
 if err != nil {
 fmt.Println("Pagination query failed:", err)
 return
 }
 for cursor.Next(ctx) {
 fmt.Println(cursor.Current)
 }
}

3.6 More Tutorials
For more development tutorials, see official documents.

Document Database Service
Developer Guide 3 Application Development

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 32

https://docs.mongodb.com/drivers/

4 Managing Database Permissions

4.1 Default Permission Mechanism
DDS has a series of security enhancements to deal with increasingly severe
security challenges. The Community Edition allows you to connect to a database
without authentication. In DDS, you must pass the authentication before
connecting to the database. Otherwise, the database cannot be used.

● After a DB instance is created, the system creates the default administrator
rwuser. The administrator must be specified by the customer and meet the
password complexity requirements.

● The administrator is used to create and manage user-defined roles and users.
The administrator does not have a default password. The password must be
specified by the customer and meet the password complexity requirements.

Scenario
During the execution of mongodump and mongorestore, if you back up and
restore the entire DB instance, the permission verification fails. This is because
user rwuser has limited permissions on the admin and config databases of the
DB instance. You need to grant permissions on certain databases and tables to the
user.

4.2 Role Management
DDS uses role-based management to control users' data access permissions. Roles
are classified into built-in roles and user-defined roles.

4.2.1 Built-In Roles
Built-in roles are automatically generated by the system. The built-in roles read
and readWrite can be used by clients.

MongoDB uses roles to manage databases, so you need to assign a role to a user
when creating the user. In addition to built-in roles, you can also create user-
defined roles (User-Defined Roles).

Document Database Service
Developer Guide 4 Managing Database Permissions

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 33

Table 4-1 Common built-in roles

Role Permission Actions

read The read role provides
permissions to read data
on all non-system
collections and some
system collections
(system.indexes,
system.js, and
system.namespaces).

changeStream, collStats, dbHash,
dbStats, find, killCursors, listIndexes,
listCollections

readWrite The readWrite role
provides all the
permissions of the read
role plus ability to
modify data on all non-
system collections and
the system.js collection.

collStats, convertToCapped,
createCollection, dbHash, dbStats,
dropCollection, createIndex,
dropIndex, find, insert, killCursors,
listIndexes, listCollections, remove,
renameCollectionSameDB, update

readAnyDat
abase

The readAnyDatabase
role provides the read-
only permissions on all
databases except local
and config. The role also
provides the
listDatabases action on
the cluster as a whole.

In MongoDB 3.4 and earlier, this role
provides the read permission for the
config and local databases. In the
current version, to provide read
permissions on the config and local
databases, create a user in the admin
database with read role in the config
and local databases.

readWriteA
nyDatabase

The readWriteAnyData-
base role has the read
and write permissions for
all databases except
config and local. The role
also provides the
listDatabases action on
the cluster as a whole.

In MongoDB 3.4 and earlier, this role
has the read and write permissions for
the config and local databases. In the
current version, if you want to read or
write data from or to the config and
local databases, create a user in the
admin database with the readWrite
role in the config and local databases.

Document Database Service
Developer Guide 4 Managing Database Permissions

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 34

Role Permission Actions

dbAdmin The dbAdmin role
provides the ability to
perform administrative
tasks such as schema-
related tasks, indexing,
and gathering statistics.
This role does not grant
permissions for user and
role management.

● For system collections
(system.indexes,
system.namespaces, and
system.profile), the actions include
collStats, dbHash, dbStats, find,
killCursors, listIndexes,
listCollections, dropCollection, and
createCollection (applicable only to
system.profile).

● For non-system collections, the
actions include
bypassDocumentValidation,
collMod, collStats, compact,
convertToCapped, createCollection,
createIndex, dbStats,
dropCollection, dropDatabase,
dropIndex, enableProfiler, reIndex,
renameCollectionSameDB,
repairDatabase, storageDetails, and
validate.

dbAdminAn
yDatabase

The
dbAdminAnyDatabase
role provides the same
database management
permissions as dbAdmin
on all databases except
local and config. The role
also provides the
listDatabases action on
the cluster as a whole.

In MongoDB 3.4 and earlier, this role
has the management permissions for
the config and local databases. In the
current version, if you want to
manage the two databases, create a
user in the admin database with the
dbAdmin role in the config and local
databases.

clusterAdmi
n

The clusterAdmin role
has the greatest cluster-
management access.

This role combines the permissions
granted by the clusterManager,
clusterMonitor, and hostManager
roles, and provides the dropDatabase
action.

Document Database Service
Developer Guide 4 Managing Database Permissions

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 35

Role Permission Actions

userAdmin The userAdmin role
contains the permissions
to create and modify
roles and users in the
current database. This
role allows users to grant
any permission to any
other user (including
themselves). This role
also indirectly provides
the superuser (root)
access to either the
database or, if scoped to
the admin database, the
cluster.

changeCustomData, changePassword,
createRole, createUser, dropRole,
dropUser, grantRole, revokeRole,
setAuthenticationRestriction,
viewRole, viewUser

userAdmin
AnyDatabas
e

The userAdminAnyData-
base role has the
permissions similar to
the userAdmin role. It
manages all databases
except the config and
local databases.

● This role contains the following
cluster commands: the
authSchemaUpgrade,
invalidateUserCache, and
listDatabases

● For system collections
(admin.system.users and
admin.system.roles), the actions
include collStats, dbHash, dbStats,
find, killCursors, planCacheRead,
createIndex, and dropIndex.

4.2.2 User-Defined Roles
A user-defined role is a customized role created by a user by running a command.
It contains only one or more CRUD operations or one or more built-in roles. You
can customize roles based on different resources and actions. User-defined roles
are applied in the same way as built-in roles.

Creating, Modifying, and Deleting Roles

● Before creating a role, connect to the DB instance as a user with the required
permission (for example, rwuser).

● You can use createRole to create a user-defined role to control permissions for
different databases and collections or inherit permissions from other roles.

● After a role is created, you can run grantPrivilegesToRole, grantRolesToRole,
revokeRolesFromRole, or revokePrivilegesFromRole to obtain or revoke
permissions of the role. For details, see Creating and Managing Roles.

Document Database Service
Developer Guide 4 Managing Database Permissions

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 36

4.2.3 Creating and Managing Roles

Creating a Role
db.createRole(role, writeConcern)

● role is mandatory and its type is document. The details are as follows:
{
 role: "<name>",
 privileges: [
 { resource: { <resource> }, actions: ["<action>", ...] },
 ...
],
 roles: [
 { role: "<role>", db: "<database>" } | "<role>",
 ...
],
 authenticationRestrictions: [
 {
 clientSource: ["<IP>" | "<CIDR range>", ...],
 serverAddress: ["<IP>" | "<CIDR range>", ...]
 },
 ...
]
}

Parameter description

Field Type Description

role string Role name

privileges Array This parameter is
mandatory. The array
elements indicate the
permissions of a role.
If this parameter is set
to an empty collection,
the role does not have
any permission.

resource Documents The database name or
collection name.

Document Database Service
Developer Guide 4 Managing Database Permissions

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 37

Field Type Description

actions Array List of available
operations. Common
actions are as follows:
● find
● count
● getMore
● listDatabases
● listCollections
● listIndexes
● insert
● update
● remove
For more actions, see
the official document.

roles Array Array element. This
parameter is
mandatory. The array
element is the name of
a role inherited by the
role.
The role can be a
preset role read or
readWrite or a user-
defined role.

authenticationRestric-
tions

Array Optional. This
parameter specifies the
IP address or IP address
segment that can be
accessed by the role.

● writeConcern specifies the write concern level of a command.

Updating a Role

db.grantPrivilegesToRole(rolename,privileges,writeConcern)

db.revokePrivilegesFromRole(rolename,privileges,writeConcern)

The preceding commands are used to obtain or revoke specified permissions for a
role.

● rolename specifies the name of the role to be updated. This parameter is
mandatory.

● privileges indicates the permissions to be adjusted for the role.
db.grantPrivilegesToRole(
 "< rolename >",

Document Database Service
Developer Guide 4 Managing Database Permissions

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 38

https://docs.mongodb.com/v4.0/reference/privilege-actions/

 [
 { resource: { <resource> }, actions: ["<action>", ...] },
 ...
],
 { < writeConcern > }
)

Table 4-2 privileges description

Field Type Description

resource Document The database name or
collection name.

actions Array For details, see
description about
createRole.

In addition to the preceding commands, updateRole can also be used to update
role information.

db.updateRole(role, update, writeConcern)

Table 4-3 Parameter description

Field Type Description

role string Role name

update Array Mandatory. Its meaning
is the same as that of
privileges in the
command for creating a
role. It is used to replace
all permission
information of a role.

writeConcern Document writeConcern specifies
the write concern level
of a command.

Deleting a Role
db.dropRole(rolename, writeConcern)

● rolename specifies the name of the role to be deleted. This parameter is
mandatory.

● writeConcern specifies the write concern level of a command.

Document Database Service
Developer Guide 4 Managing Database Permissions

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 39

4.3 User Management
In DDS, user permissions are managed based on roles. Differentiated permission
control is implemented by assigning different roles to users.

To provide management services for DDS DB instances, admin, monitor, and
backup accounts are automatically created when you create a DDS DB instance.
Attempting to delete, rename, change the passwords, or change privileges for
these accounts will result in errors.

You can change the password of the database administrator rwuser and any
accounts you create.

4.3.1 Creating a User

Precautions
● All the following operations require permissions. By default, user rwuser has

the required permissions. If a user-defined user is used for management,
check whether the user has the required permissions.

● Connect to a DB instance as a user who has the required permission (for
example, rwuser).

● You can use createUser to create required users and configure roles to control
user rights. Note that the passwordDigestor parameter must be set to
server. Otherwise, the command fails to be executed. This restriction is added
to prevent security risks.

Creating a User
db.createUser(user, writeConcern)

● In the command, user is mandatory and the type is document. It contains the
identity authentication and access information of the user to be created.

● writeConcern is an optional parameter of the document type. It contains the
write concern level of the creation operation.

The user document defines users. The format is as follows:
{
 user: "<name>",
 pwd: "<cleartext password>",
 customData: { <any information> },
 roles: [
 { role: "<role>", db: "<database>" } | "<role>",
 ...
],
 authenticationRestrictions: [
 {
 clientSource: ["<IP>" | "<CIDR range>", ...],
 serverAddress: ["<IP>" | "<CIDR range>", ...]
 },
 ...
]
 mechanisms: ["<SCRAM-SHA-1|SCRAM-SHA-256>", ...],
 passwordDigestor: "<server|client>"
}

Document Database Service
Developer Guide 4 Managing Database Permissions

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 40

Table 4-4 Description of parameter user

Field Type Description

user string The new username.

pwd string User password. If you
run db.createUser() on
the $external database
to create a user who
stores credentials outside
of MongoDB, the pwd
field is not required.

customData Document Optional. Any
information, which can
be used to store any
data that the
administrator wants to
associate with this
particular user. For
example, this could be
the user's full name or
employee ID.

roles Array The role assigned to the
user. You can specify an
empty array [] to create
a user without a role.

authenticationRestric-
tions

Array Optional. The
authentication
restrictions forcibly
imposed by the server on
the created user. It is
used to specify the IP
address or IP address
segment that can be
accessed by the role.

mechanisms Array Optional. The specific
SCRAM mechanism or
mechanisms for the user
credentials. Valid values
are SCRAM-SHA-1 and
SCRAM-SHA-256.

passwordDigestor string Optional. Whether to
verify the password on
the server or client. The
default value is server.

Document Database Service
Developer Guide 4 Managing Database Permissions

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 41

4.3.2 Updating a User
db.updateUser(username, update, writeConcern)

● username indicates the username to be updated.

● update is a document containing the replacement data for the user.

● writeConcern: The write concern level of the update operation. This
parameter is optional.

db.updateUser(
 "<username>",
 {
 customData : { <any information> },
 roles : [
 { role: "<role>", db: "<database>" } | "<role>",
 ...
],
 pwd: passwordPrompt(), // Or "<cleartext password>"
 authenticationRestrictions: [
 {
 clientSource: ["<IP>" | "<CIDR range>", ...],
 serverAddress: ["<IP>", | "<CIDR range>", ...]
 },
 ...
],
 mechanisms: ["<SCRAM-SHA-1|SCRAM-SHA-256>", ...],
 passwordDigestor: "<server|client>"
 },
 writeConcern: { <write concern> }
)

Table 4-5 update description

Field Type Description

customData Documents Optional. Any
information.

roles Array Optional. The role
assigned to the user. An
update to the roles array
overrides the previous
array's values.

pwd string Optional. The user's
password.

authenticationRestric-
tions

Array Optional. The IP address
or CIDR blocks that can
be accessed by a role.

mechanisms Array Optional. The specific
SCRAM mechanism or
mechanisms for the user
credentials. Valid values
are SCRAM-SHA-1 and
SCRAM-SHA-256.

Document Database Service
Developer Guide 4 Managing Database Permissions

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 42

Field Type Description

passwordDigestor string Optional. Whether to
verify the password on
the server or client. The
default value is server.

4.3.3 Deleting a User
db.dropUser(username, writeConcern)

● username is the name of the user to be deleted from the database.
● writeConcern: The level of write concern for the removal operation. This

parameter is optional.

Document Database Service
Developer Guide 4 Managing Database Permissions

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 43

5 System Collections

Table 5-1 Collections of version 4.0

System Collection Description

admin.system.roles Stores user-defined roles created and assigned to
users to provide access to specific resources.

admin.system.users Stores a user's authentication credentials and all
roles assigned to the user.

admin.system.version Stores the architecture version of the user credential
document.

<database>.system.name
spaces

Contains all collection information in the database.

<database>.system.index
es

lists all indexes in a database.

<database>.system.profile Contains slow query logs of a database.

<database>.system.js Contains special JavaScript code for server-side
JavaScript.

<database>.system.views Contains information about each view of a
database.

Document Database Service
Developer Guide 5 System Collections

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 44

6 Common Operations

6.1 Common CRUD Operations
After selecting a database version, you can learn common CRUD operations of
MongoDB. For details, see the official documentation.

Document Database Service
Developer Guide 6 Common Operations

Issue 01 (2022-08-30) Copyright © Huawei Technologies Co., Ltd. 45

https://www.mongodb.com/docs/v4.0/crud/

	Contents
	1 Database Usage Suggestions
	1.1 Basic Commands
	1.1.1 Query
	1.1.2 Write/Update
	1.1.3 Delete

	1.2 Development Rules
	1.3 Design Rules

	2 Database Usage
	2.1 Connecting a Database
	2.2 Creating and Managing Databases
	2.3 Creating and Managing Collections
	2.4 Creating and Managing Indexes

	3 Application Development
	3.1 Development Process
	3.2 Common Parameter Configuration on the Driver Side
	3.3 Java-based Development
	3.3.1 Driver Package and Environment Dependency
	3.3.2 Connecting to a Database
	3.3.3 Accessing a Database
	3.3.4 Complete Example

	3.4 Python-based Development
	3.4.1 PyMongo Package
	3.4.2 Connecting to a Database
	3.4.3 Accessing a Database
	3.4.4 Complete Example

	3.5 Golang-based Development
	3.5.1 Driver Package
	3.5.2 Connecting to a Database
	3.5.3 Accessing a Database
	3.5.4 Complete Example

	3.6 More Tutorials

	4 Managing Database Permissions
	4.1 Default Permission Mechanism
	4.2 Role Management
	4.2.1 Built-In Roles
	4.2.2 User-Defined Roles
	4.2.3 Creating and Managing Roles

	4.3 User Management
	4.3.1 Creating a User
	4.3.2 Updating a User
	4.3.3 Deleting a User

	5 System Collections
	6 Common Operations
	6.1 Common CRUD Operations

