Data Warehouse Service
9.1.0.210

Developer Guide

Issue 01
Date 2024-12-18

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

HUAWEI

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

QD

nuawer and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice

The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.

Address: Huawei Cloud Data Center Jiaoxinggong Road
Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Data Warehouse Service

Developer Guide Contents

Contents
T BefOre YOU STArt...... e oieeeeciecctcntcecseeeteseceseesnessessnsssnesssssssssssssessssssssssssasssssssssssssasssaasass 1
2 GaussDB(DWS) Development Design Proposal...........cceeceevereereecsenseecreenneceeseesseesaeens 5
2.1 OVEIVIEW...erieieeirieeireeeieeeet s teas st sss st sttt seas s s st s st esssessetasseeass st et seassseassseastseasteese b e sebsesetasseeasbeeasseeasteeastseastsesnsnans 5
2.2 GaussDB(DWS) Connection Management SPeCifiCations.........cccvcueeieeeirieinrieisieisiessiessiesestesessessssssessssessssesans 9
2.3 GaussDB(DWS) Object Design SPeCifiCations.......c.cociierieeeeeecirisiniesisisiesessesss s ssssssassssssssss s st ssssasssesanes 10
2.3.1 DATABASE ODjJECE DESIGN....oerieriiririrrisicireissenseesssessesanss 11
2.3.2 USER ODjJECE DESIGN....eovieeieeereieirieisieesiessiesestssssssasssssesssssssssessssssssssssssessssssssssssssessssessssssssssssesssssssssessssessssessssessssasassens 12
2.3.3 SCNEMA ODJECE DESIGN....oiiieiiitriieeeieieeisie sttt sss st b st ss s s bbbt et seb s sas bbb s s seensesanes 12
2.3.4 TABLESPACE ODjJECE DESIGN...cvuiiiireiirieiieiissiessessesissnns 13
2.3.5 TABLE Object DeSign (PrioritiZEd)......cccceceurierieeirieiiieisieisieesiesstsssssssssssesssssessssessssessssesssssssssesssssssssessssessssessssssanns 13
2.3.6 INDEX Object DeSIigN (PriOFTiZEA)cccveeeeeeeeerieirisisiesieeieseeseessss st sessassssssssss st sssssssssssssssss s sssssessssasssnsanes 17
2.3.7 VIEW ODjJECE DESIGN...uvrirerierreeierieieisisiesissessesssasssssssssssssssessnes 18
2.4 GaussDB(DWS) SQL Statement Development SpeCifiCations........coocveeiceieecineeireeseeseess st sesessesessenens 18
2.4.1 DDLU OPEIAtiONS....ccuieriieeieirieteieisisesisesestsesssstassssssssssssssssssssesssssssssssssssssssssassessssessssssssasssssssssssssssssssnsssssssessssessssessssesaess 19
2.4.2 INSERT OPEIALION .ottt stssss ettt sttt sttt sttt et bt e et ee st sa st e s sassetassesas 19
2.4.3 UPDATE and DELETE OPEIatioNS......c.cueuieeiieiiieisieisieesisss et sesss s sssssssessssssssssssssssssssssssssssessssessssessssesssssssssssesenes 20
2.4.4 SELECT OPIAtION.c.cuiuitiiiiiieirirecietrireeietets ettt sttt ettt ettt et bt ea bttt a e st et aeseb e bt aeae b et et aeae st eeaeanes 21
2.5 GaussDB(DWS) Stored Procedure Development SpecifiCations.........cccveninenininisisinsissssessssssssssssseens 24
2.6 Detailed Design Rules for GAusSDB(DWS) ODjJECES........cccuieuieeiieieeiseieeis et sse s ssssssssssssssssssnsns 26
2.6.1 GaussDB(DWS) Database Object Naming RULES..........ccoiiiveieeierinieisstes sttt sas s s snens 26
2.6.2 GaussDB(DWS) Database Object DESIGN RULES..........cerrrrierereenenrnisisisississessessenes 26
2.6.2.1 GaussDB(DWS) Database and Schema DeSign RULES...........ccoereereieieieeisceseesieesteestesee s sssesssssesssesanens 26
2.6.2.2 GausSDB(DWS) Table DESIGN RULES..........cccurvririrrieieteeie sttt seesaesesssssas st es s ssssssssessssssssssasssssessnsansansas 27
2.6.2.3 GaussDB(DWS) Colummn DESigN RULES.......covrurirrerierrinirieieisissississessessanes 30
2.6.2.4 GaussDB(DWS) Constraint DESIGN RULES.........c.couieiieiieeieeisieesieestess ettt sssesssessa st esassesassessssessssnans 32
2.6.2.5 Design Rules for GaussDB(DWS) Views and Associated Tables........c.cceeieicniniesisniesieseeeseesssssnns 33
2.6.3 GaussDB(DWS) JDBC CoNfigUIation RULES........c.ocvuieeierierenisirisis st ssssssssssssssssssssssssssssssssssssssnsns 33
2.6.4 GaussDB(DWS) SQL WIItING RULES.......c.oeeieeecteectsectsee ettt ettt s sttt e bbb sesssas 34
2.6.5 Rules for Using Custom GaussDB(DWS) External Functions (pgSQL/Java).......eeeeeeerenreernnieneneeneenes 37
2.6.6 Rules for Using GausSDB(DWS) PL/PGSQL.....oriririrrirririnrenininisisssesisesssssesses 38
3 Creating and Managing GaussDB(DWS) Database Objects.......cccccceevereeererceecurcnenne 42
3.1 Creating and Managing GaussDB(DWS) Databases..........cccoeimrrinienininsirsississensinsesssssssssssssssssssssssssssssssssssssens 42

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Data Warehouse Service

Developer Guide Contents
3.2 Creating and Managing GausSDB(DWS) SCHEMAS........corriininininerisissississeseessessssssssssssssssssssssssssssssssssssnes 43
3.3 Creating and Managing GausSDB(DWS) TabLeS.......ccovrriririreireireiseeseeee ettt s ssss s ssssssessessssssns 46
3.4 Selecting a GaussDB(DWS) Table StOrage MOAEL. ...t ssssss s ssssessenens 52
3.5 Creating and Managing GaussDB(DWS) Partitioned Tables.........corricrinininrineinrnenssesissssssseesssssssessssnens 56
3.6 Creating and Managing GauSSDB(DWS) INAEXES.........ccvwrrererinrereineireireiseeeesisiseseisesssesessessesssss s ssssessssssssesssaes 59
3.7 Creating and Using GauSSDB(DWS) SEQUENCES........c.cwewrrmrerrrirsesensensessnes 62
3.8 Creating and Managing GauSSDB(DWS) VIEWS.......cccoviuriririririseseisseseessesseses 64
3.9 Creating and Managing GaussDB(DWS) Scheduled Tasks..........ccurrrinrinrineineineerereeeseseseseeseisessessesseseseens 65
3.10 Viewing GaussSDB(DWS) SYStemM Catalogs......cccoruriuniirreereninisisissssississsesesssssssssssssssssssssssssssssssssssssssessssssseses 68
4 Syntax Compatibility Differences Among Oracle, Teradata, and MySQL................ 71
5 GaussDB(DWS) Database Security Management.............ccceeeeveeneeneecercsnnsancsnssncenens 78
5.1 GaussDB(DWS) User and Permissions ManagemeENti..........cccieiueeeereeeerresinesinessssessssesssesssessssssssssssssssssssessnes 78
5.1.1 GausSDB(DWS) Database USEI TYPES........ccrurrrrurrenieeinissisissisissesssens 78
5.1.2 GaussDB(DWS) Database User ManagemMENt........ccowrrrirrinreneeneninisssns 80
5.1.3 Creating a Custom Password Policy for GauSSDB (DWS) ... issssessessessessesenes 81
5.1.4 GaussDB(DWS) Database Permissions ManagemeNt...........ceueeeneeeeninisssssssessesessssssssssssssssssssesssssssans 89
5.1.5 Separation of Duties in GAUSSDB(DWS).......cccoerrirrerierenininieessissessnes 93
5.2 GaussDB(DWS) Sensitive Data ManagemeNnti..........cc.ceuieiiriieeineieieieesesss st sssssssssssssssssssssssssssssessssesssseses 95
5.2.1 GaussDB(DWS) ROW-LEVEL ACCESS CONLIOL......ouieieiiieeeeeiceeee ettt esae s sas s s sssnsassesnn 95
5.2.2 GAUSSDB(DWS) Data MaSKING.....coceeurrurereerierierierierieissssesssssessassseses 96
5.2.3 Encrypting and Decrypting GausSDB(DWS) STIHNGS.......cvvurirerinrinrereireiniireirisisesisessssessessesseasesssssssssssssssssnes 100
5.2.4 Using pgcrypto to Encrypt GauSSDB(DWS) Data.....ccccccreiuerueeeneenieninisieissiesissessssssssssssssssssssssssssssssssssssssessnns 103
6 GausSDB(DWS) Data QUEIY......cuecceeeceeereeeceeeceecaneseeesaesssesssssssnsessesssssssasssassssasssssssasasaes 114
6.1 GauSSDB(DWS) SiNGLe-Table QUEIY ...ttt sttt st sassss s st st ssssasssssssssssssssssssssssssnssssansans 114
6.2 GaussDB(DWS) Multi-Table JOIN QUETY ...t ssnsnsens 115
6.3 GAUSSDB(DWS) SUDQUETY EXPIrESSIONS.......iuieieiereirerieieiretseiseiseeseas s esssss s sssesseasessssssss s sssssssssssessssssssssssnssssssncs 121
6.4 GAUSSDB(DWS) WITH EXPIESSIONS......ruiveiirrierinierisnssssssssssssssssssesssesssssssanssssssnes 124
6.5 Usage of GAUSSDB(DWS) UNION.......ocorrirrirririneninisisssisssnes 129
6.6 Data Reading/Writing AcCross LOGICAl CLUSTEIS.......c.vvreuririreeieireireireireeceeeeee ettt easssseasenseans 132
5.7 SQL ON HUI ettt ettt s s e bbb be bbbt aee s 134
6.7.T INErOAUCEION £0 HUGI ...cueieieeeieieecireeree ettt bbbt 134
6.7.2 Preparations Before USING HUI. ..ottt ss et seeen 135
6.7.3 HUI USEI INEEITACES. ...ttt ses s bbbt s s bbbt s s s s bt st ensensnnans 135
6.7.4 Creating a Hudi Data Description (FOreign Table) ... ssssssssssssssenns 137
6.7.5 SYNChroNIZING HUAT TASKS. ..ottt sttt saen 139
6.7.6 Querying a Hudi FOreign TabLe.......ciieeeieieieieiesseieeesesie sttt sss s bbbt sssss s st sas bbbt sssssesssas 141
6.7.7 Accessing Hudi TaDLes 0N IMIRS..........irrsesese sttt sttt sttt ss s sassnsnsnens 142
7 GausSDB(DWS) SOrting RULES..........cceeceeereereeeeeneeeeeceeeeesaeseesassessassssessessessasssassasssassnees 144
8 GaussDB(DWS) User-Defined FUNCLIONS...........uucceeeereecceeereeecreeesneessseessssesssseessssesnns 148
8.1 GAUSSDB(DWS) PL/JAVA FUNCHIONS.oviieeeeeeeeceeeecectee ettt se s ss s s s sssssasssssssassesssssasassssasanes 148

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

Data Warehouse Service

Developer Guide Contents
8.2 GaUSSDB(DWS) PL/PGSQL FUNCLIONS.......oiririreririreircinsiseis st sssssssssssss s s ssnsssnsnns 159
9 GAUSSDB(DWS) Stored ProCeAUIE.........uueieeeeeeeceeeeeecnreeecereeeecsnseeessssseessssseesssssassssssnne 161
9.1 OVEIVIEW...ereeeieecireeeie ettt ta st tae et sttt et a et sttt bae et re et bt bttt eeas b e s e s teene 161
9.2 Converting Data Types in GaussDB(DWS) Stored ProCeAUIES............coeeruneereereereeneiresieississeseeseeseeseasessensens 161
9.3 GaussDB(DWS) Stored Procedure Array and RECOIM.........ciieiuereeeerienininieissiesiesesseesssssssssssssssssssssssssssssssassans 163
0,307 ATTAY S ettt sttt ettt b ettt ettt ettt et 163
9.3.2 FECONT....eieieeerteierteieeieeste ettt a st a st e s bbbt s b s s a s s s e s s A b s e s s s a s e b st as s b s b s bt s b s st s s b st s st s s ssas 169
9.4 GaussDB(DWS) Stored Procedure Declaration SYNTaX.........cccererereeeeeninisssisssssesessesssssssssssssssssssssesssssnsens 171
9.5 Basic Statements of GaussDB(DWS) Stored ProCEAUIES.........eeeeieeeee ettt ssans 173
9.6 Dynamic Statements of GaussDB(DWS) Stored ProCedUIES...........ccoieieecereeerreeireesseissesssssssessssessssssssenns 177
9.6.1 Executing DynamiC QUETIY STATEMENTS. ..ottt tsesetsssess e sttt assssessssasssssssssssssssssssnens 177
9.6.2 Executing Dynamic NON-QUETY SEAtEMENTS......coviuiiiireireeirieieeeie ettt esess st saesseaesssaes 179
9.6.3 Dynamically Calling Stored ProCEAUIES...........cv ettt es st esseaseassnsens 180
9.6.4 Dynamically Calling ANONYMOUS BLOCKS.........ccoiiiiuriiereeieeiieisisiesiss st tssssssesssssssss s ssssssssssssssnsansans 182
9.7 GaussDB(DWS) Stored Procedure CoNtrol STAtEMENTES. ...t seasaenes 183
O.7.1 RETURN SEaT@MIEBNES.....u ittt s s sttt es st ss s s ea st sss s st essssseseessassssessssnssssnens 184
0.7.2 CONAILIONAL STALEIMENTS.....ociiveice ettt as bbbt s s bbb st bassas s b s e 186
O.7.3 LOOP STATEMIENTS.....eieeiieececieireecietrieee ettt ettt sttt ettt bttt bbbttt et ettaesena 188
O.7.4 BranCh STATEIMENTS........ovieeeeeeecieieteetee ettt ss sttt s b se s b s s s s s ssssesassesansessnbesansenassnas 191
O.7.5 NULL STAt@MIBNTS.....eieeeiet ettt sttt sttt ettt ettt ettt bt ettt s bttt aebettaeas 192
O.7.6 Error TrappiNg STATEMENTS. ..ottt sttt s sttt sttt st seastsenssesssssaes 192
O.7.7 GOTO STATEMEBNES....cieieeeieiteieie sttt ettt s bt e s st sbsesesss et st sesesesstsesssesetssassssesssasassessansnsns 194
9.8 Other Statements in @ GaussDB(DWS) Stored ProCeAUIE........... et saees 196
9.9 GaUSSDB(DWS) StOred ProCEAUIE CUISON ...t ssssssassssssssesssssssssssssssssssssssssssssssssssessssses 197
D.9.T OVEBIVIBW..c.cuiieierieieeieeieis ettt ettt ettt as st et e s s st s easseseasessses et s sesssesetseasseseesssssssetssrssesetsessasssssenssnsnsaes 197
0.9.2 EXPLICHE CUISON .ttt s sttt s s ss s bbb st s s se s a bbbt b s s s s s e b s b bt en s s s ssesassansnsenen 197
0.9.3 IMPLICIE CUISON ettt ssss sttt ss s sss s s s s ss st s et st s s ae bbb et snsssessessssanssnsansnens 201
O.9.4 CUISOE LOOP...ceiuireuciriuireieenei ettt sttt sttt sttt st st st sttt bbbt et et bttt bbb eeas 202
9.10 GaussDB(DWS) Stored Procedure Advanced Package.........eicieieisiisisseseseesssssss s ssessssessssssssanes 204
0.10.T DBIMS_LOB......oirieirieireissistississstssssssssssssssssssss s ssassssssssassssssssssssssssanes 204
9.710.2 DBIMS_RANDOM......oitieieietriesieeteieeesas st et ass s a e bbbt st s bbb s sas s st b s ebassassassansantans 213
0.710.3 DBIMS_OUTPUT ...ttt ssssssss s sssssssssssssssas st st sssssssssssssssssssassssssssssssssssassssssssssssssssesssssssassassssssnssssnses 214
0.10.4 UTL_RAW. ...ttt s st ssss s sss s st s s s s st s se s s ss s s s s st enses s st sasesasssssnsnsans 215
0.710.5 DBIMS_JOB...... oottt sttt s sttt b bttt e e bbbt a s e s s sanen 217
0.710.6 DBIMS_SQL.c.oierieiririerieeeeeieeesiese sttt sse s sassss sttt s s sssss s bt e s s s b s b s bbbt s s s s s s s s e s bttt ensessenas 227
9.11 GaussDB(DWS) Stored Procedure DEDUGQGING.....c.oivvriririririreirsieesiesesesissssissesssnns 238
10 USING POSEGIS EXLENSION.....ccuieeeceeeeeceeeeeceeseeeseeseesseeseesseessessessassseessessassassssssassssesassssases 241
TO.T POSEGIS.c.oieeieieieisee sttt sttt s s s e s s s ses e s s s s s s st st ee s s se e s s s sans st st st essnssnsnns 241
T0.2 USING POSEGIS......oimieiieieeieieie sttt ettt et et et ettt bttt bbb etas 242
10.3 POSLGIS SUPPOIt @Nd CONSLIAINTS.. ..ottt s st st s sss s ssssss bbbt sss s s sssssssasssssensnsnns 243
10.4 OPEN SOURCE SOFTWARE NOTICE (FOI POSEGIS)vuiirieeeriereirierienisisieississessessssasssssssssssssssssssssssssssssssssnsnns 255

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iv

Data Warehouse Service

Developer Guide Contents
11 Using JDBC or ODBC for GaussDB(DWS) Secondary Development...................... 303
TT1.T PrEIEGUISITES. ..ueieeiericericerect ettt e sttt ettt bbbt bttt 303
17.2 JDBC-BASEA DEVEIOPMENT......veeiririeiririssiseeseississssssssss st sss s s s s ssss s ssssssssssssssssssssssssssssssessssssssssessassssassnssssnsas 303
17.2.1 JDBC DEVELOPIMENT PrOCESS........ceieeeieeeeieieireisieseises st ssetssasessess st sssssessessessssssssssssssssssssessssssnsssssasssssnses 303
11.2.2 JDBC Package and DIiVEr CLasS........cccccimriiureenrensensieissnsans 305
171.2.3 LOQAAING @ DFIVET ettt ssssss s s st s st s s s s ass s e s s st sessssnesssassssssnsensans 305
11.2.4 CoONNECLING 1O @ DAtADASE.......vieiee et bbb bbbt s s banes 305
11.2.5 EXECULING SQL STAtEMIENTES ...ttt sttt ssaees 309
11.2.6 Processing Data iN @ RESULL SEL........ieieiririiieeeeieeeeeeeeeess sttt ss s s s bbbt assesassansans 312
11.2.7 Common JDBC Development EXAMIPLES........ccorriririrreiinenienisssss st isssssessssssssssssssssssssssssssssesssssssssssssssnes 315
11.2.8 Processing RoaringBitmap Result Sets and Importing It to GaussDB (DWS)......ccccooeveveuneenerenenenens 325
171.2.9 JDBC INEEITACES. ...eucereereeeeiretreee ettt et ettt enies
11.3 ODBC-Based Development

11.3.1 ODBC Package and Its Dependent Libraries and Header Files.........ccooeineercrrninsrnniesesesensensesnsnens 343
11.3.2 Configuring a Data Source in the LINUX OS..........inenisesesiesssssissesessssssssssssssssssssssssssssssssssesns 343
11.3.3 Configuring a Data Source in the WINAOWS OS.........ceieieeeisisiesesiesiesesssssssss s ssssss s sssssssssssssassassens 351
11.3.4 ODBC DeVvelopmMeENt EXAMIPLE.......cccovririeiririrsiesieesesees st ssnns 356
171.3.5 ODBC INEEITACES.....oevereieteteteeetee ettt bbbt bbb e bbbt s s b e s s bbbt s s s aesasas 361
12 GaussDB(DWS) Resource MONItOFiNg.......cccceeieirreinnnsenscssesssssnsesssasssssassssssassssssnses 381
12.1 User RESOUICE MONITOTING....c.ieiieriierieirisiresieesieeetesestsesstsessassssssssessssssssssassssessssessssssssesssssssssssssssssesassesassesnssesassesans 381
12.2 RESOUICE POOL IMONITOIING. ... cuieieriurieirireireieieres it it s st st sess s sss st ss s s sessssssasssssssasssnssessesssassnssns 383
12.3 MONItOriNG MEMOTY RESOUICTES.......ovuivrieeerieririeriresistesiseessessssesssssssssssssssssssessssessssssssssssssssssssssnssssnssssnssssnssesnsssssssecs 386
12.4 INStance RESOUICE MONITOING....c.oiriieriierieirieirieistetstie sttt sttt bbb sas s e s enesseasssenssen 387
12.5 REAL-EIME TOP SQL..uiiiiiiieiieiecieeieisis ettt ssass sttt bbbt s st bbbt b s s s s b e s bbbt s s s esassanssnsas 389
12.6 HIiStOMCAl TOP SQL.ucouieiiieeieeiieirieieisisis ettt st st sss s st ss s s s bbbt st ssssses s s s s sens st snsenssssesssssnen 393
12.7 Example for QUErYiNg fOr TOP SQLS......oirereireireireireiseseae sttt see ettt ss sttt sseses 398
13 GaussDB(DWS) Performance TUNING.......ccccceeerernernennnrenensanessssassssssasessssasosssssssssssssns 402
T3.T OVEIVIBW. .ottt es s s et sess s sas bt as s s b s s s s s s s s s s b s s e s s e e s et s e e s ea s e s b s b n st e s b s s sansesasseeas

13.2 Performance Diagnosis

13.2.1 Cluster Performance ANQLYSIS.........corierieeeeeeieisis st essassas s s st ss s sas s bbb s s s s s s sassansassnsenes 404
13.2.2 SLOW SQL ANQLYSIS....vriurrriririrsirieriisierissesisisssssssssssssssssssssss st sssessssssssssasssnsanes 404
13.2.2.1 Querying SQL Statements That Affect Performance MOST. ... seesesssesaes 405
13.2.2.2 Checking BLOCKE StAt@MENLS........ccoivrieriereiieeeesiste ettt s st sss s sss s bbbt ssssssssssssassnssnsans 406
T3.2.3 SQL DIAQgNOSIS..ciuiiririiririririririeiressesisistsessssstsssssssstssssssssssssssssssssssssessssssssssessssssssessssssssessssssssesesssssssessssssesessssssssesessssess 407
13.2.4 TADLE DIQQNOSIS.....orviiririiiesirieniieisisisstssts i s s st ss s sssssss s sss st ssssssesssssssssssss s b st sssensessesssssssssssnsessensensssnen 407
13.3 SYSEM OPLIMIZALION.....c ittt sttt st sttt s e bbbttt st st st seaes 408
13.3.1 TUNING Database ParamELters.........cririeiireieeeeseeese et essesssssss s st ssss s sss s bbbt es s sssssssassasssnsanes 408
13.3.2 SMP Parallel EXECULION...c.ccueueeeereeeieiceeceeeesetsetseetse et sses st sss et sttt st 416
13.3.3 CONFIGUIING LLV Moottt bbbt s bbb bbb bbb s s sassan s benen 420
134 SQL TUNING ettt esse e eb st sset s ss st s e bbb bbb s bbbttt 423
13.4.1 SQL QUETY EXECULION PrOCESS......oveeeiriirrerieirieeieieiesisistsssststs s sstsessssssssassssssssssssssesssssssssssssssssssessssssssessssssssesnnns 423
T3.4.2 SQL EXECULION PLAN ...ttt sttt sttt sttt sttt sttt st sttt st sttt sa st ssasassssasanas 425

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. %

Data Warehouse Service

Developer Guide Contents
13.4.3 EXECULION PLaN OPEIAtON ...ttt sssss st sssssssasssssssssss s sssns 437
13.4.4 SQL TUNING PrOCESS.....oiuiieeiticitieirtisite sttt ettt sttt sttt et bbbt et bt bttt 442
13.4.5 UPAAtiNG StAtiSTICS...oiurieieeceeieeirieieissietee ettt et sss s bbbt s s s s bbbt s s s s sas s b s st st ssnssnsas 443
13.4.6 Reviewing and Modifying @ Table DefinitioN........cccrnrninininssis st ssessssssssasssssnns 452
13.4.7 AAVaNCEA SQL TUNING....criririeirtirtirieeeieesie ettt essesses st s s s ess st s cs et st se b s st s asesseassassasssessnsnes 453
13.4.7.1 SQL SELf-DIAgNOSIS......ccrrrierrrrirrirrisrissieiesssssiss st s sessssssssssssssss s sssssessssssssssssssssssssssssssssessessessssssssssssassssesssssnsans 453
13.4.7.2 Optimizing StatemMeNt PUSNAOWN..........o.veereiereererireeis ettt ssss s sss s st ssss s sss s sasssssnes 457
13.4.7.3 OPLtiMIZING SUDGQUETIES.........cuieiriireitreie ettt bbb s es sttt eaeesssassanens 464
13.4.7.4 OPLIMIZING STATISTICS.ovuvueiieririeieiricieieie ettt seee sttt sttt sas e ss e tae s s s s s sss s s ssssssbassesassesassesasssssnes 472
13.4.7.5 OPLMIZING OPEIATOIS.. ..ttt sttt sttt se st ss b e bbbt s eeasbeeassseassseans 477
13.4.7.6 OPtiMiIzZING Data SKEW ..ottt sttt st asennen 479
13.4.7.7 Proactive Preheating and Tuning Of DiSK CaCh@..........oeiiriieieeeeecee st esesnansans 485
13.4.7.8 SQL Statement REWIITING RULES..........cvieeieeeeeresieieisieseetie sttt sssssssss st ss st sssssssssssasssssnsnsnns 486
13.4.8 Configuring OpPtimiZer PAramEters.........o et eseeseasess st ssssssessesssassas s sss s ssssssssnesnen 487
13.4.9 HINE-DASEA TUNING....vrieieiiieieei ettt sessas s bbb s st ssssss bbb st se s s s s b bbb st es s s s sasssnsassnsnen 489
13.4.9.1 Plan Hint OptimMiZatiON......cvoiueceeierririeie st ssssss s sssssssssssssssssssssssssssssssssnssssssssssassssssssnssns 489
13.4.9.2 JOIN OFAEOI HINES ..ottt sttt s sttt enesaesas 491
13.4.9.3 JOIN OPEIrAtION HINES...oouiiieicieieireereeicet ettt sttt bbb s e sa st se s s s s s snas s sas s nsssssasssnsnen 495
13.4.9.4 ROWS HINES ..ottt sesesss s e st ssessese s s e e ts s sssese s e stssessssssessssasasessesnsssesen 496
13.4.9.5 Sream OPEration HINTS.......cv ettt ettt sttt staess 497
13.4.9.6 SCAN OPEIatiON HiNTS ..ottt sttt bbbt ss s ssnsesns 500
13.4.9.7 SUDLINK NAME@ HINTS...cuiiiieieriireieree ittt setessees et bbb ettt 501
13.4.9.8 SKEW HINTS...coeieieeereie ettt st b e sanen 502
13.4.9.9 Hint That Disables SUDQUEIY PULL-UP ...ttt ssssss s sss s ssssssssssnsanes 507
13.4.9.10 DiCtioNAry COAE HiNTu...vuieeeeeeeieeieisisieisisessssesssssses st sssssssssssssss s st ss st st sssssssssssssssssssssssssssssssassssssnsansnns 508
13.4.9.17 Configuration Parameter HINES.... ..ottt ses sttt been 510
13.4.9.12 Hint Errors, Conflicts, and Other Warnings.......ccceerrinseeesenseisissssssssssssssssssssssssssssssesssssssssssssssans 513
13.4.9.T3 PLan HiINt CASES....cucuieeeueireieeiseireieieeiseeseessesseaesssetsessessses s e sases st et e ettt st bbbttt 515
13.4.10 Routinely Maintaining TabLES. ...ttt sttt sttt esses 520
13.4.11 Routinely RECrEAtING AN INAEX......coiueiueieereeierieieisiesie st tesesssssse s s st s s sssssssas s s ensssssssesssssnsans 522
13.4.12 Automatic Retry upon SQL Statement EXECULION ErTOrS.......covverririneeineeineeeeete et sens 523
13.4.13 Query Band Load IdentifiCation........c.oc ettt ses s essesssassanens 526
13.5 SQL TUNING EXAMPLES.....veieirieieieisiesie ettt sssss s ssssss bt et sasssssssss b s s s st sssssssssessssasssnsensssssessessnsans 531
13.5.1 Case: Selecting an Appropriate Distribution COLUMN........covriririneree et sesesssaes 531
13.5.2 Case: Creating an ApPropriate INA@Xottt sttt esse sttt sssaneans 532
13.5.3 Case: Adding NOT NULL fOr JOIN COLUMNS.......veieierieieiniesissiseeseesessas sttt essssessssssssssssssssssssesssssssssssssassanens 533
13.5.4 Case: Pushing Down Sort Operations t0 DINS........ccrrrrrinrineninisisisssisessessas 535
13.5.5 Case: Configuring cost_param for Better Query Performance..........oconereneeneneneeeseneneeseiseeseeseesenes 536
13.5.6 Case: Adjusting the Partial CLUSLEIING KEY ...t sssss s esstsssssssssssssssssssssssssssssssssssnsans 540
13.5.7 Case: Adjusting the Table Storage Mode in @ Medium Table........ccovrorririsrnenessenese s 542
13.5.8 Case: Reconstructing Partition TabLes.........corrriererercsceee ettt sttt esees 543
13.5.9 Case: Adjusting the GUC Parameter best_agg_plan........ et ssessesssssasssnsens 544

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. Vi

Data Warehouse Service

Developer Guide Contents
13.5.10 Case: Rewriting SQL Statements and Eliminating Prune Interference........ooeeeneerneneneennennnns 546
13.5.11 Case: Rewriting SQL Statements and Deleting iN-ClauSe..........ccoeruereriereeeeieeniesee et 548
13.5.12 Case: Setting Partial CLUSTET KEYS.......oovrririrririeriirerieisissiseiseisess e sssssssssssss s ssssss s ssssssssssssssesssssssssanes 549
13.5.13 Case: Converting from NOT IN £0 NOT EXISTS....ooririrrirrirrinriseinsissnsssssssssessssssssssssssssssssssssssssssssssssseses 552
14 GaussDB(DWS) System Catalogs and VIeWs...........cccceererceenrcneenercrnssensessnsssssnsennes 554
14.1 Overview of System Catalogs and SYSTEM VIBWS.........ueeieirieinieieseseeseessssss s sssaesssssssss s ssssesssssssses 554
T4.2 SYSEEIM CAtAlOGS. ..uiuieriririereirieririsisississestes st s s ess st ss st s s s as s e sss st se s s seseeasssssssssssasssesesssasessnsnsssnsns 555
14.2.7 GS_BLOCKLIST_QUERYoiirierreeeireieseeseeeeeesesesaseessesssessssessesssesssessss e s ssse s s sssesssssssssessssssesssesssssnssssesssesanes 555
14.2.2 GS_BLOCKLIST _SQL..curtrtirrereierrireisnsirsesesssessssssssesssssssssessessssssssssssnns 556
14.2.3 GS_OBSSCANINFO.......coieeeeeeeeeeeeteetsetaeesseessessse s sssessssssss s s st ses s s esssesssessesssesssesssssasesasesasesasesanesnesnssnees 557
14.2.4 GS_RESPOOL_RESOURCE_HISTORY. ..ottt ettt sttt ettt s s et eesasssseseens 557
14.2.5 GS_WLM_INSTANCE_HISTORY.ootrteiureueeereemeemeesseesseessesssessesssesesssssesssesssesssssssesssesssssssessessesssssssesssesssesssesasesssesnns 561
14.2.6 GS_WLM_OPERATOR _INFO......oiirirrireireeeeisseeeeeetsessssessesassssesssesss s sssessss s s s ssssssesssesssssssssssesssssanesanesas 562
14.2.7 GS_WLIM_SESSION_INFO.....cotirtimiemniireinseinetieeieeeecseessesssesssesssesssessss s sssesssessse s ssssssssssssssssssecssssssesssessssssnessesans 564
14.2.8 GS_WLM_USER_RESOURCE_HISTORYcotiurreureemeemreesreeseeesessessessseseessesssesssssssesssesssssssssssesssesssssssssasssessssssseses 564
14.2.9 PG_AGGREGATE. ... ittt sessstsesssessssssss st s ssss s s st s st sssssssssssesass e s s s s sas et st sesssessssssssssessssans 566
TA.2.T0 PG_AMu.coe ettt ettt es s s8R 8281 et 567
TA.2.TT PG_AMOP......co ettt s8R R st 569
T4.2.12 PG_AMPROC ceiteieeeteeereeeseesssesse e e sase s se s ess s ss s e e st sis 570
TA.2.13 PG_ATTRDEF ... et eese st et ese et sssessssssss s s e s s es e ennene 571
T4.2.14 PG_ATTRIBUTE. ...ttt ettt st s sttt s st s s s s st et tsssss et easssssssessassesesssasssssssssssssasnen 571
TA.2.15 PG_AUTHID. ...ttt ss e s s s s a et bbb es e sareen 574
T4.2.16 PG_AUTH_HISTORY ...ttt eess st s sssssss et ssse st sssssssssase s s bbbt st s s sssnss s ssssssesesesans 575
T4.2.17 PG_AUTH_MEMBERS.......coootitireieeeneeis et ceecssesssessss s sssessss st cs s s ss s sss et ssnssnees 576
T4.2.18 PG_BLOCKLISTS. ... eeeeeeeiereetreeseesseessesssessssssseessess st sessseesss s sssessss s ee s s s s sasssess e ssssasesssesasssanesanssanesans 576
T4.2.19 PG_CAST .ottt sssssss s sss bbbt s s s st st 578
T.2.20 PG_CLASS..... oottt e s s8R et 578
T4.2.27 PG_COLLATIONttt stsesese s st sssssssssssesss st ssse st s e sas st sssss s ssasssessssase e sssesssssanssnssessnes 583
T4.2.22 PG_CONSTRAINT ..ottt et eteceseesseessessseessesssesssesssesssesesesecssesssessseesesssesssessse e sasesssesssesssssesssessesssesssesssesaesasesns 584
14.2.23 PG_CONVERSION.....coitieriereetrreesieseees e seessssss s st sessssesse s sesssssss s s s sss s et et ees et sasssessssasesssesssesans 586
T4.2.24 PG_DATABASE ..ottt sisetie i sesesese s e ssse st st st b sttt 587
14.2.25 PG_DB_ROLE_SETTING.....oiutieeeeeeeeeeeceeeeseasseesseessesssesssesssessssssesssssssesssesssesssssssssasesssssssesasesssessssssesssesssesssssaessesans 588
T4.2.26 PG_DEFAULT _ACL...c ittt ettt ettt ettt sttt st e st st ass s e et asse s et tasassetsensassstssasassesas 589
TA.2.27 PG_DEPEND...... ittt eese et e s s sss s ssse a8 e e et senene 589
14.2.28 PG_DESCRIPTION.....coutuuiuureeaeeereeeeesseessessssssesssesssesssssssesssessssssssssssssssssesssasssesssssasesasesssssasesssessssssssssssssesssessnsssssssssans 591
T4.2.29 PG_ENUM ...ttt ettt sttt s e e bbb 592
T4.2.30 PG_EXCEPT_RULE......cocee ettt see et et secs s ssse s s st es e ss s sene s 592
T4.2.3T PG_EXTENSION.ooitieriteeeteetreeessssssssss s sssssssesssssssssssesssssssssssessssssssssssssssssssssssssssssesssssssssssesssessssssessnessnssssssssssnssnns 593
14.2.32 PG_EXTENSION_DATA_SOURGCE.........ccotrreereeeeemeeereesseesseesesssessesssssssssssesesssasssssssssssssssesssssasesasesssesssssssesssessessnes 594
14.2.33 PG_FINE_DR_INFO......oiitriereiereitreiersieseeiseesseessssasssssesssesssssssss s esssessse s s sssesssesase e sssssssssssssnssssssnsssnsssessnsssnessnesns 594
14.2.34 PG_FOREIGN_DATA_WRAPPER........cocrtireeurtemneeseesseeeeesesseesssssscssesssessse s s ssse s s ssessessssssesssessssssnessessessnes 595
14.2.35 PG_FOREIGN_SERVER........costtrttreieeeereetreeereieseessessesssesssesss s ssss s ss s sse s sess e sssssssesssesssssasesasesasesanesanessnesnns 596

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. vii

Data Warehouse Service

Developer Guide Contents
14.2.36 PG_FOREIGN_TABLE.........osssiettrrieriesirssesessisssnsssssssssnsssssssssssssssssssesssssssssans 596
TA.2.37 PG_INDEX. ..ottt ettt ettt ettt b et s bbb s b s et ebebesesesebebebeses et et esesebesesesebesesesesesesesesesesesesesesesene 597
T4.2.38 PG_INHERITS. ...ttt sa e s sae st b sse st s s s st bbb s s ba st ss et s st b s st et ae st b s s s st e senaas 599
T4.2.39 PG_JOB_INFO......oeierieieerirsisses st stsssssssssssssssssesssessssssssssssssssssnssnssssssnssnsens 600
TA.2.40 PG_JOBS.......ooeeeeeteeeeteete ettt sttt sttt a bbbttt a bbbttt a s bbbt aans 600
T4.2.47 PG_LANGUAGE..........oooeeeeeteeeeeee ettt st sse st sas s bbb bbb s b e bbb s et b b et as bbb s s b baes 601
14.2.42 PG_LARGEOBIECToieireierensissssesinsisssnsssssssssnsssssssssnssssssssssssssssessssassans 602
14.2.43 PG_LARGEOBJECT_IMETADATA. ...ttt sttt st s s s st ssssss s s s s sss s s s sasassssssesasasssnsnsasanes 603
T4.2.44 PG_IMATVIEW. ...ttt s s sas st sttt e e bbbt ettt bas st s s st s sa st b 603
T4.2.45 PG_NAMESPAGCE..........ooiirirtirriesiesissssssesessssssesssssssssssssssssssssssssssssssssssssssesssssssssssssssssssssssssssssssssssssnsssssssssessssssssens 604
T4.2.46 PG_OBJECT ..ottt sttt sas s ses s a bbb bbb st e b s bbb st s s s b bsebasbassas b st b sessesaesansans 605
14.2.47 PG_OBSSCANINFO.......ooieitereeetertnseestessssaestes st s sas s sa s sss st b s sss st b ae st b s sas st b s s st b b et b se b e sas 606
T4.2.48 PG_OPCLASS. ...ttt ssssessssssssssss s ssssssssssssesssssssssssssssssssssssssasssassssssssssssssssssssssssssssssssssssssnsssssasssnsssssansen 607
14.2.49 PG_OPERATOR....... ottt bbbt bbbt st s st es bbb st st sessesansas 607
T4.2.50 PG_OPFAMILY ...ttt sse s ses s s s sass s s sas st s s s b st s bs bbb s e e e s st b a bbb e st b sans 608
T4.2.57 PG_PARTITION.....coeieiieienrirsissessessssssisssssssssessssssssssssssssssssssssssssssssssssnssssssssssssnssssssesssssssssssssssssssessassssssssssssssssnssssssnses 609
TA.2.52 PG_PLTEMPLATE. ...ttt ettt ettt sttt eb st et s bbb s e s b et ebes et et esesesesesesesebesesesesetesesesesesesesesesesesene 612
T4.2.53 PG_PROC ...ttt sss s sas st bbb s e bas st et as st a bt b ba bt b ba st b a bt b b e st b ansaensenen 612
14.2.54 PG_PUBLICATION.vistirriereniesisesessesessessnsssssssssssssssessssssssssssssssssssssssssssssnssssssssnssssssnses 615
14.2.55 PG_PUBLICATION_NAMESPACE. ...ttt sssss s s as s s s s annns 616
14.2.56 PG_PUBLICATION_REL.....eviitiiereeiiieieeieeeisesiesee st stessesssesses s s s sasssss s ssssasssssssssssssssssssssssssasssesssssssssnssassansens 617
T4.2.57 PG_RANGE........ovriereeriesiesensiss st ssssts s sssssssssssssssss s ssssssssssssss s ssssssssssssassssssssssnssessssssssssssssssssssssssssssssssssnssnsens 618
14.2.58 PG_REDACTION_COLUMNL. ..ottt ettt sttt seseaet et ese s s s st s b sesesesesesesesesesesesessesesesesesesnes 618
14.2.59 PG_REDACTION_POLICYoiiiiereerteeresensirsseesesstssssessesssssssssesssssssssesssssssssssssssassssssssssnsssssssssssssssssassssssssassssssassasssns 620
14.2.60 PG_RELFILENODE_SIZE..........ovestrririeniirrinseesisssesssnsssssssssnsssssssssses 621
T4.2.67 PG_RLSPOLICY ...ttt sttt b s s b sas st en s s s sassansansans 621
14.2.62 PG_RESOURCE_POOL.....oiteiiereeriseieiiesississeesasssssassaessssssssses s ssss s sasssssssssasssssssssasssssssssasssessesssssssssssassenssnssansen 622
T4.2.63 PG_REWRITE......iieieriiniriinsissssssessisssassssssssnssssssnssnsssssssssnsssssssssessssssssesssnsssssassons 623
T4.2.64 PG_SECLABEL......oeiiieetteteeeee sttt sttt bbbttt b st s s s e san s s 624
14.2.65 PG_SHDEPEND.......cooveeteitcieeeeeieseestes et sae s sass e sss s sas st bae e bse st s s s s s b ba e b ba st b sae st s b sans 625
14.2.66 PG_SHDESCRIPTION.....eiosiettrrieiensisisssenssssssnsssssssssesssnssssssssssssssssssessssssssasssssssssssssssansens 626
14.2.67 PG_SHSECLABEL........ouieieeeeeeeeetestete ettt sttt st s s bbbt basbaesassanssneas 626
T4.2.68 PG_STATISTIC .ottt st saes s s ae s ba et e e s e e b ae st ae b s b bas s s b b s st b ba s e b beenen 627
T4.2.69 PG_STATISTIC EXT .oviiieieeirrieieesississssssesssnssssssnssnssssssnsssssssssssssssssssssns 628
T4.2.70 PG_STAT _OBJECT ...ttt sttt as bbbttt b e bbb b s s s sassassansansans 630
14.2.77 PG_SUBSCRIPTION......cooitetteireieeressisseesess s saestes s sasstesssssse st s sas s s s sss st sssssasssssssssssstsssasssesssssassssssssasssnssnssassansens 634
T4.2.72 PG_SYNONYM....oiierrriirinrensissssenssssssssessessssssssssssssssssssssssssnssnssns 635
TA.2.73 PG_TABLESPACE. ...t e as e e a s et ss s ssassesesessseasseseteseseaesesesesesesesesane 635
T4.2.74 PG_TRIGGER ...ttt st sa st as st a bbb st e b st et bbbt st aestenbenes 636
T4.2.75 PG_TS_CONFIG...ccoirrieienrirrresiesisssssississsssssssssssssssssssssssssssssssssssesssssssssesssssssssnssnsssensons 636
14.2.76 PG_TS_CONFIG_MAP.......ooeeeteeeeeetete ettt bbb bbbttt a s s e bas bbb sneas 637
TA.2.77 PG_TS_DICT oottt sa st b sas st sas st bbb s e a bbb e bbb st e b b et b a bbb st b been b bas 637

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. viii

Data Warehouse Service

Developer Guide Contents
T4.2.78 PG_TS_PARSER. ...ttt sttt sttt et sttt 638
T4.2.79 PG_TS_TEMPLATE. ...ttt sttt sttt as st ss et s s st ss st eseasses et sssassessssasassssssassssesnsnens 639
TA.2.80 PG_TYPE..... ettt sttt et es e ea s e s bbbt sttt 639
14.2.871 PG_USER_MAPPING.....cetuiirtieeirtireeeiireise ettt ssseese e ss st ssesssessessessses sttt et ssse st sessesssess 643
14.2.82 PG_USER_STATUS. ...ttt sessass s s s st sssss s sss s sss s s sssss s s sssessessssssssssssssssssssssnssssssssassansens 644
14.2.83 PG_WORKLOAD _ACTION. ... cieiereeeeereeeineetseeseeseeesessesscssesss s esse s ess s es s sases st saesssessesasesse s sasessesassanssnsens 644
T4.2.84 PGXC_CLASS..... ettt es ettt e s b bbbttt s es 645
14.2.85 PGXC_GROUP ...ttt sss st sss st sss st s st ss s s s s st et s e ase st e ssensensnsans 645
14.2.86 PGXC_INODE......co ettt tse sttt es s s es s ses s s s s bbb e ee bbbt st baeeies 647
14.2.87 PLAN_TABLE_DATA ..ottt ettt ts st et et s e ettt 649
T4.2.88 SNAPSHOToeiiierieeeereireee et ssss s st st sss et st sssas st sssss s s e es e s e s e et s s s s et st s sss st ses s sassssessnsansans 650
14.2.89 TABLES_SNAP_TIMESTAMP.....co ittt cssees e sssee st ssses s s s s s bbbt ssssseses 650
14.2.90 System Catalogs for Performance View SNapShOf... ... ssssss s ssssssenes 651
T4.3 SYSTEIM VIBWS....ieiiiiciricit ettt sttt et et et et bttt eae 652
TA.3.T ALL_ALL_TABLES. ...ttt ettt sttt s bbbttt 652
T4.3.2 ALL_CONSTRAINTS ..ot ertttiettrtereeetisttseesetssetsessets st ssess s sss ettt et 652
14.3.3 ALL_CONS_COLUMNES.....ouitrtereretertirsiesessisssssesss s sss s ssssssssssssssssssssssssssssssssssssssasssssssssasssssssssassssssssssssssssssssssnes 653
14.3.4 ALL_COL_COMMENTS. ..ottt teeesetse s cssease s s s esses s es s sase s ssees s s s s e s enes e bsseb e bsssensseen 653
14.3.5 ALL_DEPENDENCIES......c.oieetrteeemetiretreineeiretreseetsesse e sssesesseesse e sse st ssees st ssse ettt ssse s saesssessesaessnes 653
T4.3.6 ALL_IND_COLUMNS. ..ottt sttt ss s ess st ssessss s st ssssess s sss st esssssssessssssssessssssssssesnsnssssesnsnees 654
14.3.7 ALL_IND_EXPRESSIONS......c ottt teeeese st ssses s ssse s s et 655
T4.3.8 ALL_INDEXES.......coitieimrtireeneeireireesetisetsesse st tase e esse e s es st b et ettt 655
T4.3.9 ALL_OBJECTS.....ootetiereeeeseississeeseissassassssss s s s sssssssssssssssssssessssssssssssssssssasssssssssasssnssssssasssnsssssasssssssesssssssssssssssssssssassssssnns 656
14.3.70 ALL_PROGCEDURES........co ittt essessees et cs e ssses s bbb ca s e es bbbt sase st 656
T4.3.T7 ALL_SEQUENCES...... ettt esseaessets st ssees st s bttt 656
T4.3.T2 ALL_SOURCE........oteirirrieeeneirsire sttt sssssssssessssssssssssesssssssssesss s sass s sases e ssssseesssssesssessessssssssessanssssssssansanesns 657
TA.3.T3 ALL_SYNONYIMS....o ettt ettt sssee s ssses s s s e e eb e es bbb sttt 657
T4.3.T4 ALL_TAB_COLUMNS ..ottt tssesseese st asessses st ettt sttt 658
T4.3.15 ALL_TAB_COMMENTS ..ottt sttt st a s sttt s st ese s s s eessassssessssssssssssssassssesnssssesns 659
TA.3.T6 ALL_TABLES ...ttt ettt et 659
TA.3.T7 ALL_USERS..... oottt ettt e bbbttt 660
TA.3.T8 ALL_VIEWS......c ettt sss s a5t snneseees 660
T4.3.T9 DBA_DATA_FILES. ...ttt ettt e ess bbb ettt sies 660
T4.3.20 DBA _USERS.....ooiit ettt sttt sttt sttt et e st b 661
14.3.27 DBA_COL_COMMENTS......cotrtieririensieisresseisssssessssssssssssessssssssssssssssssssssssssssssssssassans 661
14.3.22 DBA_CONSTRAINTS. .. oot eerttrteetuetesetetsseesesseessesse s s s e sases st s ss e s b e s s s as et s tase s es e s tseessessetaes 661
14.3.23 DBA_CONS_COLUMNS. ..ottt sttt sssesseasesssessesessse s et st st ettt st 662
14.3.24 DBA_IND_COLUMNS ..ottt sttt sssessssssssssssssssssssssssssssss s sssnsssssansans 662
14.3.25 DBA_IND_EXPRESSIONS ...ttt ettt sssesse s esss s ssses s sasteneen 663
14.3.26 DBA_IND_PARTITIONSctiiirieeertireieimsetseeeeseesseesesssetsessesssessesessse bbbt sttt s ssesssesesasene 663
T4.3.27 DBA_INDEXES ...ttt ettt ettt ettt sttt s s bt s s st et sas st s b e asassessssssssesssssssesesnsansssesssssssses 664
T4.3.28 DBA_OBIECTS..... ettt ettt ssset st esse s st bbb st 665

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ix

Data Warehouse Service

Developer Guide Contents
14.3.29 DBA_PART_INDEXES......ccsiireinrirsiesensisssnsessesssnsssssssssssssssssssssssssesssssssssans 665
T4.3.30 DBA_PART _TABLES........o ettt ettt ettt a s a s s st st et b st ettt bt ea s b st s st s sessssesesesnanes 666
14.3.31 DBA_PROCEDURES......ooooieieieeeeeseiestee st ssesaes s sas s sa st s e s bas e et bbbt et s s s ba st besseneas 667
14.3.32 DBA_SEQUENCES......ooieierieieseensisisssessssssssssssssssesssssssssssssssssssssssssssssssssssssssnsssnssnsens 667
14.3.33 DBA _SOURCE........ooiiieiteeteeeeieeeie sttt et sas st sa st st s s a bbbt s b s s b e bbb b s ensesaesassansansans 667
14.3.34 DBA_SYNONYMS......ooiieteeeteese sttt st sas s bbb sa s s sae st st b b st b b st b e st b se s e e seenen 668
14.3.35 DBA_TAB_COLUMNS.......iieeerrisseettrstssiestssssssesssssssssss s sss st s s ssssssssssssssssssssssssssssssssesssssssssessssssssssssssssnsssssanses 668
14.3.36 DBA_TAB_COMIMENTS ..ottt sttt bbb bbbt s e sassassansnsnaans 669
14.3.37 DBA_TAB_PARTITIONS. ..ottt sass s sas st sass st bas st basss st bass b bass st bassaesbenbansaenaens 669
T4.3.38 DBA_TABLES ...ttt sssssss s sssssss s s st s sss s s s st s sses s s ssssssssssssesssssssssessssssssssssssanssnssssssnssnssassanes 671
T4.3.39 DBA_TABLESPACES.......oooeeeeeeeeeeeee et sa s s s s s sasasas s s s asasasasssananans 671
14.3.40 DBA_TRIGGERS.......o ottt b sae et sa s as s bbb e b a bbb et a bbb a bbb et b baes 671
TA.3.47 DBA_VIEWS...... oottt sssstss st ss st s sss st s s sssss s s ssss s s s s sss st b s s st b s ssss s s s s st enssessesssssnsans 672
TA.3.42 DUAL ettt bt a bbb bbbttt e bbbt et e s b b e bbbt sesassaesansas 672
14.3.43 GET_ALL_TSC_INFO..... ettt sses s sass s sss s bbb s b sas e b sas st b sss st s sas st b bas st bessssbensen 672
T4.3.44 GET_TSC_INFO....oieisrieeierirsiesiesissssssssiss s ssssssssssssssssssssssssssssssssessssssssssssssssssssssssssssnsssssssssnssssssssssssssssssssssssssssssnns 673
14.3.45 GLOBAL_COLUMN_TABLE IO _STAT ..ottt ettt se s st aenenan 673
14.3.46 GLOBAL_REDO _STAT ..ottt sssassies s e st s sas s sssss st s ssssses s sssssessssssssses s sassssssassssssssassanssnsssssanns 674
14.3.47 GLOBAL_REL_IOSTAT ...ootiiierieeisressississssssissnssnsssssssssnssssssssssssssssssessssssssssssssansens 675
14.3.48 GLOBAL_ROW _TABLE O _STAT ...ttt et ettt et s bbbttt et et se bbb et st sesesenane 675
14.3.49 GLOBAL_STAT_DATABASE........co oottt sesstsssss e ssssse s s sas st sass s sas s ss s basss s s bas s e st sasssessessansanns 676
14.3.50 GLOBAL_TABLE_CHANGE_STAToiieieerriereesisssssinsisssnsssssssssnssssssnses 678
TA.3.5T GLOBAL _TABLE _STAT ...ttt ettt e bbbttt b e b st s babebesesesebabebesesesesesesesesesene 679
14.3.52 GLOBAL_WORKLOAD_SQL_COUNT.....oiirreirrrreerenrienseesessissassaessssssssses s sasssssssssssss s sassessssssassssssssassasssssassanns 680
14.3.53 GLOBAL_WORKLOAD_SQL_ELAPSE_TIME.......cccoissirrnrirrrnsensisssnsensssssnsensssnsens 681
14.3.54 GLOBAL_WORKLOAD_TRANSACTION......ceteeteteteteteteteteetetetete ettt e et sebe e sese s et se s s s sesesesesesesesesesans 682
14.3.55 GS_ALL_CONTROL_GROUPL_INFO.......cosiertrrreeterissiesiesisssieses s sessassss s sasssssssesssssassssssssssssssssesssssassssssassessssssanses 683
14.3.56 GS_BLOCKLIST_QUERY.......oevrirrrerrirrinsensisisnsenssesssssssssesssssssssssns 683
14.3.57 GS_BLOCKLIST _SQL...eitieeieeieirteeieeteetesieteess s tes s saes s s s se bbb s s e s asbas s ses s s s sessssassassansanes 684
14.3.58 GS_CLUSTER_RESOURCE_INFOQ.....cocoiierrrrereeririiesensiessssaesisssssas s s sssssssssssssssssssssssssssssssssssssssassssssassasssssassans 684
14.3.59 GS_COLUMN_TABLE_IO_STAT ...ooireerirriesirsiesessessissnsssssssssssssssssssesssssssssessenss 685
14.3.60 GS_OBS_READ_TRAFFIC......oiieieeiteieeeieieisseeies s ies st ses s s s sassassas s s s s s sassassassassassessssssesassansans 685
14.3.67 GS_OBS_WRITE_TRAFFIC......oeieiteieeriesieesesies st sa st sssas st sssas st s s sas st s sas st ssssss s sassess s sassassssssasssessnss 686
14.3.62 GS_INSTR_UNIQUE_SQL....ovrirrrrririrrensirsiansensissessssssssessssssssessons 687
14.3.63 GS_NODE_STAT_RESET_TIME.....io ittt sttt s s se s bbb s s s bbbt se s s ebesesesesesesennens 691
14.3.64 GS_OBS_LATENCY ..ottt s st s s s ssssse st b s st s st et ba bbb bee s b s et b sass s b santns 692
14.3.65 GS_QUERY_IMONITOR.......orrirrniiriensensisisssississsasssssssssssssssssssssssessssssssssssssssssssssssnssnsens 692
14.3.66 GS_QUERY_RESOURCE_INFO........oooieieeieeieieiesiesies s ssses s sassassas st s st sassassassas s ssesssssessesassansans 694
14.3.67 GS_REL_IOSTAT ..ottt ss e s sss s b ssse st b s st a bbbt ba e e e b bae e b s aes st basens 695
14.3.68 GS_RESPOOL_RUNTIME_INFO......coscerrrrerensirsrsnsensisssnsssnsssssssssssssssssssnssssssessnes 696
14.3.69 GS_RESPOOL_RESOURCE_INFO.......oiiiieieireiesteeteeieeeeie st sssaes s st s s sas s s st ssessssassassassasssnens 696
14.3.70 GS_RESPOOL_MONITOR......oooreertireeeesissieseesisssssaesasssssssss s sasssss s sssssssssssssssssssssasssesssssssssessasssssasssassansesssssansen 700

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. X

Data Warehouse Service

Developer Guide Contents
14.3.77 GS_ROW_TABLE_IO_STAT....ieierrrieiensensisssessesssnsens 702
14.3.72 GS_SESSION_CPU_STATISTICS......oooteeeeeereeteeteeteeie st ses s sassas s s s s s st s s s s s s sassassassnsanes 702
14.3.73 GS_SESSION_MEMORY_STATISTICS......coerrerereeetieiereesisssessessssssassasssssssessesssssassassssssasssssssssassessssssssssssssssssssssnnes 703
14.3.74 GS_SQL_COUNToiriirrerririiesensissssessesssssssssesssssssssssssssssssssssssnses 704
TA.3.75 GS_STAT _DB_CU ..ttt ettt ettt et et bbbt et bbbt et ebebesesebebebebesetesebesesesesesesasesesesene 705
14.3.76 GS_STAT_SESSION_CU....ooierteeieeeertesieseesiss st sass s ssssass s sssssss s sas s sss s b ses s s sassess s sassass s sassssssessensens 706
14.3.77 GS_TABLE_CHANGE_STAToveirrieieerirsiesessissssssessnsssssssssssssssssssssssssssessssssssessns 706
TA.3.78 GS _ TABLE _STAT .ttt sttt as e s s ssssasaesesessssasssasasssssssasasssasasanananaan 707
14.3.79 GS_TOTAL_NODEGROUP_MEMORY_DETAIL....cosvevurrirereerirrieriesiessiesiesiesssessesssssssesssssssssesssssesssssssssssssesssssanss 708
14.3.80 GS_USER_MONITOR......ooivrirrieiesinsisiessessissssssesssnssssssssssssssssssssssssssssssssasssssssssssssnssnsens 709
14.3.81 GS_USER_TRANSACTION. ..ottt tesae s sassas s ses s s s sassas s st st s sassassassasssses s ssssesassansans 711
14.3.82 GS_VIEW_DEPENDENCY ..ottt saes s st sas e s ssssssssssssssssssssssssssssssssssasssssasssnssssssssssanssssssnssnnes 711
14.3.83 GS_VIEW_DEPENDENCY_PATH.....oieririrriniensirsissssesisssssssesssesssssssssessssssssssssssassens 712
TA.3.84 GS_VIEW _INVALID.......o ottt s s s s s s s s s s e sasasas s asasasasssasasasssasasasasanannas 712
14.3.85 GS_WAIT_EVENTS ...ttt sttt sas st st bbb e a bbb st a st s s bbb a st b sa e s e benen 713
14.3.86 GS_WLM_OPERAROR_INFO.......coirierirrirrensesisienserssessnns 714
14.3.87 GS_WLM_OPERATOR _HISTORY ..ottt sssasssse s sasasa s s sassssesasasasasasasssasasasasasasans 716
14.3.88 GS_WLM_OPERATOR _STATISTICS.....oooeiereerteeteereesiesssseesisssss et ssssaessssssssesses s sassssssssssssssssssssssssssssssnsassassanes 718
14.3.89 GS_WLM_SESSIONL_INFO.......cicerrrierenrirsinsinsissssssessisssessssssessns 721
14.3.90 GS_WLM_SESSION_HISTORY. ..ottt ies et ss sttt sas s s bbb s s sss s s s b sassesassansans 728
14.3.91 GS_WLM_SESSION_STATISTICS.....ooeeiteeiereeetesieseestes e sesasssseses s ssessss s sassssssssssss s ssssss st s sessssssasessssssassennes 736
14.3.92 GS_WLM_SQL_ALLOW......crtrirrinrirsiesinsissssssessissssssss s s ssnssssssnssnsssssssssnsssssssssssssssssssnns 741
14.3.93 GS_WORKLOAD_SQL_COUNT ..ottt sses s s ss st a s sse s s ses s sss s sssassassasses s ssssessssassans 741
14.3.94 GS_WORKLOAD_SQL_ELAPSE_TIME......oosieieireererinsieereesissiessessessssssssssssssssssesssssssssssssssssssssssssssesssssssssassssnsanns 742
14.3.95 GS_WORKLOAD_TRANSACTION.......ovrrirrenierriesinsirsssesssssssssssssssssssssens 743
TA.3.96 MPP_TABLES ...ttt ettt ettt ettt bbbt s ettt b bbbt eb e bbb etebebes et et et ebesesesesetesesesesesesesesesesesses 744
14.3.97 PG_AVAILABLE_EXTENSION_VERSIONS. ..ottt siessss s st sasssss s ssssss s sassessssssassassssssssssnes 744
14.3.98 PG_AVAILABLE_EXTENSIONS.......oooirririirririensesssssssssisssssssesssssssssssssssssssssssssssssssssssssssnsssssssssnssssssssssssssssssssssssasssns 745
T14.3.99 PG_BULKLOAD_STATISTICS...... ottt sttt ssesessss s sassss s s s s s s sssesesesassesesesesasssssesssssssssssnsesnsans 745
14.3.100 PG_COMM_CLIENT_INFO......oieiiriereeetsetesies st sessass s s ssssassssssssssssas st sassassssssassassssssasssssssssasssnsssssassanes 746
14.3.T707 PG_COMM_DELAYstrirtirrireessissssesississsnsssssssssnsssssssssnsssssssssanes 747
14.3.102 PG_COMM_STATUS . ..ottt sttt st a st s b s bbbt ssesaenanen 747
14.3.103 PG_COMM_RECV_STREAM ...ttt sas s sas et sss st e st sass s s sss s bass e ssssessssssassnes 748
14.3.104 PG_COMM_SEND_STREAM......osiimiirierirrieseesississessesssnss 749
14.3.105 PG_COMM_QUERY_SPEED........ooteeeeeie ettt ses s s s sss s s sssss s s s sesssss s s sasasssssesasanes 751
14.3.106 PG_CONTROL_GROUP_CONFIG......ooiierertereerinersiessiessss st s sses s ssssass s s ssssssssssssssssssassasssssssssesssssassassans 751
T4.3.T07 PG_CURSORS.....oirrrtiriinsensissiesisssesssssssssssssssssssssssssssssnssnssssssnssnsssnssnses 751
TA.3.108 PG_EXT _STATS ..ottt sttt sttt a b s st et b s asbas s s s s s es s sansans 752
14.3.109 PG_GET_INVALID_BACKENDS........cocoiierrririeeriesissaesiesssssassaes s ssssaes s sessssssassassssssasssssssssassssssessassassssssassssssans 754
14.3.110 PG_GET_SENDERS_CATCHUP_TIME.....c.ceccsimsinrerrirsenserssnssssessnssssssssssssssssessns 755
TA.3.1TT PG_GROUP......oo ettt sttt bbbt a bbb bbb s s s s sassansantans 755
TA.3.TT2 PG_INDEXES......oiiieeeteeieieetteste st ses s sas e sss s s s ssss s s s s ba e s a bbb st b s et as st b ae st b basens 756

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. Xi

Data Warehouse Service

Developer Guide Contents
TA.3.TT3 PG_JOB... .ottt sttt sttt sss st st b bbb s s e ss b bs bbb s bbb s bbb s st s b s st s e 757
T4.3. 1714 PG_JOB_PROC ...ttt esae sttt st sa s bt s s bbb s b bt aesassassassensas 759
T4.3.T15 PG_JOB_SINGLE.........oooiteieeeeeteeieeetes sttt ses st ssssse st sssssse st s s sae st s s bbbt bas st bss s e s bas e b s saes s b sasans 759
14.3.116 PG_LIFECYCLE_DATA_DISTRIBUTE.......ceocesisttrrineensersssssnsisssesssssssssssessassens 761
TA.3.1T7 PG_LOCKS....o ettt bbb bbb bbbt s bbb s b st et s s e e bbb s 761
T4.3.T18 PG_LWLOCKS. ...ttt se st sss e s s st s st s s s s e st e et bas st b s b st s s st bas s s st banben e 763
T4.3.7T9 PG_NODE_ENV....oieirriereneissisissinsissss s ssssessssssssssssssssssssesssssssssssssssssssnsssssssssnsssssssssasssssssssesssssssssssssassssssssssnses 764
14.3.120 PG_OS_THREADS.........ooieeeeeeteteetee ettt aes st ae bbb bbbt s e bbb s s s b st st sassassassansans 764
14.3.127 PG_POOLER _STATUS.....oteteerteeteete sttt sass s sa s sss e b sas st s s s s sas st s st e bse st bas e st sensenen 765
14.3.122 PG_PREPARED_STATEMENTS.......vtetrrireiiesinsissessessissssss s ssesssssssssons 766
T4.3.123 PG_PREPARED _XACTS....o oottt s s s s s s sess s asssassssessssasasseseseseaeseseseseseneaenas 767
14.3.124 PG_PUBLICATION_TABLES.........oiieieeeetetees sttt sse et s st sassae st sasssss s sssssss s sassess s sassessssssasssnnes 767
14.3.125 PG_QUERYBAND_ACTION......evrrirrrerrersisisnsensssssnssesssssssssssssassens 768
14.3.126 PG_REPLICATION_SLOTS......oo ittt aesas st s s sas st s sas bbbt s s s assassassansansans 768
T4.3.127 PG_ROLES.......oieeeetsreeeeetse sttt sae st sa bbbt ss bbb a st a bbb e bbb a bbb e e b s e e b s s st b baestns 769
T4.3.128 PG_RULES. ...ttt sss st sss st sss st s sss st sssssss s s ssss s s sss st s b ssss s s bsnssnsssssssssnssssssnssnssnnes 770
T4.3.129 PG_RUNNING _XACTS.....ce e s s s s s s sssas s s s asasssasasasasasasasasasasasans 771
T4.3.130 PG_SECLABELS. ...ttt et sae st bbb st sa st st ae bbb ae st et a bbb s e e beentneas 771
14.3.137 PG_SEQUENCES.........ooosvrririerririissesstssisssssesssssssessesssssssssesssssssssssssssasssnsssssanses 772
14.3.132 PG_SESSION_WLMSTAT ...ttt ss st sa st a s as s bbbt s s nassaesanen 773
14.3.133 PG_SESSION _IOSTAT ..ottt st sass s st s sae s b sas st b s s st bas e b sae bbb ess b bas s s st sasssessenes 775
T4.3.T34 PG_SETTINGS......oveiirrererririensersisssssstsssessssssssssssnsssssssssnsssssssssnsssssssssssssssssssassenss 776
TA.3. T35 PG_SHADOW ...t s s s s s a s s e e aessasssasasaesesessasasassesessseaesesesesessansesns 777
14.3.136 PG_SHARED_MEMORY _DETAIL. ...ttt sisssssaestessssasstes s sasssss s ssssssssessssssssssssasssssssssassssssassassenns 778
T4.3.T37 PG_STATS. ..ottt ssss s sss st sss st st sss sttt s bbb s s s b s beb e s S s b b e s SR b e s s b e bR s bbb s st s b ssntes 778
TA.3.138 PG_STAT _ACTIVITY ettt sttt sttt st st st bbbt st b bbb s bbb sss s s besesassssssesasassssesasanes 780
14.3.139 PG_STAT_ALL _INDEXES......oosiseierteetiereeriesiessessessis s sasssssssssessssssssses s s s st ssssasssssssssssssssssnsensssssassssssssassssssnsans 783
14.3.T40 PG_STAT_ALL _TABLES.......oiirterireiesisstrssisstssissss et sesssnssnsssssssssssssssssssssssssssns 784
14.3.147 PG_STAT_BAD_BLOGCK........oeiriierieeiestestesieeeess s ses st esses s s ss st s s sasssssassasses s s s sasssssassassassesssassssassansans 786
14.3.142 PG_STAT_BGWRITER......oveieeieteeeteete et see st sass s sassses s s s e sa s s b sas st sa st sse st s sas s bassaessessassasaans 786
14.3.143 PG_STAT_DATABASE ...ttt sisstsssssssessss s ssssssssssssssssssssssssssssasssssssssssssesssssssssssssssssssesssssssssssssssnssnsens 787
14.3.144 PG_STAT_DATABASE_CONFLICTS. ..ottt se s s s s s s s s s sesasasasasesasasans 788
14.3.145 PG_STAT_GET_MEM_MBYTES_RESERVED.......oosieiieerereeeeriestssesiestss st sass s ss e s s et sasssssssssassanns 789
14.3.146 PG_STAT_USER_FUNGCTIONS......ocoiertrtrrrrensersisssesessesssssssssssssssssssssssssssssssens 790
T4.3.147 PG_STAT_USER _INDEXES......ou oottt s s s s as s s s s s ananans 790
14.3.148 PG_STAT_USER_TABLES.......o ittt sa s sa s s sae s sas s ba st s bas e b sa e sssseenen 791
14.3.149 PG_STAT_REPLICATION......vvcsitrrierreritrsisssessissssessesssssssssssssssssssssssssssssssnsssssssssnsssssssssnnes 792
T4.3.150 PG_STAT_SYS_INDEXES.......coooeeeeetetctetetetetetete ettt ettt ettt bt se bbb st etesebabesesesesebabesesesesasesesesesanane 793
14.3.157 PG_STAT_SYS_TABLES ...ttt sssae s s sas st bbbt a st b bs s bas st bas bbb e st bansans 793
14.3.152 PG_STAT_XACT _ALL_TABLES.......oisieirerriesensinsssssessissnssnssssssnssnsssssssssnsssssssssssasssnss 794
T4.3.153 PG_STAT_XACT_SYS_TABLES ...ttt sttt st s et s bbbt s s b st s s s nnenes 795
14.3.154 PG_STAT_XACT_USER _FUNCTIONS........osveieirererrisiiestneissee st saesaesssssasssessssssssss s ssssssssssssssessssssassassssassanns 796

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. xii

Data Warehouse Service

Developer Guide Contents
14.3.155 PG_STAT_XACT_USER _TABLES......oosietrrirrersirnissinsississsassens 796
T4.3.156 PG_STATIO_ALL_INDEXES........oi it sss s s s s s s s sas s s s s sa s sesesasasasasasasasasasasasasesasans 797
14.3.157 PG_STATIO_ALL_SEQUENCES.........siererrrreerenetsnseesiss st sae st s sass s ssssss s sas e sssssass s sassses s sasssesssnsans 797
14.3.158 PG_STATIO_ALL_TABLES........iiererrireeneersiessesisssssssssss s sssssss s ssessssssssssssssasssnssssssnses 798
T4.3.159 PG_STATIO_SYS_INDEXES.....o oottt ettt ettt ettt bbb bbbt s et bbbt b s bebesesesesesesesesenene 798
14.3.160 PG_STATIO_SYS_SEQUENUES........cooeirirereeetrereseestes st sas e sa st s sa st s e st s s sas st s sassass s sassessssssensen 799
14.3.167 PG_STATIO_SYS_TABLES ...ttt s s s s ssnssnssssssssssssssanssns 799
14.3.162 PG_STATIO_USER_INDEXES.........ooeiteieeiereeretesteeiesiesie et sss st sassas s st sses s sssassas st es s sssssssassassansansans 800
14.3.163 PG_STATIO_USER _SEQUENCES. ..ottt stsssssae st sssse st s st s sa st sss s s sess s sassassssssasssessenes 800
14.3.164 PG_STATIO_USER _TABLES.......osirirterriesiesirsssssssisssssssstsssesssssssssssssssssssnsssssassnsens 801
T4.3.165 PG_THREAD_WAIT_STATUS ...ttt st s s s s s s s sa e sesssasasasasasasans 802
T4.3.T66 PG_TABLES ...ttt as b sae sttt bbb e bbb a e bbbt b s sas st b s s st sae st 814
T4.3.T67 PG_TDE_INFO......ioiieirririeerissiesiesessssessesssssssssssssssssssssssssssssssssssssssnsssssssssesssssssssessssssssssssssssssssssssssssnssssssnssnsssssssssenes 815
14.3.168 PG_TIMEZONE_ABBREVS.........o ottt st s et s s s s s st b s es s b s s s s st sebenesenenes 816
14.3.169 PG_TIMEZONE_NAMES........osiiiereeteeeeestse et se st sas st sas st s sas st b sas st bassass b bassessassanssessnes 816
14.3.170 PG_TOTAL_MEMORY_DETAIL.....cvvsrerrrrrerrensirsissensissssssesssssssesssessenss 816
14.3.171 PG_TOTAL_SCHEMA _INFO......ooieieieeeeeeceeieteetes et saess s st se s sas st s s sas s s sas s s s sssesassassanen 818
14.3.172 PG_TOTAL_USER_RESOURCE_INFO.......cocsiiererrrrrreerenrinseesessssssessessssasssesssssssssssssssssssssssssssssssassssssssssssssssssanes 819
TA.3.T73 PG_USER.....cotrieeiierieiiesissis st sssssss s sssssss s sss st s ssessssssessesssssssssssssssssssasssssssssnssssssnssssnssssssnssnsssssssssssssssesssnsansens 821
14.3.174 PG_USER _MAPPINGS.......ooeeeteeeeeieteetete ettt s s a st s st as s s s s s s ssessssasssssassansans 822
TA.3.T75 PG_VIEWS......ooeeeeee ettt sttt sas s bbb a e bbb b s bbbt s bbb et bbbt bbbt b e e 823
14.3.176 PG_WLM_STATISTICS.....covoirreterriesenseresssssstssesssssssssssssssssnssssssnssnsens 823
14.3.177 PGXC_AIO_RESOURCE_POOL_STATS......o oottt sesses s s s st ssssassas s st s s sasassassansans 824
14.3.178 PGXC_BULKLOAD_PROGRESS........ooooiiereeiirierinstsssaesiesisssas st ssssaes s ses st sasssssssssasssssssssassassessassassssssassssssans 826
14.3.179 PGXC_BULKLOAD_INFO.......ieirrirrieniinsirsisnsessissessssssssons 827
14.3.180 PGXC_BULKLOAD_STATISTICS......oiteteeeeeeeeeeeiesiesiee sttt sassassas st s s s s st ss s s sassassansansans 830
14.3.181 PGXC_COLUMN_TABLE_IO_STAT ..ottt s sasasssss s saes s sasssssssssasssss s ssssasssss s sessssssasssnsssssanes 831
14.3.182 PGXC_COMM_CLIENT_INFO......oiiierirrisrinsisisnsensissssnssssssssessessnss 832
14.3.183 PGXC_COMIM_DELAY. ...ttt ettt st sa st s s as bbbt st s s s s assassassansansans 832
14.3.184 PGXC_COMM_RECV_STREAM......eiiireitrriereesissieesiessssssssaes s ssssss s sass s ssss s sasssssssssassassssssassassssssassssssssansens 833
14.3.185 PGXC_COMM_SEND_STREAM.....c.osterirrinrinrirsisnsensissnsssssssssssssssssssnes 834
14.3.186 PGXC_COMM_STATUS . ..ottt bbbt s bbb bbb s s s e s s sassessnsnaans 836
14.3.187 PGXC_COMM_QUERY_SPEED.......ocosierrrrereertesieseesiesssses s see s sassassssssssssssss s sasssssssssasssss s e sasssssssnssnssassanes 836
14.3.188 PGXC_DEADLOCKcoieieeierriesensersisnssssssssssssssssssssssesssssssssssssssssssssssssssssssssssssssnsssssssssssssssssssessssssssesssssssssesssssassens 837
14.3.189 PGXC_DISK_CACHE_STATS ...ttt iestesassssas sttt sas bbbt sas s st saesassassassansanes 839
14.3.190 PGXC_DISK_CACHE_ALL_STATS....o oottt st sas s sssssssssssssssasssesssssasssessesssssasssassansensssssansen 839
14.3.197 PGXC_DISK_CACHE_PATH_INFO.....cossierrrrrrrrieriissensensssssssessessens 841
T14.3.192 PGXC_GET_STAT_ALL_TABLES. ...t s s s s anannan 841
14.3.193 PGXC_GET_STAT_ALL_PARTITIONS ...ttt sa e sas s sassesssssssssassssssssssssssssassassssssassensens 842
14.3.194 PGXC_GET_TABLE_SKEWNESS.........ocosietirrierinrirsinsinsisssssessissnssssssssnssssssnses 844
14.3.195 PGXC_GTM_SNAPSHOT_STATUS. ...ttt sass bbbt se s s sas s s s s s s sansans 844
14.3.196 PGXC_INSTANCE_TIME......osiieieeiiieieeeeetinsieseesssssae st ssssses s ssss s sasssssssssssssssssssssssssssssssssssssssassssssssasssssssansens 845

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. Xiii

Data Warehouse Service

Developer Guide Contents
14.3.197 PGXC_LOCKWAIT_DETAIL....coeverirrierenrirsisssensisssssessans 845
14.3.198 PGXC_INSTR_UNIQUE_SQL....coitirriiteeeeeieieieies sttt et sas s s s sa s s s sassss s s s sassassassansans 847
14.3.199 PGXC_LOCK_CONFLICTS.....oieereerteririesetse e stsssssssestesssssssasssssass s s ssssssssassasssssssssssssssssssassssssssssssssssassansssssassens 850
14.3.200 PGXC_LWLOCKS.......ootirrerririisssensesssssessesssnssssssssssssssssessssssssssssesssssssssssssssssssssssasssnsens 851
14.3.201 PGXC_MEMORY_DEBUG_INFO.......oiiiiiiteetetieeeetsssss s ssss s sessas s s sasasasa s sesssasasasasasasans 852
14.3.202 PGXC_NODE_ENV......oooiieieeteieerissieseestesissasstessssass s sass s s ssss s s ss st sassssssssssesssssassssssessassssssssassansensssssansens 855
14.3.203 PGXC_NODE_STAT_RESET_TIME......ooiiirirrirrineinsirssssssnsssens 855
14.3.204 PGXC_OBS_IO_SCHEDULER _STATS......oo ittt sttt s bbbt s s s ssnsnes 856
14.3.205 PGXC_OBS_IO_SCHEDULER_PERIODIC_STATS......otiiereertsereseesississsesissssssssassssssassssssssassssssssssssessssssassenses 857
14.3.206 PGXC_OS_RUNL_INFO.......oiistrririnieriinssnsissssssesissessssssssssssssssssesssssasssnssssssnses 859
14.3.207 PGXC_OS_THREADS. ...ttt sttt st b s bbbt s s sassas st snes 860
14.3.208 PGXC_POOLER _STATUS ...ttt sesssssass s sa s sa st s st bs s bss e st ssse st b ssssses s sasssessansans 860
14.3.209 PGXC_PREPARED _XACTS......oiieieetirriesississsnsssssssssnssssssnses 861
14.3.270 PGXC_REDO _STAT ...ttt sttt s s s st ae s bbb b s s s s sassassassansnsnsans 861
14.3.217 PGXC_REL_IOSTAT ...ttt saes s ss s ss st sa st b sas e b s st b s bbb s bas b et e s e s s baren 862
14.3.212 PGXC_REPLICATION_SLOTS......otirierereiniensesssnssssssssens 862
14.3.213 PGXC_RESPOOL_RUNTIME_INFO......oeeeeetetetetetetetete ettt sesess st seseseses s s s sessssese s s s s sesesenesenes 863
14.3.214 PGXC_RESPOOL_RESOURCE_INFO.......coeieriereeeiseresiesis s sessesssssassassssssasssessssassssssessasssss s ssssassssssansensens 863
14.3.215 PGXC_RESPOOL_RESOURCE_HISTORY.......cevcvririirriesinsirsssessssissnsens 867
T4.3.216 PGXC_ROW _TABLE IO _STAT ..ottt s st ss s s s s s sesas s s se s s sasssesesesasans 870
14.3.217 PGXC_RUNNING_XACTS......oooeiteeeeetertresesies s sesess s sa e sssssas st ssssssssssssssssssesssssssssssssssasssssssssenssnssasssnsssssasssnsssssanes 871
14.3.218 PGXC_SETTINGS.......oririeeeerrieiiesinsirsssesissssssssssss s sssesssssssssssssssssssssssassssssssssssnssnsssnssnses 871
14.3.2719 PGXC_SESSION_WLMSTAT ...ttt sttt s ss st as bbb s s sasbassassanssneas 872
14.3.220 PGXC_STAT_ACTIVITY ettt sssse st sss s sssss s ssssa s sssssssssssassssssssssssssssssssssssssssssssansanssssssnssnssassanes 875
14.3.227 PGXC_STAT_BAD_BLOCK.........osierrrirrenrirrinsensesssssssssisssssssesssssssssssssssssssssssssssssnsssssssssnsssssssssssssssssssesssssssssessssssssens 878
14.3.222 PGXC_STAT_BGWRITER......o oottt ettt ettt ae bbbt s st be et sesesebasesesenane 878
14.3.223 PGXC_STAT_DATABASE.........oo ettt ettt sees s s st b et ss st bass st b ss st bassss e bas e st sasssestesbansanes 879
14.3.224 PGXC_STAT _OBJECT .c.oirirrirriesinsissisesinssnses 881
14.3.225 PGXC_STAT_REPLICATION. ...ttt ettt ettt ettt be bbbt s s basesesesesasasesenenane 885
14.3.226 PGXC_STAT _TABLE_DIRTY...ooiietteirereeetreseseestssssessesassssssses s saes s sassss s sas st ssssssssssssssssssssssssssssassasssssassasanns 886
14.3.227 PGXC_STAT_WAL...ourieiireierinrirsissississsnsssssssssnssssssssssssssssssesssssessans 889
14.3.228 PGXC_SQL_COUNT ...ttt st sas s sass s bbbt ss s as bbb s s s s sssassassassanseneas 891
14.3.229 PGXC_TABLE _CHANGE_STAT ...ttt st sas s sas s s sss s sas st s sas st s sasssss s sassessssssansen 891
14.3.230 PGXC_TABLE _STAT ...ttt ssssessssssssssssssssss st sssnssnssssssnssnssssssnssnssssssessssanssnns 892
14.3.2371 PGXC_THREAD _WAIT_STATUS ..ottt sasss s s s s s s s s s s s sa s s s sasasasasasanas 893
14.3.232 PGXC_TOTAL_MEMORY _DETAIL ..ot ssesaes s sss s sasessssssssssssssssssssesssssasssesssssassassssssansens 895
14.3.233 PGXC_TOTAL_SCHEMA _INFO......oosirrirrirrerriresssinsissnssssssnses 897
14.3.234 PGXC_TOTAL_SCHEMA _INFO_ANALYZE........eeeeeteeeieteteteetete sttt sess s s sesesss s s s sessssssssssasssssesenes 897
14.3.235 PGXC_TOTAL_USER_RESOURCE_INFO.......cocosierirrierieeirsissiesisssssa s sessessassassessssssssssssssssassssssssssssssssssssensens 898
14.3.236 PGXC_USER_TRANSACTION.....cceiiereerirrierinsirsssssesssnsssssssssnsssssssssnes 901
14.3.237 PGXC_VARIABLE_INFO......cooiieeteteeeeteeete ettt ettt s sttt st s bbbt bbb bbb s ebesesesesebesesesesesesesesesesene 902
14.3.238 PGXC_WAIT_DETAIL .ottt sssaes i sssaesass s ss st sess s ssas s s s ssssssesssssasssessssasssss s sssssssssssansensssssansen 903

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. Xiv

Data Warehouse Service

Developer Guide Contents
14.3.239 PGXC_WAIT_EVENTS......otiieietirsiesissisesssissesssssssssssssssssssssnsssssssssnssssssssnssns 905
14.3.240 PGXC_WLM_OPERATOR_HISTORY. ...t ssssessss s s sasass s s s ss s s ssasasasasasasasasasasasans 906
14.3.247 PGXC_WLM_OPERATOR_INFO.......oiiiieereerirerereesisssessesstssssseessesssssessssssssassssssssssssssssessssssssssssssssssssssssssesssssassanns 907
14.3.242 PGXC_WLM_OPERATOR_STATISTICS........covrrrerrrirrinrensisssssesssnes 909
14.3.243 PGXC_WLM_SESSION_INFO......oiiiirierrieriesiestesieeieseeis st sass s s ses st ss s sas st s s ssessssassassassasssnens 912
14.3.244 PGXC_WLM_SESSION_HISTORY.......ceiiirrrrerirriiesensiesssesessssssssaesssssasssesssssssssssssssssssssssssnssssssssasssssssssassasssssassanns 918
14.3.245 PGXC_WLM_SESSION_STATISTICS......oceiererrerrineensirsssssssissesssssssssssssssassens 926
14.3.246 PGXC_WLM_TABLE_DISTRIBUTION_SKEWNESS.......oo et ssanas 931
14.3.247 PGXC_WLM_USER_RESOURCE_HISTORY......ocsirrerirrreieriesiessiesies s sassesssss s sasssssasssssssssasssssssssassassanns 933
14.3.248 PGXC_WLM_WORKLOAD_RECORDS..........covrrirreniersinssnsisssnssns 936
14.3.249 PGXC_WORKLOAD_SQL_COUNToootoiteireiertetiesicieisses et sassassas s st s sessesassassas s s ses s s sssesassassassassansans 937
14.3.250 PGXC_WORKLOAD_SQL_ELAPSE_TIME......oioiieieeiereerireiesiesissss st saessssssssass s sses s sassesssssssssessssssassenes 938
14.3.257 PGXC_WORKLOAD_TRANSACTION.....cooeieertrrrerensinsisssssesssnssssssssssssssanss 939
TA.3.252 PLAN_TABLE ...ttt ettt ettt bt et b s a et a bbb bbbt bt et ebeses et st ebesesebesesebesesesesesesesessnes 940
T4.3.253 PV _FILE _STAT .ottt s et sa st bas et s et a bbb e e s e bbb et a et b s st et s s aen s 940
14.3.254 PV_INSTANCE_TIME.....oiiiieietireresiesisssssissesssnssssssessssssssessns 941
T4.3.255 PV_MATVIEW _DETAIL...coeeeeeeeeeeeteee et ss s s s s s s s sasasasesasasasasasasesasasans 942
14.3.256 PV_OS_RUN_INFO.....oioeieiteriertertseseties st sas st b sas st s sass s s sass s s sas s e sas st b sessssssassssssssassssssnes 943
14.3.257 PV_SESSION_MEMORY.oocssirrrrrirrirnrensirsisnsenssesssssssssessssssssssssssssssens 943
14.3.258 PV_SESSION_MEMORY_DETAIL.....ovtteteeeeeetetetetetetete ettt sttt sess s s sese s s s sse s s s s s s s s sensennnes 943
14.3.259 PV _SESSION_STAT ...ttt sass b sa st b sas st b sas st b as st s as e b ba bbb st b s b e st banssentenes 945
14.3.260 PV_SESSION_TIME......coosiierrrirerenrensissessessissssssssssssssssssssssssssssssssssessssssssssssssssssssssssssssnsssssssssnssssssssssssssssessesssssssssns 945
14.3.267 PV_TOTAL_MEMORY _DETAIL.....ouiieeeeeeeeeeeeeeee e s s s s ss s s as s asasasssasasananans 946
14.3.262 PV_REDO _STAT ...ttt saes s sse st b sss s ss s sas st s st se st ae bbb s st e be st b s e st b sans 948
14.3.263 PV_RUNTIME_ATTSTATS..... oottt ssessssssssssssssssssssssasssnssssssnssnsssssssssnnes 948
T4.3.264 PV_RUNTIME_RELSTATS. ...ttt s as s s s s ssss s assesssssnssanaenns 950
14.3.265 REDACTION_COLUMNS ...ttt stsssssaesees s ss s sass s sas s s sas s sss e ssssas s bassasssessansass s s sans 951
14.3.266 REDACTION_POLICIES.......oiiirierrierensereiessssesssessssssssssssssssssnsssssssssnsens 952
T4.3.267 REMOTE _TABLE _STAT ...ttt sas s s s sasasasasasasasasasasasasanans 953
14.3.268 SHOW _TSC_INFO......oieeeiteereriestsnis sttt s st s st bbb s e b sas e bas e b s sas s s s sas s s b b s s s s b basbeneas 954
14.3.269 SHOW _ALL_TSC_INFO.....oiiirrrrirriierinsissinssssissns 955
14.3.270 USER_COL_COMMENTS. ..ottt sttt sas st st as bbb a bbb bbb st s e s sassansensnaans 955
14.3.277 USER_CONSTRAINTS. ..ottt sttt sesstsssassass s sas st s st sse s s ses b bss et bes st st bassaes b b s s s st basens 955
14.3.272 USER_CONS_COLUMNS.......oortrrireerttrnrssessissssessnsssssssssnssssssnssnnes 956
TA.3.273 USER_INDEXES.......ooieeeeeeeeeeeee s s s ssas s ss s asasasssssssasasassessssssassesesssessanaesans 957
14.3.274 USER_IND_COLUMNS......ooieirterteeteetesie sttt sas e sas s s sbas st s s s b sass b bassass s ssasssesassasssessnes 957
14.3.275 USER_IND_EXPRESSIONS........ovsiirieerirrresensisssssessessnssssssessssssssessns 957
14.3.276 USER_IND_PARTITIONS......ouioeeeceeeeteeee ettt ettt se s be b bt sesebasesetesesasasesesesane 958
T4.3.277 USER_JOBS......o ettt sae s bbbttt a bbbt b a et ba bbb a bt b ae st b s eensenen 959
14.3.278 USER_OBIECTS.....coitrieiirrieiessississsestss s ssassssssssssssssssssssssssssnssnssssssnssnssssssnssnsssssssssssssssnss 960
T14.3.279 USER_PART_INDEXES......oo ittt s s s s s s s sas s s s s s s asasasasasasasasasasasans 961
14.3.280 USER _PART_TABLES ..ottt sa e sas s s sas s bas st b as st b sess b bas s e st sasssensnes 961

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. XV

Data Warehouse Service

Developer Guide Contents
14.3.2871 USER_PROGCEDURES........coitiiiintireietineise ettt ss e es s ss st ss st st ettt sseessees 962
14.3.282 USER_SEQUENGCES....... oottt it eese e ess s css s cs s s st e s e s baees e seneseeen 962
14.3.283 USER _SOURRCE......cciuiiieieiireineieeireieeeeise e esseasessetssessessecs st sttt ettt saees st ssee st saee 963
14.3.284 USER_SYNONYMS..... ittt e esstaessets s ssess s s s s es st st ettt bbbt 963
14.3.285 USER_TAB_COLUMNS.......itrietirrieireirsie st esssesssse s ssssssssssesssssssssss s ssss s sssesss s ssssssssssssssssssssssssssessssssssns 963
14.3.286 USER_TAB_COMMENTS... oottt etisebe st ssses s ssses s ssses s et et e ssse b ssse e snees 964
14.3.287 USER_TAB_PARTITIONS...... ottt ettt st st seesses e e ssses s s es s ssees st ssee s es e es s s sances 965
T4.3.288 USER _TABLES ...ttt tessees bbbt et bbbt et 965
14.3.289 USER_TRIGGERS...... ittt ettt ettt e et et 966
T4.3.290 USER_VIEWS......o oottt eesstsssssssss s ssess st sssssssssssssass s sassss s s s sseas s ssessssssessessssssssssssnesssassansssssanses 966
T4.3.297T VESESSION ...ttt ettt ss et ssse sttt e bbb s st et ettt 967
14.3.292 VESESSION_LONGOPS ...ttt ces ettt sssesss s es st st s es s s cs s saees s sases b s sasss et s sans 967
15 GUC Parameters of the GaussDB(DWS) Database............uueueeeeeeeeeeerrneeeccsneeessnnne 968
T5.7 VIEWING GUC PAramMELEIS......ccouiveeieieieieeieie et issasssessssssssesessssssesssssssessssssssssesssssss 968
15.2 CoNFiIGUIING GUC PAramELEIS........ceiueieeierrerierieisisississesssessesssssssssensnns 969
15.3 GUC Parameter USQQE......ucueeuiierieirecireeireetresetsesetsesetsese ettt sttt st seae s sese st esesese s bbb sttt seaetsenetsesesenes 971
15.4 ConNection and AUTNENTICATION......cviirreeeree ettt e seeeen 971
15.4.T CONNECLION SETEINGS....uivieiieeiierieieieteie ettt s st seess s e s s s s ss s ss s s s ssssssassesassssassesassesassssnssacs 971
15.4.2 Security and Authentication (POStgreSqLCONT)ottt 973
15.4.3 CommuUNICation LiDrary ParameELers..........oeririeiisisirsiesissississsisss s ssnsans 980
15.5 RESOUICE CONSUMIPLION...ceiuiiiuiiictiieieieieieteietcee sttt ese st es ettt ettt s bbb s saeaen 987
T5.5.T IMIBIMIOIY ettt ettt sttt s bbbttt st s et eb b b et se bt eas 987
15.5.2 Statement DisK SPACE CONLIOL.....coiuiuieeieeieeirieieisisisie ettt ettt sse bbb s e sss bbbt s st ssessesas 998
15.5.3 KEINEL RESOUICES.......ccevevineecieieineesetetaeise e saeesse e ssse s es st sttt ettt sies 999
15.5.4 CoSt-based VACUUM DELAY ..ottt ss st sssssssss s s s sssssssssssssssssssassessesssssssssanes 1000
15.5.5 ASYNCIONOUS 1/O OPEIAtIONS. ... iueeeeierieieireirtiseeeeesee ettt es sttt st ess s st s s sesseasesssassasens 1002
15.5.6 DiISK CACRING ittt sttt sss sttt ss bbbt s s s s st ensnnsnnsessnsns 1004
15.6 PArallel DAta IMPOIt... ettt esasses st bbbt sa s bbb s st a s e bbb s en s s s ssesansanes 1006
15.7 WIEE ANCAA LOGS....iuierierierirririeireiiereiseseesisess st ssssssasssassss s s ssssssesssnssnssnssnssnes 1008
T5.7.T SEULINGS ottt sttt s st s ettt s et s bbb et s et bttt nan st 1008
15.7.2 CRECKPOINTES. ...ttt ettt b bbbttt bbb st st s e st et ees 1012
15.7.3 ATCRIVING ettt bbb s st s st ee s s s s s e bbbt ensens st s s sanen 1014
T5.8 HA REPLICATION. ..ottt sttt s s s s b s s s st s s s e s s esassensssensssnaes 1015
T5.8.1 SENAING SEIVENcouieirieiei ettt seses st s st st ssass s sttt e s s e s sse s et sesesssessssssassass s ssnsensassnsssssnsns 1015
T5.8.2 PrIMAIY SEIVET ...ttt sss st s s s s s s s asssesas e sasses st et sssesassessssensesssssnssssssssasssssnsessssassssanas 1016
T5.8.3 STANADY SEIVET ...ttt bbbt bbb bbbttt se s s s snssas 1018
15.9 QUETY PLANNING..ciiiririeriectsee ettt st s s bbbt s s s s s bbbt s s st s s s s s s bans s s st st ensessnen 1018
15.9.1 Optimizer Method CONFiIGUIAtION. ..ottt bbb es st sases e nnaes 1018
15.9.2 OPtiMIZEr COSt CONSTANES....cuiuiiiericeritieicirieis ettt ettt et bbbt sntens 1035
15.9.3 GENELIC QUETY OPLIMUZET ..ottt sttt s s s ss s sasbsssssassesassesansen 1038
15.9.4 Other OPtiMIZEr OPLIONS.......ccievieeirieeeieesieiste sttt sse s s s essssesss e sasssssssesas s s s s s ssssssessssaessssessssesassnns 1040
15.10 Error Reporting @nd LOGQING.....ccouuiueurierieririnisississississsssesssessssssssssses 1062

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. XVi

Data Warehouse Service

Developer Guide Contents
15.70.T LOGGING DESTINATION.....cviiuiiieeieeeir ettt sttt eas s eaesnaes 1062
15.70.2 LOGGING TIME.rouitiiiiiierieiricesieestet sttt esessesetes bbbt sttt bttt bbbt bbb s b st st bstaesaes 1062
15.70.3 LOGGING CONTENT ..ottt see e sttt sss e as s ss s sss s assssssssssssassssssssssssesassensssessssassesansnen 1066
1577 ALGIM DEEECHION. ...ttt et bbbttt 1072
15.12 Statistics During the Database RUNNING........coveriririrrireiereseece ettt se st 1072
15.12.1 Query and INdex StatistiCS COLLECLON ...ttt ssssse s s b snens 1073
15.12.2 PerfOrmManCe STATISTICS. ...ttt b e ts sttt sttt 1080
15.13 RESOUICE MANAGEIMENT......ouiiiicireieiriieirti ettt sttt sttt sttt sttt st bttt eaeen 1080
15.14 AULOMALIC CLEANUP ...ttt sttt bbb ss s s s bbb s s s s bbb s s s snssessnsas 1099
15.15 Default Settings Of ClIENt CONNECLION. ...ttt ss s s senens 1108
15.15.T StAtEMENE BENAVION ...ttt bbb as s ss s s s s s s s s ssnes 1108
15.15.2 ZONE AN FOrMATEING ...uiviieeieeieeieeirieiesisieeie sttt sss st esssss s bbb st s s s s sas bbb st essessesssbansasssnsanen 1114
15.15.3 Other Default ParamEters..... ...t es et ssessse e ssse e ssse s s ss e sseessees 1118
15.16 LOCK IMANAQGEIMENT.......iiiirirereicee it tsete ettt es et bbbttt ettt eeseeanens 1119
15.17 Version and Platform CompatiDility........cccocoiiieieceeceiriesisesssisteete et sssesssssassss s st sssssssses 1125
15.17.1 Compatibility With EQrlier VEISIONS. ...ttt ssss s s ssssssssssssssssssssssssssnsens 1125
15.17.2 Platform and Client COMPAtiDility.....ccooerrurrureeririeieieieireseireieeeesee ettt eees 1128
15.18 FAULL TOLEBIANCE.....cceeeeereeeieiet ettt sas bbbt st bbb s s b s bbbt et s s s s bt nens 1171
15.19 CONNECLION POOL PAramELEIS........coueuiicieeireieeeicieseiseee ettt b st ettt 1172
15.20 Cluster TranSaCtioN ParamMELEIS.........cceiueirieeerieisieieisteesseessseesssessssesssssssssssssssesssssssssessssssssssssssssssssssessssessssessssens 1175
15.27 DEVELOPEI OPEIALIONS......ucveiveririeeriieierissis st esessesssesss s s st st ssssssssssss b b es b sesssessessesssssssassensessesssnsessnsasssnsanssnens 1178
15.22 AUGITING. ceu ettt eb st eb bbb b bbb st 1199
15.22.7 AUGIT SWILCN ettt ettt s st s s s sansan s 1199
15.22.2 OPEIATION AUIt.. vttt sttt s s s s s s bbbt s s s s s s s s bbb st ssessssssssnssnsanes 1200
15.23 TranSaCtioN MONITOTNG....c.ovueuieriierieirecireeiseeis ettt sttt sttt st bas et s eassseassesnes 1209
T5.24 GTIM PAl@MELEIS..... ettt sttt st ettt sttt st as e s s st s esesesessessassessssssesessssassessssassessnnnnsns 1210
15.25 MiSCELLANEOUS PAlQMELES.......ovivieerieterieieeiie sttt s s bt ss s ssssss bbbt s s ssssasssss s s s st ensessssnssnsas 1211
16 GAusSDB(DWS) DeVeloper TEIMS.......ccccceeveeceereerseeseessesseesaesssessessssssessasssassasssssasssans 1221

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. Xvii

Data Warehouse Service
Developer Guide 1 Before You Start

Before You Start

Target Readers

This document is intended for database designers, application developers, and
database administrators, and provides information required for designing, building,
querying and maintaining data warehouses.

As a database administrator or application developer, you need to be familiar
with:

e Knowledge about OSs, which is the basis for everything.

e SQL syntax, which is the necessary skill for database operation.

Prerequisites
Complete the following tasks before you perform operations described in this
document:
e Create a GaussDB(DWS) cluster.
e Install a SQL client.
e Connect the SQL client to the default database of the cluster.

For details about these tasks, see Getting Started with GaussDB(DWS).

Reading Guide

If you are a new GaussDB(DWS) user, you are advised to read the following
contents first:

e Sections describing the features, functions, and application scenarios of
GaussDB(DWS).

e "Getting Started": guides you through creating a data warehouse cluster,
creating a database table, uploading data, and testing queries.

If you intend to or are migrating applications from other data warehouses to
GaussDB(DWS), you might want to know how GaussDB(DWS) differs from them.

You can find useful information from the following table for GaussDB(DWS)
database application development.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

https://support.huaweicloud.com/eu/qs-dws/index.html

Data Warehouse Service
Developer Guide

1 Before You Start

Operation Query Suggestion

Quickly getting Deploy a cluster, connect to the database, and perform
started with some queries by referring to Getting Started.
GaussDB(DWS)

When you are ready to construct a database, load data to
tables and compile the query content to operate the data in
the data warehouse. Then, you can return to the Data
Warehouse Service Database Developer Guide.

Understand the
internal
architecture of a
GaussDB(DWS)
data warehouse.

To know more about GaussDB(DWS), go to the
GaussDB(DWS) homepage.

Learn how to
design tables to
achieve the
excellent
performance.

GaussDB(DWS) Development Design Proposal introduces
the design specifications that should be complied with
during the development of database applications. Modeling
compliant with these specifications fits the distributed
processing architecture of GaussDB(DWS) and provides
efficient SQL code.

To accelerate service execution through optimization, refer
to GaussDB(DWS) Performance Tuning. Database
administrators' experience and judgment play a more
significant role in achieving successful performance
optimization than instructions and explanations. However,
GaussDB(DWS) Performance Tuning still attempts to
illustrate the performance optimization methods that can be
referred to by application development personnel and new
GaussDB(DWS) database administrators.

Loading data

Importing Data describes how to import data to
GaussDB(DWS).

Importing Best Practices provides experience tips for fast
and efficient data import.

Managing users,
groups, and
database security

GaussDB(DWS) Database Security Management covers
database security topics.

Monitoring and
optimizing
system
performance

GaussDB(DWS) System Catalogs and Views describes the
system catalogs where you can query the database status
and monitor the query content and process.

You should also refer to Management Guide to learn how
to use the GaussDB(DWS) console to check the system
running status and monitoring metrics.

SQL Syntax Text Conventions

To better understand how to use the syntax, you can refer to the following
description of SQL syntax text conventions.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

https://support.huaweicloud.com/eu/qs-dws/index.html
https://support.huaweicloud.com/eu/migration-dws/dws_15_0003.html
https://support.huaweicloud.com/eu/bestpractice-dws/dws_05_0001.html
https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0022.html

Data Warehouse Service

Developer Guide

1 Before You Start

Statement

Format Description

Uppercase Keywords must be in uppercase.
characters

Lowercase Parameters must be in lowercase.
characters

[] Items in brackets [] are optional.

Preceding elements can appear repeatedly.

[x|y]..] One item is selected from two or more options or no item
is selected.

{x|yl|..} One item is selected from two or more options.

xX|y|.1L[..1 You can choose either multiple parameters or no

parameters. If you choose multiple parameters, simply
separate them with spaces.

[x|yl|--1L[,-1 You can choose either multiple parameters or no
parameters. If you choose multiple parameters, simply
separate them with commas (,).

{x|yl.3}[..1 You must select at least one parameter. If you select
multiple parameters, separate them with spaces.

{x|yl..}[,.] You must select at least one parameter. If you select
multiple parameters, separate them with commas (,).

When writing documents, the writers of GaussDB(DWS) try their best to provide
guidance from the perspective of commercial use, application scenarios, and task
completion. Even so, references to PostgreSQL content may still exist in the
document. For this type of content, the following PostgreSQL Copyright is
applicable:

Postgres-XC is Copyright © 1996-2013 by the PostgreSQL Global Development
Group.

PostgreSQL is Copyright © 1996-2013 by the PostgreSQL Global Development
Group.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND
ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

Data Warehouse Service
Developer Guide 1 Before You Start

PROVIDED HEREUNDER IS ON AN "AS-IS" BASIS, AND THE UNIVERSITY OF
CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

GaussDB(DWS) Development Design
Proposal

2.1 Overview

Objective

This document outlines the rules for design and development that need to be
followed when developing the GaussDB(DWS) database. The objective is to
enhance development efficiency and ensure the continuity and stability of the
service.

Application Scope

These specifications apply to all GaussDB(DWS) self-development scenarios,
including designing and developing applications and database services.

Terms

Rule: a mandatory requirement that must be followed during database design and
development.

Suggestion: an option that you need to consider for the design and development
process.

Description: a detailed explanation of a rule or suggestion.

Overall Development and Design Specifications

The table below provides a list of development and design specifications that must
be followed during GaussDB(DWS) development. You can click the links to access
the corresponding rules for more details.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

Data Warehouse Service
Developer Guide

2 GaussDB(DWS) Development Design Proposal

Table 2-1 GaussDB(DWS) development and design specifications

N | Category Rule/Suggestion
o.
1 | Conn |- Rule 1.1: Configuring Load Balancing for
ectio GaussDB(DWS) Clusters
n
2 | man Rule 1.2: Ending the Database Connection After
agem Necesgary Operations (Except in Connection Pool
ent Scenarios)
3 regul Rule 1.3: Ensuring a Started Transaction Is
§t|on Committed or Rolled Back
4 Rule 1.4: Ensuring the Idle Timeout Duration Is
Shorter Than SESSION_TIMEOUT Value When
Connection Pool Is Used for Applications
5 Rule 1.5: Restoring Parameters to Default Values in
Connections Before Returning Them to the Pool
6 Rule 1.6: Manually Clearing Temporary Tables
Created with a Connection Before Returning it to
the Pool
7 | Obje | DATABAS | Rule 2.1: Avoiding Direct Usage of Built-in
ct E object Databases Such As postgres and gaussdb
desig | design - -
8 |n Rule 2.2: Selecting the Suitable Database Code
specif During Database Creation
g |lcatio Rule 2.3: Choosing the Right Database Type for
ns Compatibility with the Database to Be Created
10 Suggestion 2.4: Storing Objects with Associated
Calculations in the Same Database
11 USER Rule 2.5: Following the Least Privilege Principle and
object Avoiding Running Services Using Users with Special
design Permissions
12 Rule 2.6: Avoiding the Use of a Single Database
Account for All Services
13 SCHEMA | Suggestion 2.7: Avoiding the Creation of Objects
object Under Other Users' Private Schemas
design
14 TABLESPA | Rule 2.8 Avoiding Tablespace Customization
CE object
design

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

Data Warehouse Service

Developer Guide 2 GaussDB(DWS) Development Design Proposal
N | Category Rule/Suggestion
0.
15 TABLE Rule 2.9: Selecting the Optimal Distribution
object Method and Columns During Table Creation
design
16 (pric?ritize Rule 2.10 Selecting an Optimal Storage Type
d) During Table Creation
17 Rule 2.11 Selecting an Optimal Partitioning Policy
During Table Creation
18 Suggestion 2.12: Designing Table Columns for Fast
and Accurate Queries
19 Suggestion 2.13: Avoiding the Usage of Auto-
increment Columns or Data Types
20 INDEX Rule 2.14: Creating Necessary Indexes and Selecting
object Optimal Columns and Sequences for Them
design
21 (prigritize Suggestion 2.15: Optimizing Performance by

d) Choosing the Right Index Type and Avoiding
Indexes for Column-Store Tables

22 VIEW Suggestion 2.16: Limiting View Nesting to Three
object Layers
design

23 |SQL | DDL Suggestion 3.1: Avoiding Performing DDL

devel | operation | Operations (Except CREATE) During Peak Hours or
opme | specificati | in Long Transactions

24 '?;ecif ons Rule 3.2: Specifyil?g the Scope of Objects to Be
icatio Deleted When Using DROP
25 | MS INSERT Rule 3.3: Replacing INSERT with COPY for Efficient
operation | Multi-Value Batch Insertion
specificati
26 ons Suggestion 3.4: Avoiding Performing Real-time
INSERT Operations on Common Column-store
Tables
27 UPDATE/ | Suggestion 3.5: Preventing Simultaneous Updates
DELETE or Deletions of the Same Row in a Row-store Table
operation) T)
28 specificati Suggestion 3.6: Avoiding Frequent or Simultaneous
ons UPDATE and DELETE Operations on Column-store
Tables
29 SELECT Rule 3.7: Avoiding Executing SQL Statements That
operation | Do Not Support Pushdown
specificati . . .
30 ons Rule 3.8: Specifying Association Conditions when

Multiple Tables Are Associated

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

Data Warehouse Service

Developer Guide 2 GaussDB(DWS) Development Design Proposal
N | Category Rule/Suggestion
o.
31 Rule 3.9: Ensuring Consistency of Data Types in
Associated Fields across Multiple Tables
32 Suggestion 3.10: Avoiding Function Calculation on
Association and Filter Condition Fields
33 Suggestion 3.11: Performing Pressure Tests and
Concurrency Control for Resource-intensive SQL
Statements
34 Rule 3.12: Avoiding Excessive COUNT Operations on
Large Row-store Tables
35 Suggestion 3.13: Avoid Getting Large Result Sets
(Except for Data Exports)
36 Suggestion 3.14: Avoiding the Usage of SELECT * for
Queries
37 Suggestion 3.15: Using WITH RECURSIVE with
Defined Termination Condition for Recursion
38 Suggestion 3.16: Setting Schema Prefix for Table
and Function Access
39 Suggestion 3.17: Identifying an SQL Statement with
a Unique SQL Comment
40 | Store | - Suggestion 4.1: Simplifying Stored Procedures and
d Avoiding Nesting
proce . . .
41 | dure Rule 4.2: Avoiding Non-CREATE DDL Operations in
devel Stored Procedures
opme
nt
specif
icatio
ns

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

2.2 GaussDB(DWS) Connection Management
Specifications

Rule 1.1: Configuring Load Balancing for GaussDB(DWS) Clusters
(11 NOTE

Impact of rule violation:
e Load imbalance causes performance problems and even service interruption.

e When a CN is faulty, services cannot be automatically recovered or the recovery may
take a long time.

Solution:

e Configure ELB load balancing and connect the application to the load balancing IP
address.

e For how to use the JDBC for load balancing, see Configuring JDBC to Connect to a
Cluster (Load Balancing Mode).

Rule 1.2: Ending the Database Connection After Necessary Operations
(Except in Connection Pool Scenarios)

(10 NOTE

Impact of rule violation:

e The number of idle connections exceeds the maximum limit, causing connection
creation failure.

e Resource overload occurs because there are too many idle connections.
Solution:

e After the connection between the application and the database is established and used,
manually end the connection.

e Set the session_timeout parameter on the service side to set the idle timeout duration.
The connection will be automatically ended when the idle timeout duration expires.

Rule 1.3: Ensuring a Started Transaction Is Committed or Rolled Back
(11 NOTE

Impact of rule violation:

e If a transaction remains uncommitted for an extended period, it blocks operations such
as ALTER, thereby affecting all services.

e The number of idle connections exceeds the maximum limit, causing connection
creation failure.

Solution:

e autocommit is enabled by default, so there is no need to manually commit any
transaction unless you modify the default setting.

e If a transaction is explicitly started, it must be explicitly ended (either by committing or
rolling back) once the relevant operations are finished.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0169.html
https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0169.html

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Rule 1.4: Ensuring the Idle Timeout Duration Is Shorter Than
SESSION_TIMEOUT Value When Connection Pool Is Used for Applications

(11 NOTE

Impact of rule violation:

e The idle timeout mechanism on the service side clears connections in the connection
pool, which negatively impacts connection reuse.

Solution:

e To ensure everything works correctly, make sure the idle timeout duration of the
connection pool is shorter than the SESSION_TIMEOUT value in GaussDB(DWS). It is
advised to adjust the idle timeout duration rather than modifying the
SESSION_TIMEOUT value.

Rule 1.5: Restoring Parameters to Default Values in Connections Before
Returning Them to the Pool

(11 NOTE

Impact of rule violation:

e When a connection is reused by another service, the parameters set by the service may
also be reused. This can result in performance issues or service errors.

Solution:

e Before returning the connection to the connection pool, use SET SESSION
AUTHORIZATION DEFAULT;RESET ALL; to reset parameters.

Notes:

When connection pool is used for applications, if you set the global GUC parameter using
GS_GUC RELOAD in GaussDB(DWS), restart the connection pool for the changes to be
applied. This is because the modification only affects new connections in the connection
pool.

Rule 1.6: Manually Clearing Temporary Tables Created with a Connection
Before Returning it to the Pool

(11 NOTE

Impact of rule violation:

e When a connection is reused by other services, an error may be reported when a
temporary table is created.

Solution:

e Before returning a connection to the connection pool, use DROP to clear the temporary
table created by the current session.

2.3 GaussDB(DWS) Object Design Specifications

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

2.3.1 DATABASE Object Design

Rule 2.1: Avoiding Direct Usage of Built-in Databases Such As postgres and
gaussdb

(11 NOTE

Impact of rule violation:

e If the code or the compatibility setting of the built-in databases does not meet service
requirements, you may need to migrate your data again.

e The time for changes to be applied may be prolonged if all services use built-in
databases.

Solution:

e To meet the specific requirements of each service, it is recommended to create a
dedicated database and allocate it accordingly.

Rule 2.2: Selecting the Suitable Database Code During Database Creation
(1] NOTE

Impact of rule violation:

e Selecting the wrong database code may result in displaying garbled characters, and it is
not possible to directly change the database code. In such cases, you will need to create
a database and import the data again.

Solution:

e Itis advisable to set the ENCODING to the UTF-8 format during database creation,
unless there are specific requirements for a different encoding.

Rule 2.3: Choosing the Right Database Type for Compatibility with the
Database to Be Created

(11 NOTE

Impact of rule violation:

e Selecting the wrong type can lead to behavior inconsistencies after migrating the
database from a different vendor to GaussDB(DWS). Unfortunately, it is not possible to
directly change the compatibility setting. The only solution is to create a database and
import the data again.

Solution:

e GaussDB(DWS) supports compatibility with databases like Teradata, Oracle, and MySQL.
You can specify DBCOMPATIBILITY to set the compatible database type when creating
a database.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Suggestion 2.4: Storing Objects with Associated Calculations in the Same
Database

(10 NOTE

Impact of rule violation:

e Cross-database access tends to have poorer performance compared to performing
operations within the same database.

Solution:

e If multiple databases are created, it is advisable to store objects requiring associated
calculations in the same database.

2.3.2 USER Object Design

Rule 2.5: Following the Least Privilege Principle and Avoiding Running
Services Using Users with Special Permissions

(11 NOTE

Impact of rule violation:

e Super users and administrators have full access to a lot of things in the system and
using these users to run services can pose security and control risks.

Solution:

e Itis advised to use common users for service running, reserving users with special
permissions for management operations.

Rule 2.6: Avoiding the Use of a Single Database Account for All Services
(110 NOTE

Impact of rule violation:

e Cross-database access typically has lower performance compared to accessing
operations within the same database.

Solution:
e Create administrators , service operation users, and O&M users for different purposes.

e Use different users to run different services for improved management and allocation of
services and resources.

2.3.3 Schema Object Design

Suggestion 2.7: Avoiding the Creation of Objects Under Other Users' Private
Schemas

(10 NOTE

A private schema refers to a schema with the same name as the user when the user is
created. This schema is only accessible to the user.

Impact of rule violation:

e When you create an object under someone else's private schema, the permissions for
that object are determined by the schema owner.

Solution:

e Create objects under your own private schema to have full control over the object
permissions.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

2.3.4 TABLESPACE Object Design

Rule 2.8 Avoiding Tablespace Customization
(1 NOTE

Impact of rule violation:

e In a distributed scenario, using a custom tablespace to create a table can result in the
table data not being stored in a distributed manner by DN, leading to storage skew.

Solution:

e Use the built-in default tablespace when creating a table object.

2.3.5 TABLE Object Design (Prioritized)

Rule 2.9: Selecting the Optimal Distribution Method and Columns During
Table Creation

(1 NOTE

Impact of rule violation:

e Incorrect distribution method and column selection can cause storage skew, deteriorate
access performance, and even overload storage and computing resources.

Solution:

e When creating a table, it is important to use the DISTRIBUTE BY clause to explicitly
specify the distribution method and distribution columns. The table below provides
principles for selecting the distribution columns.

Table 2-2 Distribution column selection

Distribut | Description Scenario

ion

Method

Hash Table data is distributed to each Large tables and fact tables

DN based on the mapping
between hash values generated
by distribution columns and DNs.

e Advantage: Each DN contains
only part of data, which is
space-saving.

e Disadvantage: The even
distribution of data depends
heavily on the selection of
distribution columns. If the
join condition does not include
the distribution columns of
each node, data
communication between
nodes will be required.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

Data Warehouse Service

Developer Guide 2 GaussDB(DWS) Development Design Proposal
Distribut | Description Scenario
ion
Method
RoundRo | Table data is distributed to DNs Large tables, fact tables, and
bin in polling mode. tables without proper
e Advantage: Each DN only distribution columns

contains a portion of the data,
taking up a small amount of
space. Data is evenly
distributed in polling mode
and does not rely on
distribution columns,
eliminating data skews.

e Disadvantage: Using
distribution column conditions
cannot eliminate or reduce
inter-node communication. In
this scenario, the performance
is inferior to that of HASH.

Replicati | Full data in a table is copied to Small tables and dimension
on each DN in the cluster. tables

e Advantage: Each DN holds the
complete data of the table.
The JOIN operation avoids
data communication between
nodes, reducing network
overhead and the overhead of
starting and stopping the
STREAM thread.

e Disadvantage: Each DN
retains complete table data,
which is redundant and
occupies more storage space.

Rule 2.10 Selecting an Optimal Storage Type During Table Creation
(110 NOTE

Impact of rule violation:

e Row-store tables are not properly used. As a result, the query performance is poor and
resources are overloaded.

e Improper use of column-store tables causes CU expansion, poor performance, and
resource overload.

Solution:

e When creating a table, use orientation to explicitly specify the storage type. The
following table describes the rules for selecting a storage type.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

Data Warehouse Service
Developer Guide

2 GaussDB(DWS) Development Design Proposal

Table 2-3 Storage type selection

Storag
e Type

Applicable Scenario

Inapplicable Scenario

Row
storage

e DML addition, deletion, and

modification: scenarios with
many UPDATE and DELETE
operations

DML query: point query (simple
index-based query that returns
only a few records)

DML query: statistical analysis
query (with mass data involved
in GROUP and JOIN processes)

CAUTION
When creating a row-store table
(orientation is set to row), do not
specify the compress attribute or
use a row-store compressed table.

n
storage

Colum | e

DML addition, deletion, and
modification: INSERT batch
import scenario (The number of
data records imported to a
single partition at a time is
approximately 60,000 times the
number of DNs or greater.)

DML query: statistical analysis
query (with mass data involved
in GROUP and JOIN processes)

e DML addition, deletion, and
modification: scenarios with
many UPDATE/DELETE

operations or a small number

of INSERT operations

e DML query: high-concurrency

point query

Rule 2.11 Selecting an Optimal Partitioning Policy During Table Creation

(11 NOTE

Impact of rule violation:

Without partitioning, query performance and data governance efficiency will deteriorate.
The larger the data volume, the greater the deterioration. The advantages of partitioning

include:

e High query performance: The system queries only the concerned partitions rather than

the whole table, improving the query efficiency.

e Improved data governance efficiency: In the data lifecycle management scenario,
performing TRUNCATE or DROP PARTITION on historical partitions is much more
efficient and effective than using DELETE.

Solution:

e Design partitions for tables that contain fields of the time type.

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

15

Data Warehouse Service

Developer Guide

2 GaussDB(DWS) Development Design Proposal

Table 2-4 Partitioning policy selection

Partitioning | Description Scenario

Policy

Range Data is stored in different 1. The date or time field is used
partitioning partitions based on the range as the partition key.

of partition key values. The p)
partition key ranges are
consecutive but not

. Most queries contain
partition keys as filter criteria.

3. Periodically delete data based

overlapped.
PP on the partition key.
List Partitioning is performed 1. A specific number of
partitioning based on a unique list of enumerated values are used
partition key values. as partition key values.

2. Most queries contain
partition keys as filter criteria.

Suggestion 2.12: Designing Table Columns for Fast and Accurate Queries

(11 NOTE

Impact of rule violation:

e The system may have limited storage space and low query efficiency.

Solution:

1.

Design the table columns well for fast queries.
e If possible, use integers instead of floating points or characters.

e When using variable-length character type, specify the maximum length based on
data features.

Design the table columns well for accurate queries.
e Use the time type instead of the character type to store time data.

e Use the minimum numeric type that meets the requirements. Avoid using bigint if
int or smallint is sufficient to save space.

Correctly use the constraints.

e Add NOT NULL constraints to columns that never have NULL values. The optimizer
automatically optimizes the columns in certain scenarios.

e Do not use the DEFAULT constraint for fields that can be supplemented at the
service layer. Otherwise, unexpected results may be generated during data loading.

Avoid unnecessary data type conversion.

e In tables that are logically related, columns having the same meaning should use
the same data type.

e Different types of comparison operations cause data type conversion, which may
cause index and partition pruning failures and affect query performance.

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Suggestion 2.13: Avoiding the Usage of Auto-increment Columns or Data
Types

(11 NOTE

Impact of rule violation:

e When auto-increment sequences or data types are heavily used, the GTM may become
overloaded and slow down sequence generation.

Solution:
e Set a UUID to obtain a unique ID.

e If the auto-increment sequence must be used and there is no strict requirement for
increasing order, you can set the cache, for example, 1000, to reduce the pressure on
GTM.

2.3.6 INDEX Object Design (Prioritized)

Rule 2.14: Creating Necessary Indexes and Selecting Optimal Columns and
Sequences for Them

(1 NOTE

Impact of rule violation:

e Redundant indexes consume unnecessary space and can impact data import efficiency.
e The column sequence in the composite index is incorrect, affecting the query efficiency.
Best practices:

The following conditions must be met when indexes are used:

e The index column should be a column commonly used for filtering or joining conditions.
e The index column should have more distinct values.

e When creating a multi-column combination index, prioritize columns with more distinct
values.

e The number of indexes in a single table should be limited to less than five. You can
control the number of indexes by combining them.

e In scenarios where data is added, deleted, or modified in batches, delete the index first
and then add it back after the batch operation is complete to improve performance
(real-time access may be affected).

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Suggestion 2.15: Optimizing Performance by Choosing the Right Index Type
and Avoiding Indexes for Column-Store Tables

(11 NOTE

Impact of rule violation:

e Incorrect indexes do not improve column-store access and can negatively affect query
performance.

Solution:

1. Specify the appropriate index type when creating indexes, avoiding the default psort
index.

2. In point queries where small amounts of data need to be retrieved from mass datasets,
consider creating a B-tree index.

3. For high range query performance, create a partial cluster key (PCK) to quickly filter and
scan fact tables using the min/max sparse index. Comply with the following rules to
create a PCK:

e [Notice] Only one PCK can be created in a table. A PCK can contain multiple
columns, preferably no more than two columns.

e [Suggestion] Create a PCK for the filter condition column of the expression (e.g.,
col op const, where op is the operator =, >, >=, <=, and <, and const is a constant
value).

2.3.7 VIEW Object Design

Suggestion 2.16: Limiting View Nesting to Three Layers
(11 NOTE

Impact of rule violation:

e Too many nested views can lead to unstable execution plans and unpredictable time
consumption.

e The risk of rebuilding objects on which views depend is high and the probability of lock
conflicts increases.

Solution:
e Create views based on physical tables.

2.4 GaussDB(DWS) SQL Statement Development
Specifications

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

2.4.1 DDL Operations

Suggestion 3.1: Avoiding Performing DDL Operations (Except CREATE)
During Peak Hours or in Long Transactions

(11 NOTE

Impact of rule violation:

DDL operations like ALTER, DROP, TRUNCATE, REINDEX, and VACUUM FULL have high
lock levels and can block services during execution.

e During peak hours, these DDL operations with high lock levels should be avoided to
prevent service blockage.

e Long transactions involving DDL operations with held or waited locks can also block
services.

Solution:

e Choose off-peak hours or maintenance windows for DDL operations based on service
periods. Specify the DDL execution environment and time consumption to avoid service
blockage due to long lock waiting duration.

Rule 3.2: Specifying the Scope of Objects to Be Deleted When Using DROP

A DANGER

Impact of rule violation:

Be cautious when using DROP OBJECT (e.g., DATABASE, USER/ROLE, SCHEMA,
TABLE, VIEW) as it may cause data loss, especially with CASCADE deletions.

e DROP DATABASE: deletes all objects in the database.
e DROP USER: deletes the USER object and its schemas and table objects.
e DROP SCHEMA: deletes all objects in the schema.

e DROP TABLE: deletes the TABLE object and the indexes and views that depend
on it.

Solution:

e Exercise caution when performing the DROP operation and back up data in
advance.

2.4.2 INSERT Operation

Rule 3.3: Replacing INSERT with COPY for Efficient Multi-Value Batch
Insertion

(11 NOTE

Impact of rule violation:

e Parsing multiple values is time-consuming and resource-intensive, leading to low
efficiency when importing data into the database.

Solution:

e Instead of using INSERT VALUES, the frontend should use APIs like CopyManager of
JDBC.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Suggestion 3.4: Avoiding Performing Real-time INSERT Operations on
Common Column-store Tables

(11 NOTE

Impact of rule violation:

e Importing a small batch of data in real-time to a common column-store table can
significantly expand the small CU, occupying a lot of storage space and impacting the
query performance.

Solution:

e In real-time INSERT scenarios, evaluate the amount of data to be imported at once and
the total amount of data. If the total amount of data is small, use row-store tables.

e In the real-time INSERT scenario, import around 60,000 data records to a single table,
partition, or DN at a time. The minimum import batch is 5,000 data records.

e In the real-time INSERT scenario, use H-Store column-store tables (for version 8.3.0 or
later).

2.4.3 UPDATE and DELETE Operations

Suggestion 3.5: Preventing Simultaneous Updates or Deletions of the Same
Row in a Row-store Table

(11 NOTE

Impact of rule violation:

e Concurrent UPDATE and DELETE operations on row-store tables may cause row lock
blockage and distributed deadlocks, which can lead to service errors and performance
degradation.

Solution:

e Group UPDATE and DELETE operations by primary key or distribution column. Perform
parallel operations between groups while keeping operations within a group serial.

Suggestion 3.6: Avoiding Frequent or Simultaneous UPDATE and DELETE
Operations on Column-store Tables

(11 NOTE

Impact of rule violation:

e Frequent UPDATE and DELETE operations on column-store tables can result in CU
bloat, leading to large space occupation and decreased access performance.

e Concurrent UPDATE and DELETE operations on row-store tables may cause row lock
blockage and distributed deadlocks, which can lead to service errors and performance
degradation.

Solution:
e Design tables with frequent UPDATE and DELETE operations as row-store tables.

e Group UPDATE and DELETE operations by primary key or distribution column. Perform
parallel operations between groups while keeping operations within a group serial.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

2.4.4 SELECT Operation

Rule 3.7: Avoiding Executing SQL Statements That Do Not Support
Pushdown

(11 NOTE

GaussDB(DWS) uses a distributed architecture, and to achieve optimal performance, SQL
statements need to be pushed down to utilize distributed computing resources.

Impact of rule violation:

e SQL statements that are not pushed down may experience poor execution performance
and, in severe cases, can lead to CN resource bottlenecks, impacting overall services.

Solution:

e Do not use syntax or functions that cannot be executed near the data source. For
details, see Optimizing Statement Pushdown.

Rule 3.8: Specifying Association Conditions when Multiple Tables Are
Associated

(10 NOTE

Impact of rule violation:

e If no association condition is specified when linking multiple tables, it will result in a
Cartesian product calculation. This can lead to an expanded result set, posing risks of
performance issues and resource overload.

Solution:

e Specify filter and association conditions for each table during the association process.

Rule 3.9: Ensuring Consistency of Data Types in Associated Fields across
Multiple Tables

(11 NOTE

Impact of rule violation:

e Ensure consistent data types for associated fields to avoid unnecessary type conversions,
data redistribution issues, and hindered generation of optimal plans.

Solution:
e Use the same data type for associated fields when tables are associated.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

https://support.huaweicloud.com/eu/devg-dws/dws_04_0447.html

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Suggestion 3.10: Avoiding Function Calculation on Association and Filter
Condition Fields

(11 NOTE

Impact of rule violation:

e In cases where function calculations are involved in association and filter conditions, the
optimizer may fail to obtain accurate field statistics, impacting execution performance.

Solution:

e When comparing association condition fields, process the data before importing it into
the database, especially when calculations are required for comparison.

e When filter criteria are compared with constants, perform function calculation only on
constant columns. The following is an example:
SELECT id, from_image_id, from_person_id, from_video_id
FROM face_data
WHERE SS.DEL_FLAG ="'N'

AND NVL(SS.DELETE_FLAG, 'N') ='N'

The modification is as follows:

SELECT id, from_image_id, from_person_id, from_video_id
FROM face_data

where SS.DEL_FLAG ='N'

AND (SS.DELETE_FLAG = 'N' or SS.DELETE_FLAG is null)

Suggestion 3.11: Performing Pressure Tests and Concurrency Control for
Resource-intensive SQL Statements

(11 NOTE

Impact of rule violation:

e Storage and computing resources are overloaded, and the overall running performance
deteriorates.

Solution:

A resource-intensive SQL statement contains:

e A large number of UNION ALL.

e A large number of AGGs (such as COUNT DISTINCT and MAX).
e A lot of JOIN operations for a large number of tables.

e A large number of STREAM operators (plan dimension).

Before rolling out, conduct pressure tests and implement concurrency control for certain
SQL statements. If the resource capacity is exceeded, optimizing the service should be
prioritized before reassessing the rollout plan.

Rule 3.12: Avoiding Excessive COUNT Operations on Large Row-store Tables
(11 NOTE

If SSDs or other high-performance disk types are used, it may not be necessary to adhere
strictly to this rule, but it is still crucial to monitor the I/O consumption.

Impact of rule violation:

e Performing frequent COUNT operations on large row-store tables can consume a
significant amount of 1/O resources, potentially leading to performance issues if an I/O
bottleneck occurs.

Solution:

e Reduce the frequency of COUNT operations, use result caching, and collect statistics by
partition to minimize /O consumption.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Suggestion 3.13: Avoid Getting Large Result Sets (Except for Data Exports)
(11 NOTE

Impact of rule violation:

e If you do not need to view all the results, querying ultra-large result sets becomes
inefficient and wasteful in terms of resources.

Solution:
e Use the LIMIT clause to retrieve only the necessary result segments.

e Use a cursor to obtain the result sets by segment and set an appropriate value for
FETCH SIZE if you need to query a large number of result sets.

Suggestion 3.14: Avoiding the Usage of SELECT * for Queries
(11 NOTE

Impact of rule violation:

e Querying unnecessary columns increases the computing load and wastes computing
resources.

Solution:

e Clearly list the fields required for the query in the SELECT statement to improve the
query performance.

Suggestion 3.15: Using WITH RECURSIVE with Defined Termination
Condition for Recursion

(1 NOTE

Impact of rule violation:

e In cases where there is no specific termination condition, recursive operations can enter
an infinite loop.

e Recursive operations generate duplicate data and occupy excessive resources.
Solution:

e Design proper termination conditions based on the volume and characteristics of the
data in the service table.

Suggestion 3.16: Setting Schema Prefix for Table and Function Access
(11 NOTE

Impact of rule violation:

e If the schema name prefix is not specified, the search will be performed sequentially
across all tablespaces based on the tablespace list in the current search_path. This can
lead to accessing unexpected tables due to schema switchover.

Solution:

e To enhance readability, stability, and portability, explicitly specify the schema prefix as
SCHEMA. when accessing tables and function objects.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

Suggestion 3.17: Identifying an SQL Statement with a Unique SQL Comment
(11 NOTE

Impact of rule violation:

e The service's source tracing capability is limited. You can only verify it with R&D
engineers using the database, user name, and client IP address.

Solution:

e You are advised to use query_band. The following is an example:
SET query_band='JobName=abc;AppName=test;UserName=user’,

e Add a unique comment for each SQL statement to facilitate troubleshooting and
application performance analysis. The following is an example of such comment.
/* Module name_Tool name_Job name_Step */, for example, /* mca_python_xxxxxx_step1 */ insert
into xxx select ... from

2.5 GaussDB(DWS) Stored Procedure Development
Specifications

Suggestion 4.1: Simplifying Stored Procedures and Avoiding Nesting
(11 NOTE

Impact of rule violation:

e The maintenance cost for complex and nested stored procedures is high, making fault
locating and recovery time-consuming.

Solution:

e Avoid using stored procedures altogether or limit their usage to a single layer. Nested
stored procedures should be avoided.

e Create a corresponding log table for the stored procedure design and record information
before and after key steps in the log table. Follow the steps below to implement this.

Saving and Viewing Logs

Step 1 Create a log table.

CREATE TABLE func_exec_log

(

id varchar2(32) default lower(sys_guid()),
pro_name varchar2(60),

exec_times int,

log_date date,

deal_date date,

log_mesage text

’

Step 2 Create a table and import data.

CREATE TABLE demo_table(data_id int, data_number int);
INSERT INTO demo_table values(generate_series(1,1000),generate_series(1,1000));

Step 3 Create a service stored procedure.

CREATE OR REPLACE FUNCTION demo_table_process(out exe_info text)
LANGUAGE plpgsql

AS $$

declare v_count int;

pro_result text;

fun_name text;

exec_times int;

begin

fun_name := 'demo_table_process';

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

Data Warehouse Service

Developer Guide

2 GaussDB(DWS) Development Design Proposal

Step 4

Step 5

Step 6

Step 7

select nvl(max(exec_times), '0") + 1 into exec_times from func_exec_log where pro_name = fun_name;
-- Insert data into the service table.

insert into demo_table values (dbms_random.value(1, 1000):int,generate_series(1,
dbms_random.value(10000, 20000)::int));

get diagnostics v_count = ROW_COUNT;

exe_info = sysdate || '# step1:insert count:' || v_count || ' rows;';

-- Delete specified data from a service table.

delete from demo_table where data_id = dbms_random.value(1, 1000):int;

get diagnostics v_count = ROW_COUNT;

exe_info = exe_info || sysdate || '# step2:delete count:' || v_count || ' rows;';

-- Update service table data.

update demo_table set data_number = dbms_random.value(1, 100)::int where data_id =
dbms_random.value(1, 1000)::int;

exe_info = exe_info || sysdate || '# step3:update count:' || sql%rowcount || ' rows';

-- Record logs either before the entire program ends or after each step completes. You can also create a
function specifically for logging purposes.

insert into func_exec_log(pro_name, exec_times, log_date, deal_date, log_mesage) values
(fun_name,exec_times,sysdate,split_part(regexp_split_to_table(exe_info, ';'), '#',
1),split_part(regexp_split_to_table(exe_info, "), '#', 2));

-- EXCEPTION is used to ensure that logs can be properly recorded when the insertion, update, or deletion
exits abnormally.

EXCEPTION

WHEN OTHERS THEN

pro_result := exe_info || sysdate || '# exception error message is: ' || sqlerrm;

insert into func_exec_log(pro_name, exec_times, log_date, deal_date, log_mesage)
values(fun_name,exec_times,sysdate,split_part(regexp_split_to_table(pro_result, ';"), '#',
1),split_part(regexp_split_to_table(pro_result, ';"), '#', 2));

END; $$;

Invoke the stored procedure (normal execution).
SELECT demo_table_process();

View the created log table to check the service running status.
SELECT * FROM func_exec_log ORDER BY log_date desc,deal_date,log_mesage;

demodb=# select * from func_exec_log erder by log date desc,deal date,log mesage;
pro_name log_date al_da log_mesage

f7e0fffe | demo_table proce 20 || 2022-11- sert count:1912
f7eefffe | demo_table_process 2022-11-15 || 2022-11- 33 s elete count:22 rows

f7eefffe | demo_table_process 1| 2022-11-15 || 2022-11- 34 s update count:15 rows

Invoke the stored procedure again to construct an execution exception.

SELECT demo_table_process(); -- Delete the data_number column of demo_table to construct an exception,
and then call the stored procedure again.

View the log to check the service running status.

--—-End

Rule 4.2: Avoiding Non-CREATE DDL Operations in Stored Procedures

(1 NOTE

Impact of rule violation:

e A stored procedure is a large transaction. If a non-CREATE DDL operation, especially one
with a high lock level, is executed, it can block external access to related tables during
the stored procedure's execution window.

Solution:

e Avoid using non-CREATE DDL operations within stored procedures whenever possible. If
there is a necessity to use such operations, carefully assess the duration of the stored
procedures and the potential impact of the DDL operations. It is advised to schedule
non-CREATE DDL operations during off-peak hours when external access services are
less active.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

Data Warehouse Service

Developer Guide

2 GaussDB(DWS) Development Design Proposal

2.6 Detailed Design Rules for GaussDB(DWS) Objects

2.6.1 GaussDB(DWS) Database Object Naming Rules

The name of a database object must contain 1 to 63 characters, start with a letter
or underscore (_), and can contain letters, digits, underscores (_), and dollar signs

($).

[Proposal] Do not use reserved or non-reserved keywords to name database
objects.

(10 NOTE

You can run SELECT * FROM pg_get_keywords() to query GaussDB(DWS) keywords
or view the keywords in section "Keywords" in SQL Syntax Reference.

[Proposal] Do not use strings enclosed in double quotation marks to define
database object names. In GaussDB(DWS), double quotation marks are used
to specify that the enclosed database object names are case sensitive. Case
sensitivity of database object names makes problem location difficult.

[Proposal] Use the same naming format for database objects.

In a system undergoing incremental development or service migration,
you are advised to comply with its historical naming conventions.

A database object name consists of letters, digits, and underscores (_);
and cannot start with a digit. You are advised to use multiple words
separated with hyphens (-).

You are advised to use intelligible names and common acronyms or
abbreviations for database objects. Acronyms or abbreviations that are
generally understood are recommended. For example, you can use
English words indicating actual business terms. The naming format
should be consistent within a cluster.

A variable name must be descriptive and meaningful. It must have a
prefix indicating its type.

[Proposal] The name of a table object should indicate its main characteristics,
for example, whether it is an ordinary, temporary, or unlogged table.

An ordinary table name should indicate the business relevant to a data
set.

Temporary tables are named in the format of tmp_Suffix.
Unlogged tables are named in the format of ul_Suffix.
Foreign tables are named in the format of f_Suffix.

2.6.2 GaussDB(DWS) Database Object Design Rules

2.6.2.1 GaussDB(DWS) Database and Schema Design Rules

In GaussDB(DWS), services can be isolated by databases and schemas. Databases
share little resources and cannot directly access each other. Connections to and
permissions on them are also isolated. Schemas share more resources than

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

Data Warehouse Service

Developer Guide

2 GaussDB(DWS) Development Design Proposal

databases do. User permissions on schemas and subordinate objects can be
controlled using the GRANT and REVOKE syntax.

You are advised to use schemas to isolate services for convenience and
resource sharing.

It is recommended that system administrators create schemas and databases
and then assign required permissions to users.

Database Design Suggestions

Create databases as required. Do not use the default gaussdb database of a
cluster.

Create a maximum of three user-defined databases in a cluster.

To make your database encoding compatible with most characters, you are
advised to use the UTF-8 encoding when creating a database.

Exercise caution when you set ENCODING and DBCOMPATIBILITY
configuration items during database creation. In GaussDB(DWS),
DBCOMPATIBILITY can be set to TD, Oracle, or MySQL to be compatible
with Teradata, Oracle, or MySQL syntax, respectively. Syntax behavior may
vary with the three modes. For details, see Syntax Compatibility Differences
Among Oracle, Teradata, and MySQL.

By default, a database owner has all permissions for all objects in the
database, including the deletion permission. Exercise caution when using the
deletion permission.

Schema Design Suggestions

To let a user access an object in a schema, grant the usage permission and
the permissions for the object to the user, unless the user has the sysadmin
permission or is the schema owner.

To let a user create an object in the schema, grant the CREATE permission for
the schema to the user.

By default, a schema owner has all permissions for all objects in the schema,
including the deletion permission. Exercise caution when using the deletion
permission.

2.6.2.2 GaussDB(DWS) Table Design Rules

GaussDB(DWS) uses a distributed architecture. Data is distributed on DNs. Comply
with the following principles to properly design a table:

[Notice] Evenly distribute data on each DN to prevent data skew. If most data
is stored on several DNs, the effective capacity of a cluster decreases. Select a
proper distribution column to avoid data skew.

[Notice] Evenly scan each DN when querying tables. Otherwise, DNs most
frequently scanned will become the performance bottleneck. For example,
when you use equivalent filter conditions on a fact table, the nodes are not
evenly scanned.

[Notice] Reduce the amount of data to be scanned. You can use the pruning
mechanism of a partitioned table.

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

e [Notice] Minimize random 1I/O. By clustering or local clustering, you can
sequentially store hot data, converting random 1/O to sequential I/O to reduce
the cost of I/O scanning.

e [Notice] Try to avoid data shuffling. To shuffle data is to physically transfer it
from one node to another. This unnecessarily occupies many network
resources. To reduce network pressure, locally process data, and to improve
cluster performance and concurrency, you can minimize data shuffling by
using proper association and grouping conditions.

Selecting a Storage Mode

[Proposal] Selecting a storage mode is the first step in defining a table. The
storage mode mainly depends on the user's service type. For details, see Table
2-5.

Table 2-5 Table storage modes and scenarios

Storage Application Scenarios
Mode

Row storage | e Point queries (simple index-based queries that only return a
few records)

e Scenarios requiring frequent addition, deletion, and

modification
Column e Statistical analysis queries (requiring a large number of
storage association and grouping operations)

e Ad hoc queries (using uncertain query conditions and unable
to utilize indexes to scan row-store tables)

When creating a table for analysis, make sure to set the ORIENTATION to column
storage explicitly.

CREATE TABLE public.t1

(

id integer not null,

data integer,

age integer

)

WITH (ORIENTATION =COLUMN);

Selecting a Distribution Mode

[Proposal] Comply with the following rules to distribute table data.

Table 2-6 Table distribution modes and scenarios

Distribution | Description Application Scenarios

Mode

Hash Table data is distributed on Fact tables containing a large
all DNs in a cluster by hash. amount of data

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

Data Warehouse Service

Developer Guide 2 GaussDB(DWS) Development Design Proposal
Distribution Description Application Scenarios
Mode
Replication Full data in a table is stored Dimension tables and fact
on every DN in a cluster. tables containing a small

amount of data

Round-robin Each row of the table is sent | Fact tables that contain a large

to each DN in turn. amount of data and cannot
Therefore, data is evenly find a proper distribution
distributed on each DN. column in hash mode

Selecting a Partitioning Mode

Comply with the following rules to partition a table containing a large amount of
data:

e [Proposal] Create partitions on columns that indicate certain ranges, such as
dates and regions.

e [Proposal] A partition name should show the data characteristics of a
partition. For example, its format can be Keyword+Range characteristics.

e [Proposal] Set the upper limit of a partition to MAXVALUE to prevent data
overflow.

The example of a partitioned table definition is as follows:

CREATE TABLE staffS_p1

(
staff_ID NUMBER(6) not null,
FIRST_NAME VARCHAR2(20),
LAST_NAME VARCHAR2(25),
EMAIL VARCHAR2(25),
PHONE_NUMBER VARCHAR2(20),
HIRE_DATE DATE,
employment_ID VARCHAR2(10),
SALARY NUMBER(8,2),
COMMISSION_PCT NUMBER(4,2),
MANAGER_ID NUMBER(6),
section_ID NUMBER(4)

)

PARTITION BY RANGE (HIRE_DATE)

PARTITION HIRE_19950501 VALUES LESS THAN ('1995-05-01 00:00:00'),
PARTITION HIRE_19950502 VALUES LESS THAN ('1995-05-02 00:00:00'),
PARTITION HIRE_maxvalue VALUES LESS THAN (MAXVALUE)

)

Selecting a Distribution Key

Selecting a distribution key is important for a hash table. An improper distribution
key may cause data skew. As a result, the I/O load is heavy on several DNs,
affecting the overall query performance. After you select a distribution policy for a
hash table, check for data skew to ensure that data is evenly distributed. Comply
with the following rules to select a distribution key:

e [Proposal] Select a column containing discrete data as the distribution key, so
that data can be evenly distributed on each DN. If a single column is not

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

discrete enough, consider using multiple columns as distribution keys. You can
select the primary key of a table as the distribution key. For example, in an
employee information table, select the certificate number column as the
distribution key.

e [Proposal] If the first rule is met, do not select a column having constant filter
conditions as the distribution key. For example, in a query on the dwcjk table,
if the zqdh column contains the constant filter condition zqdh='000001",
avoid selecting the zqdh column as the distribution key.

e [Proposal] If the first and second rules are met, select the join conditions in a
query as distribution keys. If a join condition is used as a distribution key, the
data involved in a join task is locally distributed on DNs, which greatly
reduces the data flow cost among DNs.

2.6.2.3 GaussDB(DWS) Column Design Rules

Selecting a Data Type

Comply with the following rules to improve query efficiency when you design
columns:

e [Proposal] Use the most efficient data types allowed.

If all of the following number types provide the required service precision,
they are recommended in descending order of priority: integer, floating point,
and numeric.

e [Proposal] In tables that are logically related, columns having the same
meaning should use the same data type.

e [Proposal] For string data, you are advised to use variable-length strings and
specify the maximum length. To avoid truncation, ensure that the specified
maximum length is greater than the maximum number of characters to be
stored. You are not advised to use CHAR(n), BPCHAR(n), NCHAR(n), or
CHARACTER(n), unless you know that the string length is fixed.

For details about string types, see Common String Types.

Common String Types

Every column requires a data type suitable for its data characteristics. The
following table lists common string types in GaussDB(DWS).

Table 2-7 Common string types

Parameter Description Max. Storage
Capacity
CHAR(n) Fixed-length string, where n 10 MB

indicates the stored bytes. If the
length of an input string is smaller
than n, the string is automatically
padded to n bytes using NULL
characters.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

Data Warehouse Service
Developer Guide

2 GaussDB(DWS) Development Design Proposal

Parameter

Description

Max. Storage
Capacity

CHARACTER(n)

Fixed-length string, where n
indicates the stored bytes. If the
length of an input string is smaller
than 7, the string is automatically
padded to n bytes using NULL
characters.

10 MB

NCHAR(n)

Fixed-length string, where n
indicates the stored bytes. If the
length of an input string is smaller
than n, the string is automatically
padded to n bytes using NULL
characters.

10 MB

BPCHAR(n)

Fixed-length string, where n
indicates the stored bytes. If the
length of an input string is smaller
than n, the string is automatically
padded to n bytes using NULL
characters.

10 MB

VARCHAR(n)

Variable-length string, where n
indicates the maximum number of
bytes that can be stored.

10 MB

CHARACTER
VARYING(n)

Variable-length string, where n
indicates the maximum number of
bytes that can be stored. This data
type and VARCHAR(n) are different
representations of the same data

type.

10 MB

VARCHAR2(n)

Variable-length string, where n
indicates the maximum number of
bytes that can be stored. This data
type is added to be compatible with
the Oracle database, and its
behavior is the same as that of
VARCHAR(N).

10 MB

NVARCHAR2(n)

Variable-length string, where n
indicates the maximum number of
bytes that can be stored.

10 MB

TEXT

Variable-length string. Its maximum
length is 8203 bytes less than 1 GB.

8203 bytes less
than 1 GB

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

2.6.2.4 GaussDB(DWS) Constraint Design Rules

DEFAULT and NULL Constraints

e [Proposal] If all the column values can be obtained from services, you are not
advised to use the DEFAULT constraint, because doing so will generate
unexpected results during data loading.

e [Proposal] Add NOT NULL constraints to columns that never have NULL
values. The optimizer automatically optimizes the columns in certain
scenarios.

e [Proposal] Explicitly name all constraints excluding NOT NULL and DEFAULT.

Partial Cluster Key

A partial cluster key (PCK) is a local clustering technology used for column-store
tables. After creating a PCK, you can quickly filter and scan fact tables using min
or max sparse indexes in GaussDB(DWS). Comply with the following rules to
create a PCK:

e [Notice] Only one PCK can be created in a table. A PCK can contain multiple
columns, preferably no more than two columns.

e [Proposal] Create a PCK on simple expression filter conditions in a query. Such
filter conditions are usually in the form of col op const, where col specifies a
column name, op specifies an operator (such as =, >, >=, <=, and <), and
const specifies a constant.

e [Proposal] If the preceding conditions are met, create a PCK on the column
having the least distinct values.

Unique Constraint
e [Notice] Both row-store and column-store tables support unique constraints.

e [Proposal] The constraint name should indicate that it is a unique constraint,
for example, UNI/ncluded columns.

Primary Key Constraint

e [Notice] Both row-store and column-store tables support the primary key
constraint.

e [Proposal] The constraint name should indicate that it is a primary key
constraint, for example, PK/ncluded columns.

Check Constraint

e [Notice] Check constraints can be used in row-store tables but not in column-
store tables.

e [Proposal] The constraint name should indicate that it is a check constraint,
for example, CK/ncluded columns.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

Data Warehouse Service

Developer Guide

2 GaussDB(DWS) Development Design Proposal

2.6.2.5 Design Rules for GaussDB(DWS) Views and Associated Tables

View Design

[Proposal] Do not nest views unless they have strong dependency on each
other.

[Proposal] Try to avoid sort operations in a view definition.

Joined Table Design

[Proposal] Minimize joined columns across tables.
[Proposal] Joined columns should use the same data type.

[Proposal] The names of associated fields should show the associations. For
example, they can use the same name.

2.6.3 GaussDB(DWS) JDBC Configuration Rules

Currently, third-party tools are connected to GaussDB(DWS) trough JDBC. This
section describes the precautions for configuring the tools.

Connection Parameters

fetchsize

[Notice] When a third-party tool connects to GaussDB(DWS) through JDBC,
JDBC sends a connection request to GaussDB(DWS). By default, the following
parameters are added. For details, see the implementation of the

ConnectionFactorylmpl JDBC code.
params = {

{ "user", user },

{ "database", database },

{ "client_encoding", "UTF8" },

{ "DateStyle", "ISO" },

{ "extra_float_digits", "2" },

{ "TimeZone", createPostgresTimeZone() },

%

These parameters may cause the JDBC and gsql clients to display inconsistent
data, for example, date data display mode, floating point precision

representation, and timezone.

If the result is not as expected, you are advised to explicitly set these
parameters in the Java connection setting.

[Proposal] When connecting to the database through JDBC, ensure that the
following two time zones are the same:

- Time zone of the host where the JDBC client is located
- Time zone of the host where the GaussDB(DWS) server is located

[Notice] To use fetchsize in applications, disable the autocommit switch. Enabling
the autocommit switch makes the fetchsize configuration invalid.

autocommit

[Proposal] It is recommended that you enable the autocommit switch in the code
for connecting to GaussDB(DWS) by the JDBC. If autocommit needs to be

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

Data Warehouse Service

Developer Guide

2 GaussDB(DWS) Development Design Proposal

disabled to improve performance or for other purposes, applications need to
ensure their transactions are committed. For example, explicitly commit
translations after specifying service SQL statements. Particularly, ensure that all
transactions are committed before the client exits.

Connection Releasing

[Proposal] You are advised to use connection pools to limit the number of
connections from applications. Do not connect to a database every time you run
an SQL statement.

[Proposal] After an application completes its tasks, disconnect its connection to
GaussDB(DWS) to release occupied resources. You are advised to set the session
timeout interval in the task.

[Proposal] Reset the session environment before releasing connections to the JDBC
connection tool. Otherwise, historical session information may cause object
conflicts.

e |f GUC parameters are set in the connection, before you return the connection
to the connection pool, run SET SESSION AUTHORIZATION DEFAULT;RESET
ALL; to clear the connection status.

e If a temporary table is used, delete it before you return the connection to the
connection pool.

CopyManager

[Proposal] In the scenario where the ETL tool is not used and real-time data
import is required, it is recommended that you use the CopyManager interface
driven by the GaussDB(DWS) JDBC to import data in batches during application
development.

For how to use CopyManager, see CopyManager.

2.6.4 GaussDB(DWS) SQL Writing Rules

DDL

[Proposal] In GaussDB(DWS), you are advised to execute DDL operations,
such as creating table or making comments, separately from batch processing
jobs to avoid performance deterioration caused by many concurrent
transactions.

e [Proposal] Execute data truncation after unlogged tables are used because
GaussDB(DWS) cannot ensure the security of unlogged tables in abnormal
scenarios.

e [Proposal] Suggestions on the storage mode of temporary and unlogged
tables are the same as those on base tables. Create temporary tables in the
same storage mode as the base tables to avoid high computing costs caused
by hybrid row and column correlation.

e [Proposal] The total length of an index column cannot exceed 50 bytes.
Otherwise, the index size will increase greatly, resulting in large storage cost
and low index performance.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

Data Warehouse Service

Developer Guide

2 GaussDB(DWS) Development Design Proposal

[Proposal] Do not delete objects using DROP...CASCADE, unless the
dependency between objects is specified. Otherwise, the objects may be
deleted by mistake.

Data Loading and Uninstalling

Type conversion

Query Operation

[Proposal] Provide the inserted column list in the insert statement. Example:
INSERT INTO task(name,id,comment) VALUES ('task1','100','100th task');

[Proposal] After data is imported to the database in batches or the data
increment reaches the threshold, you are advised to analyze tables to prevent
the execution plan from being degraded due to inaccurate statistics.

[Proposal] To clear all data in a table, you are advised to use TRUNCATE
TABLE instead of DELETE TABLE. DELETE TABLE is not efficient and cannot
release disk space occupied by the deleted data.

[Proposal] Perform type coercion to convert data types. If you perform
implicit conversion, the result may differ from expected.

[Proposal] During data query, explicitly specify the data type for constants,
and do not attempt to perform any implicit data type conversion.

[Notice] In Oracle compatibility mode, null strings will be automatically
converted to NULL during data import. If a null string needs to be reserved,
you need to create a database that is compatible with Teradata.

[Proposal] Do not return a large number of result sets to a client except the
ETL program. If a large result set is returned, consider modifying your service
design.

[Proposal] Perform DDL and DML operations encapsulated in transactions.
Operations like table truncation, update, deletion, and dropping, cannot be
rolled back once committed. You are advised to encapsulate such operations
in transactions so that you can roll back the operations if necessary.

[Proposal] During query compilation, you are advised to list all columns to be
queried and avoid using *. Doing so reduces output lines, improves query
performance, and avoids the impact of adding or deleting columns on front-
end service compatibility.

[Proposal] During table object access, add the schema prefix to the table
object to avoid accessing an unexpected table due to schema switchover.

[Proposal] The cost of joining more than eight tables or views, especially full
joins, is difficult to be estimated. You are advised to use the WITH TABLE AS
statement or other methods to create interim tables to improve the
readability of SQL statements.

[Proposal] Do not use Cartesian products or full joins. Cartesian products and
full joins will result in a sharp expansion of result sets and poor performance.

[Notice] Only IS NULL and IS NOT NULL can be used to determine NULL
value comparison results. If any other method is used, NULL is returned. For
example, NULL instead of expected Boolean values is returned for
NULL<>NULL, NULL=NULL, and NULL<>1.

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

Data Warehouse Service

Developer Guide

2 GaussDB(DWS) Development Design Proposal

[Notice] Do not use count(col) instead of count(*) to count the total number
of records in a table. count(*) counts the NULL value (actual rows) while
count (col) does not.

[Notice] While executing count(col), the number of NULL record rows is
counted as 0. While executing sum(col), NULL is returned if all records are
NULL. If not all the records are NULL, the number of NULL record rows is
counted as 0.

[Notice] To count multiple columns using count(), column names must be
enclosed with parentheses. For example, count ((col1, col2, col3)). Note:
When multiple columns are used to count the number of NULL record rows, a
row is counted even if all the selected columns are NULL. The result is the
same as that when count(*) is executed.

[Notice] Null records are not counted when count(distinct col) is used to
calculate the number of non-null columns that are not repeated.

[Notice] If all statistical columns are NULL when count(distinct (col1,col2,...))
is used to count the number of unique values in multiple columns, Null
records are also counted, and the records are considered the same.

[Notice] When constants are used to filter data, the system searches for
functions used for calculating these two data types based on the data types
of the constants and matched columns. If no function is found, the system
converts the data type implicitly. Then, the system searches for a function

used for calculating the converted data type.
SELECT * FROM test WHERE timestamp_col = 20000101;

In the preceding example, if timestamp_col is the timestamp type, the
system first searches for the function that supports the "equal" operation of
the timestamp and int types (constant numbers are considered as the int
type). If no such function is found, the timestamp_col data and constant
numbers are implicitly converted into the text type for calculation.

[Proposal] Do not use scalar subquery statements. A scalar subquery appears
in the output list of a SELECT statement. In the following example, the part

enclosed in parentheses is a scalar subquery statement:
SELECT id, (SELECT COUNT(*) FROM films f WHERE fdid = s.id) FROM staffs_p1 s;

Scalar subqueries often result in query performance deterioration. During
application development, scalar subqueries need to be converted into
equivalent table associations based on the service logic.

[Proposal] In WHERE clauses, the filtering conditions should be sorted. The
condition that few records are selected for reading (the number of filtered
records is small) is listed at the beginning.

[Proposal] Filtering conditions in WHERE clauses should comply with
unilateral rules. That is, when the column name is placed on one side of a
comparison operator, the optimizer automatically performs pruning
optimization in some scenarios. Filtering conditions in a WHERE clause will be
displayed in col op expression format, where col indicates a table column, op
indicates a comparison operator, such as = and >, and expression indicates an

expression that does not contain a column name. For example:
SELECT id, from_image_id, from_person_id, from_video_id FROM face_data WHERE
current_timestamp(6) - time <'1 days':interval;

The modification is as follows:

SELECT id, from_image_id, from_person_id, from_video_id FROM face_data where time >
current_timestamp(6) - '1 days':interval;

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

Data Warehouse Service

Developer Guide

2 GaussDB(DWS) Development Design Proposal

[Proposal] Do not perform unnecessary sorting operations. Sorting requires a
large amount of memory and CPU. If service logic permits, ORDER BY and
LIMIT can be combined to reduce resource overhead. By default, data in
GaussDB(DWS) is sorted by ASC & NULL LAST.

[Proposal] When the ORDER BY clause is used for sorting, specify sorting
modes (ASC or DESC), and use NULL FIRST or NULL LAST for NULL record
sorting.

[proposal] Do not rely on only the LIMIT clause to return the result set
displayed in a specific sequence. Combine ORDER BY and LIMIT clauses for
some specific result sets and use offset to skip specific results if necessary.

[Proposal] If the service logic is accurate, you are advised to use UNION ALL
instead of UNION.

[Proposal] If a filtering condition contains only an OR expression, convert the
OR expression to UNION ALL to improve performance. SQL statements that
use OR expressions cannot be optimized, resulting in slow execution. Example:
SELECT * FROM scdc.pub_menu

WHERE (cdp= 300 AND inline=301) OR (cdp= 301 AND inline=302) OR (cdp= 302 AND inline=301);
Convert the statement to the following:

SELECT * FROM scdc.pub_menu

WHERE (cdp= 300 AND inline=301)

union all

SELECT * FROM scdc.pub_menu

WHERE (cdp= 301 AND inline=302)

union all

SELECT * FROM scdc.pub_menu

WHERE (cdp= 302 AND inline=301);

[Proposal] If an in(vall, val2, va...) expression contains a large number of
columns, you are advised to replace it with the in (values (va1), (val2),
(val3...) statement. The optimizer will automatically convert the IN constraint

into a non-correlated subquery to improve the query performance.

[Proposal] Replace (not) in with (not) exist when associated columns do not
contain NULL values. For example, in the following query statement, if the
T1.C1 column does not contain any NULL value, add the NOT NULL constraint
to the T1.C1 column, and then rewrite the statements.

SELECT * FROM T1 WHERE T1.C1 NOT IN (SELECT T2.C2 FROM T2);

Rewrite the statement as follows:

SELECT * FROM T1 WHERE NOT EXISTS (SELECT * FROM T1,T2 WHERE T1.C1=T2.C2);

(10 NOTE

e If the value of the T1.C1 column will possibly be NULL, the preceding rewriting
cannot be performed.

e If T1.C1 is the output of a subquery, check whether the output is NOT NULL based
on the service logic.
[Proposal] Use cursors instead of the LIMIT OFFSET syntax to perform
pagination queries to avoid resource overheads caused by multiple executions.
A cursor must be used in a transaction, and you must disable it and commit
transaction once the query is finished.

2.6.5 Rules for Using Custom GaussDB(DWS) External
Functions (pgSQL/Java)

[Notice] Java UDFs can perform some Java logic calculation. Do not
encapsulate services in Java UDFs.

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

Data Warehouse Service
Developer Guide 2 GaussDB(DWS) Development Design Proposal

e [Notice] Do not connect to a database in any way (for example, by using
JDBCQ) in Java functions.

e [Notice] Only the data types listed in the following table can be used. User-
defined types and complex data types (Java Array and derived classes) are not
supported.

e [Notice] User-defined aggregation functions (UDAFs) and user-defined table-
generating functions (UDTFs) are not supported.

Table 2-8 PL/Java mapping for default data types

GaussDB(DWS) Java

BOOLEAN boolean

"char" byte

bytea byte[]

SMALLINT short

INTEGER int

BIGINT long

FLOAT4 float

FLOAT8 double

CHAR java.lang.String

VARCHAR java.lang.String

TEXT java.lang.String

name java.lang.String

DATE java.sgl.Timestamp

TIME java.sgl.Time (stored value treated as
local time)

TIMETZ java.sgl.Time

TIMESTAMP java.sgl.Timestamp

TIMESTAMPTZ java.sgl.Timestamp

2.6.6 Rules for Using GaussDB(DWS) PL/pgSQL

General Principles

1. Development shall strictly comply with design documents.
2. Program modules shall be highly cohesive and loosely coupled.
3. Proper, comprehensive troubleshooting measures shall be developed.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

Data Warehouse Service

Developer Guide

2 GaussDB(DWS) Development Design Proposal

10.

Code shall be reasonable and clear.
Program names shall comply with a unified naming rule.

Fully consider the program efficiency, including the program execution
efficiency and database query and storage efficiency. Use efficient and
effective processing methods.

Program comments shall be detailed, correct, and standard.

The commit or rollback operation shall be performed at the end of a stored
procedure, unless otherwise required by applications.

Programs shall support 24/7 processing. In the case of an interruption, the
applications shall provide secure, easy-to-use resuming features.

Application output shall be standard and simple. The output shall show the
progress, error description, and execution results for application maintenance
personnel, and provide clear and intuitive reports and documents for business
personnel.

Programming Principles

Use bound variables in SQL statements in the PL/pgSQL.
RETURNING is recommended for SQL statements in PL/pgSQL.
Principles for using stored procedures:

a. Do not use more than 50 output parameters of the Varchar or Varchar2
type in a stored procedure.

b. Do not use the LONG type for input or output parameters.
c. Use the CLOB type for output strings that exceed 10 MB.
Variable declaration principles:

a. Use %TYPE to declare a variable that has the same meaning as that of a
column or variable in an application table.

b. Use %ROWTYPE to declare a record that has the same meaning as that
of a row in an application table.

c. Each line of a variable declaration shall contain only one statement.
d. Do not declare variables of the LONG type.
Principles for using cursors:

a. Explicit cursors shall be closed after being used.

b. A cursor variable shall be closed after being used. If the cursor variable
needs to transfer data to an invoked application, the cursor shall be
closed in the application. If the cursor variable is used only in a stored
procedure, the cursor shall be closed explicitly.

c. Before using DBMS_SQL.CLOSE_CURSOR to close a cursor, use
DBMS_SQL.IS_OPEN to check whether the cursor is open.

Principles for collections:

a. You are advised to use the FOR ALL statement instead of the FOR loop
statement to reference elements in a collection.

Principles for using dynamic statements:

a. Dynamic SQL shall not be used in the transaction programs of online
systems.

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

Data Warehouse Service
Developer Guide

2 GaussDB(DWS) Development Design Proposal

b.

C.

Dynamic SQL statements can be used to implement DDL statements and
system control commands in PL/pgSQL.

Variable binding is recommended.

8. Principles for assembling SQL statements:

a.
b.

You are advised to use bound variables to assemble SQL statements.

If the conditions for assembling SQL statements contain external input
sources, the characters in the input conditions shall be checked to prevent
attacks.

In a PL/pgSQL script, the length of a single line of code cannot exceed
2499 characters.

9. Principles for using triggers:

a.

b.

Triggers can be used to implement availability design in scenarios where
differential data logs are irrelevant to service processing.

Do not use triggers to implement service processing functions.

Exception Handling Principles

Any error that occurs in a PL/pgSQL function aborts the execution of the function
and related transactions. You can use a BEGIN block with an EXCEPTION clause to
catch and fix errors.

1. In a PL/pgSQL block, if an SQL statement cannot return a definite result, you
are advised to handle exceptions (if any) in EXCEPTION. Otherwise,
unhandled errors may be transferred to the external block and cause program
logic errors.

2. You can directly use the exceptions that have been defined in the system.
DWS does not support custom exceptions.

3. A block containing an EXCEPTION clause is more expensive to enter and exit
than a block without one. Therefore, do not use EXCEPTION without need.

Writing Standard

1. Variable naming rules:

a.

The input parameter format of a procedure or function is
IN_Parameter_name. The parameter name shall be in uppercase.

The output parameter format of a procedure or function is
OUT_Parameter_name. The parameter name shall be in uppercase.

The format for input and output parameters in a procedure or function is
10_Parameter name, with the parameter name written in uppercase.

Variables used in procedures and functions shall be composed of
v_Variable_name. The variable name shall be in lower case.

In query concatenation, the concatenation variable name of the WHERE
statement shall be v_.where, and the concatenation variable name of the
SELECT statement shall be v_select.

The record type (TYPE) name shall consist of T and a variable name. The
name shall be in uppercase.

A cursor name shall consist of CUR and a variable name. The name shall
be in uppercase.

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

Data Warehouse Service

Developer Guide

2 GaussDB(DWS) Development Design Proposal

h. The name of a reference cursor (REF CURSOR) shall consist of REF and a
variable name. The name shall be in uppercase.

Rules for defining variable types:
a. Use %TYPE to declare the type of a variable that has the same meaning
as that of a column in an application table.

b. Use %ROWTYPE to declare the type of a record that has the same
meaning as that of a row in an application table.

Rules for writing comments:

a. Comments shall be meaningful and shall not just repeat the code
content.

b. Comments shall be concise and easy to understand.

¢. Comments shall be provided at the beginning of each stored procedure or
function. The comments shall contain a brief function description, author,
compilation date, program version number, and program change history.
The format of the comments at the beginning of stored procedures shall
be the same.

d. Comments shall be provided next to the input and output parameters to
describe the meaning of variables.

e. Comments shall be provided at the beginning of each block or large
branch to briefly describe the function of the block. If an algorithm is
used, comments shall be provided to describe the purpose and result of
the algorithm.

Variable declaration format:

Each line shall contain only one statement. To assign initial values, write them
in the same line.

Letter case:
Use uppercase letters except for variable names.
Indentation:

In the statements used for creating a stored procedure, the keywords CREATE,
AS/IS, BEGIN, and END at the same level shall have the same indent.

Statement rules:

a. For statements that define variables, Each line shall contain only one
statement.

b. The keywords IF, ELSE IF, ELSE, and END at the same level shall have the
same indent.

¢. The keywords CASE and END shall have the same indent. The keywords
WHEN and ELSE shall be indented.

d. The keywords LOOP and END LOOP at the same level shall have the
same indent. Nested statements or statements at lower levels shall have
more indent.

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

Creating and Managing GaussDB(DWS)
Database Objects

3.1 Creating and Managing GaussDB(DWS) Databases

A database is a collection of objects such as tables, indexes, views, stored
procedures, and operators. GaussDB (DWS) supports the creation of multiple
databases. However, a client program can connect to and access only one
database at a time, and cross-database query is not supported.

Template and Default Databases

e GaussDB (DWS) provides two template databases template0 and template1
and a default database gaussdb.

e By default, each newly created database is based on a template database. The
GaussDB(DWS) database uses template1 as the template by default. The
encoding format is SQL_ASCII, and user-defined character encoding is not
allowed. If you need to specify the character encoding when creating a
database, use template0 to create the database.

e Do not use a client or any other tools to connect to or to perform operations
on both the two template databases.

(10 NOTE

You can run the show server_encoding command to view the current database
encoding.

Creating a Database.
Run the CREATE DATABASE statement to create a database.

CREATE DATABASE mydatabase;

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

(11 NOTE

e When you create a database, if the length of the database name exceeds 63 bytes, the
server truncates the database name and retains the first 63 bytes. Therefore, you are
advised to set the length of the database name to a value less than or equal to 63
bytes. Do not use multi-byte characters as object names. If an object whose name is
truncated mistakenly cannot be deleted, delete the object using the name before the
truncation, or manually delete it from the corresponding system catalog on each node.

e Database names must comply with the naming convention of SQL identifiers. The
current user automatically becomes the owner of this new database.

e If a database system is used to support independent users and projects, store them in
different databases.

e If the projects or users are associated with each other and share resources, store them in
different schemas in the same database.

e A maximum of 128 databases can be created in GaussDB(DWS).

e You must have the permission to create a database or the permission that the system
administrator owns.

Viewing Databases

To view databases, perform the following steps:
e Run the \l meta-command to view the database list of the database system.
\L

e Querying the database list using the pg_database system catalog
SELECT datname FROM pg_database;

Modifying a Database

You can use the ALTER DATABASE statement modify database configuration such
as the database owner, name, and default settings.

e Run the following command to set the default search path for the database:
ALTER DATABASE mydatabase SET search_path TO pa_catalog,public

e Rename the database.
ALTER DATABASE mydatabase RENAME TO newdatabase;

Deleting a Database

You can run DROP DATABASE statement to delete a database. This statement
deletes the system catalog of the database and the database directory on the disk.
Only the database owner or system administrator can delete a database. A
database being accessed by users cannot be deleted, You need to connect to
another database before deleting this database.

Run the DROP DATABASE statement to delete a database:
DROP DATABASE newdatabase;

3.2 Creating and Managing GaussDB(DWS) Schemas

A schema is the logical organization of objects and data in a database. Schema
management allows multiple users to use the same database without interfering
with each other. Third-party applications can be added to corresponding schemas
to avoid conflicts.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database

Developer Guide

Objects

Public mode

The same database object name can be used in different schemas in a database
without causing conflicts. For example, both a_schema and b_schema can contain
a table named mytable. Users with required permissions can access objects across
multiple schemas in a database.

If a user is created, a schema named after the user will also be created in the
current database.

Each database has a schema named public. All users have the ability to use the
public schema in the database, but only certain roles have the authority to create
objects within it.

Creating a Schema

e Run the CREATE SCHEMA command to create a schema.
CREATE SCHEMA myschema;
To create or access an object in the schema, the object name in the command
should be composed of the schema name and the object name, which are
separated by a dot (.), for example, myschema.table.

e Users can create a schema owned by others. For example, run the following
command to create a schema named myschema and set the owner of the
schema to user jack:

CREATE SCHEMA myschema AUTHORIZATION jack;
If authorization username is not specified, the schema owner is the user
who runs the command.

Modifying a Schema

e Run the ALTER SCHEMA command to change the schema name. Only the
schema owner can change the schema name.
ALTER SCHEMA schema_name RENAME TO new_name;

e Run the ALTER SCHEMA command to change the schema owner.
ALTER SCHEMA schema_name OWNER TO new_owner;

Setting the Schema Search Path

The GUC parameter search_path specifies the schema search sequence. The
parameter value is a series of schema names separated by commas (,). If no
schema is specified during object creation, the object will be added to the first
schema displayed in the search path. If there are objects with the same name in
different schemas and no schema is specified for an object query, the object will
be returned from the first schema containing the object in the search path.

e Run the SHOW command to view the current search path.
SHOW SEARCH_PATH;
search_path

"$user",public

(1 row)

The default value of search_path is "Suser"”,public. Suser indicates the name
of the schema with the same name as the current session user. If the schema
does not exist, Suser will be ignored. By default, after a user connects to a
database that has schemas with the same name, objects will be added to all

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

the schemas. If there are no such schemas, objects will be added to only to
the public schema.

e Run the SET command to modify the default schema of the current session.
For example, if the search path is set to "myschema, public", myschema is
searched first.

SET SEARCH_PATH TO myschema, public
You can also run the ALTER ROLE command to set search_path for a role

(user). For example:
ALTER ROLE jack SET search_path TO myschema, public;

Using a Schema

If you want to create or access an object in a specified schema, the object name
must contain the schema name. To be specific, the name consists of a schema
name and an object name, which are separated by a dot (.).

e C(Create a table mytable in myschema. Create a table in
schema_name.table_name format.
CREATE TABLE myschema.mytable(id int, name varchar(20));

e Query all data in the table mytable in myschema.
SELECT * FROM myschema.mytable,
id | name
- oo
(0 rows)

Viewing a Schema

e Use the current_schema() function to view the current schema.
SELECT current_schema();
current_schema

myschema
(1 row)

e To view the owner of a schema, perform the following join query on the

system catalogs PG_NAMESPACE and PG_USER. Replace schema_name in the

statement with the name of the schema to be queried.
SELECT s.nspname,u.usename AS nspowner FROM PG_NAMESPACE s, PG_USER u WHERE
nspname='schema_name' AND s.nspowner = u.usesysid;

e To view a list of all schemas, query the system catalog PG_NAMESPACE.
SELECT * FROM PG_NAMESPACE;

e Use the PGXC_TOTAL_SCHEMA_INFO view to query the space usage of
schemas in the cluster.
SELECT * FROM PGXC_TOTAL_SCHEMA_INFO;

e To view a list of tables in a schema, query the system catalog PG_TABLES. For
example, the following query will return a table list from PG_CATALOG in the

schema.
SELECT distinct(tablename),schemaname FROM PG_TABLES where schemaname = 'pg_catalog’;

Schema Permission Control

By default, a user can only access database objects in its own schema. To access
objects in other schemas, the user must have the usage permission of the
corresponding schema.

By granting the CREATE permission for a schema to a user, the user can create
objects in this schema.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database

Developer Guide

Objects

Drop Schema

System Schema

Grant the usage permission of myschema to user jack.
GRANT USAGE ON schema myschema TO jack;
Run the following command to revoke the USAGE permission for myschema

from jack:
REVOKE USAGE ON schema myschema FROM jack;

Run the DROP SCHEMA command to delete an empty schema (no database
objects in the schema).

DROP SCHEMA IF EXISTS myschema;

By default, a schema must be empty before being deleted. To delete a schema
and all its objects (such as tables, data, and functions), use the CASCADE

keyword.
DROP SCHEMA myschema CASCADE;

Each database has a pg_catalog schema, which contains system catalogs and
all built-in data types, functions, and operators. pg_catalog is a part of the
search path and has the second highest search priority. It is searched after the
schema of temporary tables and before other schemas specified in
search_path. This search order ensures that database built-in objects can be
found. To use a custom object that has the same name as a built-in object,
you can specify the schema of the custom object.

The information_schema consists of a collection of views that contain object
information in a database. These views obtain system information from the
system catalogs in a standardized way.

3.3 Creating and Managing GaussDB(DWS) Tables

Creating a Table

You can run the CREATE TABLE command to create a table. When creating a
table, you can define the following information:

Columns and data type of the table.

Table or column constraints that restrict a column or the data contained in a
table. For details, see Definition of Table Constraints.

Distribution policy of a table, which determines how the GaussDB (DWS)
database divides data between segments. For details, see Definition of Table
Distribution.

Table storage format. For details, see Selecting a GaussDB(DWS) Table
Storage Model.

Partition table information. For details, see Creating and Managing
GaussDB(DWS) Partitioned Tables.

Example: Use CREATE TABLE to create a table web_returns_p1, use wr_item_sk
as the distribution key, and sets the range distribution function through
wr_returned_date_sk.

CREATE TABLE web_returns_p1

(

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

https://support.huaweicloud.com/eu/sqlreference-dws/dws_06_0008.html

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database
Objects

wr_returned_date_sk
wr_returned_time_sk

wr_item_sk

integer,
integer,
integer NOT NULL,

wr_refunded_customer_sk integer

)

WITH (orientation = column)
DISTRIBUTE BY HASH (wr_item_sk)
PARTITION BY RANGE(wr_returned_date_sk)

(

PARTITION p2019 START(20191231) END(20221231) EVERY(10000),
PARTITION p0O END(maxvalue)

)

Definition of Table Constraints

You can define constraints on columns and tables to restrict data in a table.
However, there are the following restrictions:

e The primary key constraint and unique constraint in the table must contain a
distribution column.

e Column-store tables support the PARTIAL CLUSTER KEY and table-level
primary key and unique constraints, but do not support table-level foreign key
constraints.

e Only the NULL, NOT NULL, and DEFAULT constant values can be used as
column-store table column constraints.

Table 3-1 Table constraints

Constrain
t

Description

Example

Check
constraint

A CHECK constraint allows
you to specify that values
in a specific column must
satisfy a Boolean (true)
expression.

Create the products table. The price

column must be positive.
CREATE TABLE products
(

product_no integer,

name text,

price numeric CHECK (price > 0)
)

NOT
NULL
constraint

A NOT NULL constraint
specifies that a column
cannot have null values. A
non-null constraint is
always written as a
column constraint.

Create the products table. The values
of product_no and name cannot be
null.

CREATE TABLE products

(
product_no integer NOT NULL,
name text NOT NULL,
price numeric

)i

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

47

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database

Objects

Constrain
t

Description

Example

UNIQUE
constraint

A UNIQUE constraint
specifies that the values in
a column or a group of
columns are all unique. If
DISTRIBUTE BY
REPLICATION is not
specified, the column
table that contains only
unique values must
contain distribution
columns.

Create the products table. The values

of product_no must be unique.
CREATE TABLE products
(
product_no integer UNIQUE,
name text,
price numeric
)DISTRIBUTE BY HASH (product_no);

Primary
key
constraint

A primary key constraint is
the combination of a
UNIQUE constraint and a
NOT NULL constraint. If
DISTRIBUTE BY
REPLICATION is not
specified, the column set
with a primary key
constraint must contain
distributed columns. If a
table has a primary key,
the column (or group of
columns) of the primary
key is selected as the
distribution keys of the
table by default.

Create the products table. The primary

key constraint is product_no.
CREATE TABLE products
(
product_no integer PRIMARY KEY,
name text,
price numeric
)DISTRIBUTE BY HASH (product_no);

Partial
cluster
key

Partial cluster key can
minimize or maximize
sparse indexes to quickly
filter base tables. Partial
cluster key can specify
multiple columns, but you
are advised to specify no
more than two columns.

Create the products table with PCK set

to product_no:
CREATE TABLE products
(
product_no integer,
name text,
price numeric,
PARTIAL CLUSTER KEY (product_no)
) WITH (ORIENTATION = COLUMN);

Definition of Table Distribution

GaussDB(DWS) supports the following distribution modes: replication, hash, and

roundrobin.

(1 NOTE

The roundrobin distribution mode is supported only by cluster version 8.1.2 or later.

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

Data Warehouse Service
Developer Guide

3 Creating and Managing GaussDB(DWS) Database

Objects

Policy

Description

Scenario

Advantages/Disadvantages

Replicatio
n

Full data in a
table is stored
on each DN in
the cluster.

Small tables
and dimension
tables

e The advantage of
replication is that each DN
has full data of the table.
During the join operation,
data does not need to be
redistributed, reducing
network overheads and
reducing plan segments
(each plan segment starts a
corresponding thread).

e The disadvantage of
replication is that each DN
retains the complete data
of the table, resulting in
data redundancy. Generally,
replication is only used for
small dimension tables.

Hash

Table data is
distributed on
all DNs in the
cluster.

Fact tables
containing a
large amount of
data

e The I/O resources of each
node can be used during
data read/write, greatly
improving the read/write
speed of a table.

e Generally, a large table
(containing over 1 million
records) is defined as a
hash table.

Polling
(Round-
robin)

Each row in the
table is sent to
each DN in
turn. Data can
be evenly
distributed on
each DN.

Fact tables that
contain a large
amount of data
and cannot find
a proper
distribution
column in hash
mode

e Round-robin can avoid data
skew, improving the space
utilization of the cluster.

e Round-robin does not
support local DN
optimization like a hash
table does, and the query
performance of Round-
robin is usually lower than
that of a hash table.

e If a proper distribution
column can be found for a
large table, use the hash
distribution mode with
better performance.
Otherwise, define the table
as a round-robin table.

Selecting a Distribution Key

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database

Developer Guide

Objects

If the hash distribution mode is used, a distribution key must be specified for the
user table. When a record is inserted, the system hashes it based on the
distribution key and then stores it on the corresponding DN.

Select a hash distribution key based on the following principles:

1.

The values of the distribution key should be discrete so that data can be
evenly distributed on each DN. You can select the primary key of the table
as the distribution key. For example, for a person information table, choose
the ID number column as the distribution key.

Do not select the column that has a constant filter. For example, if a
constant constraint (for example, zqdh='000001") exists on the zqdh column
in some queries on the dwcjk table, you are not advised to use zqdh as the
distribution key.

With the above principles met, you can select join conditions as
distribution keys, so that join tasks can be pushed down to DNs for
execution, reducing the amount of data transferred between the DNs.

For a hash table, an inappropriate distribution key may cause data skew or
poor I/O performance on certain DNs. Therefore, you need to check the table
to ensure that data is evenly distributed on each DN. You can run the
following SQL statements to check for data skew:

select

xc_node_id, count(1)

from tablename

group by xc_node_id

order by xc_node_id desc;

xc_node_id corresponds to a DN. Generally, over 5% difference between the
amount of data on different DNs is regarded as data skew. If the

difference is over 10%, choose another distribution key.

You are not advised to add a column as a distribution key, especially add a
new column and use the SEQUENCE value to fill the column. (Sequences may
cause performance bottlenecks and unnecessary maintenance costs.)

View the data in the table.

Run the following command to query information about all tables in a
database in the system catalog pg_tables:
SELECT * FROM pg_tables;

Run the \d+ command of the gsql tool to query table attributes;

\d+ customer tT,

Run the following command to query the data volume of table customer_t1:
SELECT count(*) FROM customer _tT,

Run the following command to query all data in table customer_t1:
SELECT * FROM customer _tT;

Run the following command to query data in column c_customer_sk:
SELECT c¢_customer_sk FROM customer _tT;

Run the following command to filter repeated data in column c¢_customer_sk:
SELECT DISTINCT(¢_customer_sk) FROM customer _tT,
Run the following command to query all data whose column c_customer_sk

is 3869:
SELECT * FROM customer_t7 WHERE ¢_customer sk = 3869,

Run the following command to sort data based on column c_customer_sk.
SELECT * FROM customer_t7 ORDER BY ¢ _customer._sk;

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

Deleting Data in a Table

/A\ CAUTION

Exercise caution when running the DROP TABLE and TRUNCATE TABLE
statements. After a table is deleted, data cannot be restored.

e Delete the customer_t1 table from the database.
DROP TABLE customer_tT,

e You can use DELETE or TRUNCATE to clear rows in a table without removing
the definition of the table.

Delete all rows from the customer_t1 table.
TRUNCATE TABLE customer tT,

Delete all rows from the customer_t1 table.
DELETE FROM customer t7,

Delete all records whose c_customer_sk is 3869 from the customer_t1 table.
DELETE FROM customer_t1 WHERE c¢_customer_sk = 3869,

Managing UNLOGGED Tables

UNLOGGED indicates an unlogged table. Unlogged tables are faster than regular
tables because data written to them is not written to the WALs. However, an
unlogged table is automatically cleared after a crash or unclean shutdown,
incurring data loss risks. The contents of an unlogged table are also not replicated
to standby servers. Any indexes created on an unlogged table are not
automatically logged as well.

Usage scenario: Unlogged tables do not ensure safe data. Users can back up data
before using unlogged tables; for example, users should back up the data before a
system upgrade. When creating an unlogged table, disable cnretry (that is, set the
GUC parameter max_query_retry_times to 0).

Troubleshooting: If data is missing in the indexes of unlogged tables due to some
unexpected operations such as an unclean shutdown, users should re-create the
indexes with errors.

e Starting from version 9.1.0, UNLOGGED tables are automatically saved in the
pg_unlogged tablespace and cannot be moved or assigned to other
tablespaces.

e After an earlier version is upgraded to 9.1.0, the UNLOGGED table created in
the earlier version is still stored in the original tablespace.

Version 9.1.0 has a script called switch_unlogged_tablespace.py that can move
unlogged tables to optimize the recovery time objective (RTO). This script works
together with the GUC parameter enable_unlogged_tablespace_compat.

1. The script is stored in the SGPHOME/script directory. You can use the -?
command to obtain help information.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

[perfadm@linux83188 script]$ python3 switch_unlogged_tablepace.py -7
Usage:
python3 switch_unlogged_tablepace.py -? | --help
pythen3 switch_unlogged_tablepace.py -t query [--dbname=DBNAME] [--verbose]
pythen3 switch_unlogged tablepace.py -t switch [--dbname=DBNAME] [--without-disable]

General optiens:
-t Type of the command.
-7, ——help Show help information for this utility, and exit the command line mode.

Options for query:
—-dbname Database name.
--verbose List all unlogged tables.

Options for switch:
—-dbname Database name.
—-without-disable Do not disable unlogged tablespace compatibility after switch all unlogged tables.

2. Migrate all unlogged tables (recommended).
python3 switch_unlogged_tablepace.py -t switch

3. After the migration, the GUC parameter enable_unlogged_tablespace_compat
is automatically set to off.

NOTICE

After the upgrade to 9.1.0, you are advised to perform the following two steps to
improve the instance restart RTO:

1. Use the switch_unlogged_tablespace.py script to migrate all unlogged tables
to the pg_unlogged tablespace.

2. If the old version does not use any unlogged table, you are advised to set the
GUC parameter enable_unlogged_tablespace_compat to OFF.

3.4 Selecting a GaussDB(DWS) Table Storage Model

GaussDB(DWS) supports hybrid row and column storage. When creating a table,
you can set the table storage mode to row storage or column storage.

Row storage stores tables to disk partitions by row, and column storage stores
tables to disk partitions by column. By default, a table is created in row storage
mode. For details about differences between row storage and column storage, see
Figure 3-1.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

Figure 3-1 Differences between row storage and column storage

Row-based store

Row | Date/ Customer
ID | Time | Matenal Name Quantity

2 i T 3

LR - E— =
e

Y 7 - :

Column-based store

Row Dj’tu‘ l _él.;tomer

D | Time | Matenal |/ Name | Quantity

1 sgl';s i 3 g

2 §5| 5 HE! i

s| er| s al [O o emmramE . SR
o fem| 1] s| /|

s| i]ass] (|2 il 4 s

off loss|[{s|/ lal/ |

i Lol o]/ 1|i 1

In the preceding figure, the upper left part is a row-store table, and the upper
right part shows how the row-store table is stored on a disk; the lower left part is
a column-store table, and the lower right part shows how the column-store table
is stored on a disk.

The row/column storage of a table is specified by the orientation attribute in the
table definition. The value row indicates a row-store table and column indicates a
column-store table. The default value is row. Each storage mode applies to
specific scenarios. Select an appropriate mode when creating a table.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

Data Warehouse Service

Developer Guide

3 Creating and Managing GaussDB(DWS) Database

Objects

Table 3-2 Table storage modes and scenarios

query are read.

2. The
homogeneity
of data within
a column
facilitates
efficient
compression.

Storage Benefit Drawback Application Scenarios
Mode
Row Data is stored by | All data in the . The number of
storage row. When you queried row is columns in the table is
query a row of read while only a small, and most fields
data, you can few columns are in the table are
quickly locate the | needed. queried.
target row. . Point queries (simple
index-based query that
returns only a few
records) are performed.
. Add, Delete, Modify,
and Query operations
on entire rows are
frequently performed.
Column 1. Only necessary | It is not suitable . Query a few columns
storage columns in a for INSERT or in a table that contains

UPDATE
operations on a
small amount of
data.

. Statistical analysis

. Ad hoc queries (using

a large number of
columns.

queries (requiring a
large number of
association and
grouping operations)

uncertain query
conditions and unable
to utilize indexes to
scan row-store tables)

Creating a Row-store Table

For example, to create a row-store table named customer_t1, run the following

command:

CREATE TABLE customer t1

(

state ID CHAR(2),
state NAME VARCHAR2(40),

)'

area_ ID NUMBER

Creating a column-store table.

For example, to create a column-store table named customer_t2, run the
following command:

CREATE TABLE customer _t2

(

state ID CHAR(2),

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

state. NAME VARCHAR2(40),
area_I[D NUMBER

)
WITH (ORIENTATION = COLUMN);

Table Compression

Table compression can be enabled when a table is created. Table compression
enables data in the table to be stored in compressed format to reduce memory
usage.

In scenarios where 1/O is large (much data is read and written) and CPU is
sufficient (little data is computed), select a high compression ratio. In scenarios
where 1/O is small and CPU is insufficient, select a low compression ratio. Based
on this principle, you are advised to select different compression ratios and test
and compare the results to select the optimal compression ratio as required.
Specify a compressions ratio using the COMPRESSION parameter. The supported
values are as follows:

e The valid value of column-store tables is YES, NO, LOW, MIDDLE, or HIGH,
and the default value is LOW.

e The valid values of row-store tables are YES and NO, and the default is NO.
(The row-store table compression function is not put into commercial use. To
use this function, contact technical support.)

The service scenarios applicable to each compression level are described in the
following table.

Compression Application Scenario

Level

LOW The system CPU usage is high and the disk storage space is
sufficient.

MIDDLE The system CPU usage is moderate and the disk storage
space is insufficient.

HIGH The system CPU usage is low and the disk storage space is
insufficient.

For example, to create a compressed column-store table named customer_t3, run
the following command:

CREATE TABLE customer t3
(
state ID CHAR(2),
state. NAME VARCHARZ2(40),
area_ID NUMBER

)
WITH (ORIENTATION = COLUMN,COMPRESSION=middle);

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database

Developer Guide

Objects

3.5 Creating and Managing GaussDB(DWS) Partitioned

Tables

Partitioning refers to splitting what is logically one large table into smaller
physical pieces based on specific schemes. The table based on the logic is called a
partition cable, and a physical piece is called a partition. Data is stored on these
smaller physical pieces, namely, partitions, instead of the larger logical partitioned
table. During conditional query, the system scans only the partitions that meet the
conditions rather than scanning the entire table improving query performance.

Advantages of partitioned tables:

Improved query performance. You can search in specific partitions, improving
the search efficiency.

Enhanced availability. If a partition is faulty, data in other partitions is still
available.

Improved maintainability. For expired historical data that needs to be
periodically deleted, you can quickly delete it by dropping or truncate
partitions.

Supported Table Partition Types

Range partitioning: partitions are created based on a numeric range, for
example, by date or price range.

List partitioning: partitions are created based on a list of values, such as sales
scope or product attribute. Only clusters of 8.1.3 and later versions support
this function.

Choosing to Partition a Table

You can choose to partition a table when the table has the following
characteristics:

There are obvious ranges among the fields of the table.

A table is partitioned based on obvious rangeable fields. Generally, columns
such as date, area, and value are used for partitioning. The time column is
most commonly used.

Queries to the table have obvious range characteristics.

If the queried data fall into specific ranges, its better tables are partitioned so
that through partition pruning, only the queried partition needs to be
scanned, improving data scanning efficiency and reducing the I/O overhead of
data scanning.

The table contains a large amount of data.

Scanning small tables does not take much time, therefore the performance
benefits of partitioning are not significant. Therefore, you are advised to
partition only large tables. In column-store table, each column is an
independent file storage unit, and the minimum storage unit CU can store
60,000 rows of data. Therefore, for column-store partitioned tables, it is
recommended that the data volume in each partition be greater than or
equal to the number of DNs multiplied by 60,000.

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

Creating a Range Partitioned Table

Example: Create a table web_returns_p1 partitioned by the range
wr_returned_date_sk.

CREATE TABLE web_returns_p1

(

wr_returned_date_sk integer,
wr_returned_time_sk integer,
wr_item_sk integer NOT NULL,

wr_refunded_customer_sk integer

)

WITH (orientation = column)

DISTRIBUTE BY HASH (wr_item_sk)

PARTITION BY RANGE (wr_returned_date_sk)

(
PARTITION p2016 VALUES LESS THAN(20161231),
PARTITION p2017 VALUES LESS THAN(20171231),
PARTITION p2018 VALUES LESS THAN(20181231),
PARTITION p2019 VALUES LESS THAN(20191231),
PARTITION pxxxx VALUES LESS THAN (maxvalue)

);

Create partitions in batches, with fixed partition ranges. The following example
can be used:

CREATE TABLE web_returns_p2

(

wr_returned_date_sk integer,
wr_returned_time_sk integer,
wr_item_sk integer NOT NULL,

wr_refunded_customer_sk integer

)

WITH (orientation = column)

DISTRIBUTE BY HASH (wr_item_sk)

PARTITION BY RANGE (wr_returned_date_sk)

(
PARTITION p2016 START(20161231) END(20191231) EVERY(10000),
PARTITION p0 END(maxvalue)

)

Partition the table web_returns_p2 by date and time, using time as the partition
key.
CREATE TABLE web_returns_p2
(
id integer,
idle numeric,
10 numeric,
scope text,
IP text,
time timestamp

)
WITH (TTL='7 days',PERIOD="'1 day")
PARTITION BY RANGE((time)

(
PARTITION P1 VALUES LESS THAN('2022-01-05 16:32:45"),
PARTITION P2 VALUES LESS THAN('2022-01-06 16:56:12')

);

Creating a List Partitioned Table

A list partitioned table can use any column that allows value comparison as the
partition key column. When creating a list partitioned table, you must declare the
value partition for each partition.

Example: Create a list partitioned table sales_info.

CREATE TABLE sales_info
(

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

sale_time timestamptz,

period int,

city text,

price numeric(10,2),

remark varchar2(100)

)

DISTRIBUTE BY HASH (sale_time)

PARTITION BY LIST (period, city)

(

PARTITION province1_202201 VALUES (('202201", 'city1'), ('202201", 'city2')),

PARTITION province2_202201 VALUES (('202201", 'city3'), ('202201", 'city4'), ('202201', 'city5')),
PARTITION rest VALUES (DEFAULT)

);

Partitioning an Existing Table

A table can be partitioned only when it is created. If you want to partition a table,
you must create a partitioned table, load the data in the original table to the
partitioned table, delete the original table, and rename the partitioned table as
the name of the original table. You must also re-grant permissions on the table to
users. For example:

CREATE TABLE web_returns_p2
(

wr_returned_date_sk integer,
wr_returned_time_sk integer,
wr_item_sk integer NOT NULL,

wr_refunded_customer_sk integer

)
WITH (orientation = column)
DISTRIBUTE BY HASH (wr_item_sk)
PARTITION BY RANGE (wr_returned_date_sk)
(
PARTITION p2016 START(20161231) END(20191231) EVERY(10000),
PARTITION p0 END(maxvalue)
)i
INSERT INTO web_returns_p2 SELECT * FROM web_returns_p1;
DROP TABLE web_returns_p1;
ALTER TABLE web_returns_p2 RENAME TO web_returns_p1;
GRANT ALL PRIVILEGES ON web_returns_p1 TO dbadmin;
GRANT SELECT ON web_returns_p1 TO jack;

Adding a Partition

Run the ALTER TABLE statement to add a partition to a partitioned table. For
example, to add partition P2020 to the web_returns_p1 table, run the following
command:

ALTER TABLE web_returns p7 ADD PARTITION P2020 VALUES LESS THAN (20201231);

Splitting a Partition

The syntax for splitting a partition varies between a range partitioned table and a
list partitioned table.

e Run the ALTER TABLE statement to split a partition in a range partitioned
table. For example, the partition pxxxx of the table web_returns_p1 is split
into two partitions p2020 and p20xx at the splitting point 20201231.

ALTER TABLE web_returns_p1 SPLIT PARTITION pxxxx AT(20201231) INTO (PARTITION
p2020,PARTITION p20xx);

e Run the ALTER TABLE statement to split a partition in a list partitioned table.
For example, split the partition province2_202201 of table sales_inf into two
partitions province3_202201 and province4_202201.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

ALTER TABLE sales_info SPLIT PARTITION province2 202207 VALUES(('202201', 'city5')) INTO
(PARTITION province3_202201,PARTITION province4_202207);

Merging Partitions

Run the ALTER TABLE statement to merge two partitions in a partitioned table.
For example, merge partitions p2016 and p2017 of table web_returns_p1 into
one partition p20162017.

ALTER TABLE web_returns_p1 MERGE PARTITIONS p2076,p2077 INTO PARTITION p20762077,

Deleting a Partition

Run the ALTER TABLE statement to delete a partition from a partitioned table. For
example, run the following command to delete partition P2020 from the

web_returns_p1 table:
ALTER TABLE web_returns_p1 DROP PARTITION P2020,

Querying a Partition

e Query partition p2019.
SELECT * FROM web_returns_p1 PARTITION (p2079);
SELECT * FROM web_returns_p1 PARTITION FOR (202012371);

e View partitioned tables using the system catalog dba_tab_partitions.
SELECT * FROM dba_tab_partitions where table_name='web_returns_p1’;

Deleting a Partitioned Table
Run the DROP TABLE statement to delete a partitioned table.

DROP TABLE web_returns_p1;

3.6 Creating and Managing GaussDB(DWS) Indexes

Indexes accelerate the data access speed but also add the processing time of the
insert, update, and delete operations. Therefore, before creating an index, consider
whether it is necessary and determine the columns where indexes will be created.
You can determine whether to add an index for a table by analyzing the service
processing and data use of applications, as well as columns that are frequently
used as search criteria or need to be sorted.

Index type

e btree: The B-tree index uses a structure that is similar to the B+ tree structure
to store data key values, facilitating index search. btree supports comparison
queries with ranges specified.

e gin: GIN indexes are reverse indexes and can process values that contain
multiple keys (for example, arrays).

e gist: GiST indexes are suitable for the set data type and multidimensional
data types, such as geometric and geographic data types.

e Psort: psort index. It is used to perform partial sort on column-store tables.
Row-based tables support the following index types: btree (default), gin, and gist.

Column-based tables support the following index types: Psort (default), btree,
and gin.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

(11 NOTE

Create a B-tree index for point queries.

Index Selection Principles

Indexes are created based on columns in database tables. When creating indexes,
you need to determine the columns, which can be:

e Columns that are frequently searched: The search efficiency can be improved.
e The uniqueness of the columns and the data sequence structures is ensured.

e Columns that usually function as foreign keys and are used for connections.
Then the connection efficiency is improved.

e Columns that are usually searched for by a specified scope. These indexes
have already been arranged in a sequence, and the specified scope is
contiguous.

e Columns that need to be arranged in a sequence. These indexes have already
been arranged in a sequence, so the sequence query time is accelerated.

e Columns that usually use the WHERE clause. Then the condition decision
efficiency is increased.

e Fields that are frequently used after keywords, such as ORDER BY, GROUP
BY, and DISTINCT.

(10 NOTE

e After an index is created, the system automatically determines when to reference
it. If the system determines that indexing is faster than sequenced scanning, the
index will be used.

e After an index is successfully created, it must be synchronized with the associated
table to ensure new data can be accurately located. Therefore, data operations
increase. Therefore, delete unnecessary indexes periodically.

Creating an Index

GaussDB(DWS) supports four methods for creating indexes. For details, see Table
3-3.

(11 NOTE

e After an index is created, the system automatically determines when to reference it. If
the system determines that indexing is faster than sequenced scanning, the index will be
used.

e After an index is successfully created, it must be synchronized with the associated table
to ensure new data can be accurately located. Therefore, data operations increase.
Therefore, delete unnecessary indexes periodically.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database

Developer Guide

Objects

Table 3-3 Indexing Method

Indexing Description
Method

Unique index | Refers to an index that constrains the uniqueness of an index

attribute or an attribute group. If a table declares unique
constraints or primary keys, GaussDB(DWS) automatically
creates unique indexes (or composite indexes) for columns that
form the primary keys or unique constraints. Currently, only B-
tree can create a unique index in GaussDB(DWS).

Composite Refers to an index that can be defined for multiple attributes of
index a table. Currently, composite indexes can be created only for B-

tree in GaussDB(DWS) and a maximum of 32 columns can
share a composite index.

Partial index Refers to an index that can be created for subsets of a table.

This indexing method contains only tuples that meet condition
expressions.

Expression Refers to an index that is built on a function or an expression
index calculated based on one or more attributes of a table. An

expression index works only when the queried expression is the
same as the created expression.

Run the following command to create an ordinary table:
CREATE TABLE (pcds.customer_address_bak AS TABLE tpcds.customer_address,

Create a common index.

You need to query the following information in the
tpcds.customer_address_bak table:

SELECT ca_address_sk FROM tpcds.customer_address bak WHERE ca_address_sk=14888,
Generally, the database system needs to scan the
tpcds.customer_address_bak table row by row to find all matched tuples. If
the size of the tpcds.customer_address_bak table is large but only a few
(possibly zero or one) of the WHERE conditions are met, the performance of
this sequential scan is low. If the database system uses an index to maintain
the ca_address_sk attribute, the database system only needs to search a few
tree layers for the matched tuples. This greatly improves data query
performance. Furthermore, indexes can improve the update and delete
operation performance in the database.

Run the following command to create an index:
CREATE INDEX /ndex_wr_returned_date_sk ON tpcds.customer_address_bak (ca_address_sk);

Create a unique index.

If a table declares a unique constraint or primary key, GaussDB(DWS)
automatically creates a unique index (possibly a multi-column index) on the
columns that form the primary key or unique constraint. If no unique
constraint or primary key is specified during table creation, you can run the
CREATE INDEX statement to create an index.

CREATE UNIQUE INDEX unique_index ON tpcds.customer._address_bak(ca_address_sk);

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

e (Create a multi-column index.

Assume you need to frequently query records with ca_address_sk being 5050
and ca_street_number smaller than 1000 in the

tpcds.customer_address_bak table. Run the following command:
SELECT ca_address_sk,ca_address_id FROM tpcds.customer_address_bak WHERE ca_address_sk =
5050 AND ca_street_number < 71000,

Run the following command to define a multiple-column index on

ca_address_sk and ca_street_number columns:
CREATE INDEX more_column_index ON
tpcds.customer_address_bak(ca_address sk ,ca_street_number);

e C(Create a partition index.

If you only want to find records whose ca_address_sk is 5050, you can create
a partial index to facilitate your query.

CREATE INDEX part_index ON tpcds.customer_address_bak(ca_address_sk) WHERE ca_address_sk =
5050,

e C(Create an expression index.

Assume you need to frequently query records with ca_street_number smaller

than 1000, run the following command:
SELECT * FROM (pcds.customer_address_bak WHERE trunc(ca_street_number) < 1000,

The following expression index can be created for this query task:
CREATE INDEX para_index ON tpcds.customer_address_bak (trunc(ca_street_number));

Querying an Index

e Run the following command to query all indexes defined by the system and

users:
SELECT RELNAME FROM PG_CLASS WHERE RELKIND='i";

e Run the following command to query information about a specified index:
\di+ /ndex_wr_returned_date_sk

Recreating an Index

e Recreate the index index_wr_returned_date_sk.
REINDEX INDEX /index_wr_returned_date_sk;,

e Recreate all indexes of a table.
REINDEX TABLE tpcds.customer_address_bak;

Deleting an Index

You can use the DROP INDEX statement to delete indexes.
DROP INDEX /ndex_wr_returned_date_sk;

3.7 Creating and Using GaussDB(DWS) Sequences

A sequence is a database object that generates unique integers according to a
certain rule and is usually used to generate primary key values.

You can create a sequence for a column in either of the following methods:

e Set the data type of a column to sequence integer. A sequence will be
automatically created by the database for this column.

e Use CREATE SEQUENCE to create a new sequenc. Use the
nextval('sequence_name') function to increment the sequence and return a

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

new value. Specify the default value of the column as the sequence value
returned by the nextval('sequence_name') function. In this way, this column
can be used as a unique identifier.

Creating a Sequence.

Method 1: Set the data type of a column to a sequence integer. For example:
CREATE TABLE 77
(

id serial,
name text

)

Method 2: Create a sequence and set the initial value of the
nextval('sequence_name') function to the default value of a column. You can
cache a specific number of sequence values to reduce the requests to the GTM,
improving the performance.

1. Create a sequence.
CREATE SEQUENCE seq7 cache 100,
2. Set the initial value of the nextval('sequence_name') function to the default

value of a column.
CREATE TABLE 72

(
id int not null default nextval('seq1’),
name text

)i
(11 NOTE

Methods 1 and 2 are similar except that method 2 specifies cache for the sequence. A
sequence using cache has holes (non-consecutive values, for example, 1, 4, 5) and cannot
keep the order of the values. After a sequence is deleted, its sub-sequences will be deleted
automatically. A sequence shared by multiple columns is not forbidden in a database, but
you are not advised to do that.

Currently, the preceding two methods cannot be used for existing tables.

Modifying a Sequence

The ALTER SEQUENCE statement changes the attributes of an existing sequence,
including the owner, owning column, and maximum value.
e Associate the sequence with a column.

The sequence will be deleted when you delete the column or the table where
the column resides.

ALTER SEQUENCE seq7 OWNED BY 72.ic:
e Modify the maximum value of serial to 300.

ALTER SEQUENCE seq7 MAXVALUE 300;
Deleting a Sequence

Run the DROP SEQUENCE command to delete a sequence. For example, to delete
the sequence named seq1, run the following command:

DROP SEQUENCE seg7,

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database

Developer Guide

Objects

Precautions

Sequence values are generated by the GTM. By default, each request for a
sequence value is sent to the GTM. The GTM calculates the result of the current
value plus the step and then returns the result. As GTM is a globally unique node,
generating default sequence numbers can cause performance issues. For
operations that need frequent sequence number generation, such as bulkload data
import, this is not recommended. For example, the INSERT FROM SELECT
statement has poor performance in the following scenario:

CREATE SEQUENCE newSeqT,;
CREATE TABLE newT7
(

id int not null default nextval('newSeq1’),
name text
);

INSERT INTO newT1(name) SELECT name from TT,

To improve the performance, run the following statements (assume that data of
10,000 rows will be imported from 77 to newT7):

INSERT INTO newT1](id, name) SELECT id,name from TT,
SELECT SETVAL('newSeqT',10000);

(11 NOTE

Rollback is not supported by sequence functions, including nextval() and setval(). The
value of the setval function immediately takes effect on nextval in the current session in
any cases and take effect in other sessions only when no cache is specified for them. If
cache is specified for a session, it takes effect only after all the cached values have been
used. To avoid duplicate values, use setval only when necessary. Do not set it to an existing
sequence value or a cached sequence value.

If BulkLoad is used, set sufficient cache for newSeg7 and do not set Maxvalue or
Minvalue. To improve the performance, database may push down the invocation
of nextval('sequence_name') to DNs. Currently, the concurrent connection
requests that can be processed by the GTM are limited. If there are too many DNs,
a large number of concurrent connection requests will be sent to the GTM. In this
case, you need to limit the concurrent connection of BulkLoad to save the GTM
connection resources. If the target table is a replication table (DISTRIBUTE BY
REPLICATION), pushdown cannot be performed. If the data volume is large, this
will be a disaster for the database. In addition, the database space may be
exhausted. After the import is complete, do VACUUM FULL. Therefore, you are
not advised to use sequences when BulkLoad is used.

After a sequence is created, a single-row table is maintained on each node to
store the sequence definition and value, which is obtained from the last
interaction with the GTM rather than updated in real time. The single-row table
on a node does not update when other nodes request a new value from the GTM
or when the sequence is modified using setval.

3.8 Creating and Managing GaussDB(DWS) Views

Views allow users to save queries. Views are not physically stored on disks. Queries
to a view run as subqueries. A database only stores the definition of a view and
does not store its data. The data is still stored in the original base table. If data in
the base table changes, the data in the view changes accordingly. In this sense, a

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

view is like a window through which users can know their interested data and
data changes in the database. A view is triggered every time it is referenced.

Creating a view

Run the CREATE VIEW command to create a view.
CREATE OR REPLACE VIEW MyView AS SELECT * FROM tpcds.customer WHERE c_customer_sk < 150;

(11 NOTE

The OR REPLACE parameter in this command is optional. It indicates that if the view exists,
the new view will replace the existing view.

View Details

e View the MyView view. Real-time data will be returned.
SELECT * FROM myview;

e Run the following command to query the views in the current user:
SELECT * FROM user_views;

e Run the following command to query all views:
SELECT * FROM dba_views;

e View details about a specified view.

Run the following command to view details about the dba_users view:
\d+ dba_users
View "PG_CATALOG.DBA_USERS"
Column | Type | Modifiers | Storage | Description

+. + + +

USERNAME | CHARACTER VARYING(64) | | extended |

View definition:

SELECT PG_AUTHID.ROLNAME::CHARACTER VARYING(64) AS USERNAME
FROM PG_AUTHID;

Rebuilding a View

Run the ALTER VIEW command to rebuild a view without entering query
statements.

ALTER VIEW myview REBUILD;

Deleting a View

Run the DROP VIEW command to delete a view.
DROP VIEW myview;

DROP VIEW ... The CASCADE command can be used to delete objects that depend
on the view. For example, view A depends on view B. If view B is deleted, view A
will also be deleted. Without the CASCADE option, the DROP VIEW command will
fail.

3.9 Creating and Managing GaussDB(DWS) Scheduled
Tasks

GaussDB(DWS) allows users to create scheduled tasks, which are automatically
executed at specified time points, reducing O&M workload.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database

Developer Guide

Objects

Database complies with the Oracle scheduled task function using the DBMS.JOB
interface, which can be used to create scheduled tasks, execute tasks
automatically, delete a task, and modify task attributes(including task ID, enable/
disable a task, the task triggering time/interval and task contents).

(11 NOTE

e The hybrid data warehouse (standalone) does not support scheduled tasks.

e The execution statements of scheduled tasks are not recorded in the Real-time Top SQL
logs. The statements can be recorded only in versions later than 8.2.1.

e By default, GaussDB(DWS) uses the UTC time. The execution time of the scheduled task
needs to be converted to the time zone of the user.

Periodic Task Management

Step 1

Step 2

Step 3

Step 4

Creates a test table.
CREATE TABLE test(id int, time date);

If the following information is displayed, the table has been created.

CREATE TABLE

Create the customized storage procedure.

CREATE OR REPLACE PROCEDURE PRC_JOB_1()
AS

N_NUM integer :=1;

BEGIN

FOR 1IN 1..1000 LOOP

INSERT INTO test VALUES(I,SYSDATE);

END LOOP;

END;

/

If the following information is displayed, the procedure has been created.

CREATE PROCEDURE

Create a task.

e C(Create a task with unspecified job_id and execute the PRC_JOB_1 storage

procedure every two minutes.
call dbms_job.submit('call public.prc_job_1(); ', sysdate, 'interval "1 minute', :a);
job

(1 row)

e C(Create task with specified job_id.
call dbms_job.isubmit(2,'call public.prc_job_1(); ', sysdate, 'interval "1 minute"');
isubmit

(1 row)
View the created task information about the current user in the USER_JOBS view.

Only the system administrator can access this system view. For details about the
fields, see Table 14-337.

postgresselect job,dbname,start_date,last_date,this_date,next_date,broken,status,interval,failures,what from

user_jobs;
job | dbname | start_date | last_date | this_date | next_date |
broken | status | interval | failures | what

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database

Developer Guide

Objects

Step 5

Step 6

Step 7

Step 8

Step 9

il Aar Aar Aar Tr

1| db_demo | 2022-03-25 07:58:01.829436 | 2022-03-25 07:58:03.174817 | 2022-03-25 07:58:01.829436 |
2022-03-25 07:59:01 | n |'s | interval '1 minute' | 0 | call public.prc
_job_10);

2 | db_demo | 2022-03-25 07:58:15.893383 | 2022-03-25 07:58:16.608959 | 2022-03-25 07:58:15.893383 |
2022-03-25 07:59:15 | n |'s | interval '1 minute' | 0 | call public.prc
_job_10);
(2 rows)

Stop a task.

call dbms_job.broken(1,true);
broken

(1 row)

Start a task.

call dbms_job.broken(1,false);
broken

(1 row)

Modify attributes of a task.

e Modify the Next_date parameter information about a task. For example,

change the value of Next_date of Job1 to 1 hour.
call dbms_job.next_date(1, sysdate+1.0/24);
next_date

(1 row)

e Modify the Interval parameter information of a task. For example, change

the value of Interval of Job1 to 1 hour.
call dbms_job.interval(1,'sysdate + 1.0/24');
interval

(1 row)

e Modify the What parameter information of a JOB. For example, change

What of Job1 to insert into public.test values(333, sysdate+5).
call dbms_job.what(1,'insert into public.test values(333, sysdate+5);');
what

(1 row)

e Modify Next_date, Interval, and What parameter information of JOB.
call dbms_job.change(1, 'call public.prc_job_1();', sysdate, 'interval "1 minute'');
change

(1 row)

Delete a job.

call dbms_job.remove(1);
remove

(1 row)

Set job permissions.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

e During the creation of a job, the job is bound to the user and database that
created the job. Accordingly, the user and database are added to dbname and
log_user columns in the pg_job system view, respectively.

e If the current user is a DBA user, system administrator, or the user who
created the job (log_user in pg_job), the user has the permissions to delete
or modify parameter settings of the job using the remove, change, next_data,
what, or interval interface. Otherwise, the system displays a message
indicating that the current user has no permission to perform operations on
the JOB.

e If the current database is the one that created a job, (that is, dbname in
pg_job), you can delete or modify parameter settings of the job using the
remove, change, next_data, what, or interval interface.

e When deleting the database that created a job, (that is, dbname in pg_job),
the system associatively deletes the job records of the database.

e When deleting the user who created a job, (that is, log_user in pg_job), the
system associatively deletes the job records of the user.

--—-End

3.10 Viewing GaussDB(DWS) System Catalogs

In addition to the created tables, a database contains many system catalogs These
system catalogs contain cluster installation information and information about
various queries and processes in GaussDB(DWS). You can collect information
about the database by querying the system catalog.

Querying Database Tables

For example, query the PG_TABLES system catalog for all tables in the public
schema.

SELECT distinct(tablename) FROM pg_tables WHERE SCHEMANAME = 'public’;

Information similar to the following is displayed:

tablename
err_hr_staffs
test
err_hr_staffs_ft3
web_returns_p1
mig_seq_table
films4
(6 rows)

Viewing Database Users

You can run the PG_USER command to view the list of all users in the database,
and view the user ID (USESYSID) and permissions.

SELECT * FROM pg_user;

usename | usesysid | usecreatedb | usesuper | usecatupd | userepl | passwd | valbegin | valuntil | respool
| parent | spacelimit | useconfig | nodegroup | tempspacelimit | spillspacelim

it

+ + +. + + + + +. +
t t t t t t y t

+ + + +. + +
t t t t t t

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database

Developer Guide

Objects
Ruby | 10|t |t | t |t | Rk | | | default_pool | 0]
Idbadmiln | 16.|?»93 | f | | f | f | f | Fadortok | | | default_pool | 0]
lily | | 16691 I|f |f| | f | f | ek | | | default_pool | 0|
Ijack || 706941 | f ||f | f | f | ok | | | default_pool | 0]
I(4 rows)| | |

GaussDB(DWS) uses Ruby to perform routine management and maintenance. You
can add WHERE usesysid > 10 to the SELECT statement to filter queries so that
only specified user names are displayed.

SELECT * FROM pg_user WHERE usesysid > 10;

usename | usesysid | usecreatedb | usesuper | usecatupd | userepl | passwd | valbegin | valuntil |
respool | parent | spacelimit | useconfig | nodegroup | tempspacelimit | spillspacelim

it

+ + + + + + + + +

ils ol Ar Tr ar TR

dbadmin | 16393 | f | f | f | f | ok | | | default_pool | 0]
|lily | | 16691 I|f |f| | f | f | ek | | | default_pool | 0|
|jack || 706941 | f ||f | f | f | ok | | | default_pool | 0]
|(3 rows)| | |

Viewing and Stopping the Running Query Statements

Step 1

Step 2

Step 3

You can view the running query statements in the PG_STAT_ALL_INDEXES view.
Do as follows:

Set the parameter track_activities to on.
SET track_activities = on;

The database collects the running information about active queries only if the
parameter is set to on.

View the running query statements. Run the following command to view the
database names, users, query statuses, and PIDs of the running query statements:
SELECT datname, usename, state,pid FROM pg_stat_activity;

If the state column is idle, the connection is idle and requires a user to enter a
command.

To identify only active query statements, run the following command:
SELECT datname, usename, state FROM pg_stat_activity WHERE state != 'idle";
To cancel queries that have been running for a long time, use the

PG_TERMINATE_BACKEND function to end sessions based on the thread ID.
SELECT PG_TERMINATE_BACKEND(139834759993104);

If information similar to the following is displayed, the session is successfully
terminated:

PG_TERMINATE_BACKEND

If information similar to the following is displayed, a user has terminated the
current session.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

Data Warehouse Service 3 Creating and Managing GaussDB(DWS) Database
Developer Guide Objects

FATAL: terminating connection due to administrator command
FATAL: terminating connection due to administrator command

(11 NOTE

If the PG_TERMINATE_BACKEND function is used to terminate the backend threads of the
current session, the gsql client will be reconnected automatically rather than be logged out.
The message "The connection to the server was lost." is returned. Attempting reset:
Succeeded.”

FATAL: terminating connection due to administrator command

FATAL: terminating connection due to administrator command
The connection to the server was lost. Attempting reset: Succeeded.

----End

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

Data Warehouse Service
Developer Guide

4 Syntax Compatibility Differences Among Oracle,

Teradata, and MySQL

Syntax Compatibility Differences Among
Oracle, Teradata, and MySQL

In GaussDB(DWS), DBCOMPATIBILITY can be set to TD, Oracle, or MySQL to be
compatible with Teradata, Oracle, or MySQL syntax, respectively. Syntax behavior
varies with the three modes.

The database compatibility model can be specified using the DBCOMPATIBILITY
parameter when creating a database. For details, refer to the CREATE DATABASE

syntax.

CREATE DATABASE ora_compatible_db DBCOMPATIBILITY 'ORA';

Table 4-1 Compatibility differences

Compatibility | Oracle Teradata MySQL

Item

Empty string | Only null is An empty string is An empty string is
available. distinguished from distinguished from

null. null.

Conversion of | null 0 0

an empty

string to a

number

Automatic Not supported Supported (set GUC | Not supported

truncation of parameter

overlong td_compatible_trun

characters cation to ON)

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

Data Warehouse Service
Developer Guide

4 Syntax Compatibility Differences Among Oracle,
Teradata, and MySQL

concatenation

null object after
combining a
non-null object
with null.

For example,
'‘abc'||null
returns 'abc'.

strict_text_concat_t
d option is added to
the GUC parameter
behavior_compat_o
ptions to be
compatible with the
Teradata behavior.
After the null type is
concatenated, null is
returned.

For example, 'abc'||
null returns null.

Compatibility | Oracle Teradata MySQL
Item
null Returns a non- The Compatible with

MySQL behavior.
After the null type is
concatenated, null is
returned.

For example, 'abc'||
null returns null.

Concatenatio
n of the
char(n) type

Removes spaces
and placeholders
on the right
when the char(n)
type is
concatenated.

For example,
cast('a' as

char(3))||'b'
returns 'ab'.

After the
bpchar_text_withou
t_rtrim option is
added to the GUC
parameter
behavior_compat_o
ptions, when the
char(n) type is
concatenated,
spaces are reserved
and supplemented
to the specified
length n.

Currently, ignoring
spaces at the end of
a string for
comparison is not
supported. If the
concatenated string
contains spaces at
the end, the
comparison is space-
sensitive.

For example,
cast('a' as
char(3))||'b' returns
'ab'.

Removes spaces and
placeholders on the
right.

2)

concat(str1,str

Returns the
concatenation of
all non-null
strings.

Returns the
concatenation of all
non-null strings.

If an input
parameter is null,
null is returned.

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

Data Warehouse Service
Developer Guide

4 Syntax Compatibility Differences Among Oracle,
Teradata, and MySQL

Compatibility
Item

Oracle

Teradata

MySQL

left and right
processing of

Returns all
characters except

Returns all
characters except

Returns an empty
string.

negative the first and last | the first and last |n|
values [n| characters. characters.
pad(string Fills up the string | If fill is an empty If fill is an empty

text, length
int [, fill text])

rpad(string
text, length
int [, fill text])

to the specified
length by
appending the
fill characters (a
space by
default). If the
string is already
longer than
length then it is
truncated (on
the right). If fill
is an empty
string or length
is a negative
number, null is
returned.

string and the string
length is less than
the specified length,
the original string is
returned. If length is
a negative number,
an empty string is
returned.

string and the string
length is less than
the specified length,
an empty string is
returned. If length is
a negative number,
null is returned.

substr(str, s[,

nl)

If s is setto O,
the first n
characters are
returned.

If s is set to 0, the
first n characters are
returned.

If sissetto 0, an
empty string is
returned.

substring (str,
s[, n])

substring(str
[from s] [for

nl)

If s is set to O,
the first n - 1
characters are
returned.

If sis <0, the
firsts+n -1
characters are
returned.

Ifnis<0, an
error is reported.

If s is set to O, the
first n - 1 characters
are returned.

If s is <0, the first s
+ n - 1 characters
are returned.

If nis <0, an error is
reported.

If sis setto 0, an
empty string is
returned.
Ifsis<0,n
characters starting
from the last |s|
character are
truncated.

If nis <0, an empty
string is returned.

trim, ltrim,
rtrim,
btrim(string],
characters])

Removes the
longest string
that contains
only the
characters (a
space by default)
in the characters
from a specified
position of the
string.

Removes the longest
string that contains
only the characters
(a space by default)
in the characters
from a specified
position of the
string.

Removes the string
that is equivalent to
characters (a space
by default) from a
specified position of
the string.

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

Data Warehouse Service
Developer Guide

4 Syntax Compatibility Differences Among Oracle,

Teradata, and MySQL

Compatibility
Item

Oracle

Teradata

MySQL

log(x)

Returns the
logarithm with
10 as the base.

Returns the
logarithm with 10 as
the base.

Returns the natural
logarithm.

mod(x, 0)

Returns x if the
divisor is 0.

Returns x if the
divisor is 0.

Reports an error if
the divisor is 0.

date data
type

Converts the
date data type to
the timestamp
data type which
stores year,
month, day, hour,
minute, and
second values.

Stores year and
month values.

Stores year and
month values.

to_char(date)

The maximum
value of the
input parameter
can only be the
maximum value
of the timestamp
type. The
maximum value
of the date type
is not supported.
The return value
is of the
timestamp type.

The maximum value
of the input
parameter can only
be the maximum
value of the
timestamp type. The
maximum value of
the date type is not
supported. The
return value is of the
date type in
YYYY/MM/DD
format. (The GUC
parameter
convert_empty_str_
to_null td is
enabled.)

Only the timestamp
type and the date
type support the
maximum input
value. The return
value is of the date

type.

to_date,
to_timestamp,
and
to_number
processing of
empty strings

Returns null.

Returns null. (The
convert_empty_str_
to_null_td
parameter is
enabled.)

to_date and
to_timestamp
returns null. If the
parameter passed to
to_number is an
empty string, 0 is
returned.

Return value
types of
last_day and
next_day

Returns values of
the timestamp

type.

Returns values of
the timestamp type.

Returns values of
the date type.

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

74

Data Warehouse Service
Developer Guide

4 Syntax Compatibility Differences Among Oracle,

Teradata, and MySQL

Compatibility | Oracle Teradata MySQL
Item
Return value | Returns values of | Returns values of If the input

type of the timestamp the timestamp type. | parameter is of the

add_months type. date type, the return
value is of the date
type.

If the input
parameter is of the
timestamp type, the
return value is of the
timestamp type.

If the input
parameter is of the
timestamptz type,
the return value is of
the timestamptz
type.

CURRENT_TI Obtains the time | Obtains the time of | Obtains the

ME of the current the current execution time of

CURRENT TI transaction. The transaction. The the current

ME(p) B return value is of | return value is of the | statement. The

the timetz type. | timetz type. return value is of the
time type.

CURRENT_TI Obtains the Obtains the Obtains the

MESTAMP execution time of | execution time of execution time of

CURRENT TI the current the current the current

MESTAM P_(p) statement. The statement. The statement. The

return value is of | return value is of the | return value is of the
the timestamptz | timestamptz type. timestamp type.
type.

CURDATE Not supported Not supported Obtains the
execution date of
the current
statement. The
return value is of the
date type.

CURTIME(p) Not supported Not supported Obtains the

execution time of
the current
statement. The
return value is of the
time type.

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

Data Warehouse Service
Developer Guide

4 Syntax Compatibility Differences Among Oracle,

Teradata, and MySQL

Compatibility | Oracle Teradata MySQL
Item
LOCALTIME Obtains the time | Obtains the time of | Obtains the

LOCALTIME(p
)

of the current
transaction. The
return value is of
the time type.

the current
transaction. The
return value is of the
time type.

execution time of
the current
statement. The
return value is of the
timestamp type.

LOCALTIMEST
AMP

LOCALTIMEST

Obtains the time
of the current
transaction. The
return value is of

Obtains the time of
the current
transaction. The
return value is of the

Obtains the
execution time of
the current
statement. The

AMP(p) .) .
the timestamp timestamp type. return value is of the
type. timestamp type.
SYSDATE Obtains the Obtains the Obtains the current
SYSDATE(p) execution time of | execution time of system time. The
the current the current return value is of the
statement. The statement. The timestamp(0) type.
return value is of | return value is of the | This function cannot
the timestamp(0) | timestamp(0) type. be pushed down.
type. You are advised to
use current_date
instead.
now() Obtains the time | Obtains the time of | Obtains the
of the current the current statement execution
transaction. The | transaction. The time. The return
return value is of | return value is of the | value is of the
the timestamptz | timestamptz type. timestamptz type.
type.
Operator A Performs Performs Performs the
exponentiation. exponentiation. exclusive OR
operation.
Expressions Returns the Returns the If an input

GREATEST
and LEAST

comparison
results of all
non-null input
parameters.

comparison results
of all non-null input
parameters.

parameter is null,
null is returned.

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

76

Data Warehouse Service
Developer Guide

4 Syntax Compatibility Differences Among Oracle,

Teradata, and MySQL

expressions

parameters for
COALESCE are of
INT and VARCHAR
types, the
parameters are
resolved as
VARCHAR type.

Compatibility | Oracle Teradata MySQL

Item

Different Reports error. Is compatible with Is compatible with
input behavior of Teradata | behavior of MySQL
parameter and supports type and supports type
types of CASE, conversion between | conversion between
COALESCE, IF, digits and strings. strings and other
and IFNULL For example, if input | types. For example,

if input parameters
for COALESCE are of
DATE, INT, and
VARCHAR types, the
parameters are
resolved as
VARCHAR type.

Backquote (°)

Not supported

Not supported

Distinguishes
MySQL reserved
words from common
characters.

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

GaussDB(DWS) Database Security
Management

5.1 GaussDB(DWS) User and Permissions Management

5.1.1 GaussDB(DWS) Database User Types

Without separation of permissions, GaussDB(DWS) supports two types of
database accounts: administrator and common user. For details about user types
and permissions under separation of permissions, see Separation of Duties in
GaussDB(DWS).

e The administrator can manage all common users and databases.

e Common users can connect to and access the database, and perform specific
database operations and execute SQL statements after being authorized.

Users are authenticated when they log in to the GaussDB(DWS) database. A user
can own databases and database objects (such as tables), and grant permissions
of these objects to other users and roles. In addition to system administrators,
users with the CREATEDB attribute can create databases and grant permissions to
these databases.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

Database User Types

Table 5-1 Database user types

e Have the attributes of
specific database
system operations, such
as CREATEDB,
CREATEROLE, and
SYSADMIN.

e Access database
objects.

e Run SQL statements.

User | Description Allowed Operations How to Create
Type
Admi | An If separation of e User dbadmin created
nistra | administrator, | permissions is not during cluster creation
tor also called a enabled, this account has on the GaussDB(DWS)
dbad | system the highest permission in management console is
min administrator, | the system and can a system administrator.
is an account | perform all operations. e Use the CREATE USER
with the The system admini§tr§tor or ALTER USER syntax
SYS_ADMIN has the same permissions to create an
attribute. as the object owner. administrator.
CREATE USER sysadmin WITH
SYSADMIN password
'{Password},
ALTER USER u7 SYSADMIN;
Com | Common user | e Use a tool to connect Run the CREATE USER
mon to the database. syntax to create a
user common user.

CREATE USER 7 PASSWORD
'{Password},

Private user

A user created with the
INDEPENDENT attribute
in non-separation-of-
permissions mode.

Database administrators
can manage (DROP,
ALTER, and TRUNCATE)
objects of private users
but cannot access
(INSERT, DELETE,
SELECT, UPDATE, COPY,
GRANT, REVOKE, and
ALTER OWNER) the
objects before being
authorized.

Use the CREATE USER
syntax to create a private
user.

CREATE USER user_independent

WITH INDEPENDENT IDENTIFIED
BY '{Password};

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

79

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

5.1.2 GaussDB(DWS) Database User Management

You can use CREATE USER and ALTER USER to create and manage database
users.

Creating a User

In the non-separation-of-permission mode, a GaussDB(DWS) user account
can be created and deleted only by a system administrator or a security
administrator with the CREATEROLE attribute.

In separation-of-permission mode, a user account can be created only by a
security administrator.

The CREATE USER statement is used to create a GaussDB (DWS) user. After
creating a user, you can use the user to connect to the database.

Create common user ul and assign the CREATEDB attribute to the user.
CREATE USER 7 WITH CREATEDB PASSWORD ‘{Password};

To create the system administrator mydbadmin, you need to specify the

SYSADMIN parameter.
CREATE USER mydbadmin sysadmin PASSWORD '{Password};

View the created user in the PG_USER view.
SELECT * FROM pg_user;

To view user attributes, query the system catalog PG_AUTHID.
SELECT * FROM pg_authid;

Altering User Attributes

The ALTER USER statement is used to alter user attributes, such as changing user
passwords or permissions.

Example:

Locking a User

Rename user u1l to u2.
ALTER USER u1 RENAME TO u2;

Grant the CREATEROLE permission to user uf:
ALTER USER u1 CREATEROLE;

For details about how to change the user password, see Setting and
Changing a Password.

The ACCOUNT LOCK | ACCOUNT UNLOCK parameter in the statement is used to
lock or unlock a user. A locked user cannot log in to the system. If an account is
stolen or illegally accessed, the administrator can manually lock the account. After
the account is secured, the administrator can manually unlock the account.

Example:

To lock user u1, run the following command:
ALTER USER w7 ACCOUNT LOCK;

To unlock user u1, run the following command:
ALTER USER u7 ACCOUNT UNLOCK;

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Deleting a User

The DROP USER statement is used to delete one or more GaussDB(DWS) users.
An administrator can delete an account that is no longer used. Deleted users
cannot be restored.

e If multiple users are deleted at the same time, separate them with commas

().

e After a user is deleted successfully, all the permissions of the user are also
deleted.

e When an account to be deleted is in the active state, it is deleted after the
session is disconnected.

e When CASCADE is specified in the DROP USER statement, objects such as
tables that depend on the user will be deleted. That is, the objects whose
owner is the user are deleted, and the authorizations of other objects to the
user are also deleted.

Example:

e -- Delete user ul.
DROP USER uT;

e Delete account u2 in a cascading manner.
DROP USER 12 CASCADE;

5.1.3 Creating a Custom Password Policy for GaussDB(DWS)

When creating or modifying a user, you need to specify a password.
GaussDB(DWS) has default password complexity requirements. You can also
define database account password policies.

Default GaussDB(DWS) Password Policy

By default, GaussDB(DWS) verifies the password complexity (that is, the GUC
parameter password_policy is set to 1 by default). The default password policy
requires that the password:

e Contain 8 to 32 characters.

e Contain at least three types of the following characters: uppercase letters,
lowercase letters, digits, and special characters.

e Cannot be the same as the user name or the user name in reverse order, case
insensitive.

e Cannot be the current password or the current password in reverse order.

User-defined Password Policy

The password policy includes the password complexity requirements, password
validity period, password reuse settings, password encryption mode, and password
retry and lock policies. Different policy items are controlled by the corresponding
GUC parameters. For details, see Security and Authentication (postgresql.conf).

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

Table 5-2 User-defined password policies and corresponding GUC parameters

Password Parameter | Description Value Range Defa
Policy ult
Value
in
Gaus
sDB(
DWS
)
Password password_p | Specifies Integer, 0 or 1 1
complexity | olicy whether to e 0 indicates that no
check check the password complexity
password policy is used. Setting
complexity this parameter to 0
when a leads to security risks.
GaussDB(DW You are advised not to
S) account is set this parameter to 0.
created or o
modified. e 1 indicates that the
default password
complexity policy is
used.
Password password_ | Specifies the | An integer ranging from 6 | 8
complexity [min_length | minimum to 999
requirement password
length.
password_ Specifies the An integer ranging from 6 | 32
max_length | maximum to 999
password
length.
password_ Minimum An integer ranging from 0 | O
min_upperc | number of to 999
ase uppercase e 0 means no
letters (A-Z) requirements.
e 1-999 indicates the
minimum number of
uppercase letters in the
password.
password_ Minimum An integer ranging from 0 | O
min_lowerc | number of to 999
ase lowercase e 0 means no
letters (a-z) requirements.
e 1-999 indicates the
minimum number of
lower letters in the
password.
Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

Data Warehouse Service
Developer Guide

5 GaussDB(DWS) Database Security Management

Password Parameter | Description Value Range Defa
Policy ult
Value
in
Gaus
sDB(
DWS
)
password_ Minimum An integer ranging from 0 | O
min_digital | number of to 999
digits (0-9) e 0 means no
requirements.
e 1-999 indicates the
minimum number of
digits in the password.
password_ Minimum An integer ranging from 0 | O
min_special | number of to 999
special e 0 means no
characters requirements.
(Table 5-3 Lo
lists the e 1-999 indicates the
special minimum number of
characters) special characters in
the password.
Password password_ef | Password The value is a floating 90
validity fect_time validity period | point number ranging
When the from 0 to 999. The unit is
number of day.
days in e 0 indicates the validity
advance a period is disabled.
user is . .
notified that e A floating point
the password number from 1 to 999
is about to indicates the validity
expire reaches period of the password.
the value of When the password is
password_no about to expire or has
tify time,_the expired, the system
systém prompts the user to
prompts the change the password.
user to
change the
password
when the user
logs in to the
database.
Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

Data Warehouse Service
Developer Guide

5 GaussDB(DWS) Database Security Management

Password Parameter | Description Value Range Defa
Policy ult
Value
in
Gaus
sDB(
DWS
)
password_n | Specifies for The value is an integer 7
otify_time how many ranging from 0 to 999.
days you are | The unit is day.
reminded of | ¢ g indicates the
the password reminder is disabled.
expiry. .
e A value ranging from 1
to 999 indicates the
number of days prior
to password expiration
that a user will receive
a notification.
Password password_r | Specifies the | A Floating point number 60
reuse euse_time number of ranging from 0 to 3650.
settings days after The unit is day.
which the e 0 indicates that the
password password reuse days
cannot be are not checked.
reused. .
e A positive number
indicates that the new
password cannot be
chosen from passwords
in history that are
newer than the
specified number of
days.
password_r | Specifies the | An integer ranging from 0 | O
euse_max number of to 1000
the most e 0 indicates that the
recent password reuse times
passwords are not checked.
that the new .
password ° A p'osmve number
cannot be indicates that the new
chosen from. password cannot be
chosen from the
specified number of the
most recent passwords.
Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

Data Warehouse Service

Developer Guide 5 GaussDB(DWS) Database Security Management
Password Parameter | Description Value Range Defa
Policy ult

Value
in
Gaus
sDB(
DWS
)
Encryption | password_e | Specifiesthe |0, 1,2 1
mode ncryption_t | password e 0 indicates that
ype storage passwords are
encryption encrypted in MD5
mode.

mode. The password is
encrypted using MD5.
This mode is not
recommended for
users.

e 1 indicates that
passwords are
encrypted with
SHA-256, which is
compatible with the
MD5 user
authentication method
of the PostgreSQL
client. The password is
stored in ciphertext
encrypted by MD5 and
SHA256.

e 2 indicates that
passwords are
encrypted using
SHA-256. The password
is encrypted using
SHA256.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

Data Warehouse Service

Developer Guide 5 GaussDB(DWS) Database Security Management
Password Parameter | Description Value Range Defa
Policy ult
Value
in
Gaus
sDB(
DWS
)

Retry and password_lo | Specifies the | A Floating point number 1

lock ck_time duration for a | ranging from 0 to 365.

locked The unit is day.

account to be | § ¢ jndicates that the
automatically account is not
unlocked. automatically locked if
the password
verification fails.

e A positive number
indicates the duration
after which a locked
account is
automatically unlocked.

NOTE
The integral part of the
value of the
password_lock_time
parameter indicates the
number of days and its
decimal part can be
converted into hours,
minutes, and seconds.

failed_login | If the number | An integer ranging from 0 | 10

_attempts of incorrect to 1000
password e 0 indicates that the
attempts automatic locking
reaches the function does not take
value of effect.

failed_login_a

ttempts, the e A positive number

indicates that an

account is :
locked and account is locked when
will be the number of incorrect

automatically password attempts
unlocked in X reaches the value of

(which failed_login_attempts.

indicates the
value of
password_loc
k_time)
seconds.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

Table 5-3 Special characters

No. Chara | No. Charac | No. Charac | No. Charact
cter ter ter er

1 ~ 9 * 17 | 25 <

2 ! 10 (18 [26

3 @ 11) 19 { 27 >

4 # 12 - 20 } 28 /

5 $ 13 _ 21] 29 ?

6 % 14 = 22 ; - -

7 N 15 + 23 - -

8 & 16 \ 24) - -

Example of User-defined Password Policies

Example 1: Configure the password complexity parameter password_policy.

1. Log in to the GaussDB(DWS) management console.
In the navigation pane on the left, choose Clusters.

In the cluster list, find the target cluster and click the cluster name. The
Cluster Information page is displayed.

4. Click the Parameters tab, change the value of password_policy, and click
Save. The password_policy parameter takes effect immediately after being
modified. You do not need to restart the cluster.

Figure 5-1 password_policy

Synenvonzea @ ParametorName + alc

Example 2: Configure password_effect_time for password validity period.

Log in to the GaussDB(DWS) management console.
In the navigation pane on the left, choose Clusters.

In the cluster list, find the target cluster and click the cluster name. The
Cluster Information page is displayed.

4. Click the Parameters tab, change the value of password_effect_time, and
click Save. The modification of password_effect_time takes effect
immediately. You do not need to restart the cluster.

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

87

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

Figure 5-2 password_effect_time

Parameters Modiy Records

Synetmnizec (3) PaaneterNane v Qfc
Parameter Name |= CNValue DN Value Unit Valte Range RestartCluster... Descrption

parifion_men_batch bii % - 1~63505 N o aptnize the nsering o coumr-stoe pertonsd aes i aaiches, data i ca.

passwerd_eflect_fime L] L) Day 0-9%9 No Valdity period ofth account passwo'd. Whenthe passivord i3 aoout to expie or.

passwerd_encryption fype 1 1 B 0-2 No $pecifies fhe enzryafian fype of user passworcs.{ indicates that passworcs ere .

passwerd_lock_ime 1 1 Day 0-365 N Specifies he duration before an account is aulomatically wnlozked.) indicates b

Setting and Changing a Password

Both system administrators and common users need to periodically change
their passwords to prevent the accounts from being stolen.

For example, to change the password of the user user1, connect to the
database as the administrator and run the following command:
ALTER USER user7 IDENTIFIED BY 'newpassword REPLACE 'oldpassword,;

(10 NOTE

The password must meet input requirements, or the execution will fail.

An administrator can change its own password and other accounts'
passwords. With the permission for changing other accounts' passwords, the
administrator can resolve a login failure when a user forgets its password.
To change the password of the user joe, run the following command:

ALTER USER joe IDENTIFIED BY 'password;

(11 NOTE

e System administrators are not allowed to change passwords for each other.

e When a system administrator changes the password of a common user, the original
password is not required.

e However, when a system administrator changes its own password, the original password
is required.

Password verification

Password verification is required when you set the user or role in the current
session. If the entered password is inconsistent with the stored password of
the user, an error is reported.

To set the password of the user joe, run the following command:

SET ROLE joe PASSWORD 'password,;

If the following information is displayed, the role setting has been modified:
SET ROLE

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

5.1.4 GaussDB(DWS) Database Permissions Management

Permission Overview

Permissions are used to control whether a user is allowed to access a database
object (including schemas, tables, functions, and sequences) to perform operations
such as adding, deleting, modifying, querying, and creating a database object.

Permission management in GaussDB(DWS) falls into three categories:

e System permissions

System permissions are also called user attributes, including SYSADMIN,
CREATEDB, CREATEROLE, AUDITADMIN, and LOGIN.

They can be specified only by the CREATE ROLE or ALTER ROLE syntax. The
SYSADMIN permission can be granted and revoked using GRANT ALL
PRIVILEGE and REVOKE ALL PRIVILEGE, respectively. System permissions
cannot be inherited by a user from a role, and cannot be granted using
PUBLIC.

e Object permissions

Permissions on a database object (table, view, column, database, function,
schema, or tablespace) can be granted to a role or user. The GRANT
command can be used to grant permissions to a user or role. These
permissions granted are added to the existing ones.

e Permissions

Grant a role's or user's permissions to one or more roles or users. In this case,
every role or user can be regarded as a set of one or more database
permissions.

If WITH ADMIN OPTION is specified, the member can in turn grant
permissions in the role to others, and revoke permissions in the role as well. If
a role or user granted with certain permissions is changed or revoked, the
permissions inherited from the role or user also change.

A database administrator can grant permissions to and revoke them from any
role or user. Roles having CREATEROLE permission can grant or revoke
membership in any role that is not an administrator.

Hierarchical Permission Management

GaussDB(DWS) implements a hierarchical permission management on databases,
schemas, and data objects.

e Databases cannot communicate with each other and share very few
resources. Their connections and permissions can be isolated. The database
cluster has one or more named databases. Users and roles are shared within
the entire cluster, but their data is not shared. That is, a user can connect to
any database, but after the connection is successful, any user can access only
the database declared in the connection request.

e Schemas share more resources than databases do. User permissions on
schemas and subordinate objects can be flexibly configured using the GRANT
and REVOKE syntax. Each database has one or more schemas. Each schema
contains various types of objects, such as tables, views, and functions. To

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

access an object contained in a specified schema, a user must have the
USAGE permission on the schema.

After an object is created, by default, only the object owner or system
administrator can query, modify, and delete the object. To access a specific
database object, for example, table1, other users must be granted the
CONNECT permission of database, the USAGE permission of schema, and the
SELECT permission of table1. To access an object at the bottom layer, a user
must be granted the permission on the object at the upper layer. To create or
delete a schema, you must have the CREATE permission on its database.

Figure 5-3 Hierarchical Permission Management

Roles

Database

Schema

takle table2 view

The permission management model of GaussDB(DWS) is a typical implementation
of the role-based permission control (RBAC). It manages users, roles, and
permissions through this model.

A role is a set of permissions.

The concept of "user" is equivalent to that of "role". The only difference is
that "user" has the login permission while "role" has the nologin permission.

Roles are assigned with different permissions based on their responsibilities in
the database system. A role is a set of database permissions and represents
the behavior constraints of a database user or a group of data users.

Roles and users can be converted. You can use ALTER to assign the login
permission to a role.

After a role is granted to a user through GRANT, the user will have all the
permissions of the role. It is recommended that roles be used to efficiently
grant permissions. For example, you can create different roles of design,
development, and maintenance personnel, grant the roles to users, and then
grant specific data permissions required by different users. When permissions
are granted or revoked at the role level, these permission changes take effect
for all the members of the role.

In non-separation-of-duty scenarios, a role can be created, modified, and
deleted only by a system administrator or a user with the CREATEROLE
attribute. In separation-of-duty scenarios, a role can be created, modified, and
deleted only by a user with the CREATEROLE attribute.

To view all roles, query the system catalog PG_ROLES.

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

Data Warehouse Service
Developer Guide

5 GaussDB(DWS) Database Security Management

SELECT * FROM PG_ROLES;

For how to create, modify, and delete a role, see "CREATE ROLE/ALTER ROLE/
DROP ROLE" in SQL Syntax Reference.

Preset Roles

GaussDB(DWS) provides a group of preset roles. Their names start with gs_role_.
These roles allow access to operations that require high permissions. You can
grant these roles to other users or roles in the database for them to access or use
specific information and functions. Exercise caution and ensure security when

using preset roles.

The following table describes the permissions of preset roles.

Table 5-4 Permissions of preset roles

Role

Permission

gs_role_signal_bac
kend

Invokes functions such as pg_cancel_backend,
pg_terminate_backend, pg_terminate_query,
pg_cancel_query, pgxc_terminate_query, and
pgxc_cancel_query to cancel or terminate sessions,
excluding those of the initial users.

gs_role_read_all_s
tats

Reads the system status view and uses various extension-
related statistics, including information that is usually
visible only to system administrators. For example:

Resource management views:

e pgxc_wlm_operator_history
e pgxc_wlm_operator_info

e pgxc_wlm_operator_statistics
e pgxc_wlm_session_info

e pgxc_wlm_session_statistics
e pgxc_wlm_workload_records
e pgxc_workload_sqgl_count

e pgxc_workload_sqgl_elapse_time
e pgxc_workload_transaction
Status information views:

e pgxc_stat_activity

e pgxc_get_table_skewness

e table_distribution

e pgxc_total_memory_detail
e pgxc_os_run_info

e pg_nodes_memory

e pgxc_instance_time

e pgxc_redo_stat

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

Role Permission

gs_role_analyze_a | A user with the system-level ANALYZE permission can skip
ny

the schema permission check and perform ANALYZE on all
tables.

gs_role_vacuum_a | A user with the system-level VACUUM permission can skip
ny

the schema permission check and perform ANALYZE on all
tables.

y

gs_redaction_polic | A user with the permission to create, modify, and delete

data masking policies and can execute CREATE | ALTER |
DROP REDACTION POLICY on all tables. Clusters of 9.1.0
and later versions support this function.

Restrictions on using preset roles:

gs_role_ is the name field dedicated to preset roles in the database. Do not
create users or roles starting with gs_role_ or rename existing users or roles
starting with gs_role_.

Do not perform ALTER or DROP operations on preset roles.

By default, a preset role does not have the LOGIN permission, so there is no
preset login password for the role.

The gsqgl meta-commands \du and \dg do not display information about
preset roles. However, if PATTERN is specified, information about preset roles
will be displayed.

If the separation of permissions is disabled, the system administrator and
users with the ADMIN OPTION permission of preset roles are allowed to
perform GRANT and REVOKE operations on preset roles. If the separation of
permissions is enabled, the security administrator (with the CREATEROLE
attribute) and users with the ADMIN OPTION permission of preset roles are

allowed to perform GRANT and REVOKE operations on preset roles. Example:
GRANT gs_role_signal_backend TO user1;
REVOKE gs_role_signal_backend FROM user1;

Granting or Revoking Permissions

A user who creates an object is the owner of this object. By default, Separation of
Duties in GaussDB(DWS) is disabled after cluster installation. A database system

administrator has the same permissions as object owners.

After an object is created, only the object owner or system administrator can

query, modify, and delete the object, and grant permissions for the object to other

users through GRANT by default. To enable a user to use an object, the object
owner or administrator can run the GRANT or REVOKE command to grant
permissions to or revoke permissions from the user or role.

e Run the GRANT statement to grant permissions.

For example, grant the permission of schema myschema to role u1, and

grant the SELECT permission of table myschema.t1 to role u1.
GRANT USAGE ON SCHEMA myschema TO uf7,
GRANT SELECT ON TABLE myschema.t1 to uf,

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

92

Data Warehouse Service
Developer Guide

5 GaussDB(DWS) Database Security Management

e Run the REVOKE command to revoke a permission that has been granted.

For example, revoke all permissions of user u1 on the myschema.t1 table.
REVOKE ALL PRIVILEGES ON myschema.t1 FROM u1;

5.1.5 Separation of Duties in GaussDB(DWS)

By default, the system administrator with the SYSADMIN attribute has the highest
permission in the system. To avoid risks caused by centralized permissions, you can
enable the separation of permissions to delegate system administrator permissions
to security administrators and audit administrators.

e After the separation of permissions is enabled, a system administrator does
not have the CREATEROLE attribute (security administrator) and
AUDITADMIN attribute (audit administrator). That is, you do not have the
permissions for creating roles and users and the permissions for viewing and
maintaining database audit logs. For details about the CREATEROLE and
AUDITADMIN attributes, see CREATE ROLE.

e After the separation of permissions is enabled, system administrators have the
permissions only for the objects owned by them.

For how to configure permission separation, see Configuring Separation of
Permissions

For details about permission changes before and after enabling the separation of
permissions, see Table 5-5 and Table 5-6.

Table 5-5 Default user permissions

Object

System
Administrator

Audit
Administrato
r

Common
User

Security
Administrator

Tables
pace

Can create, modify,
delete, access, and
allocate
tablespaces.

Cannot create, modify, delete, or allocate
tablespaces, with authorization required for
accessing tablespaces.

Table

Has permissions for
all tables.

Has permissions for its own tables, but does not
have permissions for other users' tables.

Index

Can create indexes
on all tables.

Can create indexes on their own tables.

Schem

Has permissions for
all schemas.

Has all permissions for its own schemas, but
does not have permissions for other users'
schemas.

Functio
n

Has permissions for
all functions.

Has permissions for its own functions, has the

call permission for other users' functions in the
public schema, but does not have permissions
for other users' functions in other schemas.

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0074.html
https://support.huaweicloud.com/eu/mgtg-dws/dws_01_0074.html

Data Warehouse Service
Developer Guide

5 GaussDB(DWS) Database Security Management

Object

System Security Audit Common
Administrator Administrator | Administrato | User

r

Custo
mized
view

Has permissions for | Has permissions for its own views, but does not
all views. have permissions for other users' views.

System
catalog
and
system
view

Has permissions for | Has permissions for querying only some system
querying all system | catalogs and views. For details, see
catalogs and views. | GaussDB(DWS) System Catalogs and Views.

Table 5-6 Changes in permissions after the separation of permissions

Objec | System Administrator Securi | Audit | Common
t ty Admi | User
Admi | nistra
nistra | tor
tor
Tables | No change No change
pace
Table | Permissions reduced No change
Has all permissions for its own tables, but
does not have permissions for other
users' tables in their schemas.
Index | Permissions reduced No change
Can create indexes on its own tables.
Sche Permissions reduced No change
ma Has all permissions for its own schemas,
but does not have permissions for other
users' schemas.
Functi | Permissions reduced No change
on Has all permissions for its own functions,
but does not have permissions for other
users' functions in their schemas.
Custo | Permissions reduced No change
mized | Has all permissions for its own views and
VIEW | other users' views in the public schema,
but does not have permissions for other
users' views in their schemas.

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

Data Warehouse Service

Developer Guide 5 GaussDB(DWS) Database Security Management
Objec | System Administrator Securi | Audit | Common
t ty Admi | User

Admi | nistra

nistra | tor

tor
Syste | No change No No Has no
m chang | chang | permissio
catalo e e n for
g and viewing
syste any
m system
view catalogs

or views.

5.2 GaussDB(DWS) Sensitive Data Management

5.2.1 GaussDB(DWS) Row-Level Access Control

The row-level access control feature enables database access control to be
accurate to each row of data tables. In this way, the same SQL query may return
different results for different users.

You can create a row-level access control policy for a data table. The policy defines
an expression that takes effect only for specific database users and SQL
operations. When a database user accesses the data table, if a SQL statement
meets the specified row-level access control policies of the data table, the
expressions that meet the specified condition will be combined by using AND or
OR based on the attribute type (PERMISSIVE | RESTRICTIVE) and applied to the
execution plan in the query optimization phase.

Row-level access control is used to control the visibility of row-level data in tables.
By predefining filters for data tables, the expressions that meet the specified
condition can be applied to execution plans in the query optimization phase,
which will affect the final execution result. Currently, the SQL statements that can
be affected include SELECT, UPDATE, and DELETE.

Scenario 1: A table summarizes the data of different users. Users can view only
their own data.

-- Create users alice, bob, and peter.
CREATE ROLE alice PASSWORD 'password,;
CREATE ROLE bob PASSWORD 'password;
CREATE ROLE peter PASSWORD 'password;

-- Create the public.all_data table that contains user information.
CREATE TABLE public.all_data(id int, role varchar(100), data varchar(100));

-- Insert data into the data table.

INSERT INTO all_data VALUES(1, 'alice', 'alice data');
INSERT INTO all_data VALUES(2, 'bob', 'bob data');
INSERT INTO all_data VALUES(3, 'peter, 'peter data');

-- Grant the read permission for the all_data table to users alice, bob, and peter.
GRANT SELECT ON all_data TO alice, bob, peter;

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

-- Enable row-level access control.
ALTER TABLE all_data ENABLE ROW LEVEL SECURITY;

-- Create a row-level access control policy to specify that the current user can view only their own data.
CREATE ROW LEVEL SECURITY POLICY all_data_rls ON all_data USING(role = CURRENT_USER);

-- View table details.
\d+ all_data
Table "public.all_data"
Column | Type | Modifiers | Storage | Stats target | Description

id |integer | | plain | |
role | character varying(100) | | extended | |
data | character varying(100) | | extended | |
Row Level Security Policies:

POLICY "all_data_rls"

USING (((role):name = "current_user"()))

Has OIDs: no
Distribute By: HASH(id)
Location Nodes: ALL DATANODES
Options: orientation=row, compression=no, enable_rowsecurity=true

-- Switch to user alice and run SELECT * FROM all_data.
SET ROLE alice PASSWORD 'password;

SELECT * FROM all_data;

id | role | data

+ +

1| alice | alice data
(1 row)

EXPLAIN(COSTS OFF) SELECT * FROM all_data;
QUERY PLAN

Streaming (type: GATHER)
Node/s: All datanodes
-> Seq Scan on all_data
Filter: ((role)::name = 'alice"::name)
Notice: This query is influenced by row level security feature
(5 rows)

-- Switch to user peter and run SELECT * FROM .all_data.
SET ROLE peter PASSWORD 'password,
SELECT * FROM all_data;
id | role | data
3 | peter | peter data
(1 row)

EXPLAIN(COSTS OFF) SELECT * FROM all_data;
QUERY PLAN

Streaming (type: GATHER)
Node/s: All datanodes
-> Seq Scan on all_data
Filter: ((role)::name = 'peter':name)
Notice: This query is influenced by row level security feature
(5 rows)

5.2.2 GaussDB(DWS) Data Masking

GaussDB(DWS) provides the column-level dynamic data masking (DDM) function.
For sensitive data (such as the ID card number, mobile number, and bank card
number), the DDM function is used to redact the original data to protect data
security and user privacy.

e (Creating a data masking policy for a table

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

Examples

GaussDB(DWS) uses the CREATE REDACTION POLICY syntax to create a
data masking policy on a table (Do not perform masking), MASK_FULL
(Mask data into a fixed value), and MASK_PARTIAL (Perform partial masking
based on the character type, numeric type, or time type.) to specify the
application scope of the masking policy.

Modifying the data masking policy of a table

The ALTER REDACTION POLICY syntax is used to modify the expression for
enabling a masking policy, rename a masking policy, and add, modify, or
delete masked columns.

Deleting the masking policy of a table

The DROP REDACTION POLICY syntax is used to delete the masking function
information of a masking policy on all columns of a table.

Viewing the masking policy and masked columns

Masking policy information is stored in the system catalog
PG_REDACTION_POLICY, and masked column information is stored in the
system catalog PG_REDACTION_COLUMN. You can view information about
the masking policy and masked columns in the system views
REDACTION_POLICIES and REDACTION_COLUMNS.

(11 NOTE

e Generally, you can run the SELECT statement to view the data masking result. If a
statement has the following features, sensitive data may be deliberately obtained. In
this case, an error will be reported during statement execution.

e The GROUP BY clause references the Target Entry containing masked columns as
the target column.

e DISTINCT works on the output masked columns.

e The statement contains CTE.

e Operations on sets are involved.

e The target columns of a subquery are not masked columns of the base table, but
the expressions or function calls for masked columns of the base table.

e You can use COPY TO or GDS to export the masked data. Due to the irreversibility of the
data masking, secondary masking of the data is meaningless.

e Do not set target columns of UPDATE, MERGE INTO, and DELETE statements to masked
columns.

e The UPSERT statement allows you to insert update data through EXCLUDED. If data in
the base table is updated by referencing masked columns, the data may be modified by
mistake. As a result, an error will be reported during the execution.

e In the 8.2.1 cluster version, multiple masking policies can be created for the same table
to implement diversified sensitive data classification. The principles for selecting and
applying masking policies are as follows:

e Select the policy with the largest policy_order among multiple candidate policies
that meet the requirements of the current session. A larger policy_order indicates
a later creation.

° During data masking, the DML statement inherits only the policy with the largest
policy_order.

The following uses the employee table emp, table owner alice, and roles matu
and july as an example to illustrate the data masking process. The emp table
contains private data such as the employee name, mobile number, email address,
bank card number, and salary.

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

https://support.huaweicloud.com/eu/sqlreference-dws/dws_06_0168.html
https://support.huaweicloud.com/eu/sqlreference-dws/dws_06_0132.html
https://support.huaweicloud.com/eu/sqlreference-dws/dws_06_0199.html

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Step 1 After connecting to the database as the administrator, create roles alice, matu,
and july.
CREATE ROLE alice PASSWORD 'password;

CREATE ROLE matu PASSWORD 'password,;
CREATE ROLE july PASSWORD 'password,;

Step 2 Grant schema permissions on the current database to alice, matu, and july.
GRANT ALL PRIVILEGES on schema public to alice,matu,july;

Step 3 Switch to role alice, create the emp table, and insert three pieces of employee
information.

SET ROLE alice PASSWORD 'password,;

CREATE TABLE emp(id int, name varchar(20), phone_no varchar(11), card_no number, card_string
varchar(19), email text, salary numeric(100, 4), birthday date);

INSERT INTO emp VALUES(1, 'anny', '13420002340', 1234123412341234, '1234-1234-1234-1234",
'smithWu@163.com', 10000.00, '1999-10-02');

INSERT INTO emp VALUES(2, 'bob', '18299023211', 3456345634563456, '3456-3456-3456-3456',
'66allen_mm@qqg.com’, 9999.99, '1989-12-12');

INSERT INTO emp VALUES(3, 'cici', '15512231233', NULL, NULL, 'jonesishere@sina.com', NULL,
'1992-11-06");

Step 4 alice grants the read permission on the emp table to matu and july.
GRANT SELECT ON emp TO matu, july;

Step 5 Create the masking policy mask_emp: Only user alice can view all employee
information. User matu and july cannot view employee bank card numbers and
salary data. The card_no column is of the numeric type and all of its data is
masked into 0 by the MASK_FULL function. The card_string column is of the
character type and part of its data is masked by the MASK_PARTIAL function
based on the specified input and output formats. The salary column is of the
numeric type and the MASK_PARTIAL function is used to mask all digits before
the penultimate digit using the number 9.

CREATE REDACTION POLICY mask_emp ON emp WHEN (current_user IN ('matu’, 'july'))

ADD COLUMN card_no WITH mask_full(card_no),

ADD COLUMN card_string WITH mask_partial(card_string, 'VVVVFVVVVFVVVVFVVVWV','VVVV-VVVV-VVVV-
VW', #,1,12),

ADD COLUMN salary WITH mask_partial(salary, '9', 1, length(salary) - 2);

Step 6 Switch to matu and july and view the employee table emp.

SET ROLE matu PASSWORD 'password,;
SELECT * FROM emp;

id | name | phone_no |card_no| card_string | email | salary | birthday
-t + + + + + +

1| anny | 13420002340 | O | ####-####-####-1234 | smithWu@163.com | 99999.9990 |
1999-10-02 00:00:00

2 | bob | 18299023211 | O | ####-####-####-3456 | 66allen_mm@qgqg.com | 9999.9990 |
1989-12-12 00:00:00

3| cici | 15512231233 | | | jonesishere@sina.com | | 1992-11-06 00:00:00
(3 rows)

SET ROLE july PASSWORD 'password';
SELECT * FROM emp;

id | name | phone_no |card_no| card_string | email | salary | birthday
-t + + + + + +

1| anny | 13420002340 | O | ####-####-####-1234 | smithWu@163.com | 99999.9990 |
1999-10-02 00:00:00

2 | bob | 18299023211 | O | ####-####-####-3456 | 66allen_mm@qgqg.com | 9999.9990 |
1989-12-12 00:00:00

3| cici | 15512231233 | | | jonesishere@sina.com | | 1992-11-06 00:00:00
(3 rows)

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Step 7 If you want matu to have the permission to view all employee information, but do
not want july to have. In this case, you only need to modify the effective scope of
the policy.

SET ROLE alice PASSWORD 'password,;
ALTER REDACTION POLICY mask_emp ON emp WHEN ((current_user = 'july');

Step 8 Switch to users matu and july and view the emp table again, respectively.

SET ROLE matu PASSWORD 'password,;

SELECT * FROM emp;

id | name | phone_no | card_no | card_string | email | salary | birthday
-t + + + + +

1| anny | 13420002340 | 1234123412341234 | 1234-1234-1234-1234 | smithWu@163.com |
10000.0000 | 1999-10-02 00:00:00

2 | bob | 18299023211 | 3456345634563456 | 3456-3456-3456-3456 | 66allen_mm@qqg.com |
9999.9900 | 1989-12-12 00:00:00

3| cici | 15512231233 | | | jonesishere@sina.com | | 1992-11-06 00:00:00
(3 rows)

SET ROLE july PASSWORD 'password,;
SELECT * FROM emp;

id | name | phone_no |card_no| card_string | email | salary | birthday
-t + + + + + +

1| anny | 13420002340 | O | ####-####-####-1234 | smithWu@163.com | 99999.9990 |
1999-10-02 00:00:00

2 | bob | 18299023211 | O | ####-####-####-3456 | 66allen_mm@qgqg.com | 9999.9990 |
1989-12-12 00:00:00

3| cici | 15512231233 | | | jonesishere@sina.com | | 1992-11-06 00:00:00
(3 rows)

Step 9 The information in the phone_no, email, and birthday columns is private data.
Update masking policy mask_emp and add three masked columns.

SET ROLE alice PASSWORD 'password;

ALTER REDACTION POLICY mask_emp ON emp ADD COLUMN phone_no WITH mask_partial(phone_no, ',
4);

ALTER REDACTION POLICY mask_emp ON emp ADD COLUMN email WITH mask_partial(email, "', 1,
position('@' in email));

ALTER REDACTION POLICY mask_emp ON emp ADD COLUMN birthday WITH mask_full(birthday);

Step 10 Switch to july and view data in the emp table.

SET ROLE july PASSWORD 'password;
SELECT * FROM emp;
id | name | phone_no |card_no| card_string | email | salary | birthday

+ + +. + + +. +

1] anny | 13dssssses | O | ####-####-#H##-1234 | *163.com | 99999.9990 | 1970-01-01

00:00:00

2 | bob | 182%#ikikk | O | ####-#H##H-####-3456 | »+reegq com | 9999.9990 | 1970-01-01
00:00:00

3| CiCi | 155%* ke | | | sk sing com | | 1970-01-01 00:00:00
(3 rows)

Step 11 Query redaction_policies and redaction_columns to view details about the
current redaction policy mask_emp.
SELECT * FROM redaction_policies;

object_schema | object_owner | object_name | policy_name expression | enable |
policy_description | inherited

+. + +
y t t

+ +
t

public | alice | emp | mask_emp | ("current_user"() = 'july':name) |t |
(1 row)

SELECT object_name, column_name, function_info FROM redaction_columns;
object_name | column_name | function_info

+
t

+
t

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

Step 12

Step 13

emp | card_no | mask_full(card_no)

emp | card_string | mask_partial(card_string, 'VVVVFVVVVFVVVVFVVVV':text, 'VVVV-VVVV-VVVV-
VVVV':text, '#':text, 1, 12)

emp | email | mask_partial(email, "*"::text, 1, "position" (email, '@":text))

emp | salary | mask_partial(salary, '9":text, 1, (length((salary):text) - 2))

emp | birthday | mask_full(birthday)

emp | phone_no | mask_partial(phone_no, "*"::text, 4)

(6 rows)

Add the salary_info column. To replace the salary information in text format with
** you can create a user-defined masking function. In this step, you can use the
PL/pgSQL to define the masking function mask_regexp_salary. To create a
masking column, you simply need to customize the function name and parameter
list. For details, see GaussDB(DWS) User-Defined Functions.

SET ROLE alice PASSWORD 'password;

ALTER TABLE emp ADD COLUMN salary_info TEXT;
UPDATE emp SET salary_info = salary:text;

CREATE FUNCTION mask_regexp_salary(salary_info text) RETURNS text AS
$$

SELECT regexp_replace($1, '[0-9]+',"*''g");

$$

LANGUAGE SQL

STRICT SHIPPABLE;

ALTER REDACTION POLICY mask_emp ON emp ADD COLUMN salary_info WITH
mask_regexp_salary(salary_info);

SET ROLE july PASSWORD 'password;
SELECT id, name, salary_info FROM emp;
id | name | salary_info

+
t

1| anny | **

2| bob |**

3| cici |
(3 rows)
If there is no need to set a redaction policy for the emp table, delete redaction
policy mask_emp.

SET ROLE alice PASSWORD 'password;
DROP REDACTION POLICY mask_emp ON emp;

----End

5.2.3 Encrypting and Decrypting GaussDB(DWS) Strings

GaussDB(DWS) supports encryption and decryption of strings using the following
functions:

e gs_encrypt(encryptstr, keystr, cryptotype, cryptomode, hashmethod)

Description: Encrypts an encryptstr string using the keystr key based on the
encryption algorithm specified by cryptotype and cryptomode and the
HMAC algorithm specified by hashmethod, and returns the encrypted string.
cryptotype can be aes128, aes192, aes256, or sm4. cryptomode is cbc.
hashmethod can be sha256, sha384, sha512, or sm3. Currently, the
following types of data can be encrypted: numerals supported in the
database; character type; RAW in binary type; and DATE, TIMESTAMP, and
SMALLDATETIME in date/time type. The keystr length is related to the
encryption algorithm and contains 1 to KeyLen bytes. If cryptotype is aes128
or sm4, KeyLen is 16; if cryptotype is aes192, KeyLen is 24; if cryptotype is
aes256, KeylLen is 32.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

Return type: text

Length of the return value: at least 4 x [(maclen + 56)/3] bytes and no more
than 4 x [(Len + maclen + 56)/3] bytes, where Len indicates the string length
(in bytes) before the encryption and maclen indicates the length of the
HMAC value. If hashmethod is sha256 or sm3, maclen is 32; if hashmethod
is sha384, maclen is 48; if hashmethod is sha512, maclen is 64. That is, if
hashmethod is sha256 or sm3, the returned string contains 120 to 4 x [(Len
+ 88)/3] bytes; if hashmethod is sha384, the returned string contains 140 to
4 x [(Len + 104)/3] bytes; if hashmethod is sha512, the returned string
contains 160 to 4 x [(Len + 120)/3] bytes.

Example:

SELECT gs_encrypt(‘GaussDB(DWS)', '1234', 'aes128', 'cbc', 'sha256');
gs_encrypt

AAAAAAAAAACCF]DcCSbop7D87s0a2nxTFrkE9RIQGK34ypgrOPsFlIqggl8tl
+eMDcQYT3p0o98wPCC7VBfhv7mdBy7IVnzdrpOrdMrD6/zTI8wOv9/s20A==
(1 row)

(11 NOTE

e A decryption password is required during the execution of this function. For
security purposes, the gsql tool does not record this function in the execution
history. That is, the execution history of this function cannot be found in gsql by
paging up and down.

e Do not use the ge_encrypt and gs_encrypt_aes128 functions for the same data
table.

e gs_decrypt(decryptstr, keystr, cryptotype, cryptomode, hashmethod)

Description: Decrypts a decryptstr string using the keystr key based on the
encryption algorithm specified by cryptotype and cryptomode and the
HMAC algorithm specified by hashmethod, and returns the decrypted string.
The keystr used for decryption must be consistent with that used for
encryption. keystr cannot be empty.

Return type: text

Example:

SELECT gs_decrypt('AAAAAAAAAACCF]DcCSbop7D87s0a2nxTFrkE9RIQGK34ypgrOPsFJIqggl8tl
+eMDcQYT3p098wPCC7VBfhv7mdBy71VnzdrpOrdMrD6/zTI8wOv9/s20A==", '1234', 'aes128', 'cbc’,
'sha256');

gs_decrypt

GaussDB(DWS)
(1 row)

(10 NOTE

e A decryption password is required during the execution of this function. For
security purposes, the gsql tool does not record this function in the execution
history. That is, the execution history of this function cannot be found in gsql by
paging up and down.

e This function works with the gs_encrypt function, and the two functions must use
the same encryption algorithm and HMAC algorithm.

e gs_encrypt_aes128(encryptstr,keystr)

Description: Encrypts encryptstr strings using keystr as the key and returns
encrypted strings. The length of keystr ranges from 1 to 16 bytes. Currently,
the following types of data can be encrypted: numerals supported in the

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

database; character type; RAW in binary type; and DATE, TIMESTAMP, and
SMALLDATETIME in date/time type.

Return type: text

Length of the return value: At least 92 bytes and no more than (4*[Len/
3]+68) bytes, where Len indicates the length of the data before encryption
(unit: byte).

Example:

SELECT gs_encrypt_aes128('DWS','1234");
gs_encrypt_aes128

ZrCp794v0519q)+jHFf/sQqRyMByO0IKIDGP5S8RIXzgmpXoa/
e4EgmKB82P5y5xe1bOXbJeoNxyHagK9OhPVVelDbn/M=
(1 row)

(10 NOTE

e A decryption password is required during the execution of this function. For
security purposes, the gsql tool does not record this function in the execution
history. That is, the execution history of this function cannot be found in gsql by
paging up and down.

e Do not use the ge_encrypt and gs_encrypt_aes128 functions for the same data
table.

e gs_decrypt_aes128(decryptstr,keystr)

Description: Decrypts a decryptstr string using the keystr key and returns the
decrypted string. The keystr used for decryption must be consistent with that
used for encryption. keystr cannot be empty.

Return type: text

Example:

SELECT gs_decrypt_aes128('ZrCp794vO519qJ)+jHFf/sQqRyMByOlKIDGP5S8RJXzgmpXoa/
e4EgmK82P5y5xe1bOXbJeoNxyHagK9OhPVVelDbn/M=','1234");
gs_decrypt_aes128

e A decryption password is required during the execution of this function. For
security purposes, the gsql tool does not record this function in the execution
history. That is, the execution history of this function cannot be found in gsql by
paging up and down.

e This function works with the gs_encrypt_aes128 function.
e gs_hash(hashstr, hashmethod)
Description: Obtains the digest string of a hashstr string based on the

algorithm specified by hashmethod. hashmethod can be sha256, sha384,
sha512, or sm3.

Return type: text

Length of the return value: 64 bytes if hashmethod is sha256 or sm3; 96
bytes if hashmethod is sha384; 128 bytes if hashmethod is sha512
Example:

SELECT gs_hash('GaussDB(DWS)', 'sha256');
gs_hash

€59069daa6541ae20af7c747662702c731b26b8abd7a788f4d15611aa0db608efdbb5587ba90789a983f8

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

5dd51766609
(1 row)

md5(string)

Description: Encrypts a string in MD5 mode and returns a value in
hexadecimal form.

(1] NOTE

MD?5 is insecure and is not recommended.
Return type: text

Example:

SELECT md5('ABC'");
md>5

902fbdd2b1df0c4f70b4a5d23525e932
(1 row)

5.2.4 Using pgcrypto to Encrypt GaussDB(DWS) Data

GaussDB(DWS) 8.2.0 and later provides a built-in cryptographic module pgcrypto.
The pgcrypto module allows database users to store certain columns of data after
encryption, enhancing sensitive data security. Users without the encryption key
cannot read the encrypted data stored in GaussDB(DWS).

The pgcrypto function runs inside database servers, which means that all data and
passwords are transmitted in plaintext between pgcrypto and client applications.
For security purposes, you are advised to use the SSL connection between the
client and the GaussDB(DWS) server.

The functions in the pgcrypto module are as follows.

General Hash Functions

digest()

The digest() function can generate binary hash values by using a specified

algorithm. The syntax is as follows:
digest(data text, type text) returns bytea
digest(data bytea, type text) returns bytea

data indicates the original data, and type indicates the encryption algorithm
(md5, sha1, sha224, sha256, sha384, sha512, or sm3). The return value of
the function is a binary string.

Example:

Use the digest() function to encrypt the GaussDB(DWS) string using SHA256
for storage.

select digest('GaussDB(DWS)', 'sha256');
digest

\xcc2d1b97c6adfbad4bbce7386516f63f16fc6e6a10bd938861d3aba501ac8aab
(1 row)

hmac()

The hmac() function can calculate the MAC value for data with a key by using

a specified algorithm. The syntax is as follows:
hmac(data text, key text, type text) returns bytea
hmac(data bytea, key bytea, type text) returns bytea

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

data indicates the original data, key indicates the encryption key, and type
indicates the encryption algorithm (md5, sha1, sha224, sha256, sha384,
sha512, or sm3). The return value of the function is a binary string.

Example:

Use key123 and the SHA256 algorithm to calculate the MAC value for the
string GaussDB(DWS).

select hmac('GaussDB(DWS)', 'key123', 'sha256');
hmac

\x14e1d9e110e9b11ab8379dc02b49533d50a6f4deafe6d6cd451d06c106c97d83

(1 row)

If both the original data and its encryption result are modified, the digest()
function cannot identify the changes. The hmac() function can identify the
changes as long as the key is not disclosed.

If the key is longer than the hash block, it will be hashed first, and the hash
result will be used as the key.

Cryptographic Hash Functions

The crypt() and gen_salt() functions are used for password hashing. crypt()
executes hashes to encrypt data, and gen_salt() generates salted hashes.

The algorithms in crypt() differ from the common MD5 and SHA1 hash algorithms
in the following aspects:

The algorithms used in crypt() are slow. This is the only way to make it
difficult for brute-force attackers to crack passwords, which only contain a
small amount of data.

A random value (called salt) is used for encryption, so that users will get
different ciphertexts even if they use the same passwords. This can protect
passwords for cracking algorithms.

The encryption results include algorithm types. Passwords can be encrypted
using different algorithms for different users.

Some of the algorithms are self-adaptive. They can slow down computing if it
is too fast, and do not cause incompatibility issues with existing passwords.

The following table lists the algorithms supported by the crypt() function.

Table 5-7 Algorithms supported by crypt()

Algorith | Maximu | Adaptabi | Salt Bits | Standard | Description
m m lity Output
Password Length
Length
bf 72 v 128 60 Blowfish-based 2a
variation
md>5 unlimited | x 48 34 MD5-based
algorithm
xdes 8 v 24 20 Extended DES

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

Algorith | Maximu | Adaptabi | Salt Bits | Standard | Description
m m lity Output
Password Length
Length
des 8 x 12 13 Native UNIX
algorithm
e crypt()

The syntax of crypt() is as follows:

crypt(password text, salt text) returns text

This function returns a hash value of the password string in crypt(3) format.
The salt parameter is generated by the gen_salt() function.

For the same password, the crypt() function returns a different result each
time, because the gen_salt() function generates a different salt each time.
During password verification, the previously generated hash result can be

used as the salt.

For example, to set a new password, run the following command:
UPDATE ... SET pswhash = crypt('new password', gen_salt('bf',10));

The hash values of the entered password and the stored password are
compared.

SELECT (pswhash = crypt(‘entered password', pswhash)) AS pswmatch FROM ... ;

If the entered password is correct, true is returned.
Example:

create table userpwd(userid int8, pwd text);
CREATE TABLE

insert into userpwd values (1, crypt('this is a pwd', gen_salt('bf',10)));
INSERT 0 1

select crypt('this is a pwd', pwd)=pwd as result from userpwd where userid =1;
result

select crypt('this is a wrong pwd', pwd)=pwd as result from userpwd where userid =1;
result

(1 row)
gen_salt()

The gen_salt() function is used to generate random parameters for crypt. The
syntax is as follows:

gen_salt(type text [, iter_count integer]) returns text

This function generates a random salt string each time. The string determines
the algorithm used by the crypt() function. The type parameter specifies a
hash algorithm (des, xdes, md5, or bf) for generating a string. For the xdes
and bf algorithms, iter_count indicates the number of iterations. A large
value indicates a long encryption or cracking time.

SELECT gen_salt('des'), gen_salt('xdes'), gen_salt('md5'), gen_salt('bf");
gen_salt | gen_salt | gen_salt | gen_salt

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

+. + +

gh | _J9..uEUi | 1SNgqyKAi | $2a$06$B/Etc3)8zYBV49LrDU97MO
(1 row)

The salt generated by an algorithm has a fixed format. For example, in $2a
$06S in the bf algorithm result, 2a indicates the 2a variation of Blowfish, and
06 indicates the number of iterations.

If iter_count is ignored, the default number of iterations will be used. The
valid iter_count values depend on the algorithm used, as shown in the table
below. For the xdes algorithm, the number of iterations must be an odd
number.

Table 5-8 Iteration counts of crypt()

Algorithm Default Value Min. Max.
xdes 725 1 16777215
bf 6 4 31

PGP Encryption Functions

The PGP encryption function of GaussDB(DWS) complies with the OpenPGP (RFC
4880) standard, which includes requirements for symmetric key (private key)

encryption and asymmetric key (public key) encryption.

An encrypted PGP message consists of the following parts:

Session key (encrypted symmetric key or public key) of the message
Data encrypted using the session key

For symmetric key (password) encryption:

1.

2.

3.

The key is encrypted using the String2Key (S2K) algorithm, which is like a
slowed down crypt() algorithm with a random salt. A full-length binary key
will be generated.

If a separate session key is required, a random key will be generated. If it is
not required, the S2K key will be used as the session key.

If the S2K key is directly used for a session, this key will be put in the session
key packet. Otherwise, the S2K key will be used to encrypt the session key,
and the encryption result will be put in the session key packet.

For public key encryption:

1.
2.

A random session key is generated.

This random key is encrypted using the public key and then put in the session
key packet.

In either case, the data encryption process is as follows:

1.

(Optional) Compress data, convert data to UTF-8, or convert newline
characters.

A block consisting of random bytes is added before the data, serving as a
random initial value (IV).

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

3.
4.

A random prefix and the SHA1 hash value suffix are added to the data.

The entire content is encrypted using the session key and then placed in the
data packet.

Supported PGP encryption functions

pgp_sym_encrypt()
Description: Encrypts a symmetric key.

Syntax:

pgp_sym_encrypt(data text, psw text [, options text]) returns bytea
pgp_sym_encrypt_bytea(data bytea, psw text [, options text]) returns bytea

data indicates the data to be encrypted, psw indicates the PGP symmetric
key, and options is used to set options. For details, see Table 5-9.

pgp_sym_decrypt()
Description: Decrypts a message encrypted using a PGP symmetric key.

Syntax:

pgp_sym_decrypt(msg bytea, psw text [, options text]) returns text

pgp_sym_decrypt_bytea(msg bytea, psw text [, options text]) returns bytea

msg indicates the data to be decrypted, psw indicates the PGP symmetric key,
and options is used to set options. For details, see Table 5-9. To avoid
generating invalid characters, you are not allowed to use the
pgp_sym_decrypt function to decrypt bytea data. You can use the
pgp_sym_decrypt_bytea function instead.

pgp_pub_encrypt()
Description: Encrypts a public key.

Syntax:

pgp_pub_encrypt(data text, key bytea [, options text]) returns bytea

pgp_pub_encrypt_bytea(data bytea, key bytea [, options text]) returns bytea

data indicates the data to be encrypted. key indicates the PGP public key. If a
private key is used as input, an error will be returned. options is used to set
options. For details, see Table 5-9.

pgp_pub_decrypt()
Description: Decrypts a message encrypted using a PGP public key.

Syntax:

pgp_pub_decrypt(msg bytea, key bytea [, psw text [, options text]]) returns text
pgp_pub_decrypt_bytea(msg bytea, key bytea [, psw text [, options text]]) returns bytea

You can decrypt a message encrypted using a public key. The key must be the
private key corresponding to the public key used for encryption. If the private
key is password protected, specify the password in psw. If you have not
specified any password but want to specify this option now, provide an empty
password.

To avoid generating invalid characters, you are not allowed to use the
pgp_pub_decrypt function to decrypt bytea data. You can use
pgp_pub_decrypt_bytea function instead.

The key must be the private key corresponding to the public key used for
encryption. If the private key is password protected, specify the password in
psw. If you have not specified any password but want to specify this option
now, provide an empty password. The options parameter is used to set
options. For details, see Table 5-9.

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

pgp_key_id()

Description: Extracts the key ID of the PGP public or private key. If an
encrypted message is used as the input, the ID of the key used to encrypt the
message will be returned.

Syntax:
pgp_key_id(bytea) returns text

This function can return two special key IDs:
- SYMKEY, indicating that a message is encrypted using a symmetric key.

- ANYKEY, indicating that a message is encrypted using the public key, but
the key ID has been deleted. To decrypt the message in this case, you
need to try all the keys until you find the correct private key. pgcrypto
does not produce such encrypted messages.

(10 NOTE

Different keys may have the same ID. This situation rarely occurs. In this case, the
client application needs to try different keys for decryption, in the same way it deals
with ANYKEY.

armor()

Description: Converts binary data into PGP ASCll-armor format by the CRC
calculation and formatting of a Base64 string.

Syntax:

armor(data bytea [, keys text[], values text[]]) returns text
dearmor()

Description: Performs the reverse conversion.
Syntax:

dearmor(data text) returns bytea
Converts the encrypted data bytea to the PGP ASCll-armor format, or the
other way around.

data indicates the data to be converted. If multiple pairs of keys and values
are specified, an armor header will be generated for each key-value pair and
added to the output. The two arrays are both one-dimensional arrays with the
same length, and cannot contain non-ASCIl characters.

pgp_armor_headers()

Description: Returns the armor header in the data.
pgp_armor_headers(data text, key out text, value out text) returns setof record

The return result is a data row set consisting of key and value columns. Any
non-ASCll characters contained in the set are regarded as UTF-8 characters.

Using GnuPG to generate PGP keys

To generate a key, run the following command:
gpg --gen-key

DSA and Elgamal keys are recommended.

To use an RSA key, you must create a DSA or RSA key as the master key used
only for signature, and then specify gpg --edit-key to add an RSA encryption
subkey.

To list keys, run the following command:

gpg --list-secret-keys

To export a public key in ASCll-protected format, run the following command:

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

Data Warehouse Service
Developer Guide 5 GaussDB(DWS) Database Security Management

gpg -a --export KEYID > public.key

To export a private key in ASCll-protected format, run the following
command:

gpg -a --export-secret-keys KEYID > secret.key

Before using these keys as the input to the PGP function, run dearmor() on
them. Alternatively, if you can process binary data, remove -a from the
command.

NOTICE

The PGP encryption function has the following restrictions:

e Signatures are not supported. This function does not check whether the
encryption subkey belongs to the master key.

e The encryption key cannot be used as the master key. This constraint does
not impose much impact, because it is rarely violated.

e Only one subkey is allowed. This may be a problem, because multiple
subkeys are often required. General GPG and PGP keys cannot be used as
pgcrypto encryption keys. Their usage is totally different.

PGP function parameters

The option names in the pgcrypto function are similar to those in the GnuPG
function. Option values are set using equal signs (=), and the options are
separated by commas (,). Example:

pgp_sym_encrypt(data, psw, 'compress-algo=1, cipher-algo=aes256')

Options other than convert-crlf can be used only for encryption functions.
The decryption function obtains parameters from PGP data.

The most common options are compress-algo and unicode-mode. You can
retain the default values for other options.

Table 5-9 pgcrypto encryption options

Option | Description Defa | Value Function
ult
Valu
e
cipher- | Cryptographic aes12 | bf, aes128, aes192, pgp_sym_enc
algo algorithm 8 aes256, 3des, cast5 rypt,
pgp_pub_enc
rypt
compre | Compression 0 e 0: not pgp_sym_enc
ss-algo | algorithm compressed rypt,
o 1:2IP Pgp_pub_enc
compression rypt
e 2:7LIB
compression (ZIP
+ Metadata +
CRC)

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

Option | Description Defa | Value Function
ult
Valu
e
compre | Compression level. | 6 0,1-9 pgp_sym_enc
ss-level | A high level rypt,
indicates the pgp_pub_enc
compression will rypt
be slow, but the
data size after
compression will
be small. 0
disables
compression.
convert | Indicates whether | 0 0,1 pgp_sym_enc
-crlf to convert \n to \r rypt,
\n during pgp_pub_enc
encryption, and rypt,
whether to pgp_sym_dec
convert \r\n to \n rypt,
during decryption. pgp_pub_dec
RFC4880 requires rypt
that \r\n must be
used as the
newline character
in text data
storage.
disable- | SHA-1 isnotused |0 0,1 pgp_sym_enc
mdc to protect data. It rypt,
is used only for pgp_pub_enc
compatibility with rypt
old PGP products.
sess- A separate session | 0 0,1 pgp_sym_enc
key key is used. Public rypt
key encryption
always uses a
separate session
key. This option is
used for
symmetric key
encryption, which
directly uses the
S2K key by
default.

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

110

Data Warehouse Service

Developer Guide 5 GaussDB(DWS) Database Security Management
Option | Description Defa | Value Function
ult
Valu
e
s2k- S2K algorithm 3 e 0: Saltis not pgp_sym_enc
mode used. This setting | rypt
is not
recommended.

e 1: Salt is used,
but the number
of iterations is
fixed.

e 3: Salt is used,
and the number
of iterations can

be changed.
s2k- Number of A 1024 < Value < pgp_sym_en
count iterations of the rand | 65,011,712 crypt and
S2K algorithm om s2k-mode=3

value

betw

een

65,53

6 and

253,9

52.
s2k- Digest algorithm shal | md5, sha1 pgp_sym_enc
digest- | used during S2K rypt
algo calculation
s2k- Password used to | ciphe | bf, aes, aes128, pgp_sym_enc
cipher- | encrypt a separate | r- aes192, aes256 rypt
algo session key algo

algori

thm

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

Option | Description Defa | Value Function
ult
Valu
e
unicode | Whether to 0 0,1 pgp_sym_enc
-mode | convert text data rypt,
between database pgp_pub_enc
internal encoding rypt

and UTF-8. If the
database already
uses UTF-8
encoding, no
conversion will be
performed, but
the message will
be marked as
UTE-8. If this
parameter is not
specified, the
message will not
be marked.

Raw Encryption Functions

Raw encryption functions only run a cipher over data. They don't have any
advanced features of PGP encryption. Therefore they have the following problems:
e They use user key directly as cipher key.

e No integrity check is performed to check whether the encrypted data was
modified.

e You need to associate all encryption parameters yourself, including IV.
e Text data cannot be processed.

With the introduction of PGP encryption, these raw encryption functions are not
recommended.

encrypt(data bytea, key bytea, type text) returns bytea
decrypt(data bytea, key bytea, type text) returns bytea
encrypt_iv(data bytea, key bytea, iv bytea, type text) returns bytea
decrypt_iv(data bytea, key bytea, iv bytea, type text) returns bytea

data indicates the data to be encrypted, and type indicates the encryption/
decryption method. The syntax of the type parameter is as follows:

algorithm [- mode] [/pad: padding]
The options of algorithm are as follows:

e bf: Blowfish algorithm. Synonyms: BF, BF-CBC; BLOWFISH, BF-CBC;
BLOWFISH-CBC, BF-CBC; BLOWFISH-ECB, BF-ECB; BLOWFISH-CFB, BF-CFB

e aes: AES algorithm (Rijndael-128, -192, or -256). Synonyms: AES, AES-CBC,
RIJNDAEL, AES-CBC, RIJNDAEL, AES-CBC, RIJNDAEL-CBC, AES-CBC,
RIJNDAEL-ECB, AES-ECB

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

Data Warehouse Service

Developer Guide

5 GaussDB(DWS) Database Security Management

e DES algorithm. Synonyms: DES, DES-CBC; 3DES, DES3-CBC, 3DES-ECB, DES3-
ECB; 3DES-CBC, DES3-CBC

e sm4: SM4 algorithm. Synonym: SM4-CBC
e CASTS5 algorithm. Synonym: CAST5-CBC

The options of mode are as follows:

e cbc: The next block depends on the previous block. (This is the default value.)
e ecb: Each block is encrypted separately. (This value is used only for tests.)
The options of padding are as follows:

e pkes: The data can be of any length. (This is the default value.)

e none: The data must be a multiple of cipher block size.

For example, the encryption results of the following functions are the same:

encrypt(data, 'fooz', 'bf')
encrypt(data, 'fooz', 'bf-cbc/pad:pkcs')

For the encrypt_iv and decrypt_iv functions, the iv parameter indicates the initial
value for the CBC mode. This parameter is ignored for ECB. It is truncated or
padded with zeroes if not exactly block size. It defaults to all zeroes in the
functions without this parameter.

Random Data Functions

e The gen_random_bytes() function is used to generate cryptographically strong

random bytes.
gen_random_bytes(count integer) returns bytea

count indicates the number of returned bytes. The value range is 1 to 1024.

Example:

SELECT gen_random_bytes(16);
gen_random_bytes

\x1f1eddc11153afdde0f9e1229f8f4caf
(1 row)

e The gen_random_uuid() function is used to return a random UUID of version

4.
SELECT gen_random_uuid();
gen_random_uuid

2bd664a2-b760-4859-8af6-8d09ccc5b830

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 113

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

GaussDB(DWS) Data Query

6.1 GaussDB(DWS) Single-Table Query

Example table:

CREATE TABLE newproducts

(

product_id INTEGER NOT NULL,

product_name VARCHAR2(60),

category VARCHAR2(60),

quantity INTEGER

)

WITH (ORIENTATION = COLUMN) DISTRIBUTE BY HASH (product_id);

INSERT INTO newproducts VALUES (1502, 'earphones', 'electronics',150);
INSERT INTO newproducts VALUES (1601, 'telescope’, 'toys',80);

INSERT INTO newproducts VALUES (1666, 'Frisbee', 'toys',244);

INSERT INTO newproducts VALUES (1700, 'interface', 'books',100);
INSERT INTO newproducts VALUES (2344, 'milklotion’, 'skin care',320);
INSERT INTO newproducts VALUES (3577, 'dumbbell’, 'sports',550);
INSERT INTO newproducts VALUES (1210, 'necklace’, 'jewels', 200);

Simple Queries
Run the SELECT... FROM... statement to obtain the result from the database.

SELECT category FROM newproducts;
category

electr

sports

jewels

toys

books

skin care

toys

(7 rows)

Filtering Test Results
Run the WHERE statement to filter the query result and find the queried part.

SELECT * FROM newproducts WHERE category="toys';
product_id | product_name | category | quantity

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 114

Data Warehouse Service

Developer Guide 6 GaussDB(DWS) Data Query
1601 | telescope | toys | 80
1666 | Frisbee | toys | 244
(2 rows)

Sorting Results

Use the ORDER BY statement to sort query results.

SELECT product_id,product_name,category,quantity FROM newproducts ORDER BY quantity DESC;
product_id | product_name | category | quantity

+ + +

3577 | dumbbell | sports | 550

2344 | milklotion | skin care | 320
1666 | Frisbee | toys | 244
1210 | necklace | jewels | 200
1502 | earphones | electronics | 150
1700 | interface | books | 100
1601 | telescope | toys | 80

(7 rows)

Limiting the Number of Query Results

If you want the query to return only part of the result, you can use the LIMIT
statement to limit the number of records returned in the query result.

SELECT product_id,product_name,category,quantity FROM newproducts ORDER BY quantity DESC limit 5;
product_id | product_name | category | quantity

+ + +

3577 | dumbbell | sports | 550

2344 | milklotion | skin care | 320

1666 | Frisbee | toys | 244

1210 | necklace | jewels | 200

1502 | earphones | electronics | 150
(5 rows)

Aggregated Query

If you want query data comprehensively, you can use the GROUP BY statement
and aggregate functions to construct an aggregated query.

SELECT category, string_agg(quantity,',') FROM newproducts group by category;
category | string_agg

toys | 80,244
books | 100
sports | 550
jewels | 200

skin care | 320
electronics | 150

6.2 GaussDB(DWS) Multi-Table Join Query

Join Types

Multiple joins are necessary for accomplishing complex queries. Joins are classified
into inner joins and outer joins. Each type of joins have their subtypes.

e Inner join: inner join, cross join, and natural join.
e OQuter join: left outer join, right outer join, and full join.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 115

Data Warehouse Service

Developer Guide 6 GaussDB(DWS) Data Query

To better illustrate the differences between these joins, the following provides

some examples.

Create the sample tables student and math_score and insert data into them. Set
enable_fast_query_shipping to off (on by default), that is, the query optimizer
uses the distributed framework. Set explain_perf_mode to pretty (default value)

to specify the EXPLAIN display format.

CREATE TABLE student(
id INTEGER,
name varchar(50)

)i

CREATE TABLE math_score(
id INTEGER,

score INTEGER

)

INSERT INTO student VALUES(1, 'Tom');
INSERT INTO student VALUES(2, 'Lily');

INSERT INTO student VALUES(3, 'Tina");
INSERT INTO student VALUES(4, 'Perry');

INSERT INTO math_score VALUES(1, 80);
INSERT INTO math_score VALUES(2, 75);
INSERT INTO math_score VALUES(4, 95);
INSERT INTO math_score VALUES(6, NULL);

SET enable_fast_query_shipping = off;
SET explain_perf_mode = pretty;

Inner Join
e Inner join
Syntax:

left_table [INNER] JOIN right_table [ON join_condition | USING (join_column)]

Description: Rows that meet join_condition in both the left and right tables
are joined and output. Tuples that do not meet join_condition are not output.

Example 1: Query students' math scores.

SELECT s.id, s.name, ms.score FROM student s JOIN math_score ms on s.id = ms.id;

id | name | score

N —— I .
2|Lily | 75
1] Tom | 80
4| Perry| 95
(3 rows)

EXPLAIN SELECT s.id, s.name, ms.score FROM student s JOIN math_score ms on s.id = ms.id;

QUERY PLAN
id | operation | E-rows | E-memory | E-width | E-costs
1] -> Streaming (type: GATHER) | 4] | 13119.47
2| -> Hash Join (3,4) | 4[1MB | 13]1147
3] -> Seq Scan on math_scorems | 30| 1MB | 8110.10
4| -> Hash | 12|16MB | 9]1.28
5] -> Streaming(type: BROADCAST) | 12| 2MB | 91.28
6 | -> Seq Scan on students | 4| 1MB | 91.01

Predicate Information (identified by plan id)

2 --Hash Join (3,4)
Hash Cond: (ms.id = s.id)

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

116

Data Warehouse Service

Developer Guide

6 GaussDB(DWS) Data Query

System available mem: 1761280KB
Query Max mem: 1761280KB
Query estimated mem: 4400KB
(19 rows)

Cross join

Syntax:

left_table CROSS JOIN right_table

Description: Each row in the left table is joined with each row in the right
table. The number of final rows is the product of the number of rows on both
sides. The product is also called Cartesian product.

Example 2: Cross join of student tables and math score tables.

SELECT s.id, s.name, ms.score FROM student s CROSS JOIN math_score ms;
id | name | score

N S |,
3| Tina | 80
2| Lily | 80
1|Tom | 80
4| Perry| 80
3| Tina |
2| Lily |
1| Tom |
4 | Perry |
3| Tina | 95
2| Lily | 95
1|Tom | 95
4| Perry| 95
2| Lly | 75
3| Tina | 75
1|Tom | 75
4| Perry| 75

(16 rows)

EXPLAIN SELECT s.id, s.name, ms.score FROM student s CROSS JOIN math_score ms;

QUERY PLAN
id | operation | E-rows | E-memory | E-width | E-costs
-+ + + + +
1| -> Streaming (type: GATHER) | 120 | 13119.89
2| -> Nested Loop (3,4) | 120]1MB | 13111.89
3] -> Seq Scan on math_scorems | 30| 1MB | 4110.10
4| -> Materialize | 12]16MB | 911.30
5] -> Streaming(type: BROADCAST) | 12| 2MB | 911.28
6 | -> Seq Scan on students | 4|1MB | 91.01

System available mem: 1761280KB
Query Max mem: 1761280KB
Query estimated mem: 4144KB
(14 rows)

Natural join

Syntax:

left_table NATURAL JOIN right_table

Description: Columns with the same name in left table and right table are

joined by equi-join, and the columns with the same name are merged into
one column.

Example 3: Natural join between the student table and the math_score table.
The columns with the same name in the two tables are the id columns,
therefore equivalent join is performed based on the id columns.

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 117

Data Warehouse Service

Developer Guide

6 GaussDB(DWS) Data Query

Outer Join

SELECT * FROM student s NATURAL JOIN math_score ms;
id | name | score

S I
1] Tom | 80
4| Perry| 95
2|Lily | 75

(3 rows)

EXPLAIN SELECT * FROM student s NATURAL JOIN math_score ms;

QUERY PLAN
id | operation | E-rows | E-memory | E-width | E-costs
1]-> Streaming (type: GATHER) | 4] | 131947
2| -> Hash Join (3,4) | 4]mMB | 131147
3] -> Seq Scan on math_scorems | 30| 1MB | 8110.10
4| -> Hash | 12]16MB | 911.28
5] -> Streaming(type: BROADCAST) | 12| 2MB | 911.28
6 | -> Seq Scan on student s | 4] 1MB | 911.01

Predicate Information (identified by plan id)

2 --Hash Join (3,4)
Hash Cond: (ms.id = s.id)

System available mem: 1761280KB
Query Max mem: 1761280KB
Query estimated mem: 4400KB
(19 rows)

Left Join

Syntax:

left_table LEFT [OUTER] JOIN right_table [ON join_condition | USING (join_column)]
Description: The result set of a left outer join includes all rows of left table,
not only the joined rows. If a row in the left table does not match any row in
right table, the row will be NULL in the result set.

Example 4: Perform left join on the student table and math_score table. The
right table data corresponding to the row where ID is 3 in the student table is
filled with NULL in the result set.

SELECT s.id, s.name, ms.score FROM student s LEFT JOIN math_score ms on (s.id = ms.id);
id | name | score

N —— I .
3| Tina |
1] Tom | 80
2|Lily | 75
4| Perry| 95
(4 rows)

EXPLAIN SELECT s.id, s.name, ms.score FROM student s LEFT JOIN math_score ms on (s.id = ms.id);

QUERY PLAN
id | operation | E-rows | E-memory | E-width | E-costs
1]-> Streaming (type: GATHER) | 4] | 13110.26
2| -> Hash Left Join (3, 5) | 4]1MB | 13]2.26
3] -> Streaming(type: REDISTRIBUTE) | 4 |2MB | 9| 1.11
4| -> Seq Scan on student s | 4]1MB | 911.01
5| -> Hash | 4]16MB | 8]1.11
6 | -> Streaming(type: REDISTRIBUTE) | 4| 2MB | 8| 1.1
7| -> Seq Scan on math_scorems | 4| 1MB | 81.01

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 118

Data Warehouse Service

Developer Guide

6 GaussDB(DWS) Data Query

Predicate Information (identified by plan id)

2 --Hash Left Join (3, 5)
Hash Cond: (s.id = ms.id)

System available mem: 901120KB

Query Max mem: 901120KB

Query estimated mem: 7520KB

(20 rows)

Right join

Syntax:

left_table RIGHT [OUTER] JOIN right_table [ON join_condition | USING (join_column)]

Description: Contrary to the left join, the result set of a right join includes all
rows of the right table, not just the joined rows. If a row in the right table
does not match any row in right table, the row will be NULL in the result set.

Example 5: Perform right join on the student table and math_score table.
The right table data corresponding to the row where ID is 6 in the
math_score table is filled with NULL in the result set.

SELECT ms.id, s.name, ms.score FROM student s RIGHT JOIN math_score ms on (s.id = ms.id);
id | name | score

- oo Ao
1|Tom | 80
6] |
4| Perry| 95
2| Lly | 75
EXPLAIN SELECT ms.id, s.name, ms.score FROM student s RIGHT JOIN math_score ms on (s.id = ms.id);
QUERY PLAN
id | operation | E-rows | E-memory | E-width | E-costs
-t + + + +
1| -> Streaming (type: GATHER) | 30| | 1311947
2| -> Hash Left Join (3, 4) | 30| 1MB | 13111.47
3] -> Seq Scan on math_scorems | 30| 1MB | 8110.10
4| -> Hash | 12|16MB | 911.28
5] -> Streaming(type: BROADCAST) | 12| 2MB | 911.28
6| -> Seq Scan on student's | 4] 1MB | 9]1.01

Predicate Information (identified by plan id)

2 --Hash Left Join (3, 4)
Hash Cond: (ms.id = s.id)

System available mem: 1761280KB
Query Max mem: 1761280KB
Query estimated mem: 5424KB
(19 rows)

In a right join, Left is displayed in the join operator. This is because a right
join is actually the process replacing the left table with the right table then
performing left join.

Full join

Syntax:

left_table FULL [OUTER] JOIN right_table [ON join_condition | USING (join_column)]
Description: A full join is a combination of a left outer join and a right outer

join. The result set of a full outer join includes all rows of the left table and
the right table, not just the joined rows. If a row in the left table does not

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 119

Data Warehouse Service
Developer Guide 6 GaussDB(DWS) Data Query

match any row in the right table, the row will be NULL in the result set. If a
row in the right table does not match any row in right table, the row will be
NULL in the result set.

Example 6: Perform full outer join on the student table and math_score
table. The right table data corresponding to the row where ID is 3 is filled
with NULL in the result set. The left table data corresponding to the row
where ID is 6 is filled with NULL in the result set.

SELECT s.id, s.name, ms.id, ms.score FROM student s FULL JOIN math_score ms ON (s.id = ms.id);
id | name | id | score
oo e e

2Ly | 2] 75

4| Perry| 4| 95

1|Tom | 1| 80

3| Tina | |

| 16l

(5 rows)

EXPLAIN SELECT s.id, s.name, ms.id, ms.score FROM student s FULL JOIN math_score ms ON (s.id =

ms.id);
QUERY PLAN
id | operation | E-rows | E-memory | E-width | E-costs
-t + + + +
1]-> Streaming (type: GATHER) | 30] | 17| 20.24
2| -> Hash Full Join (3, 5) | 30]1MB | 17112.24
3 -> Streaming(type: REDISTRIBUTE) | 30|2MB | 8111.06
4] -> Seq Scan on math_scorems | 30| 1MB | 8110.10
5] -> Hash | 4]16MB | 9]1.11
6 | -> Streaming(type: REDISTRIBUTE) | 4 |2MB | 911.11
7| -> Seq Scan on student s | 4] 1MB | 911.01

Predicate Information (identified by plan id)

2 --Hash Full Join (3, 5)
Hash Cond: (ms.id = s.id)

System available mem: 1761280KB
Query Max mem: 1761280KB
Query estimated mem: 6496KB
(20 rows)

Differences Between the ON Condition and the WHERE Condition in Multi-
Table Query

According to the preceding join syntax, except natural join and cross join, the ON
condition (USING is converted to the ON condition during query parsing) is used
on the join result of both the two tables. Generally, the WHERE condition is used
in the query statement to restrict the query result. The ON join condition and
WHERE filter condition do not contain conditions that can be pushed down to
tables. The differences between ON and WHERE are as follows:

e The ON condition is used for joining two tables.
e WHERE is used to filter the result set.

To sum up, the ON condition is used when two tables are joined. After the join
result set of two tables is generated, the WHERE condition is used.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 120

Data Warehouse Service

Developer Guide

6 GaussDB(DWS) Data Query

6.3 GaussDB(DWS) Subquery Expressions

A subquery allows you to nest one query within another, enabling more complex
data query and analysis.

Subquery Expressions

EXISTS/NOT EXISTS

Before the main query runs, the subquery runs and its result determines if the
main query continues. EXISTS returns true if the subquery returns at least one
row. NOT EXISTS returns true if the subquery returns no rows.

—{ expression ‘ EXISTS }—»{ (subquery) }—-

- NOTEXISTS |
Syntax:
WHERE column_name EXISTS/NOT EXISTS (subquery)
IN/NOT IN

IN and NOT IN are operators that check if a value is in a set of values. IN
returns true when the outer query row matches a subquery row. NOT IN
returns true when the outer query row does not match any subquery row.

4‘ expression }—' IN (subguery) }—'

» NOT IN
Syntax:
WHERE column_name IN/NOT IN (subquery)
ANY/SOME

ANY indicates that any value in a subquery can match a value in an outer
query. SOME is the same as ANY, but the syntax is different.

The subquery can return only one column. The expression on the left uses
operators (=, <>, <, <=, >, >=) to compare the value with each subquery row.
The result must be a Boolean value. The result of ANY is true if any true
result is obtained. The result is false if no true result is found (including the
case where the subquery returns no rows).

—{ expression }—»‘ operator % - (subquery)

Jsoue |

Syntax:

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 121

Data Warehouse Service

Developer Guide

6 GaussDB(DWS) Data Query

Example

WHERE column_name operator ANY/SOME (subquery)

e ALL

The subquery on the right must return only one field. The expression on the
left uses operators (=, <>, <, <=, >, >=) to compare the value with each
subquery row. The result must be a Boolean value. The result of ALL is true if
all rows yield true (including the case where the subquery returns no rows).
The result is false if any false result is found.

expression operator ALL (subquery)
Syntax:
WHERE column_name operator ALL (subquery)
Table 6-1 ALL conditions
Condition Description

column_name > ALL(...)

The column_name value must be
greater than the maximum value of
a set to be true.

column_name >= ALL(...)

The column_name value must be
greater than or equal to the
maximum value of a set to be true.

column_name < ALL(...)

The column_name value must be
smaller than the minimum value of
a set to be true.

column_name <= ALL(...)

The column_name value must be
smaller than or equal to the
minimum value of a set to be true.

column_name <> ALL(...)

The column_name value cannot be
equal to any value in a set to be
true.

column_name = ALL(...)

The column_name value must be
equal to any value in a set to be
true.

Create the course table and insert data into the table.

CREATE TABLE course(cid VARCHAR(10) COMMENT 'No.course',cname VARCHAR(10) COMMENT 'course

name',teid VARCHAR(10) COMMENT 'No.teacher');

INSERT INTO course VALUES('01', 'coursel', '02");
INSERT INTO course VALUES('02', 'course2', '01");
INSERT INTO course VALUES('03', 'course3', '03");

Create the teacher table and insert data into the table.

CREATE TABLE teacher(teid VARCHAR(10) COMMENT ' Teacher /D ,tname VARCHAR(10)

COMMENT!' Teacher name');

Issue 01 (2024-12-18)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 122

Data Warehouse Service

Developer Guide

6 GaussDB(DWS) Data Query

INSERT INTO teacher VALUES('01', 'teacher1');
INSERT INTO teacher VALUES('02', 'teacher2');
INSERT INTO teacher VALUES('03', 'teacher3');
INSERT INTO teacher VALUES('04', 'teacher4');

e EXISTS/NOT EXISTS example

Query the teacher records in the course table.
SELECT * FROM teacher WHERE EXISTS (SELECT * FROM course WHERE course.teid = teacher.teid);

| teacher2

| teacherl
| teacher3
(2 rows)

Query the teacher records that are not in the course table.

SELECT * FROM teacher WHERE NOT EXISTS (SELECT * FROM course WHERE course.teid = teacher.teid);

teid | tname

| teacher4
(1 row)

e IN/NOT IN example

Query the course table for teacher information based on the teacher ID.

SELECT * FROM course WHERE teid IN (SELECT teid FROM teacher);

| coursel | 82
| course3 | B3
| coursez | 81

Query the information about teachers who are not in the course table.

SELECT * FROM teacher WHERE teid NOT IN (SELECT teid FROM course);

| teacher4
(1 row)

e ANY/SOME example

Compare the main query fields on the left with the subquery fields on the right to
obtain the required result set.

SELECT * FROM course WHERE teid < ANY (SELECT teid FROM teacher where teid<>'04");

or

SELECT * FROM course WHERE teid < some (SELECT teid FROM teacher where teid<>'04");

cid | cname | tead

| coursel | @2

| coursez | 81
(2 rows)

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 123

Data Warehouse Service

Developer Guide 6 GaussDB(DWS) Data Query

e ALL example

The value in the teid column must be smaller than the minimum value in the set

to be true.

SELECT * FROM course WHERE teid < ALL(SELECT teid FROM teacher WHERE teid<>'01");

| coursez | 81
(1 row)

Important Notes

e Duplicate subquery statements are not allowed in an SQL statement.

e Avoid scalar sub-queries whenever possible. A scalar subquery is a subquery

whose result is one value and whose condition expression uses an equal

operator.

e Do not use subqueries in the SELECT target columns. Otherwise, the plan
cannot be pushed down, affecting the execution performance.

e It is recommended that the nested subqueries cannot exceed two layers.

Subqueries cause temporary table overhead. Therefore, complex queries must

be optimized based on service logic.

A subquery can be nested in the SELECT statement to implement a more complex
query. A subquery can also use the results of other queries in the WHERE clause to

better filter data. However, subqueries may cause query performance problems
and make code difficult to read and understand. Therefore, when using SQL
subqueries in databases such as GaussDB, use them based on the site

requirements.

6.4 GaussDB(DWS) WITH Expressions

The WITH expression is used to define auxiliary statements used in large queries.

These auxiliary statements are usually called common table expressions (CTE),

which can be understood as a named subquery. The subquery can be referenced

multiple times by its name in the quey.

An auxiliary statement may use SELECT, INSERT, UPDATE, or DELETE. The WITH
clause can be attached to a main statement, which can be a SELECT, INSERT, or

DELETE statement.

SELECT in WITH
This section describes the usage of SELECT in a WITH clause.
Syntax
[WITH [RECURSIVE] with_query [, ..]] SELECT ...
The syntax of with_query is as follows:

with_query_name [(column_name [, ..])]
AS [[NOT] MATERIALIZED] ({select | values | insert | update | delete})

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

124

Data Warehouse Service

Developer Guide

6 GaussDB(DWS) Data Query

/A\ CAUTION

e |f you use MATERIALIZED, the subquery runs once and its result set is saved. If
you use NOT MATERIALIZED, the subquery is replaced with its reference in the
main query.

e The SQL statement specified by the AS statement of a CTE must be a
statement that can return query results. It can be a common SELECT query
statement or other data modification statements such as INSERT, UPDATE,
DELETE, and VALUES. When using a data modification statement, you need to
use the RETURNING clause to return tuples. Example:

WITH s AS (INSERT INTO t VALUES(1) RETURNING a) SELECT * FROM s;

e A WITH expression indicates the CTE definition in a SQL statement block.
Multiple CTEs can be defined at the same time. You can specify column names
for each CTE or use the aliases of the columns in the query output. Example:
WITH s1(a, b) AS (SELECT x, y FROM t1), s2 AS (SELECT x, y FROM t2) SELECT * FROM s1 JOIN s2 ON
sl.a=s2.x;

This statement defines two CTEs: s1 and s2. s1 specifies the column names a
and b, and s2 does not specify the column names. Therefore, the column
names are the output column names x and y.

e Each CTE can be referenced zero, one, or more times in the main query.

e CTEs with the same name cannot exist in the same statement block. If CTEs
with the same name exist in different statement blocks, the CTE in the nearest
statement block is referenced.

e An SQL statement may contain multiple SQL statement blocks. Each statement
block can contain a WITH expression. The CTE in each WITH expression can be
referenced in the current statement block, subsequent CTEs of the current
statement block, and sub-layer statement blocks, however, it cannot be
referenced in the parent statement block. The definition of each CTE is also a
statement block. Therefore, a WITH expression can also be defined in the
statement block.

The purpose of SELECT in WITH is to break down complex queries into simple
parts. Example:

WITH regional_sales AS (
SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region
), top_regions AS (
SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)

)
SELECT region,
product,
SUM(quantity) AS product_units,
SUM(amount) AS product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

The WITH clause defines two auxiliary statements: regional_sales and
top_regions. The output of regional_sales is used in top_regions, and the output
of top_regions is used in the main SELECT query. This example can be written
without WITH. In that case, it must be written with a two-layer nested sub-
SELECT statement, making the query longer and difficult to maintain.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 125

Data Warehouse Service

Developer Guide

6 GaussDB(DWS) Data Query

Recursive WITH Query

By declaring the keyword RECURSIVE, a WITH query can reference its own output.
The common form of a recursive WITH query is as follows:
non_recursive_term UNION [ALL] recursive_term

UNION performs deduplication when merging sets, while UNION ALLL directly
merges result sets without deduplication. Only recursive items can contain
references to the output of the query itself.

When using recursive WITH, ensure that the recursive item of the query does not
return a tuple. Otherwise, the query will loop infinitely.

The table tree is used to store information about all nodes in the following figure.

The table definition statement is as follows:

CREATE TABLE tree(id INT, parentid INT);

The data in the table is as follows:

INSERT INTO tree VALUES(1,0),(2,1),(3,1),(4,2),(5,2),(6,3),(7,3),(8,4),(9,4),(10,6),(11,6),(12,10);

SELECT * FROM tree;

id | parentid
N
1 0
2] 1
3] 1
4| 2
5] 2
6| 3

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 126

Data Warehouse Service

Developer Guide 6 GaussDB(DWS) Data Query

7| 3

8| 4

9| 4

10| 6

1| 6

12| 10

(12 rows)

You can run the following WITH RECURSIVE statement to return the nodes and
hierarchy information of the entire tree starting from node 1 at the top layer:

WITH RECURSIVE nodeset AS
(

-- recursive initializing query

SELECT id, parentid, 1 AS level FROM tree

WHERE id =1

UNION ALL

-- recursive join query

SELECT tree.id, tree.parentid, level + 1 FROM tree, nodeset
WHERE tree.parentid = nodeset.id

)
SELECT * FROM nodeset ORDER BY id;

In the preceding query, a typical WITH RECURSIVE expression contains the CTE of
at least one recursive query. The CTE is defined as a UNION ALL set operation.
The first branch is the recursive start query, and the second branch is the recursive
join query, the first part is referenced for continuous recursive join. When this
statement is executed, the recursive start query is executed once, and the join
query is executed several times. The results are added to the start query result set
until the results of some join queries are empty.

The command output is as follows:

id | parentid | level

oo o
1] o] 1
2| 1 2
3] 1 2
4| 2] 3
5] 2] 3
6 | 3] 3
7| 3] 3
8| 4| 4
9| 4| 4
10 | 6| 4
11| 6| 4
12| 10| 5
(12 rows)

According to the returned result, the start query result contains the result set
whose level is 1. The join query is executed for five times. The result sets whose
levels are 2, 3, 4, and 5 are output for the first four times. During the fifth
execution, there is no record whose parentid is the same as the output result set
ID, that is, there is no redundant child node. Therefore, the query ends.

(1 NOTE

GaussDB(DWS) supports distributed execution of WITH RECURSIVE expressions. WITH
RECURSIVE involves cyclic calculation. Therefore, GaussDB(DWS) introduces the
max_recursive_times parameter to control the maximum number of cycles of WITH
RECURSIVE. The default value is 200. If the number of cycles exceeds 200, an error is
reported.

Issue 01 (2024-12-18) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 127

Data Warehouse Service

Developer Guide

6 GaussDB(DWS) Data Query

Data Modification Statements in WITH

Use the INSERT, UPDATE, and DELETE commands in the WITH clause. This allows
the user to perform multiple different operations in the same query. The following
is an example:

WITH moved_tree AS (
DELETE FROM tree
WHERE parentid = 4
RETURNING *)

INSERT INTO tree_log

SELECT * FROM moved_tree;

The preceding query example actually moves rows from tree to tree_log. The
DELETE command in the WITH clause deletes the specified rows from tree,
returns their contents through the RETURNING clause, and then the main query
reads the output and inserts it into tree_log.

To retrieve the modified content instead of the target table, the data modification
statement in the WITH clause should include the RETURNING clause. This clause
creates a temporary table that can be accessed by the rest of the query. If a data
modification statement in the WITH statement lacks a RETURNING clause, it
cannot form a temporary table and cannot be referenced in the remaining queries.

If the RECURSIVE keyword is declare, recursive self-reference is not allowed in
data modification statements. In some cases, you can bypass this restriction by
referencing the output of recursive the WITH statement. For example:

WITH RECURSIVE included_parts(sub_part, part) AS (
SELECT sub_part, part FROM parts WHERE part = 'our_product'
UNION ALL
SELECT p.sub_part, p.part
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part

)
DELETE FROM parts
WHERE part IN (SELECT part FROM included_parts);

This query will remove all direct or indirect subparts of a product.

The substatements in the WITH clause are executed at the same time as the main
query. Therefore, when using the data modification statement in a WITH
statement, the actual update order is in an unpredictable manner. All statements
are executed in the same snapshot, and the effect of the statements is invisible on
the target table. This mitigates the unpredictability of the actual order of row
updates and means that RETURNING data is the only way to convey changes
between different WITH substatements and the main query.

In this example, the outer layer SELECT can return the data before the update.

WITH t AS (
UPDATE tree SET id =