Updated on 2024-12-11 GMT+08:00

Optimizing Datasource Tables

Scenario

Save the partition information about the datasource table to the Metastore and process partition information in the Metastore.

  • Optimize the datasource tables, support syntax such as adding, deletion, and modification in the table based on partitions, improving compatibility with Hive.
  • Support statements of partition tailoring and push down to the Metastore to filter unmatched partitions.
    Example:
    select count(*) from table where partCol=1;    //partCol (partition column)

    You need only to process data corresponding to partCol=1 when performing the TableScan operation in the physical plan.

Procedure

If you want to enable Datasource table optimization, configure the spark-defaults.conf file on the Spark client.
Table 1 Parameter description

Parameter

Description

Default Value

spark.sql.hive.manageFilesourcePartitions

Specifies whether to enable Metastore partition management (including datasource tables and converted Hive).

  • true indicates enabling Metastore partition management. In this case, datasource tables are stored in Hive and Metastore is used to tailor partitions in query statements.
  • false indicates disabling Metastore partition management.

true

spark.sql.hive.metastorePartitionPruning

Specifies whether to support pushing down predicate to Hive Metastore.

  • true indicates supporting pushing down predicate to Hive Metastore. Only the predicate of Hive tables is supported.
  • false indicates not supporting pushing down predicate to Hive Metastore.

true

spark.sql.hive.filesourcePartitionFileCacheSize

The cache size of the partition file metadata in the memory.

All tables share a cache that can use up to specified num bytes for file metadata.

This parameter is valid only when spark.sql.hive.manageFilesourcePartitions is set to true.

250 * 1024 * 1024

spark.sql.hive.convertMetastoreOrc

The processing approach of ORC tables.

  • false: Spark SQL uses Hive SerDe to process ORC tables.
  • true: Spark SQL uses the Spark built-in mechanism to process ORC tables.

true