Scala Sample Code
Function Description
In a Flink application, call API of the flink-connector-kafka module to produce and consume data.
Sample Code
If you want to use FusionInsight in security mode, ensure that the kafka-clients-*.jar is obtained from the FusionInsight client directory.
Following is the main logic code of Kafka Consumer and Kafka Producer.
For the complete code, see com.huawei.bigdata.flink.examples.WriteIntoKafka and com.huawei.bigdata.flink.examples.ReadFromKafka.
//Code of producer
object WriteIntoKafka {
def main(args: Array[String]) {
//Print the reference command of flink run.
System.out.println("use command as: ")
System.out.println("./bin/flink run --class com.huawei.bigdata.flink.examples.WriteIntoKafka" +
" /opt/test.jar --topic topic-test -bootstrap.servers 10.91.8.218:9092")
System.out.println
("******************************************************************************************")
System.out.println("<topic> is the kafka topic name")
System.out.println("<bootstrap.servers> is the ip:port list of brokers")
System.out.println
("******************************************************************************************")
//Build the execution environment.
val env = StreamExecutionEnvironment.getExecutionEnvironment
//Configure the parallelism.
env.setParallelism(1)
//Parse the execution parameter.
val paraTool = ParameterTool.fromArgs(args)
//Build the StreamGraph and wirte data generated by customized source into Kafka
val messageStream: DataStream[String] = env.addSource(new SimpleStringGenerator)
messageStream.addSink(new FlinkKafkaProducer(
paraTool.get("topic"), new SimpleStringSchema, paraTool.getProperties))
//Call execute to trigger the execution.
env.execute
}
}
//Customize source to continuously generate messages every one second.
class SimpleStringGenerator extends SourceFunction[String] {
var running = true
var i = 0
override def run(ctx: SourceContext[String]) {
while (running) {
ctx.collect("element-" + i)
i += 1
Thread.sleep(1000)
}
}
override def cancel() {
running = false
}
}
//consumer code
object ReadFromKafka {
def main(args: Array[String]) {
//Print the reference command of flink run.
System.out.println("use command as: ")
System.out.println("./bin/flink run --class com.huawei.bigdata.flink.examples.ReadFromKafka" +
" /opt/test.jar --topic topic-test -bootstrap.servers 10.91.8.218:9092")
System.out.println
("******************************************************************************************")
System.out.println("<topic> is the kafka topic name")
System.out.println("<bootstrap.servers> is the ip:port list of brokers")
System.out.println
("******************************************************************************************")
//Build the execution environment
val env = StreamExecutionEnvironment.getExecutionEnvironment
//Configure the parallelism.
env.setParallelism(1)
//Parse the execution parameter.
val paraTool = ParameterTool.fromArgs(args)
//Build the StreamGraph, read data from Kafka and print the result in another row.
val messageStream = env.addSource(new FlinkKafkaConsumer(
paraTool.get("topic"), new SimpleStringSchema, paraTool.getProperties))
messageStream
.map(s => "Flink says " + s + System.getProperty("line.separator")).print()
//Call execute to trigger the execution
env.execute()
}
}
Feedback
Was this page helpful?
Provide feedbackThank you very much for your feedback. We will continue working to improve the documentation.