Diese Seite ist in Ihrer lokalen Sprache noch nicht verfügbar. Wir arbeiten daran, weitere Sprachversionen hinzuzufügen. Vielen Dank für Ihre Unterstützung.

On this page

Show all

Viewing Commissioning Results

Updated on 2022-09-14 GMT+08:00

After a MapReduce application is run, you can view the running result by using WebUI or MapReduce logs.

  • Viewing job execution status by using the MapReduce Web UI

    Log in to MRS Manager, choose Service > MapReduce > JobHistoryServer, and view the job execution status on the web UI.

    Figure 1 JobHistory web UI
  • Viewing job execution status by using Yarn web UI
    Log in to MRS Manager, choose Service > Yarn > ResourceManager(Active), and view the job execution status on the web UI.
    Figure 2 ResourceManager web UI
  • Viewing the running result of a MapReduce application
    • After you run the yarn jar mapreduce-example.jar command in the Linux environment, view application running status in the command output. Example:
      yarn jar mapreduce-example.jar /tmp/mapred/example/input/ /tmp/root/output/1
      16/07/12 17:07:16 INFO hdfs.PeerCache: SocketCache disabled.
      16/07/12 17:07:17 INFO input.FileInputFormat: Total input files to process : 2
      16/07/12 17:07:18 INFO mapreduce.JobSubmitter: number of splits:2
      16/07/12 17:07:18 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1468241424339_0006
      16/07/12 17:07:18 INFO impl.YarnClientImpl: Submitted application application_1468241424339_0006
      16/07/12 17:07:18 INFO mapreduce.Job: The url to track the job: http://10-120-180-170:26000/proxy/application_1468241424339_0006/
      16/07/12 17:07:18 INFO mapreduce.Job: Running job: job_1468241424339_0006
      16/07/12 17:07:31 INFO mapreduce.Job: Job job_1468241424339_0006 running in uber mode : false
      16/07/12 17:07:31 INFO mapreduce.Job:  map 0% reduce 0%
      16/07/12 17:07:41 INFO mapreduce.Job:  map 50% reduce 0%
      16/07/12 17:07:43 INFO mapreduce.Job:  map 100% reduce 0%
      16/07/12 17:07:51 INFO mapreduce.Job:  map 100% reduce 100%
      16/07/12 17:07:51 INFO mapreduce.Job: Job job_1468241424339_0006 completed successfully
      16/07/12 17:07:51 INFO mapreduce.Job: Counters: 49
              File System Counters
                      FILE: Number of bytes read=75
                      FILE: Number of bytes written=435659
                      FILE: Number of read operations=0
                      FILE: Number of large read operations=0
                      FILE: Number of write operations=0
                      HDFS: Number of bytes read=674
                      HDFS: Number of bytes written=23
                      HDFS: Number of read operations=9
                      HDFS: Number of large read operations=0
                      HDFS: Number of write operations=2
              Job Counters 
                      Launched map tasks=2
                      Launched reduce tasks=1
                      Data-local map tasks=2
                      Total time spent by all maps in occupied slots (ms)=144984
                      Total time spent by all reduces in occupied slots (ms)=56280
                      Total time spent by all map tasks (ms)=18123
                      Total time spent by all reduce tasks (ms)=7035
                      Total vcore-milliseconds taken by all map tasks=18123
                      Total vcore-milliseconds taken by all reduce tasks=7035
                      Total megabyte-milliseconds taken by all map tasks=74231808
                      Total megabyte-milliseconds taken by all reduce tasks=28815360
              Map-Reduce Framework
                      Map input records=26
                      Map output records=16
                      Map output bytes=186
                      Map output materialized bytes=114
                      Input split bytes=230
                      Combine input records=16
                      Combine output records=6
                      Reduce input groups=3
                      Reduce shuffle bytes=114
                      Reduce input records=6
                      Reduce output records=2
                      Spilled Records=12
                      Shuffled Maps =2
                      Failed Shuffles=0
                      Merged Map outputs=2
                      GC time elapsed (ms)=202
                      CPU time spent (ms)=2720
                      Physical memory (bytes) snapshot=1595645952
                      Virtual memory (bytes) snapshot=12967759872
                      Total committed heap usage (bytes)=2403860480
              Shuffle Errors
                      BAD_ID=0
                      CONNECTION=0
                      IO_ERROR=0
                      WRONG_LENGTH=0
                      WRONG_MAP=0
                      WRONG_REDUCE=0
              File Input Format Counters 
                      Bytes Read=444
              File Output Format Counters 
                      Bytes Written=23
    • After you run the yarn application -status <ApplicationId> command in the Linux environment, view the application running status in the command output. Example:
      yarn application -status application_1468241424339_0006
      Application Report : 
              Application-Id : application_1468241424339_0006
              Application-Name : Collect Female Info
              Application-Type : MAPREDUCE
              User : root
              Queue : default
              Start-Time : 1468314438442
              Finish-Time : 1468314470080
              Progress : 100%
              State : FINISHED
              Final-State : SUCCEEDED
              Tracking-URL : http://10-120-180-170:26012/jobhistory/job/job_1468241424339_0006
              RPC Port : 27100
              AM Host : 10-120-169-46
              Aggregate Resource Allocation : 172153 MB-seconds, 64 vcore-seconds
              Log Aggregation Status : SUCCEEDED
              Diagnostics : Application finished execution. 
              Application Node Label Expression : <Not set>
              AM container Node Label Expression : <DEFAULT_PARTITION>
  • Viewing MapReduce logs to learn application running status

    View MapReduce logs to learn application running status, and adjust applications based on log information.

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback