
SoftWare Repository for Container

Best Practices

Issue 01

Date 2022-09-30

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2022. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2022-09-30) Copyright © Huawei Technologies Co., Ltd. i

Contents

1 Writing a Quality Dockerfile.. 1

SoftWare Repository for Container
Best Practices Contents

Issue 01 (2022-09-30) Copyright © Huawei Technologies Co., Ltd. ii

1 Writing a Quality Dockerfile

This document walks you through how to compile an efficient Dockerfile, using
the containerization of an application as an example. Based on the practices of
SWR, this file exemplifies how to create images of fewer layers and smaller size to
speed up image build process.

The following figure shows a common architecture of an enterprise portal website.
This website consists of a web application that provides web services, and a
database that saves user data. Normally, the website is deployed on a single
server.

To containerize the application, a Dockerfile may be written as follows:

FROM ubuntu

ADD . /app

RUN apt-get update
RUN apt-get upgrade -y

SoftWare Repository for Container
Best Practices 1 Writing a Quality Dockerfile

Issue 01 (2022-09-30) Copyright © Huawei Technologies Co., Ltd. 1

RUN apt-get install -y nodejs ssh mysql
RUN cd /app && npm install

this should start three processes, mysql and ssh
in the background and node app in foreground
isn't it beautifully terrible? <3
CMD mysql & sshd & npm start

However, the preceding Dockerfile, including the CMD command, is problematic.

To rectify and optimize the Dockerfile, here are some tips:

● Run Only One Process in Each Container
● Do Not Upgrade a Version During Image Build
● Merge Multiple RUN Commands that Are of Similar Updating Probability
● Specify Image Tags
● Delete Unnecessary Files
● Select a Suitable Base Image
● Set WORKDIR and CMD
● (Optional) Use ENTRYPOINT
● Run the exec Command in ENTRYPOINT
● Use the COPY Instruction Preferentially
● Adjust the Order of COPY and RUN Commands
● Set Default Environment Variables, Mapping Ports, and Data Volumes
● Use the EXPOSE Command to Specify Listening Ports
● Use the VOLUME Command to Manage Data Volumes
● Use Labels to Configure Image Metadata
● Add the HEALTHCHECK Instruction
● Compile the .dockerignore File

Run Only One Process in Each Container
Technically, multiple processes, including database, frontend, backend, and SSH,
can run on the same Docker container. However, this is not what containers are
built for. Stuffing all the processes into one container not only makes the image
extremely large in size, but also prolongs the container building time and wastes
resources when you perform horizontal scaling. This is because the whole
container has to be rebuilt every time you make small adjustments and the
number of containers for each application can only be equally added during
scaling in.

Therefore, usually, an application is split into microservices before containerization.
You will benefit a lot from the microservice architecture:

● Independent scaling: After an application is split into independent
microservices, you can adjust the number of pods for each microservice
separately.

● Faster development: Since microservices are decoupled, they can be coded
independently from each other.

● Security assurance through isolation: For an overall application, if a security
vulnerability exists, attackers can use this vulnerability to obtain the

SoftWare Repository for Container
Best Practices 1 Writing a Quality Dockerfile

Issue 01 (2022-09-30) Copyright © Huawei Technologies Co., Ltd. 2

permission to all functions of the application. However, in a microservice
architecture, if a service is attacked, attackers can only obtain the access
permission to this service, but cannot intrude other services.

● Stabler service: If one microservice breaks down, other microservices can still
run properly.

To optimize the preceding sample Dockerfile, run the web application and MySQL
in different containers.

You can modify them separately. As shown in the following example, MySQL is
deleted from the sample Dockerfile. Only Node.js is installed.
FROM ubuntu

ADD . /app

RUN apt-get update
RUN apt-get upgrade -y

RUN apt-get install -y nodejs
RUN cd /app && npm install

CMD npm start

Do Not Upgrade a Version During Image Build
To reduce image complexity, dependency, size, and build time, do not install any
unnecessary packages in your images. For example, do not include a text editor in
a database image.

Contact the package maintenance personnel if a package in the base image is out
of date but you do not know which package it is. To upgrade a specific package
automatically, for example, foo, run the apt-get install -y foo command.

apt-get upgrade brings great uncertainty to image build. Inconsistency between
images might occur as you are not sure what packages have been installed by

SoftWare Repository for Container
Best Practices 1 Writing a Quality Dockerfile

Issue 01 (2022-09-30) Copyright © Huawei Technologies Co., Ltd. 3

apt-get upgrade during image build. Therefore, apt-get upgrade is usually
deleted.

The following is the sample Dockerfile without apt-get upgrade:

FROM ubuntu

ADD . /app

RUN apt-get update

RUN apt-get install -y nodejs
RUN cd /app && npm install

CMD npm start

Merge Multiple RUN Commands that Are of Similar Updating Probability
Like an onion, a Docker image consists of many layers. To modify an inner layer,
you need to delete all outer layers. Docker images have the following features:

● Each instruction in a Dockerfile creates an image layer.
● Image layers are cached and reused.
● Cached image layers expire when the files they copy or variables specified in

image build change.
● When a cached image layer expires, its subsequent cached image layers expire

accordingly.
● Image layers are immutable. If a file is added into a layer and then deleted in

the next layer, the file still exists in the image. The file just turns unavailable
in the Docker container.

Therefore, merge multiple instructions that are of similar updating probability to
avoid unnecessary costs. In the sample Dockerfile, Node.js and npm are installed
together. That means Node.js is reinstalled each time the source code is modified,
which is time and resource consuming.

FROM ubuntu

ADD . /app

RUN apt-get update \
 && apt-get install -y nodejs \
 && cd /app \
 && npm install

CMD npm start

It would be better to write the Dockerfile as follows:

FROM ubuntu

RUN apt-get update && apt-get install -y nodejs
ADD . /app
RUN cd /app && npm install

CMD npm start

Specify Image Tags
When no tag is specified to an image, the tag latest is automatically used.
Therefore, the FROM ubuntu instruction is the same as FROM ubuntu:latest.

SoftWare Repository for Container
Best Practices 1 Writing a Quality Dockerfile

Issue 01 (2022-09-30) Copyright © Huawei Technologies Co., Ltd. 4

During an image update, when the latest tag points to a new version, image build
may fail.

To specify a tag for the ubuntu image in the sample Dockerfile, tag the image
with 16.04 as follows:

FROM ubuntu:16.04

RUN apt-get update && apt-get install -y nodejs
ADD . /app
RUN cd /app && npm install

CMD npm start

Delete Unnecessary Files
Assume that you have updated the apt-get sources, installed some software
packages, and saved them in the /var/lib/apt/lists/ directory.

However, these files are not required in application running. To make the Docker
image more lightweight, it is advised to delete these unnecessary files.

Therefore, in the sample Dockerfile, the files in the /var/lib/apt/lists/ directory are
deleted.

FROM ubuntu:16.04

RUN apt-get update \
 && apt-get install -y nodejs \
 && rm -rf /var/lib/apt/lists/*

ADD . /app
RUN cd /app && npm install

CMD npm start

Select a Suitable Base Image
In our sample Dockerfile, ubuntu is selected as the base image. However, as you
only need to run the node program, there is no need to use a general-purpose
base image. A node image would be a better choice.

The node image of the Alpine version is recommended. It is a mini-Linux operating
system with a size of only 4 MB.

FROM node:7-alpine

ADD . /app
RUN cd /app && npm install

CMD npm start

Set WORKDIR and CMD
The WORKDIR instruction can be used to set a default directory where RUN,
CMD, and ENTRYPOINT instructions will be run.

The CMD instruction provides default commands for an executing container. Write
the instruction in an array with each element of the array being a word of the
command.

FROM node:7-alpine

SoftWare Repository for Container
Best Practices 1 Writing a Quality Dockerfile

Issue 01 (2022-09-30) Copyright © Huawei Technologies Co., Ltd. 5

WORKDIR /app
ADD . /app
RUN npm install

CMD ["npm", "start"]

(Optional) Use ENTRYPOINT
The ENTRYPOINT instruction is optional because it increases complexity.
ENTRYPOINT is a script that is executed by default. It uses the specified
commands as its arguments. It is usually used to create executable container
images.

FROM node:7-alpine

WORKDIR /app
ADD . /app
RUN npm install

ENTRYPOINT ["./entrypoint.sh"]
CMD ["start"]

Run the exec Command in ENTRYPOINT
In the preceding ENTRYPOINT script, the exec command is used to run the node
application. If the exec command is not used, the container cannot be successfully
closed since the SIGTERM signal will be swallowed by the bash script process. The
process started by running the exec command can replace the script process. In
this way, all signals work normally.

Use the COPY Instruction Preferentially
The COPY instruction is simple. It is only used to copy files to images. Compared
with it, the ADD instruction is more complex. ADD can be used to download
remote files and decompress compressed packages.

FROM node:7-alpine

WORKDIR /app

COPY . /app
RUN npm install

ENTRYPOINT ["./entrypoint.sh"]
CMD ["start"]

Adjust the Order of COPY and RUN Commands
Place the parts that are not to be changed frequently at the front of your
Dockerfile to make the most out of the image cache.

In the example Dockerfile, its source code changes frequently. Every time the
image is built, the NPM is reinstalled. For example, copy package.json first, then
install NPM, at last copy the rest of the source code. In this way, changes of the
source code will not result in repetitive installation of NPM.

FROM node:7-alpine

WORKDIR /app

COPY package.json /app

SoftWare Repository for Container
Best Practices 1 Writing a Quality Dockerfile

Issue 01 (2022-09-30) Copyright © Huawei Technologies Co., Ltd. 6

RUN npm install
COPY . /app

ENTRYPOINT ["./entrypoint.sh"]
CMD ["start"]

Set Default Environment Variables, Mapping Ports, and Data Volumes
Environment variables may be required when running a Docker container. Setting
default environment variables in Dockerfile is a good choice. In addition, you can
set mapping ports and data volumes in the Dockerfile. Example:

FROM node:7-alpine

ENV PROJECT_DIR=/app

WORKDIR $PROJECT_DIR

COPY package.json $PROJECT_DIR
RUN npm install
COPY . $PROJECT_DIR

ENTRYPOINT ["./entrypoint.sh"]
CMD ["start"]

The environment variable specified by the ENV instruction can be used in a
container. If you only need to specify the variables used in image build, you can
use the ARG instruction.

Use the EXPOSE Command to Specify Listening Ports
The EXPOSE instruction is used to specify listening ports to containers. Select
common ports for your applications. For example, for the image that provides the
Apache web service, use EXPOSE 80; while for the image that provides the
MongoDB service, use EXPOSE 27017.

For external access, use a flag to indicate how to map a specified port to the
selected port during the execution of the docker run command.

FROM node:7-alpine

ENV PROJECT_DIR=/app

WORKDIR $PROJECT_DIR

COPY package.json $PROJECT_DIR
RUN npm install
COPY . $PROJECT_DIR

ENV APP_PORT=3000
EXPOSE $APP_PORT

ENTRYPOINT ["./entrypoint.sh"]
CMD ["start"]

Use the VOLUME Command to Manage Data Volumes
The VOLUME instruction is used to access database storage files, configuration
files, or files and directories of created containers. It is strongly recommended that
the VOLUME instruction be used to manage the image modules that can change
or the modules modifiable for users.

In the example Dockerfile, a media directory is entered.

SoftWare Repository for Container
Best Practices 1 Writing a Quality Dockerfile

Issue 01 (2022-09-30) Copyright © Huawei Technologies Co., Ltd. 7

FROM node:7-alpine

ENV PROJECT_DIR=/app

WORKDIR $PROJECT_DIR

COPY package.json $PROJECT_DIR
RUN npm install
COPY . $PROJECT_DIR

ENV MEDIA_DIR=/media \
 APP_PORT=3000

VOLUME $MEDIA_DIR
EXPOSE $APP_PORT

ENTRYPOINT ["./entrypoint.sh"]
CMD ["start"]

Use Labels to Configure Image Metadata
Add labels to images to help organize images, record permissions, and automatic
image build. Starting with LABEL, add one or more labels with each label
occupying one line.

NO TICE

If your string contains spaces, put the string in quotation marks ("") or convert it
into escape sequence. If the string itself contains quotation marks, convert the
quotation marks.

FROM node:7-alpine
LABEL com.example.version="0.0.1-beta"

Add the HEALTHCHECK Instruction
When running a container, you can enable the --restart always option. In this
case, the Docker daemon restarts the container when the container crashes. This
option is useful for containers that need to run for a long time. What if a
container is running but unavailable? The HEALTHCHECK instruction enables
Docker to periodically check the health status of containers. You only need to
specify a command. If the containers are normal, 0 is returned. Otherwise, 1 is
returned. When the request fails and the curl --fail command is run, a non-zero
state is returned. Example:

FROM node:7-alpine
LABEL com.example.version="0.0.1-beta"

ENV PROJECT_DIR=/app
WORKDIR $PROJECT_DIR

COPY package.json $PROJECT_DIR
RUN npm install
COPY . $PROJECT_DIR

ENV MEDIA_DIR=/media \
 APP_PORT=3000

VOLUME $MEDIA_DIR
EXPOSE $APP_PORT
HEALTHCHECK CMD curl --fail http://localhost:$APP_PORT || exit 1

SoftWare Repository for Container
Best Practices 1 Writing a Quality Dockerfile

Issue 01 (2022-09-30) Copyright © Huawei Technologies Co., Ltd. 8

ENTRYPOINT ["./entrypoint.sh"]
CMD ["start"]

Compile the .dockerignore File
The functions and syntax of the .dockerignore file are similar to those of
the .gitignore file. You can ignore unnecessary files to accelerate image creation
and reduce the sizes of Docker images.

Before image build, Docker needs to prepare the context by collecting all required
files to the process. By default, the context contains all files in the Dockerfile
directory. However, files such as the .git directory are unnecessary.

Example:

.git/

SoftWare Repository for Container
Best Practices 1 Writing a Quality Dockerfile

Issue 01 (2022-09-30) Copyright © Huawei Technologies Co., Ltd. 9

	Contents
	1 Writing a Quality Dockerfile

