Scala Example Code
Function
In Spark applications, use Streaming to invoke Kafka interface to obtain word records. Collect the statistics of records for each word, and write the data to Kafka 0-10.
Code Sample (Streaming Read Data from Kafka 0-10)
The following code is an example. For details, see com.huawei.bigdata.spark.examples.KafkaWordCount.
/** * Consumes messages from one or more topics in Kafka. * <checkPointDir> is the Spark Streaming checkpoint directory. * <brokers> is for bootstrapping and the producer will only use it for getting metadata * <topics> is a list of one or more kafka topics to consume from * <batchTime> is the Spark Streaming batch duration in seconds. */ public class KafkaWordCount { public static void main(String[] args) { JavaStreamingContext ssc = createContext(args); //The Streaming system starts. ssc.start(); try { ssc.awaitTermination(); } catch (InterruptedException e) { } } private static JavaStreamingContext createContext(String[] args) { String checkPointDir = args[0]; String brokers = args[1]; String topics = args[2]; String batchSize = args[3]; // Create a Streaming startup environment. SparkConf sparkConf = new SparkConf().setAppName("KafkaWordCount"); JavaStreamingContext ssc = new JavaStreamingContext(sparkConf, new Duration(Long.parseLong(batchSize) * 1000)); //Configure the CheckPoint directory for the Streaming. //This parameter is mandatory because of existence of the window concept. ? ssc.checkpoint(checkPointDir); // Get the list of topic used by kafka String[] topicArr = topics.split(","); Set<String> topicSet = new HashSet<String>(Arrays.asList(topicArr)); Map<String, Object> kafkaParams = new HashMap(); kafkaParams.put("bootstrap.servers", brokers); kafkaParams.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); kafkaParams.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); kafkaParams.put("group.id", "DemoConsumer"); LocationStrategy locationStrategy = LocationStrategies.PreferConsistent(); ConsumerStrategy consumerStrategy = ConsumerStrategies.Subscribe(topicSet, kafkaParams); // Create direct kafka stream with brokers and topics // Receive data from the Kafka and generate the corresponding DStream JavaInputDStream<ConsumerRecord<String, String>> messages = KafkaUtils.createDirectStream(ssc, locationStrategy, consumerStrategy); // Obtain field properties in each row. JavaDStream<String> lines = messages.map(new Function<ConsumerRecord<String, String>, String>() { @Override public String call(ConsumerRecord<String, String> tuple2) throws Exception { return tuple2.value(); } }); // Aggregate the total time that calculate word count JavaPairDStream<String, Integer> wordCounts = lines.mapToPair( new PairFunction<String, String, Integer>() { ? @Override public Tuple2<String, Integer> call(String s) { return new Tuple2<String, Integer>(s, 1); } }).reduceByKey(new Function2<Integer, Integer, Integer>() { @Override public Integer call(Integer i1, Integer i2) { return i1 + i2; } }).updateStateByKey( new Function2<List<Integer>, Optional<Integer>, Optional<Integer>>() { @Override public Optional<Integer> call(List<Integer> values, Optional<Integer> state) { int out = 0; if (state.isPresent()) { out += state.get(); } for (Integer v : values) { out += v; } return Optional.of(out); } }); // print the results wordCounts.print(); return ssc; } }
Example Code (Streaming Write To Kafka 0-10)
The following code segment is only an example. For details, see com.huawei.bigdata.spark.examples.DstreamKafkaWriter.
After updates to Spark, it is advisable to use the new API createDirectStream instead of the old API createStream for application development. The old API continues to exist, but its performance and stability are worse than the new API.
package com.huawei.bigdata.spark.examples import scala.collection.mutable import scala.language.postfixOps import com.huawei.spark.streaming.kafka010.KafkaWriter._ import org.apache.kafka.clients.producer.ProducerRecord import org.apache.spark.SparkConf import org.apache.spark.rdd.RDD import org.apache.spark.streaming.{Milliseconds, StreamingContext} /** * Exaple code to demonstrate the usage of dstream.writeToKafka API * * Parameter description: * <groupId> is the group ID for the consumer. * <brokers> is for bootstrapping and the producer will only use * <topic> is a kafka topic to consume from. */ object DstreamKafkaWriter { def main(args: Array[String]) { if (args.length != 3) { System.err.println("Usage: DstreamKafkaWriter <groupId> <brokers> <topic>") System.exit(1) } val Array(groupId, brokers, topic) = args val sparkConf = new SparkConf().setAppName("KafkaWriter") // Populate Kafka properties val kafkaParams = Map[String, String]( "bootstrap.servers" -> brokers, "value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer", "key.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer", "value.serializer" -> "org.apache.kafka.common.serialization.ByteArraySerializer", "key.serializer" -> "org.apache.kafka.common.serialization.StringSerializer", "group.id" -> groupId, "auto.offset.reset" -> "latest" ) // Create Spark streaming context val ssc = new StreamingContext(sparkConf, Milliseconds(500)); // Populate data to write to kafka val sentData = Seq("kafka_writer_test_msg_01", "kafka_writer_test_msg_02", "kafka_writer_test_msg_03") // Create RDD queue val sent = new mutable.Queue[RDD[String]]() sent.enqueue(ssc.sparkContext.makeRDD(sentData)) // Create Dstream with the data to be written val wStream = ssc.queueStream(sent) // Write to kafka wStream.writeToKafka(kafkaParams, (x: String) => new ProducerRecord[String, Array[Byte]](topic, x.getBytes)) ssc.start() ssc.awaitTermination() } }
Feedback
Was this page helpful?
Provide feedbackThank you very much for your feedback. We will continue working to improve the documentation.