Obtaining Details About a Model
You can use the API to obtain the information about a model object.
Sample Code
In ModelArts notebook, you do not need to enter authentication parameters for session authentication. For details about session authentication of other development environments, see Session Authentication.
- Method 1: Obtain details about a model based on the model object created in Importing a Model.
1 2 3 4 5 6 7
from modelarts.session import Session from modelarts.model import Model session = Session() model_instance = Model(session, model_id="your_model_id") model_info = model_instance.get_model_info() print(model_info)
- Method 2: Obtain details about a model based on the model object returned in Obtaining Model Objects.
1 2 3 4 5 6 7 8
from modelarts.session import Session from modelarts.model import Model session = Session() model_object_list = Model.get_model_object_list(session) model_instance = model_object_list[0] model_info = model_instance.get_model_info() print(model_info)
Parameters
|
Parameter |
Type |
Description |
|---|---|---|
|
model_id |
String |
Model ID |
|
model_name |
String |
Model name |
|
model_version |
String |
Model version |
|
tenant |
String |
Tenant |
|
project |
String |
Project |
|
owner |
String |
User |
|
create_at |
Long |
Time when a model is created, in milliseconds calculated from 1970.1.1 0:0:0 UTC |
|
source_location |
String |
OBS path where a model resides |
|
source_job_id |
String |
ID of the source training job |
|
source_job_version |
String |
Version of the source training job |
|
source_type |
String |
Type of a model source
|
|
model_type |
String |
Model type. The value can be TensorFlow, MXNet, Spark_MLlib, Scikit_Learn, XGBoost, MindSpore, Image, or PyTorch. |
|
model_size |
Long |
Model size, in bytes |
|
model_status |
String |
Model status. The value can be publishing, published, or failed. |
|
description |
String |
Model description |
|
execution_code |
String |
OBS path for storing the execution code. The name of the execution code file is fixed to customize_service.py. |
|
schema_doc |
String |
Download address of the model schema file |
|
image_address |
String |
Execution image path of a model. Before the image is built, that is, before a model has been published as a service, this parameter is left blank. |
|
input_params |
params array |
Collection of input parameters of a model. By default, this parameter is left blank. |
|
output_params |
params array |
Collection of output parameters of a model. By default, this parameter is left blank. |
|
dependencies |
dependency array |
Package required for running the code and model |
|
model_metrics |
String |
Model evaluation parameter. This parameter is returned only when source_job_id and source_job_version are assigned values and the corresponding training job has evaluation results. |
|
apis |
String |
All apis input and output parameters of the model |
|
Parameter |
Type |
Description |
|---|---|---|
|
url |
String |
API URL |
|
param_name |
String |
Parameter name, which contains a maximum of 64 characters |
|
param_type |
String |
Parameter type. The value can be int, string, float, timestamp, date, or file. |
|
min |
Number |
When param_type is set to int or float and min is set during model creation, the value will be returned. By default, this parameter is left blank. |
|
max |
Number |
When param_type is set to int or float and max is set during model creation, the value will be returned. By default, this parameter is left blank. |
|
param_desc |
String |
Parameter description, which contains a maximum of 100 characters. By default, this parameter is left blank. |
|
Parameter |
Type |
Description |
|---|---|---|
|
installer |
String |
Installer |
|
packages |
package array |
Collection of dependency packages |
|
Parameter |
Type |
Description |
|---|---|---|
|
package_name |
String |
Name of a dependency package |
|
package_version |
String |
Version of a dependency package |
|
restraint |
String |
Version filtering criterion. The options are as follows:
|
|
Parameter |
Mandatory |
Type |
Description |
|---|---|---|---|
|
f1 |
Yes |
Double |
Mean |
|
recall |
Yes |
Double |
Recall |
|
precision |
Yes |
Double |
Precision |
|
accuracy |
Yes |
Double |
Accuracy |
Feedback
Was this page helpful?
Provide feedbackThank you very much for your feedback. We will continue working to improve the documentation.