
Distributed Message Service for Kafka

Best Practices

Issue 01

Date 2023-09-15

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2023. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Contents

1 Optimizing Message Polling of DMS for Kafka Consumers.. 1

2 Improving Message Processing Efficiency... 10

3 Migrating Kafka Services...13

4 Using MirrorMaker to Synchronize Data Across Clusters..16

5 Setting Parameters for Kafka Clients... 20

6 Using Kafka Clients...25

7 Configuring an Alarm Rule for Accumulated Messages.. 27

8 Interconnecting Logstash with Kafka.. 33

9 Avoiding Message Accumulation.. 41

10 Handling Service Overload... 43

11 Handling Uneven Service Data.. 45

Distributed Message Service for Kafka
Best Practices Contents

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

1 Optimizing Message Polling of DMS for
Kafka Consumers

Overview
In the native Kafka SDK provided by DMS for Kafka, consumers can customize the
duration for pulling messages. To pull messages for a long time, consumers only
need to set the parameter of the poll (long) method to a proper value. However,
such long connections may cause pressure on the client and the server, especially
when the number of partitions is large and multiple threads are enabled for each
consumer.

As shown in Figure 1-1, the topic contains multiple partitions, and multiple
consumers in the consumer group consume the resources at the same time. Each
thread is in a persistent connection. When there are few or no messages in the
topic, the connection persists, and all consumers pull messages continuously,
which causes a waste of resources.

Distributed Message Service for Kafka
Best Practices

1 Optimizing Message Polling of DMS for Kafka
Consumers

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

Figure 1-1 Multi-thread consumption of Kafka consumers

Optimization Solution
When multiple threads are accessed at the same time, if there is no message in
the topic, only one thread is required to poll messages in each partition. When a
message is found in the polling thread, other threads can be woken up to
consume the messages. In this way, the message can be quickly responded, as
shown in Figure 1-2.

This solution is applicable to scenarios with low requirements on real-time
message consumption. If real-time message consumption is required, it is
recommended that all consumers be in the active state.

Distributed Message Service for Kafka
Best Practices

1 Optimizing Message Polling of DMS for Kafka
Consumers

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

Figure 1-2 Optimized multi-thread consumption solution

NO TE

The number of consumers and the number of partitions are not necessarily the same. The
poll (long) method of Kafka helps implement the functions such as message acquisition,
partition balancing, and heartbeat detection between consumers and Kafka brokers.
Therefore, in scenarios with low requirements on real-time message consumption and there
is a small number of messages, some consumers can be in the wait state.

Sample Code

NO TICE

The following describes only the code related to wake-up and sleep of the
consumer thread. To run the entire demo, download the complete sample code
package and refer to the Developer Guide for deploying and running the code.

Sample code for consuming messages:

package com.huawei.dms.kafka;

import java.io.IOException;
import java.util.Arrays;
import java.util.Collection;
import java.util.Iterator;
import java.util.Properties;

import org.apache.kafka.clients.consumer.ConsumerRebalanceListener;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.TopicPartition;
import org.apache.log4j.Logger;

Distributed Message Service for Kafka
Best Practices

1 Optimizing Message Polling of DMS for Kafka
Consumers

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

https://dms-demo.obs.cn-north-1.myhuaweicloud.com/BestPractice_PollOptmize.zip
https://dms-demo.obs.cn-north-1.myhuaweicloud.com/BestPractice_PollOptmize.zip
https://support.huaweicloud.com/eu/devg-kafka/Kafka-summary.html

public class DmsKafkaConsumeDemo
{
 private static Logger logger = Logger.getLogger(DmsKafkaProduceDemo.class);

 public static void WorkerFunc(int workerId, KafkaConsumer<String, String> kafkaConsumer) throws
IOException
 {
 Properties consumerConfig = Config.getConsumerConfig();
 RecordReceiver receiver = new RecordReceiver(workerId, kafkaConsumer,
consumerConfig.getProperty("topic"));
 while (true)
 {
 ConsumerRecords<String, String> records = receiver.receiveMessage();
 Iterator<ConsumerRecord<String, String>> iter = records.iterator();
 while (iter.hasNext())
 {
 ConsumerRecord<String, String> cr = iter.next();
 System.out.println("Thread" + workerId + " recievedrecords" + cr.value());
 logger.info("Thread" + workerId + " recievedrecords" + cr.value());

 }

 }
 }

 public static KafkaConsumer<String, String> getConsumer() throws IOException
 {
 Properties consumerConfig = Config.getConsumerConfig();

 consumerConfig.put("ssl.truststore.location", Config.getTrustStorePath());
 System.setProperty("java.security.auth.login.config", Config.getSaslConfig());

 KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(consumerConfig);
 kafkaConsumer.subscribe(Arrays.asList(consumerConfig.getProperty("topic")),
 new ConsumerRebalanceListener()
 {
 @Override
 public void onPartitionsRevoked(Collection<TopicPartition> arg0)
 {

 }

 @Override
 public void onPartitionsAssigned(Collection<TopicPartition> tps)
 {

 }
 });
 return kafkaConsumer;
 }

 public static void main(String[] args) throws IOException
 {

 //Create a consumer for the current consumer group.
 final KafkaConsumer<String, String> consumer1 = getConsumer();
 Thread thread1 = new Thread(new Runnable()
 {
 public void run()
 {
 try
 {
 WorkerFunc(1, consumer1);
 }
 catch (IOException e)
 {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

Distributed Message Service for Kafka
Best Practices

1 Optimizing Message Polling of DMS for Kafka
Consumers

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

 }
 });
 final KafkaConsumer<String, String> consumer2 = getConsumer();

 Thread thread2 = new Thread(new Runnable()
 {
 public void run()
 {
 try
 {
 WorkerFunc(2, consumer2);
 }
 catch (IOException e)
 {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }
 });
 final KafkaConsumer<String, String> consumer3 = getConsumer();

 Thread thread3 = new Thread(new Runnable()
 {
 public void run()
 {
 try
 {
 WorkerFunc(3, consumer3);
 }
 catch (IOException e)
 {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }
 });

 //Start threads.
 thread1.start();
 thread2.start();
 thread3.start();

 try
 {
 Thread.sleep(5000);
 }
 catch (InterruptedException e)
 {
 e.printStackTrace();
 }
 //Add threads.
 try
 {
 thread1.join();
 thread2.join();
 thread3.join();
 }
 catch (InterruptedException e)
 {
 e.printStackTrace();
 }
 }
}

Sample code for consumer thread management:

The sample code provides only simple design ideas. Developers can optimize the
thread wake-up and sleep mechanisms based on actual scenarios.

Distributed Message Service for Kafka
Best Practices

1 Optimizing Message Polling of DMS for Kafka
Consumers

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

package com.huawei.dms.kafka;

import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

import org.apache.log4j.Logger;

public class RecordReceiver
{
 private static Logger logger = Logger.getLogger(DmsKafkaProduceDemo.class);

 //Interval time of polling
 public static final int WAIT_SECONDS = 10 * 1000;

 protected static final Map<String, Object> sLockObjMap = new HashMap<String, Object>();

 protected static Map<String, Boolean> sPollingMap = new ConcurrentHashMap<String, Boolean>();

 protected Object lockObj;

 protected String topicName;

 protected KafkaConsumer<String, String> kafkaConsumer;

 protected int workerId;

 public RecordReceiver(int id, KafkaConsumer<String, String> kafkaConsumer, String queue)
 {
 this.kafkaConsumer = kafkaConsumer;
 this.topicName = queue;
 this.workerId = id;

 synchronized (sLockObjMap)
 {
 lockObj = sLockObjMap.get(topicName);
 if (lockObj == null)
 {
 lockObj = new Object();
 sLockObjMap.put(topicName, lockObj);
 }
 }
 }

 public boolean setPolling()
 {
 synchronized (lockObj)
 {
 Boolean ret = sPollingMap.get(topicName);
 if (ret == null || !ret)
 {
 sPollingMap.put(topicName, true);
 return true;
 }
 return false;
 }
 }

 //Wake up all threads.
 public void clearPolling()
 {
 synchronized (lockObj)
 {
 sPollingMap.put(topicName, false);
 lockObj.notifyAll();
 System.out.println("Everyone WakeUp and Work!");

Distributed Message Service for Kafka
Best Practices

1 Optimizing Message Polling of DMS for Kafka
Consumers

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

 logger.info("Everyone WakeUp and Work!");
 }
 }

 public ConsumerRecords<String, String> receiveMessage()
 {
 boolean polling = false;
 while (true)
 {
 //Check the poll status of threads and hibernate the threads when necessary.
 synchronized (lockObj)
 {
 Boolean p = sPollingMap.get(topicName);
 if (p != null && p)
 {
 try
 {
 System.out.println("Thread" + workerId + " Have a nice sleep!");
 logger.info("Thread" + workerId +" Have a nice sleep!");
 polling = false;
 lockObj.wait();
 }
 catch (InterruptedException e)
 {
 System.out.println("MessageReceiver Interrupted! topicName is " + topicName);
 logger.error("MessageReceiver Interrupted! topicName is "+topicName);

 return null;
 }
 }
 }

 //Start to consume and wake up other threads when necessary.
 try
 {
 ConsumerRecords<String, String> Records = null;
 if (!polling)
 {
 Records = kafkaConsumer.poll(100);
 if (Records.count() == 0)
 {
 polling = true;
 continue;
 }
 }
 else
 {
 if (setPolling())
 {
 System.out.println("Thread" + workerId + " Polling!");
 logger.info("Thread " + workerId + " Polling!");
 }
 else
 {
 continue;
 }
 do
 {
 System.out.println("Thread" + workerId + " KEEP Poll records!");
 logger.info("Thread" + workerId + " KEEP Poll records!");
 try
 {
 Records = kafkaConsumer.poll(WAIT_SECONDS);
 }
 catch (Exception e)
 {
 System.out.println("Exception Happened when polling records: " + e);
 logger.error("Exception Happened when polling records: " + e);

Distributed Message Service for Kafka
Best Practices

1 Optimizing Message Polling of DMS for Kafka
Consumers

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

 }
 } while (Records.count()==0);
 clearPolling();
 }
 //Acknowledge message consumption.
 kafkaConsumer.commitSync();
 return Records;
 }
 catch (Exception e)
 {
 System.out.println("Exception Happened when poll records: " + e);
 logger.error("Exception Happened when poll records: " + e);
 }
 }
 }
}

NO TE

topicName is the name of the topic.

Running Results of Sample Code

[2018-01-25 22:40:51,841] INFO Thread 2 Polling! (com.huawei.dms.kafka.DmsKafkaProduceDemo:119)
[2018-01-25 22:40:51,841] INFO Thread2 KEEP Poll records!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:128)
[2018-01-25 22:40:52,122] INFO Everyone WakeUp and Work!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:69)
[2018-01-25 22:40:52,169] INFO Thread2 recievedrecordshello, dms kafka.
(com.huawei.dms.kafka.DmsKafkaProduceDemo:32)
[2018-01-25 22:40:52,169] INFO Thread2 recievedrecordshello, dms kafka.
(com.huawei.dms.kafka.DmsKafkaProduceDemo:32)
[2018-01-25 22:40:52,216] INFO Thread2 recievedrecordshello, dms kafka.
(com.huawei.dms.kafka.DmsKafkaProduceDemo:32)
[2018-01-25 22:40:52,325] INFO Thread 2 Polling! (com.huawei.dms.kafka.DmsKafkaProduceDemo:119)
[2018-01-25 22:40:52,325] INFO Thread2 KEEP Poll records!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:128)
[2018-01-25 22:40:54,947] INFO Thread1 Have a nice sleep!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:87)
[2018-01-25 22:40:54,979] INFO Thread3 Have a nice sleep!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:87)
[2018-01-25 22:41:32,347] INFO Thread2 KEEP Poll records!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:128)
[2018-01-25 22:41:42,353] INFO Thread2 KEEP Poll records!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:128)
[2018-01-25 22:41:47,816] INFO Everyone WakeUp and Work!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:69)
[2018-01-25 22:41:47,847] INFO Thread2 recievedrecordshello, dms kafka.
(com.huawei.dms.kafka.DmsKafkaProduceDemo:32)
[2018-01-25 22:41:47,925] INFO Thread 3 Polling! (com.huawei.dms.kafka.DmsKafkaProduceDemo:119)
[2018-01-25 22:41:47,925] INFO Thread1 Have a nice sleep!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:87)
[2018-01-25 22:41:47,925] INFO Thread3 KEEP Poll records!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:128)
[2018-01-25 22:41:47,957] INFO Thread2 Have a nice sleep!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:87)
[2018-01-25 22:41:48,472] INFO Everyone WakeUp and Work!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:69)
[2018-01-25 22:41:48,503] INFO Thread3 recievedrecordshello, dms kafka.
(com.huawei.dms.kafka.DmsKafkaProduceDemo:32)
[2018-01-25 22:41:48,518] INFO Thread1 recievedrecordshello, dms kafka.
(com.huawei.dms.kafka.DmsKafkaProduceDemo:32)
[2018-01-25 22:41:48,550] INFO Thread2 recievedrecordshello, dms kafka.
(com.huawei.dms.kafka.DmsKafkaProduceDemo:32)
[2018-01-25 22:41:48,597] INFO Thread1 recievedrecordshello, dms kafka.
(com.huawei.dms.kafka.DmsKafkaProduceDemo:32)
[2018-01-25 22:41:48,659] INFO Thread 2 Polling! (com.huawei.dms.kafka.DmsKafkaProduceDemo:119)
[2018-01-25 22:41:48,659] INFO Thread2 KEEP Poll records!

Distributed Message Service for Kafka
Best Practices

1 Optimizing Message Polling of DMS for Kafka
Consumers

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

(com.huawei.dms.kafka.DmsKafkaProduceDemo:128)
[2018-01-25 22:41:48,675] INFO Thread3 recievedrecordshello, dms kafka.
(com.huawei.dms.kafka.DmsKafkaProduceDemo:32)
[2018-01-25 22:41:48,675] INFO Everyone WakeUp and Work!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:69)
[2018-01-25 22:41:48,706] INFO Thread 1 Polling! (com.huawei.dms.kafka.DmsKafkaProduceDemo:119)
[2018-01-25 22:41:48,706] INFO Thread1 KEEP Poll records!
(com.huawei.dms.kafka.DmsKafkaProduceDemo:128)

Distributed Message Service for Kafka
Best Practices

1 Optimizing Message Polling of DMS for Kafka
Consumers

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

2 Improving Message Processing Efficiency

During message sending and consumption, DMS for Kafka, producers, and
consumers collaborate to ensure service reliability. In addition, developers must
use DMS for Kafka topics properly to improve the efficiency and accuracy of
message sending and consumption.

Best practices for message producers and consumers are as follows:

Acknowledging Message Production and Consumption
Message production (sending)

The producer decides whether to re-send a message based on the DMS for Kafka
response.

The producer waits for the sending result or asynchronous callback function to
determine if the message is successfully sent. If an exception occurs when sending
the message, the producer will not receive a success response and must decide
whether to re-send the message. If a success response is received, it indicates that
the message has been stored in DMS for Kafka.

Message consumption

The consumer acknowledges successful message consumption.

The produced messages are sequentially stored in DMS for Kafka. During
consumption, messages stored in DMS for Kafka are obtained in sequence.
Consumers obtain messages, consume them, and record the status (successful or
failed). The status is then submitted to DMS for Kafka.

During this process, the message consumption status may not be successfully
submitted due to an exception. In this case, the corresponding messages will be
re-obtained by the consumer in the next message consumption request.

Idempotent Transferring of Message Production and Consumption
To guarantee lossless messaging, DMS for Kafka implements a series of reliability
measures. For example, the message synchronization storage mechanism is used
to prevent the system and server from being abnormally restarted or powered off.
The ACK mechanism is used to deal with exceptions that occur during message
transmission.

Distributed Message Service for Kafka
Best Practices 2 Improving Message Processing Efficiency

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

Considering extreme conditions such as network exceptions, you can use DMS for
Kafka to design message sending and consumption in addition to acknowledging
message production and consumption.

● If message sending cannot be acknowledged, the producer needs to re-send
the message.

● After consuming a message that has been processed, the consumer needs to
notify DMS for Kafka that consumption is successful and ensure that the
message is not processed repeatedly.

Producing and Consuming Messages in Batches
It is recommended that messages be sent and consumed in batches to improve
efficiency.

Figure 2-1 Messages being produced (sent) and consumed in batches

Figure 2-2 Messages being produced (sent) and consumed one by one

When consuming messages in batches, consumers need to process and
acknowledge messages in the sequence of receiving messages. Therefore, when a
message in the batch fails to be consumed, the consumer does not need to
consume the remaining messages, and directly submit consumption
acknowledgment of the successfully consumed messages.

Distributed Message Service for Kafka
Best Practices 2 Improving Message Processing Efficiency

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

Using Consumer Groups to Facilitate O&M
You can use DMS for Kafka as a message management system. Reading message
content from topics is helpful to fault locating and service debugging.

When problems occur during message production and consumption, you can
create different consumer groups to locate and analyze problems or debug
services for interconnecting with other services. To ensure that other services can
continue to process messages in topics, you can create a new consumer group to
consume and analyze the messages.

Distributed Message Service for Kafka
Best Practices 2 Improving Message Processing Efficiency

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

3 Migrating Kafka Services

Scenario
You can migrate Kafka services to connect message producers and consumers to a
new Kafka instance and can even migrate persisted message data to the new
Kafka instance. Kafka services can be migrated in the following two scenarios:

● Migrating services to the cloud without downtime
Services that have high requirements on continuity must be smoothly
migrated to the cloud because they cannot afford a long downtime.

● Re-deploying services in the cloud
A Kafka instance deployed within an AZ is not capable of cross-AZ disaster
recovery. For higher reliability, you can re-deploy services to an instance that
is deployed across AZs.

Preparation
1. Configure the network environment.

A Kafka instance can be accessed within a VPC or over a public network. For
public network access, the producer and consumer must have public access
permissions, and the following security group rules must be configured.

Table 3-1 Security group rules

Directi
on

Protocol Port Source Description

Inboun
d

TCP 9094 0.0.0.0/0 Access Kafka through the
public network (without
SSL encryption).

Inboun
d

TCP 9095 0.0.0.0/0 Access Kafka through the
public network (with SSL
encryption).

2. Create a Kafka instance.

The specifications of the new instance cannot be lower than the original
specifications. For details, see Buying an Instance.

Distributed Message Service for Kafka
Best Practices 3 Migrating Kafka Services

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

https://support.huaweicloud.com/eu/usermanual-kafka/kafka-ug-180604013.html

3. Create a topic.
Create a topic with the same configurations as the original Kafka instance,
including the topic name, number of replicas, number of partitions, message
aging time, and whether to enable synchronous replication and flushing. For
details, see Creating a Topic.

Migration Scheme 1: Migrating the Production First

Migrate the message production service to the new Kafka instance. After
migration, the original Kafka instance will no longer produce messages. After all
messages of the original Kafka instance are consumed, migrate the message
consumption service to the new Kafka instance to consume messages of this
instance.

Step 1 Change the Kafka connection address of the producer to that of the new Kafka
instance.

Step 2 Restart the production service so that the producer can send new messages to the
new Kafka instance.

Step 3 Check the consumption progress of each consumer group in the original Kafka
instance until all data in the original Kafka instance is consumed.

Step 4 Change the Kafka connection addresses of the consumers to that of the new
Kafka instance.

Step 5 Restart the consumption service so that consumers can consume messages from
the new Kafka instance.

Step 6 Check whether consumers consume messages properly from the new Kafka
instance.

Step 7 The migration is completed.

----End

This is a common migration scheme. It is simple and easy to control on the service
side. During the migration, the message sequence is ensured, so this scheme is
suitable for scenarios with strict requirements on the message sequence.
However, latency may occur because there is a period when you have to wait for
all data to be consumed.

Migration Scheme 2: Migrating the Production Later

Use multiple consumers for the consumption service. Some consume messages
from the original Kafka instance, and others consume messages from the new
Kafka instances. Then, migrate the production service to the new Kafka instance
so that all messages can be consumed in time.

Step 1 Start new consumer clients, set the Kafka connection addresses to that of the new
Kafka instance, and consume data from the new Kafka instance.

NO TE

Original consumer clients must continue running. Messages are consumed from both the
original and new Kafka instances.

Distributed Message Service for Kafka
Best Practices 3 Migrating Kafka Services

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

https://support.huaweicloud.com/eu/usermanual-kafka/kafka-ug-180604018.html

Step 2 Change the Kafka connection address of the producer to that of the new Kafka
instance.

Step 3 Restart the producer client to migrate the production service to the new Kafka
instance.

Step 4 After the production service is migrated, check whether the consumption service
connected to the new Kafka instance is normal.

Step 5 After all data in the original Kafka is consumed, close the original consumption
clients.

Step 6 The migration is completed.

----End

In this scheme, the migration process is controlled by services. For a certain period
of time, the consumption service consumes messages from both the original and
new Kafka instances. Before the migration, message consumption from the new
Kafka instance has already started, so there is no latency. However, early on in the
migration, data is consumed from both the original and new Kafka instances, so
the messages may not be consumed in the order that they are produced. This
scheme is suitable for services that require low latency but do not require
strict message sequence.

How Do I Migrate Persisted Data Along with Services?
You can migrate consumed data from the original instance to a new instance by
using the open-source tool MirrorMaker. This tool mirrors the original Kafka
producer and consumer into new ones and migrates data to the new Kafka
instance. For details, see Using MirrorMaker to Synchronize Data Across
Clusters.

Note that each HUAWEI CLOUD Kafka instance stores data in three replicas.
Therefore, the storage space of the new instance should be three times that of the
original single-replica message storage.

Distributed Message Service for Kafka
Best Practices 3 Migrating Kafka Services

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

https://github.com/miguecoll/kafka-mirror-maker

4 Using MirrorMaker to Synchronize Data
Across Clusters

Scenario

In the following scenarios, MirrorMaker can be used to synchronize data between
different Kafka clusters to ensure the availability and reliability of the clusters:

● Backup and disaster recovery: An enterprise has multiple data centers. To
prevent service unavailability caused by a fault in one data center, cluster data
is synchronously backed up in multiple data centers.

● Cluster migration: As enterprises migrate services to the cloud, data in on-
premises clusters must be synchronized with that in cloud clusters to ensure
service continuity.

Solution Architecture

MirrorMaker can be used to mirror data from the source cluster to the target
cluster. As shown in Figure 4-1, in essence, MirrorMaker first consumes data from
the source cluster and then produces the consumed data to the target cluster. For
more information about MirrorMaker, see Mirroring data between clusters.

Figure 4-1 How MirrorMaker works

Restrictions
● The IP addresses and port numbers of the nodes in the source cluster cannot

be the same as those of the nodes in the target cluster. Otherwise, data will
be replicated infinitely in a topic.

● Use MirrorMaker to synchronize data between at least two clusters. If there is
only one cluster, data will be replicated infinitely in a topic.

Distributed Message Service for Kafka
Best Practices

4 Using MirrorMaker to Synchronize Data Across
Clusters

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

https://kafka.apache.org/documentation/?spm=a2c4g.11186623.0.0.c82870aav6G9no#basic_ops_mirror_maker

Procedure

Step 1 Buy an ECS that can communicate with the source and target clusters. For details,
see the ECS documentation.

Step 2 Log in to the ECS, install JDK, and add the following contents to .bash_profile in
the home directory to configure the environment variables JAVA_HOME and
PATH. In this command, /opt/java/jdk1.8.0_151 is the JDK installation path.
Change it to the path where you install JDK.
export JAVA_HOME=/opt/java/jdk1.8.0_151
export PATH=$JAVA_HOME/bin:$PATH

Run the source .bash_profile command for the modification to take effect.

NO TE

Use Oracle JDK instead of ECS's default JDK (for example, OpenJDK), because ECS's default
JDK may not be suitable. Obtain Oracle JDK 1.8.111 or later from Oracle's official website.

Step 3 Download the binary software package of Kafka 3.3.1.
wget https://archive.apache.org/dist/kafka/3.3.1/kafka_2.12-3.3.1.tgz

Step 4 Decompress the binary software package.
tar -zxvf kafka_2.12-3.3.1.tgz

Step 5 Go to the binary software package directory and specify the IP addresses and
ports of the source and target clusters and other parameters in the connect-
mirror-maker.properties configuration file in the config directory.
Specify two clusters.
clusters = A, B
A.bootstrap.servers = A_host1:A_port, A_host2:A_port, A_host3:A_port
B.bootstrap.servers = B_host1:B_port, B_host2:B_port, B_host3:B_port

Specify the data synchronization direction. The data can be synchronized unidirectionally or bidirectionally.
A->B.enabled = true

Specify the topics to be synchronized. Regular expressions are supported. By default, all topics are
replicated, for example, foo-.*.
A->B.topics = .*

If the following two configurations are enabled, clusters A and B replicate data with each other.
#B->A.enabled = true
#B->A.topics = .*

Specify the number of replicas. If multiple topics need to be synchronized and their replica quantities are
different, create topics with the same name and replica quantity before starting MirrorMaker.
replication.factor=3

Specify the consumer offset synchronization direction (unidirectionally or bidirectionally).
A->B.sync.group.offsets.enabled=true

############################# Internal Topic Settings #############################
The replication factor for mm2 internal topics "heartbeats", "B.checkpoints.internal" and
"mm2-offset-syncs.B.internal"
In the test environment, the value can be 1. In the production environment, it is recommended that the
value be greater than 1, for example, 3.
checkpoints.topic.replication.factor=3
heartbeats.topic.replication.factor=3
offset-syncs.topic.replication.factor=3

The replication factor for connect internal topics "mm2-configs.B.internal", "mm2-offsets.B.internal" and
"mm2-status.B.internal"
In the test environment, the value can be 1. In the production environment, it is recommended that the
value be greater than 1, for example, 3.

Distributed Message Service for Kafka
Best Practices

4 Using MirrorMaker to Synchronize Data Across
Clusters

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

https://support.huaweicloud.com/eu/qs-ecs/ecs_02_0009.html
https://www.oracle.com/java/technologies/downloads/#java8

offset.storage.replication.factor=3
status.storage.replication.factor=3
config.storage.replication.factor=3

customize as needed
replication.policy.separator = _
sync.topic.acls.enabled = false
emit.heartbeats.interval.seconds = 5

Step 6 In the binary software package directory, start MirrorMaker to synchronize data.
./bin/connect-mirror-maker.sh config/connect-mirror-maker.properties

Step 7 (Optional) If a topic is created in the source cluster after MirrorMaker has been
started, and the topic data needs to be synchronized, restart MirrorMaker. For
details about how to restart MirrorMaker, see Step 6. You can also add
configurations listed in Table 4-1 to periodically synchronize new topics without
restarting MirrorMaker. refresh.topics.interval.seconds is mandatory. Other
parameters are optional.

Table 4-1 MirrorMaker configurations

Parameter Default Value Description

sync.topic.configs.enabled true Whether to monitor the
source cluster for
configuration changes.

sync.topic.acls.enabled true Whether to monitor the
source cluster for ACL
changes.

emit.heartbeats.enabled true Whether to let the connector
send heartbeats periodically.

emit.heartbeats.interval.s
econds

5 seconds Heartbeat frequency.

emit.checkpoints.enabled true Whether to let the connector
periodically send the
consumer offset information.

emit.checkpoints.interval.s
econds

5 seconds Checkpoint frequency.

refresh.topics.enabled true Whether to let the connector
periodically check for new
topics.

refresh.topics.interval.seco
nds

5 seconds Frequency of checking for new
topics in the source cluster.

refresh.groups.enabled true Whether to let the connector
periodically check for new
consumer groups.

refresh.groups.interval.sec
onds

5 seconds Frequency of checking for new
consumer groups in the source
cluster.

Distributed Message Service for Kafka
Best Practices

4 Using MirrorMaker to Synchronize Data Across
Clusters

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

Parameter Default Value Description

replication.policy.class org.apache.kafka.c
onnect.mirror.Defa
ultReplicationPoli-
cy

Use LegacyReplicationPolicy to
imitate MirrorMaker of an
earlier version.

heartbeats.topic.retention.
ms

One day Used when heartbeat topics
are created for the first time.

checkpoints.topic.retentio
n.ms

One day Used when checkpoint topics
are created for the first time.

offset.syncs.topic.retentio
n.ms

max long Used when offset sync topics
are created for the first time.

----End

Verifying Data Synchronization

Step 1 View the topic list in the target cluster to check whether there are source topics.

NO TE

Topic names in the target cluster have a prefix (for example, A.) added to the source topic
name. This is a MirrorMaker 2 configuration for preventing cyclic topic backup.

Step 2 Produce and consume messages in the source cluster, view the consumption
progress in the target cluster, and check whether data has been synchronized from
the source cluster to the target cluster.

If the target cluster is a Huawei Cloud Kafka instance, view the consumption
progress on the Consumer Groups page.

----End

Distributed Message Service for Kafka
Best Practices

4 Using MirrorMaker to Synchronize Data Across
Clusters

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

5 Setting Parameters for Kafka Clients

This section provides recommendations on configuring common parameters for
Kafka producers and consumers. For details about other parameters, see the
Kafka official website.

Distributed Message Service for Kafka
Best Practices 5 Setting Parameters for Kafka Clients

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

https://kafka.apache.org/documentation/#configuration

Table 5-1 Producer parameters

Paramete
r

Defaul
t
Value

Recom
mende
d
Value

Description

acks 1 all or –
1 (if
high
reliabili
ty
mode
is
selecte
d)
1 (if
high
throug
hput
mode
is
selecte
d)

Number of acknowledgments the producer
requires the server to return before considering
a request complete. This controls the durability
of records that are sent. Options:
0: The producer will not wait for any
acknowledgment from the server at all. The
record will be immediately added to the socket
buffer and considered sent. No guarantee can
be made that the server has received the
record, and the retries configuration will not
take effect (as the client generally does not
know of any failures). The offset given back for
each record will always be set to –1.
1: The leader will write the record to its local
log but will respond without waiting until
receiving full acknowledgement from all
followers. If the leader fails immediately after
acknowledging the record but before the
followers have replicated it, the record will be
lost.
all or –1: The leader will wait for the full set of
replicas to acknowledge the record. This is the
strongest available guarantee because the
record will not be lost even if there is just one
replica that works. min.insync.replicas specifies
the minimum number of replicas that must
acknowledge a write for the write to be
considered successful.

retries 0 Set as
require
d.

Number of times that the client resends a
message. Setting this parameter to a value
greater than zero will cause the client to resend
any record that failed to be sent.
Note that this retry is no different than if the
client resent the record upon receiving the
error. Allowing retries will potentially change
the ordering of records because if two batches
are sent to the same partition, and the first
fails and is retried but the second succeeds,
then the records in the second batch may
appear first.
You are advised to configure producers so that
they can be able to retry in case of network
disconnections. Set retries to 3 and the retry
interval retry.backoff.ms to 1000.

Distributed Message Service for Kafka
Best Practices 5 Setting Parameters for Kafka Clients

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

Paramete
r

Defaul
t
Value

Recom
mende
d
Value

Description

request.ti
meout.ms

30000 Set as
require
d.

Maximum amount of time (in ms) the client
will wait for the response of a request. If the
response is not received before the timeout
elapses, the client will throw a timeout
exception.
Setting this parameter to a large value, for
example, 127000 (127s), can prevent records
from failing to be sent in high-concurrency
scenarios.

block.on.b
uffer.full

TRUE TRUE Setting this parameter to TRUE indicates that
when buffer memory is exhausted, the
producer must stop receiving new message
records or throw an exception.
By default, this parameter is set to TRUE.
However, in some cases, non-blocking usage is
desired and it is better to throw an exception
immediately. Setting this parameter to FALSE
will cause the producer to instead throw
"BufferExhaustedException" when buffer
memory is exhausted.

batch.size 16384 262144 Default maximum number of bytes of
messages that can be processed at a time. The
producer will attempt to batch records together
into fewer requests whenever multiple records
are being sent to the same partition. This
improves performance of both the client and
the server. No attempt will be made to batch
records larger than this size.
Requests sent to brokers will contain multiple
batches, one for each partition with data
available to be sent.
A smaller batch size will make batching less
common and may reduce throughput (a batch
size of zero will disable batching entirely). A
larger batch size may use more memory as a
buffer of the specified batch size will always be
allocated in anticipation of additional records.

Distributed Message Service for Kafka
Best Practices 5 Setting Parameters for Kafka Clients

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

Paramete
r

Defaul
t
Value

Recom
mende
d
Value

Description

buffer.me
mory

335544
32

671088
64

Total bytes of memory the producer can use to
buffer records waiting to be sent to the server.
If data is generated faster than it is sent to the
broker, the producer blocks or throw a
"block.on.buffer.full" exception.
This setting should correspond roughly to the
total memory the producer will use, but is not
a rigid bound since not all memory the
producer uses is used for buffering. Some
additional memory will be used for
compression (if compression is enabled) as well
as for maintaining in-flight requests.

Table 5-2 Consumer parameters

Paramet
er

Default
Value

Recom
mende
d
Value

Description

auto.com
mit.enabl
e

TRUE FALSE If this parameter is set to TRUE, the offset of
messages already fetched by the consumer will
be periodically committed to ZooKeeper. This
committed offset will be used when the
process fails as the position from which the
new consumer will begin.
Constraints: If this parameter is set to FALSE,
to avoid message loss, an offset must be
committed to ZooKeeper after the messages
are successfully consumed.

Distributed Message Service for Kafka
Best Practices 5 Setting Parameters for Kafka Clients

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

Paramet
er

Default
Value

Recom
mende
d
Value

Description

auto.offse
t.reset

latest earliest Indicates what to do when there is no initial
offset in ZooKeeper or if the current offset has
been deleted. Options:
● earliest: Automatically reset to the smallest

offset.
● latest: Automatically reset to the largest

offset.
● none: The system throws an exception to

the consumer if no offset is available.
● anything else: The system throws an

exception to the consumer.
NOTE

If this parameter is set to latest, the producer may
start to send messages to new partitions (if any)
before the consumer resets to the initial offset. As a
result, some messages will be lost.

connectio
ns.max.idl
e.ms

600000 30000 Timeout interval (in ms) for an idle
connection. The server closes the idle
connection after this period of time ends.
Setting this parameter to 30000 can reduce
the server response failures when the network
condition is poor.

Distributed Message Service for Kafka
Best Practices 5 Setting Parameters for Kafka Clients

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

6 Using Kafka Clients

Consumers
1. Ensure that the owner thread does not exit abnormally. Otherwise, the client

may fail to initiate consumption requests and the consumption will be
blocked.

2. Commit messages only after they have been processed. Otherwise, the
messages may fail to be processed and cannot be polled again.

3. If there is a large number of OFFSET_COMMIT requests, CPU usage will be
high. For example, if a consumption request pulls 1000 messages and each
message is committed separately, the commit TPS will be 1000 times that of
the consumption request. The smaller the message body, the larger the
difference. Therefore, you are not advised to commit every message
separately. You can commit a specific number of messages in batches or
enable enable.auto.commit. However, if the client is faulty, some cached
consumption offset may be lost, resulting in repeated consumption. Therefore,
you are advised to commit messages in batches based on service
requirements.

4. A consumer cannot frequently join or leave a group. Otherwise, the consumer
will frequently perform rebalancing, which blocks consumption.

5. The number of consumers cannot be greater than the number of partitions in
the topic. Otherwise, some consumers may fail to poll for messages.

6. Ensure that the consumer polls at regular intervals to keep sending
heartbeats to the server. If the consumer stops sending heartbeats for long
enough, the consumer session will time out and the consumer will be
considered to have stopped. This will also block consumption.

7. Ensure that there is a limitation on the size of messages buffered locally to
avoid an out-of-memory (OOM) situation.

8. Set the timeout for the consumer session to 30 seconds:
session.timeout.ms=30000.

9. Kafka supports exactly-once delivery. Therefore, ensure the idempotency of
processing messages for services.

10. Always close the consumer before exiting. Otherwise, consumers in the same
group may be blocked within the timeout set by session.timeout.ms.

Distributed Message Service for Kafka
Best Practices 6 Using Kafka Clients

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

11. Do not start a consumer group name with a special character, such as a
number sign (#). Otherwise, monitoring data of the consumer group cannot
be displayed.

Producers
1. Synchronous replication: Set acks to all.
2. Retry message sending: Set retries to 3.
3. Optimize message sending: For latency-sensitive messages, set linger.ms to 0.

For latency-insensitive messages, set linger.ms to a value ranging from 100 to
1000.

4. Ensure that the producer has sufficient JVM memory to avoid blockages.
5. Set the timestamp to the local time. Messages will fail to age if the

timestamp is a future time.

Topics
Recommended topic configurations: Use 3 replicas, enable synchronous
replication, and set the minimum number of in-sync replicas to 2. The number of
in-sync replicas cannot be the same as the number of replicas of the topic.
Otherwise, if one replica is unavailable, messages cannot be produced.

You can enable or disable automatic topic creation. If it is enabled, a topic will be
automatically created with 3 partitions and 3 replicas when a message is produced
in or consumed from a topic that does not exist.

The recommended maximum number of partitions for a topic is 100.

Each topic can have 3 replicas (the number of replicas cannot be modified once
configured).

Other Suggestions
Maximum number of connections: 3000

Maximum size of a message: 10 MB

Access Kafka using SASL_SSL. Ensure that your DNS service is capable of resolving
an IP address to a domain name. Alternatively, map all Kafka broker IP addresses
to host names in the hosts file. Prevent Kafka clients from performing reverse
resolution. Otherwise, connections may fail to be established.

Apply for a disk space size that is more than twice the size of service data
multiplied by the number of replicas. In other words, keep 50% of the disk space
idle.

Avoid frequent full GC in JVM. Otherwise, message production and consumption
will be blocked.

Distributed Message Service for Kafka
Best Practices 6 Using Kafka Clients

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

7 Configuring an Alarm Rule for
Accumulated Messages

Scenario
Configure alarm rules so that you will be notified when the number of
accumulated messages in a consumer group exceeds the threshold.

The procedure described in this section can also be applied to setting alarm rules
for other metrics.

Prerequisites
You have purchased a Kafka instance, created a topic, and there are available
messages.

Procedure

Step 1 Log in to the console of DMS for Kafka. Click the instance to be configured with
an alarm rule.

Step 2 In the left navigation pane, choose Monitoring.

Step 3 On the By Consumer Group tab page, select the consumer group for which you
want to create an alarm rule.

Distributed Message Service for Kafka
Best Practices

7 Configuring an Alarm Rule for Accumulated
Messages

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

https://support.huaweicloud.com/eu/usermanual-kafka/kafka-ug-180413002.html
https://support.huaweicloud.com/eu/usermanual-kafka/kafka-ug-180604013.html
https://support.huaweicloud.com/eu/usermanual-kafka/kafka-ug-180604018.html

Figure 7-1 Selecting a consumer group

● Consumer Group: Select the consumer group for which you want to create an
alarm rule.

● Topic: Select All topics.

Step 4 Hover the mouse pointer over Consumer Available Messages and click .

Figure 7-2 Consumer available messages chart

Step 5 On the Create Alarm Rule page, configure the basic information of the alarm
rule.

Distributed Message Service for Kafka
Best Practices

7 Configuring an Alarm Rule for Accumulated
Messages

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

Figure 7-3 Configuring the basic information of the alarm rule

● Name: name of the alarm rule
● (Optional) Description: description of the alarm rule

Step 6 Configure the alarm policy.

Figure 7-4 Configuring the alarm policy

● Method: Select Configure manually.
● Alarm Policy: Specify the conditions for triggering an alarm. An alarm will be

triggered if the metric data in the specified number of consecutive periods
reaches the specified threshold.

● Alarm Severity: Select an alarm severity as required.

Step 7 Configure the alarm notification.

Distributed Message Service for Kafka
Best Practices

7 Configuring an Alarm Rule for Accumulated
Messages

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

Figure 7-5 Configuring the alarm notification

● Alarm Notification: Enable this option.
● Notification Recipient: Select Topic subscription.
● Notification Object: Select a cloud account contact or a created alarm

notification topic. An alarm notification topic contains the mobile number or
email address receiving the notification.
If no alarm notification topics are available, click Create an SMN topic. On
the SMN console, create a topic and add a subscription. After the alarm
notification topic is created, go back to the Create Alarm Rule page, click
to make the created topic available for selection.

NO TE

After the subscription is added, the corresponding subscription endpoint will receive a
subscription notification. You need to confirm the subscription so that the endpoint
can receive alarm notifications.

Figure 7-6 Creating an alarm notification topic

Distributed Message Service for Kafka
Best Practices

7 Configuring an Alarm Rule for Accumulated
Messages

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

https://support.huaweicloud.com/eu/usermanual-ces/en-us_topic_0085216039.html
https://support.huaweicloud.com/eu/usermanual-ces/en-us_topic_0084572343.html

Figure 7-7 Adding a subscription

● Validity Period: Cloud Eye sends notifications only within the validity period
specified in the alarm rule.

● Trigger Condition: condition for triggering an alarm notification.

Step 8 Configure the enterprise project and tag.

Figure 7-8 Configuring the enterprise project and tag.

● Enterprise Project: enterprise project with which the alarm rule is associated.
Only users who have the permissions of the enterprise project can view and
manage the alarm rule.

● Tag: tags are used to identify cloud resources. When you have many cloud
resources of the same type, you can use tags to classify cloud resources by
dimension (for example, usage, owner, or environment).

Step 9 Click Create.

After the alarm rule is created, you can view it on the Alarm Management >
Alarm Rules page.

Distributed Message Service for Kafka
Best Practices

7 Configuring an Alarm Rule for Accumulated
Messages

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

Figure 7-9 Viewing the new alarm rule

----End

Distributed Message Service for Kafka
Best Practices

7 Configuring an Alarm Rule for Accumulated
Messages

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

8 Interconnecting Logstash with Kafka

Scenario
Logstash is a free and open server-side data processing pipeline that integrates
data from multiple sources, converts it, and then sends it to the specified storage.
Kafka is a high-throughput distributed message pub/sub system. It is one of the
input and output sources of Logstash. The following describes how to interconnect
Logstash with a Kafka instance.

Solution Architecture
● The following figure shows Kafka as an input source of Logstash.

Figure 8-1 Kafka as an input source of Logstash

The log collection client sends data to the Kafka instance. Logstash pulls data
from the Kafka instance based on its performance. Using a Kafka instance as
the Logstash input source can prevent the impact of burst traffic on Logstash,
and decouple the log collection client from Logstash to ensure system
stability.

● The following figure shows Kafka as an output source of Logstash.

Figure 8-2 Kafka as an output source of Logstash

Logstash collects data from the database and sends the data to the Kafka
instance for storage. Using a Kafka instance as the Logstash output source
can store a large amount of data thanks to the high throughput of Kafka.

Restrictions
Logstash 7.5 and later versions support Kafka Integration Plugin which includes
the Kafka input plugin and Kafka output plugin. Kafka input plugin reads data
from topics of Kafka instances, and Kafka output plugin writes data to topics of

Distributed Message Service for Kafka
Best Practices 8 Interconnecting Logstash with Kafka

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

Kafka instances. Table 8-1 lists the version mapping between Logstash, Kafka
Integration Plugin, and Kafka clients. Ensure that the Kafka client version is
later than or equal to the Kafka instance version.

Table 8-1 Version mapping

Logstash Version Kafka Integration
Plugin Version

Kafka Client Version

8.3–8.8 10.12.0 2.8.1

8.0–8.2 10.9.0–10.10.0 2.5.1

7.12–7.17 10.7.4–10.9.0 2.5.1

7.8–7.11 10.2.0–10.7.1 2.4

7.6–7.7 10.0.1 2.3.0

7.5 10.0.0 2.1.0

Prerequisites

Make the following preparation before implementation.

● Download Logstash.

● Prepare a Windows host, install JDK v1.8.111 or later and Git Bash on the
host, and configure related environment variables.

● Create a Kafka instance and a topic, and obtain the instance information.

If both public access and SASL authentication are disabled for the Kafka
instance, obtain the information listed in Table 8-2.

Table 8-2 Kafka instance information (public access and SASL authentication
disabled)

Paramete
r

How to Obtain

Instance
address
(private
network)

View it in the Connection area on the instance details page.

Topic
name

On the Kafka console, click your instance. In the left navigation
pane, choose Topics to view the topic name.
The following uses topic-logstash as an example.

If public access is disabled and SASL authentication is enabled for the Kafka
instance, obtain the information listed in Table 8-3.

Distributed Message Service for Kafka
Best Practices 8 Interconnecting Logstash with Kafka

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

https://www.elastic.co/guide/en/logstash/8.6/installing-logstash.html
https://www.oracle.com/java/technologies/downloads/#java8
https://support.huaweicloud.com/eu/usermanual-kafka/kafka-ug-180604013.html
https://support.huaweicloud.com/eu/usermanual-kafka/kafka-ug-180604018.html

Table 8-3 Kafka instance information (public access disabled and SASL
authentication enabled)

Paramete
r

How to Obtain

Instance
address
(private
network)

View it in the Connection area on the instance details page.

SASL
mechanis
m

View it in the Connection area on the instance details page.

Security
protocol

View it in the Connection area on the instance details page.

Certificate Click Download next to SSL Certificate in the Connection
area on the instance details page. Download and decompress
the package to obtain the client certificate file
client.truststore.jks.

SASL
username
and
password

On the Kafka console, click your instance. In the left navigation
pane, choose Users to view the username. If you have
forgotten the password, click Reset Password.

Topic
name

On the Kafka console, click your instance. In the left navigation
pane, choose Topics to view the topic name.
The following uses topic-logstash as an example.

If public access is enabled and SASL authentication is disabled for the Kafka
instance, obtain the information listed in Table 8-4.

Table 8-4 Kafka instance information (public access enabled and SASL
authentication disabled)

Paramete
r

How to Obtain

Instance
address
(public
network)

View it in the Connection area on the instance details page.

Topic
name

On the Kafka console, click your instance. In the left navigation
pane, choose Topics to view the topic name.
The following uses topic-logstash as an example.

If both public access and SASL authentication are enabled for the Kafka
instance, obtain the information listed in Table 8-5.

Distributed Message Service for Kafka
Best Practices 8 Interconnecting Logstash with Kafka

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

Table 8-5 Kafka instance information (public access and SASL authentication
enabled)

Paramete
r

How to Obtain

Instance
address
(public
network)

View it in the Connection area on the instance details page.

SASL
mechanis
m

View it in the Connection area on the instance details page.

Security
protocol

View it in the Connection area on the instance details page.

Certificate Click Download next to SSL Certificate in the Connection
area on the instance details page. Download and decompress
the package to obtain the client certificate file
client.truststore.jks.

SASL
username
and
password

On the Kafka console, click your instance. In the left navigation
pane, choose Users to view the username. If you have
forgotten the password, click Reset Password.

Topic
name

On the Kafka console, click your instance. In the left navigation
pane, choose Topics to view the topic name.
The following uses topic-logstash as an example.

Procedure (Kafka Instance as the Logstash Output Source)

Step 1 On the Windows host, decompress the Logstash package, go to the config folder,
and create the output.conf configuration file.

Figure 8-3 Creating the output.conf configuration file

Step 2 Add the following content to the output.conf file:
input {
 stdin {}
}

Distributed Message Service for Kafka
Best Practices 8 Interconnecting Logstash with Kafka

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

output {
 kafka {
 bootstrap_servers => "ip1:port1,ip2:port2,ip3:port3"
 topic_id => "topic-logstash"

 # If SASL authentication is disabled, comment out the following options:
 # If the SASL mechanism is PLAIN, configure as follows:
 sasl_mechanism => "PLAIN"
 sasl_jaas_config => "org.apache.kafka.common.security.plain.PlainLoginModule required
username='username' password='password';"

 # If the SASL mechanism is SCRAM-SHA-512, configure as follows:
 sasl_mechanism => "SCRAM-SHA-512"
 sasl_jaas_config => "org.apache.kafka.common.security.scram.ScramLoginModule required
username='username' password='password';"

 # If the security protocol is SASL_SSL, configure as follows:
 security_protocol => "SASL_SSL"
 ssl_truststore_location => "C:\\Users\\Desktop\\logstash-8.8.1\\config\\client.jks"
 ssl_truststore_password => "dms@kafka"
 ssl_endpoint_identification_algorithm => ""

 # If the security protocol is SASL_PLAINTEXT, configure as follows:
 security_protocol => "SASL_PLAINTEXT"
 }
}

Description:

● bootstrap_servers: private network connection address or public network
connection address of the Kafka instance.

● topics: topic name.
● sasl_mechanism: SASL authentication mechanism.
● sasl_jaas_config: SASL JAAS configuration file. Change the SASL username

and password as required.
● security_protocol: security protocol used by the Kafka instance.
● ssl.truststore.location: location where the SSL certificate is stored.
● ssl_truststore_password: server certificate password, which must be set to

dms@kafka and cannot be changed.
● ssl_endpoint_identification_algorithm: Indicates whether to verify the

certificate domain name. If this option is left blank, the certificate domain
name is not verified. In this example, leave it blank.

For more information about Kafka output plugin options, see Kafka output
plugin.

Step 3 Open Git Bash in the root directory of the Logstash folder and run the following
command to start Logstash:
./bin/logstash -f ./config/output.conf

If the message "Successfully started Logstash API endpoint" is displayed, Logstash
has been started.

Distributed Message Service for Kafka
Best Practices 8 Interconnecting Logstash with Kafka

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

https://www.elastic.co/guide/en/logstash/8.6/plugins-outputs-kafka.html#plugins-outputs-kafka-options
https://www.elastic.co/guide/en/logstash/8.6/plugins-outputs-kafka.html#plugins-outputs-kafka-options

Figure 8-4 Starting Logstash

Step 4 In Logstash, produce messages, as shown in the following figure.

Figure 8-5 Producing messages

Step 5 Go to the Kafka console and click your instance.

Step 6 In the left navigation pane, choose Message Query.

Step 7 Select topic-logstash from the Topic Name drop-down list box and click Search
to query messages.

Figure 8-6 Querying messages

As shown in Figure 8-6, the Kafka output plugin of Logstash has written data to
topic-logstash of the Kafka instance.

----End

Procedure (Kafka Instance as the Logstash Input Source)

Step 1 On the Windows host, decompress the Logstash package, go to the config folder,
and create the input.conf configuration file.

Distributed Message Service for Kafka
Best Practices 8 Interconnecting Logstash with Kafka

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

Figure 8-7 Creating the input.conf configuration file

Step 2 Add the following content to the input.conf file to connect to the Kafka instance:
input {
 kafka {
 bootstrap_servers => "ip1:port1,ip2:port2,ip3:port3"
 group_id => "logstash_group"
 topic_id => "topic-logstash"
 auto_offset_reset => "earliest"

 # If SASL authentication is disabled, comment out the following options:
 #If the SASL mechanism is PLAIN, configure as follows:
 sasl_mechanism => "PLAIN"
 sasl_jaas_config => "org.apache.kafka.common.security.plain.PlainLoginModule required
username='username' password='password';"

 # If the SASL mechanism is SCRAM-SHA-512, configure as follows:
 sasl_mechanism => "SCRAM-SHA-512"
 sasl_jaas_config => "org.apache.kafka.common.security.scram.ScramLoginModule required
username='username' password='password';"

 # If the security protocol is SASL_SSL, configure as follows:
 security_protocol => "SASL_SSL"
 ssl_truststore_location => "C:\\Users\\Desktop\\logstash-8.8.1\\config\\client.jks"
 ssl_truststore_password => "dms@kafka"
 ssl_endpoint_identification_algorithm => ""

 # If the security protocol is SASL_PLAINTEXT, configure as follows:
 security_protocol => "SASL_PLAINTEXT"
 }
}
output {
 stdout{codec=>rubydebug}
}

Description:

● bootstrap_servers: private network connection address or public network
connection address of the Kafka instance.

● group_id: consumer group name.

● topics: topic name.

● auto_offset_reset: consumers' consumption policy. This example uses
earliest.

● sasl_mechanism: SASL authentication mechanism.

● sasl_jaas_config: SASL JAAS configuration file. Change the SASL username
and password as required.

● security_protocol: security protocol used by the Kafka instance.

Distributed Message Service for Kafka
Best Practices 8 Interconnecting Logstash with Kafka

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

● ssl.truststore.location: location where the SSL certificate is stored.
● ssl_truststore_password: server certificate password, which must be set to

dms@kafka and cannot be changed.
● ssl_endpoint_identification_algorithm: Indicates whether to verify the

certificate domain name. If this option is left blank, the certificate domain
name is not verified. In this example, leave it blank.

For more information about Kafka input plugin options, see Kafka input plugin.

Step 3 Open Git Bash in the root directory of the Logstash folder and run the following
command to start Logstash:
./bin/logstash -f ./config/input.conf

After Logstash is started successfully, the Kafka input plugin automatically reads
data from topic-logstash of the Kafka instance, as shown in the following figure.

Figure 8-8 Logstash reading data from topic-logstash

----End

Distributed Message Service for Kafka
Best Practices 8 Interconnecting Logstash with Kafka

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

https://www.elastic.co/guide/en/logstash/8.6/plugins-inputs-kafka.html#plugins-inputs-kafka-options

9 Avoiding Message Accumulation

Introduction

Kafka divides each topic into multiple partitions for distributed message storage.
Within the same consumer group, each consumer can consume multiple partitions
at the same time, but each partition can be consumed by only one consumer at a
time.

Unprocessed messages accumulate if the client's consumption is slower than the
server's sending. Accumulated messages cannot be consumed in time.

Causes of accumulation

The following are some main causes:

● Producers produce messages too fast for consumers to keep up.
● Incapable consumers (low concurrency and long processing) cause lower

efficiency of consumption than production.
● Abnormal consumers (faulty and network error) cannot consume messages.
● Improper topic partitions, or no consumption in new partitions.
● Frequent topic rebalancing reduces consumption efficiency.

Solution

Accumulation can be avoided by the consumer, producer, and server.

● Consumer

Distributed Message Service for Kafka
Best Practices 9 Avoiding Message Accumulation

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

– Add consumers (consumption concurrency) based on actual needs. The
number of consumers should be accorded with the number of partitions.

– Speed up consumption by optimizing the consumer processing logic (less
complicated computing, API invoking, and database reading).

– Increase the number of messages in each poll: Polling/Processing speed
should be equal to or higher than the production speed.

● Producer
Attach a random suffix to each message key so that messages can be evenly
distributed in partitions.

NO TE

In actual scenarios, attaching a random suffix to each message key compromises
global message sequence. Decide whether a suffix is required by your service.

● Server
– Set the number of topic partitions properly. Add partitions without

affecting processing efficiency.
– Stop production when messages are accumulating or forward them to

other topics.

Distributed Message Service for Kafka
Best Practices 9 Avoiding Message Accumulation

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

10 Handling Service Overload

Introduction
High CPU usage and full disks indicate overloaded Kafka services.

● High CPU usage leads to low system performance and high risk of hardware
damage.

● If a disk is full, the Kafka log content stored on it goes offline. Then, the disk's
partition replicas cannot be read or written, reducing partition availability and
fault tolerance. The leader partition switches to another broker, adding load
to the broker.

Causes of high CPU usage

● There are too many data operation threads: num.io.threads,
num.network.threads, and num.replica.fetchers.

● Improper partitions. One broker carries all production and consumption
services.

Causes of full disk

● Current disk space no longer meets the needs of the rapidly increasing service
data volume.

● Unbalanced broker disk usage. The produced messages are all in one
partition, taking up the partition's disk.

● The time to live (TTL) set for a topic is too long. Old data takes too much disk
space.

Solution
Handling high CPU usage:

● Optimize the parameters configuration for threads num.io.threads,
num.network.threads, and num.replica.fetchers.
– Set the number of num.io.threads and the number of

num.network.threads threads to multiples of the disk quantity. Do not
exceed the number of CPU cores

– Set the number of num.replica.fetchers threads to smaller than or equal
to 5.

Distributed Message Service for Kafka
Best Practices 10 Handling Service Overload

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

● Set topic partitions properly. Set the number of partitions to multiples of the
number of brokers.

● Attach a random suffix to each message key so that messages can be evenly
distributed in partitions.

NO TE

In actual scenarios, attaching a random suffix to each message key compromises
global message sequence. Decide whether a suffix is required by your service.

Handling full disk:

● Increase the disk space.
● Migrate partitions from the full disk to other disks on the broker.
● Set a proper TTL for topics to decrease the of old data.
● If CPU resources are sufficient, compress the data with compression

algorithms.
Common compression algorithms include ZIP, gzip, Sappy, and LZ4. You need
to consider the data compression rate and duration when selecting
compression algorithms. Generally, an algorithm with a higher compression
rate consumes more time. For systems with high performance requirements,
select algorithms with quick compression, such as LZ4. For systems with high
compression rate requirements, select algorithms with high compression rate,
such as gzip.
Configurethe compression.type parameter on producers to specify a
compression algorithm.
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("acks", "all");
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
// Enable GZIP.
props.put("compression.type", "gzip");

Producer<String, String> producer = new KafkaProducer<>(props);

Distributed Message Service for Kafka
Best Practices 10 Handling Service Overload

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

11 Handling Uneven Service Data

Introduction

Kafka divides each topic into multiple partitions for distributed message storage.
Each partition has one or more replicas distributed on different brokers. Each
replica stores a copy of full data. Messages are synchronized among replicas. The
following figure shows the relationships between topics, partitions, replicas, and
brokers.

Uneven service data among brokers and partitions may happen, leading to low
performance of Kafka clusters and low resource utilization.

Causes of uneven service data

● The traffic of some topics is much heavier than that of others.
● Producers specified partitions when sending messages, leaving unspecified

partitions empty.
● Producers specified message keys to send messages to specific partitions.
● The system re-implements flawed partition allocation policies.

Distributed Message Service for Kafka
Best Practices 11 Handling Uneven Service Data

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

● There are new Kafka brokers with no partitions allocated.
● Cluster changes lead to switches and migration of leader replicas, causing

data on some brokers to increase.

Solution
Handling uneven service data:

● Optimize the topic design. For a topic with considerable data, the data can be
split across topics.

● Producers evenly send messages across partitions.
● When creating topics, distribute leader replicas across brokers.
● Kafka features partition reassignment. You can reassign replicas to different

brokers to balance load among brokers. For details, see Reassigning
Partitions.

Distributed Message Service for Kafka
Best Practices 11 Handling Uneven Service Data

Issue 01 (2023-09-15) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

https://support.huaweicloud.com/eu/usermanual-kafka/kafka_ug_0023.html
https://support.huaweicloud.com/eu/usermanual-kafka/kafka_ug_0023.html

	Contents
	1 Optimizing Message Polling of DMS for Kafka Consumers
	2 Improving Message Processing Efficiency
	3 Migrating Kafka Services
	4 Using MirrorMaker to Synchronize Data Across Clusters
	5 Setting Parameters for Kafka Clients
	6 Using Kafka Clients
	7 Configuring an Alarm Rule for Accumulated Messages
	8 Interconnecting Logstash with Kafka
	9 Avoiding Message Accumulation
	10 Handling Service Overload
	11 Handling Uneven Service Data

