
Distributed Message Service for RabbitMQ

Best Practices

Issue 01

Date 2023-07-17

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2023. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Contents

1 Migrating RabbitMQ Services...1

2 Queue Migration... 3

3 Automatic Recovery from Network Exceptions... 7

4 Consumer Reconnection After a Node Restart.. 9

5 RabbitMQ High Performance... 12

Distributed Message Service for RabbitMQ
Best Practices Contents

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

1 Migrating RabbitMQ Services

Scenario
Migrate RabbitMQ services from a single-node or cluster instance not on Huawei
Cloud (the source instance) to a RabbitMQ instance on Huawei Cloud (the
destination instance).

Solution
Migrate production applications and then consumption applications. No data
migration is involved.

Procedure
Migrate the production applications to the destination instance. New messages
are no longer published to the source instance, and consumer applications
consume messages from both the source and destination instances. After all
messages in the source instance are consumed, migrate the consumption
applications to the destination instance.

NO TICE

● Messages may not be ordered consistently.
● Ensure that the client and the destination instance can be connected.

Check whether all messages in the source instance have been consumed by using
the RabbitMQ Management UI or by calling an API:

● Using the RabbitMQ Management UI, as shown in Figure 1-1.
On the Overview tab page, if the number of messages that can be consumed
(Ready) and the number of messages that are not acknowledged (Unacked)
are both 0, the consumption is complete.

Distributed Message Service for RabbitMQ
Best Practices 1 Migrating RabbitMQ Services

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

Figure 1-1 RabbitMQ Management UI

● Using an API
curl -s -u username:password -XGET http://ip:port/api/overview

Parameter description:
– username: account used to log in to the RabbitMQ Management UI for

the source instance
– password: password used to log in to the RabbitMQ Management UI for

the source instance
– ip: IP address used to log in to the RabbitMQ Management UI for the

source instance
– port: port used to log in to the RabbitMQ Management UI for the source

instance
When the values of messages_ready and messages_unacknowledged in the
command output are both 0, the consumption is complete.

Figure 1-2 Command output

Distributed Message Service for RabbitMQ
Best Practices 1 Migrating RabbitMQ Services

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

2 Queue Migration

If queues are not evenly distributed across the nodes in a RabbitMQ cluster due to
node scale-out or queue deletion, some nodes will be overloaded and the cluster
cannot be effectively used.

To configure queue load balancing, use the following methods:

● Deleting and Recreating Queues
● Modifying the Master Node Using a Policy

Deleting and Recreating Queues

Step 1 Log in to the RabbitMQ management UI.

Step 2 On the Overview tab page, click Download broker definitions to export the
metadata.

Step 3 Stop producing messages, wait until all messages are consumed, and then delete
the original queues.

1. On the Overview tab page, check data consumption.

Distributed Message Service for RabbitMQ
Best Practices 2 Queue Migration

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

https://support.huaweicloud.com/eu/usermanual-rabbitmq/rabbitmq-ug-180801003.html

If the number of messages that can be consumed (Ready) and the number of
messages that are not acknowledged (Unacked) are both 0, the consumption
is complete.

2. When all data is consumed, delete the original queues.
a. On the Queues tab page, click the name of the desired queue.

b. Click Delete Queue to delete the queue.

Distributed Message Service for RabbitMQ
Best Practices 2 Queue Migration

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

Step 4 On the Overview tab page, upload the exported metadata.

1. On the Overview tab page, click Choose File and select the exported
metadata.

2. Click Upload broker definitions to upload the metadata.

If the upload is successful, the following information is displayed:

The instance automatically creates queues across nodes for load balancing.
You can view the queue distribution details on the Queues tab page.

----End

Modifying the Master Node Using a Policy

Step 1 Log in to the RabbitMQ management UI.

Step 2 On the Admin > Policies page, add a policy.

Distributed Message Service for RabbitMQ
Best Practices 2 Queue Migration

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

https://support.huaweicloud.com/eu/usermanual-rabbitmq/rabbitmq-ug-180801003.html

● Name: Enter a policy name.
● Pattern: queue matching mode. Enter a queue name. Queues with the same

prefix will be matched.
● Apply to: Select Queues.
● Priority: policy priority. A larger value indicates a higher priority. This

parameter is optional.
● Definition: mapping definitions. Set ha-mode to nodes and ha-params to

the name of node to which the queues are to be migrated.

Step 3 Click Add policy.

NO TE

● Queue data synchronization takes a long time. To prevent message loss, the original
master node is still available before queue data synchronization is complete.

● After the queue switchover is complete, you can delete the policy added in Step 2.

----End

Distributed Message Service for RabbitMQ
Best Practices 2 Queue Migration

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

3 Automatic Recovery from Network
Exceptions

This topic describes how to configure automatic network recovery on a client
when it is disconnected from the server due to server restart or network jitter. Java
clients of version 4.0.0 or later support automatic network recovery by
default.

NO TICE

If an application uses the Connection.Close method to close a connection,
automatic network recovery will not be enabled or triggered.

Scenarios
Automatic network recovery is triggered in the following scenarios:

● An exception is thrown in a connection's I/O loop.
● Socket read times out.
● Server heartbeat is lost.

Sample Code for Reconnection
If the initial connection between the client and server fails, automatic recovery is
not triggered. You are advised to edit the corresponding application code and retry
the connection to solve the problem.

The following example shows how to use a Java client to resolve an initial
connection failure by retrying a connection.

ConnectionFactory factory = new ConnectionFactory();
// enable automatic recovery if using RabbitMQ Java client library prior to version 4.0.0.
factory.setAutomaticRecoveryEnabled(true);
// configure various connection settings

try {
 Connection conn = factory.newConnection();
} catch (java.net.ConnectException e) {
 Thread.sleep(5000);

Distributed Message Service for RabbitMQ
Best Practices 3 Automatic Recovery from Network Exceptions

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

 // apply retry logic
}

Distributed Message Service for RabbitMQ
Best Practices 3 Automatic Recovery from Network Exceptions

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

4 Consumer Reconnection After a Node
Restart

This section uses amqp-client, a RabbitMQ client in Java, as an example to
describe how to reconnect to a node after the node is restarted.

amqp-client has a built-in reconnection mechanism with only one retry. If the
reconnection fails, there will be no further retries and the consumer will no longer
be able to consume messages, unless the consumer has an additional retry
mechanism.

After amqp-client is disconnected from a node, different errors are generated
depending on the node that the channel is connected to.

● If the channel is connected to the node where the queue is located, the
consumer receives a shutdown signal. Then, the amqp-client reconnection
mechanism takes effect and the consumer attempts to reconnect to the
server. If the connection is successful, the channel continues to be connected
for consumption. If the connection fails, the channel.close method is used to
close the channel.

● If the channel is not connected to the node where the queue is located,
consumer closure is not triggered. Instead, the server sends a cancel
notification. This is not an exception for amqp-client, so no obvious error is
reported in the log. However, the connection will be closed eventually.

When these two errors occur, amqp-client calls back the handleShutdownSignal
and handleCancel methods. You can rewrite these methods to execute the
rewritten reconnection logic during the callback. In this way, a new channel can be
created for the consumer to continue consumption after a previous channel is
closed.

The following is a simple code example which can solve the preceding two errors
for continuous consumption.

package rabbitmq;

import com.rabbitmq.client.*;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.util.concurrent.TimeoutException;

public class RabbitConsumer {

Distributed Message Service for RabbitMQ
Best Practices 4 Consumer Reconnection After a Node Restart

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

 public static void main(String... args) throws IOException, TimeoutException {
 ConnectionFactory factory = new ConnectionFactory();
 factory.setHost("100.00.000.000");
 factory.setPort(5672);

 factory.setUsername("name");
 factory.setPassword("password");
 Connection connection = factory.newConnection();

 createNewConnection(connection);
 }

 public static void createNewConnection(Connection connection) {
 try {
 Thread.sleep(1000);
 Channel channel = connection.createChannel();
 channel.basicQos(64);
 channel.basicConsume("queue-01", false, new CustomConsumer(channel, connection));
 } catch (Exception e) {
// e.printStackTrace();
 createNewConnection(connection);
 }
 }

 static class CustomConsumer implements Consumer {

 private final Channel _channel;
 private final Connection _connection;

 public CustomConsumer(Channel channel, Connection connection) {
 _channel = channel;
 _connection = connection;
 }

 @Override
 public void handleConsumeOk(String consumerTag) {
 }

 @Override
 public void handleCancelOk(String consumerTag) {

 }

 @Override
 public void handleCancel(String consumerTag) throws IOException {
 System.out.println("handleCancel");
 System.out.println(consumerTag);
 createNewConnection(_connection);
 }

 @Override
 public void handleShutdownSignal(String consumerTag, ShutdownSignalException sig) {
 System.out.println("handleShutdownSignal");
 System.out.println(consumerTag);
 System.out.println(sig.getReason());
 createNewConnection(_connection);
 }

 @Override
 public void handleRecoverOk(String consumerTag) {

 }

 @Override
 public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties,
byte[] body) throws IOException {
 String message = new String(body, StandardCharsets.UTF_8);
 System.out.println(" [x] Received '" + message + "'");

Distributed Message Service for RabbitMQ
Best Practices 4 Consumer Reconnection After a Node Restart

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

 _channel.basicAck(envelope.getDeliveryTag(), false);
 }

 }
}

Distributed Message Service for RabbitMQ
Best Practices 4 Consumer Reconnection After a Node Restart

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

5 RabbitMQ High Performance

This topic introduces methods to achieve high RabbitMQ performance
(considering throughput and reliability) by configuring the queue length, cluster
load balancing, priority queues, and other parameters.

Using Short Queues
If a queue has a large number of messages, memory is under heavy pressure. To
relieve pressure, RabbitMQ pages out messages to the disk. This process usually
takes a long time because it involves recreating the index and restarting a cluster
that contains a large number of messages. If there are too many messages paged
out to the disk, queues will be blocked, which slows down queue processing and
adversely affects the performance of RabbitMQ nodes.

To achieve high performance, shorten queues as much as you can. You are advised
to keep no messages stacked in a queue.

For applications that frequently encounter message count surges or require high
throughput, you are advised to limit the queue length. The queue length can be
kept within the limit by discarding messages at the head of a queue.

The limit can be configured in a policy or a queue declaration argument.

● Configuring a policy

Distributed Message Service for RabbitMQ
Best Practices 5 RabbitMQ High Performance

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

● Configuring a queue declaration argument
// Create a queue.
HashMap<String, Object> map = new HashMap<>();
// Set the maximum queue length.
map.put("x-max-length",10);
// Set the queue overflow mode, retaining the first 10 messages.
map.put("x-overflow","reject-publish");
channel.queueDeclare(queueName,false,false,false,map);

By default, when the queue length exceeds the limit, messages at the head of the
queue (the oldest messages) are discarded or become dead letter messages. You
can change this mode by setting overflow to different values. If overflow is set to
drop-head, the oldest messages at the head of the queue are discarded or made
dead-letter, and the latest n messages are retained. If overflow is set to reject-
publish, the latest messages are discarded, and the oldest n messages are
retained.

NO TE

● If both these methods are used to set the maximum queue length, the smaller limit is
used.

● Messages beyond the maximum queue length will be discarded.

Cluster Load Balancing
Queue performance depends a single CPU core. When the message processing
capability of a RabbitMQ node reaches the bottleneck, you can expand the cluster
to improve the throughput.

If multiple nodes are used, the cluster automatically distributes queues across the
nodes. In addition to using a cluster, you can use the following two plug-ins to
optimize load balancing:

Consistent hash exchange

This plug-in uses an exchange to balance messages between queues. Messages
sent to the exchange are consistently and evenly distributed across multiple
queues based on the messages' routing keys. This plug-in creates a hash for the
routing keys and distributes the messages to queues bound with the exchange.
When using this plug-in, ensure that consumers consume messages from all
queues.

The following is an example:

● Route messages based on different routing keys.
public class ConsistentHashExchangeExample1 {
 private static String CONSISTENT_HASH_EXCHANGE_TYPE = "x-consistent-hash";

 public static void main(String[] argv) throws IOException, TimeoutException, InterruptedException {
 ConnectionFactory cf = new ConnectionFactory();
 Connection conn = cf.newConnection();
 Channel ch = conn.createChannel();

 for (String q : Arrays.asList("q1", "q2", "q3", "q4")) {
 ch.queueDeclare(q, true, false, false, null);
 ch.queuePurge(q);
 }

 ch.exchangeDeclare("e1", CONSISTENT_HASH_EXCHANGE_TYPE, true, false, null);

 for (String q : Arrays.asList("q1", "q2")) {

Distributed Message Service for RabbitMQ
Best Practices 5 RabbitMQ High Performance

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

 ch.queueBind(q, "e1", "1");
 }

 for (String q : Arrays.asList("q3", "q4")) {
 ch.queueBind(q, "e1", "2");
 }

 ch.confirmSelect();

 AMQP.BasicProperties.Builder bldr = new AMQP.BasicProperties.Builder();
 for (int i = 0; i < 100000; i++) {
 ch.basicPublish("e1", String.valueOf(i), bldr.build(), "".getBytes("UTF-8"));
 }

 ch.waitForConfirmsOrDie(10000);

 System.out.println("Done publishing!");
 System.out.println("Evaluating results...");
 // wait for one stats emission interval so that queue counters
 // are up-to-date in the management UI
 Thread.sleep(5);

 System.out.println("Done.");
 conn.close();
 }
}

● Route messages based on different headers. In this mode, the hash-header
parameter must be specified for the exchange, and messages must contain
headers. Otherwise, messages will be routed to the same queue.
public class ConsistentHashExchangeExample2 {
 public static final String EXCHANGE = "e2";
 private static String EXCHANGE_TYPE = "x-consistent-hash";

 public static void main(String[] argv) throws IOException, TimeoutException, InterruptedException {
 ConnectionFactory cf = new ConnectionFactory();
 Connection conn = cf.newConnection();
 Channel ch = conn.createChannel();

 for (String q : Arrays.asList("q1", "q2", "q3", "q4")) {
 ch.queueDeclare(q, true, false, false, null);
 ch.queuePurge(q);
 }

 Map<String, Object> args = new HashMap<>();
 args.put("hash-header", "hash-on");
 ch.exchangeDeclare(EXCHANGE, EXCHANGE_TYPE, true, false, args);

 for (String q : Arrays.asList("q1", "q2")) {
 ch.queueBind(q, EXCHANGE, "1");
 }

 for (String q : Arrays.asList("q3", "q4")) {
 ch.queueBind(q, EXCHANGE, "2");
 }

 ch.confirmSelect();

 for (int i = 0; i < 100000; i++) {
 AMQP.BasicProperties.Builder bldr = new AMQP.BasicProperties.Builder();
 Map<String, Object> hdrs = new HashMap<>();
 hdrs.put("hash-on", String.valueOf(i));
 ch.basicPublish(EXCHANGE, "", bldr.headers(hdrs).build(), "".getBytes("UTF-8"));
 }

 ch.waitForConfirmsOrDie(10000);

 System.out.println("Done publishing!");

Distributed Message Service for RabbitMQ
Best Practices 5 RabbitMQ High Performance

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

 System.out.println("Evaluating results...");
 // wait for one stats emission interval so that queue counters
 // are up-to-date in the management UI
 Thread.sleep(5);

 System.out.println("Done.");
 conn.close();
 }
}

● Route messages based on their properties, such as message_id,
correlation_id, or timestamp. In this mode, the hash-property parameter is
required to declare the exchange, and messages must contain the specified
property. Otherwise, messages will be routed to the same queue.
public class ConsistentHashExchangeExample3 {
 public static final String EXCHANGE = "e3";
 private static String EXCHANGE_TYPE = "x-consistent-hash";

 public static void main(String[] argv) throws IOException, TimeoutException, InterruptedException {
 ConnectionFactory cf = new ConnectionFactory();
 Connection conn = cf.newConnection();
 Channel ch = conn.createChannel();

 for (String q : Arrays.asList("q1", "q2", "q3", "q4")) {
 ch.queueDeclare(q, true, false, false, null);
 ch.queuePurge(q);
 }

 Map<String, Object> args = new HashMap<>();
 args.put("hash-property", "message_id");
 ch.exchangeDeclare(EXCHANGE, EXCHANGE_TYPE, true, false, args);

 for (String q : Arrays.asList("q1", "q2")) {
 ch.queueBind(q, EXCHANGE, "1");
 }

 for (String q : Arrays.asList("q3", "q4")) {
 ch.queueBind(q, EXCHANGE, "2");
 }

 ch.confirmSelect();

 for (int i = 0; i < 100000; i++) {
 AMQP.BasicProperties.Builder bldr = new AMQP.BasicProperties.Builder();
 ch.basicPublish(EXCHANGE, "", bldr.messageId(String.valueOf(i)).build(), "".getBytes("UTF-8"));
 }

 ch.waitForConfirmsOrDie(10000);

 System.out.println("Done publishing!");
 System.out.println("Evaluating results...");
 // wait for one stats emission interval so that queue counters
 // are up-to-date in the management UI
 Thread.sleep(5);

 System.out.println("Done.");
 conn.close();
 }
}

RabbitMQ sharding

This plug-in automatically partitions queues. Once you define an exchange as
sharded, supporting queues are automatically created on each cluster node to
share messages. This plug-in provides a centralized location for sending messages
and implements load balancing by adding queues to other nodes in the cluster.

Distributed Message Service for RabbitMQ
Best Practices 5 RabbitMQ High Performance

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

When using this plug-in, ensure that consumers consume messages from all
queues.

Do as follows to configure the RabbitMQ sharding plug-in:

Step 1 Create an x-modulus-hash exchange.

Step 2 Add a policy to the exchange.

Step 3 View the exchange details to check whether the configuration is successful.

Distributed Message Service for RabbitMQ
Best Practices 5 RabbitMQ High Performance

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

----End

Automatically Deleting Unused Queues
The client may fail to be connected, resulting in residual queues that affect
instance performance. RabbitMQ provides the following methods to automatically
delete a queue:

● Set a TTL policy for the queue. For example, if TTL is set to 28 days, the queue
will be deleted after staying idle for 28 days.

● Use an auto-delete queue. When the last consumer exits or the channel or
connection is closed (or when its TCP connection with the server is lost), the
auto-delete queue is deleted.

● Use an exclusive queue. This queue can be used only in the connection where
it is created. When the connection is closed or disappears, the exclusive queue
is deleted.

Configuration:

boolean exclusive = true;
boolean autoDelete = true;
channel.queueDeclare(QUEUENAME, durable, exclusive, autoDelete, arguments);

Limiting the Number of Priority Queues
Each priority queue starts an Erlang process. If there are too many priority queues,
performance will be affected. In most cases, you are advised to have no more than
five priority queues.

Connections and Channels
Each connection uses about 100 KB memory (or more if TLS is used). Thousands
of connections cause high RabbitMQ load and even out-of-memory in extreme
cases. The AMQP protocol introduces the concept of channels. Each connection
can have multiple channels. Connections exist for a long time. The handshake

Distributed Message Service for RabbitMQ
Best Practices 5 RabbitMQ High Performance

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

process for an AMQP connection is complex and requires at least seven TCP data
packets (or more if TLS is used). By contrast, it is easier to open and close a
channel, and it is recommended that channels exist for a long time. For example,
the same channel should be reused for a producer thread, and should not be
opened for each production. The best practice is to reuse connections and
multiplex a connection between threads with channels.

The Spring AMQP thread pool is recommended. ConnectionFactory is defined by
Spring AMQP and is responsible for creating connections.

Do Not Share Channels Between Threads
Most clients do not implement thread safety security on channels, so do not share
channels between threads.

Do Not Open and Close Connections or Channels Frequently
Frequently opening and closing connections or channels will lead to a large
number of TCP packets being sent and received, resulting in higher latency.

Producers and Consumers Use Different Connections
This improves throughput. If a producer sends too many messages to the server
for processing, RabbitMQ transfers the pressure to the TCP connection. If
messages are consumed on the same TCP connection, the server may not receive
acknowledgments from the client, affecting the consumption performance. If
consumption is too slow, the server will be overloaded.

RabbitMQ Management Interface Performance Affected by Too Many
Connections and Channels

RabbitMQ collects data of each connection and channel for analysis and display. If
there are too many connections and channels, the performance of the RabbitMQ
management interface will be affected.

Disabling Unused Plug-ins
Plug-ins may consume a large number of CPU or memory resources. You are
advised to disable unused plug-ins.

Distributed Message Service for RabbitMQ
Best Practices 5 RabbitMQ High Performance

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

	Contents
	1 Migrating RabbitMQ Services
	2 Queue Migration
	3 Automatic Recovery from Network Exceptions
	4 Consumer Reconnection After a Node Restart
	5 RabbitMQ High Performance

